SANDIA REPORT

SAND2005-5206
Unlimited Release
- Printed August 2005

é'e:njgroups at distant sites

Christine Yang
Advanced Software R&D

Corbin Stewart
Videoconference & Collaborative:Technologies

Sandia National Laboratories
P.O. Box 969
Livermore; CA 94551-0969

Prepared by
Sandia National L.aboratories
Albuguerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: hitp://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http//www.ntis.gov/ordering.htm

~

[

mailto:ordert.@ntis.fedworld.gov
http://www.ntis.gov/ordering.htm

SAND2005-5206
Unlimited Release
Printed August 2005

Group Tele-Immersion:

Enabling natural interactions between groups at distant sites

Andrew Nashel
Department ol Computer Science
The University ol North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175

Christine Yang
Advanced Software R&D

Corbin Stewart
Videoconlerence & Collaborative Technologies

Sandia National Laboratories
P. O. Box 969
Livermore, CA 94551-0969

Abstract

We present techniques and a system for synthesizing views for video teleconferencing between
small groups. Tn place of replicating one-to-one systems for each pair of users, we create a
single unified display of the remote group. Instead of performing dense 3D scene computa-
tion, we use more cameras and trade-off storage and hardware for computation. While it is
expensive to directly capture a scene from all possible viewpoints, we have observed that the
participants’ viewpoints usually remain at a constant height (eye level) during video teleconter-
encing. Therefore, we can restrict the possible viewpoint to be within a virtual plane without
sacrificing much of the realism, and in doing so we significantly reduce the number of required
cameras. Based on this observation, we have developed a technique that uses light-field style
rendering to guarantee the quality of the synthesized views. using a linear array ot cameras
with a life-sized, projected display. Our full-duplex prototype system between Sandia National
Laboratories, California and the University of North Carolina at Chapel Hill has been able
to synthesize photo-realistic views at interactive rates, and has been used to video conference
during regular meetings between the sites.

This page intentionally left blank.

Contents

Preface..........oevvunen. ettt tiatreaera it Ceerteiteiieeeneea. 6
1 Introduction............... et teesttiseatiieeriatnnsetrertsananes R
2 Related Work................. i hresseiareaaetetenantaaaes N L
3 Line Light Field Rendering.................. et ieatisersirtereitenrisenaans e 11
301 Rendering. ... 11
3.2 Sampling Requirement Analysis it i 13

4 Implementation and Resultscooviiiiiiiinosiarsncsssnseracsssnessassenceess 15

4.1 System ArchileClUreot e e e 15
4.2 Interactive Resulls e 18
S Discussion and Conclusion. ... iiveiiriiiseiteresatensssstorsensssssassssssssnsnsss 20

References v vveiviiiiiienorrerenreseerscsnssnssrscacssssssssssssnsssarasssavsrenes 21

Appendix

A TImplementation Details.oiviiiiiiiiiiiiiiiiiirietivstnieirsssassarsassssnanes 25

B Hardware and Softwarevveerviinrerieteressntessssssssssssesssssssssenssseess 29

Figures

{

SRS

)

Nalis <N Bie

Our vision of a 3D video teleconlerencing session. The lell photo shows the re-
mole participants; the right photo shows the local participants and a lile-size, static

seamless image synthesized using our method inSection 3. o oo oL 7
The linear camera array used to capture the conference participants. 8

Bird's eye view of the relative positions of local and remote participants in our system. 9
Angles between desired view camera C, and texture cameras C;, al a vertex V on

the focal plane. 12
Error Analysis for Creating Orthogonal Viewso oo, 14
The system architecture of OUr Prototype.ovvve i, 15
Triggering and synchronization timeline [or a group ol cameras. 16
Data path for a single video stream, from capture to display. 17
View dependent effects when the local conferees move to different spots; the pro-

jected images show the synthesized views. o i i i i i 18
A live teleconferencing session between the University of Kentucky and the Uni-

versily ol North Carolina at Chapel Hill. oo oo i i, 19

Preface

This report describes ongoing work (unded at the University of North Carolina at Chapel Hill under
an ASC Tri-Lab University Partnership contract. The goal of this research is (o prototype a large
format. 2D teleconferencing system that can be deployed and used on a regular basis. The system is
intended to provide an immersive conferencing environment for small groups as if they were sitting
across the table from each other. Two copies of the system were built at Sandia National Laborato-
ries, California (SNL/CA) in order Lo prototype local, (ull duplex operation. Andrew Nashel worked
on the prototype systems and rendering algorithms at SNL/CA over three summers as part ol his
research effort in this area.

Group Tele-Immersion:
Enabling natural interactions between groups at

distant sites

1 Introduction

With recent rapid advances in network bandwidth and dropping costs for video equipment. video
teleconferencing has been widely deployed for business and education, enabling face-to-face com-
munication between people at remote sites. However. existing systems are limited to capturing and
displaying a single two- dimensional image. which does nol provide a compelling or convincing
presence to the participants [32]. The fixed viewpoint, lack of depth cues, and smaller than life-size
imagery are far from replicating the experience of face- to-face conversation. Further challenges
arise when groups of people try to communicate with video conferencing. Eye contact is difficult
because each participant must look at the same camera, and each person appears smaller in the video
image.

(=

Figure 1. Our vision of a 3D video teleconferencing session. The
lett photo shows the remote participants; the right photo shows the lo-
cal participants and a life-size. static seamless image synthesized using
our method in Section 3.

Motivated by the shortcomings in current teleconferencing systems, our long-term goal is to create
a system lor teleconlerencing in which remote participants can be visualized as il they were sitling
across the table, crealing the impression ol [ace-lo-face conversation [26]. We present our vision of
a multi-user video teleconferencing session in Figure . The realization of this interfuce poses sig-
nificant scientilic and engineering challenges in compulter graphics (scene visualization), compuler
vision (scene acquisition), and nelworking (scene transmission). In the past, we have demonstrated
displays that present life-size, three-dimensional images |25, 4] to a single tracked user, given a
computer generated model or a pre-acquired environment model through laser scan.

This paper locuses on the more challenging scene acquisition problem ol how o capture a 3D en-
vironment real time, and how to transmit and display such data. Traditionally, a 3D model needs
to be reconstructed from 2D images, and this model can then be visualized using classic computer
graphics techniques. This reconstruction problem is one ol the central topics in computer vision
and remains open. While many algorithms exist, they are quite [ragile in practice [17]. In addition,
almost all of the highest quality algorithms are computationally expensive, and are not practical in
real-time applications like 3D interactive video teleconferencing.

Figure 2. The linear camera array used to capture the conference par-
ticipants.

In this paper, we present an approach that partly circumvents the difficult 3D reconstruction prob-
lem, while still conveying the sense of 3D in the output view. Based on light-field rendering (LFR)
techniques [17], the basic idea is to use many cameras to record the flow of light in all directions,
and thus the task ol view synthesis becomes a simple table-lookup of the view rays. LFR typically
requires hundreds or even thousands of cameras to cover the scene. For our teleconferencing setup,
we observed that during a video teleconferencing session, a participant’s view point is quite limited,
usually at the eye level with small lateral motions, looking towards the other participants. Thus, we
can use a 1D linear array ol cameras, shown in Figure 2, to capture a compact light field, which we
refer to as the Line Light Field. This compact video representation makes real-time capture, trans-
mission, and rendering possible. The second component of the system is a dual projector display
that allows f[or lile size rendering of the parlicipants.

We show the relative positions ol local and remote participants in a conlerencing session in Figure 3.
On the display (or local) side, the participants are seated in front of the projection display surface
as if they are on one side of a table, facing the image of the remote group. At the remote site, the
participants are captured by the linear array of cameras. Because the display and camera array are
replicated at each site, the system is full duplex.

The contributions ol the Group Tele-Immersion project are:
e A novel technique that uses a linear array of cameras for real-time view synthesis and an

analysis ol the sampling requirement, i.e., how many cameras are necessary (or a given scene
and viewing volume.

® The soltware and hardware architecture (o collect, process, and transmil many simultaneous,
frame synchronized video streams within a local network and across a wide area network.

Camera view frustum

| .
Ay / Remote site,
, geometry
S / relative to
N 7 display site
*,
N/
N/ Linear camera array
UUDDDDDDDD Display surface
| £ /
i /
Projector display frustum
s § i
i Y f.
3 Y !
"'\._ / \ .;.‘"
.-\'. i / ."'. 4‘::
QD
s __;’ ;‘ q f
x_ / . \ Display site
i / virtual viewpoint \

\ /

&2 =

Figure 3. Bird's eye view of the relative positions of local and remote
participants in our system.

o A prololype system that has been setup with nodes at the University ol North Carolina at
Chapel Hill, Sandia National Laboratories, Calilornia, and the University ol Kentucky, al-
lowing for full duplex communication between two sites.

The remainder ol this paper is organized as [ollows: we lirst present an overview ol related work
in real-time 3D scene acquisition and its application in teleconferencing in Section 2. The technical
details of our Line Light Field approach are discussed in Section 3. We present our prototype system
and results in Section 4, and conclude in Section 5 with a discussion ol the pros and cons ol the
technique. We have also included technical appendices with details of the system’s hardware and
soltware design.

9

2 Related Work

3D video leleconferencing. as a natural extension (o its mainstream 2D counterpart, has been pur-
sued by many researchers and engineers. Many current research or commercial systems that claim
to support 3D teleconferencing are in tact using a 2.5D approach called bill-boarding, where the
input video streams are posted on 2D planes [1, 27]. Alternatively, there are avatar based systems
for simple 3D teleconferencing where virtual figures represent participants [7, 5]. While these two
approaches may provide some three-dimensional cues about the spatial relationship ol the partici-
pants, neither can achieve a level of realism that is comparable (o traditional 2D teleconferencing.

The bottleneck in 3D teleconferencing is model acquisition. A classic way Lo acquire 3D infor-
mation {rom 2D images is the stereovision lechnique. Stereovision is one of the oldest and most
active research topics in computer vision (see [28] tor a recent survey). While many stereo algo-
rithms obtain high-quality results by performing global optimizations, today only correlation-based
stereo algorithms are able (o provide a dense (per pixel) depth map in real time. Correlation-based
algorithms can be acceleraled using either special hardware (8, 13, 31, 14, 6] or assembly level in-
struction optimization (such as Intel’s MMX and SSE extension sets) [23, 11, 10, 24]. Overall these
algorithms are quite fragile in practice. The calculated depth can contain substantial outliers due to
scene lighting, occlusions, and specular highlights. Increasing the fidelity of scene acquisition leads
Lo higher reconstruction latency and lower (rame rales [22].

An alternative reconstruction technique that is amenable to real-time computation is to use the sil-
houelte information o construct the object’s visual hull, which can be thought as a conservalive
shell that encloses the actual object [16]. Visual compulation does not require exhaustive matching,
therefore it is quite efficient and robust. Matusik et. al. designed an efficient method to compute
and shade visual hulls [rom silhouette images, allowing real-lime rendering of a dynamic scene
from a large viewing volume [20]. Lok presented a novel technique to accelerate visual hull compu-
tation using commodity graphics hardware [19]. However, these approaches cannot handle concave
objects, which results in less than satisfactory close-up views of such objects.

Recently, Image-Based Modeling and Rendering (IBMR) methods have become a popular alter-
native [or synthesizing novel views. The basis for IBMR is reconstructing the plenoptic function
that describes the flow of light in all positions and in all directions [21]. With a complete plenoptic
function, novel views can be easily synthesized by plugging the location and directions for the novel
views into the plenoptic function. A class ol IBMR methods, called Light Field Rendering(LFR),
uses many images to pre-record the plenoptic function {17, 9, 30]. LFR methods often achieve a
stunning level of realism without using any geometric information. However, applying it directly
to 3D teleconferencing would require hundreds of cameras, which makes real-time acquisition and
transmission impossible. Schirmacher et. al. extended LFR with per-pixel depth information com-
puted with a classic stereo algorithm [29]. Their approach allows real-time online view synthesis,
but the [idelity is limited by the quality and the speed ol the stereo algorithm (1-2 {rames/second).

Our research is aimed at linding a practical approach o 3D teleconferencing that overcome the
limitations ol exisling applications. In particular, we would like to use no more than a dozen cameras
to produce real-time photo-realistic results that replicate the experience of face-to-face conversation.

10

3 Line Light Field Rendering

While applying unconstrained Light Field Rendering (LFR) is not practical due to the sheer amount
of data required, we take advantage of the application specific requirements of video teleconferenc-
ing. We observed that during a video teleconlerencing session, the participanl’s view point is quite
limited, usually at the eye level, with small lateral motions. Thus we can use a 1D linear array of
cameras to capture a compact light field, which we refer to as the Line Light Field. This compact 1D
selup makes real-time capture, transmission, and rendering possible. To achieve the best result, it
is desirable (o place the camera array horizontally at eye level using a hall-silver mirror or actively
controlled screen [15]. Novel views at eye level can be generated interactively, allowing the partic-
ipants to view the remote scene from side to side, or from near to far to gain a sense of 3D. The
optical axis of the synthesized view is, however, approximately constrained Lo the plane that passes
through the camera array since there are no cameras (o capture information {rom above or below.

3.1 Rendering

The general concept ol Line Light Field rendering is (o blend together the appropriate pixels (rom
the nearest cameras in order to compose the correct scene lor the user’s point of view. This process
can be accelerated using texture mapping hardware [12, 2. 33]. Our method, which is in essence a
modified version of unstructured lumigraph rendering [2]. consists of the following steps:

e Set viewpoint and average scene depth (the focal plane)

o Tessellate the image plane of the virtual camera into a list ol narrow rectangles
e Compute blending weights and texture coordinates

o Apply multiple texture (o rectangles.

Set viewpoint and focal plane The location ol the viewpoint is determined by the viewer. He
or she can translate horizontally and zoom in and out the virtual camera. In our algorithm, the
system starts with an initial (default) view location, and during the conference the viewpoint can be
adjusted by simply using the arrows keys on the keyboard. This user viewpoint is also known in the
literature as the desired view point, and we refer it as point Cy in the rest of this section. In addition,
an approximate focal plane is setup, which represents the average depth of the participants. This
can be usually determined through camera calibration. The [ocal plane’s depth can be adjusted by
user as well.

Allocate vertices in image plane The formation ol the image to be displayed begins by tessel-
lating the image plane of the virtual camera. Since our input images are co-linear, we only divide
the image plane in the horizontal direction to a series of narrow rectangles. The vertices of these
reclangles are back-projected onto the [ocal plane. In other words, the focal plane is dynamically
lesselated in a view-dependent {ashion to guarantee uniform tessellation on the image plane, which
can lead to better blending.

11

Blending weights and texture coordinates For each vertex on the local plane a set of blending
weights is computed. The weights are associated with the respective texture coordinates, which are
necessary parameters to render the desired image. The computation of the blending weights is done
in the lollowing way.

Focal Plane

Figure 4. Angles between desired view camera €, and texture cameras
Ci. at a vertex V on the focal plane.

For a given vertex V., we need to [ind its valid cameras, i.e.. the sel ol cameras whose images
contain the focal plane point V. If the number of valid cameras is less than the maximum number
of blending cameras NBC, then NBC must be updated to that number of valid cameras. Next, for
all valid cameras, compute the angle 6; formed by the desired view point C,, the local plane vertex
V. and the center ol projection ol camera C;, as shown in Figure 4. A small angle means that the
desired view is near that particular texture camera. So, for the computation of the blending weights
wi, & group K of cameras with the NBC smallest angles is selected. The camera with the smallest
angle has the largest blending weight, and the weights [or the smaller angles are enhanced by an
exponential function. The computation of the blending weight is given by the following equation,

Wi = exp(—L) (1
\I‘,‘

- 2

Wi 3% (2)

for all i and j that are included in K. The blending [actor & is a user-controllable parameler (o
control the rate of transition. The smaller valuer o is, the less inter-texture blending there is. We
typically use a constant value of 2.5°. The blending weights for each vertex are normalized to
guarantee a constant brightness ol the entire image. For the invalid cameras, a blending weight ol
zero is assigned. Al the end of this process, we have a list of weights and textlure coordinates [or all
cameras.

Multiple texture blend Multiple texture is applied on top of all rectangles formed on the image
plane using the respective blending weights and the texture coordinates. The (exture images come
from all cameras at as high a [rame rate as possible. In this procedure, each reclangle is rendered
multiple times, and at each time it is rendered using the texture from one camera with the proper

12

weight. The [rame buller is used as an accumulation bufler. If multi-texture hardware is available,
textures from multiple cameras can be rendered at once, reducing the total number of rendering
passes. Since all texturing tasks are done by the graphics hardware, the multiple texture blending
process is very fast compared (o software image processing techniques.

3.2 Sampling Requirement Analysis

A commonly asked question in light field rendering is “how many images are required to generate
aliasing-[ree outpul.” We provide a sampling analysis {or our linear camera array. We first assume
that all of the cameras are mounted on a horizontal rail and regularly spaced. The optical axes of the
cameras are parallel on a horizonal plane. We then define an error tolerance measure (e) in terms
of pixel drifl, i.e., the distance [rom a pixel’s ideal location in the synthesized view. For a given
configuration, we would like to find out how much error there will be, or conversely, given an error
lolerance measure, how many cameras are needed.

e is obviously a view-dependent factor. If the virtual view corresponds exactly to one of the input
view, then e is zero. Here we consider an extreme case when the desired viewpoint is al infinite. In
this case, the viewing direction (or every vertex on the {ocal plane is parallel to each other. Given a
small enough blending weight o, our rendering algorithm is in fact cutting the center band of each
input image and juxtaposing these bands. The synthesized image is orthogonal in the horizontal
direction and perspective in the vertical direction.

Inspired by the sampling analysis for LFR in [3, 18], we attack the error tolerance measure ¢ using
a geometric approach. Let us define the following parameters:

o Camera’s field of view FOV

o Camera’s horizontal resolution (in number of pixels) W

o Inter-camera distance d
The problem we try to solve here can be stated as follows: Given a set of camera configuration

parameters, and a desired error tolerance ¢, what is the maximum depth deviation AD {rom the
optimal depth D?

From Figure 5(a). it is easy (o see that o = ran™! (%/D), B=/0PS=90+(90--a) = 180 —~o. In

triangle SPO, we have

AD |OP|
sin(Aat) — sin(/PSO)

Substituting ZPSO = 180 — B — Aat = oo — At and |OP| = \/(d/2)> 4 D>, we get

AD — sin(Aa)\/(d/2)? + D?

sin(ol— Ao)

=500
E — d=25mm
& csoof| * d=50mm (approx)
«Dha-B : = + d=50mm
)r’w Do Dt 5 ol o~ d = 100mm
BN Y 0 A ; =
W A ; = / +
\ it { Sson / A *
3 “-’ ‘.. :" 5 £ / . *
i Vg D200 / - y
/ L a / g o~
v Yere A gm % -
: » E e
o FI
» =053 g . ¢
Pixel Drift Error (in pixels)
(a) Geometric Setup (b) The maximum depth devi-
ation with respect to pixel drift
error

Figure 5. Error Analysis for Creating Orthogonal Views

We can then approximate the angular deviation Act in term of pixel drift e, where Aot = (¢/W)FOV.
That leads to:

Ap Sinle/W x FOV)\/(d/2)* + D? 3)
N sin(ot—e/W x FOV)) :

where FOV is expressed in radians. Furthermore, since sin(o) = (d/2)/\/(d/2)* + D3, (e/W)F OV
is usually a very small number and (¢/W)FOV < a.d < D, we can approximate Equation 3 as

DZ

d/f?

AD = = FoV

W (4)

We can derive a similar equation in case S is closer to the camera instead of farther away.

Let us assume FOV = 30°. W = 640.and D = 1000 mm. Figure 5(b) shows the maximum depth
deviation with respect to pixel drift error under different camera placements ¢ = 25.50, 100 mm.
The red line shows the results computed using the rough approximation (Equation 4), while the rest
are computed using Equation 3. Note these are “one-sided” numbers, i.e., they only represent how
much further away the real depth can be. The total distance variation is roughly twice as long. From
the results we can see that it is indeed possible and practical o create crisp orthogonal images lor
depth variation under 400 millimeters, a reasonable value 1o accommodate normal human motions
during a conference.

14

4 Implementation and Results

4.1 System Architecture

We have implemented a 3D teleconferencing prototype system at three sites: the University ol
Kentucky (UKy). the University of North Carolina at Chapel Hill (UNC-CH). and Sandia National
Labs, Calilornia. Each site has a total ol eight or ten Sony digital lirewire cameras arranged in
a linear array, as shown in Figure 2. These cameras are regularly placed at 65 millimeter apart,
very close o the minimum distance allowed by the form factor ol the camera body. All cameras
are synchronized by a wire controlled [rom a PC and {ully calibrated using the method [rom [34].
Figure 6 shows the configuration that supports the acquisition, transmission, and display for two
nodes.

Acquisition Cluster Rendering Machine

) Node 1 Node 2
Firewire
Camera) v
Server
sRemote
Render

Acquisition Cluster

Node 2 - %]
Firewire
Camera

LY}

: i

[]

1]

Internet/ i -

WAN 1 Ethernet Server]

Server 3 i
--- 1 |
- . | 5
: Rendering Machine ' : :
| g Node 1 | | Camera :
i ! i Server i
! ' I '
i DVI E i E
: : [. :
i : | ; i
i Remotec : ' | Local i
: Render | : _/ ' [Render| :
H 1 | 1
1 1 1 Ll
; i ® pEG Compress i Camera é
' : JPEG Decompress i Server :
! ' 1 1

Figure 6. The system architecture of our prototype.

Cameras and Synchronization The video acquisition system (one at each site) includes four 0
five server PCs interconnected through 100Mbit Ethernet. Each server is connected to two Sony
cameras and is used to capture and JPEG encode the raw image data at full VGA resolution. The
server may optionally segment the foreground participants [rom the background and encode this in
the alpha channel of the image. The JPEG streams are then sent through the network (o be decoded
on the rendering system.

Camera synchronization ensures that all cameras capture a video frame at the same time. With-
out synchronization, adjacent video images may show discontinuilies in moving objects, such as a
participant’s body as they move. The cameras used in our system support an external trigger via
a special interface, separate from the Firewire used for data transfer. When the camera receives a
TTL pulse on the trigger interface, the camera caplures a [rame during the next [rame interval of the
camera’s internal clock, which runs at a preset [rame rate. The video data is then read out over the
next clock interval. Due to this two frame process, the maximum triggered capture speed is slightly
less than half of the set camera frame rate. Also, the data may arrive at the host machine anywhere
from one to two frame times after the trigger signal.

trigger all captured all received

No capture, constant time, 1 frame
| } 4 J 4 Capture, constant time, 1 frame
I

YUV to RGB, segmentation, compression, variable time

| SS——
I : : 4) ‘1 Transmit, variable time
} : : : : Idle, variable time

| | | i l
I I 1 [I

| H L Il L

1 i |

| R —

1 frame time
Time ——»
— S
~

1-2 frame times

Figure 7. Triggering and synchronization timeline for a group of cam-
eras.

When multiple cameras are triggered by (he same signal, then they are guaranteed Lo be synchro-
nized to the same video frame and will follow the previously described read out process. However,
the camera clocks are not synchronized and may be offset by any amount, as shown in Figure 7.
Additionally, the video processing (color conversion, segmentation, and compression) and network
transmission can lake a different amount ol time lor each video stream.

The triggering signal is controlled by trigger server software via a parallel port device. Ideally,
triggering will occur as [ast as possible (hall the set (rame rate of the camera). However, if the
trigger signal is received early by a camera that is still capturing or transmitting the video data, the

16

Capture server Rendering system

v i
H '

' |

Directshow Capture as e as Connection Render i

trigger in T T T H T T T H
- ' H

| 1

) i

33-66ms - l

capture ' '
copy i |

R — e i i

i H

trigger out YUV to RGB ﬁ"' ! :
=l i |

segment 7 send 1 i

I 1

P -‘———___'_ ' P '

. H

buffering H = recv 5

' /I-_____._ i

buffering I~ 3

f URIPEG /:_ poll | '

H lg-——===="""""77 i

:]

H '

H copy i

H !

Time 1 ;

| i

1 1

l H i

H i

H 1

H H

: '

Figure 8. Data path for a single video stream, from capture to display.

[rame will be delayed an entire {rame time or not sent at all. To ensure that all ol the camera servers
are ready Lo capture a new [rame, the trigger server wails until a conlirmation message is received
from each of the camera servers, Because the time delay in the camera is relatively longer than the
other stages of the pipeline, shown according to threaded data processing in Figure 8, it is safe for
the camera server to sent the confirmation signal (trigger out) as soon as the data is received in host
memory.

Streaming Architecture There are two methods for running the view synthesis program. One is
to send all the video streams over the Internet and synthesize novel views at the remote site (remote
rendering). Alternatively we can synthesize views locally and only send the final result to the remote
site (local rendering). The [irst approach has a potentially lower latency for a changing viewpoint,
but requires extra stream synchronization mechanisms. The second configuration, shown in Figure
6, is easier lo manage [rom a network standpoint, because there is only a single data stream sent
over the Internet.

Remote rendering will also typically require more Internet bandwidth than local rendering. In terms
of scalability, the bandwidth requirement for remote rendering is &+ R where & is the number of
cameras and R is the average compressed camera image size. The bandwidth requirement [or local
rendering, on the other hand, has a resolution [ixed by the rendering outpul, independent of the
number of cameras. We expect the number of cameras used in the system to scale at a faster rate
than the output resolution.

Given thal our current prototype only involves conlerencing between two sites, and the viewpoint is
not changing rapidly (i.e.. no head tracking). we chose to implement the local rendering approach.
Notice that the Line Light Field rendering module can be used with or without a geometric proxy.

4.2 Interactive Results

We first show the results from our Line Light Field rendering method in Figure 1. The back-
ground is blurry due o the limited number ol cameras in use. This can be alleviated using the
[oreground/background segmentation. To creale lile-size images. we use a (wo projeclor, abutted
display at both the UNC-CH and Sandia sites, and a single projector at the UKy site.

Figure 9. View dependent effects when the local conferees move to
different spots; the projected images show the synthesized views,

In a teleconferencing session with few participants, we use the view dependent Line Light Field
method to synthesized desired views, shown in Figure 9. We use a stationary folder to illustrate the
view dependent elfect when the local conferees move Lo diflerent spots. When the local conlerees
are at right, as in the lop image, the view point of the synthesized view is [rom right. revealing the
front cover (on the right) of the folder. When the conferee moves to left, as in the bottom image, the
view changes accordingly, revealing the back cover ol the folder.

18

Figure 10. A live teleconferencing session between the University of
Kentucky and the University of North Carolina at Chapel Hill.

In Figure 10, we show the setup at UKy in which a full-duplex live teleconferencing session with
UNC-CH is in progress. The video images were synthesized in real-time using the Line Light Field
rendering method.

In terms of performance, we can achieve an update rate ol 5-10 [rames per second ([ps) for VGA
inpul images locally. The bottleneck is in image capture, We can only capture synchronized VGA
resolution images at 12-13 [ps with one camera per Firewire bus and 7-8 [ps with two cameras on
the same Firewire bus. as described in section 4.1. When multiple video streams are sent to the
rendering machine, network collisions reduce the frame rate to 5-10 fps,

The synthesized view, typically rendered at 1024 x 512 or 2048 x 768, is read back from the ren-
dering program’s framebuffer and sent to the remote site through TCP/IP with JPEG encoding. The
remole rendering program is capable ol decoding and rendering 1024 x 512 images at over 30 [ps.
However, the network bandwidth between UKy and UNC-CH is quite limited. The overall [rame
rate between these two sites varies from 5 fps to 10 fps. depending on the network traffic. We esti-
mated a sustained transfer rate between 3 Mbits and 6 Mbits. Optimization in the network code or
the use of a more sophisticated compression scheme is expected to substantially increase the frame
rale. Similar performance has been observed between UNC-CH and SNL/CA.

19

S Discussion and Conclusion

Conventional video teleconferencing solutions are insufficient [or replicating the [ace-lo-lace expe-
rience of group interactions. Resolution limitations, a lack of depth cues, and smaller than life-size
imagery are drawbacks of a conventional single camera and display system. We present techniques
and a system for synthesizing novel. high-resolution views rendered in life-size for group tele-
immersion.

The Line Light Field method is a practical alempl 1o bypass the dilficull geomelry reconstruction
problem by using many cameras. Instead of performing dense. computationally intensive 3D scene
acquisition, we exploil the [act the participants’ motion is rather limited, usually to lateral motions
with their eyes remaining at a lixed level. during a video teleconlerencing session. This natural
restriction allows us to use a limited number of cameras to capture important views. Based on this
observation, we have developed areal- time acquisition-through-rendering algorithm based on Light
Field Rendering.

The realism of the synthesized view is derived directly [rom camera images. With smaller, inex-
pensive cameras becoming available, we believe this method provides a useful solution in the near
term. The bottleneck for this method is the bandwidth, both the network bandwidth and the render-
ing system’s internal bus bandwidth. While these can be improved through technical advancement,
a more fundamental drawback of this pure image-based method is that the linear arrangement of the
cameras limits the possible range of the viewpoints, creating the requirement of placing the camera
array at eye level.

Future work will consider these issues in particular:
e New camera arrangements, [or example, multiple rows of cameras, above and below the
display, with new blending methods Lo simulale eye level cameras.
e Camera/display integration, such as cameras embedded in the display area.

e Display wall integration, [or displaying the rendered images on multi-projector display sys-
tems, such as PixelFlex [32].

o Higher speed video caplure and transmission, such as automatically synchronized camera
systems [24], and improved inter- and intra-stream compression methods.

e Aclive radeoll between local and remote rendering o adapt (o changing network conditions.

o Combining Light Field-style rendering with improved geometry proxy acquisition {or higher
fidelity rendering.

o Integrating (multi-)juser tracking to set rendering viewpoints and to adapt acquisition algo-

rithms.

We have demonstrated the practicality of the Line Light Field technique using our full duplex 3D
video teleconferencing prototype between Sandia and UNC-CH, with regular video teleconferenc-
ing between the siles. We have also conducted successful tests between UNC-CH and UKy.

20

[1]

2]

6]

19]

[10]

[14]

References

M. Billinghurst, H. H. Kato, S. Weghorst, and T. Furness. A Mixed Reality 3D Conferencing
Application. Technical Report R-99-1, Human Interlace Technology Laboratory, University
of Washington, 1999.

Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Cohen. Un-
structured Lumigraph Rendering. In Proceedings of SIGGRAPH 2001, pages 43-54., Los
Angels, August 2001.

Jin-Xiang Chai, Xin Tong, Shing-Chow Chan, and Heung-Yeung Shum. Plenoptic Sampling.
In Proceedings of SIGGRAPH 2000, page 307318, New Orleans, August 2000.

W. Chen, H. Towles, L. Nyland, G. Welch, and H. Fuchs. Toward a Compelling Sensation
of Telepresence: Demonstrating a portal to a distant (static) office. In Proceedings of IEEE
Visualization, 2000.

A. Colburn, M. Cohen, and S. Drucker. The Role of Eye Gaze in Avatar Mediated Con-
versational Interfaces. Technical Report MSR-TR-2000-81, Microsoft Research, Redmond,
Washington, 2000.

A. Darabiha, J. Rose, and W. J. MacLean. Video-Rate Stereo Depth Measurement on Program-
mable Hardware. In Proceedings of Conference on Computer Vision and Pattern Recognition
(CVPR), pages 203-210, 2003.

J. Ohya et al. Real-Time Reproduction of 3D Human Images in Virtual Space Teleconfer-

encing. In Proceedings of Virtual Reality Annual International Symposium, pages 408-414,
1993,

O. Faugeras, B. Hotz, H. Mathieu, T. Viville, Z. Zhang, P. Fua, E. Thron, L. Moll, G. Berry,
J. Vuillemin, P. Bertin, and C. Proy. Real time correlation-based stereo: Algorithm, imple-
mentations and application. Technical Report 2013, INRIA, August 1993.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The Lumigraph. In Proceedings of
SIGGRAPH 1996, pages 43-54, New Orleans, August 1996.

Heiko Hirschmuler. Improvements in Real-Time Correlation-Based Stereo Vision. In Proceed-
ings of IEEE Workshop on Stereo and Multi-Baseline Vision, pages 141-148, Kauai, Hawaii,
December 2001,

H. Hirschmulier, P. Innocent, and J. Garibaldi. Real-Time Correlation-Based Stereo Vision
with Reduced Border Errors. International Journal of Computer Vision, 47(1-3), April-June
2002.

Aaron Isaksen, Leonard McMillan, and Steven J. Gortler. Dynamically Reparameterized Light
Fields. In Proceedings of SIGGRAPH 2000, pages 297-306, August 2000.

T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka. A Stereo Engine {or Video-rate
Dense Depth Mapping and Its New Applications. In Proceedings of Conference on Computer
Vision and Pattern Recognition, pages 196-202, June 1996.

K. Konolige. Small Vision Systems: Hardware and Implementation. In Proceedings of the 8th
International Symposium in Robotic Research, pages 203-212. Springer-Verlag, 1997.

21

[15]

[16]

[17]

[18]

[19]

[27]

(28]

[29]

(30]

Andreas M. Kunz and Christian P. Spagno. Technical System [or Collaborative Work. In
Proceedings of Workshop on Virtual Envirvonments 2002, May 2002.

A. Laurentini. The Visual Hull Concept for Silhouette Based Image Understanding. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 16(2):150-162, February 1994.

M. Levoy and P. Hanrahan. Light Field Rendering. In Proceedings of SIGGRAPH 1996, pages
31-42, New Orleans, August 1996,

Z.-C. Lin and H.-Y. Shum. On the numbers of samples needed in light field rendering with
constant-depth assumption. In Proceedings of Conference on Computer Vision and Pattern
Recognition (CVPR), 2000.

B. Lok. Online Model Reconstruction for Interactive Virtual Environments. In Proceed-
ings 2001 Symposium on Interactive 3D Graphics, pages 69-72, Chapel Hill. North Carolina,
March 2001.

W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan. Image-Based Visual Hulls.
In Proceedings of SIGGRAPH 2000, pages 369-374, New Orleans. August 2000.

L. McMillan and Gary Bishop. Plenoptic Modeling: An Image-Based Rendering System. In
Proceedings of SIGGRAPH 1995, pages 39—46, 1995.

J. Mulligan and K. Daniilidis. View-independent Scene Acquisition for Tele-Presence. Tech-
nical Report MS-CIS-00-16, Computer and Information Science Dept., U. of Pennsylvania,
2000.

J. Mulligan, V. Isler, and K. Daniilidis. Trinocular Stereo: A New Algorithm and its Evalu-
ation. International Journal of Computer Vision (IJCV), Special Issue on Stereo and Multi-
baseline Vision, 47:51-61, 2002,

Point Grey Research Inc. http://www.ptgrey.com.

R. Raskar, M. Brown, R. Yang, W. Chen, G. Welch, H. Towles, B. Seales, and H. Fuchs. Mulu-
projector displays using camera-based registration. In Proceeding of 1IEEE Visualization 1999,
pages 161-168, 1999,

R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and H. Fuchs. The Olfice of the Future:
A Unilied Approach o Image-Based Modeling and Spatially Immersive Displays. Computer
Graphics, 32(Annual Conference Series): 179-188, 1998.

H. Regenbrecht, C. Ott, M. Wagner, T. Lum, P. Kohler, W. Wilke, and E. Mueller. An Aug-
mented Virtuality Approach to 3D Videoconferencing. In International Svinposium on Mixed
and Augmented Realitv, 2003,

D. Scharstein and R. Szeliski. A Taxonomy and Evaluation of Dense Two-Frame Stereo Cor-
respondence Algorithms. International Journal of Computer Vision, 47(1):7-42, May 2002.

Hartmut Schirmacher, Li Ming, and Hans-Peter Seidel. On-the-Fly Processing of Generalized
Lumigraphs. EUROGRAPHICS 2001, 20(3), 2001.

H.Y. Shum and L. W. He. Rendering with Concentric Mosaics. In Proceedings of SIGGRAPH
1997, pages 299-306, 1997.

22

http:l/www.ptgrey.com

[31} John Woodlill and Brian Von Herzen. Real-Time Stereo Vision on the PARTS Reconfigurable
Computer. In Kenneth L. Pocek and Jeffrey Arnold. editors, IEEE Symposiun on FPGAs
Sfor Custom Computing Machines. pages 201-210, Los Alamitos, CA, 1997. IEEE Computer
Society Press.

[32] K. Yamaashi. J. Cooperstock, T. Narine, . and W. Buxton. Beating the limitations of camera-
monitor mediated telepresence with extra eyes. In SIGCHI 96 Conference Proceedings on
Human Factors in Computer Svstems., 1996,

[33] Jason Yang, Matthew Everett, Chris Buehler, and Leonard McMillan. A Real-Time Distributed
Light Field Camera. In Proceedings of Eurographics Workshop on Rendering, pages 77-86,
2002.

[34] Z. Zhang. A [lexible new technique [or camera calibration. [EEE Transactions on Pattern
Analysis and Machine Intelligence, 22(11):1330-1334, 2000.

o
(O8]

This page intentionally left blank.

24

A Implementation Details

The Group Tele-Immersion project consists of hardware and software built to support two groups of
collaborators separated by geographical distance. The primary hardware components are an array
of cameras and the associated capture PCs. the projector-based display system, and the networking
connections between sites. The two primary software components are the camera server capture
program and the rendering program. In general. and unless otherwise specified, the system is coded
in C++ using Microsoft Visual Studio 6.0 and Visual Studio NET 2003 on the Win32 platform. This
combination was chosen because it best supported Firewire video capture and graphics rendering.
As of summer 2004, all projects are built with Microsoft Visual Studio NET 2003 (7.1), and require
the .NET 2003 runtime and redistributable DLLs (MFC7L.dIl, msver71.dll, msvep71.dll) to run.

A.1 Calibration

The calibration software lakes a set of synchronized camera images of a checkerboard target in
various positions and orientations. The soltware is a MATLAB script based on Jean-Yves Bouguet’s
camera calibration toolbox. The image input and calibration output paths, camera orientations, etc.
are specified in a parameters lile.

The calibration soltware produces a set of MATLAB data files (with .mat extension), one for each
camera. For each camera data (ile, a second script, yanglormat.m, is used to extract the calibration
data from the MATLAB format and write two text files, a calibration file for the camera position,
and a radial distortion file for radial lens effects. The calibration file includes a 3x4 floating point
variable projection matrix and two {loating point values [or the camera center. The radial distortion
file contains the set of floating point values for the radial distortion parameters, and can be optionally
used to improve image quality with image distortion correction.

A.2 Camera Server (DxCamServer.exe)

The camera sever conneclts to a Firewire video camera via the Microsofl DirectShow interface. It
sets the camera parameters, starts the video capture, processes the images, and then compresses
with a JPEG codec for transtmission over the network with TCP.

Upon execution, the camera server initializes the video camera, setting camera parameters such as
frame rate, resolution, contrast, shutter speed, etc. based upon values in a specified configuration
file. The server then starts a thread to handle TCP network connections. The program builds a
DirectShow filter graph that includes the source and a user delinable [unction that is called whenever
a new video [rame arrives. Finally, the filter graph is started and video begins to arrive {rom the
camera,

When a new [rame is available, the callback function is started, and image processing begins. The
video can be transmitted uncompressed (RAW), in YUV or RGB mode, or compressed with JPEG.
In order to use compression or background subtraction, and the input video type is YUV format (2
bytes per pixel), the video frame is converted 1o RGB format. If background subtraction is enabled,
the video image is compared to an RGB reference image of the scene without users, and a filtered
difference image is created. This mask image is compressed using run length encoding (RLE). This

25

is combined with the video image inlo a single byte buf{er which is made available to the TCP-based
network thread.

I region-of-interest coding is enabled, the same image processing steps are laken, but only on a
subregion of the image, reducing computational load. A smaller RAW or JPEG (and optionally a
mask) image results. The ROI offsets [rom the parent image are included in the network header for
future recombination. Previously, the alpha mask generated by the background subtraction process
was compressed, using run length encoding. separately from the RGB values, and sent after the
JPEG encoded image. Now, the background mask is combined with the RGB image to make a
single RGBA 4 channel image that is compressed using JPEG and transmitted using TCP.

The camera server can connect directly o a trigger server. It can send a trigger out command early,
as soon as a new [rame is received [rom the camera driver, or il can wait until video processing is
complete and the compressed video image is transmitted to the renderer.

A.3 Camera Receiver (CamRecv.exe)

The CamRecv.exe program is a simple OpenGL-based client for the camera servers. It connects
lo a single camera server, specified on the command line, and receives images al whatever rale the
camera is running. Images are sent over a TCP/IP connection, compressed in JPEG format.

A.4 Remote Receiver (FBRecv.exe)

The remole receiver is based on the CamRecv.exe program; il receives streams ol JPEG compressed
images [rom the renderer, and display them by rendering to a resizable quad.

A.5 Renderer (ULR.exe)

The rendering program reads a set of calibration files created during the camera calibration process,
connects lo a specified set of camera servers, and renders using the Line Light Field algorithm.
Each connection to a camera server runs in its own thread, and the rendering thread runs sepa-
rately. Between rendering passes, the renderer enters an idle function that polls each camera server
connection. If a new video image is available, il is copied [rom system memory to video lexture
memory.

The primary new [eature is the ability of the renderer to read back the display image and [orward to
a remole rendering client. A separale server thread is initialized when the renderer start on a given
port. When a remote renderer connects to the server, an OpenGL read back call is made to get the
frame bufler contents into main memory. This RGB image is then compressed using the IJL and
sent to the client using the same frame definition as video connections between the camera server
and renderer.

The renderer is modified to accept a 4 channel RGBA image via the network and decompress
and write to texture memory. Texture blending is now accomplished via an OpenGL fragment
shader program, which requires OpenGL 1.3 compliant video card and driver, and support for the
GL_ARB_{ragment_program exlension.

A.6 Trigger Server (TrigServ.exe)

Camera synchronization is controlled by an external TTL pulse into the cameras. A multi-camera
synchronization device was built using a parallel port connector with multiple camera sync con-
nections. Each time a parallel port signal is issued from the host computer. all connected cameras
receive the trigger simultaneously. The trigger server software issues these signals according to
three different usage modes, automatic, manual, and server, In automatic mode, a trigger rate is
specified as a command line parameter. Manual mode sends a trigger with each keystroke. Server
mode sends a trigger when a message is received over a network connection.

The rigger server uses the ParaPort 2000 library for parallel port control. This library allows lor
user mode applications (o directly access the parallel port under Windows NT and 2000. With this
library, only specific device drivers could access the parallel port hardware.

Completely reliable triggering performance is available in single client trigger server mode mode,
with a connection {rom the renderer. Highest overall triggering performance is achieved with sep-
arate connections [rom each camera server, resulling in a shorter feedback loop and a higher {rame
rates.

A.7 Libraries

The Intel JPEG Library (1JL.), version 1.5, uses hardware specific optimizations to allow for fast
encoding and decoding of images to and from the JPEG format. In particular, the discrete co-
sine transform (DCT) and inverse DCT, used (or JPEG processing, are optimized. The OpenCV
(Computer Vision) Library, version bl.5, provides functions to support real-time image process-
ing for computer vision applications. Updated versions of the Intel JPEG library, version 1.51 and
OpenCV library, version b2.1 are now used.

The Image Debugger (imdebug) library is required for debugging and monitoring images, and func-

tions as a “printf” for images. The OpenGL Extension Wrangler Library (GLEW) is required to
handle OpenGL extensions for multitexturing and shader programs. Direct 9.0 is required.

27

This page intentionally left blank.

28

B Hardware and Software

Note that this is the UNC configuration; however, Sandia and UKy conligurations are similar. and
any similar conliguration will support the Group Tele-Immersion project. Each camera server sys-
tem connects to one or two cameras, using one or two Firewire interface boards. Each board sup-
ports one camera running at 30fps or three cameras at 15fps; two boards are required to support two
cameras running at 30fps each.

B.1 Camera Servers
Hardware

e Dell PowerEdge Workstation

Dual Intel Pentium I 1. 13GHz

1.0GB RAM

2x OHCI Compliant IEEE 1394 controllers

2x Sony DFW-VL500 Cameras

Intel onboard 100Mbps networking

Software

e Microsolt Windows 2000 Service Pack 4
o Microsoft DirectX 8.0
e Sony 1394 DFW-VL500 Camera driver 5.0.3000.22

Libraries

e Intel JPEG Library 1.51 (1.51.12.44)
o Intel Image Processing Library 2.5 (2.5.2.82)

e OpenCV beta 1.5

B.2 Renderer

Hardware

e Dell Precision 530 Workstation

Dual Intel Xeon 2.4GHz with Hyperthreading enabled

1.0GB RAM

ATI Radeon 9700 Pro

3Com 3C920 Integrated Fast Ethernet Controller

Software

o Microsolt Windows XP Professional Service Pack 1
¢ Microsoll DirectX 9.0
¢ MATLAB 6.5 (for calibration)

¢ Microsoft Visual Studio .NET 2003

Libraries

o Intel JPEG Library 1.51 (1.51.12.44)

o Intel Image Processing Library 2.5 (2.5.2.82)
e OpenCV beta 1.5

s GLEW 1.2.1

e GLUT3.7

¢ GLVU 0402006

¢ Image Debugger 1.13b

e ParPor(2000 1.0.2.0

DISTRIBUTION:

1 Andrew Nashel

Department of Computer Science
The University of North Carolina at
Chapel Hill

358 Sitlerson Hall

Chapel Hill, NC 27599-3175

I Henry Fuchs

Department of Computer Science
The University of North Carolina at
Chapel Hill

209 Sitterson Hall

Chapel Hill, NC 27599-3175

1 Herman Towles

Department of Computer Science
The University ol North Carolina at
Chapel Hill

233 Sitterson Hall

Chapel Hill, NC 27599-3175

1 MS 0321
Robert W. Leland, 09220
| MS 0822
Constantine Pavlakos, 09326
1 MS 0822
David R. White, 09227
I MS 9152
Jerrold A. Friesen, 08963
1 MS 1002
Philip D. Heermann, 15230
I MS 0823
Carl S. Leishman, 09324
1 MS 0822
David S. Logsted, 09326
1 MS 9152

Alan R. Pomplun, 08963

MS 0822

Brian N. Wylie, 09227

MS 0822

Carl F. Diegert, 09227

MS 0822

Andrew T. Wilson, 09227
MS 9916

James C. Berry, 08947

MS 9916

Diane Gomes, 08947

MS 9916

Corbin J. Stewart, 08947
MS 9159

Christine L. Yang, 08964
MS 9159

Michael F. Hardwick, 08964
MS 9159

Zach Heath, 08964

MS 9151

James L. Handrock, 08960
MS 9151

Charles T. Oien, 08940

MS 9151

Kenneth E. Washington, 08900
MS 9018

Cenlral Technical Files, 8940-1
MS 0899

Technical Library, 9616

MS 9021

Classification Office, 8511, for
Technical Library, MS 0899, 9616
DOE/OSTI via URL

This page intentionally left blank.

	Group Tele-Immersion: Enabliing natural interactions between groups at distant sites
	Abstract
	Contents
	Preface
	1 Introduction
	2 Related Work
	3 Line Light Field Rendering
	3.1 Rendering
	3.2 Sampling Requirement Analysis

	4 Implementation and Results
	4.1 System Architecture
	4.2 Interactive Results

	5 Discussion and Conclusion
	References
	A Implementation Details
	B Hardware and Software
	Distribution

