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Abstract 
Several mixture models are evaluated for their suitability in predicting the 
equivalent permittivity of dielectric particles in a dielectric medium for 
intermediate solid volume fractions (0.4 to 0.6). Predictions of the Maxwell, 
Rayleigh, Bottcher and Bruggeman models are compared to computational 
simulations of several arrangements of solid particles in a gas and to the 
experimentally determined permittivity of a static particle bed. The experiment 
uses spherical glass beads in air, so air and glass permittivity values (1 and 7, 
respectively) are used with all of the models and simulations. The experimental 
system used to measure the permittivity of the static particle bed and its 
calibration are described. The Rayleigh model is found to be suitable for 
predicting permittivity over the entire range of solid volume fractions (0-0.6). 
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Nomenclature 

Roman: 

CD flow domain capacitance 
CE stray capacitance 
C, 
C, 
CS feedback capacitance 
Rf feedback resistance 
VE carrier voltage 
Vnull nulling voltage 
Vout 

capacitance of flow domain filled with air 
capacitance of flow domain filled with particles 

output voltage of measurement circuit 

Greek: 

E, 
cm 
E, 
cs 
@,QP volume fraction of particles 
o angular frequency 

dielectric permittivity of gas or air 
dielectric permittivity of mixture of particles and gas 
dielectric permittivity of particle bed 
dielectric permittivity of particle material 
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1. Introduction 

Electrical impedance measurement techniques are used in a variety of industrial 
and experimental settings for the measurement of material distributions in two-phase 
flows. Electrical measurements with two or three electrodes can be performed to 
determine the bulk or local properties of a flow [ 1-91. Alternatively, electrical-impedance 
tomography (EIT) uses multiple electrodes to spatially resolve material distributions 
[ 10-1 91. In the latter case, a reconstruction algorithm [20-241 is necessary to determine 
the spatial impedance distribution based on the impedances measured by the electrodes. 
In both cases, a mixture model must be used to convert measured impedance to material 
distribution. Recent work in developing an EIT system [25] suggested that the accuracy 
of mixture models be investigated. 

Some apriori knowledge of the two-phase flow is often used to select the mixture 
model. A straightforward example is a stratified flow, where the series impedance model 
may be appropriate. Another straightforward example is a flow containing a single or 
small number of spherical inclusions of one material within a second continuous material, 
in which case the exact solution for the electric field for spheres might be used. In most 
cases, however, the distribution of materials is not as well understood. 

The present work involves gas-solid flows in a circulating fluidized bed (CFB) 
riser, to which a 16-electrode EIT system is applied [25]. The CFB contains dielectric 
particles - glass spheres or fluid catalytic cracking (FCC) catalyst - fluidized with air, so 
only the capacitive component of impedance is considered in this work. A variety of 
particle distributions are encountered in these experiments, ranging from dilute 
suspensions to packed beds (with solids fractions on the order of 0.6). For dilute 
suspensions, much work has been devoted to the calculation of the equivalent dielectric 
permittivity of particles dispersed in a continuous medium. The Maxwell model has been 
found to be accurate in many studies [ 1,26,27]. Although most other models are nearly 
identical to the Maxwell model (and therefore to each other) at very low solid volume 
fractions (<0.2), most models differ significantly at higher solid volume fractions, for 
which the interactions of electric fields between particles become significant. 

The equivalent permittivity of a randomly packed bed of particles is of interest in 
the current work because it is often used as a calibration condition for the EIT system. 
Relations for the permittivity of regular arrays of spheres [28-331 can be extended to the 
packing limit to estimate the permittivity of a packed bed. However, the permittivity of a 
packed bed is sensitive to the exact arrangement of particles, which varies strongly with 
the number of contact points between particles [29], which in turn varies among particle 
types for random packings. 

The intermediate range of solid volume fractions (0.4-0.6) between dilute 
suspensions and packed beds (the “crossover region”) is the least well understood and is 
of primary interest in this work. Many researchers have attempted to model the 
equivalent mixture permittivity for disperse heterogeneous mixtures, with a recent review 
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provided by Torquato [34]. Many mixture models are formulated to account for dilute 
mixtures of monodisperse spheres with no contact (e.g., the Maxwell model), and some 
of these models have been extended to larger solid volume fractions. Other models are 
formulated for lattices of spheres over a wide range of volume fractions [28-331. Both 
analytical and numerical simulations have been performed for a wide variety of particle 
topologies. However, it is unclear whether or not a single relationship can be accurate 
over the entire range of solid volume fractions encountered in gas-solid flows (ranging 
from dilute to packed beds). 

Numerous applications of bulk and local impedance measurements and EIT using 
a variety of mixture models appear in the literature [ 1-19], but few authors have reported 
systematic studies of the effect of their choice of mixture model on their results. 
Wiesendorf and Werther [9] discussed the influence of different mixture models on 
measurements from a capacitance probe, and McKeen and Pugsley [ 121 examined the 
influence of permittivity models on the reconstruction of cylindrical phantoms. The most 
systematic study of mixture models was performed reported by Louge and Opie [35]. 
They measured the permittivity of static suspensions of particles in petroleum jelly with 
various solid volume fractions, and also measured the permittivity of a packed bed of 
glass spheres in air. 

The purpose of this work is to evaluate mixture models commonly used in the 
analysis of gas-solid impedance measurements - with emphasis on the accuracy of 
models in the crossover region - to determine whether or not a single model can be used 
over the full range of solid volume fractions (or conversely, where particular mixture 
models fail). Only dielectric materials are considered here (resistive materials and 
steady-state heat conduction generally have analogous models). Models assuming 
disperse mixtures of monodisperse spheres (the Maxwell, Bottcher, Rayleigh, and 
Bruggeman models) and assuming dense but non-contacting arrays of spheres (Rayleigh 
model) are examined. The transition between nearly touching and fully contacting 
spheres is also considered. Direct simulations of regular arrays of spheres and Monte 
Carlo simulations of random arrangements of cubes are performed. Experiments are 
performed to measure the solids volume fraction and impedance of a packed bed. The 
predictions of the various models are then compared to the measurements and 
simulations. 
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2. Mixture Models for Gas-solid Mixtures 

The analytical models reviewed here include those most commonly used for the 
evaluation of gas-solid mixtures. Each model relates the gas permittivity E,, the solid 
permittivity E, and the particle volume fraction (I to the equivalent mixture permittivity 
&. It is generally assumed that the particles are spherical and monodisperse. Scaife [27] 
and del Tin and Negrini [2] discuss mixture models that account for different particle 
shapes and size distributions. 

The mixture impedance is bounded by the parallel and series mixture impedances, 
obtained by assuming that the materials distribution resembles parallel or series networks 
of capacitors: 

Parallel: E, =$Es + (1 - (1) 

Series: 

Permittivity values outside of the envelope formed by the parallel and series models are 
not physically possible for the mixture. These models are not usually suitable for 
impedance measurements of multiphase flows; however, Warsito and Fan [ 131 used a 
weighted combination of the two. 

The most commonly used model is that of Maxwell [ 1,26,27]: 

It is derived for monodisperse spherical particles having negligible effects on the shapes 
of each other’s electric fields. It is assumed that each particle is surrounded by a shell of 
the continuous phase which is in turn surrounded by a phase with the mixture 
conductivity. Those assumptions suggest that the model should be applied only to dilute, 
homogeneous distributions of monodisperse particles, but past investigations indicate that 
the model is robust: for example, it has been applied at high solid volume fractions for 
certain substances [36] and to polydisperse distributions of bubbles in water [l 11. In 
general terms, the Maxwell model relates the mixture permittivity to the permittivity of a 
disperse phase (here E,), a continuous phase (here E&, and the volume fraction of the 
disperse phase (here (I). Equation 3 could be applied, for example, to an arrangement of 
inclusions of air in a continuous solid by interchanging E, and E, and replacing (I with 
(1-(I) to form a second relation between mixture permittivity and volume fraction. Other 
models can be rearranged in a similar fashion. 
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The Bottcher model [37] is an extension of the Maxwell model where the shell of 
continuous fluid is no longer assumed; rather, the particle is immersed in a fluid that has 
the mixture impedance: 

(4) 

The Bottcher model is expected to be valid for higher solids fi-actions compared to the 
Maxwell model. Louge and Opie [35] found the Bottcher model to be suitable for 
predicting the permittivity of dispersions of fluid catalytic cracking (FCC) catalyst that 
had absorbed water by selecting the value of permittivity for FCC catalyst that best fit 
their data. Also, the Bottcher model is “symmetrical” in the sense that interchanging E, 

and E~ and replacing @ with (1 -@) yields the same expression. 

Rayleigh derived an expression for the equivalent permittivity of a cubical array 
of spheres; this expression has been adapted by a number of authors [37]. Here, a version 
derived by Meredith and Tobias [28] and recommended by Louge and Opie [35] for gas 
suspensions of spherical glass beads is considered: 

2Eg +E, 6 ~ ,  + 3 ~ ,  
- 2@ + 0.409 

2E, +E, 6 ~ ,  + 3 ~ ,  + @ + 0.409 

@Ii3 - 2.133 
E, - E, 4E, + 3E, 

Q7I3 - 0.906 

- 

i E, - E, 4Eg + 3E, 4E, + 3E, 

E m  - 

It is not possible to obtain an explicit expression for Q from this relation. 

Bruggeman extended Maxwell’s model to produce an expression for the 
equivalent permittivity of a random spatial distribution of randomly sized spheres [2] that 
is suitable for higher solid volume fractions [37]: 

In this case, although it is possible to obtain an explicit expression for & in terms of Q, 
the form is extremely complicated. 

As mentioned, a number of researchers have formulated mixture models for 
regular arrays of spheres [28-331. These models are practically identical to the Rayleigh 
model up to a volume fraction of about 0.6. As the packing limit is approached, the 
models for simple-cubic, body-centered-cubic, and face-centered-cubic arrays diverge 
from the Rayleigh model due to various correction terms. Therefore, these models are 
not compared to the other models or simulations but are considered later in the discussion 
of results. 
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. 

Additional methods of calculating the equivalent mixture permittivity include 
bounding methods and expansions, as comprehensively described by Torquato [34]. 
Because it is not usually possible to explicitly determine the properties of particle 
dispersions, bounding methods are applied to establish two curves between which the 
mixture permittivity is expected to fall (the parallel and series models are the simplest 
examples of such bounds). Expansions increase the accuracy of simple models by adding 
higher-order terms that account for additional particle interactions, as the models for 
lattices of spheres do [28-331. 
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3. Computational Simulations of Mixture Permittivity 

Analytical solutions are not available for irregular packed beds of particles. The 
properties of an arbitrary matrix of solids can be directly computed, but the 
computational cost needed to resolve the electric field would be high. In the present 
work, the transition between disperse and packed particle arrangements is examined by 
computing the permittivity of regular arrays of spheres for increasing volume fraction up 
to and past the contacting limit. Monte Carlo simulations are also performed to calculate 
the mixture permittivity of random material distributions. Details of the simulation 
methods are presented below. 

The commercial computational fluid dynamics code FIDAPTM (Fluent, Inc., 
Lebanon, NH) is used to perform computational simulations for comparison to the 
models and experimental data. The simulations are performed as heat-conduction 
problems because the equations governing electrostatics are of the same form 
mathematically as those governing steady heat conduction [3 81: voltage corresponds to 
temperature, electrical permittivity corresponds to thermal conductivity, and electric 
current corresponds to heat flux. In all simulations, the gas and solid phases have 
permittivities of 1 and 7, respectively, which correspond to air and glass. 

The first set of simulations involves simple cubic lattices of cubes and spheres of 
various sizes. The computational domain for these simulations is one octant of the 
simple cubic unit cell with a cube or sphere at the unit cell’s center, the octant being a 
unit cube. Figure 1 a shows examples of the permittivity and voltage contours in this 
cubical domain from one of the simulations for a sphere. The bottom and top of the 
cubical domain are set to constant voltages of 0 and 1, respectively, and symmetric 
boundary conditions are specified on the four sides. Adjacent spheres are allowed to 
overlap when their radii exceed the length of the domain. Rectangular grids are used for 
simplicity, with the permittivities of the two regions mapped onto the grid depending on 
radial position from the sphere’s center. The grids are cubic except for the spherical 
simulations in which the spheres approached or touched the edge of the domain; in these 
cases grid elements are concentrated near the edges of the domain to ensure that the 
“cusp” formed by touching spheres is resolved adequately. The number of grid elements 
is equal to ( 8 ~ 2 ) ~  where n is a whole number; the rid is refined by increasing n until the 
difference between current flow for grids of (8n) and (8(12+1))~ elements is less than 1%. 
In most of the simulations, y1 is equal to 2 or 3. The currents flowing through the top and 
bottom of the domain, which should be equal by continuity, agree within 1% in all 
simulations. From the above choice of nondimensionalization, this current is equal to the 
mixture permittivity. 

Y 

Simulations of a hexagonal lattice of spheres are also performed in the same 
manner. Figure l b  shows examples of the permittivity and voltage contours obtained 
from a simulation of the hex-close-packed arrangement. The domain is divided into three 
sections of identical geometry: the boundaries are drawn from the centerlines of the 
rectangular faces to the center of the triangular base, within each of which a Cartesian 
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grid is set up. The simulations are performed for various radii, and the spheres are 
allowed to overlap at high volume fractions as in the previous simulations. 

The final set of simulations represents a more general approach to the 
arrangement of materials. A cubical domain is divided into 64 sub-cubes, within each of 
which the permittivity is set to either of two permittivity values in any combination. 
Figure IC  shows examples of the permittivity and voltage contours for one arrangement 
of 40 “solid” and 24 “gas” sub-cubes, corresponding to a solid volume fraction of 0.625. 
There are approximately 2 . 5 ~ 1 0 ’ ~  possible arrangements of cubes for this volume 
fraction, and since the computational cost of simulating them all is prohibitive, lo4 Monte 
Carlo simulations are performed. In each simulation, the numbers of solids and gas sub- 
cubes are fixed to yield the prescribed solid volume fraction, but the locations of these 
sub-cubes are assigned randomly. The cumulative distribution of permittivities obtained 
from these simulations is shown in Figure 2 and is well represented by an error function, 
so the probability distribution is approximately Gaussian. It is straightfonvard to obtain 
the mean and standard deviation of this distribution. Monte Carlo simulations are 
performed for several other solid volume fractions as well. Simulations for very high or 
low volume fractions (i.e., only 1-3 cubes of either phase) do not require Monte Carlo 
methods because the total number of arrangements is relatively low (e.g. ,  only 41,664 
arrangements of 3 cubes). 

0.0 

. q = 40164 = 0.625 

- 

- - 

3.4 3.6 3.8 4.0 4.2 4.4 4.6 

&m 

Figure 2. Distribution of perrnittivities obtained from 10,000 Monte Carlo 
simulations with solid volume fraction of 0.625. 
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4. Experimental Measurements 

The mixture permittivity and volume fraction of a random-close-packed bed of 
glass beads were measured to provide an experimental comparison for the analytical 
models. The particles are glass beads (Potter Industries, Inc.), which are well 
characterized they are solid spheres, have a known size distribution of 120-180 microns, 
and have a known dielectric permittivity of approximately 7. Since the materials under 
consideration are dielectric, only capacitive effects are considered: resistive effects are 
ignored. Bares [39] studied the surface conductivity of glass particles and noted that it 
becomes negligible at frequencies greater than 1 kHz (a frequency of 100 kHz is used for 
all applied voltages discussed below). 

SENSING 
DRIVEN 

VE 
5VAC 
100 kHz 

SOFTWARE OR 
HARDWARE 
DEMODULATED - - 

Figure 3. EIT measurement circuit. 

Capacitances between electrode pairs are measured using the bridge circuit shown 
in Figure 3. Many variants of this measurement scheme are found in the literature [40- 
421. The flow-domain capacitance CO is related to the output voltage V,, by 

V,W(C,+C,) = V"",,Wc, + 3K 
R, 

(7) 

where VE is the carrier voltage, Vnull is the nulling voltage, CS is the feedback 
capacitance, CE is the stray capacitance, Rf is the feedback resistance, and w = 2nf is the 
angular frequency. The stray capacitance includes the capacitance between the electrodes 
that does not lie within the flow region and the parasitic capacitances that exist between 
other parts of the circuit. This capacitance must be accounted for because it may be 
similar in magnitude to the flow-domain capacitance and can change (e.g. ,  with 
temperature changes or when the electrodes are moved to a different measurement 
location). Guard circuits and guard electrodes may be used to minimize the stray 
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capacitance, and a number of configurations appear throughout the literature. In the 
present experiments, a single ring of grounded shielding surrounds the electrodes (which, 
in turn, surround the experimental domain). This reduces stray capacitance somewhat, 
but further guarding could be installed in the future to further reduce it. The effect of 
reducing stray capacitance is to reduce noise in the measurement, but for the purposes of 
the experiments described here, the noise level was judged to be adequate. 

t 

The following calibration procedure is used to determine the stray capacitance. 
For each of two calibration conditions-an empty domain (ie. ,  air) and a domain 
containing a bed of particles-the nulling voltage is adjusted so that the output voltage 
equals zero. This yields two forms of Equation 7, one in which the flow-domain 
capacitance CD corresponds to the air value C, and one in which CD corresponds to the 
particle-bed value C,. An additional equation relates the flow-domain capacitances of air 
and the particle bed to their respective permittivities E, and ~p (not to be confused with 
the permittivity of the discrete solid material, E,) for an identical geometry: 

where the permittivity of air is equal to unity and the particle-bed permittivity is assumed 
to have been previously determined. Solution of these three equations yields the unknown 
stray capacitance CE. In these experiments, C, ranged from tens to hundreds of 
femtofarads and CE ranged from femtofarads to picofarads, depending on the angular 
separation between electrodes. The calibration is performed once per day and whenever 
the experimental equipment is physically moved (ie. ,  the electrodes are moved to a 
different measurement location). 

The permittivity of a particle bed is determined using a method similar to the 
procedure above. A third material-a transformer oil of known permittivity-is used, 
and since oil cannot be easily introduced into the multiphase flow experiment, this 
measurement is perfonned in an identical offline domain. The movement of the 
electrodes changes the stray capacitance, which is treated as an unknown. The offline 
domain is filled successively with air (of known permittivity E, = l), a particle bed (of 
unknown permittivity ~p), and the transformer oil (of known permittivity EL > 1). The 
nulling voltage is again adjusted such that the output voltage for each material is equal to 
zero, producing three forms of Equation 7. Two forms of Equation 8 are used to relate 
ratios of the capacitances and permittivities for air, the particle bed, and oil. Solving 
these five equations yields the desired particle-bed permittivity ~p. This determination 
need only be made once or, if a statistical sampling is required, only one set of 
measurements is needed. Note that the domain and electrode geometry in this offline 
calibration need not be identical to the online experiment: since the offline calibration 
measures a material property, any geometry should produce the same result. The offline 
calibration and the online experiment were performed in identical domains here for 
convenience. 
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Once the particle-bed permittivity and (online) stray capacitance are known, 
Equation 7 relates the measured output voltage to the unknown flow-domain capacitance 
in terms of known quantities. For flow measurements, the nulling voltage is used to 
balance the bridge when the flow domain is empty (i.e., air-filled), and deflections of the 
bridge occur when particles are present (i.e., during flow). 

The final step in the technique is the use of a mixture model to relate the mixture 
permittivity cm measured at a given flow state to the particle volume fraction Q. A 
mixture model typically requires knowledge of the permittivity of the continuous-phase 
material, E ~ ,  and the permittivity of the discrete-phase material, E ~ .  The quantity cs may 
not be known apriori because many types of particles used in gas-solid processes are 
poorly characterized: they may be porous, and their composition may be proprietary. An 
example of such particles is FCC catalyst. In this situation, a mixture model can be used 
to infer the quantity E, from the measured value of E, at a known volume fraction of Qp 
(e.g., random close-packed). If the quantity cs is known, the measured values of cP and Qp 
for the particle bed serve as a check on the accuracy of the mixture model. 
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5. Results 

The models and simulations described above are investigated for permittivities of 
1 (gas) and 7 (solid), which are the permittivities of air and glass, respectively. The 
simulations of simple cubic lattices of spheres and cubes are performed both for 
“ordinary” distributions, for which the spheres and cubes are identified as glass 
distributed in air, and for “inverse” distributions, for which the spheres and cubes are 
identified as air distributed in glass. The simulations of hexagonal lattices of spheres are 
performed only for ordinary distributions. 

All of the analytical models mentioned previously-including the inverse 
versions of the Bottcher and Bruggeman models-along with the simulations results are 
plotted in Figure 4. The values for the Monte Carlo simulations are the means of the 
distributions obtained from those simulations (e.g., the Monte Carlo value for the volume 
fraction of 0.625 is the mean of the distribution shown in Figure 2). The experimental 
value for a bed of glass beads-measured using the calibration procedure discussed 
previously-also appears on the plots. The volume and weight of a bed of particles were 
measured to obtain its density, which was divided by the density of solid glass to obtain 
the particle-bed solid volume fraction. The uncertainty in the values obtained from the 
computational simulations is approximately 2%, based on the previously discussed 
differences between simulation results with successive grid refinements and the 
differences between computed current flows through the top and bottom of the simulation 
domains. The uncertainty in the experimental value is also approximately 2%. 
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Figure 4. Analytical models (curves) and computational and experimental 
results (symbols). 
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6. Discussion 

The parallel and series models are too extreme to predict the equivalent 
permittivity of particle distributions, as mentioned previously, and Figure 4 shows that 
those models do not agree with the other models, the simulations, or the experimental 
value. These models do, however, establish an envelope within which all of the other 
models, the simulations, and the experimental value fall, with the exception of the 
Rayleigh model, which was not derived for volume fractions exceeding that of a simple 
cubic close-packing of spheres. (The volume fractions of simple cubic and hexagonal 
lattices of close-packed spheres are 7c/6 = 0.52 and 21’27c/6 =: 0.74, respectively.) 

The contrast between the Maxwell models and the simulations shown in Figure 4a 
is instructive. The simulations of simple cubic lattices of glass cubes surrounded by air 
and the Maxwell model agree, as do the inverse versions. The simulations of simple 
cubic lattices of glass spheres surrounded by air agree with the Maxwell model for low 
volume fractions, but trend towards the inverse Maxwell model as the spheres become 
close, and overlap and agree with the inverse Maxwell model at the highest volume 
fractions. This makes sense: as the volume fraction is increased, the spheres overlap and 
enclose the air between them so that inclusions of air (somewhat diamond-shaped) are 
surrounded by glass. A similar but weaker trend is observed for the simulations of simple 
cubic lattices of spheres of air surrounded by glass. 

The simulations for hexagonal lattices of spheres shown in Figure 4c also agree 
with the Maxwell model at low volume fractions and trend towards the inverse model as 
the volume fraction is increased. They depart from the Maxwell model at a higher 
volume fraction than the simulations of simple cubic lattices of spheres do because 
spheres in a hexagonal lattice touch at a higher volume fraction than spheres in a simple 
cubic lattice. These trends-along with the agreement of simple cubic lattices of cubes 
with the Maxwell model at all volume fractions-indicate that the Maxwell model is 
accurate as long as the phase identified as “continuous” is interconnected. The fact that 
the spherical simulations trend away from the Maxwell model at volume fractions 
slightly lower than those at which the spheres touch has two possible explanations: the 
model may not be accurate when interconnections in the continuous phase are very thin 
(like the spaces between nearly-touching spheres), or the computational grid is too coarse 
to capture the interconnections when the spheres are very close. Based on the mesh- 
sensitivity studies, the former explanation is preferred. 

The Maxwell and Rayleigh models and the simulations of glass cubes and spheres 
surrounded by air all agree in the low-volume-fraction range of 0-0.4. The fact that the 
simulations all agree despite different shapes and arrangements of particles suggests that 
the Maxwell and Rayleigh models are robust in this range. These models are not 
expected to be accurate for multiphase flows with high solid volume fractions (eg. ,  
bubbling bed). This could lead to errors in measurements of gas-solid flows in the fast- 
fluidization regime, characterized by dense particle clusters at the walls of a riser [43]. 
Little is known about the structure of clusters, but the particles are fluidized, so it seems 
unlikely for their solid volume fractions to approach that of a packed bed. Therefore, 
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although the error due to clustering is expected to be small, it has not been quantified and 
should be explored in future work. 

The Rayleigh model agrees best with the simulations for intermediate volume 
fiactions (0.4-0.6), and correctly predicts the equivalent permittivity of a bed of glass 
beads (therefore correctly predicting the known permittivity of solid glass). This appears 
to be fortuitous, as simulations of simple cubic and hexagonal arrays of spheres disagree 
with the experimental value. Analytical expressions for simple-cubic, body-centered- 
cubic, and face-centered-cubic arrays of spheres also diverge from the Rayleigh model 
near the packing limit, as mentioned earlier [28-331. This is explained by Batchelor and 
O’Brien [29] in their discussion of the effects of the number of contact points between 
spheres on the equivalent permittivity of randomly packed beds. Therefore, the 
permittivity of randomly packed beds of other types of particles should be considered on 
a case-to-case basis. 

The Bottcher model does not appear suitable for this experiment, but it does 
match the average values of the Monte Carlo simulations closely as shown in Figure 4b. 
Recall that each Monte Carlo value in the figure represents the average of a set of 
simulations at the prescribed solid volume fraction. These average values coincide with 
the most homogeneous distributions of the 64 sub-cubes used in the simulations. This is 
also consistent with the model’s “symmetry.” Therefore, the Bottcher model appears 
well suited for predicting the permittivity of very homogeneous material distributions. 
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7. Conclusions 

Several models relating the solid volume fraction and the equivalent mixture permittivity 
of distributions of dielectric particles in a gas are presented and compared to 
computational simulations. These models are evaluated for their suitability for 
calculating the equivalent mixture permittivity of distributions of the glass beads present 
in a multiphase flow experiment, especially in the intermediate volume fraction range of 
0.4-0.6. The models and simulations all agree closely in the dilute solid volume fraction 
range of 0-0.4. The Rayleigh model is accurate over the intermediate range of solid 
volume fractions as well and appears most suitable for use with impedance 
measurements. The Rayleigh model also accurately predicts the permittivity of a particle 
bed, but this result is not expected to extend to random packings of other types of 
particles. Therefore, EIT studies of dense particle arrangements should be approached 
carefully. 

The agreement between spherical models at low solid volume fractions (0-0.4) shows that 
the equivalent permittivity is relatively insensitive to the configuration and anisotropy of 
the materials. Also, comparing the simulations of spheres to the ordinary and inverted 
Maxwell models is instructive, showing that the simulations follow the ordinary model 
until the materials “swap roles” (the dispersed phase becomes the continuous phase, and 
vice versa) and follow the inverted model. It is also noted that all of the computational 
and experimental results fall between the ordinary and inverted Maxwell curves, and 
most realistic particle distributions are likely bounded by those models. Finally, the 
agreement between the Bottcher model and the mean permittivities of the Monte Carlo 
simulations suggests that the Bottcher model is well suited for predicting the permittivity 
of very homogeneous material distributions. This is also consistent with the fact that the 
Bottcher model is symmetrical (i.e., the model produces the same result regardless of 
how the phases are identified). Over 100,000 three-dimensional FEM calculations were 
performed to obtain these results. 

25 



26 



8. References 

1 

a 

[I] Ceccio S.L. and George D.L. 1996 A review of electrical impedance techniques for 
the measurement of multiphase flows J.  Fluids Eng. 118 39 1-399 

[2] del Tin G. and Negrini A. 1980 Development of the electrical impedance probes for 
void fraction measurements in air-water flow Multiphase Transport: Fundamentals, 
Reactor Safety, Applications ed T. N. Veziroglu (Washington: Hemisphere) pp 2709- 
2730 

[3] Acree Riley C. and Louge M. 1989 Quantitative capacitive measurements of voidage 
in gas-solid flows Part. Sei. Technol. 7 5 1-59 

[4] Das R.K. and Pattanayak S. 1993 Electrical impedance method for flow regime 
identification in vertical upward gas-liquid two-phase flow Meas. Sei. Technol. 4 1457- 
1463 

[5] Das R. and Pattanayak S. 1994 Measurement of void fraction in different flow 
regimes of a vertical gas-liquid flow through narrow tubes Meas. Sei. Technol. 5 1538- 
1545 

[6] Hage B. and Wether J. 1997 The guarded capacitance probe - a tool for the 
measurement of solids flow patterns in laboratory and industrial fluidized bed combustors 
Powd. Technol. 93 235-245 

[7] Louge M., Lischer D.J. and Chang H. 1990 Measurements of voidage near the wall of 
a circulating fluidized bed riser Powd. Tech. 62 269-276 

[8] Louge M., Tuccio M., Lander E. and Connors P. 1996 Capacitance measurements of 
the volume fraction and velocity of dielectric solids near a grounded wall Rev. Sei. Instr. 
67 1896-1877 

[9] Wiesendorf V. and Werther J. 2000 Capacitance probes for solids volume 
concentration and velocity measurements in industrial fluidized bed reactors Powd. Tech. 
110 143-157 

[lo] Dyakowski T., Jeanmeure L.F.C. and Jaworski A.J. 2000 Applications of electrical 
tomography for gas-solids and liquid-solids flows - a review Powd Tech. 112 174- 192 

[ l l ]  George D.L., Torczynski J.R., Shollenberger K.A., O’Hern T.J. and Ceccio S.L. 
2000 Validation of electrical-impedance tomography for measurements of material 
distribution in two-phase flows Int. J.  Multiph. Flow 26 549-58 1 

[ 121 McKeen T.R. and Pugsley T.S. 2002 The influence of permittivity models on 
phantom images obtained from electrical capacitance tomography Meas. Sei. Technol. 13 
1822- 1830 

27 



[13] Warsito W. and Fan L.-S. 2003 ECT Imaging of three-phase fluidized bed based on 
three-phase capacitance model Chem. Eng. Sei. 58 823-832 

[ 141 Gamio J.C. 2002 A comparative analysis of single- and multiple-electrode excitation 
methods in electrical capacitance tomography Meas. Sei. Technol. 13 1799- 1809 

[ 151 Jaworski A.J. and Dyakowski T. 2001 Application of electrical capacitance 
tomography for measurement of gas-solid flow characteristics in a pneumatic conveying 
system Meas. Sei. Technol. 12 1109-1 1 19 

[ 161 Mohamad-Saleh J. and Hoyle B.S. 2002 Determination of multi-component flow 
process parameters based on electrical capacitance tomography data using artificial 
neural networks Meas. Sei. Technol. 13 18 15- 182 1 

[17] Mosorov V., Sankowski D., Mazurkiewicz L. and Dyakowski T. 2002 The ‘best- 
correllated pixels’ method for solid mass flow measurements using electrical capacitance 
tomography Meas. Sei. Technol. 13 18 10- 18 14 

[ 181 Wang M., Yin W. and Holliday N. 2002 A highly adaptive electrical impedance 
sensing system for flow measurement Meas. Sei. Technol. 13 1884-1 889 

[19] Yang W.Q. 1996 Calibration of capacitance tomography systems: a new method for 
setting system measurement range Meas. Sei. Technol. 7 863-867 

[20] Fang W. 2004 A nonlinear image reconstruction algorithm for electrical capacitance 
tomography Meas. Sei. Technol. 15 2 124-2 132 

[21] Loser T., Wajman R. and Mewes D. 2001 Electrical capacitance tomography: image 
reconstruction along electrical field lines Meas. Sei. Technol. 12 1083-1091 

[22] Isaksen 0. 1996 A review of reconstruction techniques for capacitance tomography 
Meas. Sei. Technol. 7 325-337 

[23] Warsito W. and Fan. L.-S. 2001 Neural network based multi-criterion optimization 
image reconstruction technique for imaging two- and three-phase flow systems using 
electrical capacitance tomography Meas. Sei. Technol. 12 2 198-22 10 

[24] Yang W.Q. and Peng L. 2003 Image reconstruction algorithms for electrical 
capacitance tomography Meas. Sei. Technol. 14 R1-R13 

[25] Tortora P.R., Ceccio S.L., Trujillo S.M., O’Hern T.J. and Shollenberger K.A. 
Capacitance measurements of solid concentration in gas-solid flows Powd. Technol. 148 
92-101 

[26] Louge M. and Opie M. 1990 Measurements of the effective dielectric permittivity of 
suspensions Powd. Technol. 62 85-94 

[27] Scaife B.K.P. 1989 Principles of Dielectrics (New York: Oxford) 

28 



[28] Meredith R.E. and Tobias C.W. 1960 Resistance to potential flow through a cubical 
array of spheres J. Appl. Phys. 31 1270-1273 

[29] Batchelor G.K. and O'Brien R. W. 1977 Thermal or electrical conduction through 
granular material Proc. R. SOC. Lond. A 355 3 13-333 

E301 McPhedran R.C. and McKenzie D.R. 1978 The conductivity of lattices of spheres 1. 
The simple cubic lattice Proc. R. SOC. Lond. A 359 45-63 

[31] McKenzie D.R., McPhedran R.C. and Derrick G.H. 1978 The conductivity of 
lattices of spheres 11. The body centred and face centred cubic lattices Proc. R. SOC. Lond. 
A 362 21 1-232 

[32] Bergman D.J. 1979 The dielectric constant of a simple cubic array of identical 
spheres J. Phys. C: Solid State Phys. 12 4947-4960 

[33] Sangani A.S. and Acrivos A. 1983 The effective conductivity of a periodic array of 
spheres Proc. R. SOC. Lond. A 386 263-275 

[34] Torquato, S. 2002 Random Heterogeneous Materials (New York: Springer-Verlag) 

[35] Louge M. and Opie M. 1990 Measurements of the effective dielectric permittivity of 
suspensions Powd. Tech. 62 85-94 

[36] Turner J.C.R. 1976 The electrical conductance of liquid-fluidized beds of spheres 
Chem. Eng. Sei. 31 487-492 

[37] van Beek L.K.H. 1967 Dielectric behaviour of heterogeneous systems Progress in 
Dielectrics v. 7 ed. J.B. Birks (Cleveland: CRC) pp 69-1 14 

E381 Lienhard, J.H. IV and Lienhard J.H. V 2001 A Heat Transfer Textbook (Cambridge: 
Phlogiston) 

[39] Bares J. 1988 Electrical conductivity of packed particle beds IEEE Trans. Ind. Appl. 
24 1050-1056 

[40] Huang S.M., Xie C.G., Thorn R., Snowden D. and Beck M.S. 1992 Design of sensor 
electronics for electrical capacitance tomography IEEE Proc. G 139 83-88 

[41] Williams P. and York T. 1999 Evaluation of integrated electrodes for electrical 
capacitance tomography 1st World Congress on Industrial Process Tomography Buxton, 
Greater Manchester Apr. 14- 17 1999 

[42] Georgakopoulos D., Waterfall R.C. and Yang W.Q. 2001 Towards the development 
of a multiple-frequency ECT system 2nd World Congress on Industrial Pvocess 
Tomography Hannover, Germany Aug. 29-3 1 200 1 

29 



[43] Grace J.R., Avidan A.A. and Knowlton T.M. 1997 Circulating Fluidized Beds 
(Blackie: London) 

30 



Distribution: 

1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
4 

MS0384 
MS0825 
MS0834 
MS1310 
MS0834 
MS0825 
MS0836 
MS0836 
MS0834 
MS0834 
MS0834 
MS0834 
MS0826 

1 MS90 18 
2 MS0899 

External : 

Ratzel, A. C. Org. 9100 
Hermina, W. L. Org. 9110 
Johannes, J. E. Org. 91 12 
Kempka, S. N. Org. 9113 
Lash. J. S. Org. 91 14 
Hassan, B. Org. 91 15 
Hertel, E. S. Org. 9116 
Griffith, R. 0. Org. 9117 
Cooper, M. A. Org. 9112 
O’Hern, T. J. Org. 9112 
Tortora, P. R. Org. 9112 
Trujillo, S. M. Org. 91 12 
Torczynski, J. R. Org. 91 13 

Central Technical Files 8945-1 
Technical Library 9616 

1 Professor S. L. Ceccio 
Mechanical Engineering 
201 1 Auto Lab 
University of Michigan 
Ann Arbor, MI 48 109-2 12 1 

1 Dr. D. L. George 
Southwest Research Institute 
6220 Culebra Rd. 
San Antonio, TX 78238-5166 

1 Professor W. W. Schultz 
Mechanical Engineering 
2027 Auto Lab 
University of Michigan 
Ann Arbor, MI 48 109-2 12 1 
Associate Professor K. A. Shollenberger 
Mechanical Engineering Department 
California Polytechnic State University 
San Luis Obispo, CA 93407 

1 

31 


	The Equivalent Electrical Permittivity of Gas-Solid Mixtures at Intermediate Solid Volume Fractions
	Abstract
	Acknowledgments
	Contents
	Figures
	Nomenclature
	1 Introduction
	2 Mixture Models for Gas-solid Mixtures
	3 Computational Simulations of Mixture Permittivity
	4 Experimental Measurements
	5 Results
	6 Discussion
	7 Conclusions
	8 References
	Distribution



