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ABSTRACT 

The Design-through-Analysis Realization Team (DART) is chartered with reducing the time 

Sandia analysts require to complete the engineering analysis process. The DART system analysis 

team studied the engineering analysis processes employed by analysts in Centers 9100 and 8700 

at Sandia to identify opportunities for reducing overall design-through-analysis process time. The 

team created and implemented a rigorous analysis methodology based on a generic process flow 

model parameterized by information obtained from analysts. They also collected data from 

analysis department managers to quantify the problem type and complexity distribution 

throughout Sandia’s analyst community. They then used this information to develop a community 

model, which enables a simple characterization of processes that span the analyst community. 

The results indicate that equal opportunity for reducing analysis process time is available both by 

reducing the “once-through” time required to complete a process step and by reducing the 

probability of backward iteration. In addition, reducing the rework fraction @e., improving the 

engineering efficiency of subsequent iterations) offers approximately 40% to 80% of the benefit 

of reducing the “once-through’’ time or iteration probability, depending upon the process step 

being considered. Further, the results indicate that geometry manipulation and meshing is the 

largest portion of an analyst’s effort, especially for structural problems, and offers significant 

opportunity for overall time reduction. Iteration loops initiated late in the process are more costly 

than others because they increase “inner loop” iterations. Identifying and correcting problems as 

early as possible in the process offers significant opportunity for time savings. 

http:Nexagridconsulting.netJindex. html I 
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Executive Summary 

The Design-through-Analysis Realization Team (DART) is a group chartered with reducing the time 

required for Sandia analysts to complete the engineering analysis process. The DART system analysis 

team studied the analysis processes used by analysts in centers 9100 and 8700. With the study results, 

DART leadership is better able to identify opportunities for process improvement, both to decrease the 

overall analysis time and to improve the quality of the analysis results. This study employs a generic 

1 0-step design-through-analysis process model parameterized with information acquired directly from 

analysts. The analysts provided information for combinations of problem type (modal, linear structural, 

non-linear structural, heat transfer, fluid flow, and radiation transport) and complexity (simple, 

medium, and complex) that included estimates of both the time required to complete individual process 

steps and the likelihood of having to iterate through various portions of the process. The input data 

were analyzed to produce results that include the expected time spent in each step and the expected 

number of visits to each step. In addition to calculating such results for each combination of problem 

type and complexity, this study developed a community model that averages the results using analyst 

workload data for the different problem types and complexities. The community model represents a 

weighted average analysis for the analyst community. Because this study did not include a formal 

uncertainty analysis, the results are not quantifiably justified. Nevertheless, they provide useful insight 

and can augment engineering judgment when making programmatic decisions. 

This scope of this study is limited to the processes employed by the analyst and does not necessarily 

account for all activities required to complete an engineering analysis. For example, the study does not 

account for the time a design engineer and drafter spend to develop a CAD model. 

Table 1 presents the normalized engineering times associated with each process step for individual 

problem types and for the community model. The results in Table 1 are calculated only through the 

first simulation; that is, no subsequent runs for parameter, sensitivity, or optimization studies are 

considered. The analytical model does, however, enable one to account for these additional runs. Note 

that the values for each problem type are computed as weighted averages across the three problem 

complexity categories. Geometry manipulation, represented by steps B and C, consume the majority of 

the overall analysis time for structural problems and represent a substantial opportunity for overall 

process improvement. Table 2 shows the expected number of visits to each process step and also 

indicates a high degree of iteration in geometry and meshing steps for modal and nonlinear structural 

problems. 
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Table 1. Average normalized engineering time per problem type. 

A Design Solid Model Creation and/or Edit 
B Analysis Solid Model Creation and/or Edit 
C Geometrv DecomDosition 

Linear Non-Lin Heat Fluid Rad. Comm. 
Modal Struct. Struct. Trans. Flow Trans. Model 
0.00 0.00 0.05 0.13 0.00 0.15 0.04 
0.37 0.26 0.10 0.12 0.49 0.05 0.21 
0.24 0.34 0.41 0.07 0.03 0.03 0.32 

D 
E 
F 
G 
H 
I IResults Post-Processing I 0.01 I 0.09 I 0.04 I 0.37 I 0.22 I 0.07 I 0.05 

J IArchiving of Analysis Artifacts I 0.00 I 0.01 I 0.01 I 0.01 I 0.01 I 0.04 I 0.01 

Meshing 0.12 0.11 0.16 0.06 0.13 0.25 0.14 
Mesh Manipulation 0.08 0.05 0.05 0.03 0.02 0.08 0.06 
Model Parameter Assignment 0.06 0.04 0.06 0.04 0.04 0.05 0.06 
Simulation Model Assembly 0.10 0.02 0.05 0.14 0.02 0.02 0.08 
Run Simulation 0.02 0.09 0.05 0.03 0.03 0.26 0.04 

In addition to the baseline step time and visit outputs, the study also evaluates the analysis time 

sensitivity to perturbations in individual input parameters, which is useful for identifying process 

steps that might produce large time savings for small investments. Since a single set of baseline 

input parameters doesn’t exist (we created these only for the outputs), calculating a single set of 

baseline input parameter sensitivities is difficult at best. Because the use of a synthesized input set 

that results in the baseline output results is not mathematically defensible for calculating the 

desired sensitivities, a more basic finite difference method is used to effectively construct a set of 

community sensitivities for two sets of model parameters, the initial step times and subsequent 

visit work fractions. These sensitivities, which are discussed in more detail in the body of this 

report, indicate the degree to which improvements in basic process capability manifest as overall 

design-through-analysis time improvements. By estimating a cost associated with the 

improvement, a reasonable return-on-investment prediction can be made. Such insight helps 

predict where funding may most effectively be allocated. For example, if the CUBIT project 

estimates that a proposed geometry tool will reduce the average time to complete the geometry 

decomposition step by 25% and will reduce the likelihood of returning to the geometry 

decomposition step after meshing by 33%, the process sensitivities might indicate an overall time 

savings of 10%. If the cost to implement the proposed improvement is $500K, then the return on 

investment is 10% process improvement/$500K, a metric directly comparable with other 

proposed improvements. 

- 1  

- 1  
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A Design Solid Model Creation and/or Edit 
B Analysis Solid Model Creation and/or Edit 
C Geometrv DecomDosition 

Linear Non-Lin Heat Fluid Rad. Comm. 
Modal Struct. Struct. Transfer Flow Trans. Model 
2.89 0.79 13.45 2.01 1.00 2.63 7.40 
5.34 2.22 21.21 2.12 1.20 4.30 11.78 
10.63 2.79 20.94 1.49 1.20 4.35 12.47 

Sensitivity calculations associated with the initial time required for an analyst to complete a 

process step and the fraction of rework required for subsequent visits show that changes in the 

geometry manipulation and meshing steps produce the greatest changes in process time for the 

overall community, at least in the neighborhood of the parameter selection defined by the 

community model. 

F 
G 
H 

I 
J 

I 

Model Parameter Assignment 9.79 2.69 7.33 3.63 1.70 4.48 6.10 
Simulation Model Assembly 10.86 2.01 9.59 2.38 1.70 3.45 6.94 
Run Simulation 6.47 2.01 9.34 3.99 1.70 3.45 6.53 
Results Post-Processing 4.32 2.01 8.81 3.45 1.70 1.62 5.94 
Archivina of Analvsis Artifacts 1.12 0.79 3.83 1.00 1.00 1.00 2.37 

Practical considerations described in the body of the report prohibit a rigorous evaluation of 

sensitivities related to process step transition probabilities, which are directly related to process 

iteration loops. Nevertheless, considerable insight is gained from a less rigorous mathematical 

evaluation of these sensitivities. The study identifies a general trend of increasing sensitivity for 

transition probabilities associated with later process steps, which implies that “outer” iteration 

loops cost more than “inner” iteration loops, an expected result. Two factors are important when 

considering iteration loops initiated by process problems: the step at which a problem was created 

and the step at which that problem was discovered. With this recognition, the value of identifying 

and correcting problems as early in the process as possible becomes evident. In addition, the 

study shows that the sensitivities associated with geometry manipulation and meshing are greater 

than would be indicated simply by their position in the process flow, reinforcing the conclusion 

that they represent areas for improvement. In general, the potential impacts one might expect to 

realize from similar relative improvements in step times and transition probabilities are equal. 

One might therefore equitably allocate resources to efforts designed to reduce the time required to 

complete a pass through an important process step and to efforts to minimize process iteration, 

presumably by identifying and correcting mistakes as early in the process flow as possible. 
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Reducing the rework fraction, the portion of original work that must be repeated during 
subsequent step visits, also offers significant opportunity to reduce overall process time. This 
study shows that the impact of reducing rework fraction is approximately 40% to 80% of that for 
reducing the “once-through” time or the iteration probability. Tools that preserve information 
generated during previous process step visits and that make it readily available during subsequent 
visits offer the promise of reducing rework fractions. With comparable sensitivities, all three 
major process parameter sets (“once-through’’ times, rework fractions, and iteration probabilities) 
should be considered important opportunities for process improvement. 
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Introduction 
The Design-through-Analysis Realization Team (DART) initiative’s primary goal is to 

significantly reduce the design-through-analysis (DTA) process time for the Sandia analyst 

community. Measuring such time, however, is a formidable task because the processes employed 

by analysts vary significantly and because analysts do not rigorously track the time they spend 

working individual process steps. Without understanding the nature of the DTA process as 

practiced at Sandia, at least in a generally quantitative way, it is difficult for DART leadership to 

best allocate limited resources and to predict the impact of expected process improvements. 

The goal of the system analysis effort is to produce a DTA process model that generates 

quantitative estimates of important process metrics, such as flow times associated with specific 

process steps. With such information, we can characterize the current process and evaluate the 

potential impact of proposed improvements, and then allocate resources to those tasks likely to 

produce the most significant improvements. The system analysis described here focuses on 

evaluating the primary DTA goal of reducing overall process time. To bound the analysis effort, 

this report does not directly address other goals such as improving the quality of analysis results. 

The analysis is based on a generic, parameterized DTA process model, populated with data 

provided by Sandia analysts. Drawing on their own experience and using a data collection tool 

specifically developed for this study, the analysts enter data sets representing a variety of 

simulation problem types and complexities. The analyst data is then used to parameterize the 

process model that in turn provides information that DART leadership can use for planning. 

11 
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The Generic DTA Process Model 
The analysis community is heterogeneous, so no single analysis process description readily 

characterizes the depth and breadth of processes collectively used by analysts. Factors that affect 

the nature of an analysis project are many and include the problem type (e.g., structural or 

thermal), the selected solver code, the number of parts in an assembly, the number of model 

elements, the required level of model and results fidelity, and the experience of the analyst. One 

may consider these factors as characterizing different sectors of the DTA community. This 

analysis captures information sufficient to characterize a data set only by problem type and 

complexity, as measured by the number of parts and elements in the model. 

Despite the heterogeneous nature of the DTA process, this analysis is based upon a single generic 

process model. The level of detail in the generic process model is balanced to capture the desired 

process details without creating an overly complex2 description. Specifically, the generic model 

includes the following steps (see Figure 1). 

Figure 1. Generic DTA Process Model 

In this context, “overly complex” means containing more detail than the measured data can support. 
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A. Design Solid Model (DSM) CreateEdit 

As currently defined at Sandia, the DSM is a 3D solid model of a part or assembly with 

information sufficient for manufacturing. These models contain all features that a 

manufactured part is expected to have. While they are most often generated by a designer 

whose primary job responsibility is to create such models, at times they are created and edited 

by an analyst. Tools used to create DSMs include Pro/Engineer3 and SolidWorks4. 

B. Analysis Solid Model (ASM) Create/Edit 

Although an ASM is generally created from a design solid model, analysts sometimes 

directly create ASMs on their own. In the former case, an analyst and CAD designer partner 

to remove model features (a process called defeaturing) that are not important to the planned 

analysis but otherwise add model complexity. Typically removed features include fillets, 

chamfers, rounds, and holes. 

C. Geometry Decomposition 

For some classes of problems the first step in generating a mesh is to decompose complex 

geometry into a collection of more basic shapes from which a mesh can be more easily 

created. Hexahedral meshes often require geometry to be decomposed while tetrahedral 

meshes can often be generated with little or no geometry decomposition. 

D. Meshing 

Meshing is the process of instantiating finite elements to represent the geometry being 

modeled. Many different mesh-building tools are employed by analysts, including CUBZr', 

Patran6, and CosmosWorks7. The analyst often performs a mesh quality check on the final 

mesh using a tool such as Verde'. Finally, the mesh is usually exported for use in other tools 

by converting it to Exodus' or other data format. 

http://www.ptc.com 
http://www.solidworks.com 
http://cubit.sandia.gov 
http://www.mscsoftware.com/products/productsdetail.cfm?PI=6 
http://www.solidworks.com/pages/products/cosmos/cosmosworks.html 

http://endo.sandia.gov/SEACAS/Documentation/exodusII.pdf 

4 

6 

I 

* http://cubit.sandia.gov/verde 
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E. Mesh Manipulation 

A next step toward building the desired model is to manipulate the mesh created in the 

previous step. Such manipulation may include repairing or removing poor quality elements, 

nudging node locations, and creating side sets. 

F. Model Parameter Assignment" 

After creating the mesh, the analyst must establish values for various parameters in order to 

completely define the model. Needed values typically include parameters for material 

constitutive models, boundary conditions, initial conditions, and loads. 

G. Simulation Model Assembly 

If more than one analyst creates a single model or if a single analyst decomposes the meshing 

work into separate tasks, it is likely that individual part or subassembly meshes must be 

joined to create the overall system mesh. Further, some analyses, such as a weapon drop test 

simulation, require specific mesh positioning in space. The work to assemble and position 

individual meshes is referred to in this analysis as simulation model assembly. Also included 

in this step are final mesh quality checks and creation of the input files required by the chosen 

solvers. 

H. Simulation Run 

Once the finite element model is completely defined and the appropriate input deck 

generated, the analyst submits the job to a compute system. Job submission may require 

several steps, including partitioning the problem for parallel processing, moving the 

partitioned files to the appropriate file system, entering job parameter information, 

monitoring ongoing jobs, and retrieving and concatenating results files. Because Sandia 

compute systems are heavily used, jobs often wait in a queue for processing. Queue time is 

included in simulation run time, but has no impact on engineering time. 

I 

l o  While the analysis methodology was being developed, analysts presented the system analysis team with a request 
for a slightly modified process to be available as an alternative to the flow just described. This alternative flow 
defines step F, Assign Model Parameters, as occurring in parallel with steps A through E. The intent is enable 
analysts who begin defining material properties early in the overall process to better represent their DTA process. 
Although this option was made available, no analysts who provided data for this study chase to use it. 

15 



I. Results Post-processing 

After retrieving the results files from a successful simulation run, the analyst reviews the data 

to obtain information of interest. The review may be as simple as identifying standard solver 

output in critical mesh regions or may require a substantially more complex post-simulation 

analysis. Tools in common use at Sandia for visualizing results and performing additional 

analyses include Paraview' I and EnSightI2. 

J. Simulation Artifact Archiving 

At the conclusion of a simulation or set of simulations, the analyst archives the analysis 

artifacts, which may be numerous. At present, many analysts simply copy the artifacts to a 

specific storage location. At some point a more sophisticated archiving system may be 

available. Documentation generation is not considered an archiving task. 

It is worth emphasizing that no single process description can perfectly represent the actual 

analysis processes employed by analysts. This ten-step representation is intended to provide a 

balance between the complexity required to obtain meaningful information and the simplicity 

needed to perform a reasonable analysis. 

Clearly, no analyst actually works progressively through the ten generic analysis steps without 

encountering problems and having to repeat previous efforts. One similarity among all analysts is 

the fact that they iterate within the process flow. While not explicitly illustrated in the generic 

process diagram, the system analysis methodology allows flow from any process step directly to 

any other step and can account for any and all backward or forward iterations an analyst might 

wish to represent. 

http://www.paraview.org/HTML/Index.html 
l2 http://www.mscsoftware.corn.au/products/snsight 
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The Analysis Methodology 
To perform the analysis, the system analysis team collected data to parameterize the generic 

process model so that it represents the actual processes employed by analysts. The model 

encapsulates several important parameters as described below. 

1 .  Initial step times represent the amount of time required for an analyst to complete each 

step in the generic process the first time it is encountered for the problem being 

considered. 

2. Rework fractions represent the portion of the original work that is typically repeated 

during the second and subsequent visits to a process step. This parameter accounts for 

analyst learning and typically has a value less than unity. 

3 .  Initial transition probabilities represent the probability of branching from the output of 

one process step to the input of another step the first time a step is encountered. They 

comprise an initial transition probability matrix and enable the analysis to model process 

iteration loops. The probabilities are decimal values between zero and one. 

4. Subsequent transition probabilities are similar to their initial counterparts, but are used 

for the second and subsequent visits to a process step. They are intended to account for 

differences in iteration probability due to analyst learning. 

Appendix 1, which describes the data collection tool, provides additional information about these 

and other parameters. Once the initial step time, rework fraction, and transition probability data 

are specified, the process model is run to provide information about the expected number of visits 

to each process step, the expected time in each step, and the total process time. This information 

is presented to the analysts as they enter the data to provide real-time validation of the input. The 

analysis algorithm is described in detail in Appendix 2. 

The system analysis team also collected information about the distribution of various problem 

types (modal, linear structural, etc) and complexities across the Sandia analyst community and 

used it to develop a community model, which is an appropriately weighted average of the analysis 

outputs from all of the collected data sets. In addition to these results, the team performed 

sensitivity studies to develop insight about the relative impact of individual and collective 

parameter changes, which would be an indicator of potential high impact investment areas. 

17 
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Data Collection and Characterization 
The single most difficult part of this analysis was the effort to collect meaningful data from 

analysts. An initial attempt to do so used a paper data collection form that analysts were requested 

to complete with help from a system analysis team member. In terms of collecting meaningful 

data, this first attempt was a failure. However, the analysis team learned much about the 

collection process and subsequently produced a web-based tool to enable acquisition of higher 

quality data. A description of this tool is included in Appendix I .  

During the initial data collection attempt, analysts did not have immediate access to the process 

model results calculated from their input. Since the relationship between analysts’ input data and 

the overall process characteristics is not intuitive, analysts found it difficult to confirm that their 

input was appropriate. The web-based tool not only provided a convenient mechanism for data 

collection, but also calculated the resulting process model statistics and presented them to the 

analyst. Analysts iteratively entered data and calculated the results until they were satisfied that 

both the inputs and the outputs described the process as they intended to represent it. This real- 

time-feedback approach was very effective. 

The data collection tool was not meant to be completely self-explanatory. Rather, the system 

analysis team intends it to be used with their guidance, at least the first time an analyst exercises 

it. To help the analyst community provide data, the system analysis team held four data collection 

sessions, one in California on December 9, 2004 and three in New Mexico on Dec 16, 2004. 

During these sessions, analysts received an introduction to the collection process and entered data 

with help from the team members. Twenty-three analysts participated in these sessions and 

collectively submitted 34 useful data sets. 

The data sets spanned problem complexities (12 simple, 14 medium, and 8 complex) and types (7 

modal, 4 linear structural, 12 non-linear structural, 5 heat transfer, 1 fluid flow, and 5 radiation 

transport). The distribution is shown in Table 3. While the tool continues to be available and in 

use, the analysis presented in this report uses only the information acquired during the cited data 

collection sessions. 

19 



Table 3. Data set problem type and complexity distribution 

Simple 

Medium 

Complex 

Total 

The data was first evaluated to understand the variation in the information provided by the 

analysts. A simple, albeit crude, method for measuring that variation is to use the ratio of standard 

deviation to average for input quantities within various community sectors. While the data 

sampling is too small to draw strong statistical conclusions, the measure does provide a feel for 

the variability with which different analysts employ their DTA process as well as the variability 

in the difficulty of problems they encounter. When evaluating this information, one must consider 

the uncertainty associated with differing degrees of data entry fidelity by the analysts. Although 

they were instructed to iterate with the data collection tool until comfortable with both the input 

and results, the system analysis team expects that some analysts were more rigorous than others. 

Within each problem type and complexity category, the ratio of standard deviation to average was 

usually greater than 0.5 and in many cases the standard deviation exceeded the average. This 

substantial input data variation indicates that analysts do not employ a common DTA process 

and/or that problem difficulty is varied. While the general steps that analysts traverse may be 

similar, the nature of how they develop a simulation varies significantly. This conclusion is based 

on the assertion that the analyst data is valid, which the system analysis team accepts as true. An 

awareness of the heterogeneous nature of analysis processes used at Sandia should guide 

conclusions drawn from this system analysis. 

20 



Even though significant variation in the input data exists, one may gain insight by examining the 

average values associated with the overall analyst community and within various sectors. 

Average engineering time from the step times data collection sheets is shown in Table 4 for the 

overall community and for simple, medium, and complex problems. Table 5 shows average 

engineering time for each problem type. 

Table 4. Step times input data averages per problem complexity (engineering time in hours). 

A 

~ 

Table 5. Step times input data averages per problem type (engineeri) 

Linear Non-Lin I ~ o d a l  I Struct. I Struct. 

I Results Post-Processing 7.13 29.00 24.13 

J Archiving of Analysis Artifacts 4.80 2.00 10.43 

12.00 

n :g time in hours) 

Heat !Fluid Flow! :::;, I Transfer 
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The Analyst Community Model and Results 
DART spans a variety of problem types and complexities, and is developing solutions for the 

entire analyst community. It is therefore necessary to understand the distribution of the various 

problem categories throughout that community, and to analyze the system as an integrated whole. 

Thus we examined the problem category distributions and developed an integrated community 

model of the DTA process. 

The problem category (typekomplexity) weighting results are presented in Table 6. This is a 

baseline result given our measure of the current FTE work loads assigned to each problem 

category, the data for which was provided by the analysis department managers and based on 

nearly 70 FTEs worth of ongoing workload. A compilation of the weighting data is available in a 

spreadsheet developed for this exercise and stored in Web Fileshare (Model ID: WFS 

WFS253069). It is important to note that these weights are estimates, and furthermore, they are 

certain to change over time as the workload configuration changes. Hence, examining the 

sensitivities is useful if not necessary to better understand the results. A thorough weighting 

sensitivity analysis is outside the scope of this report, but such studies are ongoing and are 

expected to be published. However, in the interim, we do provide some revealing insights into 

the sensitivities based on a few parametric variations of the weights. Before considering those 

conclusions, we first describe the community model. 

Table 6. Baseline problem category weightings according to FTE loads 

In order to understand the overall effects and sensitivities it is necessary to look at a ‘community 

model’ that integrates the responses of the collection of problem types and complexities relevant 

to DART. Specifically, this community model computes the weighted sum of the model results 

using multiple data sets, where the weights are estimates of the fraction of the workload that 

problem categories represent at Sandia. It is essentially a linear combination of the individual 

model results, where each weighting coefficient is an estimate of the fraction of overall work that 

23 



each data set (according to problem type and complexity) represents within DART’S problem 

space. So, for our analysis where there are 34 data sets spanning 18 different problem types and 

complexities, the individual model is run 34 times, and a combined result is determined by 

weighting all the outputs such that the 34 weights sum to 1.0, and any redundant (i.e., multiple 

samples for a given problem type/complexity) data sets are further normalized within their 

category so as to not overweight that category (e.g., if the weight for category thermal/simple was 

0.3 and there were three data set samples for that category, then each of those samples would be 

weighted as 0.1). 

To that end, we developed a computer program that calculates a weighted solution for any subset 

of the data samples collected, given a user-supplied weighting. This code and the baseline 

weighting are available in Web Fileshare (Model ID: WFS253067). The code contains 

documentation explaining how to run subsets of the problem space, for those interested in more 

detailed analysis using the model we developed. Further, this community model code can be 

easily extended to include new data sets, or to accommodate studies of different weightings, etc. 

On January 12,2005, the DART Oversight Committee, which represents the analyst community, 

reviewed the system analysis data and concluded that the observed input data variability indeed 

represents the varied uses of the DTA process and that the individual output values reasonably 

represent typical DTA process use. Further, they validated the problem type and complexity 

distribution information collected from the analysis department managers. With that validation, 

the system analysis team proceeded with the community model and developed results presented 

in Tables 7, 8, and 9. 

Table 7. Community output engineering time per problem type (engineering time in hours). 

TOTAL 5058.8 316.7 1983.5 659.2 253.0 432.3 1798.1 
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Table 8. Community output engineering time per problem type (normalized) 

A I Design Solid Model Creation and/or Edit 
B IAnalvsis Solid Model Creation and/or Edit 

Linear Non-Lin Heat Fluid Rad. Comm. 
Modal Struct. Struct. Trans. Flow Trans. Model 
0.00 0.00 0.05 0.13 0.00 0.15 0.04 
0.37 0.26 0.10 0.12 0.49 0.05 0.21 

C 
D 
E 
F 

H Run Simulation 0.02 0.09 0.05 0.03 0.03 0.26 0.04 

I Results Post-Processing 0.01 0.09 0.04 0.37 0.22 0.07 0.05 

J Archiving of Analysis Artifacts 0.00 0.01 0.01 0.01 0.01 0.04 0.01 

Geometry Decomposition 0.24 0.34 0.41 0.07 0.03 0.03 0.32 

Meshing 0.12 0.11 0.16 0.06 0.13 0.25 0.14 

Mesh Manipulation 0.08 0.05 0.05 0.03 0.02 0.08 0.06 

Model Parameter Assignment 0.06 0.04 0.06 0.04 0.04 0.05 0.06 

Table 9. Community output expected number of visits per problem type 

Linear Non-Lin Heat Fluid Rad. Comm. 
Struct. Struct. Trans. Flow Trans. Model 

A Design Solid Model Creation and/or Edit 2.89 0.79 13.45 2.01 1.00 2.63 7.40 

B Analysis Solid Model Creation and/or Edit 5.34 2.22 21.21 2.12 1.20 4.30 11.78 

C Geometrv DecomDosition 10.63 2.79 20.94 1.49 1.20 4.35 12.47 

Modal 

I ~. . 

D IMeshing I 12.46 2.52 19.58 2.36 I 1.20 3.78 I 12.17 

E (Mesh ManiDulation I 10.91 2.15 11.86 1.55 I 1.20 4.48 I 7.99 

F Model Parameter Assignment 9.79 2.69 7.33 3.63 1.70 4.48 6.10 

G Simulation Model Assembly 10.86 2.01 9.59 2.38 1.70 3.45 6.94 

H Run Simulation 6.47 2.01 9.34 3.99 1.70 3.45 6.53 

I Results Post-Processing 4.32 2.01 8.81 3.45 1.70 1.62 5.94 

J Archivina of Analvsis Artifacts 1.12 0.79 3.83 1.00 1.00 1.00 2.37 

Before discussing observations and conclusions, it is necessary to point out that considerable 

uncertainty in the results exists. Data, especially in certain combinations of problem type and 

complexity, is limited and the varied nature of the problems encountered and processes employed 

by analysts is significant. In addition, no strict definition was provided for the three complexity 

categories and analysts demonstrated varying opinions about what constitutes simple, medium, 

and complex analyses, especially for different problem types. Table 7 shows an apparent 

inconsistency in the modal problem type results as compared to other problem types. In this case 

the large engineering time values were driven by two anomalous data sets, one where the analyst 

created the entire (complex) solid model on his own and the other which used a larger than 

typical set of transition probabilities. While an extension of this work might reevaluate data 

collection effectiveness and might strive to collect additional input data, this study is limited by 

the process and data previously described. In spite of these shortcomings, the results provide 

useful insight if those reviewing them keep in mind the methods used to collect and analyze the 

raw data. 
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From these tables one immediately recognizes that for structural problems geometric manipulation 
(steps B and C) and meshing represents a large fraction of overall process time. For non-linear 
problems, where the absolute overall time is greatest, the fraction of work devoted to geometry 
manipulation is 53%. For non-structural problems, geometry decomposition is less significant while 
geometry creation and meshing remain important. While the uncertainty associated with these results 
may be significant, the conclusion that geometry manipulation and meshing consumes a significant 
portion of the average analyst’s time is clear. The notable problem type exceptions are heat transfer 
and radiation transport. In the case of heat transfer, analysts typically are able to use tetrahedral 
elements which automesh much easier than the hexahedral elements typically used for structural 
analyses. Thermal analysts therefore spend less time on geometry and meshing. The radiation 
transport problems do not require extensive geometry manipulation once a basic model is created. 

Case: 120% 

A Design Solid Model Creation and/or Edit 

B Analysis Solid Model Creation and/or Edit 

C Geometry Decomposition 

Table 10 shows the results of a number of runs of the community model in terms of time sink 
breakdown (percent scale) for all problem categories considered in this study. It attempts to provide 
some insight about weighting sensitivity. The columns labeled according to type of problem (e.g., 
linear structural) are the values computed by the community model for the case where the weight for 
that type of problem is increased by 20% over baseline (all complexities increase 20%). For each of 
these columns, the other weights were decreased to normalize the overall weights to 1 .O. While this 
procedure does not determine the actual sensitivity, it does give an indication of how sensitive the 
results are to the weights. From these 120% scenario results, one can readily see that the 
fundamental spread of time sinks for the DTA process model is not particularly sensitive to the 
problem category weights, at least not at the 20% deviation level. While further analysis and 
sensitivity studies of the model parameters (vs. weighting) are required to understand the overall 
model behavior more fully, this result does provide some confidence in the results and conclusions 
drawn from this weighting. 

Linear Non-Lin. Heat Fluid Rad. Baseline 
Struct. Struct Transfer Flow Trans. Weights 

3.48 3.72 3.85 3.84 3.70 3.73 3.70 

22.19 21.07 20.15 20.95 21.19 21.09 21.20 

31.74 32.39 33.34 32.10 32.27 32.34 32.32 

D Meshing 

E IMesh Manipulation 

13.80 13.89 14.06 13.82 13.92 13.91 13.89 

5.99 5.85 5.79 5.82 5.86 5.87 5.87 

F 

G 

H 

I 

J 

.- 

~ 

Model Parameter Assignment 5.94 5.90 5.91 5.88 5.90 5.90 5.91 

Simulation Model Assembly 7.73 7.52 7.33 7.60 7.53 7.54 7.55 

Run Simulation 3.72 3.84 3.90 3.82 3.84 3.86 3.82 

Results Post-Processing 4.62 4.97 4.79 5.31 4.94 4.91 4.90 

Archiving of Analysis Artifacts 0.80 0.85 0.89 0.85 0.85 0.85 0.85 
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Community Model Parameter Sensitivities 

Understanding the effect on community model process time of changes in individual model 

parameters provides additional insight for determining where to best allocate DART resources. 

To calculate sensitivities for the initial step times and rework fractions, each parameter is 

perturbed by a small amount for every input data set and the community model is run, using the 

baseline weightings. Table 1 1 presents the resulting sensitivities for relative perturbations. 

0.212 

0.324 

Table 11. Initial step time and rework fraction sensitivity estimates as calculated using the 
community model with baseline weights. 

0.096 

0.254 

I A DSM CreationlEdit 

0.076 

0.038 

B ASM Creation/Edit 

C Geometty Decomposition 

0.048 

0.027 

D Meshing 

E Mesh Manipulation 

0.049 

0.009 

I F Assign Model Parameters 

0.026 

0003 

I G Assemble Simulation Model 

I H Run Simulation 

I Post-process results 

J Archive Artifacts 

Initial Step Time Rework Fraction 

outout time chanae (Yo outout time chanae (Yo 

0.037 0.031 

0.139 I 0.097 I 
0.059 I 0.031 I 
0.059 I 0.034 I 

Since the initial step time is a direct factor in the subsequent visit time calculations, the sensitivity 

values in the initial step time column are essentially identical to the community model values in 

Table 10. The initial step time and rework fraction sensitivities reinforce what was learned from 

the community model output, that geometry manipulation and meshing represent opportunities 

for significant improvement. Rework fraction sensitivities, which are from 40-80% of the initial 

step time sensitivities, offer additional significant opportunity for improvement. 

While community sensitivity calculations for the initial step times and rework fractions are 

straight-forward, similar calculations for the transition probabilities are more problematic. 

Because the model is highly non-linear (a validated premise), a single individual input parameter 

set cannot be used to represent the community model outputs. The preferred procedure to develop 

transition probability sensitivities would be to alter the same parameter in each of the 33 input 

sets, run the community model, calculate the weighted average of the results, and evaluate the 
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change from baseline values. Complicating this finite difference problem, however, is the fact 

that the probabilities in any row of the transition probability matrix must sum to one and 

increasing a single probability forces a reduction in one or more other probabilities. 

In spite of the above difficulties, one may gain qualitative sensitivity insight with a scheme that 

focuses on improving the probability of exiting a process step without entering a backward 

iteration loop. The scheme begins by selecting a row in the transition probability matrix13 (which 

corresponds to all possible exits from a given process step) and perturbing all forward exiting 

probabilities by a given relative value. The entire row is then normalized so that its entries sum to 

unity. Again, we recognize that this process does not yield a mathematically rigorous evaluation, 

but expect it to provide qualitative insight. 

Figure 2 shows the results of the qualitative transition probability evaluation. In this case, both 

the initial and subsequent probabilities were perturbed as described above. The relative 

perturbation value (pre-normalization) is plotted on the x-axis while the resulting total process 

time as calculated by the community model using the baseline weighting is plotted on the y-axis. 

In addition to the individual probability sensitivities associated with specific process steps, the 

plot also includes a curve representing the sensitivity associated with the collective process step 

transition probabilities. 

While the large probability fraction increases indicated on the x-axis may seem surprising, one 

must recall that the selected row in the probability transition matrix is subsequently normalized. 

Thus, as the pre-normalized forward exit probability value becomes large, the sum of all forward 

probabilities approaches unity while all backward exit probabilities approach zero, which 

eliminates all backward iteration loops. With that stated, one should recognize that some 

individual data sets contain transition probability rows with no forward exit probability and as a 

result the ideal limit of no backward iteration loops is not realized. Nevertheless, the effect of 

these anomalous data sets is not large and does not change the main conclusions drawn from the 

sensitivity analysis. 

l 3  See Figure 5 for an example of a transition probability matrix. 

28 



1900 , I 

- 1700 

0 
f. 1500 
.- E 

$! 

c g 1300 

k 1100 
3 

900 

700 1 I 
0.01 0.1 1 10 100 

Fraction increase in forward exit probability 
(prior to normalization) 

Figure 2. Qualitative transition probability evaluation results. 

One can draw several conclusions by inspection of Figure 2. First, improving the forward exit 

probability from the geometry and meshing steps promises significant overall process 

improvement. The large number of visits to these steps clearly calls for attention. Understanding 

and compensating for this effect, one also notices that later process steps generally have a greater 

impact than earlier process steps. The reason for this effect becomes clear when one recognizes 

that backward iteration loops originating from later process steps force the repeat of earlier 

iteration loops, similar to the programmer’s nested control loop effect. Thus, reducing the need 

for late process iterations offers a significant opportunity for process improvement. 

One should note that a backward iteration loop originating from a given process step does not 

imply that a problem was created within that step, only that a problem was identified there. There. 

appears to be significant benefit to not only preventing problems from occurring late in the 

overall process, but also in identifying problems as early in the process as possible. To this end, 

tools that help an analyst identify potential problems before much subsequent effort is expended 

promise to be of value. With such potential in mind, a follow-on study effort should identify the 

primary causes of problems resulting in backward iterations throughout the analyst community, 
and suggest ways to minimize these iterations. 



In contrast to the finite difference implementation, Boggs developed an analytical solution for the 

derivative of the overall process time with respect to the transition probabilities. Because 

evaluation of the derivatives requires identification of a specific single input parameter set, the 

method cannot be readily used in a community model sense where no single representative input 

parameter set exists. Nevertheless, the derivatives calculated for the analyst supplied data sets are 

informative and corroborated the conclusions drawn from the finite difference method. 

One might attempt to qualitatively compare the relative impact of step times and transition 

probabilities in order to determine where the greatest opportunity for process improvement lies. 

Halving the initial step times associated with all of the process steps results in a 50% reduction in 

overall process time. Figure 2 indicates that doubling the pre-normalized forward exit 

probabilities for all process steps reduces the overall process time by 40%. Accounting for the 

normalization, the actual value may be closer to 50%. In any case, the relative benefit of focusing 

effort on initial step time reduction appears to be similar to that for focusing on reducing process 

iteration loops. 

Reducing the rework fraction, the portion of original work that must be repeated during 

subsequent step visits, also offers significant opportunity to reduce overall process time. Table 15 

in the body of this report shows that the impact of reducing rework fraction is approximately 40% 

to 80% of that for reducing the “once-through” time or the iteration probability. Tools that 

preserve information generated during previous process steps visits and make it readily available 

during subsequent visits offer the promise of reducing rework fractions. With comparable 

sensitivities, all three major process parameter sets (“once-through” times, rework fractions, and 

iteration probabilities) should be considered important opportunities for overall process 

improvement. 
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Summary and Recommendations 

Summary 

The DART system analysis team studied the design-through-analysis processes employed by 

analysts in Centers 9 100 and 8700 at Sandia to identify opportunities for reducing overall process 

time. The study created and implemented a rigorous analysis methodology based on a generic 

process flow model parameterized by information obtained from analysts. The analysts provided 

data during collection sessions where study team members helped them use a computer-based 

data collection tool developed to maximize the validity of the data. These input data indicate that 

the processes used by Sandia analysts vary significantly, as do the type and complexity of the 

problems themselves. 

The study team also collected data from analysis department managers to quantify the problem 

type and complexity distribution throughout the analyst community. A community model was 

developed from these data, which enabled a simple characterization of processes that span the 

community. The community model yielded information about how an analyst’s time is distributed 

throughout the generic process steps. It also provided insight about sensitivities associated with 

model parameters such as the step times, rework fraction, and the transition (iteration) 

probabilities. 

The analysis indicates that equal opportunity for reducing overall process time for the community 

is available both by reducing the “once-through” time required to complete a process step and by 

reducing the probability of backward iteration. Moreover, reducing rework fractions offers 

additional benefit, about 40-80% of the impact of reducing the process initial step time or 

backwards iterations. Geometry manipulation and meshing consume a large portion of an 

analyst’s time, especially for structural problems, and offer significant opportunity for process 

time reduction. Iteration loops initiated late in the process are more costly than others because 

they cause “inner loop” iterations to be repeated. Identifying and correcting problems as early as 

possible in the process offers significant opportunity for time savings. 
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Recommendations 

This study identifies several general investment areas that provide opportunity for the largest 

improvement in process time. These include geometry and meshing time reduction, rework 

minimization, and the identification and correction of problems early in the modeling process 

(elimination of problems that lead to subsequent iteration is the larger goal). The study does not, 

however, provide detailed information about the specific problems that lead to longer than desired 

individual step times, significant rework, or frequent iteration. As follow-on to this study, we 

recommend that data about these problems be collected and analyzed. For the iteration problem, 

the follow-on should determine what problems cause costly iteration loops, where those problems 

are created in the process and typically where they are discovered, and should provide 

suggestions for improvements. While this study indicates that we should invest in geometry and 

meshing as well as model verification, the additional data will shed light on specifically how to 

invest within those areas. Further, we need to better understand how to reduce rework time, since 

this study indicates that this is a significant factor for improving process efficiency. 

We recommend that DART leadership immediately begin investing in the important process areas 

identified in this study, refining those investments as additional analysis provides more 

information. We recommend identifying program elements that reduce rework time and 

increasing investment in those areas according to the high return suggested by this study. To free 

funding for the high-impact work, the project will be forced to reduce funding in other areas. 

When selecting the lower impact areas for divestment, DART leadership should realize that while 

some steps may offer less overall improvement impact, they remain wholly necessary for the 

complete process to work. DART leadership should also understand the limited scope of this 

study and draw conclusions appropriately. For example, while the Run Simulation step represents 

only 4% of overall process time, we did not evaluate the effect of parameterized runs (Le., those 

run after the first simulation with only a small amount of additional analyst time), primarily 

because we were concerned about the fidelity of our parameterized run data. Nor did we evaluate 

the impact of Run Simulation efforts (e.g., automated work flows in ASETS) on reducing rework 

times. 

An economic extension of the information provided in this report would provide a useful means 

of comparing existing or proposed work packages. We recommend that the principal investigators 

of all DART (and perhaps DART-related) projects estimate the impact of their work (in 

approximately $250K elements) in terms of reducing individual process step times and rework 

32 



fractions as well as in lowering the probability of specific iteration loops. Using the model to 

estimate process time reduction, DART leadership can develop an economic metric (dollars per 

unit of relative process improvement) and routinely use it as an investment guide. 

We also recommend that any DART strategy developed with the assistance of this study be 

reviewed by a group independent from but knowledgeable of the DART project, to provide an 

independent evaluation before resources are allocated. 

Finally, the study suggests that certain research efforts outside the scope of DART, once they are 

practically implemented, can result in large process improvements. Such efforts include the 

development of a structural tetrahedral element that produces accurate analysis results while 

automeshing well and automatic meshing techniques for hexahedral elements. 
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Appendix I :  The Data Collection Tool 
The data collection tool is a web-based application found at http:ll\id- 

s rn /Dar t / l ) a r tSys t en iAna l~~ i~ /~~~ . l i tml .  The tool is structured in two parts, a Java applet that 

presents a graphical user interface (GUI) and a Java servlet that performs the necessary model 

calculations. To use this tool, the local computer requires a Java-compatible browser as well as an 

installed Java runtime system. Internet Explorer and Mozillu Firefox are examples of Java- 

compatible browsers. The Java runtime system is available as a free download from Sun 

Microsystems and can be found at http://iava.4iin.coiii. 

As shown in Figure 3 ,  the GUI contains six tabbed sheets and a row of buttons. Each of the six 

sheets presents opportunities for the analysts to input data describing their understanding of a 

class of analysis problems. The buttons provide a mechanism for the analyst to initiate actions 

upon that data. The following subsections describe each tabbed sheet and the buttons. 

Metadata Sheet 

The rnetudutu sheet, shown in Figure 3 ,  enables entry of information to categorize the data 

set. Entries include the name of the analyst entering the data set, the date (automatically 

generated), the process flow (serial or parallel as described in the Generic DTA Process 

section), the analyst’s perception of problem complexity and the typical number of elements 

and parts for the selected complexity, the name of the FEA solver, and a number of 

parametric runs. The last item, number of parametric runs, deserves additional comment. The 

intent of including this item is to account for analysts who spend significant effort to set up an 

initial simulation run, but then are able to quickly run subsequent simulations where only 

minimal engineering time is required. For example, an analyst may wish to perform a 

sensitivity analysis where subsequent runs systematically alter a few model parameters. The 

process model ignores engineering time associated with these additional runs, but does 

account for the additional compute time. 
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DTA System Analysis Data Sheet 

L i r y c L b . r ( y M n v  -- 

Figure 3. Metadata Input Sh - 

Comments Sheel 

The comments sheet, not shown, is simply a single area in which an analyst can enter text. 

There are often many conditions associated with entered data and this sheet provides a means 

of recording these subtleties. Analysts are encouraged to include as many comments as 
possible so that the system analysis team can best understand the intent of their data. 

SteD Times Sheet 

The step times sheet, shown in Figure 4, enables an analyst to enter information about the 

time required to progress through each of the generic process steps, both the first time the 

step is encountered and for subsequent visits. By distinguishing between the first visit and 
subsequent visits, the tool accounts for potential learning or reduced work requirements 

during process iteration. For example, an analyst who spends five days initially decomposing 

geometry may require only one day the next time the step is encountered in an iteration loop, 
either because the analyst is more familiar with the task or because less work is required. 

Note that the tool does not econd and subsequent visits to a step. 
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I 
Figure 4. Step Times Input Sheet 

The first data entry column in the step times sheet is the engineering time associated with the 

first visit to each generic process step. The analyst can select the desired time units in the 

drop-down box at the top of the column. The second data entry column is for compute time, 

where all entry areas except for run simulation are non-editable. The intent of this column is 

to separately capture the compute time associated with the data set, as distinguished from the 

analyst’s engineering time. 

In order to capture the time required for subsequent visits to each step, the tool does not 

request an absolute time value. Rather, it requests a rework fraction, specified as a decimal 

between zero and one. For the example of the analyst whose first visit to geometry 

decomposition required five days while the second required only one, the corresponding 

rework column cell would contain 0.2. 

Note that the tool does not distinguish between the second and subsequent visits to a step. 
The system analysis team concluded that the additional information gained by distinguishing 

between these visits was not worth the added tool complexity. When determining the 

appropriate rework value for any step, the analyst should consider all expected subsequent 

visits and average the rework times associated with each. 
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First Visit and Later Visits Sheets 

The next two sheets, first visit and later visits, offer the opportunity to enter data about 

iteration loops or other process flow transitions an analyst feels are important to represent. 

Flow transitions are jumps from one step in the generic process to any other step and can be 

represented in matrix form as shown in thefirst visit sheet, Figure 5,  where the matrix is titled 

First Visit: Transition Probability Matrix. In this representation, the vertical axis (left) shows 

the “from” steps while the horizontal (top) axis shows the “to” steps. 

The tool requires an analyst to enter a probability value, a decimal from zero to one, for the 

important flow branches. For example, if an analyst expects for the chosen class of problem 

to branch from Run Simulation ( H )  to Meshing (0) on 70 percent of first visits, then the from 

H to D cell in thefirst visit sheet would contain 0.7. The later visits sheet would contain a 

corresponding value for the second and subsequent visits. In general, one might expect the 

matrices to be sparsely populated and that corresponding cells in each matrix will contain 

non-zero values. As with step times data entry, transition probabilities for all subsequent 

visits to a step should be averaged and entered in the later visits sheet. 

Iterations within a single step are not explicitly represented; rather, they are accounted for 

solely in the step times sheet. As a result, the matrix diagonal requires no input and is grayed 

out. For example, if in the process being modeled the analyst spends two days meshing and 

immediately discovers problems that require one day of remeshing, this time would be 

recorded as three days of step time with no iteration. If, however, the analyst progressed to 

the mesh manipulation step and then returned to meshing, a non-zero value would be entered 

in the “from E to D ’  cell in the Transition Probability Matrix. Further, the cell to the 

immediate right of the diagonal is the probability of progressing normally from one generic 

process step to the next. Since the sum of the probabilities in any row must be equal to one, 

the values in these “normal exit” cells are automatically updated to meet this requirement. 



Figure 5. Transition Probability Matrix Input Sheet 

Results Sheet 

The results sheet contains the process statistics calculated from the input on the previous tabs 

and is populated after the analyst clicks the compute results button. As shown in Figure 6, the 

results tab displays four columns of values. The first and second columns show the expected 

number of visits to each generic process step while the third column displays the engineering 

time associated with those visits. Finally, the fourth column, titled wall clock time, shows the 

sum of engineering and compute time. Since the only step with a compute time is run 

simulation, it is the only one with a value different than the adjacent cell in column three. 

As previously described, the analyst entering data is expected to review these results and 

iterate with appropriate input values until he or she is comfortable that both the input and 

output represent the process as they understand it. Since it is expected that input data will be 

modified after an analyst has computed results, the tool will at times be in an inconsistent 

state, with the results not representative of the current input. At such times the results tab will 

include a message displayed at the top of the sheet in a large red font reading 
"*****RESULTS ARE STALE*****." Once the analyst computes new results, this message 

is removed. Additionally, when the tool is in an inconsistent state, the Compute Results 
button text is displayed in green. 
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I 

iESULTS ARE STALE***** rn 

Figure 6. Results Sheet 

Button Bar 
The button bar, shown in Figure 7 and located at the bottom of the tool GUI, displuys sm 
buttons an analyst can use to perform specific actions as follows: 

Figure 7. Button Bar 

Diagram 

The Diagram button opens a new browser window and displays a graphical representation of 

the selected process flow diagram. The analyst may wish to reference this diagram when 

considering step times and transition probabilities. The browser’s print button will print the 
diagram. 

Clear 

The Clear button clears all data entries from the currently displayed tab sheet. It does not 

clear entries from other sheets. 
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Compute Results 

The Compute Results button sends the input data from the first five sheets to the servlet, 

which performs the necessary calculations. The user receives a message stating either that the 

calculations were successful or that a problem was encountered. If notified of a problem, the 

user should review the input data to identify any obvious problems, negative probabilities for 

example. The button text is displayed in green while the results are stale. 

Submit to DART 

When comfortable that both the input values and results are as intended, the analyst can enter 

the data set into the DART database by clicking the Submit to DART button. After clicking 

this button the user is presented with a confirmation dialog, where clicking the OK button 

submits the data. 

Save and Open 

An analyst may save a data set to the local computer for later use. Clicking the Save button 

opens a file browser dialog and allows the analyst to select a save location and filename. The 

Open button presents a file browser dialog through which the analyst can locate and open a 

previously saved data set. 
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Appendix 2: The Analysis Algorithm 
The algorithm to compute the process statistics derives from the analysis of a so-called “Markov 

process.” Basically, a Markov process consists of a set of states with the property that each state 

has a fixed set of transition probabilities to other states. Here, we use a special case of a Markov 

process known as a “Markov process with an absorbing state.” An absorbing state is any state that 

only has a probability of one of returning to itself, i.e., once it is entered, it cannot be exited. In 

our case, the absorbing state is the artificially added “Done”’ state seen as the last column in 

Figure 1. 

A Markov process can be described by a transition probability matrix similar to what has been 

previously discussed. In particular, the rows represent the transitions from a state and the 

columns represent the transition to a state. Thus, if we denote the transition matrix by T, the entry 

Ti,j is the transition probability from state i to state j .  For a Markov process with one absorbing 

state, the matrix T can be partitioned as 

T = [ :  Tj 
where S is the matrix of transitions among the nonabsorbing states, R is the matrix of transitions 

from the nonabsorbing states to the absorbing state, and the one in the lower right indicates that 

this state can only transition to itself. 

Using the classical analysis of Markov processes, one can compute the expected number of visits 

to each state. In particular, define the matrix 

F =(I-qT 

where T represents the transpose operation. Then the (i,j) element of F’ gives the expected 

number of visits to statej given that the process was begun in state i. In our case, we always start 

in the first state, so we only need the first row of F, i.e., we need to compute 

where el is the vector with a 1 in the first position and zeros elsewhere. 
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Although this result provides a fast way to compute the values that we need, we don’t yet have a 

Markov process. Recall that in our previous description, the transition probabilities are not fixed, 

but change after the first pass through a state. Thus we need a way to create a valid Markov 

process before we can use the above formulas. 

Our approach is to replicate the states as necessary to keep track of how many times each state 

was entered. A state in the expanded Markov process is, therefore, a combination of the state, 

whether it is a first visit or a later visit, and a count of the number of time each state has been 

visited. The count here needs only to be a 0 or 1 to indicate if a transition to that state will be for 

a first visit or for a later visit. To generate these states, we do the following. Create the first state, 

which is state 1 in first visit with all other states unvisited (i.e., with counts of 0) and put this state 

in a list. Then perform the following loop. 

Loop: For each state in the list do: 

Change the count for this state to 1 ; 

Loop: For each nonzero in the transition table for this state and this pass do: 

If the count for the corresponding state, say j ,  is 0, create a new state j with first 

visit and the current counts. 

If the count for the corresponding state, say j, is 1, create a new state j with later 

visit and the current counts. 

Add this state to the list if it is not already there. 

Upon completion of this loop, we will have a list of all of the expanded states that could possibly 

arise in the given problem. From this list, it is now relatively easy to generate the corresponding 

transition matrix T. We can then form F and do the computations noted above. Specifically, 

when the “Compute Results” button is pressed, the code reads the data that were entered into 

“First Visit: Transition Probability Matrix” and the “Later Visits: Transition Probability Matrix” 

and creates the matrix S from (1.1) from the above procedure. Given S, the matrix F is computed 
and factored. Finally the factorization is used to compute F-’e,, the expected number of visits to 

each state in our enlarged process. These results are then post-processed to give the expected 

number of visits to each of the original ten states in each pass. From this information, the 

expected time in each state and the total expected time for the entire process are computed. 

. I  
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Another strategy for generating an expanded problem was used in earlier versions of the code, but 

that strategy did not allow any states to be skipped It also was not easily generalized to the case 

of more than two passes. That is, it is not easy to see how we could allow a case in which we had 

transitions for the first visit, different transitions for the second visit and different transitions for 

the third and subsequent visits. The above approach easily handles all of these cases. In fact, the 

underlying algorithm as coded is completely general; it handles arbitrary transitions and any 

number of visits. 

The total expected time could also be computed in terms of the expanded problem. To do this we 

let n be the number of states in our expanded problem and let t be an n-dimensional vector of the 

step times (obtained from the Step Times sheet) associated with each state in our expanded 

problem. Then the total expected time can be written as 

This form will be useful in what follows. 

One final topic is covered in this section. It is of interest in the overall analysis to understand the 

sensitivity of the final total expected time with respect to changes, or perturbations, in the 

transition probabilities. Such information can be used to help determine investment strategies by 

understanding what probabilities have the most leverage on the final result. In doing this, 

however, it does not make any sense to change just one of the transition probability entries, since 

the resulting row in the transition matrix would not be such that its elements summed to one. The 

allowable perturbations, therefore, are those such that the resulting matrix T is still a transition 

probability matrix, i.e., the row sums must all be 1, and, in our case, the absorbing structure of T 

must be maintained, which means that the last row cannot be changed. Formally, let P be a 

perturbation matrix with the same dimensions as T. Then P is a valid perturbation for our 

purposes if the row sums of P are all zero and the last row is zero. It can be shown that the 

derivative of Etime with respect to a perturbation P, is given by 

where the argument S implies that it is evaluated at the given transition probabilities. Note that 
since F ' e ,  is already computed, the application of ( I  .2) can be done with just one more use of 

the factorization of F that is already available. Finally, the interpretation sf P is that it is a 
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direction of change, which means that the sizes of the elements in P don’t matter as long as the 

row sums are zero. To make meaningful comparisons between two perturbations, however, their 

sizes should be normalized. 

Picking interesting perturbations P can be done by users of the tool. For example, suppose that 

the “First Visit” probabilities for the row corresponding to step E have the values 

(0, .2,0, .3,0, .5,0,0,0,0) 

implying that there is a 20% probability of going back to state B, a 30% probability of going back 

to state D, and 50% probability of going on to state F. Thus a possible perturbation would be a 

corresponding row of the form 

(0,-.4,0,-.6,0,l,O,O,O,O). 

Here the largest perturbation element has been normalized to be one ant, the negative values have 

been allocated proportionately to the original values. This can be interpreted as asking the 

question, “What if we invest in process E so that an analyst is more likely to complete step E 

successfully the first time through?” Doing a similar calculation for each row would then allow 

the DART team to examine the trade-offs of investing in each process. 

Other possible perturbation schemes could be worked out; the details of using this are still being 

considered. 
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