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Abstract 
 

This report documents the results of a six month test program of an Alternative 
Configuration (ACONF) power management system design for a typical United States 
Coast Guard (USCG) National Distress System (NDS) site. The USCG/USDOE funded 
work was performed at Sandia National Laboratories to evaluate the effect of a Sandia 
developed battery management technology known as ACONF on the performance of 
energy storage systems at NDS sites.  This report demonstrates the savings of propane 
gas, and the improvement of battery performance when utilizing the new ACONF 
designs. The fuel savings and battery performance improvements resulting from ACONF 
use would be applicable to all current NDS sites in the field. The inherent savings 
realized when using the ACONF battery management design was found to be significant 
when compared to battery replacement and propane refueling at the remote NDS sites.  
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Preface  
United States Coast Guard, Maintenance and Logistics Command Pacific, Electronics 
Division maintains the National Distress System (NDS) throughout the coastal waters of 
Alaska.  NDS ensures that mariners in need of assistance can communicate with rescue 
officials via a VHF-FM network.  Due to the nature of the service NDS provides, it is 
crucial that the system always be online. 

 
NDS consists of several remote VHF-FM communications sites typically located atop 
mountains in coastal Alaska.  The sites are highly susceptible to the unpredictable and 
harsh winter weather conditions, which make it impossible to perform maintenance or 
fuel the majority of the sites from mid-October through mid-March. 

 
Because of their remote locations and the critical functions they perform, NDS 
communications sites are expensive to operate and maintain.  The primary costs 
associated with the continued operation of the VHF-FM sites are propane fuel to run the 
generators and sealed Valve Regulated Lead Acid (VRLA) batteries to store and 
discharge energy. 

 
As a result of the study performed at Sandia National Laboratories, documented evidence 
supports the installation of an ACONF unit at an existing NDS site in the near future.  
The addition of an ACONF unit is predicted to reduce propane fuel consumption by over 
25% and improve battery health (and life) at the site.  Pending the sustained successful 
performance of ACONF at the selected NDS site, ACONF units would be installed at all 
applicable remote NDS sites.  Assuming ACONF performs in the field as expected, 
propane fuel savings alone would be in the hundreds of thousands of dollars over the first 
few years after installation.  Additionally, the ability to predict when the batteries are at 
end of life significantly reduces the probability of random battery failures and allows for 
the optimal replacement of batteries.  Overall, the addition of ACONF units at remote 
hybrid NDS sites would reduce both site downtime and operational costs. 
 
LT Zachary Weiss 
United States Coast Guard 
Maintenance & Logistics Command Pacific 
Electronics Division 
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Executive Summary 
For the past several years, the DOE and Sandia National Laboratories have been involved 
in testing a new controller that is specifically designed to improve the efficiency of off-
grid hybrid power systems that use renewable energy, battery energy storage, and an 
engine generator.  Since the United States Coast Guard (USCG) National Distress System 
(NDS) system uses just such a power source, a project was developed with USCG and 
USDOE funding to compare two identical NDS power systems.  One of them operated 
under the control of the Sandia-developed ACONF system controller while the second 
operated under the Mechron© controller currently in use at all remote NDS sites.  A 
testing strategy was developed which would put the two systems through their paces in 
much the same seasonal environment as is experienced at a selected NDS site.  Testing 
was segmented in such a way as to run the systems in a winter, spring/fall, and summer 
season to get a good comparison of the operations based on the availability of the 
photovoltaic resource typical of the selected site. 
 
Following a lengthy acquisition and system assembly process, testing of both units 
commenced on March 19, 2004.  Loads and power sources were identical for the two 
systems.  Extreme care was taken to ensure the two systems followed the same load and 
photovoltaic generation patterns.  The primary difference in the way the systems were 
operated is that the generator start command and battery charge management in one of 
the systems was controlled exclusively by an ACONF controller.  The Mechron field 
controller was not utilized to make generator start and stop decisions in the ACONF 
controlled system.  Both systems ran smoothly until May 23, 2004 when one of the 
Mechron generators failed.  Both generators were returned to the manufacturer for repair 
where it was found that a bearing had been improperly aligned in the equipment 
originally delivered.  After the generators were returned to Sandia on September 23, 2004 
they were immediately installed and operations reinitiated. 
 
Because at the time of the generator bearing failure the test was very near the halfway 
point, analyses of the results-to-date were conducted.  Details of the analyses are 
available in this report; however, one very important result was determined.  The system 
operating under the ACONF control strategy consumed approximately 20% less propane 
fuel for the same amount of power generated by each system at the mid-point of the test 
program.   
 
After completing the mid-point capacity test, both systems resumed operations for the 
spring operating environment followed immediately by the summer operating 
environment.  During this second part of the test, an ACONF solar optimization strategy 
was implemented.  This had been available before the first part of the test but had not 
been implemented then for a variety of reasons.  The test project was completed on 
January 20, 2005 and both systems were capacity tested and final analysis was initiated.  
As expected, the fuel savings were even better for the spring/summer period with savings 
noted in the 30% range.  This report contains the details of the test work and a 
performance analysis of both systems for the full six months of testing, together with a 
discussion of the results. 
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Introduction 
The United States Coast Guard (USCG) and the DOE Energy Storage Systems Program 
are funding work at Sandia National Laboratories to evaluate the effect of a battery 
management technology known as ACONF1 on the performance of energy storage 
systems at National Distress System (NDS) sites.  Two systems were configured to 
replicate an actual NDS site in Alaska.  The two systems were identical except that one 
included an ACONF controller.  This report summarizes the results at the end of six-
month test program that simulated a year of actual use, during which the two systems 
were operated in a way that is similar to an NDS site.  The key performance metric is the 
comparison of fuel consumption for the two NDS propane generators each operating 
under their respective control philosophies.   

Test Setups 
The two systems under test are located at the Distributed Energy Technologies 
Laboratory (DETL) of Sandia National Laboratories in Albuquerque, NM.  Both systems 
are housed in a portable, air-conditioned building.  Heat generating components such as 
the generators and the loads are mounted outside, but adjacent to, the portable building.  
Several views of the two setups, and of the ancillary equipment, are shown in the photos 
displayed as Figures 1 to 6.   

     
Figure 1  Reference and ACONF battery systems    Figure 2  ACONF controller and monitor 
 
A Data Acquisition System (DAS) based on National Instruments Lab View™ acquires 
and stores measurements from both systems.  The DAS continuously scans the channels 
listed in Table 1 at a rate of 1000 samples per second and digitizes them using a 16-bit 
digitizer.  The DAS computes an average for each signal over a one minute time period.  
It saves these averages, the single-point maximum and minimum values observed during 
the one-minute period, and a time stamp.   

               

 

 

                                                 
1 US Patent 6,353,304 B1; Atcitty et al. March 5, 2002 
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Figure 3  ACONF controller                                      Figure 4  One 24-V nominal battery string 
 
The data files are backed up to a server on a LAN every night.  A user-selectable subset 
of these signals is displayed on a dedicated monitor along with information on the status 
of the system.  The time interval over which the displayed signals are averaged is 
adjustable so that signals can be displayed graphically much faster than once per minute.  
The DAS can be viewed and controlled both locally within DETL and over a secure 
network.   
 

       
Figure 5  Mechron generators   Figure 6  Mechron controllers 
 
The two setups, described in the next sub-sections, are identical except that in the 
ACONF system, an ACONF solar hybrid/battery system management controller has been 
interposed between the battery and the rest of the system.   
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Table 1  DETL DAS Signal List 

Channel Name Channel Type Description 
ACONF Temp Analog Input ACONFMOSFET heat sink temperature 
Ambient Temp Analog Input Ambient temperature at TP384 
BAT1 Ias Analog Input Battery 1 current in ACONF system 
BAT1 Irs Analog Input Battery 1 current in Reference system 
BAT1 Vas Analog Input Battery 1 voltage in ACONF system 
BAT1 Vrs Analog Input Battery 1 voltage in Reference system 
BAT2 Ias Analog Input Battery 2 current in ACONF system 
BAT2 Irs Analog Input Battery 2 current in Reference system 
BAT2 Vas Analog Input Battery 2 voltage in ACONF system 
BAT2 Vrs Analog Input Battery 2 voltage in Reference system 
Bat1 Tas Analog Input Battery 1 temperature in ACONF system 
Bat1 Trs Analog Input Battery 1 temperature in Reference system 
Bat2 Tas Analog Input Battery 2 temperature in ACONF system 
Bat2 Trs Analog Input Battery 2 temperature in Reference system 
Gen FRas  Analog Input Generator fuel mass flow rate in ACONF system 
Gen FRrs  Analog Input Generator fuel mass flow rate in Reference system 
Gen Ias Analog Input Generator current in ACONF system 
Gen Irs Analog Input Generator current in Reference System 
Gen SRas Analog Input Generator start-request in ACONF system 
Gen SRrs Analog Input Generator start-request in Reference system 
Load Ias Analog Input Load current in ACONF system 
Load Irs Analog Input Load current in Reference system 
Load Vas Analog Input Load voltage in ACONF system 
Load Vrs Analog Input Load voltage in Reference system 
PV CIas Analog Output Control current for PV-Simulator in ACONF system 
PV CIrs Analog Output Control current for PV-Simulator in Reference system 
PV CVas Analog Output Control voltage for PV-Simulator in ACONF system 
PV CVrs Analog Output Control voltage for PV-Simulator in Reference system 
PV Ias Analog Input PV-Simulator current in ACONF system 
PV Irs Analog Input PV-Simulator current in Reference system 
PV Vas Analog Input PV-Simulator voltage in ACONF system 
PV Vrs Analog Input PV-Simulator voltage in Reference system 
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Reference System 
The Reference System (REF) is meant to represent a mountaintop solar hybrid power 
system as currently implemented by the USCG.  As shown in Figure 7, the REF system 
consists of: 

• A two-string, 24V battery, with 12 GNB 1000Ah VRLA cells in each string 

• A Mechron© 7kW generator, with a 160amp, 30VDC battery charger/controller  

• A DC power supply and appropriate software to simulate a 2.88-kW solar 
photovoltaic (PV) array  

• A bank of power resistors to represent the load at a typical USCG site.  At the 
nominal battery voltage, these resistors draw a load current of about 20amps. 

For clarity Figure 7 does not show circuit protection devices such as switches and 
disconnects or sensing devices such as current shunts, voltage probes and 
thermocouples. 
 
Except in case of a malfunction, the load is continuously connected to the battery bus.  
The voltage of the battery varies throughout each charge and discharge, so the current, 
and thereby the power delivered to the load varies over time.  This variation was judged 
to be acceptable because the reliability of passive resistive loads was desirable over the 
long duration of the test and because short-duration time resolution of the load power 
was not significant in evaluating the effect of the ACONF.  The load value was selected 
based on analyses of average NDS site load data.2 
 
Identical solar inputs to each system are provided by programmable power supplies 
controlled with a sub-routine running on the DAS.  The power profile corresponds to the 
solar power that might be expected from the type of array used at an actual USCG site 
on a mountaintop close to Sitka, Alaska.  Input data for solar irradiance was obtained 
from publicly available hourly Typical Meteorological Year (TMY) measurements taken 
at Juneau, Alaska.3 

 

 

 

 

 

                                                 
2 ANALYSIS AND COST OPTIMIZATION OF A USCG REMOTE HYBRID POWER SYSTEM, 
Zachary A. Weiss, thesis, Naval Postgraduate School, Monterey, CA, June, 2002. 
3 User's Manual for TMY2s, Typical Meteorological Years, Derived from the 1961-1990 National Solar 
Radiation Data Base  http://rredc.nrel.gov/solar/old_data/nsrdb/tmy2/reference 
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Figure 7  REF System Setup 
 
NDS sites include PV charge controllers that prevent overcharging the batteries.  The 
USCG has different charge controller models at different sites.  The effect of the charge 
controller is simulated in the current test by limiting power supply voltage to no more 
than 27.6V.  The effect of this limit is to reduce the simulated PV current to zero 
whenever the generator has charged the battery to 27.6V.  For these tests the simulated 
PV was reduced to zero whenever the generator was running to avoid control instabilities 
that were observed when setting up the systems.   
 
As is the case at the NDS sites, the generator is started and stopped by the Mechron© 
charge controller.  A generator start is initiated if the battery voltage falls below 23.76V 
(1.98V/cell) at the battery bus.  When the battery voltage during charge reaches the 
control level, the charge current is reduced (tapered) so as to ensure that the battery 
voltage (measured at the battery bus) does not exceed 28.6V.   When the battery current 
falls below 40amps, the Mechron© controller instructs the generator to stop.  The REF 
system is continuously cycled to simulate NDS site operations. 

ACONF System 
The ACONF system, shown schematically in Figure 8, is very similar to the REF 
system, except for the addition of an ACONF controller unit between the positive 
terminal of each battery string and the positive bus of the power system.  Thus, the 
ACONF systems has two parallel 24V strings of battery cells, an engine/generator and 
charger controller, a PV simulator, and a resistive load bank, that are identically 
specified and provided by the same manufacturers as in the case of the REF system. 
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Figure 8  ACONF System Setup 
 
Details of the ACONF unit that is interposed between the battery strings and the positive 
bus of the power system are shown in Figure 9.  The ACONF unit includes both control 
circuitry and data acquisition.  The control circuitry is dispatched on the basis of data 
acquired, as described in the ACONF Operating section.  The data acquisition portion of 
the ACONF unit consists of a “PC104 stack”, with a PC104 embedded computer, a video 
card, and a 16-bit, 8 differential channel data acquisition card.  
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Figure 9  Details of ACONF Unit  
 
Table 2 lists the data acquired by the ACONF DAS.  The ACONF needs only five data 
points in order to accomplish the required control functions, which minimizes costs and 
data storage requirements. Data is acquired several hundred times per second, averaged 
over a two second period, displayed on a monitor connected to the video card, further 
averaged over a one minute period, then stored with a time stamp.  Data is stored locally 
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on a Compact Flash “fixed disk” and is downloaded periodically (once or twice a week 
depending on personnel availability) via a serial port for archiving to a LAN at DETL.  
Copies of the ACONF data are also sent to Symons/EECI for further analysis. 
 

Data Point Description 
Time Time Stamp for ACONF system 
StrA Volts Battery 1 voltage for ACONF system 
StrB Volts Battery 2 voltage for ACONF system 
StrA Amps Battery 1 current for ACONF system 
StrB Amps Battery 2 current for ACONF system 

Table 2  ACONF DAS Data Points 

ACONF Operation 
Unlike the REF system, dispatch of the generator is controlled by the ACONF, rather 
than by the Mechron© charger controller.  Using the PC104 based data acquisition sub-
system, the ACONF monitors each of the two parallel battery strings individually to 
optimize system performance. Figures 10 through 14 illustrate the ACONF operation. 
Figure 10 is a simplified diagram of the ACONF system, showing placement of the 
ACONF controller with respect to the rest of the system.  
 
In the “Discharge All” operating mode, energy is drawn from the two parallel strings to 
power the loads (Figure 11).  The generator is started and a charge is initiated when the 
voltage reaches the lower “generator cut-in” point (1.98 V/cell) or when 60% of the 
nominal amp-hr capacity of the battery (sum of amp-hrs discharged from the two strings) 
has been discharged, whichever point is reached first.  In the subsequent “Charge All” 
mode (Figure 12) both strings are charged by the generator at a constant current of 140A 
(70 A/string).  This “bulk charge” returns approximately 90% of the capacities of the 
batteries.  
 

 
        Figure 10  Simplified ACONF System Operation Diagram 



 

 14

 
State String A String B What ends state

discharge all discharging discharging

% Discharge from Ah count (priority)
OR low Batt voltage

OR time exceeds limit
OR if high Batt voltage (lots of PV, no load) go to finish charge  

   Figure 11  Discharge All 
 
 

 
State String A String B What ends state

charge all bulk charge bulk charge String resistance exceeds value (approx 92-95%)
OR Ah in exceeds last discharge Ah out by some %

 
   Figure 12  Charge All 
 
The bulk charge continues until the ACONF controller determines, using an internal 
resistance algorithm, that the battery voltage at the nominal charge current (140 amps) 
has reached the equivalent of 28.6 V.  The word equivalent is used since the Mechron© 
charger may cause the charge current to taper somewhat before the cut-off voltage is 
reached.  In practice, the amount of tapering that occurs is quite small, so battery charges 
with the generator are terminated at a much higher current with the ACONF than for the 
REF system.  It is this earlier charge termination and minimal current tapering that leads 
to the major savings in generator run time and fuel consumption that are predicted for the 
ACONF and is the primary reason for which the USCG testing is being performed. 
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In order to ensure the charging of the batteries is completed on a consistent basis, each 
string of the ACONF system is “finish charged” every other cycle (Figure 13).  This is 
accomplished using the MOSFET switches and the upverter shown in Figure 9, under 
the control of the ACONF software running on the PC104 computer.  Essentially, on 
completion of a bulk charge with the generator, one of the two strings is disconnected 
from the positive bus and is reconnected to the ACONF system via the upverter.  In this 
way, the string still connected as normal provides the power for discharge to the load 
and also, via the upverter, provides power to finish charge the other string.  In order to 
maintain the correct charging voltage on the string being finish charged, the ACONF 
reduces (tapers) the charge current coming from battery string A to finish charge battery 
string B.  This process continues until the ACONF determines that the string being finish 
charged has been returned to virtually 100% of its original capacity.  At that time, the 
two strings are again connected in parallel and the system returns to “Discharge All” 
mode. 

On completion of the next bulk charge with the generator (Charge All mode), the 
ACONF proceeds to finish charge the other string, as shown in Figure 14.   

 

 
State String A String B What ends state

finish charge voltage regulated
finish charge discharging

String A current tapers to some value
OR Ah exceeds 120% of last disch Ah

OR time exceeds some value
OR string B can't keep up  (string B voltage too low)  

   Figure 13  Finish Charge String A 
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Figure 14  Finish Charge String B 
 
To illustrate the previous discussion, we show in Figure 15 a plot of the voltages and 
currents for the two strings (identified as String A and String B) of the USCG ACONF 
system for May 5, 2004, a day on which a charge with the generator and a finish charge 
took place.  Note the charge with the generator started at about 3AM, and that during 
most the charge the currents in the two strings were approximately the same.  It can be 
seen that the voltage of the battery increased monotonically throughout the charge.   
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Figure 15  USCG ACONF system string voltages and currents May 5, 2004 
 
There was a small amount of current tapering towards the very end of the charge period, 
just before the ACONF software determined that the charge should be terminated.  After 
the generator had been turned off at about 10:20, the MOSFET switches in the ACONF 
Unit were reconfigured so that String A provided the power for discharge and also 
provided power to finish charge String B.  Note that the current for String B continues 
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negative (charge) and tapers throughout the finish charge period, while the current for 
String B is positive (discharge) and declines in this time as the charging current in String 
B tapers.  The finish charge was terminated at 15:20. 
 
In addition to the basic operation described here, the ACONF provides some more subtle 
operational capabilities to enhance system performance.  The most important of these for 
the USCG sites, optimization of battery charge scheduling that can lead to further fuel 
savings, was only tested during the second part of the testing.  The results with and 
without this enhancement will be discussed later in this report.   

Results and Discussion 
Automated cycling of the REF and the ACONF systems was initiated on March 19 2004.  
Cycling continued until the generator of the REF system failed totally on May 23.  Both 
generators were returned to Mechron© to be rebuilt shortly after this.  Upon their return, 
cycling recommenced and continued through to completion of the ACONF testing period 
on January 20, 2005. 

The schedule of testing initially planned for the two systems was as follows: 
1. Capacity test to establish baseline characteristics of batteries for both systems 

2. Eight weeks of cycling with solar inputs corresponding to period from November 
23 to January 18, i.e., centered on the shortest day of sunshine, 12/21 

3. Four weeks of cycling with solar inputs corresponding to period from February 21 
to March 21, i.e., leading up to the Spring equinox 

4. Capacity test to determine if cycling had any impact on characteristics of batteries 
for both systems 

5. Four weeks of cycling with solar inputs corresponding to period from March 22 to 
April 18, i.e., immediately following the Spring equinox 

6. Eight weeks of cycling with solar inputs corresponding to period from May 23 to 
July 19, i.e., centered on the longest day of sunshine, 6/21 

7. Final Capacity test to determine if cycling had any impact on characteristics of 
batteries for both systems 

The schedule was designed so that a projection could be reasonably made for entire year 
of cycling with only 24 weeks of testing. 

As mentioned above, the generator for the REF system failed on 5/23/04, i.e., ~10 weeks 
into the test.  Thus, test operations were eleven days into the 56-day Spring total (Item 3 
of the test schedule) when testing was forced to be suspended.  It was decided, therefore, 
to complete the second capacity test (Item 4) early so that time could be saved later in the 
testing, after the repaired generator had been returned.  
 
After the generators were returned in late September, 2004, testing was resumed at the 
point at which testing had been previously shut-down.  At this point, slightly less than 14 
weeks remained for the test, which was in fact resumed on the twelfth day of the spring 
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simulation. During this Second Period of testing, the solar optimization function of the 
ACONF (see above) was invoked, this not having been done during the First Period of 
testing.  Cycling was continued under automated control until the end of the test in early 
January, except for a two week break for the Holiday Season.  In this Second Period of 
testing, the remainder of item 3 along with items 5 and 6 were completed.  The final 
capacity test (Item 7) was performed after the end of the automated cycle testing.  
 
Two aspects of the results obtained will be described in this section: results related to 
operation of the generators and results obtained from measurements of the capacity of the 
batteries in the two systems under test.  The results related to operation of the generators 
will be described and discussed in two parts, corresponding to the First and the Second 
Periods of testing 

Results of Generator Operations for First Period of Testing 
Summaries of the results of the cycle testing are shown in Table 3 for the REF system 
and in Table 4 for the ACONF system.  It can be seen from Table 3 for the REF system 
that a total of 13 charges were completed and one was partially completed during the first 
period before the generator failed.  Thus, 14 discharges were completed after the test 
sequence was started with a discharge.   

First Period Reference Cycle Data 

REF  

Fuel 
Consumed 

(Gallons 

Cumulative 
Gallons 

Consumed 
Generator Run 
Time (minutes) 

Cumulative 
Generator 

Run 
(minutes) 

13.05 13.05 771 771 
12.1 25.15 737 1508 
12.18 37.33 724 2232 
15.16 52.49 897 3129 
12.31 64.8 712 3841 
12.57 77.37 739 4580 
12.12 89.49 688 5268 
11.54 101.03 684 5952 
11.33 112.36 646 6598 
10.59 122.95 580 7178 
8.58 131.53 445 7623 
12.82 144.35 718 8341 

W
in

te
r C

yc
le

 

12.61 156.96 697 9038 
Table 3  REF System First Period Data Summary 
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First Period ACONF Cycle Data 

ACONF  

Fuel 
Consumed 

(Gallons 

Cumulative 
Gallons 

Consumed 
Generator Run 
Time (minutes) 

Cumulative 
Generator 

Run 
(minutes) 

6.06 6.06 423 423 
9.7 15.76 503 926 

8.13 23.89 426 1352 
8.93 32.82 473 1825 
6.73 39.55 362 2187 
8.14 47.69 417 2604 
7.67 55.36 380 2984 
7.56 62.92 392 3376 
8.8 71.72 456 3832 

8.19 79.91 421 4253 
8.23 88.14 428 4681 
7.61 95.75 405 5086 
8.45 104.2 433 5519 
8.42 112.62 435 5954 
9.19 121.81 475 6429 
9.28 131.09 480 6909 

W
in

te
r C

yc
le

 

8.35 139.44 423 7332 

8.86 148.3 456 7788 

S
pr

in
g 

C
yc

le
 

8.47 156.77 434 8222 
Table 4  ACONF System First Period Data Summary 

 
For the ACONF system during the first period of testing, see Table 4, a total of 19 
discharges and charges were completed before the testing was suspended because of the 
failure of the REF system generator.   
 
Thus, the generator started somewhat more frequently for the ACONF system as 
compared to the REF system.  However, it should be noted that one of the more subtle 
features of the ACONF technology, a solar optimization function that automatically 
schedules generator start times in coordination with sunrise and sunset, was not turned on 
during the First Period of testing.  In order to test the efficacy of the solar optimization 
function to reduce generator start times, but also to evaluate the possible fuel saving that 
could result, the solar optimization function was implemented during the Second Period 
of testing. 
 
In contrast to the frequency of generator starts, Tables 4 and 5 show that, as expected, the 
generator run-time for the ACONF system is significantly less for the ACONF system 
than for the REF system. This indicates that for the ACONF system, generator life should 
be extended somewhat and that generator maintenance requirements should be somewhat 
lower as compared to the REF system. 
 
The advantage of the ACONF technology becomes even clearer when the fuel 
consumption measurements made during the first part of the Coast Guard testing are 
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analyzed.  This is not apparent directly from the fuel consumption data in Tables 4 and 5, 
but can be clearly seen when these data are normalized to the energy delivered to the load 
for the two systems, as shown in Figure 16.  The reason for adopting this metric to 
compare the fuel consumption for the two systems lies in the fact that there were 
interruptions in the continuous cycling process because of minor component 
malfunctions.  
 
To construct Figure 16, the energy delivered to the load was computed by summing the 
integrands of the product of the voltage and the current for each sting from the beginning 
of the test to the point at which each charge with a generator was completed.  Note that 
the fuel consumption for the last charge on the REF system is omitted since this charge 
was not completed due to generator failure.   
 
Once the fuel consumption data is normalized as shown in Figure 10, it becomes quite 
clear that the fuel consumption by the ACONF system is significantly less than that for 
the REF system.  From the data used to construct Figure 10 it can be calculated that the 
specific fuel consumption for the REF system was 0.28 gallons of propane consumed per 
kWh of energy delivered to the load over the entire first period, whereas the 
corresponding value for the ACONF system was 0.22 gallon/kWh.  Thus the fuel 
consumption with the ACONF battery management controller was approximately 20% 
less than for the REF system. 
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Figure 16  First Period Fuel Usage 

Results of Generator Operations for Second Period of Testing 
Table 5 shows a summary of the results of the cycle testing of the REF system during the 
Second Period of testing, i.e., for mid and late spring and for four weeks on each side of 
Midsummer.  Analogous results for the ACONF system are shown in Table 6.   
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Second Period Reference Cycle Data 

REF  

Fuel 
Consumed 

(Gallons 

Cumulative 
Gallons 

Consumed 

Generator 
Run Time 
(minutes) 

Cumulative 
Generator 

Run 
(minutes) 

15.85 15.85 887 887 
17.36 33.21 962 1849 
14.37 47.58 820 2669 
12.47 60.06 648 3317 

S
pr

in
g 

C
yc

le
 

12.15 72.21 742 4059 
12.20 84.41 689 4748 
12.07 96.48 718 5466 
11.49 107.97 664 6130 

S
um

m
er

 
C

yc
le

 

11.26 119.23 655 6785 
Table 5  REF System Second Period Data Summary 

 

Second Period ACONF Cycle Data 

ACONF  

Fuel 
Consumed 

(Gallons 

Cumulative 
Gallons 

Consumed 

Generator 
Run Time 
(minutes) 

Cumulative 
Generator 

Run 
(minutes) 

15.28 15.28 765 765 
10.05 25.33 471 1236 
9.91 35.25 486 1722 
8.99 44.23 436 2158 
8.34 52.57 607 2765 S

pr
in

g 
C

yc
le

 

7.06 59.63 351 3116 
7.16 66.80 354 3470 
7.66 74.45 562 4032 

S
um

m
er

 
C

yc
le

 

6.63 81.08 333 4365 
Table 6  ACONF System Second Data Summary 

 
From Tables 5 and 6, it can be seen that the same number of charges (9) were completed 
for both the REF system and for the ACONF system during the Second Period of testing.  
However, looking at the tables in more detail shows 5 charges during the spring season 
for the REF system versus 6 for the ACONF system. Also there were 4 charges for the 
REF system and 3 for the ACONF system during the summer season.  From these results 
in comparison to those for the Winter and early-Spring periods cited above, it is clear 
from implementation of the solar optimization function did indeed reduce the number of 
generator starts for the ACONF system, as expected.  In addition, the cumulative 
generator run time for the ACONF system was less than 2/3rds that for the REF system, 
offering further to the expectation that generator maintenance should be less costly for an 
NDS site with an ACONF system than with the current implementation. 
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In a similar fashion to the First Period of testing, we show in Figure 17 a plot of the 
propane consumed by the generator as a function of the kWh of electrical energy 
delivered to the load.   
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Figure 17  Second Period Fuel Usage 
 
From examination of Figure 17, it is once again apparent that there are significant savings 
in fuel when using the ACONF in comparison with the REF system.  Indeed, at the end 
of the test, it can be calculated that the ACONF system required 32% less fuel to operate 
than the REF system for the same amount of energy (kWh) delivered to the load.   
 
Some part of the increased fuel savings in the Second Period compared to the First Period 
(32% versus 20%) can be attributed to the differing seasons (late Spring and Summer 
rather than Winter and early Spring) but some part of the increased savings are thought to 
be due to the implementation of the solar optimization function in the ACONF for the 
Second Period of testing.  The relative importance of these factors can only be 
determined by further testing. 
 
The slope of the lines in Figure 17 is the specific fuel consumption, i.e., the number of 
gallons of fuel consumed per kWh of energy delivered to the load.  Close examination of 
Figure 17 indicates a change in the slope of the lines part way through the cycling, this 
corresponding to increased energy input from the (emulated) PV arrays. 

Results of Capacity Tests 
The results from the capacity tests that were performed before cycle testing started (Item 
1 of Test Schedule), after the REF generator failed (modified Item 4 of Test Schedule), 
and of two capacity tests performed after the entire six month test had been completed 
(Item 7 done twice) are shown in Table 7.  The average temperatures of all the battery 
strings being used at the time of the capacity test are also shown in Table 7. 
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Capacity (Ah to 1.85V/cell at C/20 discharge rate) 
Date ACONF 1 ACONF 2 REF 1 REF 2 Avg. Battery Temp 

2/4/2004 897 895 879 902 21.9 
6/17/2004 968 974 936 978 31.1 
1/25/2005 849 848 791 861 15.7 
2/21/2005 933 922 836 930 13.4 

Table 7: Capacity Test Results at C/20 Rate 

It can be seen from Table 7 that there is an increased capacity for the batteries of both the 
REF and the ACONF systems from the first to the second tests.  This probably results 
mostly from the higher battery temperature at the time of the second test, but could also 
result in part from further formation of the plates in the cells.  The latter effect might have 
in turn resulted from the cycling that was performed, since this is an effect that is almost 
invariably seen in the initial cycling of lead acid batteries.   

The apparent drop in capacity from the second to the third test was at first thought to be 
due to the difference in the temperature of the batteries between the times of the two 
tests.  However, when the test was repeated on 2/21/05, the capacity was significantly 
higher for all the strings except REF1, as discussed separately below.  It is thought that 
higher capacities were recorded for the last test because all the strings were on a trickle 
charge for a longer period of time than they were for the test on 1/25.   This probably  
indicates that finish charges to a lower current are desirable for the Absolyte IIP batteries 
being used, and that perhaps an occasional equalize might be necessary.  This could have 
been managed by the ACONF unit utilized in the test, but this was not done because we 
wanted to keep the operating conditions for the REF and the ACONF systems as closely 
alike as possible.   We hope to validate this hypothesis in future testing. 

As mentioned above, there is a clear indication that one of the cells in the REF1 battery is 
not performing as well as all the rest of the cells, and that it may in fact have a 
manufacturing defect.  This can be seen by examination of Table 8, which shows the 
voltages of each of the cells of the REF battery towards the end of the two latest capacity 
tests.  The Item 7 capacity test was repeated, in part, because it was observed that the 
string with the poorly performing cell did not give the same capacity as any of the rest of 
the strings.  It can be seen from Table 8 that the voltage of Cell 10 of REF String 1 is 
quite a lot lower than the other cells of the REF battery string towards the end of 
discharge, this being an indication that the low-voltage cell might have a manufacturing 
defect.  A close watch will be kept on this cell in any future testing that might be 
performed, and it could be replaced if it shows indications of imminent failure. 



 

 24

 
REF Cell Voltages ACONF Cell Voltages 

REF String 1 REF String 2 ACONF String 1 ACONF String 2 
Cell Voltage Cell Voltage Cell Voltage Cell Voltage 

1 1.956 1 1.945 1 1.945 1 1.943 
2 1.954 2 1.949 2 1.949 2 1.947 
3 1.954 3 1.949 3 1.946 3 1.943 
4 1.938 4 1.938 4 1.942 4 1.95 
5 1.954 5 1.941 5 1.956 5 1.952 
6 1.954 6 1.947 6 1.947 6 1.955 
7 1.951 7 1.944 7 1.945 7 1.955 
8 1.952 8 1.94 8 1.956 8 1.932 
9 1.934 9 1.947 9 1.95 9 1.946 

10 1.882 10 1.944 10 1.948 10 1.954 
11 1.934 11 1.938 11 1.951 11 1.949 
12 1.956 12 1.942 12 1.947 12 1.942 

Table 8  Cell Voltages during Capacity Test 
 

At this point in the test program, it is very early in the life of the lead acid (VRLA) 
batteries being used, and little difference in capacity between the two systems would be 
expected at this point.  To illustrate this point, Table 9 shows the actual amp-hrs of 
discharge that have been passed from each of the strings of the REF and ACONF 
batteries during the testing that has been performed.   

Total Ah of discharge for each battery string 
ACONF 1 ACONF 2 REF 1 REF 2 

25038 24745 20046 21741 
Table 9  Capacity Discharged from Batteries during Entire period of Test 

 
The expected life of the Absolyte IIP cells being used in the current tests (currently at 
NDS sites) is about 1250 cycles at 80% depth of discharge.  Since the cells have a 
capacity of (approximately) 1000 Ah, cycling at less than 80% DOD (as is done at NDS 
sites) would be expected to yield a total discharge capacity of at least 1250 cycles * 80% 
DOD * 1000Ah = one million Ah, because cycling at a more shallow depths generally 
leads to more total Ah of discharge in lead acid cells.  Currently, only about 2.5% of 
expected total Ah have been discharged from the ACONF test strings and only 2% from 
the REF test strings, so we are only very early in the expected life of the cells.   However, 
it should be noted that given the discharge rate for NDS sites of 10 amps per string, one 
million Ah of discharge corresponds to 100,000 hours (11 years) of discharge time, so 
NDS batteries may need to be replaced because of their age before the potential Ah 
capacity can be discharged from them. 

Table 8 also contains some interesting results in the comparison of the operational 
strategies of the two systems.  Note that the total Ah delivered for the ACONF system is 
approximately 20% higher than the REF system.  The reason for this disparity is that one 
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ACONF string is used to finish charge the other which requires additional Ah beyond that 
discharged by the REF strings. 

Conclusions and Recommendations 
A six-month parallel test of two hybrid power systems that imitate those used at USCG 
NDS sites, one configured similarly to those currently implemented and the other with an 
ACONF battery management unit, has been successfully conducted.  The hybrid power 
systems that were tested included a propane-fueled generator, a power supply that 
emulated the solar PV array in eight-week periods around mid-Winter, the Spring 
Equinox, and mid-Summer, and a 24V battery comprised of two parallel strings each 
with twelve 1000Ah cells in series.  A fixed resistor was used in each of the two systems 
to emulate the loads at an NDS site. 
 
During testing that emulated solar inputs for the eight weeks around mid-Winter and for 
three weeks in early-Spring, the test system with the ACONF unit consumed ~20% less 
fuel than the one without the ACONF.  The run time for the generator was significantly 
less for the ACONF system that for the system configured as currently at NDS sites, but 
the number of generator starts was somewhat more for the ACONF system for the other, 
for the Winter and early-Spring testing.   For this part of the testing, it would be expected 
that generator maintenance requirements would perhaps be reduced because of the 
reduced run time. 
 
For testing with solar inputs that emulated mid-Spring and for the eight weeks around 
mid-Summer, the hybrid system with the ACONF consumed almost a third less fuel than 
the other system.  This more-favorable reduction in fuel consumption was partly a result 
of the higher solar inputs for the Spring/Summer period as compared to the 
Winter/Spring period, but also resulted in part from implementation of a solar 
optimization function in the ACONF during the later testing.  This solar optimization 
function also contributed to the still lower generator run and to the reduced number of 
generator starts, as compared to the reference system. 
 
The beneficial results regarding fuel consumption and generator run time obtained in this 
work have led the USCG to ask that more work be performed on utilizing the ACONF 
technology for their NDS sites.   Although it is early in the life of the batteries being used 
in the test, it is projected that the ACONF technology can be of further value to the Coast 
Guard by allowing a deferral of battery replacements at NDS sites.  Thus, the ACONF 
technology is thought to be capable of providing battery life enhancement, and 
additionally, ACONF units track battery usage thereby allowing a more reliable method 
for determining when a battery replacement will be required. 
 
We recommend that two related but separate tasks be performed to advance the ACONF 
technology for the USCG NDS application.  First, we recommend that further testing be 
performed on the reference and the ACONF systems used in the current work, to further 
evaluate fuel savings and generator run time, and to determine if indications of battery 
longevity enhancement can be observed at a relatively early stage of battery life.  This 
extended period of testing will also permit extended evaluation of the reliability of the 
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ACONF units.  Second, we recommend that an ACONF unit be deployed at a working 
NDS site, as selected by the USCG.  This will allow the USCG to become more familiar 
will the technology and with the benefits such units can provide, so that ACONF units 
might ultimately be deployed at all NDS sites with remote hybrid power supplies. 
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