
SANDIA REPORT
SAND2005381 9
Unlimited Release
Printed July 2005

Umbra's Syntem Representation

3onald

kio na I La bo ratories

-.-.A Department of Energy's
ion under Contract DE-ACO4-94AL85000.

se; further dissemination unlimited.

ndia National Laboratories 3%

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represent that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United Stabs of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728

Online ordering: httD:/hvww.osti.nov/dge
E-Mail: reports@,adoni s. osti . gov

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders(iintis.fedworld.gov
Online order: h t t ~ : / / w w w . n ~ s . ~ o v ~ e ~ ~ / o r d e r m e t h o d s . ~ ~ ? ~ o c = ~ ~ - ~ # o ~ ~ n e

2

http://orders(iintis.fedworld.gov

SAND2005381 9
Unlimited Release
Printed July 2005

Umbra’s System Representation

Michael J. McDonald
Intelligent Systems and Robotics Center

Sandia National Laboratories
P.O. Box5800

Albuquerque, NM 871 85-1 004

Abstract

This document describes the Umbra System representation. Umbra System
representation, initially developed in the spring of 2003, is implemented in Incrmcl using
concepts borrowed from Carnegie Mellon University’s Architecture Description
Language (ADL) called Acme. In the spring of 2004 through January 2005, System wtas
converted to Umbra 4, extended slightly, and adopted as the underlying software system
for a variety of Umbra applications that support Complex Systems Engineering (CSE)
and Complex Adaptive Systems Engineering (CASE). System is now a standard part Of
Umbra 4. While Umbra 4 also includes an XML parser for System, the XML parser arid
Schema are not described in this document.

3

1 Introduction
Umbra’s System.tc1 library implements a System class definition. The need for a System
representation grew from the need to represent or model a variety of complex systems in
support of System of Systems analytics as well as CSE and CASE at Sandia. The design
and specification of System closely follows design concepts borrowed from Carnegie
Mellon University’s Architecture Description Language (ADL) called Acme. This paper
provides an overview of the relevant pieces of Acme, compares it with concepts in
Umbra, then describes and provides examples of the Umbra System class.

It is noteworthy that Acme, like other ADLs, was developed to provide a formal basis for
description and analysis of the architectures of component-based systems. Typically, the
focus is upon software system architectures. By contrast, Umbra simulations include
working models of complex component-based systems which can, in turn, often be
described using ADLs. Unlike mainstream ADL work, the focus of Umbra simulations is
not typically constrained to software systems. In particular, Systems typically analyzed
using Umbra include physical elements or components that are not typically discussed in
the ADL literature.

1.1 Acme Overview‘
Acme is an ADL developed at CMU for modeling complex software architectures. Acme
is built on an ontology of seven types of entities for architectural representation:
components, connectors, systems, ports, roles, representations, and rep-maps. Of the
seven types, the most basic elements of architectural description are components,
connectors, and systems.

Comp, ’ represent the primary computational elements and data stores of a
system. IilLuitively, they correspond to the boxes in box-and-line descriptions of
software architectures. Typical examples of components include such things as
clients servers, filters, objects, blackboards, and databases.

connectors mediate the communication and coordination activities among
components. Informally they provide the “glue” for architectural designs, and
intuitively, they correspond to the lines in box-and-line descriptions. Examples
include simple forms of interaction, such as pipes, procedure call, and event
broadcast. But connectors may also represent more complex interactions, such as a
client-server protocol or a SQL link between a database and an application.
Systems represent configurations of components and connectors.

ITS represent interactions among components. Computationally speaking,

Components’ interfaces are defined by a set of ports. Each port identifies a point of
interaction between the component and its environment. A component may provide
multiple interfaces by using different types of ports. A port can represent an interface as
simple as a single procedure signature, or more complex interfaces, such as a collection
of procedure calls that must be invoked in certain specified orders, or an event multi-cast
interface point.

This section is strongly based upon documents available at h~://www-2.cs.cmu.edu/-acme/ 1

4

Connectors also have interfaces that are defined by a set of roles. Each role of a
connector defines a participant of the interaction represented by the connector. Binary
connectors have two roles such as the caller and called roles of an RPC connector, the
reading and writing roles of a pipe, or the sender and receiver roles of a message passing
connector. Other kinds of connectors may have more than two roles. For example an
event broadcast connector might have a single event-announcer role and an arbitrary
number of event-receiver roles.

Acme supports the hierarchical description of architectures. Specifically, any component
or connector can be represented by one or more detailed, lower-level descriptions. Each
such description is termed a representation in Acme. The use of multiple representations
allows Acme to encode multiple views of architectural entities. It also supports the
description of encapsulation boundaries, as well as multiple refinement levels.

1.2 Acme and Umbra Compared
Umbra applications can be readily modeled using the Acme representation. With a few
notable exceptions most Umbra features directly correlate to key Acme concepts. The
most notable exception is the use of the term connector which is elaborated below.

Figure 1 shows how a typical two-module Acme system might be illustrated for the
purpose of these discussions. The interior components drawn encapsulate some
functionality and are interfaced through ports. Components are associated through
connectors. These connectors may have two or more rolls, with each roll associating a
particular port to the connector. Together the components are drawn in a representation.
A system is formed by instancing this representation and encapsulating it as a component
by its own right. To hide interior detail, this component’s ports are bound to various
internal ports through a binding process.

-
Figure 1: Illustration of an Acme System and its key attributes.

Figure 2 shows a conceptual Umbra System. Key attributes shown in the diagram are the
Umbra modules, which encapsulate computation, the Umbra input and output connectors,
the connections made between modules, and the Tcl interface points.

5

Umbra modules are analogous to elemental Acme components. (Typically, they are
implemented as C++ classes and instanced through the interpreter.) Umbra modules have
four interfaces that would be modeled as Ports in Acme. These are the input and output
connectors (which support continuous data flow) and the Tcl method and callback
interfaces (which serve as input and output messaging interfaces).

It is easy to confuse Umbra and Acme’s respective uses of the word connector. In Umbra,
the connector is the interface point. Connections are made between connectors. In Acme,
Ports are the interface points, connectors are used to generally implement the
connections. Acme’s richer representation allows Acme connectors themselves to have
computational roles and can be modeled in a hierarchical fashion. Presently, Umbra does
not implement features that use this abstraction.

Umbra has three features that would be modeled in Acme as connectors. These are
normal (feed forward) and feedback connections between Umbra connectors and the Tcl,
procedures that get used to implement application features that use the module’s
messaging interfaces. In the case of connections, no computation is performed and the
connection nearly approximates an Acme association. In the case of the messaging
interface, a substantial amount of local computation is performed. This computation can
be thought of as the computation within an Acme connection. It is noteworthy that in the
case of event callbacks, Umbra uses the term associate to link various callback interface
points to specific Tcl procedure calls.

I

I
Connection .? A Connection

Rgure 2: Conceptual illustration of an Umbra module pair combined to simulate a system

1.3 Umbra’s System Class
Umbra’s System class tries to strike a balance between the very general representations
within Acme and the special needs in Umbra. In its implementation, Systems are

6

I .

represented as incrTc12 classes. System classes can also be thought of as Acme System
representations. Likewise, System class instances are components that can be treated like
any other component.

Table 1 below groups and compares interface methods in the System class against those
from Umbra modules. In cases where there is strong overlap, the System class supports
methods with the same behavior and syntax as those of the Umbra module interface. It is
noteworthy that many Umbra applications and the Umbra user community’s discussions
are tied to Umbra’s use of the word connector to refer to a specific type of port. The
System design preserves this preference but also introduces the use of port where it has
distinguishing characteristics. In some minor cases, syntax used within Umbra collides
with Tcl namespaces. In particular, the set method is problematic when used as an incrTcl
class method. In this case, the term port (as in portvalue) is introduced to move System
closer to the Acme representation.

Table 1) Functional Grouping of Umbra’s module and System interface elements
Functional Group Umbra Module Method
System Instantiation & classType
Maintenance delete

Port, Connector, and Parameter
Query and Management connectors

connections
~

get I set
connected
ammeters

unconnect

Manipulation

Condition and Event Handling offchange
I offconnect
I offSet

I onset
onupdate
offchange

~

System Method
classType
itc1::delete instance
deleteClassInstances
cleanupclass
portNames
connectors
connections
binding
portvalue
connected

connect
feedback
unconnect
CornponentNames
component
componentp
bind
commnent
sendcomponent

IncrTcl is a lightweight object oriented extension to Tcl. Current Tcl releases include incrTcl as a standard 2

component. As a result, documentation for incffcl can be found within Tcl documentation sets.

7

1.3.1 Example System
As an example system, we consider Clocksystem which is included with the basic Umbra
installation and defined in ClockSystem.tc1. Clocksystem is diagrammed in Figure 3.
This System’s ports include a dtIn and a dtOut. The d t h port is bound to a SimClock
modules’s scale input connector while the dtOut port is bound to the same module’s dt
output connector. A pair of System methods are defined for Clocksystem, realTime and
simTime can connect and disconnect the system’s DigitalFilter module as shown in
Figure 3. (Note, the switch is shown for conceptual purposes. Typically connectors or
associations are not described using this convention.)

ClockSystem

-2 realTirne/sirnTirne switch 7
Figure 3: ClocHystem Diagram (from example ClocHystem.tc1)

1.4 System Instantiation & Maintenance
As with typical Umbra modules, systems are instantiated by following the name of the
system with the name of the instance. In this case, the system name is actually an incrTcl
class and the instance is an incrTcl instance. In some cases, a variety of messages may be
printed during module creation. The instantiation command then returns the name of the
module just created.

1.4.1 Instantiating and Deleting System Instances and Classes
System instanceName

Creates an instance of a base system
itc1::delete instanceName

Note: this is different than the standard way Umbra modules are deleted. Here, the
itcl system is responsible for initiating the deletion whereas Umbra modules have a
method to delete themselves.

deleteClassInstances System

This procedure deletes all modules within a class (but leaves the class defined).
cleanupclass className

8

This procedure deletes all modules within a class as well as the class itself. This
method is particularly useful for clearing memory prior to redefining a system class.

1.4.2 Example Conventions
The examples that follow were generated by copying output from the Umbra console
window. Commands are indicated using the percent sign prompt (characters leading up to
the percent key are deleted). Values are offset and colored blue for clarity. System
messages, which may not be part of the release version of Umbra, are retained and
colored red. Comments about the example are offset and italicized.

1.4.3 Examples of System Instantiation and Deletion
This example constructs a basic System

8; System foo
foo

This example constructs several ClockSystems
% ClockSystem cs

Constructing System instance cs
cs
% ClockSystem cs2

Constructing System instance cs2
cs2
% ClockSystem cs3

Constructing System instance cs3
cs3

This example deletes all System instances and, in the process, deletes all classes
derivedpom System (including the ClockSystems dejined above).

9; itc1::delete object cs
Deleting system cs

8; deleteClassInstances System
1

After rebuilding the classes
8; cleanupclass System

cleanupclass: Deleting class System
Deleting system cs3
Deleting system cs2

1.5 Port, Connector, and Parameter Query and Management
In this implementation ports mainly refer to interface elements that correspond to Umbra
module connectors. Within Umbra, Systems have input and output ports. These ports are
bound to the connectors and subsystem ports.

In its implementation, ports are not actually connected to Umbra module connectors or
other system ports. Rather, the connect and feedback methods use the port bindings to
find and connect individual modules to one another. In the case of hierarchically defined
systems, these methods recursively search downward until they can individually reach
and connect each Umbra module. The unconnect method uses an inverse process to
unconnect each module.

9

1.5.1 Basic System Methods
attribute attName

Queries the System to determine whether attName is a defined attribute of the
System. Returns the attribute value or null if the attribute isn’t defined (or if its
value is null).

attribute attName attValue

Sets the System attribute attName to attValue. attValue can be any Tcl atom, list, or
string.

attributes
port Names

connectors
Returns a list of the names of the ports as they are defined at the system interface.

Returns a discriminated list of port names. This method corresponds to the default
Umbra module connectors method.

connections portName

Returns a list of connections (as opposed to bindings) associated with the given port
name. This method corresponds to the default Umbra module connections method.

Caveat: As this command returns the actual connections, the modules named within
the return value are names of actual Umbra modules, as opposed to names of the
systems within which the modules are contained.

connected portName
rented. This method will return 1 if the port is connected and 0 if it is not I T , .

bUlllICb L C U .

binding portName

Returns the internal binding for portName. For further elaboration, see the section
on System Modification and Manipulation.

portvalue portName

Returns the current value of the connector on any internally bound component.

Caveat: When two or more connectors are bound to the same port (only possible
with input ports), this method returns the value on the first port. This value can be
misleading if the system is not connected at the input.

portvalue portName newvalue

Sets all internally bound connectors at portName to the newvalue.

Caveat: As with normal Umbra modules, this setting will only take effect if the
connectors referenced are not connected to other modules.

connect portName moduleName portName
connect portName moduleName connectorName
feedback portName moduleName portName
feedback portName moduleName connectorName

10

Modules within System instances can be connected to other system instances or
normal Umbra modules using the same syntax as the normal Umbra connect
method.

Caveat: When connecting a system instance to an Umbra module, the system
instance must be listed first. This is because Umbra modules do not know about
system modules.

unconnect p o r t N a m e

This method, unlike the Umbra module method, disconnects all internal
connections found through the port binding hierarchy.

1.5.2 Attribute setting and querying
% System s

8; s attributes
S

8; s attribute foo 1
1
8; s attribute foo
1
% s attributes
{foo 1)

1.5.3 Connection Query Examples
In these examples, cs is a ClockSystem system instance as defined in
ClockSystem. tcl

% cs portNames
dtIn dtOut
% cs portvalue dtIn
0.0
% cs portvalue dtOut
0.0
% cs connectors
{Input dtIn} {Output dt0ut)
8; cs connections dtOut
null

n e following connections query exposes an internal connection that gets made
when the clockSystem is put in realTime mode (the default).

% cs connections dtIn
{connect cs.clockSystem.filter scaleoutput}
% cs simTime
0.001
% cs connections dtIn
null

1.5.4 Connection Management Examples
In this example, a normal Umbra module is created and connected to a
ClockSystem instance.

% DigitalFilter filter
% cs connect dtOut filter scaleInput

Making Umbra Connection: filter connect scalehput cs.ClockSystem.simC1ock dt

11

This next example connects two ClockSystem instances. Initiallyl the system
produces an error because the internal connector that the port references is in use
at the time the connection is attempted (Specifically, dtIn is being used internally
by the wallclock.) See diagram provided above for firther elaboration.

Making system connection: cs2 connect dtIn cs.clockSystem.simC1ock dt
Making Umbra Connection: cs.clockSystem.simC1ock connect dt
cs2.clockSystem.simClock scale

unable to connect cs.clockSystem.simC1ock->dt with cs2.clockSystem.simClock->scale

% cs connect dtOut cs2 dtIn

Putting the clockSystem into simulated time mode disconnects the internal
connector and allows it to be used by the external system.

% cs2 simTime
0.001
% cs connect dtOut cs2 dtIn

Making system connection: cs2 connect dtIn cs.clockSystem.simC1ock dt

Making Umbra Connection: cs.clockSystem.simC1ock connect dt
cs2.clockSystem.simClock scale

Here is a similar example using the feedback.
% cs2.clockSystem.simClock connections scale
{connect cs2.clockSystem.filter scaleoutput}
% cs2 simTime

0.001
% cs feedback dtOut cs2 dtIn

Making system feedback connection: cs2 feedback dtIn cs.clockSystem.simC1ock dt

Making Umbra Connection: cs.clockSystem.simC1ock feedback dt
cs2.clockSystem.simClock scale

1.6 Component Query and Manipulation Functions
For some applications, it’s important to directly interact with or inspect the state of
internal modules. A set of component query functions are available for inspecting and
interacting with components within a system.

Unlike Umbra modules, System modules can be extended dynamically by adding
components and establishing binding. By extension, internal component interfaces are
exposed through a system sendcomponent command. These capabilities have been
implemented to allow systems to be defined and manipulated dynamically. Dynamic
system creation is particularly useful for defining systems through XML documents.

In its implementation, Systems store named lists of components. Within Umbra, each
module must have a unique name whether it is associated with a system or built as a
stand-alone module. Rather than require that user applications be directly exposed to
specific module names, query and manipulation fbnctions are available for interacting
with internal components by using a standard name. In Acme, this indirection is a form of
binding.

12

1.6.1 Key Limitations
Dynamically created systems cannot have unique methods. This is a limitation of the
incrTcl implementation. This limitation is similar to the fact that Umbra modules with
specialized methods must be created through a programming language (Le., C++). By
extension, systems that are complex enough to require their own methods should be
defined through a programming language (i.e., incrTc1).

1.6.2 Caveats
A careful balance must be struck between creating systems directly (in code) and creating
or extending systems dynamically. Applications should not overly rely on system
modification and manipulation mechanisms as doing so can negate the benefits of having
system definition formalisms in the first place. At the extreme, overuse of these methods
could cause the system formalism to be more a barrier to effective programming than a
boon in usability.

1.6.3 Methods
componentNames

Returns list of component names. These are consistent, easier to remember
externally referenced names, as opposed to the names of the internal modules.
component componentName

Returns name of actual or internal module referred to externally by the high level
name. In the case of Umbra modules, these are the actual instance names.

component componentName moduleInstanceName

Adds moduleInstanceName to the system with and names it componentName for
external referencing

component componentName delete

Deletes the named component from the system and deletes the Umbra instance for it
as well

componentP internalName
Returns

1 if the named component is a component of this system

2 if the name is the name of a component in the system

0 if it’s neither a component or the name the system uses
binding portName
bind portName

bind portName [InputlOutput] bindings
Returns the internal bindings to portName

Creates an input or output port to connector binding to portName
sendcomponent componentName message

13

invokeMethod componentName method
This method sends message (Tcl method) to the internal component named
componentName. Note that componentName is the externally referenced name and
not the actual moduleInstanceName. This external referencing allows the same
“sendComponentyy command to be sent to several Systems regardless of their
composition.

Note: sendcomponent and invokeMethod are just two different wordings of the
same function call. Eventually, we will remove one or the other. Vote your
preference.

Caveat. If the component is a System instance, this method assumes that the System
instance has a message that can receive the same command. If it does not, that call
will likely flag an error. For this reason, sendMessage is more appropriate.

bindMessage portName bindings

Not implemented Creates message binding named portName. As with connector
ports, message bindings are actually lists of methods. For some systems, the same
method needs to be sent to several internal components. This mechanism will
provide that capability.

sendMessage portName arguments

Not implemented Sends the message (which in Acme parlay is also a port) with
given arguments to the internal components.

1.6.4 Example 1
In these examples, cs is a ClockSystem system instance as &jined in
ClockSystem. tcl

% cs componentNames
wallClock simClock filter
5; cs component wallClock
cs.clockSystem.wallC1ock
5; cs componentP wallClock
0
% cs componentP cs.clockSystem.wallClock
1

1.6.5 Example 2
The code for the following example is in AnimateSystem.tc1. The system, diagrammed in
Figure 4, includes a Vectorhterpolator and a geometric object (a scene model) with joints
set up to drive it in XYZ. The system is diagrammed below.

14

As (Animationsystem)

I I I

Figure 4 Animate System
The first step is to create the separate modules

% VectorInterpolator as.vi
% as.vi events 0 ''0 0 0" 10 " 0 0 3" 2 0 " 0 4 4" 50 " 5 5 5" 100 ' C
0"
0 { 0 0 0 } 10 { 0 0 3 } 2 0 (0 4 4 } 50 (5 5 5 } 100 (0 0 0 '
% scene model as.bal1
% as.bal1 sphere 1
% as.bal1 makePosJoint (0 1 2)
% as.vi connect currentvalue as.bal1 joints

The second step is to create andpopulate a system with these components and then
add the needed bindings.

8; System as
as
% as component replayer as.vi
as .vi
% as component geom as.bal1
as. ball
% as bind time Input "{as.vi time}"
{as.vi time}

Finally, the system is connected to the simclock, the simClock is reset, and
(optionally), the system run to see the simple animation.

Send the geometry (geom) subcomponents a message to change color.

Now reset the simClock and watch the system animate by running Umbra (click run
button).

At this point, the system contains several modules that can be discovered through
Um bra 's modules command:

% as connect time simClock time

% as sendcomponent geom "color {.4 .3 . 6 } "

I % simClock reset

% modules as
as.ball
as.vi

Because the system owns the modules, the modules will get deleted if the system
gets deleted. However, No modules get listed because they are all deleted.
itc1::delete object as

Deleting system as.System
% modules as

15

2 Conclusion
This document described the Umbra System representation and compared key design
elements with Carnegie Mellon University’s ADL called Acme. As a compact way to
organize system definition code, the Umbra System representation is recommended for
all serious System of Systems, CSE, and CASE modeling work. Work is ongoing to
convert Sandia legacy models to use the Umbra System representation. Feedback has
been favorable. An initial extension to this concept has been an XML Schema and parser
which are under development. These developments are expected to further firm up the
use of the Umbra System representation.

16

Key Words
ADL
Acme

Complex Adaptive
Systems

Complex Systems

Component

Connector
Event

IncrTcl

Module

Ontology

Parameter

Port

Architecture Description Language
A simple, generic software architecture description language
(ADL) developed at Carnegie Mellon University that can be
used as a common interchange format for architecture design
tools and/or as a foundation for developing new architectural
design and analysis tools.
A second-order operational model for the complexity
paradigm that addresses adaptively or the ability for the
system to change its behavior over time in response to
evolving system dynamics. Examples include economies,
ecologies, weather, traffic and social organizations including
military and security organizations.
A first-order operational model for the complexity paradigm.
Complex Systems is a new field of science studying how parts
of a system give rise to the collective behaviors of the system,
and how the system interacts with its environment.
A constituent element, as of a system. In Umbra, the terms
module and component are used nearly synonymously. In
Acme, the term component dominates.
See Port.
A message (e.g., via a method call) sent to an object (e.g., an
Umbra module) that allows the object to execute work.
IncrTcl is a lightweight object oriented extension to Tcl.
Current Tcl releases include incrTcl as a standard component.
Documentation for incrTcl can be found within Tcl
documentation sets or from http://www.activeState.com
which distributes Tcl.
1. A standardized, often interchangeable component of a
system or construction that is designed for easy assembly or
flexible use. 2. A portion of a program that carries out a
specific function and may be used alone or combined with
other modules of the same program.
An explicit formal specification of how to represent the
objects, concepts and other entities that are assumed to exist
in some area of interest and the relationships that hold among
them.
A data value associated with a system or system component.
In Umbra, parameters can be values set by the application or
can result from computation. Parameter values typically
change infrequently.
An Umbra construct that allows modules to share information1
in an organized fashion. (Sometimes referred to as
connectors.)

17

http://www.activeState.com

System

System of Systems

Umbra

A collection of Umbra modules that represents a system
function such as a unmanned ground vehicle (UGV),
unmanned air vehicle (UAV), and unattended ground sensor
(UGS). System is often referred as a meta-module.
A system where each component is a system (including one or
more components) and the sub-systems components behave
interdependently. Also, the large-scale integration of many
interdependent, self-contained systems in that together satisfies
a global need.
Script-level programming language used in Umbra.
(Commercially avail able at htttx //www. active State. com).
Developed by engineers in the Intelligent Systems and
Robotics Center at Sandia National Laboratories in
Albuquerque, NM, Umbra is a powerful software framework
that engineers and programmers can use to develop simulations
and analyses, intelligent system and robot controls, 3-D
graphics modeling, and new applications. Umbra supports
trade-off analyses of complex robotic systems, device, physics,
and comr>onent concer>ts.

18

.

Distribution:
1 MS1002
1 MS1002
1 MS1004
5 MS1004
1 MS1004
1 MS1004
1 MS1004
1 MS1005
1 MS1005
1 MS1010
1 MS1125
1 MS1176
1 MS1188
1 MS1188
1 MS1188
1 MS1188
1 MS1188
1 MS0123
1 MS9018
2 MS0899

Steve Roehrig, 15200
Philip Heermann, 15230
Elaine Hinman-Sweeney, 1523 1
Michael McDonald, 1523 1
Fred Oppel, 1523 1
Brian Rigdon, 1523 1
Patrick Xavier, 1523 1
Russ Skocypec, 15240
Alan Nanco, 15240
Kelly Hays, 15233
Dan Morrow, 15244
Robert Cranwell, 15243
John Wagner, 1524 1
Matthew Glickman, 15241
Carl Lippitt, 1524 1
Eric Parker, 15241
Steve Tucker, 15241
Donna Chavez, LDRD Office, 0101 1
Central Technical Files, 8945-1
Technical Library, 9616

19

	Elaine Hinman-Sweeney
	Michael McDonald
	Fred Oppel
	Brian Rigdon
	Patrick Xavier
	John Wagner
	Carl Lippitt
	Donna Chavez LDRD Office

