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Abstract 

This document describes the Umbra System representation. Umbra System 
representation, initially developed in the spring of 2003, is implemented in Incrmcl using 
concepts borrowed from Carnegie Mellon University’s Architecture Description 
Language (ADL) called Acme. In the spring of 2004 through January 2005, System wtas 
converted to Umbra 4, extended slightly, and adopted as the underlying software system 
for a variety of Umbra applications that support Complex Systems Engineering (CSE) 
and Complex Adaptive Systems Engineering (CASE). System is now a standard part Of 
Umbra 4. While Umbra 4 also includes an XML parser for System, the XML parser arid 
Schema are not described in this document. 
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1 Introduction 
Umbra’s System.tc1 library implements a System class definition. The need for a System 
representation grew from the need to represent or model a variety of complex systems in 
support of System of Systems analytics as well as CSE and CASE at Sandia. The design 
and specification of System closely follows design concepts borrowed from Carnegie 
Mellon University’s Architecture Description Language (ADL) called Acme. This paper 
provides an overview of the relevant pieces of Acme, compares it with concepts in 
Umbra, then describes and provides examples of the Umbra System class. 

It is noteworthy that Acme, like other ADLs, was developed to provide a formal basis for 
description and analysis of the architectures of component-based systems. Typically, the 
focus is upon software system architectures. By contrast, Umbra simulations include 
working models of complex component-based systems which can, in turn, often be 
described using ADLs. Unlike mainstream ADL work, the focus of Umbra simulations is 
not typically constrained to software systems. In particular, Systems typically analyzed 
using Umbra include physical elements or components that are not typically discussed in 
the ADL literature. 

1.1 Acme Overview‘ 
Acme is an ADL developed at CMU for modeling complex software architectures. Acme 
is built on an ontology of seven types of entities for architectural representation: 
components, connectors, systems, ports, roles, representations, and rep-maps. Of the 
seven types, the most basic elements of architectural description are components, 
connectors, and systems. 

Comp, ’ represent the primary computational elements and data stores of a 
system. IilLuitively, they correspond to the boxes in box-and-line descriptions of 
software architectures. Typical examples of components include such things as 
clients servers, filters, objects, blackboards, and databases. 

connectors mediate the communication and coordination activities among 
components. Informally they provide the “glue” for architectural designs, and 
intuitively, they correspond to the lines in box-and-line descriptions. Examples 
include simple forms of interaction, such as pipes, procedure call, and event 
broadcast. But connectors may also represent more complex interactions, such as a 
client-server protocol or a SQL link between a database and an application. 
Systems represent configurations of components and connectors. 

ITS represent interactions among components. Computationally speaking, 

Components’ interfaces are defined by a set of ports. Each port identifies a point of 
interaction between the component and its environment. A component may provide 
multiple interfaces by using different types of ports. A port can represent an interface as 
simple as a single procedure signature, or more complex interfaces, such as a collection 
of procedure calls that must be invoked in certain specified orders, or an event multi-cast 
interface point. 

This section is strongly based upon documents available at h~://www-2.cs.cmu.edu/-acme/ 1 
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Connectors also have interfaces that are defined by a set of roles. Each role of a 
connector defines a participant of the interaction represented by the connector. Binary 
connectors have two roles such as the caller and called roles of an RPC connector, the 
reading and writing roles of a pipe, or the sender and receiver roles of a message passing 
connector. Other kinds of connectors may have more than two roles. For example an 
event broadcast connector might have a single event-announcer role and an arbitrary 
number of event-receiver roles. 

Acme supports the hierarchical description of architectures. Specifically, any component 
or connector can be represented by one or more detailed, lower-level descriptions. Each 
such description is termed a representation in Acme. The use of multiple representations 
allows Acme to encode multiple views of architectural entities. It also supports the 
description of encapsulation boundaries, as well as multiple refinement levels. 

1.2 Acme and Umbra Compared 
Umbra applications can be readily modeled using the Acme representation. With a few 
notable exceptions most Umbra features directly correlate to key Acme concepts. The 
most notable exception is the use of the term connector which is elaborated below. 

Figure 1 shows how a typical two-module Acme system might be illustrated for the 
purpose of these discussions. The interior components drawn encapsulate some 
functionality and are interfaced through ports. Components are associated through 
connectors. These connectors may have two or more rolls, with each roll associating a 
particular port to the connector. Together the components are drawn in a representation. 
A system is formed by instancing this representation and encapsulating it as a component 
by its own right. To hide interior detail, this component’s ports are bound to various 
internal ports through a binding process. 

- 
Figure 1: Illustration of an Acme System and its key attributes. 

Figure 2 shows a conceptual Umbra System. Key attributes shown in the diagram are the 
Umbra modules, which encapsulate computation, the Umbra input and output connectors, 
the connections made between modules, and the Tcl interface points. 
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Umbra modules are analogous to elemental Acme components. (Typically, they are 
implemented as C++ classes and instanced through the interpreter.) Umbra modules have 
four interfaces that would be modeled as Ports in Acme. These are the input and output 
connectors (which support continuous data flow) and the Tcl method and callback 
interfaces (which serve as input and output messaging interfaces). 

It is easy to confuse Umbra and Acme’s respective uses of the word connector. In Umbra, 
the connector is the interface point. Connections are made between connectors. In Acme, 
Ports are the interface points, connectors are used to generally implement the 
connections. Acme’s richer representation allows Acme connectors themselves to have 
computational roles and can be modeled in a hierarchical fashion. Presently, Umbra does 
not implement features that use this abstraction. 

Umbra has three features that would be modeled in Acme as connectors. These are 
normal (feed forward) and feedback connections between Umbra connectors and the Tcl, 
procedures that get used to implement application features that use the module’s 
messaging interfaces. In the case of connections, no computation is performed and the 
connection nearly approximates an Acme association. In the case of the messaging 
interface, a substantial amount of local computation is performed. This computation can 
be thought of as the computation within an Acme connection. It is noteworthy that in the 
case of event callbacks, Umbra uses the term associate to link various callback interface 
points to specific Tcl procedure calls. 

I 

I 
Connection .? A Connection 

Rgure 2: Conceptual illustration of an Umbra module pair combined to simulate a system 

1.3 Umbra’s System Class 
Umbra’s System class tries to strike a balance between the very general representations 
within Acme and the special needs in Umbra. In its implementation, Systems are 
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I .  

represented as incrTc12 classes. System classes can also be thought of as Acme System 
representations. Likewise, System class instances are components that can be treated like 
any other component. 

Table 1 below groups and compares interface methods in the System class against those 
from Umbra modules. In cases where there is strong overlap, the System class supports 
methods with the same behavior and syntax as those of the Umbra module interface. It is 
noteworthy that many Umbra applications and the Umbra user community’s discussions 
are tied to Umbra’s use of the word connector to refer to a specific type of port. The 
System design preserves this preference but also introduces the use of port where it has 
distinguishing characteristics. In some minor cases, syntax used within Umbra collides 
with Tcl namespaces. In particular, the set method is problematic when used as an incrTcl 
class method. In this case, the term port (as in portvalue) is introduced to move System 
closer to the Acme representation. 

Table 1) Functional Grouping of Umbra’s module and System interface elements 
Functional Group Umbra Module Method 
System Instantiation & classType 
Maintenance delete 

Port, Connector, and Parameter 
Query and Management connectors 

connections 
~ 

get I set 
connected 
ammeters 

unconnect 

Manipulation 

Condition and Event Handling offchange 
I offconnect 
I offSet 

I onset 
onupdate 
offchange 

~ 

System Method 
classType 
itc1::delete instance 
deleteClassInstances 
cleanupclass 
portNames 
connectors 
connections 
binding 
portvalue 
connected 

connect 
feedback 
unconnect 
CornponentNames 
component 
componentp 
bind 
commnent 
sendcomponent 

IncrTcl is a lightweight object oriented extension to Tcl. Current Tcl releases include incrTcl as a standard 2 

component. As a result, documentation for incffcl can be found within Tcl documentation sets. 
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1.3.1 Example System 
As an example system, we consider Clocksystem which is included with the basic Umbra 
installation and defined in ClockSystem.tc1. Clocksystem is diagrammed in Figure 3. 
This System’s ports include a dtIn and a dtOut. The d t h  port is bound to a SimClock 
modules’s scale input connector while the dtOut port is bound to the same module’s dt 
output connector. A pair of System methods are defined for Clocksystem, realTime and 
simTime can connect and disconnect the system’s DigitalFilter module as shown in 
Figure 3. (Note, the switch is shown for conceptual purposes. Typically connectors or 
associations are not described using this convention.) 

ClockSystem 

-2 realTirne/sirnTirne switch 7 
Figure 3: ClocHystem Diagram (from example ClocHystem.tc1) 

1.4 System Instantiation & Maintenance 
As with typical Umbra modules, systems are instantiated by following the name of the 
system with the name of the instance. In this case, the system name is actually an incrTcl 
class and the instance is an incrTcl instance. In some cases, a variety of messages may be 
printed during module creation. The instantiation command then returns the name of the 
module just created. 

1.4.1 Instantiating and Deleting System Instances and Classes 
System instanceName 

Creates an instance of a base system 
itc1::delete instanceName 

Note: this is different than the standard way Umbra modules are deleted. Here, the 
itcl system is responsible for initiating the deletion whereas Umbra modules have a 
method to delete themselves. 

deleteClassInstances System 

This procedure deletes all modules within a class (but leaves the class defined). 
cleanupclass className 
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This procedure deletes all modules within a class as well as the class itself. This 
method is particularly useful for clearing memory prior to redefining a system class. 

1.4.2 Example Conventions 
The examples that follow were generated by copying output from the Umbra console 
window. Commands are indicated using the percent sign prompt (characters leading up to 
the percent key are deleted). Values are offset and colored blue for clarity. System 
messages, which may not be part of the release version of Umbra, are retained and 
colored red. Comments about the example are offset and italicized. 

1.4.3 Examples of System Instantiation and Deletion 
This example constructs a basic System 

8; System foo 
foo 

This example constructs several ClockSystems 
% ClockSystem cs 

Constructing System instance cs 
cs 
% ClockSystem cs2 

Constructing System instance cs2 
cs2 
% ClockSystem cs3 

Constructing System instance cs3 
cs3 

This example deletes all System instances and, in the process, deletes all classes 
derivedpom System (including the ClockSystems dejined above). 

9; itc1::delete object cs 
Deleting system cs 

8; deleteClassInstances System 
1 

After rebuilding the classes 
8; cleanupclass System 

cleanupclass: Deleting class System 
Deleting system cs3 
Deleting system cs2 

1.5 Port, Connector, and Parameter Query and Management 
In this implementation ports mainly refer to interface elements that correspond to Umbra 
module connectors. Within Umbra, Systems have input and output ports. These ports are 
bound to the connectors and subsystem ports. 

In its implementation, ports are not actually connected to Umbra module connectors or 
other system ports. Rather, the connect and feedback methods use the port bindings to 
find and connect individual modules to one another. In the case of hierarchically defined 
systems, these methods recursively search downward until they can individually reach 
and connect each Umbra module. The unconnect method uses an inverse process to 
unconnect each module. 
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1.5.1 Basic System Methods 
attribute attName 

Queries the System to determine whether attName is a defined attribute of the 
System. Returns the attribute value or null if the attribute isn’t defined (or if its 
value is null). 

attribute attName attValue 

Sets the System attribute attName to attValue. attValue can be any Tcl atom, list, or 
string. 

attributes 
port Names 

connectors 
Returns a list of the names of the ports as they are defined at the system interface. 

Returns a discriminated list of port names. This method corresponds to the default 
Umbra module connectors method. 

connections portName 

Returns a list of connections (as opposed to bindings) associated with the given port 
name. This method corresponds to the default Umbra module connections method. 

Caveat: As this command returns the actual connections, the modules named within 
the return value are names of actual Umbra modules, as opposed to names of the 
systems within which the modules are contained. 

connected portName 
rented. This method will return 1 if the port is connected and 0 if it is not I T  , . 

bUlllICb L C U  . 

binding portName 

Returns the internal binding for portName. For further elaboration, see the section 
on System Modification and Manipulation. 

portvalue portName 

Returns the current value of the connector on any internally bound component. 

Caveat: When two or more connectors are bound to the same port (only possible 
with input ports), this method returns the value on the first port. This value can be 
misleading if the system is not connected at the input. 

portvalue portName newvalue 

Sets all internally bound connectors at portName to the newvalue. 

Caveat: As with normal Umbra modules, this setting will only take effect if the 
connectors referenced are not connected to other modules. 

connect portName moduleName portName 
connect portName moduleName connectorName 
feedback portName moduleName portName 
feedback portName moduleName connectorName 
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Modules within System instances can be connected to other system instances or 
normal Umbra modules using the same syntax as the normal Umbra connect 
method. 

Caveat: When connecting a system instance to an Umbra module, the system 
instance must be listed first. This is because Umbra modules do not know about 
system modules. 

unconnect p o r t N a m e  

This method, unlike the Umbra module method, disconnects all internal 
connections found through the port binding hierarchy. 

1.5.2 Attribute setting and querying 
% System s 

8; s attributes 
S 

8; s attribute foo 1 
1 
8; s attribute foo 
1 
% s attributes 
{foo 1) 

1.5.3 Connection Query Examples 
In these examples, cs is a ClockSystem system instance as defined in 
ClockSystem. tcl 

% cs portNames 
dtIn dtOut 
% cs portvalue dtIn 
0.0 
% cs portvalue dtOut 
0.0 
% cs connectors 
{Input dtIn} {Output dt0ut) 
8; cs connections dtOut 
null 

n e  following connections query exposes an internal connection that gets made 
when the clockSystem is put in realTime mode (the default). 

% cs connections dtIn 
{connect cs.clockSystem.filter scaleoutput} 
% cs simTime 
0.001 
% cs connections dtIn 
null 

1.5.4 Connection Management Examples 
In this example, a normal Umbra module is created and connected to a 
ClockSystem instance. 

% DigitalFilter filter 
% cs connect dtOut filter scaleInput 

Making Umbra Connection: filter connect scalehput cs.ClockSystem.simC1ock dt 
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This next example connects two ClockSystem instances. Initiallyl the system 
produces an error because the internal connector that the port references is in use 
at the time the connection is attempted (Specifically, dtIn is being used internally 
by the wallclock.) See diagram provided above for firther elaboration. 

Making system connection: cs2 connect dtIn cs.clockSystem.simC1ock dt 
Making Umbra Connection: cs.clockSystem.simC1ock connect dt 
cs2.clockSystem.simClock scale 

unable to connect cs.clockSystem.simC1ock->dt with cs2.clockSystem.simClock->scale 

% cs connect dtOut cs2 dtIn 

Putting the clockSystem into simulated time mode disconnects the internal 
connector and allows it to be used by the external system. 

% cs2 simTime 
0.001 
% cs connect dtOut cs2 dtIn 

Making system connection: cs2 connect dtIn cs.clockSystem.simC1ock dt 

Making Umbra Connection: cs.clockSystem.simC1ock connect dt 
cs2.clockSystem.simClock scale 

Here is a similar example using the feedback. 
% cs2.clockSystem.simClock connections scale 
{connect cs2.clockSystem.filter scaleoutput} 
% cs2 simTime 

0.001 
% cs feedback dtOut cs2 dtIn 

Making system feedback connection: cs2 feedback dtIn cs.clockSystem.simC1ock dt 

Making Umbra Connection: cs.clockSystem.simC1ock feedback dt 
cs2.clockSystem.simClock scale 

1.6 Component Query and Manipulation Functions 
For some applications, it’s important to directly interact with or inspect the state of 
internal modules. A set of component query functions are available for inspecting and 
interacting with components within a system. 

Unlike Umbra modules, System modules can be extended dynamically by adding 
components and establishing binding. By extension, internal component interfaces are 
exposed through a system sendcomponent command. These capabilities have been 
implemented to allow systems to be defined and manipulated dynamically. Dynamic 
system creation is particularly useful for defining systems through XML documents. 

In its implementation, Systems store named lists of components. Within Umbra, each 
module must have a unique name whether it is associated with a system or built as a 
stand-alone module. Rather than require that user applications be directly exposed to 
specific module names, query and manipulation fbnctions are available for interacting 
with internal components by using a standard name. In Acme, this indirection is a form of 
binding. 

12 



1.6.1 Key Limitations 
Dynamically created systems cannot have unique methods. This is a limitation of the 
incrTcl implementation. This limitation is similar to the fact that Umbra modules with 
specialized methods must be created through a programming language (Le., C++). By 
extension, systems that are complex enough to require their own methods should be 
defined through a programming language (i.e., incrTc1). 

1.6.2 Caveats 
A careful balance must be struck between creating systems directly (in code) and creating 
or extending systems dynamically. Applications should not overly rely on system 
modification and manipulation mechanisms as doing so can negate the benefits of having 
system definition formalisms in the first place. At the extreme, overuse of these methods 
could cause the system formalism to be more a barrier to effective programming than a 
boon in usability. 

1.6.3 Methods 
componentNames 

Returns list of component names. These are consistent, easier to remember 
externally referenced names, as opposed to the names of the internal modules. 
component componentName 

Returns name of actual or internal module referred to externally by the high level 
name. In the case of Umbra modules, these are the actual instance names. 

component componentName moduleInstanceName 

Adds moduleInstanceName to the system with and names it componentName for 
external referencing 

component componentName delete 

Deletes the named component from the system and deletes the Umbra instance for it 
as well 

componentP internalName 
Returns 

1 if the named component is a component of this system 

2 if the name is the name of a component in the system 

0 if it’s neither a component or the name the system uses 
binding portName 
bind portName 

bind portName [InputlOutput] bindings 
Returns the internal bindings to portName 

Creates an input or output port to connector binding to portName 
sendcomponent componentName message 
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invokeMethod componentName method 
This method sends message (Tcl method) to the internal component named 
componentName. Note that componentName is the externally referenced name and 
not the actual moduleInstanceName. This external referencing allows the same 
“sendComponentyy command to be sent to several Systems regardless of their 
composition. 

Note: sendcomponent and invokeMethod are just two different wordings of the 
same function call. Eventually, we will remove one or the other. Vote your 
preference. 

Caveat. If the component is a System instance, this method assumes that the System 
instance has a message that can receive the same command. If it does not, that call 
will likely flag an error. For this reason, sendMessage is more appropriate. 

bindMessage portName bindings 

Not implemented Creates message binding named portName. As with connector 
ports, message bindings are actually lists of methods. For some systems, the same 
method needs to be sent to several internal components. This mechanism will 
provide that capability. 

sendMessage portName arguments 

Not implemented Sends the message (which in Acme parlay is also a port) with 
given arguments to the internal components. 

1.6.4 Example 1 
In these examples, cs is a ClockSystem system instance as &jined in 
ClockSystem. tcl 

% cs componentNames 
wallClock simClock filter 
5; cs component wallClock 
cs.clockSystem.wallC1ock 
5; cs componentP wallClock 
0 
% cs componentP cs.clockSystem.wallClock 
1 

1.6.5 Example 2 
The code for the following example is in AnimateSystem.tc1. The system, diagrammed in 
Figure 4, includes a Vectorhterpolator and a geometric object (a scene model) with joints 
set up to drive it in XYZ. The system is diagrammed below. 
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As (Animationsystem) 

I I I  

Figure 4 Animate System 
The first step is to create the separate modules 

% VectorInterpolator as.vi 
% as.vi events 0 ''0 0 0" 10 " 0  0 3" 2 0  " 0  4 4" 50  " 5  5 5" 100 ' C  
0" 
0 { 0  0 0 } 10 { 0  0 3 } 2 0  ( 0  4 4 } 50  ( 5  5 5 } 100 ( 0  0 0 ' 
% scene model as.bal1 
% as.bal1 sphere 1 
% as.bal1 makePosJoint ( 0  1 2) 
% as.vi connect currentvalue as.bal1 joints 

The second step is to create andpopulate a system with these components and then 
add the needed bindings. 

8; System as 
as 
% as component replayer as.vi 
as .vi 
% as component geom as.bal1 
as. ball 
% as bind time Input "{as.vi time}" 
{as.vi time} 

Finally, the system is connected to the simclock, the simClock is reset, and 
(optionally), the system run to see the simple animation. 

Send the geometry (geom) subcomponents a message to change color. 

Now reset the simClock and watch the system animate by running Umbra (click run 
button). 

At this point, the system contains several modules that can be discovered through 
Um bra 's modules command: 

% as connect time simClock time 

% as sendcomponent geom "color {.4 .3 . 6 } "  

I % simClock reset 

% modules as 
as.ball 
as.vi 

Because the system owns the modules, the modules will get deleted if the system 
gets deleted. However, No modules get listed because they are all deleted. 
itc1::delete object as 

Deleting system as.System 
% modules as 
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2 Conclusion 
This document described the Umbra System representation and compared key design 
elements with Carnegie Mellon University’s ADL called Acme. As a compact way to 
organize system definition code, the Umbra System representation is recommended for 
all serious System of Systems, CSE, and CASE modeling work. Work is ongoing to 
convert Sandia legacy models to use the Umbra System representation. Feedback has 
been favorable. An initial extension to this concept has been an XML Schema and parser 
which are under development. These developments are expected to further firm up the 
use of the Umbra System representation. 
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Key Words 
ADL 
Acme 

Complex Adaptive 
Systems 

Complex Systems 

Component 

Connector 
Event 

IncrTcl 

Module 

Ontology 

Parameter 

Port 

Architecture Description Language 
A simple, generic software architecture description language 
(ADL) developed at Carnegie Mellon University that can be 
used as a common interchange format for architecture design 
tools and/or as a foundation for developing new architectural 
design and analysis tools. 
A second-order operational model for the complexity 
paradigm that addresses adaptively or the ability for the 
system to change its behavior over time in response to 
evolving system dynamics. Examples include economies, 
ecologies, weather, traffic and social organizations including 
military and security organizations. 
A first-order operational model for the complexity paradigm. 
Complex Systems is a new field of science studying how parts 
of a system give rise to the collective behaviors of the system, 
and how the system interacts with its environment. 
A constituent element, as of a system. In Umbra, the terms 
module and component are used nearly synonymously. In 
Acme, the term component dominates. 
See Port. 
A message (e.g., via a method call) sent to an object (e.g., an 
Umbra module) that allows the object to execute work. 
IncrTcl is a lightweight object oriented extension to Tcl. 
Current Tcl releases include incrTcl as a standard component. 
Documentation for incrTcl can be found within Tcl 
documentation sets or from http://www.activeState.com 
which distributes Tcl. 
1. A standardized, often interchangeable component of a 
system or construction that is designed for easy assembly or 
flexible use. 2. A portion of a program that carries out a 
specific function and may be used alone or combined with 
other modules of the same program. 
An explicit formal specification of how to represent the 
objects, concepts and other entities that are assumed to exist 
in some area of interest and the relationships that hold among 
them. 
A data value associated with a system or system component. 
In Umbra, parameters can be values set by the application or 
can result from computation. Parameter values typically 
change infrequently. 
An Umbra construct that allows modules to share information1 
in an organized fashion. (Sometimes referred to as 
connectors.) 
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System 

System of Systems 

Umbra 

A collection of Umbra modules that represents a system 
function such as a unmanned ground vehicle (UGV), 
unmanned air vehicle (UAV), and unattended ground sensor 
(UGS). System is often referred as a meta-module. 
A system where each component is a system (including one or 
more components) and the sub-systems components behave 
interdependently. Also, the large-scale integration of many 
interdependent, self-contained systems in that together satisfies 
a global need. 
Script-level programming language used in Umbra. 
(Commercially avail able at htttx //www. active State. com ). 
Developed by engineers in the Intelligent Systems and 
Robotics Center at Sandia National Laboratories in 
Albuquerque, NM, Umbra is a powerful software framework 
that engineers and programmers can use to develop simulations 
and analyses, intelligent system and robot controls, 3-D 
graphics modeling, and new applications. Umbra supports 
trade-off analyses of complex robotic systems, device, physics, 
and comr>onent concer>ts. 
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