

SANDIA REPORT

SAND2005-3356
Unlimited Release
Printed October 2005

Test, Evaluation, and Build Procedures
For Sandia's ASCI Red (Janus)
Teraflops Operating System

Daniel W. Barnette

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

 2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia
Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of their
contractors or subcontractors. The views and opinions expressed herein do not necessarily state or
reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

 3

SAND2005-3356
Unlimited Release

Printed October 2005

Test and Evaluation Procedures
For Sandia’s Teraflops Operating System (TOS)

On Janus

Daniel W. Barnette
Scalable Systems Integration Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-1111

Abstract

This report describes the test and evaluation methods by which the Teraflops Operating System, or
TOS, that resides on Sandia’s massively-parallel computer Janus is verified for production release.
Also discussed are methods used to build TOS before testing and evaluating, miscellaneous utility
scripts, a sample test plan, and a proposed post-test method for quickly examining the large number of
test results. The purpose of the report is threefold: 1) to provide a guide to T&E procedures, 2) to aid
and guide others who will run T&E procedures on the new ASCI Red Storm machine, and 3) to
document some of the history of evaluation and testing of TOS. This report is not intended to serve as
an exhaustive manual for testers to conduct T&E procedures.

 4

Acknowledgements

The author wishes to acknowledge the helpful discussions and insights given by Sandians Suzanne
Kelly, John Van Dyke, Robert E. Benner, Gerald Quinlan (retired), Michael Hannah, and many others.
More than once, the parallel system engineers group, or PSE’s, with Frank Jaramillo as lead, helped
with hardware and software problems. This effort was managed initially by Douglas Doerfler and
subsequently by James A. Ang.

 5

Table of Contents

Abstract...3

Acknowledgements..4

Introduction ...7

Janus Teraflops Computer and Its OS..8

Building TOS for Testing and Evaluation..9

1. Import files into CVS repository:...10

2. Export files out of CVS repository: ...10

3. Check-out files from CVS for immediate use: ...10

4. Check-in of a modified file that already resides on CVS:..........................10

Testing and Evaluating TOS – An Overview..11

A. The ddt Test Harness..11

B. Steps for Testing and Evaluation of TOS..12

C. Running mini-Eats in the Janus Interactive Partition..................................12

D. Running Specific Tests for Specific Code Fixes...13

E. In the Event of a Test Failure...13

F. Final Test on Janus ..14

Proposed Methods for Post-Test Analyses ..14

References ...15

Appendix A. Using VNC for Maintaining Connectivity from Remote Sites16

Appendix B: List of Support Hardware..21

Appendix C: List of Evaluation Tests ..22

Appendix D: List of Evaluation Test Suite Code Fixes...25

Appendix E: Key Variables Used for the ddt Shell ...33

Appendix F: EATS web pages ..35

 6

Appendix G: Miscellaneous Utility Scripts...47

Script 1: checkout tests from CVS ...47

Script 2: status_checker..52

Script 3: Pinging Interactive Partition Until Specified Number… 54

Appendix H: Sample Page from Test Log ..58

Appendix I: Test Plan for R4.5.2 (full build)...59

Appendix J: Script for Gathering Test Results..62

Appendix K: Mathematica Script for Plotting Test Results.....................................66

 7

Test and Evaluation Procedures
for Sandia’s Teraflops Operating System (TOS) on Janus

Introduction

Sandia National Laboratories’ ASCI Red massively parallel computer, hostnamed Janus, is the world’s
first teraflops supercomputer. The machine was developed by joint effort of Intel and Sandia, built by
Intel, and brought online in 1997 at Sandia in Albuquerque, NM. Although now dated and soon to be
retired, Janus has been a mainstay for computing at Sandia for over eight years.

Teams from Intel initially managed the machine. Sandia personnel took sole responsibility for system
management in January 2001 after several months of side-by-side training with Intel. Sandia will
continue managing Janus until its decommissioning in FY2006.

As a part of Sandia’s responsibilities for managing Janus, the Teraflops Operating System (TOS)
Project was formed. The goals of the Project are to

• Periodically upgrade the system software with the goals of improving reliability and availability
• Provide computational support to the computer users
• Provide technical software consulting to the system administrators
• Respond to user questions on system software

This report focuses on a portion of the first goal: that of “test and evaluation” (T&E) methods used when
upgrading the system software. Janus’ operating system consists of TOS running on service nodes
and the lightweight kernel called Cougar running on compute nodes. The purpose of T&E is to stress
TOS/Cougar software and associated hardware to reasonably ensure that all parts of the system are
operating and communicating as required. The goal of T&E is to discern whether regressions of TOS
have occurred through changes and that its integrity and viability remain intact.

The importance of T&E cannot be overstated considering what is involved in a TOS/Cougar upgrade.
To upgrade system software means TOS and/or Cougar changes will be made on a continuing basis.
Additions, updates, and/or improvements, whether for purposes of simplifying, adding capability to, or
debugging code, are assumed to render TOS/Cougar untrustworthy until subjected to rigorous T&E
procedures. Also, a massively-parallel computer’s operating system is designed to have many
processors communicating with each other as well as with parallel file systems and other peripheral
devices, all with multiple concurrent users. With the OS so complex, and with Janus supporting a large
user base solving problems of national interest, the ability to verify system integrity and reliability is
crucial. Hence, T&E procedures must be performed after each time the operating system is changed
and before the start of production runs.

Since Sandia took over sole management of Janus, over 24 TOS/Cougar releases have been tested.
The vast majority of these passed T&E and were approved for production status. However, T&E
uncovered problems with several releases. The problems were either corrected or the proposed fixes
were scrapped. Many times problems that arose were not related to the proposed code fixes but to
interaction of the proposed fixes with other sections of TOS/Cougar. Only intensive T&E could hope to
uncover such problems.

In particular, this report describes the T&E methods by which Sandia’s TOS/Cougar is evaluated before
production release. Janus hardware and software are discussed first. Next, support computers for T&E
are detailed. Steps for building TOS/Cougar are given next, and then an overview of testing TOS is
discussed. Finally, a method for post-test analyses is proposed.

 8

Janus Teraflops Computer and Its OS

Janus is a distributed memory, MIMD, message-passing supercomputer. I/O, memory, compute nodes,
and communication are highly scalable. The system uses two operating systems: Unix-based TOS for
the user interface and Sandia-developed Cougar for non-intrusive scalable application on the compute
nodes. Affordability is maintained through use of commercial-off-the-shelf (COTS) technology where
possible. Details can be found in Ref. 1.

Janus’ mesh topology consists of 38 X 32 X 2 = 2432 card slots, or room for a maximum of 4864
physical nodes, there being two nodes on each card. Each node contains two processors, one for
computing and another for networking. The networking processor can be configured as a compute
processor in what is known as a virtual compute node. Hence, each card contains two processors in
normal mode or four processors in virtual mode.

There are 4562 (4510 compute + 52 service) of what are known as kestrel, or compute, nodes. There
are 2 physical nodes per kestrel board, accounting for 4562/2 = 2281 cards, leaving 2432 - 2281 = 151
"other" card slots.

I/O, network and boot nodes are implemented on eagle boards. There are 73 I/O + 2 boot + 12 network
= 87 of these nodes, but each node uses a whole card slot. So, 151 - 87 = 64 empty card slots.

In summary, there are a total of 4510 physical or 9020 virtual compute nodes when Janus is in the
normal configuration. This can be augmented by reconfiguring other nodes to be compute nodes if
necessary, but this is seldom if ever done. Obviously, though, there must always be some minimum
number of service and I/O nodes available at all times.

Service nodes running TOS and compute nodes running Cougar are implemented on kestrel boards,
with two nodes of 2 processors each, 4 processors total, per board. There are a total of 52 service
nodes running TOS.

The system’s resource allocations are flexible. For example, service nodes may be used as compute
nodes as long as the proper number of boot, I/O, and network nodes remains available. This would
raise the total number of compute nodes and decrease the number of service nodes. Of course, a
normal service node to be used in the compute partition must be instructed to boot the Cougar OS
instead of TOS.

Janus uses a Parallel File System (PFS) designed to provide high I/O bandwidth required for parallel
applications. The PFS file system is compatible with other UNIX file system types such as UFS and
NFS, and can be mounted in the system-wide directory hierarchy in a similar fashion. A PFS file is
striped in a round-robin fashion across a group of regular Unix File Systems (UFS). Each UFS file
system in the stripe group may be created on a different storage device. These storage devices can
be connected to one or several distinct I/O nodes. Multiple PFS file systems may be mounted in the
system at a time, each with different default data striping attributes and buffering strategies.

Janus is typically divided into classified and unclassified sections. The unclassified section is further
divided into an interactive partition, where small jobs can be submitted directly by the user, and a
queued partition, where large jobs are submitted to a queuing algorithm. T&E is always run on the
unclassified side of Janus. No testing occurs on the classified side. Any discussion related to the
classified side of Janus is beyond the scope of this report.

 9

As Sandia personnel gained experience with Janus, it was noticed that the support group became
inundated with emails when Janus incurred problems. It was decided that so many emails might be
more easily managed if divided into groups, or lists, rather than in bulk. This allowed support staff to
better focus on problem areas. As a result, four email lists were created for communications between
support staff, and between staff and users. The lists and their purposes are given below.

janus-help: this is the list that users should use
 and the only list to be recommended by support staff
 to users. When a user mailing is answered,
 support should always CC this list at least so
 the rest know that it has been answered,
 to avoid duplicate replies to the user.
 The resolution of a query should also be
 sent to this list so that all the others
 can learn from the answer. It may be
 appropriate to have one-on-one discussions
 with the user as part of diagnosing the
 problem, but the final resolution should
 always be sent to this list. Mail to this
 list is automatically archived.

janus-admin: this is only for concerns about the e-mail
 lists themselves, and is where requests to
 be added or deleted from a janus list are sent.
 All janus mail "bounces" go to this list.

janus-sys: this is for the internal use of the systems and support
 staff as they discuss issues amongst themselves.
 It should not be given to users as an address
 for them to by-pass janus-help

janus-sw: this is for the internal use of the software
 staff as they discuss issues amongst themselves.
 It should not be given to users as an address
 for them to by-pass janus-help

Building TOS for Testing and Evaluation

After developers finish making changes for a proposed release, the updated TOS is checked in to the
version control software systems CVS (Ref. 2). The tester then checks out this newest TOS version
from CVS and initiates the build process. A complete build requires approximately a 24-hr day if all
goes correctly.

The following steps are used during a typical build process for TOS. The build steps must be followed
carefully. If any mishaps or mistakes occur, the build process is typically started over from the
beginning. There is no restart process available during the build.

Step 1. Tests are checked out of the CVS repository into a local directory called ‘sandbox’. (30 minutes)

The four most-useful CVS command sequences for importing files, exporting files, test check-outs, and
test check-ins are listed below. Note that the double backslashes “\\” indicate line continuation.

 10

1. Import files into CVS repository:

cvs -d repository import -m "Import Source Code" \\

 CVS_module_name xx start

2. Export files out of CVS repository:

cvs -d repository export -D today CVS_module_name

3. Check-out files from CVS for immediate use:

cvs -d repository checkout -d checkout_directory_name \\

CVS_module_name

which will put files that were in CVS_module_name into “checkout_directory_name”,
or

cvs -d repository checkout CVS_module_name

which will put files that were in CVS_module_name and its directories into the current
directory.

4. Check-in of a modified file that already resides on CVS:

First, “cd” to the directory which contains the modified file. Then issue the following three
commands.

cvs update

cvs add <filename>

cvs commit <filename>

Step 2. All files in the ‘sandbox’ directory are gathered together using the ‘tar’ utility to a file nominally
called ‘source.tar’. (15 minutes)

Step 3. The ‘source.tar’ file is secure-copied to the build machine. (1.5 hours)

Step 4. The ‘source.tar’ file is untarred at this point. (2.25 hours)

Step 5. Appropriate links are made, extraneous build files are moved into place, and environment
variables are set using ‘setenv’ and sourcing a setup script. (15 minutes)

Step 6. The executables are built using ‘gmake’. (14 hours)

A continuous connection is required between user and build machine during the build. This is trivial if
the user is onsite at Sandia. If offsite, the user may use open-source Virtual Network Computing (VNC)
software (Ref. 3). Details for using VNC in the context of a TOS build are given in Appendix A.

Step 7. The build script creates a ‘Release’ directory.

Step 8. Files in the ‘Release’ directory are gathered using the ‘tar’ utility into a file nominally called
‘build.tar’.

 11

Step 9. The ‘build.tar’ file is moved to a directory where the Parallel System Engineers, or PSE’s, can
access it. The PSE’s then install the newly-built TOS on the evaluation machines for testing and, if the
tests pass, on Janus for final testing. If it passes the final test, this TOS version becomes the resident
operating system for production runs. Testing TOS will be discussed in the next section.

Step 10. Anytime after successful testing but before another TOS version is checked into CVS, the
build files are stored on the Sandia Mass Storage System, or SMSS (Ref. 4).

Step 11. Finally, the CVS files are tagged with the current TOS version number for tracking purposes
using the command

 cvs tag <version number> sandbox

Testing and Evaluating TOS – An Overview

Attention is now turned toward testing and evaluating the newly built, but not yet tested, TOS. For this
purpose, Intel provided several mini-teraflop machines to Sandia as a contract requirement, with sizes
varying from tens to hundreds (versus Janus’ thousands) of processors. This allows Janus to be
essentially dedicated to users while the mini-teraflop machines can be used for various support
functions. With a total of 14 support machines, Sandia uses four almost exclusively for testing and
evaluation. These are hostnamed Basil, Rosemary, Ginger, and Nighten. A complete list of support
machines and their purpose is given in Appendix C.

It was previously noted that the T&E tests were taken over by Sandia staff from Intel personnel in
December 2000. Intel staff was minimal by this time, and little attention was being given to the
numerous coding errors in the test scripts. Once Sandia staff took over in CY2001, high priority was
given to correcting the errors. The most obvious or important ones were fixed first. Others were found
during subsequent testing and were corrected. A comprehensive list of Sandia-initiated code fixes is
given in Appendix D.

A. The ddt Test Harness

For most of the tests, the Driver Dependency automated Test execution tool (ddt) test harness assists
in automated execution by using the test directory structure, user environment, and user specified
options. The driver traverses the specified test directories to lock a test directory, then compiles and
executes the test to generate the specified results. The driver attempts to successfully execute each
test. The defaults are to execute a maximum of 5 circuits of the test directory file using the default
master “Makefile”. User-specified deviations to the defaults are allowed.

ddt parses the command line arguments until an unrecognized argument is found. This first
unrecognized argument, and any remaining arguments, is passed directly through to “make”. In this
way options and macros may be specified and passed to “make” easily. This implies that ddt cannot
share options with the “make” utility.

Any optional targets for “make” may also be specified, i.e. build, logs, etc. A “make” target is the name
of the dependency target to be made. The default “make” target is “all”, the UNIX custom.

The evaluation environment includes variables required for the ddt shell to execute properly.
Environment variables describe the location of the ddt directory structure, host and mesh configuration.
Most are set by ddt when it executes, or they can be permanently placed in the user’s environment.

Key variables set by the ddt shell are shown in Appendix E.

 12

B. Steps for Testing and Evaluation of TOS

T&E tests are stored in a CVS repository in much the same manner as TOS. CVS storage allows part
or all of the testing software to be retrieved or checked out, changes to the tests to be tracked, and
changes to be checked in.

Once checked out of CVS, the T&E suites are used to check system calls, commands, job queuing,
libraries, communications, file systems, and other functions of TOS. Each test generates pass/fail
output. A summary for groups of test runs is typically generated at the end of the test. The summary
indicates a pass/fail for each group, allowing the tester to easily find individual test failures once the
group is known.

Detailed instructions for running the evaluation tests are located on a password protected website on
the Sandia Restricted Network. Contact the author if access is needed. Sample web pages from the
EATS test are shown in Appendix F. All other tests have similar web pages.

The following steps explain typical test procedures.

Step 1: Eval tests are checked out of CVS using Script 1 in Appendix G. The script is abbreviated for
brevity. All tests are placed in proper directories for running on the mini-teraflop machines.

Step 2. The EATS (cf. Appendix C, Test 1, and Appendix F) is always run first. This is a general test
that uses parts from other tests to check TOS. Several groups of tests are run. Each group runs
relatively quickly compared to the later, more extensive tests. An EATS pass provides an indicator of
basic system functionality and whether obvious regressions might have occurred. If this test fails and
the failure cannot be attributed to anything other than the revised OS, no other tests are run and the OS
is scrapped.

Step 3. Most other tests must run on specific machines. These tests are launched simultaneously on
the four support machines. As one test finishes and results are analyzed, another is begun. Some tests
take over 24 hours to finish.

Step 4. The tests are monitored regularly for failures. A test failure is always investigated as to cause. If
code related, the error is fixed and the test re-run. If it can be ascertained that the test failure is TOS
related, this version of TOS is scrapped.

Step 5. There are two tests that are run only on Nighten: Munops and IO-Munops. These tests are
typically saved until near the end of T&E. If the TOS changes are I/O related, IO-Munops is run; if not,
Munops is run. The tests simulate concurrent users constantly submitting small jobs of 5-10 minutes
run time. This stresses the queues, job allocater, mesh partitioning, and TOS, among others. These
tests require a run of 24 hours each on Nighten without a TOS- or Cougar-related crash or hang.
Before each Munops or IO-Munops run, a system check is run and recorded using Script 2 in Appendix
G, “System Status Checker.”

Step 6. Finally, Munops or IO-Munops is run on Janus during dedicated system time. More details on
this step are given in Section F.

C. Running mini-Eats in the Janus Interactive Partition

Only one seldom-used test was designed to run in Janus’ interactive partition during normal production
runs. The mini-EATS tests are scaled-down versions of the EATS tests. Some of the tests require a
minimum number of processors, but all can run in the interactive partition’s default size. The idea, then,
is to run at least some T&E tests “on the fly” without taking the entire system for dedicated testing.

 13

However, attempting to run mini-EATS in the interactive partition while other users are on the machine
can lead to conflicts such as unavailable nodes or not enough processors for a particular test.

A script was written so that each mini-Eats test continually checks the size of the partition for the current
nodes available. The script is given as Script 3 in Appendix G, “Pinging Interactive Partition Until
Specified Number of Nodes Becomes Available.” If the interactive partition is full and no nodes are
currently available, the script keeps trying to allocate nodes for a user-specified number of tries, each a
user-specified number of seconds apart. This permits the main script to wait for nodes to become
available to automatically continue T&E without user intervention. If nodes do not become available
within the specified time, the script gives up and quits. In this case, it is assumed something is wrong
and is outside the ability of the script to fix it. Once available, however, the proper number of nodes is
allocated immediately before each mini-Eats test is run. This approach usually allows the tests to
continue even though the partition sees heavy use. The script can easily be modified for use with any
interactive job.

D. Running Specific Tests for Specific Code Fixes

Certain T&E tests may be run for TOS code fixes targeted to specific functionality. This allows the
tester to avoid running irrelevant tests and thus significantly reduce time to results. The TOS portions
affected by revision and the corresponding test suite to run are listed below.

Portion of TOS
affected by Fix Test Suites To Be Run

NQS (network queuing system) EATS, NQS
COUGAR (compute node OS) COUGAR EATS, Parallel Apps, MUNOPS

TOS (server/kernel, on service nodes)

Essential:
EATS, AutoUnix, MUNOPS

Possible other tests include:
IO-Munops

PFS (parallel file system) EATS, File I/O, MUNOPS

E. In the Event of a Test Failure

If a test fails, the test is usually re-run. If a test subsequently passes on re-run without any changes, the
pass may be due to a myriad of reasons. Communication links, network problems, and conflicts with
other tests running simultaneously have all been known to cause test failure. In these instances, simply
re-running the test may result in success.

If the test failure is due to code error, then the error is fixed and the revised code checked back in to
CVS. A comment as to what the error was and how it was fixed is usually included in the check-in
process. The test is then re-run.

If a test hangs or crashes TOS, the following four steps are taken:

Step 1. Before the machine is rebooted, crash data is collected by a script called
STAMPEDE. STAMPEDE resides on the SPS workstation for the relevant machine.

Step 2. The latest PEEKABOO process output is located. PEEKABOO is a cron
script that runs every 5 minutes. This job issues commands such as ps, showmesh,
and stat to check the responsiveness of the system and write the data to a directory.

 14

Step 3. STAMPEDE data is to be ftp'd to a computer called Sylvester which resides
in Bldg. 980 as of Feb, 2001. The PEEKABOO process data is usually attached to
the STAMPEDE data before ftp'ing.

Step 4. The software engineers examine the data and try to decide what caused the
evaluation system to crash. If the crash is relevant to TOS and has not occurred in
previous tests, the problem is isolated, the change related to the problem is fixed, the
TOS version number is scrapped, and work begins on incorporating the revisions into
the next TOS release.

F. Final Test on Janus

By this time all of the T&E tests have been run on the relevant support machines. If all tests receive a
pass, a final test is run on Janus during dedicated system time. The only test to be run at this point is
either Munops or IO-Munops (cf. Appendix B, Tests 29 and 30). The test is run for approximately six
hours.

Before running the final Munops or IO-Munops test on Janus, the tester compiles a test plan detailing
steps that will be taken during the test. The test plan is emailed to all personnel involved in the test. A
typical test plan for the version R4.5.2 TOS release is given in Appendix H.

A typical Munops/IO-Munops test failure results in jobs not completing or a machine crash. Then, Janus
is examined from the console for clues of either TOS failure or un-related problems. If problems are
traced back to the proposed version of TOS, the test is considered as failed. This results in the
proposed TOS being scrapped, even if all of the previous tests on the support machines have passed.
If the problems are traced to something other than TOS, the machine is rebooted and the test
continues. The decision for GO or NO-GO production installation for the proposed TOS is made by a
minimum of three personnel near the end of the test run.

If this and all previous tests have been successful, the revised TOS is scheduled to be installed on
Janus at a later date, after users have been notified of the impending TOS change.

Proposed Methods for Post-Test Analyses

Some T&E tests consist of numerous sub-tests. For example, the MPI test suite runs over a thousand
sub-tests. Manually looking for pass/fail criteria, as well as discrepancies or regressions, for failed sub-
tests can be a daunting task. It becomes desirable, then, to automate this task such that failed tests
become readily obvious. Described herein is such a method.

In Appendix I is given a script to gather results from the different directories in which T&E tests are run.
The user is expected to ensure that the test results always wind up in the specified directories and files
whether the test succeeds or fails.

Once they are gathered, the results are run through a Mathematica (Ref. 5) script that makes use of
Mathematica’s rich graphics sets. This script is given in Appendix K. Shown are the first 25 MPI test
results gathered and plotted using Mathematica. Test run time is plotted versus test number. Bar
graphs are used to show test results. If a test fails, the bar for that test only is colored red and the run
time is given a negative value. As shown, this causes the failed test to stand out readily. Also, test times
can be compared visually with previous tests to make sure run times are as expected. If these run
times are significantly different, a test regression might be implied.

 15

Finally, the script prints out a list of tests. The tests are numbered to correspond to the numbers
indicated on the bar graph’s abscissa. Although only bar graphs are shown in Appendix J, several other
plot types, such as pie graphs, were investigated for their usefulness in presenting test results. The
information gleaned from these was surprisingly deficient as a means to readily draw conclusions from
test results. At least from the plot types experimented with by the author, the bar graphs were the most
useful by far.

References

1. “ASCI Red – The World’s First TeraOps SuperComputer,” Sandia National Laboratories,
Albuquerque, New Mexico. http://www.sandia.gov/ASCI/Red/index.html

2. “CVS Concurrent Versions System: The open standard for version control.”
https://www.cvshome.org

3. “About RealVNC..” http://www.realvnc.com/

4. “Servers – SMSS Open,” Sandia National Laboratories, Albuquerque, New Mexico. http://www-
irn.sandia.gov/analyst/server/smss-open.html

5. “Mathematica – The Way the World Calculates,” Wolfram Research Incorporated, Champaign,
Illinois. http://www.wolfram.com/products/mathematica/index.html

http://www.sandia.gov/ASCI/Red/index.html
https://www.cvshome.org/
http://www.realvnc.com/
http://www-irn.sandia.gov/analyst/server/smss-open.html
http://www-irn.sandia.gov/analyst/server/smss-open.html
http://www.wolfram.com/products/mathematica/index.html

 16

Appendix A. Using VNC for Maintaining Connectivity
from Remote Sites

What you'll need:

 A computer running VNC (Virtual Network Computing) server. Machine happens to be
rs2l2.sandia.gov (that's rs2"ell"2).

 An ssh client running on your local machine; Sandia uses F-Secure’s ssh client
 A VNC client (called TightVNC) running on your local computer. This is a free download

from

http://www.tightvnc.com/download.html

Only get the viewer, if possible, since you will NOT need the server program.

 It helps to read "Getting Started with VNC" at

http://www.realvnc.com/gettingstarted.html

or refer to the following for more info. SOME OF THE DESCRIPTIONS IN THESE WEBSITES ARE
CONFUSING AND MISLEADING -- USE WITH CAUTION.

http://www.uk.research.att.com/archive/vnc/sshvnc.html
http://www.realvnc.com/
http://www.cs.hmc.edu/tech_docs/qref/vnc.html#ssh_tunnel

The last one gives a nice description of tunneling in the section “Basic SSH Tunneling” and describes the
“5900” and “5901” as used below.

Getting Connected

1. Set up your F-Secure ssh client to tunnel

Open the ssh client on your local machine. Go to the "services" icon on the ssh taskbar. Click on
"Tunneling" in the left sidebar and check the box "Tunnel X11 Connections". Leave the "X11 Display" set
to zero.

Next click on “Local” under the “Tunneling”. Click on “Add” and enter the following data:

Listen Port (aka Source Port): 5900
Destination Host: rs2l2.sandia.gov
Dest Port: 5901
Application to start: (leave blank)
Type: tcp

http://www.tightvnc.com/download.html
http://www.realvnc.com/gettingstarted.html
http://www.uk.research.att.com/archive/vnc/sshvnc.html
http://www.realvnc.com/
http://www.cs.hmc.edu/tech_docs/qref/vnc.html#ssh_tunnel

 17

When you are finished, the window will look like this:

The last two digits of 5900 imply that the VNC server will send its data back to display :0 on your local
machine (valid for Windows). The last two of 5901 imply that we will set the VNC server on the remote
machine to display on :1, as will be shown below.

Close the above window by clicking on "OK".

2. Login to rs2l2.sandia.gov

Use your SSH window to login to rs2l2.sandia.gov.

3. Create a VNC server password just for you

To create your VNC password, type

rs2l2% vncpasswd
Password:
Verify:
rs2l2%

As shown above, you can enter a Password, then you are asked to Verify. You will need this password in
Step 5's "Session Password" in the VNC Authentication box.

 18

4. Start the VNC Server on rs2l2.sandia.gov

Start the VNC server as follows:

rs2l2% vncserver :1

New 'X' desktop is rs2l2:1

Starting applications specified in /home/dwbarne/.vnc/xstartup
Log file is /home/dwbarne/.vnc/rs2l2:1.log

rs2l2%

The :1 will be understood now as port 5901. If you had used 5906, then you would need to enter "vncserver
:6".

5. Start your local vnc client

Start your local vnc client (click on the icon) that you installed earlier. In the box provided, enter
"localhost:0" (no spaces) as shown below (provided you entered "5900" above in Step 1; if you entered
"5905" instead, for example, then you would enter below "localhost:5"):

Next, enter your session password that you created in Step 3.

An X-window will now pop up on your local display with at least one xterm window logged in to rs2l2:

 19

From here, use the xterm windows to login to another machine and launch a process.

You can then close the above window (do NOT logout of the xterm windows!! Just click on the "X" in the
top far right corner of the larger window!!) and the process will continue to run, even if you shut down your
local machine.

The VNC server keeps the connection open between the xterm window and the other machine you logged
in to from the x-term window, unless one of the machines stops running for some reason.

In fact, you can completely shut down your local machine, start it any time later, repeat the login process,
and find the xterm window as if you never logged out (provided both machines continued to run).

6. When you are finished...
It is a good idea to stop your VNC server on rs2l2 when you are finished. Do this by typing

rs2l2% vncserver -kill :1
Killing Xvnc process ID 20045
rs2l2%

 20

Another way to stop VNC servers you have started is to kill the process ID:

rs2l2% ps -ae | grep vnc
20360 pts/0 00:00:00 Xvnc
20436 pts/0 00:00:00 Xvnc
20510 pts/0 00:00:00 Xvnc
rs2l2% kill 20360 20436 20510
rs2l2%

Problems

The tunnel cannot be created

Several times I have run into the problem that the tunnel cannot be created. This can happen if Listening
Port :0, or whatever Listening Port you were using, is in use for some reason (you may not know the
reason!). The problem happens immediately when trying to login to rs2l2 using ssh. The pop-up window is

If this happens, you will not be able to start a VNC connection.

 21

The solution appears to be that the Listening Port number needs to be changed. Hence, repeat the procedure
shown in Step 1, but this time enter a Listening Port number of 5905, for example, instead of 5900. You
will not need to change the "vncserver" number on the remote computer. Now, login to the remote
computer. Then, in Step 5, instead of entering "localhost:0" in the VNC box, enter "localhost:5" (no
spaces). A tunnel connection should begin.

IF YOU DECIDE THAT STOPPING THE VNC SERVER WILL HELP THIS PROBLEM, BE
ADVISED THAT THIS WILL ALSO RE-START YOUR X-TERM WINDOWS ON THE
REMOTE MACHINE, AND ALL OF YOUR LAUNCHED PROCESSES WILL BE STOPPED!
THIS IS NOT A DESIRABLE SITUATION, SO USE THIS WITH CAUTION!

Appendix B: List of Support Hardware

Name Service
(TOS)
Nodes

Compute
(Cougar)
Nodes

Disks Purpose

1. basil 6 20 1 2GB bootdisk
 1 RM20 disk (LUN 0 on io1, LUN 1 on io1/ch1)

Run eval tests for upgraded
TOS

2. ebony 8 16 1 2GB bootdisk
1 RM20 disk (LUN 0 on io1, LUN 1 on io1/ch1)

Non-specific software
testing

3. ellymay 3 8 1 2GB bootdisk
1 2GB scratch disk

Compiler development

4. felix 4 26 1 4GB bootdisk
1 4GB /home/projects/eval/share disk
1 2GB /home/projects/eval/users disk
1 4GB /home/projects/eval/users/dwbarne disk
1 2GB /home/projects/eval/users/rebenne disk

Cougar (compute node)
software development

5. gale 0 0 Can be combined with nighten (becomes
nightengale) but nodes are usually allocated to
nighten in jumbo mode, which is why no nodes
are listed at left

Non-specific software
testing; shared resource

6. ginger 6 12 1 2GB bootdisk (w/custom bootdisk label)
 2 RM20s pfs scratch disks

Run eval tests for upgraded
TOS; ATM, ethernet, TOS,
NFS, TCP/IP, and file I/O
testing

7. granny 3 10 1 2GB bootdisk Development system used
by Parallel System
Engineers, or PSE’s)

8. honey 3 8 1 2GB bootdisk TOS builds
9. jethro 3 10 1 2GB bootdisk Run eval tests for upgraded

TOS; non-specific software
testing

10. jrflop 5 16 1 4GB bootdisk Cougar (compute node)
software development

11.
nighten

30 144 1 2GB bootdisk
1 2GB /home/projects disk
6 RM20s scrach/pfs disks

Run eval tests for upgraded
TOS

12. polaris 3 24 1 2GB bootdisk T-FLOPS Board Repair Node
Burn-in System

13.
rosemary

4 8 1 2GB bootdisk
1 2GB /home/projects disk

Run eval tests for upgraded
TOS

14. thyme 6 4 1 2GB bootdisk Run eval tests for upgraded
TOS (seldom used)

 22

Appendix C: List of Evaluation Tests

No. Name Focus Source Comments

1. EATS
(Evaluation Acceptance
Test Suite)

Always the first
test run; general
sanity test

Bits and pieces from many of
the other tests

basic system functionality and Cougar
kernel

2. VSX R3.205 X/Open
System Validation Suite

UNIX / POSIX www.opengroup.org Not used.
Cost $20K for a ten-year license for t-flops.
Is now available as test suite for the
POSIX.1 aspects of the Linux Standard
Base.

3. SVVS (1985 System V
Verification Suite)
Standard Test

UNIX / System V No current owner; possibly SCO Not used.

4. VSE (1991) OSF/1
Validation Suite
Extensions 1.01

UNIX / OSF/1 Our documentation is from the
Open Software
Foundation;www.osf.org

Not used.

5. VSX PFS (Parallel File
System) Test

UNIX/POSIX with
IO going to pfs file
system

See above Not used.

6. SVSS PFS Test UNIX/System V
with IO going to
pfs file system

See above Not used.

7. VSE PFS Test UNIX/OSF/1 with
IO going to pfs file
system

See above Not used.

8. AutoUnix TOS /sbin and
/usr/bin programs

Intel Developed at Sandia.

9. DDT File I/O UFS, NFS, and PFS Intel usability of Unix & NFS-mounted file
systems; usability & performance of
parallel file system

DDT is the name of test harness

10. Other/Non-DDT File I/O UFS, NFS, and PFS Intel usability of Unix & NFS-mounted file
systems; usability & performance of
parallel file system

11. DDT Sockets Test Networking
commands

Intel Tests ifconfig, netstat, route, as well as
socket functions

12. NFS Test NFS for
ATM/Ethernet

www.caldera.com The lachman test

13. TCP-IP Test TCP-IP for
ATM/Ethernet

www.caldera.com The lachman test

14. RAID Utilities Test Disk system
administration

Intel Developed at Sandia for LSI RAIDS

Not used.

http://www.opengroup.org/
http://www.caldera.com/
http://www.caldera.com/

 23

15. Tfallocator and
showmesh Test

Node allocator Intel Tests the node allocator, the display utility
showmesh, as well as the mkpart (make
partition), rmpart, and lspart

16. Cougar yod/fyod Test Tests all yod
command line
options.

Intel job launch & parallel file i/o;

Exercises a large part of the Cougar
compute node OS; tests single app, shared
app, and heterogeneous app. Runs through
all fyod options including –munix and –
masync IO options.

17. Math Libraries Test blas, pblas,
lapack, libwc,
openmp and fft
libraries

No Intel copyright, although
they are adapted to ddt test
harness. Pblas references
scalapack@cs.utk.edu

Tests BLAS, LINPACK, and any other
scientific math libraries.

18. NQS Test Network queueing
system (batch job
submission
process)

Intel Batch system options.

19. MPI Test MPI-1 function
correctness

Public Domain Variation of the MPI test suite from MPI
forum

20. AutoDebug Test Tests debug and
xdebug

Intel A very exhaustive test of every debugger
command

21. Parallel Apps/Message
Passing Test

Tests the old Intel
NX message
passing library

Intel Intel specific (NX library)

22. RAS Test Resiliency Intel “RAS” is the T-Flops Reliability,
Availability, Serviceability component of
the system. It involves agents on both the
T-Flops system and SPS station. One of the
most important agents is the T-Flops
daemon rasd, as well as the tfallocator,
bootmesh daemon, nqs daemons and the
SPS services.

This test suite is a component level suite,
testing the interactions between the SPS
station RAS services and the T-Flops
daemons.

23. General Regression Test Verifies fixes to
resolved problem
reports are still
working.

Intel Tflops specific; This is actually a very
handy suite to have in place. It contains
the unit tests for resolved problem reports.
It is a nice check that you haven’t lost
source code changes and/or that a
different change somehow broke an OS fix.

24. Pmake Test Make, Pmake O’Reilly, IBM, Intel, VSE Intel certainly exercised make. There are
four different tests of ‘make’. One is from
the O’Reilly book, "Managing Projects with
Make". Another is an IBM POSIX
conformance test. The raya tests were
written by Ray Anderson at Intel. The last
one seems to be part of the VSE test.

25. Performance Monitor
(AutoTprof) Test

Profiler tools Intel Intel wrote their own profile tools, and
therefore also the test suite.

 24

26. AIM benchmark TOS Capacity
stress

No current owner; Can
probably use for Red Storm

Not used.

Copyright says AIM Technology Inc., but
can find no record of this company.
Instructions say: The test is done when
system hangs or crashes or finishes. If it
finishes, try rerunning with a larger end #
of users. The more service nodes used, the
more likely the end # will need to be larger
since larger service partitions can handle a
higher peak load. Typical results are for
the test to make it to 60+ users and to
terminate with CR 011419.

27. SDET Benchmark TOS Capacity
stress

System level
benchmark
designed to
measure the
system
performance of
any computer
system.

Standard Performance
Evaluation Corporation (SPEC)

Instructions say: The test is done when
system hangs or crashes or finishes. If it
finishes, try rerunning with a larger nn. A
typical run will make it to 25+ users. If the
test panics, hangs or terminates before 25
users, it may indicate a regression.

Stresses a variety of system components
(e.g. CPU, I/O, memory, operating system
and many UNIX utilities). The methodology
measures performance by systematically
increasing the workload on the system. The
system throughput increases with the
workload until some system component
(e.g. CPU, memory, I/O) becomes a
bottleneck.

28. KENBUS benchmark TOS Capacity
stress

Standard Performance
Evaluation Corporation (SPEC)

All of the above comments for SDET apply
here.

For KENBUS the single performance metric
is "scripts per hour'" and the maximum
value is reported, with unconstrained
freedom to vary the concurrency level.

Simulates interactive users at keyboards

29. MUNOPS (Multi-User
NOnoverlaPping Stress)
Tests

can the system
take a user load?

Intel Simulates user load observed causing
problems in the wild.

Fills the mesh with various compute-
intensive and MPI-intensive tests (about 5-
10 concurrently). Service partition is kept
busy with mathlib tests. Each test runs 5-
30 minutes, so lots of stops and starts.

30. IO-Munops Can the system
take a user load
with lots of IO?

Intel Same as Munops above, but adds IO-
intensive operations to the mix

 25

Appendix D: List of Evaluation Test Suite Code Fixes

No.

Date bug fix
incorporated
into test suite
[mm-dd-year]

1. Test Suite

2. Location of Tar File

Directory of file after test suite is
untarred

Affected File and Comments

1. 12-21-2000

1. TFLOPS NQS

2. /home/SANDIA_EVAL/TESTS/
NQS/sandia_nqs.tar.Z

<untar_dir>/Auto/libc/lib

<untar_dir>/Auto/libf

Added two Auto subdirectories
(libc/lib and libf) to the tar file since
NQS uses them

2. 12-21-2000

1. TFLOPS NQS

2. /home/SANDIA_EVAL/TESTS/
NQS/sandia_nqs.tar.Z

<untar_dir>/TF_NQS/base/qsub/qsub.sh

Changed backup and restore copies of
sched_param to use
 cp -p;
rather than
 cp

3. 12-21-2000

1. TFLOPS NQS

2. /home/SANDIA_EVAL/TESTS/
NQS/sandia_nqs.tar.Z

<untar_dir>/TF_NQS/regressions/interac
tive_035626/interactive_035626.sh

Changed backup and restore copies of
sched_param to use
 cp -p;
rather than
 cp

4. 12-21-2000

1. TFLOPS tfallocator and
showmesh

2. /home/SANDIA_EVAL/TESTS/
ALLOC/sandia_alloc.tar.Z

<untar_dir>/lib

Changed function
 verify_lspart_output()
in file 'yod_functs.ksh' to test only the
first 8 characters of owner and group

5. 05-11-2001

1. IO-Intensive Munops

2. /home/SANDIA_EVAL/TESTS/
MUNOPS/io_munops.tar

/home/projects/eval/io_munops/compu
te_sat/multi_rw

In file 'Makefile', the statement
 rm -f $(OBJS) mulit-rw
was changed to
 rm -f $(OBJS) multi-rw
to correct the spelling of 'mulit'

6. 05-11-2001

1. IO-Intensive Munops

2. /home/SANDIA_EVAL/TESTS/
MUNOPS/io_munops_for_janus.ta
r

/home/projects/eval/io_munops/compu
te_sat/multi_rw

In file 'Makefile', the statement
 rm -f $(OBJS) mulit-rw
was changed to
 rm -f $(OBJS) multi-rw
to correct the spelling of 'mulit'

7. 05-11-2001

1. TFLOPS tfallocator and
showmesh

2. /home/SANDIA_EVAL/TESTS/
ALLOC/sandia_alloc.tar.Z

<untar_dir>/Auto/cmd/tfallocator/yod_
base_err

New yod error msg inserted into file
'yod_base_err.ksh'; error msg is
generated by command
 yod -base
then cutting and pasting error msg
into file, with obvious slight mods
made to first line (see file)

8. 05-11-2001

1. Cougar/Yod-Fyod

2. /home/SANDIA_EVAL/TESTS/
COUGAR/sandia_cougar.tar.z

<untar_dir>/Auto/cougar/fyod/fy_tester

In file 'fy_tester.ksh', changed
 rmdir /pfs/fy_tester
to
 rm -rf /pfs/fy_tester
so that the command would not hang
due to a non-empty directory

9 05-11-2001

1. Cougar/Yod-Fyod

2. /home/SANDIA_EVAL/TESTS/
COUGAR/sandia_cougar.tar.z

<untar_dir>/Auto/cougar/hello_hetero

In file 'RUN_p3_htest3', the default
base size
 -base 2
was changed to
 -base 5
as default for Basil

10. 05-11-2001

1. Cougar/Yod-Fyod

2. /home/SANDIA_EVAL/TESTS/
COUGAR/sandia_cougar.tar.z

<untar_dir>/Auto/cougar/hello_hetero

In file 'p3_htest13', the defaults were
changed to
 2x4x4
 yod -p 3 -sz 1x4x4:0,0 hello1
 yod -p 3 -sz 1x4x4:0,1 hello2
as default for Basil

 26

11. 05-11-2001

1. Cougar/Yod-Fyod

2. /home/SANDIA_EVAL/TESTS/
COUGAR/sandia_cougar.tar.z

<untar_dir>/Auto/cougar/yod/share/sle
ep_test

In files 'equal.sh' and 'unequal.sh', the
default base size
 -base 2
was changed to
 -base 5
as default for Basil

12. 05-11-2001

1. Cougar EATs

2. /home/SANDIA_EVAL/TESTS/
EATS/sandia_eats.tar.Z

<untar_dir>/Cougar/perfmon

In file 'eat.auto', the statement
 if [$difference -le 1 -a $difference
-ge 0]; then
was changed to
 if [$difference -le 10 -a
$difference -ge 0]; then
due to timing issues with faster
processors

13. 05-11-2001

1. Cougar EATs

2. /home/SANDIA_EVAL/TESTS/
EATS/sandia_eats.tar.Z

<untar_dir>/Cougar/apps/Nodeperf/nod
eprf

In file nodeperf.F, change all
statements similar to
 if ((...) .gt. 0.5)then
to
 if((...) .gt. 1.0)then
since some machines are slower than
others (due to single system image)
and the original tolerance needed
relaxing

14. 05-11-2001

1. Cougar EATs

2. /home/SANDIA_EVAL/TESTS/
EATS/sandia_eats.tar.Z

<untar_dir>/Cougar/apps/BLACS/BLACS

In file 'run_blacs_test_long', change
 set LOCAL = " -comm 2M -stack
30000000 "
to
 set LOCAL = " -comm 25M -stack
30000000 "
to increase communications buffer
size

15. 05-11-2001

1. VSX Standard

2. /home/SANDIA_EVAL/TESTS/
UNIX/sandia_vsx_std.tar.Z

/home/projects/eval/users/vsx0/SRC/ts
et/S.POSIX.os/A.files/T.stat

In file 'stat.c', replace the ' - 1' in all
statements
 if (stbuf... != t0 - 1)
and
 if (stbuf... != t1 - 1)
with ' - 5' to relax tolerances and
account for various system sizes

16. 05-11-2001

1. Munops

2. /home/SANDIA_EVAL/TESTS/
MUNOPS/munops.tar

/home/projects/eval/munops/compute_
sat/comtest_long

/home/projects/eval/munops/comput
e_sat/comtest_grnd_bnc

In file 'cougar.sh' in each directory,
change
 comm-size=2M
to
 comm-size=50M
to allow large enough communications
buffers to prevent failures and
SIGPORTALS errors

17. 05-11-2001

1. Munops

2. /home/SANDIA_EVAL/TESTS/
MUNOPS/io_munops_for_janus.ta
r

/home/projects/eval/io_munops/compu
te_sat/comtest_long

/home/projects/eval/io_munops/com
pute_sat/comtest_grnd_bnc

In file 'cougar.sh' in each directory,
change
 comm-size=2M
to
 comm-size=50M
to allow large enough communications
buffers to prevent failures and
SIGPORTALS errors

18. 05-11-2001

1. Munops

2. /home/SANDIA_EVAL/TESTS/
MUNOPS/io_munops.tar

/home/projects/eval/io_munops/compu
te_sat/comtest_long

/home/projects/eval/io_munops/com
pute_sat/comtest_grnd_bnc

In file 'cougar.sh' in each directory,
change
 comm-size=2M
to
 comm-size=50M
to allow large enough communications
buffers to prevent failures and
SIGPORTALS errors

 27

19. 05-18-2001

1. Cougar/Yod-Fyod

2. /home/SANDIA_EVAL/TESTS/
COUGAR/sandia_cougar.tar.z

<untar_dir>/Auto/cougar/yod/share/sle
ep_test

Files 'gold1' and 'gold2' were
regenerated by the commands
 ./equal >> gold_1
 ./unequal >> gold_2
 to reflect being run on Sandia's Basil;
these are compared with files
'scratch1' and 'scratch2', respectively

20. 05-22-2001

1. Cougar/Yod-Fyod

2. /home/SANDIA_EVAL/TESTS/
COUGAR/sandia_cougar.tar.z

<untar_dir>/Auto/cougar/fyod/fy_tester

In file 'fy_tester.ksh', changed
 if [\($pass \) -ge \(`expr $ran -
$four_percent` \)]
to
 if [$pass -lt `expr $ran -
$four_percent `]
to properly compare values for a valid
test;
Also, revision of 'if-then-else' logic was
necessary.

21. 06-01-2001

1. Core EATs

2. /home/SANDIA_EVAL/TESTS/
EATS/sandia_eats.tar.Z

<untar_dir>/Core

The 'raid' directory permissions were
changed to 777; file 'eat.auto' wanted
'raid.sh' to write as 'root' but could not
since 'root' equivalences to 'other' on
NFS mounted disks

22. 06-01-2001

1. Core EATs

2. /home/SANDIA_EVAL/TESTS/
EATS/sandia_eats.tar.Z

<untar_dir>/Core/raid
Files 'eat.auto' and 'raid.sh' were
modified to pass the variable
$RESULTS correctly

23. 06-01-2001

1. Core EATs

2. /home/SANDIA_EVAL/TESTS/
EATS/sandia_eats.tar.Z

<untar_dir>/

The directory 'Results', with
subdirectories 'Core' and 'Cougar',
were added to the tar file; sub-
subdirectories under these were
added to mirror the 'Core' and 'Cougar'
directories under
/home/sigeval/Accept_x86; this
allows the 'raid' and other tests to
write to proper directories and avoids
error messages relating to 'ftp fuji'
generated from the file
'/home/sigeval/Accept_x86/Libs/EatF
uncts.sh'

24. 06-05-2001

1. Parallel APPS

2. /home/SANDIA_EVAL/TESTS/
PAPPS/sandia_papps.tar.Z

<untar_dir>/Auto

<untar_dir>/Auto/libc

In file runall.papps, for the p3 mode
tests, the lines
 ddt -d testlist.pass
 gatherres -suffix
PcgrRnx${NNODES} -testlist
testlist.pass
were changed to
 ddt -d testlist.pass.p3
 gatherres -suffix
PcgrRnx${NNODES} -testlist
testlist.pass.p3
and the file 'testlist.pass.p3' was
added to the libc directory. This file
was generated simply to avoid running
the test
 message/nx/globtome
which is listed in file

/home/SANDIA_EVAL/RESULTS_HISTO
RY/papps/libc/R3.3_36p3x
as
 N message/nx/globtome don't
run in p3 mode

 28

25. 06-05-2001

1. MPI

2. /home/SANDIA_EVAL/TESTS/
MPI/sandia_mpi.tar.Z

<untar_dir>/MPITEST/Test

In file 'runall.mpi', changed
 vsu root -c "cp
/cougar/lib/puma/libmpi.a
/cougar/lib/puma/libmpi.a.orig"
to
 vsu root -c "cp -p
/cougar/lib/puma/libmpi.a
/cougar/lib/puma/libmpi.a.orig"
which includes the -p option to
preserve file dates.

Also in file 'runall.mpi', changed
 vsu root -c
"/cougar/lib/puma/libmpi.a.orig
/cougar/lib/puma/libmpi.a"
to
 vsu root -c "cp -p
/cougar/lib/puma/libmpi.a.orig
/cougar/lib/puma/libmpi.a"
to add the -p option and to correct
the obvious error that the cp
command was left out of the original
statement. This could result in the
libmpi.a-type files getting overwritten
with the wrong files.

26. 06-11-2001

1. SOCKETS

2. /home/SANDIA_EVAL/TESTS/
NETWORK/sandia_sockets.tar.Z

<untar_dir>/Auto/sockets/inet/ruserok

Two corrections were made.
1. Although Basil, Ginger, and
Rosemary are listed as valid machines
for this test, only Basil had the
required file
 /etc/hosts.equiv
So this file was copied over to
Rosemary's and Ginger's /etc directory
2. In the file
 node.c
the following line
 sprintf(rhosts, "/%s/%s/%s",
"home", l_user, hosts);
was changed to
 sprintf(rhosts, "%s/%s/%s",
"/Net/usr/home", l_user, hosts);
so that the .rhosts file could be found
in the user's home directory.

27. 06-11-2001

1. SOCKETS

2. /home/SANDIA_EVAL/TESTS/
NETWORK/sandia_sockets.tar.Z

<untar_dir>/Auto/sockets/cmd/netstat

In the file
 netstat.ksh
all references to the interface
 eep0
were changed to
 lo0
since the former does not exist on
Sandia's eval systems. For more
information, type
 man netstat
and read the information regarding
the 'Interface' parameter. Also, see
the file
 R3.0
in the directory

/home/SANDIA_EVAL/RESULTS_HISTO
RY/network/sockets/R3.0
for more info from Intel referencing
this change.

 29

28. 06-18-01

1. EATS

2. /home/SANDIA_EVAL/TESTS/
EATS/Core/unix

<untar_dir>/Core/unix

In the file
 eat.auto
the following two lines
 (AlarmClock $$ $unix_MAXTIME &
) &
 alarmPid=$!
were changed to the following one
line
 alarmPid=`((AlarmClock $$
$unix_MAXTIME & echo $!) &) | head
-1`
since t finished. It hung around for
one hour before returning a command
prompt to user. The problem was that
the eat.auto script was not capturing
the correct pid for the AlarmClock.

29.

1. AUTODEBUG

2. /home/SANDIA_EVAL/TESTS/
TOOLS/sandia_autodebug.tar.Z

<untar_dir>/AutoDebug/cases

File RUNABLE was modified so that
the following 5 tests were moved to
the end of the file to run last. The
tests are known to hang
intermittently, leaving jobs running
which prevents subsequent tests from
loading:

30. 09-20-01

1. EATS

2. /home/SANDIA_EVAL/TESTS/
EATS/Core/unix

<untar_dir>/Core/unix

After a system-wide group change to
wg-intel, and after permissions were
changed on some directories, we
found that the sub-test 'at' would not
PASS. Later, we discovered that the
permissions for the directories
 /intel-swe
and
 /intel-swe/sigeval
on sasn100 had been changed to 770.
For some reason, this would not let
the 'at' test PASS. A change of
permissions to 775 for both directories
cured the problem. The 'at' command
in /usr/bin has a sticky bit set that
forces the command to run as root.
Across networks, in this case between
the local directories on Basil and the
mounted directories on sasn100, the
permissions resort to world/other.
With no permissions set on
world/other for /intel-swe and /intel-
swe/sigeval, the test would not run

 30

31. 09-25-01

1. All suites that run ddt, eatnrun,
run.fileio, run, runall.mpi, mpitest

2.Most tar files

most tests

This is not a bug fix, but an addition
to the output files. The script
/home/sigeval/bin/status_checker
outputs the status of the system
under test. It is now called from any
eval suite calling
/home/sigeval/bin/ddt
or
/home/sigeval/bin/eatnrun
Other files that were changed to
execute the script were
.../io/run for the sandia_io_other
tests
.../MPITEST/bin/mpitest for the MPI
tests
.../MPITEST/Test/runall.mpi for the
MPI tests
Note that if sub-tests are run
individually using eat.auto, ksh, or
some other local script, the script
'status_checker' will not be called.
This is due to the sheer number of
sub-test scripts that would have to be
changed. In this case, it is advised to
run the 'status_checker' script
separately before running the sub-test
script.

32. 03-12-02

1. AutoUnix

2. /home/SANDIA_EVAL/TESTS/
UNIX/sandia_autounix.tar.Z

<untar_dir>/AutoUnix/net/ftp

Files: ftp.sh and ftp1.sh (both are
scripts)

The standard, non-kerberized
version of ftp was renamed to
/usr/bin/ftp.osf. This was a change
with R4.2.0 The version most users
need in our environment is the
kerberized version in
/usr/local/bin/ftp. Because of
their path statement, they were
frequently invoking /usr/bin/ftp,
which hangs through our firewalls.
We were getting a number of
emails to janus-help about this.
This is why the R4.2.0try1 took so
long to install.

One work-around is to substitute-all
of /usr/bin/ftp to /usr/bin/ftp.osf
in the scripts 'ftp.sh' and 'ftp1.sh'. A
more elegant way is to add
FTPCMD=/usr/bin/ftp.osf at the
beginning of the scripts and
substitute every occurrence of
/usr/bin/ftp with $FTPCMD. (The
latter way was chosen.)

 31

33. 03-13-02

1. EATS

2. /home/SANDIA_EVAL/TESTS/
EATS/sandia_eats.tar.Z

<untar_dir>/Cougar/AutoTprof/perfmon

File: log.gold and reference.log
Note: log.gold is static; reference.log
is dynamic and changes for each eval;
the files must match to PASS an eval

The file /usr/include/perfmon.h
was modified for R4.2.0. All
changes are cosmetic, but the
EATS/Tools/perfmon test fails
because the reference file for the
perfmon test is based on the old
/usr/include/perfmon.h. Change
Cougar/AutoTprof/perfmon/log.gol
d to match the current
reference.log so that future evals
have a match between the two
files.

34. 03-13-02

1. AutoTprof

2. /home/SANDIA_EVAL/TESTS/
TOOLS/sandia_autotprof.tar.Z

<untar_dir>/AutoTprof/libperfmon/basic
/perfmon

Fix is identical to one immediately
above (#33) re: files log.gold and
reference.log.

35. 05-01-02

1. Parallel Apps

2. /home/SANDIA_EVAL/TESTS/
PAPPS/sandia_papps.tar.Z

<untar_dir> Auto

Initially, failed tests included
message/nx/gsend_gsum (failed in 3
modes) libc/misc/perror_nodes in P2
mode (expected failure)
libc/misc/mynode in P3 mode
(expected failure) These tests passed
on re-run, but it took a long time to
figure out if they failed in p0 or p3
mode, and whether -munix or -
masync was set. As a result of the
pain of these re-runs, I significantly
re-wrote the web page to reflect a
different procedure and to better
explain the different run modes. Also,
the output of the file runall.papps
now reflects in which mode the tests
are running. Hopefully, some of the
mystery behind running this test has
been removed, and it is much easier
to re-run failures.

36. 05-01-02

1. ddt file i/o

2. /home/SANDIA_EVAL/TESTS/
FILEIO/sandia_io.tar.Z

<untar_dir>

The tests
Auto/cmd/pfs_munix/lsizecmd_err
Auto/cmd/pfs_masync/lsizecmd_err
originally failed, probably due to
necessity of being logged in when
these tests are run; appear to need
interactive TTY; will move these to
top of test and make some more mods
so that these tests can run at the
beginning of this eval.

 32

37. 05-01-02

1. AutoUnix

2. /home/SANDIA_EVAL/TESTS/
UNIX/sandia_autounix.tar.Z

<untar_dir>/AutoUnix

The following test failed but passed
on interactive re-run:
arp
This is a common failure. I did an
extensive test on this suite to
separate tests that can be run
interactively and in background. Also,
the longest test 'netstat' is now run
separately since it takes about an
hour to complete while other tests
run much more quickly. This will
prevent 'netstat' from giving the entire
test suite a failure when it fails and all
else passes. The failed 'arp' test
passed on interactive re-run so it was
moved to the interactive tests.

38. 05-01-02

1. AutoDebug

2. /home/SANDIA_EVAL/TESTS/
TOOLS/sandia_autodebug.tar.Z

<untar_dir>/AutoDebug/cases

Separated all tests alphabetically,
then ran each set in background. Sue's
filters were used, as well as the latest
tar file per Benner. All tests passed
except those noted in the web pages.
This is the first clean run of
AutoDebug I've had in a long time.
There's hope for this test yet.

39. 05-01-02

1. AutoTprof

2. /home/SANDIA_EVAL/TESTS/
TOOLS/sandia_autotprof.tar.Z

<untar_dir>/AutoTprof

Some tests failed; Sue examined
failures which have been
addressed by Benner's new 'gold' files
that have been checked into
CVS. For example, one test spent 10%
of time in a routine instead of the
expected 7.9%. This discrepancy
caused a mismatch in a format
statement leading the test to
inappropriately conclude a failure.

40. 12-04-02

1. AutoUnix

2. /home/SANDIA_EVAL/TESTS/
UNIX/sandia_autounix.tar.Z

<untar_dir>/AutoUnix/net/arp The 'arp' test has failed intermittently;
the problem was found and fixed.

 33

Appendix E: Key Variables Used for the ddt Shell

Variable Description Where set Note
--------- --- --------------- ----
BINDIR Path of sigeval/bin directory: .../bin ddt 1
T92LIB Path of /proj/tfeval/TF[year]/[release]/lib
 directory: .../t92/lib ddt 1
FAILFILE File of expected ddt failures, if any ddt 1,2,5
MKPART Indicator whether to make a ddt partition ddt ?
PARTNAME Unique mesh partition name: "`hostname`$$`tty`" ddt 1
PULSEFILE /tmp/pulse$$ ddt 1,5

 The following are the hardware & software configuration variables
COMP_OPT Compiler option: [cx] ddt 3,5
HOST_ARCH Host architecture: [PS4] ddt (hostSys) 3,5
HWTYPE Hardware type: [GM] ddt 3,5
N3480 Number of 3480 tapes ddt (ddtenv.sh) 1,3
NDISK Number of hard disks ddt (ddtenv.sh) 1,3
NEXAB Number of ExaByte tapes ddt (ddtenv.sh) 1,3
NIO Number of I/O nodes ddt (ddtenv.sh) 1,3
SNODE Number of service nodes ddt (ddtenv.sh) 1,3
STIME Sleep time for SRD ddt (ddtenv.sh) 1,3

ddt Files Description Default value 4
--------- -- -------------
FAILFILE File of expected ddt failures, if any
PULSEFILE /dev/null (default) or /tmp/pulse$$ (-s option)
RESTARTFILE File of all previous ddt runs, by host, tty & user
 This file constantly grows, and is not removed.

Makefile
 Macros Description Default value 4
--------- -- -------------
AT Macro for "@" symbol, used for echoing @
AR Paragon "native" archiver command ar
AR860 Cross-development archiver command ar860
CC Paragon "native" C compiler command cc
ICC Cross-development C compiler command icc
F77 Paragon "native" Fortran compiler command f77
IF77 Cross-development Fortran compiler command if77
BUF Optional message passing buffer
CFLAGS Optional C compiler flags
CONCUR Compile sources for multi-processing -Mconcur
DEFHOST Host compiler command line defines -DHOSTPROG
FFLAGS Optional Fortran compiler flags
HOSTLIBS Host compiler library
MLIB Math library macro -lm
NXFLAG Compile sources for auto mesh starting -nx
PXFLAG Compile sources for manual mesh starting -lnx
CLIB Eval common C library $(T92LIB:lib=)Auto/libc/lib
FLIB Eval common Fortran library $(T92LIB:lib=)Auto/libf/lib
LOCALLIB Local library macro

COMPILE_RULE General makefile rule for compile targets (not listed)
EXEC_RULE General makefile rule for executable targets (not listed)
LOG_RULE General makefile rule for log targets (not listed)
OBJ_RULE General makefile rule for object targets (not listed)

Makefile
 Files Description Default value 4
--------- -- -------------
FAILFILE File of expected ddt failures, if any
PULSEFILE /dev/null (default) or /tmp/pulse$$ (-s option)

 34

Optional
Variable Description 4
--------- --
 The following are the partition management and application variables
APPL_ARGS ??
EPL Partition's effective priority limit
MKPART Indicator whether to make a ddt partition or not
MOD Partition's permissions
MSG_OPTS ??
ND Nodes to allocate in partition
NNODES Number of nodes in application/mesh ddt (ddtenv.sh) 1,3
NT_APPL Node type application flag
NT_PART Node type application flag
ON Node list for application
PARTNAME Unique mesh partition name
PRI Application's priority value
PT Application's ptype
RLX ??
RQ Rollin quantum
SS Standard scheduled partition
SZ Number of nodes to allocate in partition/application

 The following are the message passing variables replaced by MSG_OPTS
GTH Give threshold +
MBF Memory buffer |
MEA Memory each | Per application optional
MEX Memory export | message passing customization
PKT Packet size | switches
PLK Process lock |
SCT Send count |
STH Send threshold +

Notes:

 1. Set by ddt, if not already defined.

 2. ddt command line option.

 3. Host and mesh related variables, available for run scripts.

 4. ddt arguments that are passed to the make command.

 5. Used by both ddt and the master Makefile.

 35

Appendix F: EATS web pages

Topics:
Target Machines
Environmental Setup
Chart for Running the EATS
Running The EATS
EATS command lines CORE, COUGAR, and TOOLS
Xdebug Manual EATS
Signal Semi-Automated Version
Wrap Up
Post-Processing with Mathematica
Known Error Messages -- Ignore These

Target Machines

As described in the
 Test Matrix, 90% Confidence Level, 2-Week Eval
or the
 Test Matrix, 3-Week Complete Eval,
the target machines are:

 basil
The Xdebug Manual test described after the EATs tests can be run on any eval machine.

Environmental Setup

NOTE: The TFLOPS EATS only run under csh. If your login shell is sh or ksh, you must change shells to csh
before executing the EATS on the TFLOPS system.

As root, on your TFLOPS-system-under-test:

1. Contact your system administrator to install desired TOS software, preferably in such a
way as to "clean" the entire system of old/out-of-date software (also called a "full" install).

2. Verify that the following users are installed on the TFLOPS-system-under-test:
o The test runner (yourself)
o tcptest (used by the Core/tcp-ip EAT)
o nfstest (used by the Core/nfs EAT)

The best way to check is as follows:

 grep tcptest /etc/passwd
 grep nfstest /etc/passwd

3. Verify that the evaluation directory structure is present. If not, contact your
system administrator to mount the necessary NFS file systems.

 ls -ld /home/sigeval

4. OPTIONAL NQS SETUP: do this only if you want to run the NQS. EAT NQS setup information

is detailed on the NQS Setup for EATS web page.

As EATS-runner (yourself), on your TFLOPS-system-under-test:

Untar sandia_eats.tar.Z in /home/sigeval/Accept_x86_R?_? as follows:

 36

 mkdir /home/sigeval/Accept_x86_R?_?
 cd /home/sigeval/Accept_x86_R?_?
 zcat /home/SANDIA_EVAL/TESTS/EATS/sandia_eats.tar.Z | tar xpf - &
 (require 20 minutes to zcat and untar)

Verify that /home/sigeval/bin exists. If not, cd to /home/sigeval and untar
/home/SANDIA_EVAL/TESTS/sigeval_bin.tar, which will create the bin directory and populate it, as
follows:
 cd /home/sigeval
 tar xvf /home/SANDIA_EVAL/TESTS/sigeval_bin.tar

NOTE: you may get lots of statements like
 tar: can't create bin/.graveyard/delta_env.5.gz: Permission denied

Ignore these, as the proper files will be untarred to /home/sigeval/bin.

Verify that /usr/local/bin/vsu exists and has 4750 permissions with owner of root and group of chgrp wg-
intel. This file is used by the 'nfs', 'tcp-ip', 'raid', 'xtrnl', and 'allocator' tests, possibly others.

If not, compile vsu.c source and (conditionally) set permissions & ownership. The user must first copy the
file vsu.c into a temporary directory as test-runner (yourself), then su as root and copy vsu.c into
/usr/local/bin before compiling, as follows:

As test-runner (yourself), on your TFLOPS-system-under-test:

 cp /home/sigeval/bin/vsu.c <your_temp_directory>

As root, on your TFLOPS-system-under-test:

 cp <your_temp_directory>/vsu.c /usr/local/bin
 cd /usr/local/bin
 cc -o vsu vsu.c && chmod u+s vsu && chown root vsu
 chgrp wg-intel vsu
 exit

As EATS-runner (yourself), on your TFLOPS-system-under-test:

Add these directories to EATS-runner's path:
 /usr/local/bin
 /cougar/bin
 /home/sigeval/bin
 /sbin

Edit the following file, changing WW string to the work week you are testing:
 vi /home/sigeval/bin/eats.cshrc

NOTE: If this file is not found in this location, then sigeval_bin.tar needs to be untarred in the
appropriate directory, as described above.

Set the environmental variables by executing the following. The variables set here are used for running
the EATS shown later on this page. Please view "eats.cshrc" for a complete list of the variables and what
they represent:
 source /home/sigeval/bin/eats.cshrc

Create a results file with the following one-line command ($Ax is defined in the eats.cshrc file, above):
 cp /home/sigeval/bin/EAT_results_template $Ax/$WWthis-x86-EAT-results

 37

Chart for Running the EATS
DO NOT CUT AND PASTE COMMANDS FROM THIS CHART.

THIS CHART IS FOR ILLUSTRATION ONLY!

EAT
type Cut and Paste pieces for running EATs and add saving to file

Sigeval's
alias to
run all
eats

$ENRx -P $Ax $Cx/allocator $Cx/manpage $Cx/nfs
$Cx/pmake $Cx/raid $Cx/sat $Cx/tcp-ip $Cx/unix
$Cx/xtrnl $Cx/nqs $Cx/macs
<<< save to tee -a $Ax/$WWthis.x86.results.log. >>>

CORE
(OSF)
EATs: Eat

Invocati
on

Pieces

$ENRx -P $Ax

 $Cx/allocator
 $Cx/manpage
 $Cx/nfs
 $Cx/nqs
 $Cx/macs

 $Cx/pmake
 $Cx/raid
 $Cx/sat
 $Cx/tcp-ip
 $Cx/unix
 $Cx/xtrnl

save to file with tee -a $Ax/$WWthis.x86.results.log.

Sigeval's
alias to
run all
eats

$ENRx -P $Ax $Cgrx/apps $Cgrx/basic $Cgrx/fileio
$Cgrx/message $Cgrx/parallel $Cgrx/pfs $Cgrx/mpi
$Cgrx/benchmark $Cgrx/scalapack $Cgrx/perfmon
$Cgrx/blas $Cgrx/fft
<<< save to tee -a $Ax/$WWthis.x86.results.log. >>>

Cougar
EATs:

Eat
Invocati

on
Pieces

$ENRx -P $Ax

 $Cgrx/apps
 $Cgrx/basic
 $Cgrx/fileio
 $Cgrx/benchmark

 $Cgrx/message
 $Cgrx/parallel
 $Cgrx/pfs
 $Cgrx/mpi
 $Cgrx/scalapack
 $Cgrx/perfmon
 $Cgrx/blas
 $Cgrx/fft

save to file with tee -a $Ax/$WWthis.x86.results.log.

Sigeval's
alias to
run all
eats

$ENRx -P $Ax $Cgrx/AutoPMT $Cx/dbmalloc
$Cgrx/cop $Cx/debug <<< save to tee -a
$Ax/$WWthis.x86.results.log. >>>

Tools
EATs: Eat

Invocati
on

Pieces

$ENRx -P $Ax
 $Cgrx/AutoPMT
 $Cx/dbmalloc

 $Cgrx/cop
 $Cx/debug

save to file with tee -a $Ax/$WWthis.x86.results.log.

 38

Running The EATS

Login to the TFLOPS-system-under-test as yourself. Remember that your environment must be
set up to run the EATS.

From a csh shell execute
 vi /home/sigeval/bin/eats.cshrc (change WW if not done already)
 source /home/sigeval/bin/eats.cshrc

Some of the environmental variables set up by the files in EATs-config, are $ENRx which is the run script,
and $Cx and $Cgrx which are directories under the top directory of Accept_x86_R?_?. The EAT tests are
under $Cx and $Cgrx. Each test can be run by itself by omitting all the other tests from the command
line. In addition, the $ENRx run-script driver can be bypassed by cd'ing into each test directory (e.g.,
unix, nfs, etc.) and running the tests via the run-script eat.auto with a modified version of the file
testlist. This is often necessary when debugging failing tests.

To create necessary links in the /apps, /message, /parallel, /benchmark, /cop, and /signal test
directories, execute the following:
 cd /home/sigeval/Accept_x86_R?_?/Cougar/util
 install_link (needed once per Accept_x86_R?_? test directory)
 cd ../..

As root:

As root, add yourself as queue manager if you are not already.

 qmgr
 Mgr: show manager
 Mgr: add manager your_username:m
 Mgr: exit
 exit (exit from being root)

Use the add manager command only if you are not listed under show manager.

Example for adding username joe:
 add manager joe:m

where joe is to be replaced by your username.

Go to the EATS command lines below.

NOTE: If for any reason you need to stop one of the following $ENRx invocations, do -NOT- use control-C,
instead, open another window to the TFLOPS system-under-test and kill the eatnrun process. This
should kill all the tests in the test list.

EATS command lines CORE, COUGAR, and TOOLS

The EATS have 4 sections:
1. Core (1 run, 10 tests; tests the EAGLE service nodes)
2. Cougar (2 runs, 12 tests per run, 14 hours per run; tests the Kestrel nodes)
3. Tools (1 run, 4 tests; tests parts of Cougar OS)
4. Manual (2 runs -- considered separately from the first 3; tests Cougar nodes; must be run

interactively)

Below you will find 3 commands, which run the Core, Cougar, and Tools EATS.

 39

With the advent of Virtual Nodes, the Cougar EATS command is also run in -p 3 mode. This invokes the
additional processor on each node. See yod man page for a complete discussion of -proc 3 mode.

Finally, you will find the two Manual test commands below. These are considered separately since an
interactive window will need to be displayed back to the client.

To summarize, there are a total of 6 commands that need to be run to complete the EATS:

 3 command lines, one each for the Core, Cougar and Tools EAT
 1 command line for the "-p 3" virtual node Cougar EAT
 2 manual command lines for the Manual EATS.

NOTE: The following commands are one command line and the log file name ends with a "."

NOTE: the raid EAT depends on /dev/io1/scsi0 existence, and will fail if that device is not present.

If tests fail or hang, either re-run the entire test or re-run the tests individually by running eat.auto in
the test directory (e.g., unix, nfs, etc.) and modifying the file testlist.

I. To run Core EATS:

WARNING: If the following permissions do not conform EXACTLY as stated, the " Permissions/Ownership
Check" check will fail in the NQS sub-test causing it to fail.

Ensure the file '/usr/spool/nqs/conf/sched_param' has 'root' as owner and 'wg-intel' as group:
 ls -l /usr/spool/nqs/conf/sched_param
 su (login as root, if necessary)
 chown root /usr/spool/nqs/conf/sched_param (if necessary)
 chgrp wg-intel /usr/spool/nqs/conf/sched_param (if necessary)
 exit

and that the following directories have 'root' as owner and 'wg-intel' as group:
 ls -ld /usr/spool/nqs/log.d
 su (login as root, if necessary)
 chown root /usr/spool/nqs/log.d (if necessary)
 chgrp wg-intel /usr/spool/nqs/log.d (if necessary)

 ls -ld /usr/spool/nqs/conf
 chgrp wg-intel /usr/spool/nqs/conf (if necessary)
 exit

As root, make sure that no other node_groups or partitions exist before you start running the tests. For
example, if the EATs were run on the system_under_test or an NQS test stopped prematurely, you may
find a node_group such as eats_node_group and/or qmgr_node_group, or a partition named OPEN.
Remove them as follows:
 su (to login as root)
 qmgr
 Mgr: show node
 Mgr: delete node_group eats_node_group
 Mgr: delete node_group qmgr_node_group
 exit
 lspart
 rmpart partition_name (if necessary)
 exit
As root, make sure the following link exists in the /home directory:
 sigeval -> /Net/intel/intel-swe/sigeval

 40

If not, then issue the following command in the /home directory
 ln -s /Net/intel/intel-swe/sigeval sigeval

As yourself, source the following file, and run install_link, if not done already:
 source /home/sigeval/bin/eats.cshrc
 unsetenv COP_OPT

 cd /home/sigeval/Accept_x86_R?_?/Cougar/util
 install_link (needed once per Accept_x86_R?_? test directory)
 cd ../..

As yourself, execute the following one-line test and remain logged in while it is executing. You must be
logged in for these tests (unix, nfs, and tcp-ip) to run. The 'unix' test performs some interactive tests on
the current window, for example. Do not log out while these 3 test suites run. Do not redirect output.

 $ENRx -P $Ax $Cx/unix $Cx/nfs $Cx/tcp-ip $Cx/nqs
 | & tee -a $Ax/$WWthis.x86.results.log.core_eats_1.machine_user_date
 (approx. times:
 7 minutes to run unix;
 3 minutes for nfs;
 5 minutes for tcp-ip;
 Total Time: 16-18 minutes)

Once the above test finishes, execute this one-line command to run 7 test suites:
 $ENRx -P $Ax $Cx/allocator $Cx/manpage
 $Cx/pmake $Cx/raid $Cx/sat $Cx/xtrnl
 > $Ax/$WWthis.x86.results.log.core_eats_2.machine_user_date &
 (requires 1 hour, 40 minutes on Basil)

Optionally, the last line above can be replaced with
 | & tee -a $Ax/$WWthis.x86.results.log.core_eats_2.machine_user_date

Always check for tests that did not run, as well as test failures, by executing the following commands:
 grep 'TEST_RESULT'
$Ax/$WWthis.x86.results.log.core_eats.machine_user_date
 grep 'NOT_RUN'
$Ax/$WWthis.x86.results.log.core_eats_2.machine_user_date
 grep 'FAILED' $Ax/$WWthis.x86.results.log.core_eats_2.machine_user_date

II. To run Cougar EATs (CAN BE RUN SIMULTANEOUSLY WITH CORE EATs!):

Source the following file, and run install_link, if not done already:
 source /home/sigeval/bin/eats.cshrc
 unsetenv COP_OPT

 cd /home/sigeval/Accept_x86_R?_?/Cougar/util
 install_link (needed once per Accept_x86_R?_? test directory)
 cd ../..

and execute this one-line command to run 12 test suites:
 $ENRx -P $Ax $Cgrx/pfs $Cgrx/apps $Cgrx/basic $Cgrx/message
 $Cgrx/parallel $Cgrx/mpi $Cgrx/benchmark $Cgrx/scalapack
 $Cgrx/perfmon $Cgrx/blas $Cgrx/fft $Cgrx/fileio
 > $Ax/$WWthis.x86.results.log.cougar_eats.machine_user_date &
 (requires 2 hrs, 55 min on Basil)

Optionally, to append results and have output directed to the screen simultaneously, the last line above
can be replaced with
 | & tee -a $Ax/$WWthis.x86.results.log.cougar_eats.machine_user_date

Always check for tests that did not run, as well as test failures, by executing the following commands:

 41

 grep 'TEST_RESULT'
$Ax/$WWthis.x86.results.log.cougar_eats.machine_user_date
 grep 'NOT_RUN'
$Ax/$WWthis.x86.results.log.cougar_eats.machine_user_date
 grep 'FAILED' $Ax/$WWthis.x86.results.log.cougar_eats.machine_user_date

III. To run Tools EATs:

Source the following file, and run install_link, if not done already:
 source /home/sigeval/bin/eats.cshrc
 unsetenv COP_OPT

 cd /home/sigeval/Accept_x86_R?_?/Cougar/util
 install_link (needed once per Accept_x86_R?_? test directory)
 cd ../..

and execute this one-line command to run 4 test suites:
 $ENRx -P $Ax $Cgrx/AutoTprof $Cx/dbmalloc $Cgrx/cop $Cx/debug
 > $Ax/$WWthis.x86.results.log.tools_eats.machine_user_date &
 (requires 30 minutes on Basil)

Optionally, to append results and have output directed to the screen simultaneously, the last line above
can be replaced with
 | & tee -a $Ax/$WWthis.x86.results.log.tools_eats.machine_user_date

Always check for tests that did not run, as well as test failures, by executing the following commands:
 grep 'TEST_RESULT'
$Ax/$WWthis.x86.results.log.tools_eats.machine_user_date
 grep 'NOT_RUN' $Ax/$WWthis.x86.results.log.tools_eats.machine_user_date
 grep 'FAILED' $Ax/$WWthis.x86.results.log.tools_eats.machine_user_date

IV. To run Cougar EATs in -p 3 mode:

This tests Virtual Node code (see yod man page and discussion of -proc 3 mode).

Source the following file, and run install_link, if not done already:
 source /home/sigeval/bin/eats.cshrc

 cd /home/sigeval/Accept_x86_R?_?/Cougar/util
 install_link (needed once per Accept_x86_R?_? test directory)
 cd ../..

Set the environment variable COP_OPT to "-p 3":
 setenv COP_OPT "-p 3"

After setting COP_OPT to "-p 3", execute the $ENRx one-line command to run 12 test suites:
 $ENRx -P $Ax $Cx/allocator $Cgrx/apps $Cgrx/basic $Cgrx/fileio
 $Cgrx/message $Cgrx/parallel $Cgrx/pfs $Cgrx/mpi $Cgrx/benchmark
 $Cgrx/scalapack $Cgrx/perfmon $Cgrx/blas
 > $Ax/$WWthis.x86.results.log.cougar_eats_p3.machine_user_date &
 (requires 3 hrs, 20 min on Basil)

Optionally, to append results and have output directed to the screen simultaneously, the last line above
can be replaced with
 | & tee -a $Ax/$WWthis.x86.results.log.cougar_eats_p3.machine_user_date

Always check for tests that did not run, as well as test failures, by executing the following commands:
 grep 'NOT_RUN'
$Ax/$WWthis.x86.results.log.cougar_eats_p3.machine_user_date
 grep 'FAILED'
$Ax/$WWthis.x86.results.log.cougar_eats_p3.machine_user_date

 42

Xdebug Manual EATS

This test has been successfully run on the following Basil and Rosemary. It is expected to run on any of
the eval machines.

If the test runner used ssh to login to TFLOPS system-under-test, then skip to sourcing the eats.cshrc file.
Note that if ssh is used at Sandia, the user should make sure the 'Forward X11' is checked in the
'Connection Tab' that appears when clicking on 'Properties' in the ssh window used to connect to the
remote machine. There is no need to xhost + and setenv DISPLAY as shown below, or to ensure the IP
address and system name is in the /etc/hosts file on the TFLOPS system.

However, if the test runner did not ssh in to the system-under-test, follow the steps detailed below.

The system that will display the Xdebug windows must have it's IP address and system name in the
/etc/hosts file on the TFLOPS system.

On the system that will display the Xdebug windows, execute
 /usr/X11R6/bin/xhost +
 setenv DISPLAY "your host machine":0

to allow the Xdebug windows to be opened.

SKIP TO HERE IF USING SSH AT SANDIA:

Source the eats.cshrc file. From a csh shell execute
 source /home/sigeval/bin/eats.cshrc
 unsetenv COP_OPT

Ensure no LOCKED file exists in the following directory.
 rm /home/sigeval/Accept_x86_R?_?/Core/xdebug/LOCKED

Start the X Server on the local machine, if necessary.

To begin the Xdebug EAT, execute

 cd /home/sigeval/Accept_x86_R?_?
and the one-line command (do NOT run in background, and do NOT redirect output!)

 $ENRx -P $Ax $Cx/xdebug
 | & tee -a $Ax/$WWthis.x86.results.log.xdebug_eats.machine_user_date

The test begins by bringing up the gray debugger window, a process that may take 3-5 minutes when
using dialup. The original window in which you are working will display the question

INSTRUCTION: Wait for xdebug to come up.
EXAMINE: Make sure the xdebug came up properly.
Did the proper results occur? [Y/N]

before the debugger window appears, so be patient. Any other message than above probably means you
did not start the X Server on your local machine. It may also mean that settings are not correct on your X
Server for communicating with the remote machine.

 43

This test requires approximately 10-15 minutes for the user to complete.

The display you will see in a window separate from the debugger window is shown below. The numbers
are used for reference on the web page and are not displayed on the screen.

+++

=> Xdebug EAT started: Wed Nov 18 13:14:41 PST 1998 looking for
include/X11 directory found include/X11 directory
Please enter the name of the host to display the test on:
1. INSTRUCTION: Wait for xdebug to come up.
 EXAMINE: Make sure the xdebug came up properly.
 Did the proper results occur? [Y/N]
2. INSTRUCTION: Select the "Command Line" panel. Enter in the
 lower frame,
 debug -n hello
 and hit return. Return back to the "Command Line" panel.
 Enter in the
 lower frame,
 debug
 and hit return.
 EXAMINE: No Errors should occur and status messages will
 be printed the screen.
 Did the proper results occur? [Y/N]
3. INSTRUCTION: Select the "Input Output" panel. Select "Execute"
 from the top area of the window. Select "Restart".
 EXAMINE: There should be output to the I/O panel.
 Did the proper results occur? [Y/N]
4. INSTRUCTION: Select the "Load" panel. Select "File/Dir List" to
 bring up the "Application Title" window.
 EXAMINE: The "Application Title" window should come up without
problems.
 Select "mpi_ctest" in the Files field. Select "OK" button.
 EXAMINE: The "Application Title" should disappear, and "mpi_ctest"
 should appear in the "To Debug" field.
 Did the proper results occur? [Y/N]
5. Set the number of nodes to 6 or more in the "Mesh Size" panel.
 Select the "Debug" button.
 EXAMINE: Upon the successful load, you should be brought to the
 "Process" panel.
 Did the proper results occur? [Y/N]
6. INSTRUCTION: Go to the "Source" panel. Select "main" in the list at the
 left. Click in the "action point column" , the column with the
 triangular shapes next to the source code, to set an action point
 at line 53.
 EXAMINE: You should have been able to set the action point.
 Did the proper results occur? [Y/N]
7. INSTRUCTION: Select the "Process" panel, and select "Continue".
 EXAMINE: The Program should stop at the action point on line 53.
 This will show at the bottom of the window.
 Did the proper results occur? [Y/N]
8. INSTRUCTION: Select "Source" panel. Go to line 38. Click on "i"
 with the middle mouse button. If you do not have a middle mouse
 button, click on the two buttons simultaneously.
 EXAMINE: You should now be in the "Data" panel. "i=" should show
 on the screen.
 Did the proper results occur? [Y/N]
9. INSTRUCTION: Select the "Process" panel. Select "Step".
 Select "Step" again.
 EXAMINE: Should be at a line greater than 53.
 Did the proper results occur? [Y/N]
10. INSTRUCTION: Select the "Messages" panel. Select the "Update"

 44

 button.
 EXAMINE: The nodes should show as gray squares.
 Did the proper results occur? [Y/N]
11. INSTRUCTION: Select the "Process" panel and select "Continue".
 Select "File" from the top area of the window. Select "Exit".
 EXAMINE: Does xdebug exit cleanly.
 Did the proper results occur? [Y/N]

+++

Signal Semi-Automated Version

Source the following file, and run install_link, if not done already:
 source /home/sigeval/bin/eats.cshrc
 unsetenv COP_OPT

 cd /home/sigeval/Accept_x86_R?_?/Cougar/util
 install_link (needed once per Accept_x86_R?_? test directory)
 cd ../..

To execute the semi automated version execute
 cd /home/sigeval/Accept_x86_R?_?/Cougar/signal
 eat.int

and enter control C when prompted. You will be prompted a total of 4 times.

Wrap Up

Edit the file $WWthis-x86-EAT-results by adding the work week and summary of passed tests. To add the
test summary, search $Ax/$WWthis.x86.results.log. for the string => and append the search results to
$WWthis-x86-EAT-results.

Mail the results file shown above to interested parties. Run the Manual EATS before sending out results.
Note that Xdebug and Signal tests do not automatically go into log files. The results of these tests must
be put into the final Test Template manually.

To remove files arising from compilations:
 cd /home/sigeval/Accept_x86_R?_?
 find * -name "*.cgr-x" -exec rm {} \; -print
 find * -name "*.o" -exec rm {} \; -print
 find * -name "*.cgr-c" -exec rm {} \; -print

 45

Post-Processing with Mathematica

[This section under development (dwbarnette)]

The results of this eval test can be post-processed using Wolfram Research's Mathematica. Mathematica
programs, also known as 'notebooks', have been developed and written at Sandia to plot the run time and
pass/fail data in the form of colored bar charts. The bar charts may be copied to text editors such as
Microsoft's Word or to viewgraph editors such as Microsoft's PowerPoint for presentation purposes. It is
assumed that the analyst has access to, and is at least somewhat familiar with using, a recent version of
Mathematica.

First, copy the following files to the target machine's directory in which Mathematica will be run:

 $T92DIR...
 $T92DIR...

Next, copy the following Mathematica notebook for this analysis to the same location:

 /home/sigeval/Mathematica_Notebooks/...

Run the program to generate the plots.

Known Error Messages -- Ignore These

On most EATS - "./eat.auto: 196781 Terminated" - (Number will vary.)
On several EATS - unable to copy - obsolete commands and system names. The
error message below may appear after an EAT test is run. It simply means that the
results file was not written to the general results directory, but was instead written to
the EAT subtest directory. The error message can be disregarded.
Copying results to /home/sigeval/Accept_x86/Results/Core/sat.
Unable to automatically copy the results to the EATs Results
directory
(/home/sigeval/Accept_x86/Results/Core/sat).
Please do it manually via ftp:
 ftp fuji
 put results.out
/home/sigeval/Accept_x86/Results/Core/sat/results.out
 quit

On cougar apps EAT - skipped tests - never removed.

FORTRAN STOP
S: 1440 TESTS; 1080 PASSED, 360 SKIPPED, 0 FAILED.

On scalapack EAT - "cp ... *.dat adm ../*.dat are identical" - (many times)

cp: /home/sigeval/Accept_x86/Cougar/scalapack/TESTING/HRD.dat and
 ../HRD.dat are identical (not copied).
*** Exit 1
Stop.

On scalapack EAT - "tests skipped because of illegal input values." (many times)

 46

X windows EAT - (obsolete over-head)
=> x EAT started: Mon Dec 14 14:40:11 PST 1998
looking for include/X11 directory
found include/X11 directory

Please enter the name of the host to display the test on: ubirr

Warning: unable to open central results file:
 /home/sigeval/Accept_x86/Results/Core/x
Writing results file to current working directory.
Cougar/apps/memtest and Cougar/apps/nodeperf may fail on systems that contain
Pentium

Pro 200Mhz processors, rather than Pentium 333Mhz w/Xeon core tech processors.

 47

Appendix G: Miscellaneous Utility Scripts

Script 1: checkout tests from CVS

#!/bin/csh

UNLESS OTHERWISE NOTED:
This script must be run on tweety.sandia.gov
Otherwise, the script will fail

Filename: utility_cvs_checkout_2wk_evals

To run:
Execution command:
utility_cvs_2wk_evals OS_VERSION > logfile_CVS_2wk_evals &

Monitor logfile for progress and completion

Author: D. W. Barnette
Date: January, 2003

echo ""
echo " CVS CHECKOUT SCRIPT FOR 2-WEEK EVAL TEST SUITE"
echo " =="
echo ""
echo " Start time: `date`"
echo ""
check for correct host
setenv HOSTNAME `hostname`
echo ""
echo " Host name: $HOSTNAME"

if ($HOSTNAME != "tweety") then
 echo ""
 echo " This script must be run on TWEETY or it will fail."
 echo " Pls login to TWEETY and re-run this script."
 echo " Now exiting."
 echo ""
 date
 echo ""
 exit()
 else
 echo ""
endif

if ($#argv == 1) goto goodargs
echo " "
echo " USAGE ERROR: You must type the name of the "
echo " OS version (R4_2_2, for example) and re-direct "
echo " output to a log file! "
echo " "

 48

echo " Usage: utility_cvs_2wk_evals OS_VERSION > logfile_CVS_2wk_evals &"
echo " "
echo " "
exit 1

goodargs:

echo " "
echo " ***** CHECK-OUT THE 2-WEEK EVAL FROM CVS ***** "
echo ""
echo " Starting date/time: `date`"

setenv OS_VERSION $1
echo " "
echo " OS_VERSION = $1 "
echo " "

setenv SIGBINDIR /intel/intel-swe/sigeval/bin
echo " SIGBINDIR = $SIGBINDIR"
use following for EATS
setenv EVALDIR1 /intel/intel-swe/sigeval/Accept_x86_"$OS_VERSION"
use following for most tests
setenv EVALDIR2 /intel/intel-swe/sigeval/"$OS_VERSION"
use following for AutoDebug
setenv EVALDIR3 /intel/intel-swe/sigeval/"$OS_VERSION"_AutoDebug
use following for Munops
#setenv EVALDIR4 $EVALDIR2/Munops/"$OS_VERSION"
setenv EVALDIR4 /intel/intel-swe/Eval_drop_box
use following for IO-Munops
#setenv EVALDIR5 $EVALDIR2/IO_Munops/"$OS_VERSION"
setenv EVALDIR5 /intel/intel-swe/Eval_drop_box

echo " EVALDIR1 = $EVALDIR1 (for EATS tests)"
echo " EVALDIR2 = $EVALDIR2 (for most tests)"
echo " EVALDIR3 = $EVALDIR3 (for AutoDebug)"
echo " EVALDIR4 = $EVALDIR4 (for Munops files extraction directory)"
echo " EVALDIR5 = $EVALDIR5 (for IO-Munops files extraction directory)"

echo ""

setenv CVSROOT /data1/os/CVS_Tflops_Eval_Repository
echo " CVS Repository: $CVSROOT"
echo ""

check on existence of CVS repository
if (! -x $CVSROOT) then
 echo ""
 echo " >> CANNOT FIND CVS REPOSITORY "
 echo " Looking for: $CVSROOT"
 echo " The repository is needed to run this script,"
 echo " but it cannot be found."
 echo " Exiting"
 echo ""
 date
 echo ""
 exit()

 49

endif

create the sigeval/bin directory if it does not exist
if (! -x $SIGBINDIR) then
 echo ""
 echo " >> Creating directory $SIGBINDIR"
 cd /intel-swe
 mkdir -p $SIGBINDIR
 cvs -d $CVSROOT checkout sigeval &
else
 echo ""
 echo " >> Directory $SIGBINDIR exists"
endif

if dir still does not exist (for some reason, the dir could not be made), quit
if (! -x $SIGBINDIR) then
 echo ""
 echo " Cannot create $SIGBINDIR"
 echo " Script exiting!"
 echo ""
 echo ""
 exit
endif

create the evaluation directories if they don't already exist
if (! -x $EVALDIR1) then
echo ""
echo " >> Creating directory $EVALDIR1"
 mkdir -p $EVALDIR1
else
echo ""
echo " >> Directory $EVALDIR1 exists"
endif

if dir still does not exist (for some reason, the dir could not be made), quit
if (! -x $EVALDIR1) then
 echo ""
 echo " Cannot create $EVALDIR1"
 echo " Script exiting!"
 echo ""
 echo ""
 exit
endif

if (! -x $EVALDIR2) then
echo ""
echo " >> Creating directory $EVALDIR2"
 mkdir -p $EVALDIR2
else
echo ""
echo " >> Directory $EVALDIR2 exists"
endif

if dir still does not exist (for some reason, the dir could not be made), quit
if (! -x $EVALDIR2) then

 50

 echo ""
 echo " Cannot create $EVALDIR2"
 echo " Script exiting!"
 echo ""
 echo ""
 exit
endif
 .
 .
<repeat above until all EVALDIRX directories are created>
 .
 .
echo ""
echo ""
echo " > Checkout eval suites from CVS repository"
echo ""
echo " date/time: `date`"

start loading up directories for eval

1. EATS
echo ""
echo " 1. EATS"
echo " Current time/date: `date` "
echo " Requires 20 minutes to checkout of CVS"
echo " Target directory: $EVALDIR1"
setenv EATS_FLAG 0
 cd /intel-swe
 setenv EATS_FLAG 1
 cvs -d $CVSROOT checkout -d $EVALDIR1 EATS &
if ($EATS_FLAG == 0) then
 echo " -- EATS not untarred -- "
endif

2. Mini-EATS
echo ""
echo " 2. Mini-EATS"
echo " Current time/date: `date` "
echo " Requires 45 minutes to checkout of CVS"
echo " Target directory: $EVALDIR1"
setenv MINI_EATS_FLAG 0
cd $EVALDIR1
setenv MINI_EATS_FLAG 1
zcat /intel/intel-swe/SANDIA_EVAL/TESTS/EATS/mini_eats.tar.Z | tar xpf -
if ($MINI_EATS_FLAG == 0) then
 echo " -- Mini-EATS not untarred -- "
endif

3. Parallel Apps
echo ""
echo " 3. Parallel Apps"
echo " Current time/date: `date` "
echo " Requires 10 minutes to checkout of CVS"

 51

echo " Target directory: $EVALDIR2"
setenv PAPPS_FLAG 0
 cd $EVALDIR2
 setenv PAPPS_FLAG 1
 cvs -d $CVSROOT checkout \
 Auto/libc/message Auto/libc/misc Auto/libc/global \
 Auto/libc/touch Auto/libf/message Auto/libf/misc Auto/libf/global \
 Auto/libc/testlist.pass Auto/libf/testlist.pass Auto/runall.papps \
 LibBldLst lib Auto/libc/lib Auto/libf/lib \
 Auto/libc/testlist.pass.p2 Auto/libc/testlist.pass.p3
if ($PAPPS_FLAG == 0) then
 echo " -- Parallel Apps not untarred -- "
endif
 .
 .
4. MPI
.<similar to above; details left out for brevity>
.
5. Math Libraries
.
.
6. Cougar YOD/FYOD
.
.
7. NQS
.<repeated until all tests are checked out of CVS>
.
.
.
echo ""
echo " >>>>>> End of CVS CheckOut of 2-week Eval files <<<<<< "
echo ""
echo " Ending date/time: `date`"
echo ""
echo ""

<End of Script 1>

 52

Script 2: status_checker

#!/bin/sh
echo " "
echo " ********** STATUS CHECKER ********** "
echo " file: /home/sigeval/bin/status_checker "
echo " date: `date` "
echo " "

echo " >>> Command: getmagic "
getmagic
echo " "
echo " "

echo " >>> Command: showmesh "
showmesh
echo " "
echo " "

echo " >>> Command: /usr/local/etc/sw_version (inline version); cicc -V; f77 -V; f90 -V "
echo "Obtaining bootmagic information"
KERNEL_NAME=`/sbin/getmagic BOOT_KERNEL_NAME`
SERVER_NAME=`/sbin/getmagic BOOT_STARTUP_NAME`
EMULATOR_NAME=`/sbin/getmagic BOOT_EMULATOR_NAME`
PUMA_NAME=`/sbin/getmagic BOOT_ALT_KERNEL_NAME`
PCT_NAME="/cougar/sys/pct"
PGCC_COMPILER="/usr/pgi/osf86/bin/pgcc"

Generate OS version information

echo "Generating OS version information"
echo "=--="
echo " Operating System Version Information"
echo ""
temp=`/usr/bin/strings /mach_servers/startup | grep 'TFLOPS O/S Release'| sed -e
'1s;^Paragon OSF;OSF;'`
version=`echo $temp | awk -F";" '{print $1}'̀
built=`echo $temp | awk -F";" '{print $2}'̀
echo " $version"
echo " Built on: $built"
echo " "
echo " Compiler version: " `strings $PGCC_COMPILER |grep Rel | head -1`
echo " "
echo " OSF Kernel: " `what $KERNEL_NAME | grep mach_kernel`
echo " OSF Server: " `what $SERVER_NAME | grep vmunix`
echo " OSF Emulator:" `what $EMULATOR_NAME | grep emulator`
echo " Cougar QK: " `what -s $PUMA_NAME`
echo " Cougar PCT: " `what -s $PCT_NAME`
echo +--+
echo " "
cicc -V; f77 -V; f90 -V
echo " "
echo " "

echo " >>> Command: env "
env

 53

echo " "
echo " "

echo " >>> Command: qstat -bl "
qstat -bl
echo " "
echo " "

echo " >>> Command: ps -elf"
ps -elf
echo " "
echo " "

echo " >>> Command: showfs -k"
showfs -k
echo " "
echo " "

echo " ********** END OF STATUS CHECKER ********** "
echo " date: `date` "
echo " "
echo " "

< end of Script 2 >

 54

Script 3: Pinging Interactive Partition Until Specified Number of Nodes Becomes
Available

Define number of max nodes allowed
Janus' interactive partition always has 140 nodes allocated.
May use the following example on the command line to change default:
MAX_NODES=32; export MAX_NODES (bourne shell)
or
setenv MAX_NODES 32 (c shell)

 MAX_NODES=${MAX_NODES:-140}
 if ["$MAX_NODES" -gt 140] ; then
 MAX_NODES=140
 fi

Define number of min nodes allowed
This value should not be changed unless absolutely required

 MIN_NODES=${MIN_NODES:-3}
 if ["$MIN_NODES" -lt 3] ; then
 MIN_NODES=3
 fi

Define number of tries to check available interactive nodes
number_of_tries=5
Define number of tries remaining (initially = number_of_tries)
number_of_tries_left=$number_of_tries
Define time between tries
number_of_seconds=10
Define reduction factor (percent) to reduce number of nodes used
 REDUCTION_FACTOR=${REDUCTION_FACTOR:-10}
if ["$REDUCTION_FACTOR" -lt 0 -o "$REDUCTION_FACTOR" -gt 90] ; then
 echo " "
 echo " ERROR in eat.auto script: REDUCTION_FACTOR "
 echo " 0 <= REDUCTION_FACTOR <= 90 percent "
 echo " REDUCTION_FACTOR = $REDUCTION_FACTOR"
 echo " REDUCTION_FACTOR is out of bounds -- check eat.auto script "
 echo " Script is exiting "
 echo " "
 exit 2
fi

echo " "
echo " number of attempts to determine interactive nodes = $number_of_tries"
echo " number of tries left = $number_of_tries_left "
echo " time between attempts = $number_of_seconds sec"
echo " reduction factor = $REDUCTION_FACTOR percent "
echo " maximum nodes allowed = $MAX_NODES "
echo " minimum nodes allowed = $MIN_NODES "
echo " "
echo " "
if ["$MAX_NODES" -le "$MIN_NODES"] ; then
 echo " "

 55

 echo " ERROR: Max nodes allowed is less than Min nodes allowed."
 echo " This needs to be corrected by the user."
 echo " "
 echo " Script exiting."
 echo " "
 exit 2
fi

pre-define the number of interactive nodes
interactive_nodes1=0
interactive_nodes2=-1

while ["$interactive_nodes1" -ne "$interactive_nodes2" -a "$number_of_tries_left" -gt 0]

do

interactive_nodes1=`showmesh | grep interactive | awk '{ print $4}' `
echo " "

if ["$interactive_nodes1" -gt "$MAX_NODES"] ; then
 interactive_nodes1=$MAX_NODES
 REDUCTION_FACTOR=0
 echo " "
 echo " Since the Max number of allowed nodes is less than"
 echo " the available number, no reduction factor is used."
 echo " "
fi

echo "Number of interactive nodes (1st check) = $interactive_nodes1"
if ["$interactive_nodes1" -le "$MIN_NODES"] ; then
 echo " "
 echo " ERROR: Not enough nodes to run EATs "
 echo " Number of interactive nodes: $interactive_nodes1 "
 echo " "
 number_of_tries_left=`expr $number_of_tries_left - 1`
 echo " Will try $number_of_tries_left more time(s)"
 echo " "
 sleep $number_of_seconds
 continue
else

pause, then check number of available interactive nodes again, to
check that a load from another user was not in progress since the
first check
sleep $number_of_seconds
interactive_nodes2=`showmesh | grep interactive | awk '{ print $4}' `

if ["$interactive_nodes2" -gt "$MAX_NODES"] ; then
 interactive_nodes2=$MAX_NODES
fi

echo "Number of interactive nodes (2nd check) = $interactive_nodes2"
echo " "

if ["$interactive_nodes1" -ne "$interactive_nodes2"] ; then

 56

 echo " "
 echo " ERROR: Number of available interactive nodes is changing, "
 echo " probably due to heavy usage."
 echo " "
 number_of_tries_left=` expr $number_of_tries_left - 1 `
 echo " Will try $number_of_tries_left more time(s)"
 echo " "
 sleep $number_of_seconds
 continue
fi

break

fi

done

 if ["$number_of_tries_left" -le 0] ; then
 total_time_for_tries=` expr $number_of_tries * $number_of_seconds `
 echo " "
 echo " Number of attempts made: $number_of_tries "
 echo " Time between attempts: $number_of_seconds sec"
 echo " Total time trying to allocate nodes: $total_time_for_tries sec"
 echo " "
 echo " Number of attempts has been exceeded."
 echo " Wait awhile and try again later."
 echo " "
 echo " >>> Exiting mini-EATs script"
 echo " "
 echo " "
 exit 100
 fi

in2=$interactive_nodes2
interactive_nodes=` expr $in2 - \($REDUCTION_FACTOR * $in2 \) \/ 100 `
nodes_available=$in2
nodes_after_reduction=$interactive_nodes

Ensure nodes used are less than MAX_NODES, particulary if
MAX_NODES has been redefined by command line instruction (see above)
if ["$interactive_nodes" -gt "$MAX_NODES"] ; then
interactive_nodes=$MAX_NODES
fi

echo " "
echo " Max nodes allowed: $MAX_NODES"
echo " Min nodes allowed: $MIN_NODES"
echo " Nodes available to be used: $nodes_available"
nar=$nodes_after_reduction
echo " Nodes available after $REDUCTION_FACTOR percent reduction: $nar"
echo " "
echo " Number of interactive nodes to be used: $interactive_nodes "
echo " "

if ["$interactive_nodes" -le "$MIN_NODES"] ; then

 57

 echo " "
 echo " ERROR: Not enough nodes to run EATs "
 echo " Number of interactive nodes: $interactive_nodes "
 echo " "
 echo " "
 echo " Script is exiting"
 exit 100
fi

#==
========

for virtual nodes (proc mode 3)
if ["$COP_OPT"]
then
 if [`echo "$COP_OPT" | awk '{ print $2 }'` = "3"]
 then

 echo " "
 echo " >>> COP_OPT = 3: proc 3 mode is set"
 echo " "

 NNODES_ALT=`/sbin/getmagic -w BOOT_ALT_NODE_LIST | wc -w | sed 's/
//g'`
 if ["$NNODES_ALT" -gt 0] ; then
NNODES=$NNODES_ALT
 NNODES=`expr $NNODES * 2`
 SIZE=$NNODES
 fi
 fi
fi

set YODPARAMS
for virtual nodes (proc mode 3)
if ["$COP_OPT"]
then
 if [`echo "$COP_OPT" | awk '{ print $2 }'` = "3"]
 then
 YODPARAMS="-p 3"
 fi
else
 YODPARAMS=" "
fi

NNODES=$interactive_nodes
SIZE=$NNODES

export YODPARAMS
export SIZE
export NNODES

< end of Script 3 >

 58

Appendix H: Sample Page from Test Log

TEST MATRIX, 90% CONFIDENCE LEVEL, 2-WEEK EVAL
OS VERSION: __________________

EVAL’er(s): ____________________ DATES: _____________________

No. TEST SUITE TARGET SYSTEM

RUN TIME
(APPROX
HRS)

90%
CONF
TEST

EVAL NOTES and COMMENTS

1. EATs for Basil

Basil (test requires nqs
and raids)

Logfile directory:
/home/sigeval/
Accept_x86_R4_3_5
(for example)

see Note 1,
below, for
Basil
statistics

X

PASS/FAIL (P/F):

START:

END:

COMMENTS:
Core1: Tools: Xdebug:
Core2: CougarP3: Signal:
CougarP0:

2. mini-EATs for
Janus

Janus (test does NOT
require nqs nor raids; is
a modified subset of
original tests)

Logfile directory:

See Note 1,
below, for
Janus stats
(pending)

PASS/FAIL (P/F):

START:

END:

COMMENTS:
 Typically, this test is not run

3.

Parallel Apps /
Message-Passing

Basil;
Can be run on
Rosemary, but the test
message/nx/gsend_gsum
will fail to run; re-run
this test on Basil

Logfile directory:
$T92DIR/Auto

16 X

PASS/FAIL (P/F):

START:

END:

COMMENTS:

4.

MPI

Basil

Logfile directory:
$T92DIR/MPITEST/
Test

28 X

PASS/FAIL (P/F):

START:

END:

COMMENTS:

5.

Math Libraries

Basil or Rosemary

Logfile directory:
$T92DIR/lib_tests

26 hrs for
rosemary X

PASS/FAIL (P/F):

START:

END:

COMMENTS:

 59

Appendix I: Test Plan for R4.5.2 (full build)

************ Test Plan for 4.5.2******************

Janus Eval Test Date: Thursday, January 20, 2005
Janus Install Target Date: Thursday, February 17, 2005

PSE on duty: Sean Taylor srtayl@sandia.gov <phone #’s have been deleted)
Eval'er: Daniel Barnette dwbarne@sandia.gov
Other contacts relevant to this eval:
 Bob Benner rebenne@sandia.gov
 John VanDyke jpvandy@gabe.sandia.gov

GOALS:

I) Validate R4.5.2 “full build” by running MUNOPS on Janus

This build address the following PR’s:

 BobB 926 Memory fragmentation issue
 BobB 1408 Reduce malloc header from 24 to 16 bytes
 BobB 1450 libpuma and utlib/yod version numbers outdated.
 Paul 1502 Default umask file creation setting
 BobB 1545 Fix mpi2c++ include path for mpich v. 1.2.4
 BobB 1546 Update lapack library to v. 3.0
 BobB 1588 Remove diagnostic output from malloc failure
 BobB 1598 Make libdbmalloc link-compatible with new puma malloc
 BobB 1600 Fix MPI_SHORT_MSG_SIZE handling in MPICH v. 1.2.4

Eval Preparations/Tasks for SWE's:

1. Make sure MUNOPS is on Janus in /home/projects/eval/munops/R4_5_2_munops_split. (Daniel)

2. Create directory for logfiles (Daniel)
a. mkdir /home/projects/eval/Jan20_2005_logfiles
b. chmod 775 /home/projects/eval/Jan20_2005_logfiles

Eval Preparations/Tasks for PSE's:

1. Create R4.5.2 boot disk for Janus (PSE)

2. On the morning of 01/20/05, send email to janus-users@sandia.gov with
the following text (PSE):

==
Janus (unclassified) will be unavailable TODAY, Thursday,
01/20/05, all day, from 6:00 a.m. until 11:00 p.m. We will be performing
an operating system evaluation, preventive maintenance, and
a color change.

If you have any questions and/or concerns, send email to
janus-help@sandia.gov.
==

mailto:srtayl@sandia.gov
mailto:dwbarne@sandia.gov
mailto:rebenne@sandia.gov
mailto:jpvandy@gabe.sandia.gov

 60

Eval Goal I

1. At approximately 6:00AM start system shutdown on janus from console giving
users 10 minutes (PSE):

 shutdown -h +10

2. Put R4.5.2 disk in place and boot janus-eval (PSE)

3. Prevent users from accessing the system (PSE)
 -- Keep /etc/nologin in place

4. Do not start scheduling or queues! (PSE)

5. Change root password on janus. (PSE)

6. Since MUNOPS (and not IO-MUNOPS) is being run, umount all pfs directories, and all
ufs directories except /home/projects (PSE):

 cd /home/projects # to keep eval disk busy & mounted
 umount –a –t pfs
 umount –s –t ufs

7. Make sure /, /home/projects, and /tmp are still mounted (PSE)
 df

8. Contact janus-sw via email and advise:

“System is ready for Goal I.” (PSE)

9. Run portion of MUNOPS that requires root privilege. (Daniel)
 cd /home/projects/eval/munops/R4_5_2
 status_checker > logfile_status_checker_begin.janus_dwbarne_012005
 chown dwbarne status_checker_begin.janus_dwbarne_jan20_2005
 make_parts_tfmunops.ksh #also stops nqs
 clean_tmp # cleans /scratch directory of previous files

10. Start MUNOPS (Daniel):
 run_munops.ksh > logfile_munops_split.janus_dwbarne_012005

11. Monitor MUNOPS to ensure it is making progress. (Daniel)

12. In case of system failure/hang (PSE):
 a) collect stampede;
 b) reboot;
 c) create case;
 d) Return to Step 10

Repeat as necessary.

13. At 3:00PM:
 a) make tentative determination if R4.5.2 is a go or no-go;
 b) send email of current status to Bob, John, PSE’s. (Daniel)

 61

Goal I pass criteria:
 a) MUNOPS runs without crashing the system; OR
 b) If system crashes, the crash can be attributed to a known problem.

14. At 5:00PM, as root, run (Daniel):
 cd /home/projects/eval/munops/R4_5_2
 delete_parts_tfmunops.ksh #hot-stop of MUNOPS
 status_checker > status_checker_end.janus_dwbarne_jan20_2005
 chown dwbarne status_checker_end.janus_dwbarne_jan20_2005

15. Copy system files off R4.5.2 boot disk. (Daniel)
 cd /home/projects/eval/Jan2005_logfiles
 cp /var/adm/compute/run.log .
 cp /var/adm/*.log .
 cp /var/adm/syslog/*.log .
 chmod 664 *
 chown dwbarne:wg-intel *

17. Send email to janus-sys and janus-sw announcing: (Daniel)
 a) the end of eval;
 b) add a statement as to how many times MUNOPS had to be started;
 c) state whether R4.5.2 is a go or no-go

18. Shutdown R4.5.2 and revert to current-production R4.4.4 boot disk. (PSE)

Goal I pass criteria: munops continues to run without crashing the system.

--------------------------------------END--------------------------------------

 62

Appendix J: Script for Gathering Test Results

#!/bin/csh

Filename: gather_results

To run:
First, modify User-defined directory names within file; then
Execution command: utility_untar_2wk_evals > logfile_untar_2wk_evals &
Monitor logfile for progress and completion

Author: D. W. Barnette
Date: July, 2002

if ($#argv == 1) goto goodargs
echo " "
echo " USAGE ERROR: You must type the name of the OS version (ex: R4_2_2)"
echo " on the command line."
echo " Usage: utility_untar_2wk_evals OS_VERSION"
echo " "
exit 1

goodargs:

echo " "
echo " ***** GATHER RESULTS FILES ***** "
echo ""
echo " Starting date/time: `date`"

setenv OS_VERSION $1
setenv USER
echo " "
echo " OS_VERSION = $1 "
echo " "

#1. Eats
setenv EVALDIR1 /Net/intel-swe/sigeval/Accept_x86_"$OS_VERSION"

#2. mini-Eats
setenv EVALDIR2 /Net/usr/home/$LOGNAME/sigeval/Accept_x86_"$OS_VERSION"

#3. Parallel Apps
setenv EVALDIR3 /Net/intel-swe/sigeval/"$OS_VERSION"/Auto

#4. MPI
setenv EVALDIR4 /Net/intel-swe/sigeval/"$OS_VERSION"/MPITEST/Test

#5. Math Libs
setenv EVALDIR5 /Net/intel-swe/sigeval/"$OS_VERSION"/lib_tests

#6. Cougar Yod/Fyod
setenv EVALDIR6 /Net/intel-swe/sigeval/"$OS_VERSION"/Auto/cougar

#7. NQS
setenv EVALDIR7 /Net/intel-swe/sigeval/"$OS_VERSION"/TF_NQS

#8. General Regression
setenv EVALDIR8 /Net/intel-swe/sigeval/"$OS_VERSION"/regress

#9. MUNOPS
setenv EVALDIR9a /Net/intel-swe/projects/eval/munops/"$OS_VERSION"

 63

setenv EVALDIR9b /Net/intel-swe/projects/eval/io_munops/"$OS_VERSION"

#10. DDT File I/O
setenv EVALDIR10a /Net/intel-swe/sigeval/"$OS_VERSION"
setenv EVALDIR10b /Net/intel-swe/sigeval/"$OS_VERSION"/AutoRoot/cmd/pfs

#11. Other/Non-DDT File I/O
setenv EVALDIR11 /Net/intel-swe/sigeval/"$OS_VERSION"/io

#12. AutoUnix
setenv EVALDIR12 /Net/intel-swe/sigeval/"$OS_VERSION"/AutoUnix

#13. DDT Sockets
setenv EVALDIR13 /Net/intel-swe/sigeval/"$OS_VERSION"/Auto/sockets

#14. AutoDebug
setenv EVALDIR14 /Net/intel-swe/sigeval/"$OS_VERSION"/Autodebug/cases

#15. AutoTprof
setenv EVALDIR15 /Net/intel-swe/sigeval/"$OS_VERSION"/AutoTprof

#create directory for storing all results
setenv STORE_SUB_DIR RESULTS_FILES_`date +"%T%h%d%Y%a"`
#setenv STORE_DIR /Net/usr/home/$LOGNAME/RESULTS_FILES_`date +"%T%h%d%Y%a"`
setenv STORE_DIR /Net/usr/home/$LOGNAME/"$STORE_SUB_DIR"
mkdir $STORE_DIR
echo ""
echo " STORAGE DIRECTORY: $STORE_DIR"
echo ""

#1. EATS
echo ""
echo "=="
echo " 1. EATS"
make the results directory
mkdir $STORE_DIR/EATS

#if eval directory exists, get results files
echo ""
echo " Searching for results directory $EVALDIR1"
if (! -x "$EVALDIR1") then
 echo ""
 echo " >> Directory not found: $EVALDIR1"
 touch $STORE_DIR/EATS/no_results
else
 echo ""
 echo " >> Directory found: $EVALDIR1"
 cp $EVALDIR1/WW*.results.* $STORE_DIR/EATS
setenv FILE_COUNT 0
setenv FILE_COUNT ` ls -1 $STORE_DIR/EATS/ | grep -lc '^[a-zA-Z]' `

if ($FILE_COUNT == 0) then
 echo " No results found to copy to directory"
 touch $STORE_DIR/EATS/no_results
 else
 echo " $FILE_COUNT results files written to $STORE_DIR/EATS"
 endif
endif

#2. mini-EATS

 64

echo ""
echo "=="
echo " 2. MINI-EATS"
make the results directory
mkdir $STORE_DIR/MINI_EATS

#if eval directory exists, get results files
echo ""
echo " Searching for results directory $EVALDIR2"
if (! -x "$EVALDIR2") then
 echo ""
 echo " >> Directory not found: $EVALDIR2"
 touch $STORE_DIR/MINI_EATS/no_results
else
 echo ""
 echo " >> Directory found: $EVALDIR2"
 cp $EVALDIR1/WW*.results.* $STORE_DIR/MINI_EATS
setenv FILE_COUNT 0
setenv FILE_COUNT ` ls -1 $STORE_DIR/MINI_EATS/ | grep -lc '^[a-zA-Z]' `

if ($FILE_COUNT == 0) then
 echo " No results found to copy to directory"
 touch $STORE_DIR/MINI_EATS/no_results
 else
 echo " $FILE_COUNT results files written to
$STORE_DIR/MINI_EATS"
 endif
endif

#3. Parallel Apps
echo ""
echo "=="
echo " 3. PARALLEL_APPS"
make the results directory
mkdir $STORE_DIR/PARALLEL_APPS

#if eval directory exists, get results files
echo ""
echo " Searching for results directory $EVALDIR3"
if (! -x "$EVALDIR3") then
 echo ""
 echo " >> Directory not found: $EVALDIR3"
 touch $STORE_DIR/PARALLEL_APPS/no_results
else
 echo ""
 echo " >> Directory found: $EVALDIR3"
 cp $EVALDIR1/WW*.results.* $STORE_DIR/PARALLEL_APPS
setenv FILE_COUNT 0
setenv FILE_COUNT ` ls -1 $STORE_DIR/PARALLEL_APPS/ | grep -lc '^[a-zA-Z]' `

if ($FILE_COUNT == 0) then
 echo " No results found to copy to directory"
 touch $STORE_DIR/PARALLEL_APPS/no_results
 else
 echo " $FILE_COUNT results files written to
$STORE_DIR/PARALLEL_APPS"
 endif
endif

.
.
< Coding omitted for brevity >

 65

.

.

cd /Net/usr/home/$LOGNAME
echo ""
echo " Tar'ing the results directory ... please wait ..."
echo ""
tar -cvf $STORE_SUB_DIR.tar $STORE_SUB_DIR
echo ""
echo ""
echo " Results tar file created: $STORE_SUB_DIR.tar"
echo " in directory /Net/usr/home/$LOGNAME"
echo ""
echo "" Compressing the tar file ... please wait ..."
echo ""
compress $STORE_SUB_DIR.tar
echo " Tar file compressed."
echo ""

echo ""
echo " >>>>>> End of Gathering Results Files <<<<<< "
echo ""
echo " Ending date/time: `date`"
echo ""

 66

Appendix K: Mathematica Script for Plotting Test Results

(*
 Filename: mpitest1_bar_graphs.nb
 Written Oct 2000, by D. Barnette
 *)
 Clear[
 LogFile,
 Description1, Description2,
 TodaysDateAndTime,
 RowsColumns,
 NumberOfTests,
 TimeOfStartHours,
 TimeOfStartMinutes,
 TimeOfStartSeconds,
 TimeOfFinishHours,
 TimeOfFinishMinutes,
 TimeOfFinishSeconds,
 DateOfTest,
 TimeOfTest,
 TestNumber,
 Test,
 DataWord
]

 (* Search logfile for number of tests run by searching
 for the word "Test:". For each successful find, increment
NumberOfTests and reset DataWord to "NULL" and start again, until
"EndOfFile" is detected *)

NumberOfTests=0;
DataWord="NULL";
LogFile=OpenRead["d:\Intel_MPITest\logfile_incomplete.txt"];While[DataWo
rd≠"EndOfFile",
 While[(DataWord≠"Test:") && (DataWord≠"EndOfFile"),
 DataWord=Read[LogFile,Word];
];
 If[DataWord=="Test:",
 NumberOfTests+=1;
 (* Always reset DataWord before beginning next search *)
 DataWord="NULL";
];
];
Close[LogFile]
 d:\Intel_MPITest\logfile_incomplete.txt
 NumberOfTests
 25
 TimeOfTest=Table[0,{NumberOfTests}];
 Dimensions[TimeOfTest]
 {25}
 Test=Table[0,{NumberOfTests}];
 Dimensions[Test]
 {25}
 TestNumber=Table[0,{NumberOfTests}];
 Dimensions[TestNumber]
 {25}
 Date[]
 {2001,10,12,19,32,48}
 Description1="MPI-Test 1 Analysis";
 Description2=" Timing Plots (sec)";
 TodaysDateAndTime:=(
 Temp=Date[];
 StringForm[

 67

 "`` Date: ``/``/`` Time: ``:``:``",
 Description1<>", "<>Description2,
 Temp[[2]],Temp[[3]],Temp[[1]],
 Temp[[4]],Temp[[5]],Temp[[6]]
]
)
 TDT=TodaysDateAndTime
 MPI-Test 1 Analysis, Timing Plots (sec) Date: 10/12/2001 Time:
19:32:48
 (* Data from 'logfile...' *)
 Column1="Date";
Column2="Duration (sec)";
Column3="Eval Computer";
Column4="Test";
 (* Uncomment following to check if file can be opened; for debugging
code *)
 (* !!"d:\Program
Files\DevStudio\MyProjects\Robug_Simulator\RobocopOutputMod0.txt" *)
 LogFile=OpenRead["d:/Intel_MPITest/logfile_incomplete.txt"];
 (* Skip first 4 lines *)
 For[k=1,k≤4,k++,
 Skip[LogFile, Record]
]
 For[k=1,k≤NumberOfTests,k++,

 (* Sequentially number tests *)
 TestNumber[[k]]=k;

 DateOfTest=Read[LogFile,Word];

 TimeOfStartHours=Read[LogFile,Number];
 Skip[LogFile,Character];
 TimeOfStartMinutes=Read[LogFile,Number];
 Skip[LogFile,Character];
 TimeOfStartSeconds=Read[LogFile,Number];

 ComputerName=Read[LogFile,Word];

 Skip[LogFile, Word];

 Test[[k]]=Read[LogFile,Word];

 Skip[LogFile,Record];
 Skip[LogFile,Record];
 Skip[LogFile,Word];

 TimeOfFinishHours=Read[LogFile,Number];
 Skip[LogFile,Character];
 TimeOfFinishMinutes=Read[LogFile,Number];
 Skip[LogFile,Character];
 TimeOfFinishSeconds=Read[LogFile,Number];

 Skip[LogFile,Record];

 If[TimeOfFinishHours>=TimeOfStartHours,
 TimeOfTest[[k]]=(TimeOfFinishHours-TimeOfStartHours)*3600+
 (TimeOfFinishMinutes-TimeOfStartMinutes)*60+
 (TimeOfFinishSeconds-TimeOfStartSeconds)
 ,
 TimeOfTest[[k]]=(TimeOfFinishHours+24-TimeOfStartHours)*3600+
 (TimeOfFinishMinutes-TimeOfStartMinutes)*60+
 (TimeOfFinishSeconds-TimeOfStartSeconds)
];
];

 68

Close[LogFile]
 d:/Intel_MPITest/logfile_incomplete.txt
 DateOfTest
 10/01/01
 ComputerName
 basil
 Dimensions[TimeOfTest]
 {25}
 TimeOfTest

{94,30,29,78,31,29,62,34,50,87,92,30,34,29,51,46,32,31,46,32,32,40,40,37
,31}
 Dimensions[Test]
 {25}

 (* Get Pass/Fail information from 'results...' file generated by MPI
eval test, and match with info from 'logfile..' above *)

 PFfile=OpenRead["d:/Intel_MPITest/results.cgr1_18.txt"];

(* Skip 14 lines before reading *)
Do[
 Skip[PFfile,Record],
 {j,1,12}
];

Do[
 PassFail=Read[PFfile,Word];

 If[PassFail≠"EndOfFile",

 While[
 TestPF≠"M",
 TestPF=Read[PFfile,Character]
];

 TestPF=Read[PFfile,Word];
 TestPF="M"<>TestPF;
 Print[j," ",PassFail," ",TestPF," ",Test[[j]]];

 If[TestPF�Test[[j]],
 If[PassFail≠"P",
 TimeOfTest[[j]]=-TimeOfTest[[j]];
 Print[" >>> NOTE: TimeOfTest[[",j,"]] changed to negative
for plotting "];
 Print[" "];
],
 Print[" Error: For j = ",j,"/",NumberOfTests,", TestPF =
",TestPF,", Test[[j]] = ",Test[[j]]," "];
 Print[" "];
],
 Print[" "];
 Print[" EndOfFile read for ",PFfile,". j = ",j," NumberOfTests
= ",NumberOfTests];
 Print[" "];

],
 {j,1,NumberOfTests}
];
Close[PFfile]
 1 P Mc/blocking/functional/MPI_Bsend_ator MPI_Bsend_ator

 69

 Error: For j = 1 / 25 , TestPF =
Mc/blocking/functional/MPI_Bsend_ator , Test[[j]] = MPI_Bsend_ator

 2 P MPI_Bsend_null MPI_Bsend_null
 3 P MPI_Bsend_overtake MPI_Bsend_overtake
 4 P MPI_Bsend_rtoa MPI_Bsend_rtoa
 5 P MPI_Recv_comm MPI_Recv_comm
 6 P MPI_Recv_null MPI_Recv_null
 7 P MPI_Recv_pack MPI_Recv_pack
 8 P MPI_Rsend_null MPI_Rsend_null
 9 F MPI_Rsend_rtoa MPI_Rsend_rtoa
 >>> NOTE: TimeOfTest[[9]] changed to negative for plotting

 10 P MPI_Send_ator MPI_Send_ator
 11 P MPI_Send_ator2 MPI_Send_ator2
 12 P MPI_Send_null MPI_Send_null
 13 P MPI_Send_off MPI_Send_off
 14 P MPI_Send_overtake MPI_Send_overtake
 15 P MPI_Send_rtoa MPI_Send_rtoa
 16 P MPI_Ssend_ator MPI_Ssend_ator
 17 P MPI_Ssend_null MPI_Ssend_null
 18 P MPI_Ssend_overtake MPI_Ssend_overtake
 19 P MPI_Ssend_rtoa MPI_Ssend_rtoa
 20 P MPI_Allgather MPI_Allgather
 21 P MPI_Allgatherv MPI_Allgatherv
 22 F MPI_Allreduce MPI_Allreduce
 >>> NOTE: TimeOfTest[[22]] changed to negative for plotting

 23 P MPI_Allreduce_loc MPI_Allreduce_loc
 24 P MPI_Allreduce_user MPI_Allreduce_user
 25 P MPI_Alltoall MPI_Alltoall
 d:/Intel_MPITest/results.cgr1_18.txt

 (*
 Get Graphics packages needed for plots
 *)
 <<Graphics`Graphics`
 <<Graphics`Legend`
 units[xmin_,xmax_]:=Range[Floor[xmin],Floor[xmax],7]
 (* Tests to be plotted with bar charts in increments of 64 tests *)
incr=64;
 TickMarkList=units[1,incr]
 {1,8,15,22,29,36,43,50,57,64}
 LengthOfList=Length[TickMarkList]
 10
 Clear[TickMarkArray]
 Array[TickMarkArray,{LengthOfList,2}];
 TickMarkArray=Table[0,{LengthOfList},{2}]
 {{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}}
 Table[Dimensions[TickMarkArray]]
 {10,2}
 (* TableForm[TickMarkArray] *)
 jjmod=Mod[NumberOfTests,incr]
 25
 If[jjmod==0,
 jjappend=0,
 jjappend=incr-jjmod;
 Clear[TestAdd, TimeAdd];
 Array[TestAdd,{jjappend},{1}];
 TestAdd=Table[0,{jjappend},{1}];
 TimeAdd=Table[0,{jjappend},{1}];
 NumberOfBars=NumberOfTests+jjappend;
 Do[

 70

 TestAdd[[jj]]= " ",
 {jj,1,jjappend}
];
 Do[
 TimeAdd[[jj]]=0.0,
 {jj,1,jjappend}
];
 Test = Join[Test,TestAdd];
 TimeOfTest=Join[TimeOfTest,TimeAdd];
]
 NumberOfTests
 25
 NumberOfBars
 64
 Dimensions[Test]
 {64}
 jjappend
 39
 jjmax=NumberOfBars
 64
 Do[
 Do[
 TickMarkArray[[jtick,1]]=TickMarkList[[jtick]];
 TickMarkArray[[jtick,2]]=ToString[TickMarkList[[jtick]]+jj-1],
 {jtick,1,LengthOfList}
];

 BarChart[
 Table[TimeOfTest[[kk]],{kk,jj,jj+ incr-1}],
 ImageSize → 600,
 Ticks→{TickMarkArray,Automatic},
 PlotLabel→StyleForm[Description1<> ", "<> Description2 <> "\n
Blue: PASS Red: FAIL", FontSize→15, FontWeight→Bold],
 TextStyle→{FontSize→12,FontWeight→Bold},
 BarOrientation→Vertical,
 Axes→True,
 AxesStyle→Thickness[0.0040],
 Frame→True ,
 FrameTicks→None,
 FrameLabel->{"Test Number","Run Time (sec) \n "},
RotateLabel→True,
 BarStyle→(Which[#>0,RGBColor[0,0,1],#<0,RGBColor[1,0,0]]&),
 GridLines→Automatic,
 RotateLabel->True
] ,
 {jj,1,jjmax,incr}
]

 71

Test Number

nuR
emiT
HcesL

1 8 15 22 29 36 43 50 57 64

- 40

- 20

20

40

60

80

MPI- Test 1 Analysis, Timing Plots HsecL
Blue: PASS Red: FAIL

(* Output all tests in tabular format with 3 columns max *)

ColumnsMax=3;
RowsList=Floor[NumberOfBars/(ColumnsMax-1)];
Extras=Mod[NumberOfBars,ColumnsMax-1];
If[Extras�0,
 Table0=Table[
 {"--","---------------","--","---------------"},
 {j,1,1}
],
 Table0=Table[
 {"--","---------------","--","---------------","--","-----------
----"},
 {j,1,1}
]
];
Table1=Table[
 {
 j, Test[[j]], j+RowsList,Test[[j+RowsList]],
 j+2*RowsList,Test[[j+2*RowsList]]},
 {j,1,Extras}
];
Table2=Table[
 {
 j, Test[[j]], j+RowsList,Test[[j+RowsList]]},
 {j,Extras+1,RowsList}
];
TestTable=Join[Table0,Table1,Table2];
If[Extras�0,
 TableForm[
 TestTable, TableHeadings→{None,{"No." , "Test","No.","Test"}}
],
 TableForm[
 TestTable, TableHeadings→{None,{"No." ,
"Test","No.","Test","No.","Test"}}

 72

]
]
No. Test No. Test
- -
1 MPI_Bsend_ator 33
2 MPI_Bsend_null 34
3 MPI_Bsend_overtake 35
4 MPI_Bsend_rtoa 36
5 MPI_Recv_comm 37
6 MPI_Recv_null 38
7 MPI_Recv_pack 39
8 MPI_Rsend_null 40
9 MPI_Rsend_rtoa 41
10 MPI_Send_ator 42
11 MPI_Send_ator2 43
12 MPI_Send_null 44
13 MPI_Send_off 45
14 MPI_Send_overtake 46
15 MPI_Send_rtoa 47
16 MPI_Ssend_ator 48
17 MPI_Ssend_null 49
18 MPI_Ssend_overtake 50
19 MPI_Ssend_rtoa 51
20 MPI_Allgather 52
21 MPI_Allgatherv 53
22 MPI_Allreduce 54
23 MPI_Allreduce_loc 55
24 MPI_Allreduce_user 56
25 MPI_Alltoall 57
26 58
27 59
28 60
29 61
30 62
31 63
32 64

 73

Internal Distribution:

MS Org Name Copies MS Org Name Copies

0321 1400 W. Camp 1 0823 4320 J. Zepper 1
 0832 4335 J. Dexter 1
0370 1411 S. Mitchell 1 0806 4336 L. Stans 1

0310 1412 M. Rintoul 1 9151 8900 J. Handrock 1
 9158 8961 M. Sukalski 1
1110 1414 S. Collis 1 9152 8963 J. Friesen 1

1110 1415 S. Rountree 1 0899 Technical Library 2
 9018 Central Technical Files 2

1111 1416 A. Salinger 1 External Distribution:

0316 1420 S. Dosanjh 1 Shailendra Save 2
0316 1420 J. Tomkins 1 Cray Inc.
 411 First Ave S.
0376 1421 T. Blacker 1 Suite 600
 Seattle, WA 98104
0817 1422 J. Ang 1
0817 1422 D. Doerfler 1
0817 1422 S. Goudy 1
0817 1422 J. VanDyke 1
0817 1422 D. Barnette 5
0817 1422 R. Benner 1
0817 1422 S. Kelly 1
0817 1422 J. Stearley 1

1110 1423 N. Pundit 1

0822 1424 D. White 1

0321 1430 J. Nelson 1

0378 1431 R. Summers 1

0378 1433 J. Strickland 1

1110 1435 J. Aidun 1

0316 1437 S. Hutchinson 1

0813 4311 M. Cahoon 1

0823 4324 C. Leishman 1

0822 4326 D. Pavlakos 1

0807 4328 J. Noe 1
0807 4328 M. Davis 1
0807 4328 R. Ballance 1
0807 4328 M. Barnaby 1
0807 4328 F. Jaramillo 1
0807 4328 V. Kuhns 1
0807 4328 P. Sanchez 1
0807 4328 S. Taylor 1

0805 4329 B. Swartz 1

	Test, Evaluation, and Build Procedures For Sandia's ASCI Red (Janus)Teraflops Operating System
	Abstract
	Acknowledgements
	Table of Contents
	Introduction
	Janus Teraflops Computer and Its OS
	Building TOS for Testing and Evaluation
	1. Import files into CVS repository:
	2. Export files out of CVS repository:
	3. Check-out files from CVS for immediate use:
	4. Check-in of a modified file that already resides on CVS:

	Testing and Evaluating TOS – An Overview
	A. The ddt Test Harness
	B. Steps for Testing and Evaluation of TOS
	C. Running mini-Eats in the Janus Interactive Partition
	D. Running Specific Tests for Specific Code Fixes
	E. In the Event of a Test Failure
	F. Final Test on Janus

	Proposed Methods for Post-Test Analyses
	References
	Appendix A. Using VNC for Maintaining Connectivity from Remote Sites
	Appendix B: List of Support Hardware
	 Appendix C: List of Evaluation Tests
	 Appendix D: List of Evaluation Test Suite Code Fixes
	 Appendix E: Key Variables Used for the ddt Shell
	 Appendix F: EATS web pages
	 Appendix G: Miscellaneous Utility Scripts
	Script 1: checkout tests from CVS
	Script 2: status_checker
	Script 3: Pinging Interactive Partition Until Specified Number of Nodes BecomesAvailable

	 Appendix H: Sample Page from Test Log
	 Appendix I: Test Plan for R4.5.2 (full build)
	 Appendix J: Script for Gathering Test Results
	 Appendix K: Mathematica Script for Plotting Test Results
	Distribution

