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Abstract

The use of surrogate models to approximate computationally expensive simulation models,
e.g., large comprehensive finite element models, is widespread. Applications include surrogate
models for design, sensitivity analysis, and/or uncertainty quantification. Typically, a surrogate
model is defined by a postulated functional form; values for the surrogate model parameters
are estimated using results from a limited number of solutions to the comprehensive model.
In general, there may be multiple surrogate models, each defined by possibly a different func-
tional form, consistent with the limited data from the comprehensive model. We refer to each
as a candidate surrogate model. Methods are developed and applied to select the optimal sur-
rogate model from the collection of candidate surrogate models. The classical approach is to
select the surrogate model that best fits the data provided by the comprehensive model; this
technique is independent of the model use and, therefore, may be inappropriate for some ap-
plications. The proposed approach applies techniques from decision theory, where postulated
utility functions are used to quantify the model use. Two applications are presented to illus-
trate the methods. These include surrogate model selection for the purpose of: (1) estimating
the minimum of a deterministic function, and (2) the design under uncertainty of a physical
system.
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A decision-theoretic method for
surrogate model selection

1 Introduction

Most systems in science and engineering can be described by an input/output relationship of the
type shown in Fig. 1, where inputx and operatorf are, in general, vector valued. Typically,f is
defined by a collection of differential, integral, and/or algebraic equations with (possibly) random
coefficients. The objective is to calculate properties of an output vector,y. For example,f can be
a finite element model of a spacecraft that maps an applied pressure field,x, to the displacement
response,y, of an internal component. Properties ofy, e.g., the maximum in time, can then be
calculated.

Mathematical models for the system shown in Fig. 1 are developed for one or more reasons,
what we refer to as themodel use. For example, we may use the models described above to
select the appropriate stiffness and/or location of the internal component attachment point such
that maximum in time of its response to the prescribed load is less than some critical value. In this
case, we say the model use is design.

Real physical systems such as the example described above are often very complex. The mod-
els developed to study such systems can therefore involve a large number of equations that can
only be solved numerically with a computer, requiring many hours to obtain an accurate solution.
We refer to models of this type ascomprehensive modelsfor the system. Circumstances may
require a simplified approximation for the comprehensive model; we refer to this approximation
as asurrogate modelfor the system. To illustrate, consider the case where multiple solutions of
the large finite element model for the spacecraft are necessary. This can occur, for example, if
the applied pressure field is random in space and/or time, and Monte Carlo simulation is used as

  

System

PSfrag replacements

Input Operator Output

x f y

Figure 1. Model for a system as an input/output relationship.
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the method for analysis. Optimization and sensitivity analyses also often require multiple model
solutions to estimate, for example, the gradient of the output to changes in one or more design
variables.

Surrogate models are typically based on a limited number of calculations from the comprehen-
sive models they approximate. Because of this, there may be more than one surrogate model that is
consistent with the available information. We refer to the collection of these models as thecollec-
tion of candidate surrogate modelsfor the system. Typical surrogate models include, but are not
limited to, polynomials functions [7], radial basis functions [1, 16], Kriging interpolation [3, 11],
and multivariate adaptive regression splines [6]. One type of surrogate model for non-Gaussian
random variables and stochastic processes is the polynomial chaos approximation [8, 15].

Most often, one surrogate model from the collection of candidate surrogate models is selected
and used for analysis. Classical methods to select a surrogate, such as the approaches discussed in
[7], Chapter 2, and/or [14], typically do not consider the model use. It has been demonstrated (see
[5], Section 3.1.3) that this limitation may render classical methods for surrogate model selection
inappropriate for some applications. Herein, we apply a decision-theoretic method, introduced in
[5, 13], to select a surrogate model for the system; the proposed approach uses elements from de-
cision theory [2], where the model use is included via an appropriate utility function. We apply the
methods for surrogate model selection to applications in design and prediction under uncertainty;
the method has been developed and applied to more general classes of models [5].

8



2 The model selection problem

Consider the following input/output relationship motivated by Fig. 1

y = f(x), (1)

wheref : Rd →Rl is a deterministic, measurable mapping, andx =(x1, . . . ,xd)T andy =(y1, . . . ,yl )T

areRd− andRl−valued vectors, respectively. Vectorsx andy may be deterministic or random;
for the latter case, we replacex andy with X andY, respectively. We assume: (i)f is the compre-
hensive model for a physical system developed for a specific purpose,i.e., the model use, (ii) the
functional form forf is not explicitly known, but given a value forx, we can calculate the corre-
sponding value forf(x), and (iii) limited information onf is available.

The limited information onf is of two types: (a) calibration data, denoted by(zi ,wi), i =
1, . . . ,n, wherezi ∈ Rd andwi = f(zi), and (b) prior knowledge,i.e., any information, other than
data, on the underlying physics of the system shown in Fig. 1. Prior knowledge is made up by
the opinions and theories of experts, as well as any literature on the subject; the fact thatf is
nonnegative is one example of prior knowledge. We refer to items (a) and (b) collectively as the
available information onf. Note that by assumptions (ii) and (iii), the effects of any solution
error are not included; the extension of the methods that follow to the case of nonzero error is
straightforward.

2.1 Candidate models

There may be more than one surrogate model forf that is consistent with the available information.
Define

G = {g1,g2, . . .} (2)

where, for eachj, g j : Rd → Rl denotes a surrogate model forf. We refer toG as the collection
of surrogate models forf. Eachg j ∈ G must be consistent with the available information onf,
meaning that: (i) any surrogate model that violates the prior knowledge onf is excluded from the
collection, and (ii) given a functional form forg j , we estimate values for the coefficients ofg j

using the calibration data. For example, consider the case where eachg j is a polynomial function
of the coordinates ofx ∈Rd up to and including orderj; the coefficients of surrogate modelg j can
be estimated using, for example, the method of least squares.

The objective is to select the optimal surrogate model forf, denotedg? ∈G ; this requires a pro-
cedure to rank or order the members ofG . One way to order the collection of candidate surrogate
models is to assess the accuracy of eachg j ∈ G at various values forx ∈ Rd. A comparison of the
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surrogate models at the calibration data alone may be inadequate since, in many cases, two candi-
date surrogate models may give the same results,i.e., gi(zk) = g j(zk), for i 6= j andk= 1, . . . ,n. We
therefore introduce validation data, denoted by(z′k,w

′
k), k = 1, . . . ,m, wherez′k ∈ Rd andw′

k ∈ Rl .

Validation data may originate from two sources: (i) solutions off at values forx that do not
coincide with the calibration data,i.e., w′

k = f(z′k), z′k 6= zi , i = 1, . . . ,n, k = 1, . . . ,m, and/or (ii) ex-
perimental observations of the system shown in Fig. 1. As the name implies, validation data may
not be used for surrogate model calibration. The concept of using validation data to assess the
accuracy of a surrogate model is common; see, for example, [14].

Define

p j ∝

(
λ

m

∑
k=1

‖w′
k−g j(z′k)‖2 +(1−λ)

n

∑
i=1

‖wi −g j(zi)‖2

)−1/2

(3)

where∝ is used to imply thatp j is proportional to the RHS of Eq. (3),λ ∈ (0,1) is a deterministic
constant, and‖ζζζ‖2 = ∑d

i=1ζ2
i denotes the square of the 2−norm of vectorζζζ ∈Rd. We scale Eq. (3)

such that∑ j p j = 1 and interpretp j to be the probability that surrogate modelg j ∈ G is true. The
values forp1, p2, . . . therefore define an ordering for the members ofG .

2.2 Optimal model by classical method

One technique to selectg? ∈ G is to consider only the model probabilities defined by Eq. (3). We
refer to this approach as the classical method for surrogate model selection and note that, with this
method, the optimal model is independent of the model use.

By the classical method, surrogate modelgi ∈ G is optimal and denoted byg? if

pi ≥ p j , j = 1,2, . . . (4)

We note that by Eq. (3) if validation data is unavailable,p j depends on the calibration data alone.
If, in addition, we havewi = g j(zi), i = 1, . . . ,n, j = 1, . . ., meaning that eachg j ∈ G interpolates
the calibration data, we cannot rank any surrogate model higher than any other; in this case the
models are assumed equally likely,i.e., p1 = p2 = · · · .

2.3 Optimal model by decision-theoretic method

Consistent with the approach developed in [5, 13] we propose to instead assess the utility of each
candidate surrogate model for the intended model use, then selectg? ∈G that has the least expected
utility. We refer to this approach as the decision-theoretic method for surrogate model selection.
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Let U(gi ,g j) ≥ 0 denote the utility ofgi ∈ G , if g j ∈ G is true. Surrogate modelgi ∈ G is
optimal and denoted byg? if, and only if

ui ≤ u j , j = 1,2, . . . , (5)

where

ui = E[U(gi ,G)] = ∑
j

U(gi ,g j) p j (6)

denotes the expected utility of surrogate modelgi . The utility,U , is sometimes referred to as the
“opportunity loss” (see [17], p. 60) so that the solution to Eq. (5) agrees with intuition,i.e., g? ∈G
minimizes the expected loss. For the special case whereU(gi ,g j) = 1−δi j , whereδi j = 1 for i = j
and zero otherwise, the optimal surrogate model by the classical method (Eq. (4)) is recovered (see
[12], p. 23).

The functional form forU depends on the model use, meaning that different models may
be selected for a different model use. In Section 4 we apply the decision-theoretic method for
surrogate model selection for two distinct types of model use: prediction and design.

11
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3 Surrogate models

Three classes of surrogate models are briefly reviewed. Detailed descriptions of these models can
be found in, for example, [7], Chapter 2, and [14]. The purpose here is not to present an exhaustive
list of the numerous types of surrogate models used in practice, but rather to present an overview
of a few simple relevant models so as to illustrate the concept of surrogate model selection. We
restrict our discussion to the case of scalar outputy; we therefore replacef, g, andy defined in
Section 2 withf , g, andy, respectively.

We consider surrogate models fory = f (x), x ∈ Rd, of the following type

g(x;Hr
d) =

r

∑
j=1

c jh j(x) = cTh(x), (7)

wherec = (c1, . . . ,cr)T denotes a deterministic vector of coefficients that must be determined, and
h(x) = (h1(x), . . . ,hr(x))T denotes an array of deterministic vector-valued basis functions. We
explicitly write g as a function of the collectionHr

d = {h1(x), . . . ,hr(x);x ∈ Rd} to denote the
dependence of the surrogate model on the choice of basis.

The method of least-squares can be used to solve for the coefficients of Eq. (7),i.e.,

c =
(
aTa
)−1

aTw, (8)

wherea is ann× r matrix with elementsai j = h j(zi), w = (w1, . . . ,wn)T , and(zi ,wi), i = 1, . . . ,n,
denotes the calibration data defined in Section 2. For the special case whenr = n anda has full
rank, Eq. (8) reduces to

c = a−1w. (9)

Many of the surrogate models used in practice assume the calibration data,(zi ,wi), i = 1, . . . ,n,
satisfy the following criteria:

n

∑
j=1

w j =
n

∑
j=1

zk, j = 0, k = 1, . . . ,d, and

n

∑
j=1

w2
j =

n

∑
j=1

z2
k, j = 1, k = 1, . . . ,d, (10)

wherezk, j denotes thek−th coordinate of vectorz j . When necessary, we will make the same
assumption; the extension to the case where the calibration data do not satisfy Eq. (10) is straight-
forward.

As noted, the surrogate model forf defined by Eq. (7) depends on the choice of basis,Hr
d.

We next discuss some properties ofg for three different choices forHr
d, where each choice is

commonly used in practice. The bases studied include polynomial, exponential, and indicator
functions ofx, and are discussed in Sections 3.1 – 3.3, respectively.
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3.1 Polynomial basis

Let Pr
d = {h1(x), . . .hr(x), x ∈Rd} denote the collection of multidimensional polynomials ofx up

to, and including, orderq, where

h j(x) = xq1
1 xq2

2 · · ·xqd
d , (11)

eachqi ∈ {0,1, . . . ,q}, and∑d
i=1qi ≤ q. It follows thatr, the number of terms in Eq. (7), is given by

r = ∏q
j=1(1+d/ j). For example, consider the case ofd = q = 2 so thatr = (1+2)(1+2/2) = 6.

The corresponding collection of basis functions is given byP6
2 = {h1(x1,x2), . . . ,h6(x1,x2)}, where

h1(x1,x2) = 1

h2(x1,x2) = x1

h3(x1,x2) = x2

h4(x1,x2) = x2
1

h5(x1,x2) = x1x2

h6(x1,x2) = x2
2. (12)

The polynomial basis, perhaps the most frequently used approximation for dealing with func-
tions on bounded domains, has some interesting properties. First, in generalg(zi ;Pr

d) 6= wi , mean-
ing that a surrogate model defined onPr

d does not necessarily interpolatef . Second, by Weier-
strass’s theorem, asr →∞, any continuousf can be approximated on a finite interval with arbitrary
precision (see [19], p. 159).

3.2 Exponential basis

Assumer = n and letEn
d = {h1(x), . . . ,hn(x), x∈Rd} denote a collection of exponential functions

of x, where

h j(x) = exp
(
−θ j‖x−z j‖2), j = 1, . . . ,n, (13)

andθ j > 0 is a deterministic parameter. An alternative collection of basis functions, denoted by
Ẽn

d = {h̃1(x), . . . , h̃n(x)}, can be considered, where

h̃ j(x) = h j(x)+
1−1Ta−1h(x)

1Ta−11
(14)

1 = (1,1, . . . ,1)T denotes ann×1 vector of ones, andh(x) is defined by Eq. (7).

14



The bases defined by Eqs. (13) and (14) are similar. Becauser = n, g interpolatesf for either
basis, meaning thatg(zi ;En

d) = g(zi ; Ẽn
d) = wi , i = 1, . . . ,n. The second term on the RHS of Eq. (14)

is zero forx = zi , i = 1, . . . ,n; it follows that h̃ j(zi) = h j(zi), i, j = 1, . . . ,n, and the coefficients
of Eq. (7) are therefore identical under basisEn

d and Ẽn
d. The surrogate models defined above

have special names in the literature. Equation (13) is a particular type of radial basis function
(RBF), and under basis̃En

d, Eq. (7) is a Kriging approximation forf [11, 16]. The RBF and
Kriging approximations are commonly used in practice as surrogate models for large, complex
finite element models (see, for example, [4]).

3.3 Indicator basis

Assumer = n and letIn
d = {h1(x), . . . ,hn(x), x∈Rd} denote a collection of basis functions, where

h j(x) = 1
(
x ∈ ρ j

)
, (15)

andρ1, . . . ,ρr ⊆ Rd denote non-overlapping subsets ofRd. The function 1(A) = 1 if eventA is
true, and 1(A) = 0 otherwise, is referred to as an indicator function. We consider the special case
where eachρ j is a rectangle inRd with centerx = z j and sizeφ1×·· ·×φd, i.e.,

ρ j =
d
×

k=1

[
zk, j −φk/2,zk, j +φk/2

]
, j = 1, . . . ,n, (16)

and

φk = min
zk,i 6=zk, j

|zk,i −zk, j |. (17)

By Eqs. (16) and (17),a = in, wherein denotes then×n identity matrix, so that, by Eq. (9),
c = w. More sophisticated techniques are available to select both the number of basis functions,r,
and the subsets,ρ1, . . . ,ρr ; one popular approach is the Multivariate Adaptive Regression Spline
(MARS) [6].

15
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4 Applications

Two applications are provided to demonstrate the methods for surrogate model selection. They
include: (i) deterministic prediction, and (ii) design under uncertainty. For (i), we consider a
collection of surrogate models forf , a deterministic, 4-th order polynomial function of two vari-
ables. For (ii), we consider the design of a structural dynamics application, namely the response
of a structural system to a time-varying forcing function, where one of the system parameters is
modeled as a random variable. Applications (i) and (ii) are discussed in Sections 4.1 and 4.2,
respectively.

4.1 Deterministic prediction

Let

f (x1,x2) = 100
(
x2−x2

1

)2
+(1−x1)

2 , x ∈ D, (18)

whereD = [−2,2]× [−2,2], be the comprehensive model of interest. This particular example has
been extensively studied by the optimization community and is commonly known as the Rosen-
brock test function [9, 10]. The functionf is illustrated in Fig. 2; a contour plot is also shown. The
objectives are: (i) select the optimal surrogate model forf , and (ii) predict

min
x∈D

f (x), (19)

where, by (ii) the model use is prediction. The exact solution to Eq. (19) is minx∈D f = 0 at
x = (1,1)T , as denoted by the solid circle in Fig. 2.
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Figure 2. The Rosenbrock function,f (x1,x2).
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Figure 3. Locations of calibration data,zi , and validation data,
z′j , for application #1.

4.1.1 Candidate models

The available information onf is limited to n calibration data, denoted by(zi ,wi), i = 1, . . . ,n.
We assumem validation data, denoted by(z′j ,w

′
j), j = 1, . . . ,m, wherew′

j = f (z′j) andz′j 6= zi ,
i = 1, . . . ,n, j = 1, . . . ,m. The values forzi andz′j are illustrated by Fig. 3, where domainD is
discretized into 64 non-overlapping 1/2×1/2 regions, defined by the 81 nodes in the figure. As
denoted by the black squares in Fig. 3,m = 5 of the 81 nodes are reserved for surrogate model
validation. The calibration points are selected at random from the remaining 76 nodes. The values
for z1, . . . ,zn for the case ofn = 4 andn = 10 are shown on the left and right sides of Fig. 3,
respectively, where the calibration data is denoted by a circle.

Six candidate surrogate models forf are considered,i.e.,

G = {g1, . . . ,g6}

=
{

g(x;P6
2),g(x;P10

2 ),g(x;P15
2 ),g(x;En

2),g(x; Ẽn
2),g(x;In

2)
}

, (20)

where the functional form for each surrogate is defined by Eq. (7), and the parameters for each
surrogate are estimated from the calibration data shown in Fig. 3. By Eq. (20),g1, g2, andg3 are
second-, third-, and fourth-order polynomial functions ofx ∈ R2, respectively. Surrogate models
g4 andg5 are defined on the exponential basis defined by Eqs. (13) and (14), respectively, with
θ j = 1, j = 1, . . . ,n; g6 is defined on the indicator basis discussed in Section 3.3.

We refer tog3 ∈ G as the “true surrogate model” forf because, by Eq. (18),f is a fourth-
order polynomial inx. Surrogatesg1, g3, g4, andg6 are shown in Fig. 4 for the case ofn = 15,
illustrating that the candidate models can be very different, but each is consistent with the available
information.
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Figure 4. Candidate surrogate models forf assumingn = 15.
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4.1.2 Optimal model

We apply the classical and decision-theoretic methods to select optimal surrogate models forf .
Further, we study the evolution of the optimal model as the number of calibration data,n, increases.

As discussed in Section 2, the decision-theoretic method for model selection requires a utility
function. Let

ξi = min
x∈D

gi(x), (21)

so thatξi denotes the estimate of Eq. (19) under surrogategi ∈ G . Assuming surrogateg j ∈ G
is true, we saygi ∈ G is conservative if it over-predicts the minimum,i.e., if ξi ≥ ξ j . We assume
conservative models are preferable to non-conservative models and use this assumption as the basis
for our interpretation of surrogate model utility.

An appropriate value for the utility of surrogate modelgi ∈ G , assuming surrogateg j ∈ G is
true, is given by

U(gi ,g j) = Ũ(ξi ,ξ j) =

{
β1(ξi −ξ j)2 if ξi ≥ ξ j

β2(ξi −ξ j)2 if ξi < ξ j
(22)

whereβ2≥ β1≥ 0 are deterministic parameters, and we replaceU with Ũ to denote that the utility
function can be expressed as a function ofξi andξ j alone. By Eq. (22), non-conservative models
are assigned a large utility; overly conservative models are also subject to penalty. We note that
definitions of model utility are problem-dependent; alternative definitions can be used. The utility
used here is consistent with the formulation for general problems in prediction discussed in [5],
Section 2.3.2.3.

The surrogate model probabilities,p1, . . . , p6, are shown on the left side of Fig. 5 for 4≤ n≤
20; shown on the right are the expected utilities of each surrogate model,u1, . . . ,u6. Parameters
λ = 1/2, β1 = 1, andβ2 = 10 were used for calculations. The optimal surrogate model,g? ∈ G ,
using the classical method (by Eq. (4)) and decision-theoretic method (by Eq. (5)) are shown in
Fig. 6 for 4≤ n≤ 20. As the number of calibration data,n, increases, different surrogate models
are selected. Forn < 15, different surrogate models forf are optimal under the two methods for
model selection. Forn≥ 15, p3 = 1 so that the true model,g3, is selected by both methods; this is
becauseg3 is a fourth-order polynomial requiringr = 15 coefficients (see Section 3.1).

Recall that only the decision-theoretic method includes the model use and, therefore, assigns
a large utility to those models that provide non-conservative predictions of Eq. (19). To illustrate
this, let

ξ? = min
x∈D

g?(x) (23)
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denote the prediction of Eq. (19) under the optimal model,g? ∈G . Values forξ? using the classical
method and proposed decision-theoretic method are shown in Fig. 7. Note that with the classical
method, a non-conservative model,i.e., one that under-predicts the minimum, may be selected for
n < 15. Forn≥ 15,ξ? = minx∈D f (x) = 0 using both methods for surrogate model selection.

We remark that the results presented depend on the: (i) location and number of the validation
data, (ii) order in which the calibration data is selected (see Fig. 3), and (iii) utility function.
More sophisticated methods are available to select locations for calibration and validation data
(see, for example, [18], Section 4.3); these methods can easily be included in the model selection
framework presented here. A discussion on the sensitivity of the optimal model by the decision-
theoretic method to changes in the utility function are discussed in [5], Sections 2.3.1.5, 2.4, 5.6.4,
and 5.8.4.

4.2 Design under uncertainty

We next consider the 2 degree-of-freedom oscillator shown in Fig. 8, a model commonly used
for applications in structural dynamics, whereζ denotes the forcing function,X denotes the value
for a spring constant,m1 andm2 denote the values for the two masses, andv denotes the relative
displacement of the two masses. We assume: (i) inputζ(t) is a perfectly known and deterministic
function of time,t, (ii) the value for one of the spring constants is known and fixed, (iii)X is a
uniform random variable on[1500,2500], and (iv) the values for the two masses are deterministic
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design parameters that must satisfy the following constraints:

m1 +m2 = 100 (24a)
1
99

≤ m2

m1
≤ 1 (24b)

The objectives are to: (a) select the optimal surrogate model for the comprehensive system model,
and (b) design the structure,i.e., select values form1 andm2, such that certain properties ofv
satisfy a prescribed set of conditions. By (b), the model use is design.

Let m, d, andk denote the 2×2 mass, damping, and stiffness matrices, respectively, of the two
degree-of-freedom oscillator shown in Fig. 8,i.e.,

m =

 100
1+δ

0

0
100δ
1+δ

 andk =
[
X +20 −20
−20 20

]
(25)

whereδ = m2/m1 is the ratio of the two masses, andd is such that the system is classically damped
with a constant damping ratio of 4% for each mode. The relative displacement of the two masses,
assuming zero initial conditions, is given by [20], p. 167,

v(t,X,δ) = c
Z t

0
exp[a(t− τ)]bζ(τ)dτ, (26)

where

a =
[

0 i
−m−1k −m−1d

]
, b =

[
0 0 −1 −1

]T
,

c =
[
−1 1 0 0

]
, (27)
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andi denotes the 2×2 identity matrix. We consider two metrics of system performance, given by

P(Y ≤ ȳ), and (28a)

E[Y], (28b)

whereȳ≥ 0 is a prescribed deterministic parameter, and

Y = f (X,δ) = max
t≥0

| v(t,X,δ) | (29)

is the output of interest. We writeY = f (X,δ) in Eq. (29) to be consistent with the general in-
put/output relationship described by Fig. 1, and we replacex with (X,δ) andy with Y; capital
letters forX andY are used to denote that these two quantities are random variables.

To estimate the performance metrics defined by Eq. (28), it is convenient to approximate
Eq. (29) with a surrogate model; approximation may become necessary when we consider non-
linear systems or linear systems with many degrees-of-freedom. Herein, we employ methods for
surrogate model selection for the purpose of design under uncertainty. We consider two cases:

Case #1: selectδ ∈ [1/99,1] such thatP(Y ≤ ȳ) = q̄ (30a)

Case #2: selectδ ∈ [1/99,1] such that E[Y] = r̄ (30b)

whereq̄ and ¯r denote prescribed deterministic parameters that define the design constraints. By
Eq. (30), the model use for Case #1 is different than for Case #2. Optimal surrogate models for
Case #1 and Case #2 are discussed in Sections 4.2.2.1 and 4.2.2.2, respectively. A discussion on
a related problem, whereδ = 1/99 is fixed and the model use is to predict the metrics defined by
Eq. (28), is discussed in [5], Section 3.3.

4.2.1 Candidate models

The available information onf is limited ton calibration data, denoted by(zi ,wi), i = 1, . . . ,n, and
m validation data, denoted by(z′k,w

′
k), k = 1, . . . ,m. We assume the latter is given by simulated

experimental observations of the system shown in Fig. 8. For calculations, we model each exper-
imental observation as the solution of the comprehensive model at one of the calibration points,
subject to additive noise,i.e., for k = 1, . . . ,m, w′

k is one sample of random variable

f (z′k)+Ek, (31)

where{Ek} denotes a sequence of zero-mean iid Gaussian random variables with varianceσ2, each
z′k coincides with one ofzi , i = 1, . . . ,n, andm≤ n. The data are illustrated by Fig. 9 form= 5 and
n= 10. The values forz′1, . . . ,z

′
5, the validation data, are shown in the left plot, while the values for

z1, . . . ,z10, the calibration data, are shown in the right plot. For calculations, the forcing function,
ζ(t), is given by one sample of Gaussian white noise with intensity 10000/π (see [20], p. 29).
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We consider 6 candidate surrogate models forf , i.e.,

G = {g1, . . . ,g6}

=
{

g(X,δ;P6
2),g(X,δ;P10

2 ),g(X,δ;P15
2 ),g(X,δ;En

2),g(X,δ; Ẽn
2),g(X,δ;In

2)
}

(32)

where the functional form for each surrogate is defined by Eq. (7), and the parameters for each
surrogate are estimated from the calibration data shown on the right side of Fig. 9. Note the
the functional form for each surrogate considered is identical to the functional form considered in
Section 4.1.1. Unlike the example of Section 4.1, there is no true surrogate model forf . Surrogates
g1, g2, g4, andg6 are shown in Fig. 10 for the case ofn= 15, illustrating that the candidate surrogate
models forf are very different, but each is consistent with the available calibration data.

4.2.2 Optimal model

We first apply the classical method for model selection; results using the decision-theoretic method,
which depend on the model use, are discussed in Sections 4.2.2.1 and 4.2.2.2. The surrogate model
probabilities,p1, . . . , p6, are shown on the left side of Fig. 11 for 5≤ n≤ 81; the optimal surrogate
model for f using the classical method,i.e., by Eq. (4), is also shown. Parametersλ = 1/2 and
σ2 = 10 were used for calculations. Forn < 16, any surrogate model can be selected. Forn≥ 16,
values forp1, p2, andp3, which correspond to the polynomial models, approach zero, while values
for p4, p5, andp6 are nearly identical and nonzero. Hence, among models{g4,g5,g6} there is no
strong preference of one over another forn≥ 16; this is further demonstrated by the oscillatory
behavior ofg? on the left side of Fig. 11.
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4.2.2.1 Case #1 As discussed in Section 2, the decision-theoretic method for model selection
requires a utility function; we next develop such a function to quantify the utility of each surrogate
that is consistent with the model use (Eq. (30a)).

Assuming it exists, we defineai such that

P(gi(X,ai)≤ ȳ) = q̄, (33)

so thatai is the value forδ that satisfies design condition #1, defined by Eq. (30a), under surrogate
modelgi . In the case of a non-unique solution, we choose the minimumai that satisfies Eq. (33).
The performance of designai , assuming modelg j ∈ G is true, is given by

ξi j = P
(
g j(X,ai)≤ ȳ

)
, (34)

which may or may not equal the required reliability, ¯q. We say designai is conservative if the
reliability exceeds ¯q, and non-conservative otherwise. We assume models that favor conservative
designs are favorable to models that favor non-conservative designs and use this assumption as the
basis for our interpretation of surrogate model utility.

An appropriate value for the utility of surrogate modelgi ∈ G , if surrogate modelg j ∈ G is
true, is given by

U(gi ,g j) = Ũ(ai ,a j) =

{
β1
(
ai −a j

)2
if ξi j ≥ q̄

β2
(
ai −a j

)2
if ξi j < q̄

(35)

whereβ2 ≥ β1 ≥ 0 are deterministic parameters, and we replaceU with Ũ to denote that the
utility function can be expressed as a function ofai anda j . By Eq. (35), models that favor non-
conservative designs are assigned a large utility; models that favor overly conservative designs are
also subject to penalty. The utility used here is consistent with the formulation for general design
problems discussed in [5], Section 2.3.2.2.

The expected utility of each surrogate model, denoted byu1, . . . ,u6, is shown on the left side
of Fig. 12 for 5≤ n≤ 81; shown on the right is the optimal surrogate model,g?, for each value
for n. Parametersβ1 = 1, β2 = 100, q̄ = 0.9, and ¯y = 50 were used for calculations. The results
are different than those shown in Fig. 11 because the optimal model under the decision-theoretic
method depends on the model use. For example, surrogate modelg1, a second-order polynomial,
is often optimal because it results in a conservative design of the system.

4.2.2.2 Case #2 By Eq. (30), the model use for Case #2 is different than for Case #1; our
definition for the utility function must therefore reflect this. Assuming it exists, we defineai such
that

E[gi(X,ai)] = r̄, (36)
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case #1.

so thatai is the value forδ that satisfies design condition #2, defined by Eq. (30b), under surrogate
modelgi . As before, in the case of a non-unique solution, we choose the minimumai that satisfies
Eq. (36). The performance of designai , assuming modelg j ∈ G is true, is given by

ξi j = E
[
g j(X,ai)

]
, (37)

which may or may not be equal to ¯r, the design requirement. We say designai is non-conservative
if the mean value exceeds ¯r, and conservative otherwise; we assume models that favor conservative
designs are favorable to models that favor non-conservative designs.

An appropriate value for the utility of surrogate modelgi ∈ G , if surrogate modelg j ∈ G is
true, is given by

U(gi ,g j) = Ũ(ai ,a j) =

{
β1
(
ai −a j

)2
if ξi j ≤ r̄

β2
(
ai −a j

)2
if ξi j > r̄

(38)

whereβ2 ≥ β1 ≥ 0 denote deterministic parameters. The expected utility of each surrogate model,
denoted byu1, . . . ,u6, is shown on the left side of Fig. 13 for 5≤ n≤ 81; shown on the right is
the optimal surrogate model,g?, for each value forn. Parameter ¯r = 30 was used for calculations.
In general, we note that by Figs. 12 and 13, different surrogate models are optimal under different
model use. The expected utilities are undefined forn < 12 since no value forδ exists to satisfy
the design requirement given by Eq. (30b);g? is therefore identical to results using the classical
method (Fig. 11) forn < 12.
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5 Conclusions

Methods were developed and applied to select the optimal member from a collection of candidate
surrogate models, where each is an approximation for a single comprehensive model. Each model
in the collection was consistent with limited information provided by the comprehensive model.
Classical methods select the surrogate model that best fits the data provided by the comprehensive
model; it was shown that this technique is independent of the model use and, therefore, was inap-
propriate for some applications. The proposed approach applied techniques from decision theory,
where postulated utility functions were used to quantify the model use. Two applications were
presented to illustrate the methods. These included surrogate model selection for the purpose of:
(1) estimating the minimum of a deterministic function, and (2) the design under uncertainty of a
physical system.
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