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Executive Summary 
 
Computational tools, for the purposes of this work, may be broadly classified into two 
categories: (1) customized computational tools that analyze engineering performance of a 
particular product or process and general computational tools that have a broad range of 
capabilities that can be used to analyze the response of many different technologies, 
products and or (2) processes under many different situations.  In this paper, we consider 
the former, customized computational tools that are highly developed for analyzing spe-
cific products for the purpose of improving the product or the process.  Three examples 
of computational tools, which have been successfully integrated into product and process 
engineering, are presented. The critical features that make these three computational tools 
useful to product engineers are that they simulate the correct physical phenomena accu-
rately and they are user-friendly.  Product engineers, who are not expert computational 
analysts, can use them to evaluate numerous product designs quickly and easy.  The 
ability to evaluate numerous designs results in improved products that take less time to 
engineer and often cost less.  However, a consequence of computational tools with user-
friendly, customized interfaces for advanced modeling and simulations is that the gener-
ality of codes to simulate many different products and processes is lost.  Furthermore, the 
resources necessary to customize computational tools for analyzing a specific product or 
process can be very large.   
 
This need to invest large amounts of resources to develop customized computational tools 
that are applicable only to a specific product or process has implications for managers of 
both computational tool development groups as well as product engineering groups.  
Computational tool developers must recognize that often product engineers do not ana-
lyze their product and process designs, which can benefit greatly by performance analy-
sis, simply because the computational tools are too complicated and require too much 
experience and expertise.  In such a situation, either the computational tool must be cus-
tomized for that application or an expert analyst, who has the knowledge and expertise to 
correctly analyze the product or process, must perform the analysis.  Conversely, product 
engineering managers must justify expenditure of resources necessary to customize com-
putational tools for their particular application, or work with expert analysts, who can 
perform the analysis. 
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Abstract  
 
Model-based computer simulations have revolutionized product development in the last 
10 to 15 years. Technologies that have existed for many decades or even centuries have 
been improved with the aid of computer simulations. Everything from low-tech consumer 
goods such as detergentsi, lubricantsii and light bulb filaments to the most advanced high-
tech products such as airplane wingsiii, wireless communication technologiesiv and 
pharmaceuticalsv is engineered with the aid of computer simulations today. In this paper, 
we present a framework for describing computational tools and their application within 
the context of product engineering. We examine a few cases of product development that 
integrate numerical computer simulations into the development stage. We will discuss 
how the simulations were integrated into the development process, what features made 
the simulations useful, the level of knowledge and experience that was necessary to run 
meaningful simulations and other details of the process. Based on this discussion, 
recommendations for the incorporation of simulations and computational tools into 
product development will be made.  
 
Background  
 
Without the aid of computer simulations, many of today’s products would not exist. 
Laundry detergents are more concentrated but able to readily disperse in water without 
much agitation, able to clean more effectively while less damaging to fabrics, less 
polluting and requiring less water than detergents just a few years ago. Automobiles are 
safer, more comfortable, more fuel efficient, more reliable, have better traction, have 
fewer and less emissions, and have much longer service lives than one could have 
imagined just a few years ago. A single oi1 rig today can effectively drain areas that used 
to require tens and, in some cases, hundreds of oil rigs while improving performance in 
almost every way. All these technological advances in the last 10 to 20 years have largely 
been due to the use of computer simulations in their respective fields. 
 
At the heart of product development is the ability of an engineer to understand the 
science that enables that technological improvement to the product. For example, the 
steam engine was invented long before Gibbs published his papers on thermodynamics. 
However, the understanding gained from the science of thermodynamics has given rise to 
continuous improvements and has led to the modern internal combustion engine. Science-
based computer simulations facilitate this type of product development.  The advantage 
of computer simulations is that they allow conceptualization and or visualization to a 
much greater degree than possible by closed-form analytic# techniques. The product 
engineer can explore many more engineering designs in more depth than possible 
analytically. Therefore, prototypes engineered with the aid of computer simulations have 
enormous advantages over prototypes that are engineered analytically leading to better 
final products.  
 
While few dispute that integration of computational analysis into product engineering can 
                         
# We use analytic to mean closed-form solutions obtained without the aid of numerical simulations. 
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result in better products, designing and making available simulation packages to product 
engineers remains a contentious issue. Many computational analysts would argue that 
product engineers do not have the knowledge and experience to correctly use highly 
developed computational tools for analyzing their products. They feel that the proper use, 
application and results interpretation is sufficiently complex to lead to erroneous results 
and conclusions in the hands of a novice user. Similarly, many product engineers feel that 
simulation packages are unnecessarily difficult and complicated to use.  They are 
discouraged from using the computational tools because the tools are not readily 
applicable to their products, engineers need to learn the vocabulary and syntax of the 
simulation package, the formats for inputting and outputting data are not standardized, 
the numerical solvers are confusing to use and other such difficulties.  
 
In this work, we will discuss features of a computational tool that are useful to a product 
engineer. The paper will be organized in the following way: An introductory section will 
consider the process of developing computational tools. Next, a conceptual framework 
will be presented that will facilitate the understanding of the computational tool 
development. The third section will discuss specific computational tools that have been 
developed and are currently used in product development. These computational tools will 
be placed in the conceptual framework developed in the previous section. In the fourth 
and last section, we will discuss the features of the tools that made them successful and 
provide guidance on the development of customized computational tools.  
 
Introduction  
 
Before we consider what features of computational tools make them useful to engineers, 
let us briefly consider what expertise computational engineering scientists, known as 
analysts at Sandia and in this paper, and product engineers have and what roles they play 
in product development.  Note that these are idealized summaries of their knowledge and 
capabilities and considerable overlap between analysts and product engineers may often 
exist in reality. 
 
Analysts have extensive knowledge and experience using computational tools to perform 
numerical simulation in their specialize fields. They are knowledgeable about the models, 
numerical solvers, they understand the physics of the phenomena that they are simulating 
and they have experience with applying the simulations to study problems.  They may be 
able to add to or edit the code to adapt it to a particular problem, and they can interpret 
the results of the simulations and recognize when the results are erroneous or faulty. 
However, analysts are typically not product engineers. While they are able to analyze a 
particular engineering design, they do not know the product, its manufacturing process, 
its function, the performance characteristics and properties that need to be optimized, 
engineering constraints, etc.  
 
A product engineer is usually intimately familiar with the product, its function, its 
requirements, its engineering principles, how it is manufactured, the applicable 
manufacturing, regulatory and marketing constraints, etc. However, most product 
engineers are not experienced users of computational tools. Relatively small impediments 
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such as terminology, input and output file formats, documentation, etc. will derail efforts 
by product engineers to use computational tools. It is this critical problem of designing 
computational tools so they can be used by product engineers that will be addressed in 
this paper.  
 
Conceptual Framework  
 
For computational modeling to be useful to evaluate a particular engineering design, a 
product engineer needs a computational tool that will address the correct physical 
phenomena pertaining to the product. Next, the tool must allow him to interact with it 
easily.  Among product engineers who use or would like to integrate computational tools 
into their engineering process, the most cited reason for not using them is that the 
computational tools are not user-friendly for engineering analysis and 
conceptualizationvi. Product engineers improve upon engineering designs by making 
changes and evaluating how these changes influence product performance.  After major 
engineering designs are evaluated, they are often refined by making small, incremental 
changes to look for performance trends.  If the product engineer has to pass each small 
change to an analyst to perform the simulations and report back on the performance of 
that engineering design, not only can the process become cumbersome and slow, it can 
also inherently stifles the creativity of the engineer.  In this situation where the analyst 
evaluates performance, the net result can be that the product engineer spends a lot of time 
optimizing the engineering by experimental and or analytic techniques∗, settles upon an 
engineering design and asks an analyst to evaluate its performance.  Or the product 
engineers might forego the computational evaluation entirely and simply rely on 
experiments for improving performance to meet programmatic deadlines. The ability to 
refine the engineering designs and the ability to conceptualize the relationship between 
the designs and product can often be lost when the product engineer and analyst are out 
of sync.  Customized computational tools allow product engineers to evaluate numerous 
engineering designs quickly and leads to improved prototypes for testing. 
 
The conceptual framework presented in Figure 1 is used to describe computational tools. 
Here the horizontal axis represents the accuracy, fidelity and flexibility of the simulation, 
i.e. the “goodness” of the simulation package. The vertica1 axis represents the ease of use 
of the computational tool. In this representation as one moves to the right, the simu1ation 
becomes more capable of simulating a wide variety of problems with very accurate 
results. As one moves up, the computational tool becomes easier to use, allows the user to 
interact easily with the tool and requires the user to know little about the mechanics of the 
simulation. In such a framework, the region where analysts are necessary is the lower 
right region, where the computational tools are very capable and general, but requires 
experience and expertise to apply. The region where product engineers can function 
effectively is in the upper left area. Here the physics of the problem is simulated well, but 
the tool is easy to use and requires virtually no knowledge of the mechanics of the 
simulation. Only general engineering understanding of the problem and physics is 
necessary.  
 
                         
∗ Analytic is used to mean closed-form solutions done without the aid of numerical simulations 
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The observed tendency of computational tool evolution is that as the simulation contains 
more physics and fidelity, it tends to become less easy to use as shown by the red line in 
Figure 1. The most widely applicable computational tools tend to require experienced 
analysts who understand how the simulation works, which models it uses, how it applies 
the physics to solve the problem, etc. to apply the simulation properly to solve problems. 
Computational tools for engineers require that the tools be actively developed to make 
them easy to use while minimizing the loss of fidelity of the physics or the accuracy of 
the simulation results.  
 
In the next section, computationa1 tools that are being used by engineers will be 
examined and described in the context the conceptual framework presented in Figure 1.  
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Computational tools used by engineers 
  
1. LEX-D is a computational tool whose name is short for LIGA Exposure and 
Development.  LIGA is an X-ray lithographic process for making metal or plastic micro-
parts having overall dimensions up to several centimeters and feature sizes down to about 
a micron or somewhat less.  In this process, a thick PMMA resist is first exposed to 
synchrotron radiation through a patterned absorber mask that defines the part geometry.  
The resist is then developed to remove exposed regions degraded by x-ray exposure, and 
this produces a mold that is filled by electrodeposition to produce metal structures.  These 
structures may represent the finished metal parts or may serve as a tool for producing 
plastic parts by embossing or injection molding.  Detailed descriptions of this process can 
be found elsewhere.vii  
  
The models used to simulate exposure and development are complex, as they must 
simulate multiple physical phenomena occurring both simultaneously and sequentially.  
Simulating X-ray exposure of PMMA resists consists of computing the spectrum of X-
rays produced by the synchrotron, the transmission and absorption these X-rays through 
beam filters, the influence of beam optics, and transmission and absorption in the 
PMMA.  In addition to primary radiation, secondary radiation in the form of Auger 
electrons, photoelectrons and X-ray fluorescence must also be modeled.  Some of this 
secondary radiation is absorbed in masked regions of the PMMA and so is important in 
determining dimensional tolerances of the developed mold.  Simulating the development 
process consists of computing the evolution of a two- or three-dimensional dissolution 
front, taking into account the local absorbed X-ray dose, the development temperature 
and the transport of PMMA fragments.  These models must address PMMA fragment 
transport in various feature geometries by mechanisms of diffusion, forced convection, 
natural convection, and acoustic streaming via sonic agitation.  
 
Although the basic LIGA process is straightforward in concept, process improvement and 
optimization requires detailed understanding of the complex physics underlying each 
process step.  LEX-D was developed to allow LIGA process (or product) engineers to 
quickly and easily evaluate the influences of all LIGA exposure and development 
parameters in order to improve tolerances, yield and throughput.  
 
The models of the exposure and development processes are combined in the interactive 
computer program LEX-D to compute the required mask absorber thickness, exposure 
times, the resulting dose distribution, required period of development and expected part 
tolerances.  It is also used to improve the process through analysis of mask membrane 
and PMMA substrate materials yielding reduced secondary radiation.  This simulation 
tool has an interactive, menu-driven interface that does not require the simulator to know 
the underlying physics or models.  Only an understanding of the process is required, as 
the code provides numerous help and warning messages to guide inexperienced users.  
LEX-D is usually supplied without a user manual.  To make this possible, all of the 
process parameters are pre-populated (do not need to be input) with default values for 
standard conditions, and these are simply edited by the user as needed to evaluate the 
effects of any process parameters.  In addition to making the interface easy to use, the 
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simulations take very little time, only a few seconds, on desktop computers with standard 
operating systems.  
 
A rather unique feature of LEX-D is that input and output are displayed simultaneously, 
and  “inputs” and “outputs” are largely interchangeable.  That is, the user may specify as 
“input” either process conditions or desired results, so long as the combination produces a 
unique result.  This is a critically important capability for most users of the code since, as 
engineers, they usually know what they want and are running calculations to find how to 
get it.  To accomplish this, an intelligent shell on the core of the program monitors how 
the code is being used to discern the user’s intentions.  Where necessary, the shell 
performs root-finding, optimization or other numerical iterations to produce desired 
results that are specified as “input.”  The user can thus exercise the code in a manner of 
engineering analogous to using a closed-form analytical solution, rather than simply 
performing numerical experiments.  
 
While LEX-D was originally intended for use by LIGA process engineers for process 
improvement and optimization, it has also proven useful to LIGA researchers and the 
technicians who perform the exposure and development.  The combination of simulating 
the exposure and development process in detail, with complete relevant physics, quickly 
and easily has made this tool one that is used over and over by almost everyone directly 
involved in LIGA at Sandia. 
 
2. SIP, Solder Interconnect Predictor is a computational tool that predicts the extent of 
fatigue degradation in electronic Sn-Pb solder interconnections.  Solder joints are used to 
form package-to-circuit board interconnects in most electronic devices.  They provide 
both the mechanical and electrical connection between the package and circuit board.  
During operation, the temperature of both the package and circuit board cycle from cool 
to warm and back.  Both, the package and circuit board expand to different dimensions 
due to the temperature cycles placing cyclical stresses (known as thermo-mechanical 
fatigue) on the solder joints.  Thermo-mechanical fatigue of solder joints leads to 
degradation and occasionally failure of interconnects. 
 
Today, new package designs are being created while at the same time advanced package 
materials and circuit board laminates are being developed for applications that must 
endure harsher service environments and higher temperatures during the soldering 
process (e.g. new Pb-free soldering technology requires higher assembly temperatures).  
These rapid advanced in electronic package designs and materials are quickly causing 
existing empirically-derived reliability databases to become obsolete.  The current quick 
pace of technology development and the shortened time-to-market will not allow the 
development of new reliability databases as it would be too expensive and time 
consuming to do the long-term empirical studies.  Computational tools that can simulate 
the thermo-mechanical fatigue of solder joints and predict degradation are needed to 
allow the development of new electronic packaging technologies. 
 
SIP simulates thermo-mechanical fatigue of solder joints for a variety of package types 
given the dimensions of the package, board and soldered interconnect, package and board 
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material, underfill and laminate, and temperature history.  SIP predicts fatigue 
degradation using a microstructure evolution state-variable to modify the material 
properties in real time, thus capturing the continual changes to the microstructure as 
fatigue deformation accumulates in the microstructure.  A finite element mesh of the 
solder joint geometry is automatically generated and used to map the fatigue deformation 
in the entire solder joint as a function of time.  Developing SIP required extensive 
knowledge of meshing, mechanics, physical and mechanical metallurgy and solder 
technology.  Unlike previous models, the models used in SIP were new models with 
improved fidelity and can address fatigue degradation everywhere in the entire solder 
joint. 
 
While SIP has models that simulate many complex physical phenomena accurately, it 
was designed to be used by product engineers who are not well-versed in the disciplines 
of mechanics, metallurgy or soldering technology.  To achieve this goal, the SIP code 
developers did the following:  (1) They made the tool user-friendly by allowing the 
engineer to easily input parameters into the model using a graphical user interface which 
provides pictures of interconnections that can be evaluated with corresponding lists of 
acceptable parameter choices.  They also made it easy to run simulations and generate 
thermal-mechanical fatigue lifetime predictions for Sn-Pb solder based on a couple of 
different failure criteria.  (2)  The time required to perform an analysis ranges from a few 
minutes to at most an hour on a desktop computer.  (3)  The software has the flexibility to 
address rapidly evolving technology of electronic packaging such as new geometries, 
new materials, different temperature cycles, etc.  The software is structured so that it will 
be easy to add material models and failure criteria for new Pb-free solders as soon as the 
research has developed the material models and failure criteria for these new materials. 
 
3. Eagle is a computational tool used to evaluate the engineering performance of 
pneumatic automotive tires.  Over a century of pneumatic tire use for a variety of vehicles 
operating in varied conditions has resulted in many tires of different shapes, sizes, tread 
designs and internal constructions with each tire being composed of as many as 30 to 40 
different materials in a variety of composite geometries. The, collective experience of tire 
engineers over the years has resulted in a wealth of empirical data on relationship 
between engineering parameters and performance.  The challenge for tire engineers is to 
optimize tire performance by tuning these engineering parameters.  A simple example is 
maximizing tire traction for a variety of road conditions, including wet, dry, oily, muddy 
and icy roads, etc., while minimizing wear, degradation due to fatigue, and cost. Gains in 
one performance measure will often result in a loss of another performance measure.  
State of the art tire engineering deals with a complex engineering space that is 
increasingly difficult to conceptualize.  The ability to use computational tools within a 
rigorously defined optimization framework to explore tire performance has been very 
valuable to tire engineers. 
 
Eagle is primarily a non-linear solid mechanics software package that can solve for the 
stress and strain state of a body under mechanical loading.  Understanding how this 
general purpose finite element computational tool evolved from the lower right part of 
Figure 1 to a tool for tire engineers at the top left part of Figure 1 gives us insight into 
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‘what makes a computational tool useful to engineers’.  First, not all the models in the 
mechanics package were needed; just a few basic models were needed.  While the 
underlying mechanics models for Eagle existed ten years ago, the numerical algorithms 
that allowed simulation of tire response needed to be developed.  Once the basic 
modeling capability was incorporated in Eagle, a large effort called “productionization” 
of the code was needed to make the code useable by tire engineers who were not experts 
in computational modeling.  One of the key efforts in “productionization” of the code 
was to construct simulation templates. These simulation templates restricted the 
computational tool to a specific, well defined simulation of a physical phenomenon. This 
approach allowed tire engineers to “speak their own language” in the specification of 
problem they wanted to simulate. They specified standard information about the tire such 
as tire dimension, tread geometry, materials and their arrangement – information they 
already specified in one way or another using established engineering practices. The 
practice of focusing on a particular, well defined simulation allowed the code developers 
and analysts to deliver a robust modeling approach, i.e., information from the simulation 
template could be used to automatically mesh the tire, choose the models and solvers 
correctly, set all simulation parameters in the computational tool correctly, run the 
simulation and present the results in formats that are meaningful to the tire engineers. In 
addition, the elapsed time to run most simulations is a few hours allowing engineers to 
have results overnight.  This combination of accurate simulation of physical phenomena 
and accessibility to the complex software needed for the simulation via simulation 
templates has made Eagle an enabling tool for tire engineers.  It has resulted in better 
tires that can be developed quicker and cheaperviii. 
 
Development trajectory in framework 
 
From its conception, LEX-D was designed to be a tool that is used by LIGA process or 
product engineers.  The evolution of LEX-D, over a period of almost seven years, 
occurred in a horizontal direction as shown in Figure 2.  The interface was always easy to 
use, and the simulations always ran quickly.  Over the years, a lead scientist, with support 
from several others, developed the increasingly complex physical models needed to 
accurately simulate exposure and development of the PMMA mold.  As new models were 
developed, they were added to LEX-D to make it increasingly capable in areas such as 
secondary radiation, beam optics, and transport phenomena.   
 
The models and the software package that Eagle used were highly developed more than 
10 years ago, when Eagle development started.  The software package could be applied to 
virtually any solid mechanics problem and was used to simulate the mechanical responses 
of a wide range of components made from many different materials under virtually any 
loading conditions.  Eagle’s software package was located in the far right, lower part of 
Figure 1 requiring an expert analyst was required to run the simulations.  The decision to 
develop Eagle led to the unexpected trade-off by reducing generality in order to increase 
ease of use, as shown in Figure 2, by choosing models and developing solvers that apply 
specifically to tires and to specific, well defined simulations of physical phenomenon.  
The usability was greatly enhanced by allowing tire engineers to easily interface with 
Eagle via simulation templates and outputting results in formats that were easily 
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interpretable. 
 
SIP uses the same non-linear solid mechanics solver that Eagle uses.  The models that 
predict fatigue degradation were developed by many for scientific exploration.  The 
metallurgical models to predict microstructural changes under cyclical loading were 
developed as a general capability.  Solder technology and its use as interconnects has 
been an area of both computational and experimental research for decades. The original 
meshing capability was developed as a general capability that could be applied to any 
finite element analysis.  While all these models existed and they could be applied to 
predict solder fatigue degradation, it required an analyst with specialized knowledge and 
experience in applying these models to generate a mesh, identify materials properties and 
input parameters, and analyze the output and interpret it for the electronics package 
engineer.  SIP was created in less than two years by packaging all these capabilities to 
move vertically up as shown in Figure 2.  The models and simulation capability existed, 
but packaging them and developing the customized, user interface that allowed 
application to solder joints with an automatically generated mesh, geometry selection, 
materials selection, etc. was a large effort. 
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While all three computational tools presented in this section are high on the usability axis 
and to the left on simulation ability scale, the trajectories they took are very different.  
This illustrates that computational tools appropriate for product engineering applications 
may be obtained in a number of ways, even in the seemingly counter-intuitive trajectory 
of reducing simulation ability.  In fact, this may be the most common trajectory for most 
customized computational tools as computational ability has evolved to a state where 
they can be applied very generally to a large variety of products.   
 
Discussion 
 
In all three examples, the models simulate the physical phenomena accurately using the 
latest scientific advances. LEX-D incorporates compact or analytical models to the 
maximum extent possible, and straightforward numerical methods for quadratures, root-
finding or solving time-dependent ODEs are employed only where absolutely required. 
As a result, the code is able to simulate X-ray generation, secondary radiation and other 
physics very quickly.  SIP integrated the latest understanding gained from non-continuum 
metallurgical modeling and simulation with non-linear solid mechanics to predict fatigue 
degradation in solder joints better than any other model.  Eagle used the same highly 
developed non-linear solid mechanics software package, but had to develop numerical 
solvers for the accurate simulation of the physical phenomena.  Tire engineers required 
that the output from Eagle be within 5% of the experimentally measured quantities.   
 
The utility of all three computational tools is a direct result of the customized, user-
friendly interface that allows the product engineer to evaluate engineering designs 
without being an expert analyst with extensive knowledge of modeling and simulation.  
Furthermore, they demonstrate successful implementation of properly designed software 
tools in the product development cycle.  This component cannot be overemphasized.  In 
all three cases, a lot of resources was devoted to making the computational tools readily 
useable by product engineers, who may be inexperienced computational analysts.  If 
product engineers have to spend a lot of time learning how to run simulations and 
interpret their results, they will be reluctant to incorporate computational analysis into 
their product development cycle.  If the computational tool is easy to use and can be 
applied readily to evaluate product designs, then product engineers will use it to evaluate 
new engineering designs and refine them. 
 
A consequence of designing a customized computational tool that is readily usable by 
product engineer is that the generality of the models is lost. LEX-D has very advanced 
models for X-ray optics, generation and absorption, secondary radiation, dissolution 
kinetics and many other physical phenomena that can be applied to many other 
technologies; however the package LEX-D is specialized to LIGA and to the somewhat 
broader field of X-ray lithography.  Similarly, the mechanical response models used in 
both SIP and Eagle are specialized for those applications.  The general code used in SIP 
and Eagle can be applied to everything from the response of biological tissues such as 
bone to solders, tires, airplane wings and geological structures.  However, as a tool that is 
useful to a product engineer, SIP and Eagle must be restricted to provide useful 
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information about a narrow set of technological problems.  A simple example is that the 
same models in Eagle can also be used to study the performance of a rubber belt that 
drives a gear shaft.  However, an expert analyst would be required to generate the mesh 
for the belt as the mesh parameters, such as mesh element shape and size would have to 
be adjusted for this particular geometry and loading.  Furthermore, all the simulation 
conditions and parameters (i.e. mechanics model, material model, numerical solvers and 
output format) would have to be selected by an analyst. 
 
Constant and extensive interaction between computational tool developers and product 
engineers is a critical component of ensuring that tools are developed to be useful to 
product engineers, i.e. the tools are “productionized” properly♦.  The correct phenomena 
must be simulated under the operational conditions of that product.  The input parameters 
into the code must capture the product parameters such as dimensions, materials, etc. 
correctly.  The output from the simulations must be meaningful to an engineer.  Models 
developed by scientists typically give a lot of basic information, which the scientist uses 
for exploration and discovery.  However, a lot of information may overwhelm, confuse or 
be irrelevant to a product engineer.  For example, the models in SIP can give three 
dimensional stress and strain tensors, grain size and temperature in the entire solder joint 
as a function of time.  However, all this information is not useful to a product engineer, 
who is looking for a measure of fatigue degradation for that solder joint.  Furthermore, 
the product engineer wants a measure that he can readily compare with other electronic 
packaging designs to assess the performance of that engineering.  Understanding what 
product engineers want from a simulation is a critical component of making successful 
productionized computational engineering tools. 
 
In all three cases presented in this work, the computational tools were designed by 
software developers working very closely with product engineers.  In the case of LEX-D, 
the lead scientist wrote the software with users and their needs fully in mind.  A scientist, 
who understood the LIGA exposure and development process so well that he could 
anticipate product engineers’ needs, wrote most of the code in anticipation of future 
needs.  A small team of scientists and software specialists developed SIP.  One member 
of the team was an experimental materials scientist who had worked extensively 
developing and testing solder joints for electronic packages.  Thus he was able to guide 
the development of the tool and the interface, so that electronic package engineers could 
interact easily and get meaningful results readily.  A large team of computational 
mechanics experts, software specialists and tire engineers developed Eagle.  The 
mechanics experts, software specialists and tire engineers were in daily contact during the 
tool development via E-mail and telephone.  Due to the large size and technical diversity 
of the Eagle team, they also scheduled a week-long meeting every six months to ensure 
that the customized computational tool, Eagle, facilitated tire development.   
 
Having stated that the simulations results should give results that a product engineer 
wants, it is also important to optionally provide more information that tire engineers may 
find useful.  For example, one of the outputs from Eagle is the frictional energy 
                         
♦ Productionized properly is used to mean that the emphasis is on the software product not on 
the computational science. 
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dissipation (the slip distance of the tire relative to the road multiplied by the normal stress 
and friction coefficient).  The frictional energy dissipation is related to the wear that the 
tire experiences and is measured in standard tests that tire engineers use to evaluate tires.  
However, simulations can provide much more information that an experimental test 
cannot.  The simulation can provide the normal stress everywhere in the footprint of the 
tire.  The simulations can also provide the resulting stresses at important locations within 
the tire that indicate potential problems, e.g., where stress is concentrated at levels that 
may damage the material. 
 
The resources, both in time and money, necessary to package models into customized 
computational tools applicable to specific products can be very large.  This level of 
resource expenditure can be justified only if gains made by using the computational tool 
are commensurately large.  LEX-D was developed as part of the entire LIGA technology 
development effort.  The resources spent to develop LEX-D were a small fraction of the 
resources spent to develop LIGA technology.  For a relatively small expenditure,10 to 
15%  of the LIGA development expenditureix, LEX-D enabled the processing of PMMA 
molds to progress much faster than the other processing steps required to make LIGA 
parts, resulting in excellent dimensional control of the mold and thus of the final LIGA 
component.  SIP was developed by a team of scientists and software specialists to meet 
the demands of electronic package engineers and is used extensively to evaluate designs 
for solder joints in electronic packages, which are ubiquitous.  Furthermore, advances in 
soldering technology are occurring at a rate that is much faster than ever before with new 
geometries and new materials.  SIP has allowed these new materials and new geometries 
to be evaluated at a much faster rate than possible either experimentally or analytically.  
Eagle was developed as a joint effort between Sandia and Goodyear by large team of 
scientists, software specialists and engineers over a period of 10 years.  Eagle was used 
approximately 18,000 times last year by Goodyear to evaluate various tire designs.  This 
has resulted in better tires while reducing the time and money required for these new 
designs. 
 
The need to invest large amounts of resources to develop customized computational tools 
has implications for managers of both computational tool development groups as well as 
product engineering groups.  Computational tools developers must recognize that often 
the computational codes that they have developed are not used in product and process 
development because product engineers, who are not expert computational analysts, do 
not have the knowledge and experience to apply computational tools.  This may require 
the development of customized computational tools, assigning an expert analyst to do the 
analysis or a combination of partial customization and training the product engineers.  
Product engineering groups need to recognize the cost and effort involved in developing 
customized computational tools.  They must either justify the expenditure of resources to 
develop customized computational tools, work with an expert analyst or invest in training 
a product engineer to acquire the skills necessary to apply general computation tools for 
their engineering process. 
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Summary and Conclusions 
 
In this work, we have considered the role of customized computation tools in product and 
process development.  Customized computational tools are tools that are developed to be 
used by product engineers, who are not expert computational analysts, to analyze specific 
product designs.  Three customized computational tools were examined in detail.  In each 
case, the features of the tools that allowed them to be successfully integrated into product 
design were ease of use, quick analysis time, correct and accurate physics, and the mean-
ingful results for product designers.  This level of customization allowed product engi-
neers to analyze large number of engineering designs easily and quickly resulting in 
improved products that require less time to engineer and often cost less.  
  
However, this level of customization was achieved at a price.  The generality of models 
to simulate many different problems is lost; customized computational tools are readily 
applicable to only limited physical phenomena under narrowly defined conditions.  De-
velopment of the customized tools required sophisticated and prolonged interaction be-
tween product engineers, software engineers and computational scientists with large 
amounts of resources devoted to the development.  The need for investing large amounts 
of resources to develop customized computational tools that can improve products, but 
are narrowly applicable presents management challenges to both product engineers as 
well as computational tools developers.  The decision to invest to develop customized 
computational tools must be made jointly between computational tool developers and 
product engineers to assure that the necessary resources are devoted.  Furthermore, prod-
uct engineers must justify the expenditure of these resources. 
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