
SAND2005-14981498
Unlimited Release UC-505

Printed March 2005 2005

Calibration under Uncertainty

Laura P. Swiler 
Timothy G. Trucano

Optimization and Uncertainty Estimation Department
Sandia National Laboratories

PO Box 5800
Albuquerque, NM 87185-0370

Abstract

This report is a white paper summarizing the literature and different approaches to the problem of 
calibrating computer model parameters in the face of model uncertainty.   Model calibration is often 
formulated as finding the parameters that minimize the squared difference between the model-
computed data (the predicted data) and the actual experimental data.   This approach does not allow 
for explicit treatment of uncertainty or error in the model itself:  the model is considered the “true” 
deterministic representation of reality.  While this approach does have utility, it is far from an 
accurate mathematical treatment of the true model calibration problem in which both the computed 
data and experimental data have error bars.  This year, we examined methods to perform calibration 
accounting for the error in both the computer model and the data, as well as improving our 
understanding of its meaning for model predictability.  We call this approach Calibration under 
Uncertainty (CUU).  This talk presents our current thinking on CUU.  We outline some current 
approaches in the literature, and discuss the Bayesian approach to CUU in detail.  



Acknowledgments

We thank the Department of Energy’s MICS program (Mathematics, Information, and 
Computational Sciences) for initial funding of this research.  We also thank Bruce Hendrickson, 
Scott Mitchell, and Marty Pilch for their ongoing support of this research area. 

ii



Contents
Figures iv

Introduction 5

Definitions 6

CALIBRATION 7
CALIBRATION UNDER UNCERTAINTY 7

Classical Parameter Estimation Methods 9

LINEAR LEAST SQUARES REGRESSION 10
NONLINEAR LEAST SQUARES REGRESSION 12

Optimization 13

Background 14

BAYESIAN ANALYSIS 14
Discrete case 14
Continuous case 15
Hypothesis Testing 15
Controversy with Bayesian Inference 16
Examples 17
Conjugate pairs 18

Sampling Distribution 19
Conjugate Prior Distribution 19

CALCULATIONS FROM MARKOV CHAIN MONTE CARLO 19
Metropolis-Hasting algorithm 20
MCMC Convergence 21
Gibbs Sampling 21
Gibbs Sampling Algorithm 22

SOFTWARE 22
EXAMPLE 1:  BINOMIAL MODEL 24
GAUSSIAN PROCESSES 32

Rosenbrock Example of Gaussian Processes 34

Conclusions 44

List of References 46

BACKGROUND PAPERS ON BAYESIAN CALIBRATION IDEAS 46
WISH LIST 46
FROM THE SISC – UNCERTAINTY QUANTIFICATION PAPERS (MANUSCRIPT ONLY) 48
V&V EFFORTS 48
GAUSSIAN PROCESSES 49
BAYESIAN ANALYSIS/MCMC 49
MISCELLANEOUS PAPERS 50
BOOKS 50
WEB SITES 50

APPENDIX:  Annotated Bibliography 52

K. CAMPBELL (2002), “A BRIEF SURVEY OF STATISTICAL MODEL CALIBRATION IDEAS.” 52
M. C. KENNEDY AND A. O’HAGAN “BAYESIAN CALIBRATION OF COMPUTER MODELS.” 54
D. D. COX, J-S. PARK, AND C. E. SINGER.  “A STATISTICAL METHOD FOR TUNING A COMPUTER CODE TO A DATA BASE.”59
THE DESIGN AND ANALYSIS OF COMPUTER EXPERIMENTS, BY SANTNER, WILLIAMS, NOTZ. 63

Non Bayesian Approach 63
Bayesian Approach to Design of Experiments 64

iii



Figures and Tables

Figure 1.  Calibration based on experimental data 7
Figure 2.  Calibration with experimental data and uncertain model data 8
Figure 3. Confidence versus prediction intervals in linear regression. 11
Figure 4. Confidence versus prediction intervals in nonlinear regression 13
Table 1.  Conjugate priors associated with various sampling distributions 19
Figure 5.  Rosenbrock’s Function 23
Figure 6.  Beta Prior for Binomial Failure Example 25
Figure 7.  Bayesian Updating of the Beta Distribution for p, the Failure Probability 25
Figure 8.  Posterior Distribution Summary 26
Figure 9.  Binomial Failure Example with Be(1,9) prior distribution on p 27
Figure 10.  Comparison of YADAS and BUGS output 32
Figure 11.  Gaussian Process for Rosenbrock Function based on 11 input points 37
Figure 12.  Gaussian Process for Rosenbrock Function based on 110 input points 37
Figure 13.  Delta for Configuration 1, Experiment 1 41
Figure 14.  Gaussian process (with a zero mean prior) on delta 42
Table 2.  Parameters sampled for model runs 45
Figure 16.  Delta values as a function of model configuration and experiment 46
Figure 17.  Mean delta vs. time (in 1000s seconds on X-axis), with GP prediction of delta 47
Figure 18.  Samples of the Model Discrepancy term for Configuration 5, 48
with mean discrepancy shown in red 48

iv



                                                                                        5

Introduction

A fundamental premise of many large DOE programs is that computer models can be 
calibrated using experimental data, and then used to predict phenomena for which 
experimental data are unavailable due to factors such as test facility restrictions, cost 
limitations, or treaty obligations.  For example, Sandia uses various computer models 
calibrated with limited experimental data in the Stockpile Stewardship Program.  
Predictions from these models serve as a basis for decisions such as weapon 
refurbishment schedules, experimental facility planning, and national policy 
recommendations.

The classical approach to computer model calibration assumes that the computer model is 
exact and the experimental data have error bars (i.e., confidence intervals). Calibration 
then occurs when the computer model is tuned so that the computed data lie as close as 
possible, as in a least-squares sense, to the experimental data.  While this approach does 
have utility, it is far from an accurate mathematical treatment of the true model 
calibration problem in which both the computed data and experimental data have error 
bars.  In such a scenario, calibration occurs when, in layman’s terms, the computer model 
is tuned to yield as much of an overlap as possible between the experimental and 
computational error bars.   We refer to this type of calibration as “Calibration under 
Uncertainty” or CUU.

This year, we have focused on methods to perform this more accurate computer model 
calibration, accounting for the error in the computer model as well as in the data when 
making predictions, as well as better understanding its meaning for model predictability.  
This is an exploratory research topic.  In this paper, we define calibration vs. calibration 
under uncertainty, review classical parameter estimation methods, present background 
material used in the current methods of CUU, and give a technical review of these 
methods, with an emphasis on Bayesian analysis techniques.   We present a case study of 
CUU, and we conclude with some research questions and areas for further research.

The main CUU approach we examine is that of Kennedy and O’Hagan (2001), hereafter 
referred to as KOH.  They formulate a model for calibration data that includes an 
experimental error term (similar to standard regression) and a model discrepancy term, with 
a Gaussian process chosen to model the discrepancy.  They then use a Bayesian approach to 
update the statistical parameters associated with the discrepancy term and with the model 
parameters.  The purpose of updating is generally to reduce uncertainty in the parameters 
through the application of additional information. Reduced uncertainty increases the 
predictive content of the calibration, or that is the expectation. We discuss several issues 
relating to the Bayesian approach:  First, is the Gaussian prior the correct one, or the most 
effective choice for complex computational science and engineering (CSE) models?  
Second, the mathematics behind this approach involves covariance matrices of joint input 
variable distributions.  Estimating the full joint posterior distribution therefore requires 
complicated integration and so techniques like Markov Chain Monte Carlo (MCMC) 
sampling are used to approximate the posterior distributions on the hyperparameters which 



                                                                                        6

govern the prior distribution.  We discuss MCMC methods and their suitability to the CUU 
problem.  In our conclusion section, we discuss model prediction and the limitations of 
inferences under various frameworks. 

Definitions

First, we define some general terms such as model, prediction, verification, and 
validation.  For more discussion on these terms, the reader is referred to [Calibration 
contra Validation SAMO paper].  Then, we define the terms calibration and calibration 
under uncertainty in more detail. 

We define a model to be a particular choice of inputs (e.g., initial, boundary and 
numerical parameters) for a particular computer code (e.g., a finite element code) that 
produce a specific calculation.  The results of the model are the resulting numerical data. 
A computational prediction is simply a calculation that predicts a number or quantity or a 
collection of these quantities prior to their physical measurement.  We are interested in 
accurate prediction using computation. Intuitively, accurate prediction means having 
confidence or belief in the prediction, and being willing to use the prediction in some 
meaningful way, especially in a decision process. By introducing the concept of accuracy 
into this discussion we have introduced the requirement for one or more measurement 
principles that we can use to quantify this accuracy. We call these measurement 
principles benchmarks.  A benchmark is a choice of information that is believed to be 
accurate or true, one or more methods of comparing this information with computational 
results, and logical procedures for drawing conclusions from these comparisons. In 
particular, we are interested in benchmarks that are to be used for calibration, verification 
and validation of codes or computational models.

Verification is the process of determining that requirements for the intended application 
are correctly implemented in the code.  Roache has stated that this effectively means that 
the equations implemented in the code are correctly solved for the intended application.  
The problem of verification in computational science and engineering (CS&E) codes 
boils down to the following. Given a set of equations, (1) are the chosen solution 
algorithms correct?; (2) is the software implementing these algorithms correct?; (3) are 
particular choices of input parameters and meshing providing accurate solutions? 
Validation deals with the question of whether the implemented equations in a code are 
correct for the intended applications. We define validation to be the process of 
quantifying the physical accuracy of a code for particular predictive applications through 
the comparison with defined sets of physical benchmarks. These benchmarks define what 
we will call the validation domain. We assume in this paper that validation benchmarks 
are always experimental.  Finally, calibration is the process of improving the agreement 
of a code calculation or set of code calculations with respect to a chosen set of 
benchmarks through the adjustment of parameters implemented in the code.  There may 
be a different set of benchmarks chosen for calibration vs. validation.  We assume that 
the calibration benchmarks are also experimental.



                                                                                        7

Calibration 
Model calibration refers to adjusting the parameters of a computer model (such as a 
simulation model or a finite element model).  The adjustment of parameters is usually 
done with some objective in mind, such as to generate “better” predictions with the 
model or to update the parameters according to additional data or greater physical 
understanding of the phenomena of interest.  There are many methods for adjusting the 
parameters.  The most common approach to model calibration is to find the parameters 
which minimize the squared difference between the model computed data (the predicted 
data) and the actual experimental data.  This approach does not allow for explicit 
treatment of uncertainty or error in the model itself:  the model is considered the “true” 
deterministic representation of reality.   Figure 1 shows a graph of a least squares fit 
where the coefficients of the model (in this case depicted by the pink line) are obtained 
by a standard regression technique.  In this case, the calibrated parameters are the 
regression coefficients.  

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6

X (Independent Variable)

Y 
(R

es
po

ns
e)

Figure 1.  Calibration based on experimental data

Calibration under Uncertainty
CUU refers to adjusting parameters to reflect uncertainties both in the experimental data 
and in the computer model.   Figure 2 depicts the situation of interest.   The blue bars in 
Figure 2 represent the bounds on experimental data, and the yellow bars represent the 
bounds on results obtained by various model uncertainties.  We want to determine the 
“optimal” parameter settings which will maximize the overlap between the blue and 
yellow bars.  



                                                                                        8

54321

8

7

6

5

4

3

2

1

0

Response

X

Blue = Experimental data
Yellow = Initial Model Predictions

and model predictions
Green = Overlap between experiments

Figure 2.  Calibration with experimental data and uncertain model data

The problem is made harder by the fact that models harder by the fact that models have in 
fact several different kinds of uncertainty. For our purposes here, we distinguish three 
different categories, all of which enter into the mathematics of calibration and the 
inference that can be achieved regarding the associated predictability.

 Numerical: This can be thought of as numerical errors associated with 
discretizations (we are primarily focused on models that solve systems of 
differential equations in our work). It can also include the difficult issue of 
undiscovered software “bugs” and other shortcomings associated with the 
numerical solution implementation of the model. Attacking this problem is 
classically associated with verification. Hence, success in verification reduces 
numerical uncertainty in our perspective, and potentially in quantified ways that 
can be used in CUU.

 Parametric: This is uncertainty associated with parameterizations in the model, 
which could include numerical “tunings” as well as specification of the initial and 
boundary conditions. Worrying about parametric uncertainty and how to reduce it 
as a calibration problem is part of this project.

 Structural: Structural uncertainty has to do with whether the model is “correct” in 
some sense, typically “correct for the application.” This is classically a problem of 
validation. Hence, success in validation reduces structural uncertainty in our 
perspective, and potentially in quantified ways that can be used in CUU.

Classical calibration addresses parametric uncertainty in a restricted sense, as in 
regression, but ignores numerical uncertainty and doesn’t even philosophically address 
the presence of structural uncertainty.  Ideally, we would like to incorporate the three 



                                                                                        9

kinds of uncertainty into model calibration.  In later sections of this report, we discuss 
what types of uncertainty are treated in various approaches. 

The classical parameter estimation methods, linear and nonlinear regression, are 
discussed below.  There are two reasons for this: 

1. These methods have been used successfully for many years to calibrate models.
2. Preliminary examination of the Bayesian framework has shown us that the 

“model discrepancy” or model error term often varies in a systematic way with 
respect to the model inputs or parameters.  Thus, if we are trying to characterize 
the model discrepancy, we might want to use a regression model as a basis 
function in a Gaussian process describing the model error.

Classical Parameter Estimation Methods

In classical parameter estimation, the approach taken is to use a statistical process model 
to model the underlying process.  In such an approach, the “optimal” calibrated 
parameters are determined by a regression technique.  Note that the optimal parameters 
refer to parameters of a statistical model (e.g., a regression equation), and not the 
parameters of a simulation model.  The statistical process model approach is based on the 
idea that experimental data about the process are available. While linear regression may 
not often capture the complex phenomena in CS&E models, we list the assumptions 
underlying linear regression here as a starting point for understanding the predictive 
capability one can obtain using linear regression.   The underlying assumptions used in 
statistical process modeling are [Neter et al.; NIST]:

1. The underlying process has random variation and is not deterministic.  
2. The mean of the random errors are zero.  
3. The random errors have constant standard deviation/variance.  
4. The random errors follow a normal distribution.  
5. The data must be sampled randomly from the underlying process.    
6. The explanatory variables are observed without error.  

One of the most important assumptions in prediction is assumption #4, that the random 
errors follow a normal distribution.  The mathematical theory for inferences using the 
normal distribution assumption of error terms is well developed.  In practice, the normal 
distribution often describes the actual distribution of random errors reasonably well.  
There are a variety of statistical tests to check for normality of errors.  If this assumption 
is violated, then the inferences made about the process may be incorrect. 

Linear Least Squares Regression
The most widely-used method to estimate parameters in a model is to use a linear least 
squares regression.  In a regression model with one dependent variable y and multiple 
independent variables xj, j = 1…k, the linear model is formulated as: 



                                                                                        10

  kk xxy ...110

where  represents random error associated with the model (note:  some textbooks 
emphasize that the error is observational error; others state that all unexplained variation 
in y caused by important by unincluded variables or by unexplainable random phenomena 
is included in the random error term).   Usually ~ N(0,2).  

A particular observation is indexed by i: , and the expected ikikii xxy   ...110

value of the output at a particular input value is: kikii xxyE  ...)( 110 

Least squares regression minimizes the sum of squares of the deviations of the y-values 
about their predicted values for all the data points.  Thus, for n data points, the Sum of 

Squares of the Errors (SSE) is:              2
110

1

)]ˆ...ˆˆ([ kk

n

i
i xxySSE  



The quantities that minimize the SSE are called the least squares estimates of k ˆ,..,ˆ,ˆ
10

the parameters and the prediction equation is:  , where k ,..,, 10 kk xxy  ˆ...ˆˆˆ 110 
the “hat” notation can be read as “estimator of.”  Thus, is the least squares estimator of ŷ
E(y), and are estimators of the parameters .  k ˆ,..,ˆ,ˆ

10 k ,..,, 10

Note that the term “linear regression” means linear in the parameters.  It is used for any 
function in which each explanatory or independent variable in the function is multiplied 
by an unknown parameter, there is at most one unknown parameter with no 
corresponding explanatory variable (the intercept term), and all of the individual terms 
are summed to produce the final function value. In statistical terms, any function that 
meets these criteria would be called a "linear function,” even though the function may not 
be a straight line.  For example, an explanatory variable could be x2.  

The values of the model parameters which minimize the SSE are obtained by k ˆ,..,ˆ,ˆ
10

setting the partial derivatives SSE/j = 0.  The solution is a system (usually over-
determined) of linear equations that is solved for the values of the unknown parameters.  
The least squares estimates of the coefficients are: YXXX TT 1)(ˆ 

Regression models are used for prediction in a variety of ways.  Some of the most 
common prediction tasks are to: 

1. Predict a response at a particular set of input variables.  The input variables are 
also called predictor, independent, or explanatory variables. This is done by 
substituting a particular value of x, say x’, into the regression formula with the 
fitted coefficients:  .  This is interpreted as:  the mean or 'ˆ...'ˆˆ'ˆ 110 kk xxy  
expected response at input x’ is given by .'ŷ

2. Describe the confidence interval (CI) for the mean response at a particular set of 
input values (given in step 1).  The confidence interval range (e.g., a 95% CI) is 
the range in which the estimated mean response for a set of predictor values is 



                                                                                        11

expected to fall. This interval is defined by lower and upper limits, calculated 
from the confidence level and the standard error of the fits.  The CI is around the 

, and is interpreted as:  the mean or expected response at input x’ falls within 'ŷ
the CI at a given confidence level. 

3. Describe the prediction interval (PI) at a particular set of input values.  The 
prediction interval is the range in which the predicted response for a new 
observation is expected to fall.  The PI differs from the CI in that the prediction 
interval is an interval in which a particular response for input x’ is expected to 
fall, and the CI is the interval in which the mean response for input x’ is expected 
to fall.  The PI is defined by lower and upper limits, which are calculated from the 
confidence level and the standard error of the prediction.  The prediction interval 
is always wider than the confidence interval because of the added uncertainty 
involved in predicting a single response versus the mean response.  Note that the 
prediction interval formula has an extra term in it, namely 1. So regardless of 
sample size, the added term will always cause the prediction confidence interval 
to be a little bigger then the confidence interval.

The formulas used to calculate the CI and the PI are found in most statistical text 
[e.g., Neter et. al].  

An example of confidence vs. prediction intervals for a linear regression model is 
shown in Figure 3.  Note that these intervals are for individual input points.  If you 
want a CI or PI for the entire function, it is necessary to use a simultaneous method 
such as Scheffé or Bonferroni confidence intervals.

Figure 3. Confidence versus prediction intervals in linear regression.

Linear regression is used because so extensively because many processes are well-
described by linear models, or at least well-approximated by a linear model over a short 
range.  The theory associated with linear regression is well-understood and allows for 
construction of different types of easily-interpretable statistical intervals for predictions, 

Score1

Sc
or

e2

98765432

3.5

3.0

2.5

2.0

1.5

1.0

S 0.127419
R-Sq 95.7%
R-Sq(adj) 95.1%

Regression
95% CI
95% PI

Graph of Score2 Vs. Score1 with CI and PI Bands
Score2 =  1.118 + 0.2177 Score1



                                                                                        12

calibrations, and optimizations. These statistical intervals can then be used to give clear 
answers to scientific and engineering questions.  

The main disadvantages of linear least squares are limitations in the shapes that linear 
models can assume over long ranges, and sensitivity to outliers.  Linear models with 
nonlinear terms in the independent variables curve relatively slowly, so for inherently 
nonlinear processes it becomes increasingly difficult to find a linear model that fits the 
data well as the range of the data increases.  Additionally, the method of least squares is 
very sensitive to the presence of unusual data points in the data used to fit a model. One 
or two outliers can sometimes seriously skew the results of a least squares analysis.  

Nonlinear Least Squares Regression

Nonlinear least squares regression extends linear least squares regression for use with a 
much larger and more general class of functions. Almost any function that can be written 
in closed form can be incorporated in a nonlinear regression model. Unlike linear 
regression, there are very few limitations on the way parameters can be used in the 
functional part of a nonlinear regression model. The way in which the unknown 
parameters in the function are estimated, however, is conceptually the same as it is in 
linear least squares regression.

In nonlinear regression, the nonlinear model between the response y and the predictor x is 
given as:  y = f(x,) + e, where e is the random error term and  may be a vector.  As an 
example, one could have yi = 1[1-exp(xi 2)] + ei.  The goal of nonlinear regression is to 
find the optimal values of  to minimize the function: 2

1

)),(( i

n

i
i xfy 



The value of  that minimizes the sum of squares is , and has an estimated covariance ̂
matrix given by:  , where W is an n*p matrix of first derivatives 12 )'()ˆ(  WWsVar 
evaluated at , and s2 = RSS/(n-p) = estimator of 2.    In terms of prediction, equations ̂
similar to linear regression are used. If one is predicting the mean response at a particular 
value of xo, the confidence interval is given by , where is oopno WWsty  1)'('ˆ 

 o
the vector of first derivatives of f evaluated at the parameter estimates and xo.  The 
prediction interval adds the factor of 1:  .   An example of oopno WWsty  1)'('1ˆ 

 
nonlinear regression is shown in Figure 4.



                                                                                        13

 

70605040302010 0

 700

 600

 500

 400

 300

 200

 100

   0

-100

Time(t)

C
ou

nt
(y

)
S = 47.1669      R-Sq = 92.8 %      R-Sq(adj) = 91.0 %

 + 0.782551 Time(t)**2 - 0.0065666 Time(t)**3
Count(y) = 566.815 - 31.5638 Time(t)

95% PI

95% CI

Regression

POLYNOMIAL MODEL FOR DECAY DATA

Figure 4. Confidence versus prediction intervals in nonlinear regression.

Optimization 
Nonlinear regression requires an optimization algorithm to find the value of  that pr

minimizes the sum of squares.  This is often difficult. Nonlinear least squares 
optimization algorithms have been designed to exploit the special structure of a sum of 
the squares objective function.  If the objective function is formulated as: 

Minimize , where Ti(x) is the ith least squares term (residual).  2

1

])([)( 



n

i
i xTxf

If f(x) is differentiated twice, terms of Ti(x) Ti”(x) and [Ti’(x)]2 result.  By assuming that 
the former term tends to zero near the solution (assuming that we can get the residuals 
Ti(x) close to zero), the Hessian matrix of second derivatives of f(x) can be approximated 
using only first derivatives of Ti(x).  

An algorithm that is particularly well-suited to the small-residual case is the Gauss-
Newton algorithm.  Gauss-Newton algorithms exhibit quadratic convergence rates near 
the solution.  By exploiting the structure of the problem, the second order convergence 
characteristics of a full Newton algorithm can be obtained using only first order 
information from the least squares terms.  Other optimization methods used in nonlinear 
regression are based on sequential quadratic programming.  Most statistical packages 
now offer at least one optimization method, and sometimes several, to solve for the 
optimal parameter values.  However, these solvers may experience difficulty when the 
residuals at the optimal solution are significant.  



                                                                                        14

Nonlinear regression provides a much more general framework than linear regression, 
and can be used to calibrate numerical parameters of a model.  In nonlinear regression, 
the estimated coefficients are usually more closely tied to a physical quantity than in 
linear regression.  However, it is more expensive and requires the use of optimization 
methods as well as numerical or analytical calculation of derivatives when finding the 
prediction intervals.

Background

The Kennedy and O’Hagan approach to CUU involves Bayesian analysis and Gaussian 
processes.  We provide some background for the subsequent discussion here. 

Bayesian Analysis
Bayesian data analysis is a method for making inferences from data using probability 
models for quantities we observe and for quantities about which we wish to learn 
[Gelman et. al].  In a Bayesian formulation, one models a relationship between a quantity 
of interest, such as number of successes of a system in N trials, and other parameters, 
such as the failure probability of an individual component.  The parameters in the 
probability model are characterized by distributions themselves:  these are called prior 
distributions.  Data is observed, and the resulting values of the parameters resulting from 
incorporating the data is are called the posterior distributions.  In the notation below,  
represents the unobserved quantity of ultimate interest, and x represents the data.  

Discrete case 
In the discrete case, the Bayesian formulation is: 

                








)()|()...|(
)()|()...|(),...,|(

1

1
1 gff

gffh
N

N
N xx

xxxx

where x1,…xN are independent and identically distributed observable random vector 
variables with probability mass function f(x|).[Press, 1989]  Note that f(x|) denotes the 
mass function of random vector x conditional upon another variable  = .   is assumed 
to be unobservable, and  denotes the numerical value at which  is conditioned.  In this 
case, we are assuming that  is discrete, and g() is the probability mass function.  The 
posterior probability density function of  for a given set of observed data is h(|x).  
 
Note that the denominator of (1) only depends on the xi’s and not on .  Bayes formula is 
often written as:

                            )()|,...,(),...,|( 11  gLh NN xxxx 



                                                                                        15

where L(x1,…xN |) = f(x1|) *…*  f(xN|) = the likelihood function of the data given the 
parameter  for independent data.  The expression (2) is a statement that the posterior 
distribution is proportional to the likelihood times the prior distribution. 

Continuous case
The formulation is identical to (1), only the parameter  is now a continuous parameter 
with prior density g().   An alternative approach to expressing equation (1) is to use the 
likelihood function L(x1,…xN |)  instead of the conditional probability density functions 
f(xi|).  So, one way of expressing Bayes’ Theorem in the continuous case is: 

            






dgL

gLh
N

N
N )()|,...,(

)()|,...,(),...,|(
1

1
1 xx

xxxx

 

Hypothesis Testing
Bayesian analysis can be useful for hypothesis testing, specifically in comparing 
hypothesis H (often called the null hypothesis) against an alternative hypothesis A.  For 
example, in the discrete case, we may have H: =0 and A: =1.  Let T be a test statistic 
based on a sample of N observations, TT(x1,…xN).  Then Bayes’ Theorem states that
 

              
)()|()()|(

)()|()|(
ApATpHpHTp

HpHTpTHp




where p(H) and p(A) denote the prior probabilities of H and A (these probabilities sum to 
one). 

Likewise, for hypothesis A, we have: 

                     
)()|()()|(

)()|()|(
ApATpHpHTp

ApATpTAp




Taking the ratio of 4 and 5, we have: 

                                      

















)|(
)|(

)(
)(

)|(
)|(

ATp
HTp

Ap
Hp

TAp
THp

This is interpreted as the posterior odds ratio in favor of H is equal to the product of the 
prior odds ratio and the likelihood ratio.  If the posterior odds ratio exceeds one, we 
accept H, otherwise we reject H and accept A.  Also, the ratio of the posterior odds to the 
prior odds is sometimes called “Bayes factor” and only depends on the sample data T. 
If we assume equal probability on H and A, the posterior odds ratio is just equal to the 
likelihood ratio. 



                                                                                        16

This approach to hypothesis testing does differ somewhat with classical hypothesis 
testing.  In classical hypothesis testing, we are usually interesting in testing H: =0 vs. 
A: 0.  If  is a very small amount away from 0, say by distance >0, then for 
sufficiently large N, we will always reject the null hypothesis.  In contrast, the Bayesian 
hypothesis testing is based on the relative likelihood of the two hypotheses given the data 
and the prior odds.  So, in the case of  being very close but not exactly 0, the Bayesian 
method would choose H over A. 

The approach outlined above for comparing two hypotheses can be extended.  One 
common extension is to have the alternative hypothesis be a “non-informative” 
distribution such as a uniform distribution.  Then, testing H vs. A gives some indication 
of the “correctness” of H relative to knowing very little about the distribution of the prior. 
Dr. Mahadevan has applied this to a reliability model and has a paper outlining this form 
of testing. [Zhang and Mahadevan, 2003] 
 

Controversy with Bayesian Inference
The Bayesian framework allows one to integrate observed data and prior knowledge.  In this 
case where one has no data or very little data, the posterior distribution is equal to or very 
close to the prior distribution.  In the case where there is a lot of data, and especially in the 
case where the likelihood function differs from the prior distribution, the posterior 
distribution is dominated by the likelihood function.  In the context of many of the science 
and engineering problems encountered at Sandia, we need to seriously question the 
usefulness of the Bayesian approach.  While the approach is very intuitive and reasonable 
conceptually, implementation may be difficult depending on the choice of parameters (more 
about this later).  In addition, there is the important question of how the Bayesian updating 
will be performed in a situation characterized by computationally expensive models and 
expensive testing.  If we only have a few observed data points, then our posterior 
distribution is likely to be very similar to the prior and we haven’t learned that much.  If we 
have lots of data, then we should probably use a maximum likelihood approach which may 
be simpler and easier to defend than formulating a prior distribution.   

One criticism of Bayesian statistics that we need to be aware of is the formulation of the 
prior distribution.  Ideally, the prior distribution is supposed to be obtained from 
subjective judgment and previous experience.  In practice, the prior is often chosen from 
a family of distributions that makes the calculation of the posterior distribution tractable.  
These families are called “conjugate prior” distributions and will be discussed below in 
more detail.  The biggest problem is that one often ends up estimating the 
“hyperparameters” of the prior distribution from the current data set, using maximum 
likelihood techniques or sample moments.  Calculating the parameters of the prior 
distribution from the current data set AND using this data to calculate the likelihood 
terms in Bayes’ equation violates the theorem:  the prior distribution is supposed to only 
depend on its parameters and not on the data.  This situation results in incoherent 
estimators.  



                                                                                        17

Examples
Examples are helpful to see the implications of using Bayesian inference.  To start with, 
consider the binomial distribution.  This is often used to model the number of successes, 
x, in n independent trials.  If  = the probability of success on a single trial, then the 
probability mass function for x is: 

xnx

x
n

xf 







 )1()|( 

Let us assume that  can have two possible values, 0.3 and 0.6, with the following prior 
mass function:  P{=0.3}=g(0.3)=0.1 and P{=0.6}=g(0.6)=0.9.  According to Bayes’ 
Theorem, the posterior probability mass function from Equation (1) is: 

 for =0.3 and 0.6.
)4.0()4.0()6.0()3.0()7.0()3.0(

)()1()|(
gg

gxh xnxxnx

xnx











Suppose n=5 and x = 2.  Then h(0.3|x)=0.13 and h(0.6)=0.87.  Thus, h(|x) does not 
differ that much from g(), since the update was only based on five points.  The posterior 
distribution does reflect the fact that in this set of data,  is closer to 0.3 than 0.6 and so 
the probability of =0.3 has risen from the prior value of 0.1 to the posterior value of 
0.13. 

A related example shows how the update differs if we assume that  is a continuous 
parameter between zero and one.  In this case, the posterior density is:

 










dg

gxh
xnx

xnx

)()1(
)()1()|(

If we assume a uniform prior, then g() = 1 for 0<  <1, and g() = 0 elsewhere.  In this 
case, the posterior distribution is given by: 

)1,1(
)1()|(







xnxB
xh

xnx 

where B is the beta distribution.  The posterior distribution is a beta distribution with a 
mode at the value =x/n.  The mean of  given x is E(|x)=(x+1)/(n+2). 

Often a beta distribution is assumed for the prior density function g(), where  is the 
parameter of the binomial distribution.  In this case, g() is given by: 

),(
)1()(

11






B
g

 




                                                                                        18

where 0<  <1, 0<, and 0<.  Note that in this case, we are postulating that the prior 
distribution for one parameter is characterized by a two-parameter distribution.  Thus, to 
specify the prior distribution, we need to determine , and .  The mean of this beta 
distribution is given as /(+), and the mode is given by -1/(+-2).  If someone 
specifies the mean and the mode, or the mean and the variance, it is possible to solve the 
equations to obtain  and .  The posterior distribution of  given x is also given by a 
beta distribution: 

),(
)1()|(

11












xnxB
xh

xnx

This means that if one is updating the parameter  that characterizes a binomial 
likelihood function, and if the parameter  has a prior distribution that is beta, the 
posterior distribution is also beta and the parameters of that beta distribution can be 
obtained very easily from the data.  This situation, where the prior and posterior 
distribution come from the same family of distributions, is called a “conjugate prior” or a 
conjugate pair.  More examples of conjugate priors are listed in the section below. 

To demonstrate the continuous case, assume that g() is given by a beta distribution with 
 = 3 and  =12.  In this case, E() = 0.2 and the mode of  is 0.15.  If we have x=2 and 
n=5 as in the discrete example, we find that the posterior distribution is a beta distribution 
with parameters (x+, n-x+), or B(5,15).  The mean of the posterior beta distribution is 
0.25 and the mode is 0.22.  The posterior distribution has changed based on the data. 
 

Conjugate pairs
As mentioned above, there are distribution families which are often used as prior 
distributions because they have convenient mathematical properties.  These families are 
called natural conjugate families, and the prior distribution is called a conjugate prior.  In 
such cases, performing Bayesian updating usually does not involve complex integration:  
the posterior distribution is from the same family as the prior, with parameters that can be 
obtained from the prior parameters and the data. 

Table 1 shows some conjugate prior distributions. 



                                                                                        19

Sampling Distribution Conjugate Prior Distribution
Binomial Success probability is beta
Negative binomial Success probability is beta
Poisson Mean is gamma
Exponential with mean 
(1/)

 is gamma

Normal with known 
variance but unknown 
mean

Mean is normal

Normal with unknown 
variance but known mean

Variance is an inverted gamma

Table 1.  Conjugate priors associated with various sampling distributions

Calculations from Markov Chain Monte Carlo
It is not always possible to formulate a Bayesian analysis with one of the conjugate priors 
as outlined in the section above.   Many times the calculation of the posterior density 
function involves complex integration.   There have been specific methods to 
approximate Bayesian integrals developed for low-dimensional cases (e.g., Tierney-
Kadane, Lindley approximations).  To calculate the posterior distribution for higher 
dimensions, some type of Monte Carlo method is often used to generate samples over 
which the integrand is calculated.  A popular method for doing this is called Markov 
Chain Monte Carlo (MCMC), where one wants to generate a sampling density that is 
approximately equal to the posterior density.  

The idea behind Monte Carlo Markov Chain is to construct a Markov Chain such that its 
stationary distribution is exactly the same as the distribution of interest. [Gamerman, 
1997]  A stationary distribution of a Markov chain with transition probability matrix 
P(x,y) is f if:  

fY (y)  fX (x)
x
 P(x, y)

for a discrete state chain.  The continuous state equation relates the state of the system 
after n steps to the state of the system at n-1 steps: 

fY
n (y)  p(x, y) fX

n 1(x)




 dx

Another representation that is often used is that we want to obtain E[f(x)]

dxxfxpxfE 




 )()()]([

in situations where drawing samples from the density function p(x) is not feasible and the 
inverse transform is not available (note:  by inverse transform we mean draw a sample 
from U(0,1), equate this random number to a cumulative probability from distribution p, 
then solve for x given this cumulative probability).  



                                                                                        20

The point of using MCMC methods is to generate a Markov Chain {X0, X1, X2, …} 
where Xk+1 only depends on Xk.  The distribution of Xk will approach a stationary form as 
k gets large, but in practice, one has to ignore the first M iterations.  That is: 







N

Mk
xfExf

Mn 1
)]([)(1

There are several methods for generating the Markov chain that has a stationary 
distribution with the properties of interest.  Three of the best known are the Metropolis-
Hastings algorithm, the Metropolis algorithm, and Gibbs sampling.  Here is a brief 
outline of the Metropolis-Hastings algorithm. In this approach, one needs to define a 
“proposed density function” for generating the next point, conditional on the previous 
point generated in the chain.  This density function is given by q(Y|X).  The density of 
interest (e.g., the posterior density) is given by f(X).

Metropolis-Hasting algorithm
Set i=0. 
Repeat until converged: 

1.  Sample a candidate Y from the proposal density function qY(Y|Xi)
2. Calculate the acceptance ratio (X,Y ) min(1,

fX (Y )qY(Y | Xi)
fX (X)qX(X i | Y )

)

3. Sample a uniform (0,1) random variable U
4. If (Xi,Y)U, set Xi+1=Y, else set Xi+1=Xi.
5. Increment i. 

Although the algorithm is simple, there are many issues:  how does one choose q, does q 
have to be a symmetric distribution so that q(Y|X) = q(X|Y), how does one deal with 
multiple variables, etc.?  In the case of multiple variables, there is a stepwise procedure 
where one has to specify all the full conditional distributions (distributions of one 
variable conditional on all of the others).   Transforming back and forth between 
conditionals and marginals is not trivial in high-dimension problems.  In the case of using 
a MCMC method to generate a posterior probability at a system level (for example, 
system reliability or performance), one then has to take the system posterior distribution 
and work back to the posterior distributions on individual parameters using analytic 
methods.   Finally, the issue of convergence is very important in MCMC:  when is the set 
of generated points a close enough approximation to the posterior that one can stop 
sampling? 

These questions are addressed in more detail: 
First, the issue of selecting the proposal density q:  In theory, it doesn’t matter what 
density function one chooses for q.  In practice, it matters a lot because some densities 
will converge more quickly than others.  There are many options for q, but here are some 
of the most common ones: 



                                                                                        21

1. Symmetric chains.  In this case, q(X|Y)=q(Y|X).  For this situation, the 

acceptance ratio reduces to .  )
)(
)(,1min(),(

Xf
YfYX

X

X

2. Random walk chains.  A random walk is a Markov Chain defined as j=  j-1+j, 
where j is a random variable, usually with a multivariate normal distribution f.  
In this case, q(Y|X)= f(X-Y), where Yj is drawn according to the process Yj-1+j. 
The random walk chain results in proposed values equal to the current value plus 
noise.  

3. Independence chains.  In this case, q(Y|X)= q(Y) and the proposed transition is 
formulated independently of the previous position of the chain.  

For the Metropolis-Hasting algorithm, the acceptance rate is critical and the parameters 
governing the q distribution must be tuned appropriately.  If the moves are very small and 
the acceptance probability is very high, most moves will be accepted but the chain will 
take many more iterations to converge.  If the moves are large, they are likely to fall in 
the tails of the posterior distribution and result in a low value of the acceptance ratio.   
One wants to cover the parameter space in a computationally efficient fashion.  Many 
studies have been done on optimal acceptance rates, and the results seem to indicate that 
0.45-0.5 is the optimal acceptance rate for 1-dimensional problems, whereas 0.23—0.25 
is the optimal acceptance rate for high-dimensional problems.  It is often difficult to tune 
the proposal density parameters to obtain these acceptance rates. 

MCMC Convergence
There have been two approaches to analyze convergence of a MCMC:  one is more 
theoretical and examines the structure of the chain itself, and the other is more empirical 
and analyzes the properties of the observed output from the chain.[Gamerman, 1997]  
The empirical methods have had more success as applied to real-world problems.  One 
method is to take n parallel chains, and run each of them for m iterations, and build a 
histogram of the mth iterates.  This can be repeated after a further k iterates are obtained.  
Convergence is accepted when the histograms cannot be distinguished.  Raftery and 
Lewis established a method for determining the length of a MCMC run given estimates 
of the quantiles of the chain, however it is highly parameterized and based on many 
assumptions.  From a practical standpoint, the examples we have seen indicates that we 
would need to generate thousands of samples from a MCMC, and throw away hundreds 
of them in the “burn-in” period.

Gibbs Sampling
Gibbs sampling is an attractive MCMC method because it doesn’t require a proposed 
density: the proposal distribution is built directly from the conditional density functions 
of the posterior.  Because of this, Gibbs sampling is very appropriate for Bayesian 
analysis and high-dimensional problems.  Note that the new points are always accepted in 
Gibbs sampling. 



                                                                                        22

Gibbs Sampling Algorithm
Set i=0, and initialize the chain as for a d-dimensional ),.....,( 00

2
0
1

0
dXXXX 

random vector X.

Repeat until converged: 
Obtain new values of  through success generation of values: ),.....,( 21

i
d

iii XXXX 

a.  ),.....|(~ 11
211

 i
d

ii XXXX 
b.  ),.....,|(~ 11

3122
 i

d
iii XXXXX 

.

.

.
      c.  ),.....,|(~ 121

i
d

ii
d

i
d XXXXX 

Increment i.

Thus, at each stage when one is calculating a particular value for an individual variable, it 
is done based on the “full conditional” distribution of that variable with respect to the 
other variables.  The latest information for the other variables is used in the conditioning. 

Note that with Gibbs sampling, one ends up getting a joint distribution by only sampling 
the conditionals.  The BUGS software is highly recommended for Gibbs sampling.  This 
software is worthy of further examination for us.  It is public domain software that has 
been around for several years and is probably the most commonly used for Gibbs 
sampling.  There is more detail about BUGS in the software section below. 

Software
At this point, we have evaluated three software packages for Bayesian analysis:  
FirstBayes, BUGS, and Yadas.  FirstBayes is a program written by Anthony O’Hagan for 
teaching and for people wanting to work through some examples and learn Bayesian 
statistics.  It is fairly easy to use, and quite useful for showing how a prior distribution or 
likelihood function will affect the posterior distribution in various situations.  The 
allowable distributions are conjugate priors, as outlined above.  FirstBayes runs on 
Windows and requires some system configuration to start.  It is not a long-term solution 
for us, but it may be useful to provide some ideas for test problems or prototype examples 
this year.  It does have a GUI.  One of the nice features is that it overlays the prior, 
posterior, and likelihood function on top of each other in a graph so that one can compare 
them.  

BUGS is based on Gibbs sampling.  BUGS is the MCMC software with the longest 
history.  It was developed by MRC Biostatistics group and Imperial College School of 
Medicine, St. Mary’s, London.  There is a UNIX version that is publicly available, and 
we downloaded it.  The Windows version would require some type of license.  BUGS has 
very good documentation and detailed examples.  It allows a fair amount of flexibility in 
the problem setup, but the user cannot alter the parameters of the MCMC chain itself. 



                                                                                        23

YADAS stands for Yet Another Data Analysis System.  YADAS was developed by Todd 
Graves in the Statistical Sciences Division at LANL.  It is open source software, written 
in Java.  YADAS has similar capabilities to BUGS.  It is more flexible than BUGS, but 
somewhat harder to use in that the user has to write Java classes to run a problem vs. use 
the BUGS command interface. 
 
To demonstrate the software on a real problem, we tested FirstBayes, BUGS, and 
YADAS on the Rosenbrock function, given by:.  .    2

1
22

1221 )1()(100),( xxxxxf 
A contour plot of this function is shown in Figure 5, for variable bounds .2,2 21  xx

Figure 5.  Rosenbrock’s Function

The unique solution to the optimization problem:  min f(x1,x2) over this domain is given 
by the point (x1,x2) = (1,1) where the function value is zero.  

A test function such as the Rosenbrock function is nice to use for a Bayesian analysis 
because we have the following:  

1. A set of samples of the function over the input space
2. The “true” function
3. An approximation of the function (given by the surrogate)

We used the surrogate-based optimization capability within DAKOTA to generate 110 
sample values.  

2

-2

0

1

1000

-1

2000

0
0

3000

X1

Fn. Value

1
-1

2
X2 -2

Rosenbrock's Function



                                                                                        24

Example 1:  Binomial Model
The first example we show is one where we are interested in the probability of failure 
over the input space.  Arbitrarily, we defined the probability of failure as the probability 
that the response is greater than 1000.  For the 110 LHS samples performed during the 
surrogate run, 13 samples had objective function values > 1000.  This corresponds to a 
probability of failure estimate for the sample of 0.118. 

To show how we might use Bayesian analysis to obtain a posterior distribution on p, the 
probability of failure, say we use a binomial distribution to model failures.  That is, the 
probability that one will have k failures in n trials is given by: 

knk pp
k
n

pnkpk 







 )1(),|(Bin)|Pr(

We are interested in obtaining the probability distribution of p, given the data.  That is, 
we want Pr(p|k,n).  To do this, we first need to specify a prior distribution for p.  The 
conjugate prior distribution for p is a beta distribution:  , so 11 )1()Pr(    ppp
p~Beta(,).  The posterior distribution for p given k failures out of n trials is: 

, so the posterior distribution is a Beta(+k,+n-k).11 )1()|Pr(    knk ppkp

Note that the mean of the posterior distribution, which can be interpreted as the posterior 
probability estimate of failure for a future sample from the population, is: 

.  This value lies between the sample value k/n and the prior mean, 
n

kkpE






]|[

/(+).  

In this example, we arbitrarily created a prior beta distribution for p, assuming that my 
prior knowledge was that the mean probability of failure was 0.10.  The beta distribution 
we chose was Beta(10,90).  We used the FirstBayes software to generate the posterior 
distribution.  The prior information is shown in Figure 6.  



                                                                                        25

Figure 6.  Beta Prior for Binomial Failure Example
The plot showing the prior, the posterior, and the likelihood function is shown in Figure 
7: 

Figure 7.  Bayesian Updating of the Beta Distribution for p, the Failure Probability



                                                                                        26

This shows that the posterior distribution is between the prior and the likelihood function.  
In fact, the posterior distribution shown in Figure 8 is a Beta(23,187) which is the 
formula Beta(+k,+n-k) since we had 13 failures and 97 successes in the original 110 
points.  

Figure 8.  Posterior Distribution Summary 

The posterior distribution would be different if we assumed a different prior.  For 
example, with a prior given by a Beta distribution(1,9), the mean is still 0.1 but the 
variance is much higher, and the posterior distribution is now much closer to the 
likelihood (less “weight” is given to the prior).  This is shown in Figure 9.   



                                                                                        27

Figure 9.  Binomial Failure Example with Be(1,9) prior distribution on p

In BUGS, the input file looks like: 

model bino;
const
   N = 110;  # number of observations
var 

K[N],Y[N],p;
data K,Y in "vol1/bino/bino.dat";
inits in "vol1/bino/bino.in";
{
    p ~ dbeta(10,90);
    for (i in 1:N) {
          K[i] ~ dbin(p ,Y[i]);
    }
}  

The data in read by this file is in the form K[i],Y[i], where K[i] = number of failures and 
Y[i] = number of trials thus far.  K[i] is distributed as a binomial distribution with failure 
parameter p on number of trialsY[i], and the parameter p is distributed as a beta 



                                                                                        28

distribution with parameters (10,90) as in the FirstBayes example shown above.  The data 
file for the BUGS example looks like: 

0       1
0       2
0       3
0       4
1       5
1       6
1       7
1       8
1       9
1       10
1       11
1       12
2       13
2       14
3       15
4       16
4       17
4       18
etc.

The output results from running this BUGS example are shown below.  There are two 
outputs:  summary statistics relating to the run (statistics on the output distribution of p), 
and a file with the results of sampling p according to the Gibbs MCMC procedure.  The 
summary output is as follows.  First, we ran 500 samples to account for initialization 
effects.  Then, we ran 1000 samples.  This generated a p with a mean value of 0.1219 and 
standard deviation of 4.174E-3.  We then ran another 10000 samples to see if the samples 
generated by this Markov chain would change.  They did not change significantly:
 

Bugs>update(1000)
      time for    1000   updates was  00:00:00
Bugs>stats(p)
                  mean        sd       2.5% :  97.5%  CI    median      sample
                1.219E-1   4.174E-3   1.136E-1   1.298E-1   1.220E-1     1000
Bugs>update(10000)
      time for    10000  updates was  00:00:00
Bugs>stats(p)
                  mean        sd       2.5% :  97.5%  CI    median      sample
                1.220E-1   4.162E-3   1.140E-1   1.303E-1   1.220E-1     11000  

The sample output is simply a list of values for p, starting at sample 501 because that is 
when we started recording data from the chain: 

501         1.21288E-1
502         1.24131E-1



                                                                                        29

503         1.24431E-1
504         1.26233E-1
505         1.27563E-1
506         1.14140E-1
507         1.19549E-1
508         1.24497E-1
509         1.20018E-1
510         1.19420E-1
511         1.26276E-1
512         1.18542E-1
513         1.27141E-1
514         1.20705E-1
etc.

 
The binomial example in YADAS is similar, though more complicated to specify.  There 
is an input java class file.  We will not copy the entire file, but shown below is the heart 
of the update procedure using the YADAS java classes: 

MCMCParameter[] paramarray = new MCMCParameter[]
        {
            x = new MCMCParameter ( d.r("x"), d.r(1.0), direc + "x"),
            y = new LogitMCMCParameter ( d.r("y"), d.r("ymss"), direc + "y"),
        };

MCMCBond betabond, binomialbond;

        ArrayList bondlist = new ArrayList ();

        // y ~ Beta(a,b) and x ~ Binomial (n, y).
        bondlist.add ( betabond = new BasicMCMCBond
            ( new MCMCParameter[] { y },
              new ArgumentMaker[] {
                  new IdentityArgument (0),
                  new ConstantArgument (d.r("alpha")),
                  new ConstantArgument (d.r("beta")) },
              new Beta () ));

        bondlist.add ( binomialbond = new BasicMCMCBond
            ( new MCMCParameter[] { x, y },
              new ArgumentMaker[] {
                  new IdentityArgument (0),
                  new ConstantArgument (d.r("n")),
                  new IdentityArgument (1) },
              new Binomial () ));



                                                                                        30

There are several ways to specify the inputs for this example in YADAS.  We consulted 
Dr. Todd Graves, the author of YADAS at Los Alamos, about this.  He suggested that my 
original formulation, which is the most concise, is best: 

1
x|y|ymss|alpha|beta|n|ni
r|r|r|r|r|r|i
13|0.1|0.5|10|90|110|111  

In this input file, the first line represents the number of data samples.  Here, we have 
taken the 110 data points and assumed that we essentially have one piece of information 
from it:  that there were 13 failures in 110 samples.  The second line represents all of the 
variables in this problem:  x(number of failures), y(probability of failure), ymss(standard 
deviation of the Gaussian distribution used to generate proposals using a random walk 
Markov chain Monte Carlo method), alpha and beta (parameters of the beta distribution 
governing the failure probability), and n and ni, the number of trials and the number of 
trials+1.  The third line specifies the variable types:  x is a real (r), y is a real, ni is an 
integer, etc.  The fourth line provides the actual data for these variables:  x = 13, y =0.1 
(initial estimate), ymss = 0.5, alpha = 10, beta = 90, n = 110.  

YADAS does not produce output statistics on the sampling distribution generated, but it 
does output the number of samples accepted from the proposal distribution in the Markov 
chain generation.  Since we want to keep the acceptance probability around 50% for a 
one-dimensional problem, we had to play with ymss quite a bit to get this to work out 
correctly.   Also, we had to change y from a regular MCMC parameter to a Logit MCMC 
parameter (defined between 0 and 1) to get the sampling to work better.  The advantage 
of YADAS is that you can do this (in BUGS you have no control over parameters 
governing the performance of the MCMC) but the disadvantage is that the formulations 
are more complex and require greater understanding to use. 

As an example output, the acceptance statistics when we ran a 1000 sample Markov 
chain in YADAS were: 

java BBEx 1000
0
Update 0: 0:474
       

This means that 474 out of the 1000 samples were accepted.  The output samples from 
YADAS look like: 

0.1
0.1
0.1
0.1
0.1
0.1
0.09



                                                                                        31

0.084
0.091
0.091
0.091
0.093
0.093
0.093
0.093
0.13
0.13
etc.

As a final analysis of this failure probability estimation problem, we compared the 
sample distribution of p generated by the BUGS software (which is based on Gibbs 
MCMC) and that generated by YADAS.  To make a fair comparison, we looked at 10000 
samples from each, generated after a 500-sample initialization phase.  The results are 
shown in Figure 10.  Note that in Figure 10, only 2000 of the 10000 samples are plotted 
to make the graph readable, but the pattern holds over the full 10000 samples. 

The posterior distribution of p generated by YADAS clearly has a much larger variance 
than the posterior distribution generated by BUGS:  4.5E-4 vs 1.7E-5.  Also, the means 
are quite different:  0.109 vs. 0.122.   At this point, my suspicion is that the reason the 
variance is larger may be due to the fact that we aggregated the data in YADAS into 
“one” piece of failure information:  13 failures in 110 trials.  We tried to get YADAS to 
parse the input in blocks of 10 trials (so there are 11 overall data points, each one the 
number of failures in 10 samples), but it treated each block of 10 samples as an individual 
process and created 11 Markov Chains.   We did run YADAS with a larger step size (in 
which case the acceptance probability dropped to 28%) and a smaller step size (in which 
case the acceptance probability rose to 90%) but in both cases, the variance was nearly 
the same as the case in Figure 10, and the posterior data had significantly more spread 
than the BUGS output.  



                                                                                        32

Markov Chain for posterior distribution of p 
(Probability of Failure in Binomial Model)

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500
1

14
6

29
1

43
6

58
1

72
6

87
1

10
16

11
61

13
06

14
51

15
96

17
41

18
86

YADAS Output
BUGS Output

Figure 10.  Comparison of YADAS and BUGS output

Gaussian Processes
For those unfamiliar with Gaussian processes (GP), this section provides a very brief 
introduction.  Gaussian Process models are used in response surface modeling, especially 
response surfaces which “emulate” complex computer codes.  Gaussian processes have also 
been used in conjunction with Bayesian analysis for regression problems and for calibration. 
Gaussian processes have also been widely used for estimation and prediction in geostatistics 
and similar spatial statistics applications [Cressie].

Much of this material has been drawn from the work of three experts:  Radford Neal and 
Carl Rasmussen at the University of Toronto, and Chris Williams at Edinburgh 
University. Carl has a Gaussian processes web site: 
http://www.cs.toronto.edu/~carl/gp.html.  He did a dissertation on GP in ‘96 that has 
some discussion of GPs as surrogates or emulators.  Chris Williams’ website is 
http://www.dai.ed.ac.uk/homes/ckiw/online_pubs.html.  Radford Neal has developed 
some software that we have looked at for demonstration.  Neal’s software has the 
capability to model GP and do Bayesian updating, but it requires significant user 
knowledge of/development of the code. The software is at:  
http://www.cs.toronto.edu/~radford/fbm.software.html. Neal also has a good overview 
paper, Technical report 9702 ``Monte Carlo implementation of Gaussian process models 
for Bayesian regression and classification'', which is found on his home page:  
http://www.cs.toronto.edu/~radford/papers-online.html.

A Gaussian process is defined as follows [Williams]:  A stochastic process is a collection 
of random variables {Y(x) | xX} indexed by a set X (in most cases, X is d, where d is 
the number of inputs).   The stochastic process is defined by giving the joint probability 

http://www.cs.toronto.edu/~carl/gp.html
http://www.dai.ed.ac.uk/homes/ckiw/online_pubs.html
http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.cs.toronto.edu/~radford/papers-online.html


                                                                                        33

distribution for every finite subset of variables Y(x1), ..Y(xk).  A Gaussian process is a 
stochastic process for which any finite set of Y-variables has a joint multivariate 
Gaussian distribution.  A GP is fully specified by its mean function (x) = E[Y(x)] and its 
covariance function C(x, x′).  The basic steps in defining/using a GP are: 

1. Define the mean function.   The mean function can be any type of function.  Often 
the mean is taken to be zero, but this is not necessary.  A common representation, 
for example in a regression model, is that y(x) = j wjj(x) = wT(x), where {j} 
is a set of fixed basis functions and w is a vector of weights.  Combining Gaussian 
process and a Bayesian approach, one places a prior probability distribution over 
possible functions and lets the observed data transform the prior into a posterior. 

2. Define the covariance.  There are many different types of covariance functions 
that can be used.  At this stage, we shall focus on stationary covariance functions 
where C(x, x′) is a function of x-x′ and is invariant to shifts of the origin in the 
input space.  A commonly-used covariance function (KOH) is: 

                                })'(exp{)',(
1

22



d

u
uuuovC xxxx 

This covariance function involves the product of d squared-exponential 
covariance functions with different lengthscales on each dimension.  The form of 
this covariance function captures the idea that nearby inputs have highly 
correlated outputs.  

3. Perform the “prediction” calculations.  Given a set of  n input data points {x1, x2, 
.. xn} and a set of associated observed responses or “targets” {z1, z2, .. zn}, we use 
the GP to predict the target zn+1 at a new set of inputs xn+1.   The target is usually 
represented as the sum of the “true” response, y, plus an error term:  zi = yi + i, 
where i is a zero mean Gaussian random variable with constant variance 2

.   
We assume that the prior distribution on the yi’s is given by a GP defined as Y ~ 
N(0,K), where K is the n×n covariance matrix with entries Kij = C(xi, xj).  Then 
the prior distribution on the targets zi is N(0,K+2

In).  The distribution of the 
predicted term zn+1 is conditional on the data {z1, z2, .. zn}.  It is Gaussian with the 
following mean and variance: 

                   E[zn+1 | z1, z2, .. zn ]  = kTC-1z
Var[zn+1 | z1,…, zn] =  C(xn+1, xn+1) - kTC-1k 

where k is the vector of covariance between the n known targets and the new n+1 
data point: k =  (C(x1, xn+1), ….. C(xn, xn+1) T,  C is the n * n covariance matrix of 
the original data, and z is the n*1 vector of target values.  

The equations for the mean and variance of the predictive distribution for zn+1 
both require the inversion of C, an n×n matrix.  In general, this is a O(n3) 
operation.  Neal (1997) and Williams (2002) claim that this is feasible on modern 
computers when n is the order of a few hundred, but that it becomes 
computationally expensive when n is larger than 1000.  

4. Use Monte Carlo Markov Chain (MCMC) sampling to generate posterior 
distributions on the hyperparameters which govern the covariance function (and 
the mean function).   A common approach in GP is to assume all GPs are zero 
mean, so the Bayesian updating only involves hyperparameters governing the 



                                                                                        34

covariance function.  Since these may be quite complex, one usually still needs a 
MCMC sampling method to generate the posterior.  For example, Neal assumes 
the 2 terms in the covariance function are distributed as gamma distributions 
(which themselves are governed by three parameters), so one needs to 
calculate/update these three parameters for every 2 term.  

We examined two existing, public domain codes which have capabilities for Gaussian 
process models, predictions from GPs, and MCMC to generate the posteriors on the 
hyperparameters. 

The first code is Radford Neal’s FBM, Flexible Bayesian Modeling.  This code is written 
in C and command line driven.  It has a lot of capabilities:  Bayesian regression and 
classification models based on neural nets or Gaussian processes, Monte Carlo Markov 
Chain sampling, and clustering methods using mixture models.   The documentation is 
reasonable but somewhat cryptic.  Specifically, the formulation of the hyperparameters 
and the specification of the MCMC are not intuitive at all.  It is very difficult to 
understand what is driving the output results. 

The second code is called Netlab, which is a collection of Matlab M-files.  This code also 
has a lot of capabilities, more focused on pattern recognition/classification:  it has 
functions for Principal Component Analysis, K-means clustering, self-organizing maps, 
multi-layer perception networks, radial basis function networks, some optimization 
algorithms, MCMC methods, and GPs.

Rosenbrock Example of Gaussian Processes

We ran the FBM and Netlab codes with the Rosenbrock function to see how difficult it 
was to formulate a GP in these codes, what the outputs look like, etc.   From my earlier 
work looking at Bayesian applications on the Rosenbrock function, we have a data set of 
110 output values based on sample values over the input space .  2,2 21  xx

Our data set, then, looked initially like this: 

             X1       X2    Rosenbrock fn. value
-0.9275 -0.8922 310.8349
1.6726 -0.3028 961.7705
0.1565 0.9491 86.2010
-1.3489 1.6003 10.3279
-1.8911 -1.4831 2567.8868
-0.2727 -0.4198 26.0397
-0.7271 0.7687 8.7475
0.5548 0.3538 0.4098
1.2691 1.2266 14.8165
1.1261 -1.6565 855.2737

0 0 1.00000



                                                                                        35

      …..

However, we found that when trying to formulate a Gaussian process with the “target” 
data equal to the third column in the dataset above, the inverse of the covariance matrix 
was extremely ill-conditioned and could not be calculated.  So, we tried some 
transformations.  Subtracting the mean from the output data values to create a zero-mean 
data set was not sufficient:  we needed to divide by the standard deviation to create 
(loosely speaking) a normal (0,1) distribution.  Our final data set thus looked like: 

            X1         X2    Normalized Rosenbrock fn. value
-0.9275 -0.8922 -0.17507
1.6726 -0.3028 0.983807
0.1565 0.9491 -0.57499

-1.3489 1.6003 -0.71007
-1.8911 -1.4831 3.84321
-0.2727 -0.4198 -0.68209
-0.7271 0.7687 -0.71288
0.5548 0.3538 -0.72772
1.2691 1.2266 -0.70208
1.1261 -1.6565 0.794208

0 0 -0.72667
 
Note that we have not seen any restriction in theory on the form of the output in the GP 
literature (and normalizing the output should not change the raw correlations between 
points).  However, performing this transformation did allow for the covariance matrix 
inversion.  Note that with the full dataset of 110 points, the covariance matrix with this 
transformed output data is very ill-conditioned:  the ratio of the largest to smallest 
eigenvalue is 1016.  This brings into question the “goodness” of the predictions. 

We found that the covariance matrix inversion performed much better on smaller data 
sets, with only 10 or 20 input points.   Tony Giunta confirmed that he has seen this 
phenomenon in kriging as well.  Intuitively, it seems wrong:  more data should always be 
better in terms of creating a response model or performing prediction.  But if points are 
close together in the input space, the resulting covariance matrix can have rows that are 
nearly dependent, and the inversion falls apart.  Neal explains the problem as:  “Roughly 
speaking, the covariances between neighboring training cases are so high that knowing 
all but one function value is enough to determine the remaining function value to a 
precision comparable to the level of round-off error.”  

There are a couple of ways to rectify this problem.  One way is to perform a singular 
value decomposition on the covariance matrix and remove eigenvalues less than a certain 
threshold.  Andrew Booker of Boeing has proposed an alternative approach to the 
problem of ill-conditioning.  He takes a small set of data points and uses it to estimate a 
“primary” Gaussian process.  He then fixes the parameters of this first GP, and calculates 
a second GP for a “finer” correlation structure on the remainder of the data points.  
Booker uses a Gaussian correlation function for the primary GP, but he uses a cubic 



                                                                                        36

spline correlation function for the second GP.  Booker claims that the resulting response 
model given by the sum of these two GPs is much “better” than a standard GP, at least in 
the context of optimization:  the two GP approach resulted in many fewer function 
evaluations in a surrogate-based optimization comparison. 

At this point, all we have done is experiment with the Gaussian process and its output.  
Below are two graphs showing the Gaussian process output vs. one input, X1, for the 
Rosenbrock function.  Figure 11 is based on 11 input points, while Figure 12 is based on 
110 points.  These plots were generated using the Netlab software.  A few comments:  the 
prediction intervals (based on the covariance matrix) are able to be calculated in the case 
of 11 input points, but not in the case of 110 input points because the computed inverse of 
the covariance matrix has negative values.  

In terms of the errors, one can calculate the prediction error at a particular point using the 
difference in the actual value and the GP estimate given by E[tn+1 | t1, t2, .. tn ]  = kTC-1t.  
The FBM software is set up so that you specify which of the full data set you want for 
“training” and which you want for testing.  For example, using the first 60 as training and 
the remaining 50 as test data, we get an output of predictions at the 50 test points:   

Case   Means Error^2
   1        -0.67  0.0008
   2    0.19  0.0038
   3   -0.63  0.0001
   4   -0.41  0.0000
   5   -0.40  0.0001
   6     0.47  0.0023
   7   -0.48  0.0001
   8   -0.42  0.0003
   9      1.04  0.0036
  10   -0.17  0.0006
  11   -0.71  0.0003
  12   -0.55  0.0011



                                                                                        37

 

Ros.  
Fn. 
Normalized  
Value 
 

X1 

Figure 11.  Gaussian Process for Rosenbrock Function based on 11 input points
 

-2.       -1.5 -1    -0.5            0         0.5           1.0           1.5 2 

X1 

Ros. Fn.  
Normalized 
Value 

Figure 12.  Gaussian Process for Rosenbrock Function based on 110 input points



                                                                                        38

Both software packages require a bit of manipulation to obtain the actual parameters 
governing the GP.  In Netlab, the output looks like: 

   net = 

          type: 'gp'
           nin: 2
          nout: 1
          bias: -1.5269
     min_noise: 1.4901e-08
         noise: -5.7542
     inweights: [-0.1884 -2.8436]
      covar_fn: 'sqexp'
          fpar: 2.0028
          nwts: 5
         tr_in: [11x2 double]
    tr_targets: [11x1 double]

The fields in governing a Gaussian Process NET are:
  type = 'gp'
  nin = number of inputs
  nout = number of outputs: always 1
  nwts = total number of weights and covariance function 

parameters
  bias = logarithm of constant offset in covariance function
  noise = logarithm of output noise variance
  inweights = logarithm of inverse length scale for each input 
  covarfn = string describing the covariance function:
      'sqexp'
      'ratquad'
 fpar = covariance function specific parameters (1 for squared 

exponential, 2 for rational quadratic)
  trin = training input data (initially empty)
  trtargets = training target data (initially empty)

Note that for this example, there are five parameters (nwts):  the bias, the noise, the 
inverse length scale for X1 and X2 in the covariance parameter, and a covariance 
parameter fpar that gets updated.  The updating of the posterior distributions in Netlab is 
not done with a Bayesian approach, rather it is done with a conjugate gradient method 
which maximizes the likelihood of the data given the hyperparameters.  

The basic steps to generating a Gaussian process, updating the parameters, then using it 
for prediction in Netlab are:  define the GP by defining a “NET” with parameters listed 
above, initialize the priors, optimize the net (get posterior estimates of the parameters), 
calculated the covariance/inverse covariance matrix, defined the set of Xtest values for 
which you want predictions, do a “forward” propagation given the GP structure and 
hyperparameters to calculate an estimated Ytest vector for the Xtest inputs (along with 
prediction intervals), graph the original data and the predictions. 

One feature that is very nice in Netlab is that one can see the matrix manipulations and 
covariance calculations at each stage.  Hybrid MCMC can be used for a Bayesian 



                                                                                        39

updating of the parameters vs. a max likelihood optimization, though we haven’t done 
that yet.  

The FBM, Flexible Bayes Modeling software, has many of the same capabilities as 
Netlab.  The output defining the GP is much more cryptic:  

GAUSSIAN PROCESS IN FILE "lin2.gp" WITH INDEX 100

HYPERPARAMETERS

Constant part:

     10.000

Exponential parts:

      8.826
      0.314 :      0.314      0.314

Noise levels:

      0.015 :      0.015

In this output, the constant part of the covariance is listed followed by the exponential 
part and the noise levels.  All of the parameters (with the exception of the constant term) 
are given with gamma functions as priors, according to Neal’s explanation:  “if  is a 
hyperparameter, then  = -2 can be given a gamma prior with density:  

.”  However, this gamma density has two )2/(12/
2/

)2/(
)2/()( 




 


 ep

hyperparameters associated with it ( is a positive shape parameter and  is the mean of 
).  It is not clear what the software is reporting, for example, when it reports 8.826 as the 
parameter governing the covariance distribution (is it , ,, , or )?  Also, the three 
parameters below 8.826 (three values all equal to 0.314) are “relevance parameters.”  
Originally we had thought these were lengthscale parameters, but Neal specifies that they 
“control the amount by which the input has to change to produce a change in the non-
linear component of the function that is comparable to the overall scale over which this 
component varies.”  

Neal strongly advocates the use of hybrid MCMC methods to generate the posterior 
distribution.  Neal claims that a standard MCMC approach will lead to inefficient random 
walks over the posterior distribution space.  The hybrid approach suppresses part of the 
“random walk” aspect of MCMC by introducing “momentum” variables that are 
associated with “position variables” that are the focus of interest (for example, the 
hyperparameters governing the covariance function).  The momentum variables cause the 
particle to continue in a consistent direction until such time as a region of high energy 
(low probability) is encountered.  At that point, the position “leapfrogs” to another state.  
This sounds somewhat like simulated annealing within a Markov chain.  One problem 



                                                                                        40

with this is that it introduces yet another set of parameters the user must specify – 
momentum parameters, stepsizes, windowsizes, etc. 

Overall, one can specify a GP model, perform the updating, and make predictions with a 
few command lines of input.  However, the input specification is very cryptic, and it is 
difficult to tell what algorithms or approach is being used without stepping through the 
code line by line.  FBM does produce output in the form of predicted values for our test 
cases.  Also, the FBM software has a variety of functions which let the user see the 
covariance matrix, the eigenvalues of the covariance matrix, etc.  

Prototype SNL Gaussian Process code
To overcome some of the problems with FBM and Netlab, we decided to implement our 
own version of a Gaussian process model so that we could fully control the form of the 
basis and the covariance functions, the parameters governing those functions, and the 
methods to obtain the parameter estimates (Bayesian vs. maximum likelihood, etc.)

The SNL code allows the user to follow the basic steps in generating a Gaussian process: 
define the GP, initialize the priors, determine posterior estimates of the parameters, 
calculate the covariance/inverse covariance matrix, define the set of X values for which 
you want predictions, do a “forward” propagation given the GP structure and 
hyperparameters to calculate an estimated Y vector for the X inputs along with prediction 
intervals.  The SNL code is discussed in more detail in the example section below. 

Thermal Validation Challenge Problem

This section discusses an approach to calibration under uncertainty using data provided as 
part of the Thermal Validation Challenge problem developed by Dowding and Hills 
[Dowding and Hills, 2005].  The purpose of this problem is to test some of the validation 
approaches in a formal way.  The problem was designed to “incorporate features that 
represent the practical realities that are often imposed on modelers and experimentalists 
in the development and execution of validation experiements”, including experimental 
error, unit-to-unit variability, and model approximation/model form uncertainty.  

The problem is one of heat conduction through a cylinder.  There is an analytic solution 
to this, given by a PDE.   Experiments were run at four experimental configurations 
(involving fixed values of applied heat flux and cylinder length), and one final 
experiment was run as the “test” for an extrapolated model. 

We started by looking at the first experiment.  For this experiment, Dowding and Hills 
provided experimental data:  measured temperature histories from time = 0 to time = 
2000 seconds.   Because the PDE model was inexpensive to run, we were able to generate 
code predictions exactly at the experimental times, so there was not an issue “matching” 
the experimental data configuration to the code configuration, although often there is. 



                                                                                        41

The graph of delta, the difference between the experimental data and model prediction is 
shown in Figure 13 for Configuration 1, Experiment 1.  As you can see, there is a 
difference between the model predictions and the experimental data.  This error grows as 
a function of temperature.  

Figure 13.  Delta for Configuration 1, Experiment 1

Figure 13 tells us that model discrepancy term is not a zero mean process.   We did 
initially try to model it as a zero mean Gaussian process, to see if the correlation structure 
could account for the trend, but it did not.  The discrepancy vs. temperature plot in Figure 
14 (note temperature is scaled to 0-2 from 0-2000 in Figure 14) shows that the GP 
prediction of the discrepancy term reverts back to the zero mean, constant variance 
process by 5000 seconds.  The Gaussian process mean is given by the center blue line, 
and the +/- 2 standard deviation confidence interval is given by the upper and lower blue 
dotted lines.  If we took this approach, we would not be capturing the trend of the data 
(which would indicate the mean of the GP on delta should be around 20 degrees by 4000 
seconds, indicating that the mean model prediction would be lower than experimental 
data by 20 degrees at that time. 



                                                                                        42

Figure 14.  Gaussian process (with a zero mean prior) on delta

Our approach to modeling a discrepancy term with a Gaussian 
Process
We start with an approach similar to KOH, but with some differences.  We are going to 
assume that the experimental data is equal to some “true” process plus some error, but we 
assume the true process is equal to code calculation plus a discrepancy term.  Therefore, 
we only have one GP in our approach and do not use a GP as a code emulator: 
                  Experimental data = zi = (xi) + ei = Code Output + (xi) + ei               

Based on the type of discrepancy we see in Figure 13, which has a clear linear trend, we 
need to use a Gaussian process with a non-zero mean.  Our approach is straightforward: 

1. Calculate the model discrepancy as (experimental data – code prediction) for a set 
of points which “match” in terms of experimental configuration and computer 
code configuration.  Thus, (xi) = zi - Code Output.

2. Examine the model discrepancy term.  Fit a polynomial regression model to the 
data.  This is a regression where the dependent variable is the model discrepancy 
and the independent variables are the independent variables xi.  Thus, the mean of 
the GP is now the regression function:  (xi) is distributed normally with a mean = 



                                                                                        43

h(x)T, where  are the coefficients of the regression terms h(x).  In this example, 
x is one dimensional, corresponding to time, and so h(x)T = [1 x] and  = [o, 1].

3. Calculate the mean and variance of the resulting model discrepancy term (xi)’, 
where (xi)’ = (xi)- h(x)T.  The mean of (xi)’ should be very close to zero.  
The estimated variance of (xi)’, 2, is what we will use as a prior estimate of the 
variance of the Gaussian process.  Thus, the total model discrepancy is: (xi) = 
(xi)’ +  h(x)T, where (xi)’ ~ N(0, K+2I).  The covariance matrix K has entries 
K(x,x’):  

                                                           })'(exp{)',(
1

2



d

u
uuuwK xxxx

4.  Define the Gaussian process and estimate its parameters.  Note that once we have 
defined a GP and estimated the hyperparameters (either via a Bayesian, maximum 
likelihood, or other approach), it is possible to calculate the covariance matrix and 
its inverse, define the set of X values for which you want predictions, do a 
“forward” propagation given the GP structure and hyperparameters to calculate an 
estimated Y vector for the X inputs (along with prediction intervals based on the 
variance estimate at Y).  This is the way GP models are used for prediction. 

The GP (xi)’ is defined to have mean zero, variance 2, and covariance matrix 
given by K.  To determine the optimal values of the hyperparameters wu, we used 
the constrained minimization algorithm given by fmincon in Matlab to find the 
parameters which maximizes the log likelihood.  The log likelihood is the log of 
the likelihood of the data, given the hyperparameters and this Gaussian process 
model.  There is an analytic form of the log likelihood.  For n data points, with the 
data in vector z, and C as the covariance matrix = K+2I, the log likelihood is:  

                                        2log
22

1detlog
2
1 1 nzCzCL T  

5.  Use the Gaussian process model for prediction. After the optimal values of the 
parameters wu are obtained, one can then use the GP model for prediction.  Given 
a set of  n input data points {x1, x2, .. xn} and a set of associated observed 
responses or “targets” {z1, z2, .. zn}, we use the GP to predict the target zn+1 at a 
new set of inputs xn+1.     We assume that the prior distribution on the targets zi is 
N(0,K+2In), where K is the n×n covariance matrix with entries Kij = K(xi, xj).  
The distribution of the predicted term zn+1 is conditional on the data {z1, z2, .. zn}.  
It is Gaussian with the following mean and variance: 

                   E[zn+1 | z1, z2, .. zn ]  = kTC-1z
Var[zn+1 | z1,…, zn] =  C(xn+1, xn+1) - kTC-1k              

where k is the vector of covariance between the n known targets and the new n+1 
data point: k =  (C(x1, xn+1), ….. C(xn, xn+1) T,  C is the n * n covariance matrix of 
the original data, and z is the n*1 vector of target values.  

Note that the equations for the mean and variance of the predictive distribution for 
zn+1 both require the inversion of C, an n×n matrix.  This becomes 
computationally expensive when n is larger than 1000.  



                                                                                        44

The equations for the mean and variance can be re-run at different potential X 
values to obtain a graph of the GP.  Note that for each possible X you want to 
examine, you have to re-run the calculation of the covariance matrix and its 
inverse.

We implemented this in Matlab, vectorizing as many of the operations as we 
could.  Figure 15 shows an example of what results are calculated in the process:

Figure 15.  Mean delta vs. time (in 1000s seconds on X-axis), with GP prediction of delta

There is an additional aspect that we need to address in this CUU problem:  Determine 
how to extend this GP approach to model a general case.  For example, how would the 
approach predict the results from Configuration 5, when the GP parameters seemed to be 
very specific to the particular experiment and set of configuration conditions for that 
experiment?

The graph shown in Figure 15 is based on one experimental configuration and one code 
run result.  It did not sample from the uncertain parameters when running the thermal 



                                                                                        45

model of heat conduction through a cylinder.   Subsequently, we took 20 Latin 
Hypercube samples from distributions associated with k, Cp, L, and q.  For each 
configuration, we generated the appropriate LHS samples according to Table 2:

Parameter/
Configuration

k (W/mK) Cp (W/mK) L(m) q (W/m2)

Configuration 1 Triangular
(l.b. = .0378,
Mode = 0.5,
u. b. = 0.662)

Uniform
(l.b. = .331E+6,
u. b. = .449E+6)

Normal
(= .0127,
 = 2.54E-4) 

Normal 
(= 1000,
 = 15)

Configuration 2 “ “ Normal
(= .0254,
 = 2.54E-4)

Normal 
(= 1000,
 = 15)

Configuration 3 “ “ Normal
(= .0127,
 = 2.54E-4)

Normal 
(= 2000,
 = 30)

Configuration 4 “ “ Normal
(= .0254,
 = 2.54E-4)

Normal 
(= 2000,
 = 30)

Configuration 5 “ “ Normal
(= .019,
 = 2.54E-4)

Normal 
(= 3000,
 = 45)

Table 2.  Parameters sampled for model runs

We then ran the heat conduction model with the sampled parameters, resulting in sets of 
output temperature profiles over time.  The model output was subtracted from the 
experimental data to obtain delta values:  (xi) = zi - Code Outputi. These samples of the 
delta temperature profiles are shown by the blue lines in the panels in Figure 16.   The red 
line in each graph shows the mean of the model discrepancy terms.  We were surprised 
that the there was so much variation in the deltas:  variations in the model inputs caused 
the model to overpredict or underpredict the experiment by as much as 300 degrees 
(especially Configuration 3).  The difference in the model errors out at 2000 seconds was 
large, in many cases 150 degrees or more.

 



                                                                                        46

Figure 16.  Delta values as a function of model configuration and experiment

Configuration 5 prediction
After having obtained the mean model discrepancy terms for each configuration as shown 
in Figure 16, we averaged these mean error terms over all configurations.  This step is 
probably the most questionable, in that the assumption is that model discrepancy for 
configuration 5 is represented by an equal weighting of the model discrepancies from all 
of the previous configurations and experiments.  This “mean of means” model 
discrepancy term is shown in Figure 17 in red:  it is about 50 degrees at 2000 seconds, 
meaning that the model overpredicts by 50 degrees at 2000 seconds, based on the average 
of the previous configuration results.  Projecting this out to 3000 seconds, we have that 
the model discrepancy to be about 75 degrees.  

The mean model discrepancy in Figure 17 is EXTREMELY linear, so a linear regression 
was used to fit a basis function for the mean of the Gaussian process.  The remaining 
“noise” is zero mean, as seen by the solid green line in Figure 17.  The green circles show 
the Gaussian process predictions both at points between 0 and 2000 seconds, and from 
2000 to 3000 seconds.  The predictions follow the actual points exactly in most cases.  In 
some cases there are minor variations between the Gaussian process and the actual 
prediction, and then the variance of the GP is shown as a dotted green line.  The variance 
goes to a constant by 3000 seconds.   The mean of the GP and the regression function are 
added to obtain the mean delta prediction values, shown by the center dashed red lines.  
The dashed red lines around the center line are the 2 upper and lower bounds on the 



                                                                                        47

prediction.  Note that the prediction interval on the mean delta value is fairly tight.  This 
is to be expected, as the regression fit is very good and the GP governing the residual 
error has a small variance. 

Figure 17.  Mean delta vs. time (in 1000s seconds on X-axis), with GP prediction of delta

We then ran the heat conduction model with the configuration 5 parameter values.  The 
results of this run are shown in Figure 18. 



                                                                                        48

Figure 18.  Samples of the Model Discrepancy term for Configuration 5, 

with mean discrepancy shown in red

As you can see, the model tends to overpredict in Configuration 5, by up to 300 degrees 
at 2000 seconds.  The mean discrepancy term for Configuration 5 has a value of -152.7 at 
2000 seconds.  This is in contrast to Figure 17, where the mean discrepancy term at 2000 
seconds is -49.7.  Thus, if we use this approach to modeling discrepancy, we must look 
some other way of translating the results of model discrepancies from previous runs to 
the current run.  Mean discrepancy is not sufficient.  However, this does not imply that 
the Gaussian process approach is not useful.  We need to reconsider exactly what we are 
modeling with the GP.  Looking at the residuals left from fitting a linear regression to the 
deltas and fitting a GP to that may not be particularly useful, especially if the “structure” 
of the discrepancy term is mostly captured in the basis function (the regression), as it is in 
these cases.  Our next step is to make the delta term multi-variate, in this case a function 
of other parameters in the problem such as cylinder length, applied heat flux, etc.  We 
believe that a multi-variate delta term GP will have better predictive modeling capability.



                                                                                        49

Conclusions

Overall, our conclusions to date from this work in progress are the following:  Gaussian 
process models are powerful emulators.   Implementing them requires some knowledge 
about the data set used and what data will have to be discarded to make the covariance 
matrix well-conditioned; or additional formulations are needed that are robust to poor 
covariance conditioning.   KOH’s formulation of “observation = model + discrepancy + 
error” is very important because it explicitly separates the model discrepancy term from 
the model itself.  The Gaussian process assumption of the model discrepancy needs 
further examination, but in general, GP models are extremely flexible at representing a 
wide variety of functional relationships.  The additional assumption that these GP models 
are governed by parameters that can be updated using Bayesian methods adds a great deal 
of computational complexity to the picture.  The formulation of the joint posterior is 
difficult.  Even if one does not try for analytic solutions but uses MCMC methods, there 
are many issues to resolve around numerical performance, such as convergence of the 
MCMC to the correct underlying posterior and determination of tuning parameters, etc.

At this point, we see some interesting paths for further investigation.  One is using 
KOH’s formulation but calculating the parameters by Maximum Likelihood Estimation 
(MLE) methods instead of Bayesian updating.  Dennis Cox has pursued this approach 
[Cox et al.] and it removes the difficulties associated with posterior generation (such as 
via MCMC). Another is to look at the model emulation term, and replace it with another 
type of surrogate, perhaps a lower fidelity or reduced order model.  This has the 
advantage of “simplifying” the estimation in that one is solely focused on calculating the 
parameters for the GP delta model, but it may introduce limitations in terms of the 
capability to predict. 

We wish to emphasize the difference between calibration and validation. Calibration of a 
computational model is adjusting a set of model parameters associated so that we 
maximize the model agreement with a set of experimental data (or, in certain cases, a set 
of numerical benchmarks). Validation of a computational model is quantifying our belief 
in the predictive capability of a computational model through comparison with a set of 
experimental data. Uncertainty in both the data and the model is critical and must be 
mathematically understood to do both calibration and validation correctly. 

CUU is therefore a progression of thought that leads to an overlap of the concepts of 
calibration and validation. For example, the formalism discussed above of incorporating 
model uncertainty in Bayesian calibration procedures through the model discrepancy 
term (x) is directly relevant to validation. In validation, we seek to quantify the 
discrepancy term by comparisons with experiments. From the validation perspective, it is 
natural to expect that (x) is a random process of some type [Trucano et al., 2001]. The 
Gaussian process characterization of the model discrepancy discussed above seems to us 
to be useful in this context as well as in the CUU task.  The task of validation should 



                                                                                        50

provide information that helps define specific parameterizations of the model discrepancy 
and should facilitate the process of calibrating this term.

We believe that predictability of a computational model centers on a specification of 
intrinsic limitations of the model as well as on our ability to predict model accuracy for 
specific applications. Directly attacking the problem of characterization of the model 
discrepancy formalized above in (x) really strikes at the need to quantify model 
uncertainty in a foundational way that is to some extent independent of the calibration 
problem of attempting to reduce this uncertainty. A rigorous validation process should 
achieve the goal of characterizing (x). CUU provides the proper formalism, at least in 
principle, for using this characterization to improve model accuracy. Thus, we see CUU 
as an important formalism for linking calibration and validation for quantitative 
improvement of the predictive content of computational models. Our future work on 
CUU will elaborate this view more systematically.



                                                                                        51

List of References

Background papers on Bayesian Calibration Ideas
Beck, M. (1987), “Water Quality Modeling: A Review of the Analysis of Uncertainty,” Water 
Resources Research, Vol. 23, No. 8, pp. 1393-1442. 
 
Campbell, K.   “A Brief Survey of Statistical Model Calibration Ideas”, Los Alamos Technical 
Report LA-UR-02-3157.  2002. 

Campbell, K.  Exploring Bayesian Model Calibration:  A Guide to Intuition.  Los Alamos 
Technical Report LA-UR-02-7175, 2002. 

Cox, D.D., J. S. Park, and C. E. Singer (1996), “A Statistical Method for Tuning a Computer 
Code to a Data Base,” Rice University Report, Tech Report 96-3. 

Craig, P. S., Goldstein, M., Rougier, J. C., and A. H. Seheult. “Bayesian Forecasting for Complex 
Systems using Computer Simulators.”  Journal of the American Statistical Association, 96(454). 
2001

Hoeting, J. A., D. Madigan, A. E. Raftery and C. T. Volinsky, “Bayesian Model Averaging: A 
Tutorial (with discussion),” Statistical Science, 14(382-401).1999

Kennedy, M. C. and A. O’Hagan.  “Bayesian Calibration of Computer Models.”  Journal of the 
Royal Statistical Society, 63, pp. 425-464.  2001.

Kennedy, M. C. and A. O’Hagan, “Supplementary Details on Bayesian Calibration of Computer 
Codes,” University of Sheffield, (http://www.shef.ac.uk/~st1ao/ps/calsup.ps) (Ref: Kennedy and 
O’Hagan, 2001)

Lim, B. Y., J. Sacks, W. J. Studden and W. J. Welch. “Design and Analysis of Computer 
Experiments When the Output is Highly Correlated Over the Input Space.” Canadian Journal of 
Statistics, 30, No. 1 (109-126). 2002. [TGT has copy]

Poole, D. and A. E. Raftery.  “Inference for Deterministic Simulation Models:  The Bayesian 
Melding Approach.”  Journal of the American Statistical Association, 95(452). 2000. 

Swiler, L. P., Trucano, T.G.  “Treatment of model uncertainty under calibration.”  Proceedings of 
the 9th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, 2004.

From the SISC – Uncertainty Quantification papers 
Higdon, Kennedy, Cavendish, Cafeo, Ryne, and Qiang.  “Combining Field Data and Computer 
Simulations for Calibration and Prediction.”

Chinellato, Achermann, and Broker. “Including Covariances in Calibration to Obtain Better 
Measurement Uncertainty Estimates.” 

http://www.shef.ac.uk/~st1ao/ps/calsup.ps
http://www.shef.ac.uk/~st1ao/ps/calsup.ps
http://www.shef.ac.uk/~st1ao/ps/calsup.ps


                                                                                        52

Goldstein and Rougier. “Probabilistic Models for Transferring Inferences from Mathematical 
Models to Physical Systems.” 

V&V Efforts
Dowding, K. J. and R. G. Hills.  “Thermal Validation Challenge Problem” in draft form (to be a 
SAND report, 2005).

Easterling, R.G. SAND2005-149814980287.  “Statistical Foundations for Model Validation:  
Two Papers.”

Hanson, K. M. “A Framework for Assessing Uncertainties in Simulation Predictions.” Physica D, 
133 (1999), pp. 179-188. 

Hills, R. G. and I. Leslie.  SAND2005-149814980706.  “Statistical Validation of Engineering and 
Scientific Models:  Validation Experiments to Application.”

Hills, R. G. and K. J. Dowding. “Statistical Validation of Engineering and Scientific Models:  
Bounds, Calibration, and Extrapolation.  SAND report undergoing review (2003).

All of Dr. Mahadevan’s progress reports 

Oberkampf and Trucano.  “Verification and Validation in Computational Fluid Dynamics.”  
Progress in Aerospace Sciences 38(2002), pp. 209-272. 

Rutherford, B. M. and K. J. Dowding. SAND2005-149814982336. “An Approach to Model 
Validation and Model-based Predication: Polyurethane Foam Case Study.”
 
Trucano, T. G., M. Pilch, W. B. Oberkampf.  SAND2005-149814980341.  “General Concepts for 
Experimental Validation of ASCI Code Applications.”

Trucano, T. G., M. Pilch, W. B. Oberkampf.  SAND2005-149814982752.  “On the Role of Code 
Comparisons in Verification and Validation.”

Trucano, T. G., R. G. Easterling, K. J. Dowding, T. L. Paez, A. Urbina, V. J. Romero, B. M. 
Rutherford, and R. G. Hills (2001), “Description of the Sandia Validation Metrics Project,” 
Sandia National Laboratories, SAND2005-149814981339, Albuquerque, NM.

Wigley, T. M. L. and B. D. Santer (1990), “Statistical Comparison of Spatial Fields in Model 
Validation, Perturbation, and Predictability Experiments,” Journal of Geophysical Research, Vol. 
95, No. 1, pp. 851-865. 

R. Zhang and S. Mahadevan (2003), “Bayesian Methodology for Reliability Model Acceptance,” 
Reliability Engineering and System Safety, Vol. 80, 95-103.

Gaussian Processes
Booker, Andrew.  “Well-conditioned Kriging Models for Optimization of Computer 
Simulations.”  [Tony – I am not sure where this appeared.  Do you know?]



                                                                                        53

Gibbs, M. and D. J. C. MacKay.  Efficient Implementation of Gaussian Processes.  On the 
Gaussian process web site: http://www.cs.toronto.edu/~carl/gp.html

Mackay, D. J. C.  “Gaussian Processes: A replacement for supervised neural networks?” 
Also on the Gaussian process web site. 

Neal, Radford.  “Monte Carlo Implementation of Gaussian Process Models for Bayesian 
Regression and Classification.”   Technical Report 9702, Dept. of Statistics, University of 
Toronto (1997). 

Neal, Radford.  Flexible Bayesian Software documentation: 
http://www.cs.toronto.edu/~radford/fbm.software.html

Nabney, Ian.  Netlab software.  Documentation and software at: www.ncrg.aston.ac.uk/netlab/

Rasmussen, Carl.  “Evaluation of Gaussian Processes and Other Methods for Nonlinear 
Regression.”  Ph.D. Thesis, University of Toronto, 1996. 

Williams, Chris (2002).  “Gaussian Processes”  chapter in The Handbook of Brain Theory and 
Neural Networks, M. Arbib, ed. Cambridge, MA:  MIT Press.

Bayesian Analysis/MCMC
Berger, J.O.  Statistical Decision Theory and Bayesian Analysis.  Springer-Verlag, 1985. 

Chen, M-H., Shao, Q-M., and J. G. Ibrahim (2000).  Monte Carlo Methods in Bayesian 
Computation.  Springer-Verlag, New York. 

Gammerman, D. (1997), Markov Chain Monte Carlo: Stochastic Simulation for Bayesian 
Inference, Chapman and Hall/CRC, Boca Raton.
Good survey of Bayesian ideas and algorithms, w/ chapters on Gibbs sampling and Metropolis-
Hastings.

Gelman, A. J. B. Carlin, H. S. Stern and D. B. Rubin (1995), Bayesian Data Analysis, Chapman 
and Hall/CRC, Boca Raton.

Gilks, W.R., S. Richardson, and D.J. Spiegelhalter (1996).  Markov Chain Monte Carlo in 
Practice.  Chapman and Hall/CRC, Boca Raton.

Miro-Quesado, G., Del Castillo, E., and J. Peterson.  “A Bayesian Approach for Multiple 
Response Surface Optimization in the Presence of Noise Variables.”  Penn State Technical 
Report – Engineering Statistics Laboratory, 2002.  Journal of Applied Statistics, 31 (3), pp. 251-
270, (2004).

O’Hagan, A. (1994).  Kendall’s Advanced Theory of Statistics.  Vol. 2B:  Bayesian Inference.  
Oxford University Press, New York.

http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.ncrg.aston.ac.uk/netlab/
http://www.ncrg.aston.ac.uk/netlab/
http://www.ncrg.aston.ac.uk/netlab/


                                                                                        54

Peterson, J.  “A Probability-based desirability function for multiresponse optimization.”  
Proceedings of the Section on Quality and Productivity, Annual Meeting of the American 
Statistical Association, 2000. 

Press, S. James.  Bayesian Statistics:  Principles, Models, and Applications.  Wiley, 1989. 

Press, S. J. (2003), Subjective and Objective Bayesian Statistics: Principles, Methods and 
Applications, 2nd edition, 2003, Wiley, New York.

Robert, C. P.  (2001).  The Bayesian Choice, 2nd ed.  Springer-Verlag, New York.  

Sivia, D.  Data Analysis:  A Bayesian Tutorial.  1996.  [Publisher?]

Gammerman, D. (1997), Markov Chain Monte Carlo: Stochastic Simulation for Bayesian 
Inference, Chapman and Hall/CRC, Boca Raton.

Gibbs, M. and D. J. C. MacKay.  Efficient Implementation of Gaussian Processes.  On the 
Gaussian process web site: http://www.cs.toronto.edu/~carl/gp.html

Mackay, D. J. C.  “Gaussian Processes: A replacement for supervised neural networks?” 
Also on the Gaussian process web site. 

Books
Au, Siu-Kui.  “On the Solution of First Excursion Problems by Simulation with Applications to 
Probabilistic Seismic Performance Assessment.”  CIT Dissertation, May 2001.  Note:  this thesis 
provides a lot of detail about importance sampling and Monte Carlo Markov Chain sampling, 
especially in large sample size situations. 

Cressie, N. A. C. (1993), Statistics for Spatial Data, Wiley, New York.

Neter, J, W. Wasserman, and M. L. Kuter.  Applied Linear Regression: Regression, Analysis of 
Variance, and Experimental Designs.  Homewood IL: Irwin, 1985.
 
Roache, P.J.  Verification and validation in computational science and engineering. Albuquerque, 
NM: Hermosa Publishers, 1998.

Ripley, B. D. Stochastic Simulation, Wiley. 1987. 
Note: Older interesting survey of stochastic algorithms (non Markov-Chain-Monte-Carlo). 
Saltelli, A., Chan, K., Scott, E.M. Sensitivity Analysis. New York: John Wiley & Sons, 2000.

Spall, J. C. Introduction to Stochastic Search and Optimization, Wiley. 2003
Note: Discusses Gibbs, Metropolis-Hastings and Metropolis in a larger Chapter (16) devoted to 
Markov-Chain-Monte-Carlo for Bayesian search. 

Web sites
General link to Bayesian software sites: 



                                                                                        55

http://www.mas.ncl.ac.uk/~ndjw1/bookmarks/Stats/Software-
Statistical_computing/Bayesian_software/
http://astrosun.tn.cornell.edu/staff/loredo/bayes/ - software
http://www.math.wsu.edu/math/faculty/genz/homepage
http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.mrc-bsu.cam.ac.uk/bugs/

Nabney, Ian.  Netlab software.  Documentation and software at: www.ncrg.aston.ac.uk/netlab/

Neal, Radford.  Flexible Bayesian Software documentation: 
http://www.cs.toronto.edu/~radford/fbm.software.html

NIST Statistical site:
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm

Wish List
R. A. Bates, R. J. Buck, E. Riccomagno and H. P. Wynn, “Experimental Design and Observation 
for Large Systems,” J. R. Statist. Soc. B, 58(77-94).1996. (Ref: Kennedy and O’Hagan, 2001)

W. L. Chapman, W. J. Welch, K. P. Bowman and J. E. Walsh, “Arctic Sea Ice Variability: Model 
Sensitivities and a Multidecadal Simulation,” Journal of Geophyscial Research, 99(919-
935).1994. (Ref: Lim, Sacks, Studden & Welch, 2002)

D. Draper, A. Pereira, P. Prado, A. Saltelli, R. Cheal, S. Eguilior, B. Mendes and S. Tarantola, 
“Scenario and Parametric Uncertainty in GESAMAC: A Methodological Study in Nuclear Waste 
Disposal Risk Assessment,” Comput. Phys. Communs., 117(152-155).1999. (Ref: Kennedy and 
O’Hagan, 2001)

E. Novak, Deterministic and Stochastic Error Bounds in Numerical Analysis, Lecture Notes in 
Mathematics, 1349, Springer-Verlag, NY, 1988. (Ref: Kennedy and O’Hagan, 2001; out of print)

A. O’Hagan, “Curve Fitting and Optimal Design for Prediction (with discussion),” J. R. Statist. 
Soc B, 40(1-42).1978. (Ref: Kennedy and O’Hagan, 2001)

A. O’Hagan, “A Markov Property for Covariance Structures,” Tech. Report 98-13, Statistics 
Section, University of Nottingham (http://www.shef.ac.uk/~st1ao/ps/kron.ps) (Ref: Kennedy and 
O’Hagan, 2001) 

J. S. Hodges, “Uncertainty, Policy Analysis and Statistics (with discussion),” Statistical Science, 
2(259-261).1987. (Ref: Poole and Raftery, 2000)

J. S. Hodges, “Six (or so) Things You Can Do With A Model,” Operations Research, 39(355-
365). 1991. (Ref: Poole and Raftery, 2000)

R. E. Kass and A. E. Raftery, “Bayes Factors,” Journal of the American Statistical Association, 
90(773-795). 1995. (Ref: Poole and Raftery, 2000)

D. B. Rubin, “Comment on ‘The Calculation of Posterior Distributions by Data Augmentation,” 
by M. Tanner and W. H. Wang, Journal of the American Statistical Association, 82(543-546). 
1987. (Ref: Poole and Raftery, 2000)

http://www.mas.ncl.ac.uk/~ndjw1/bookmarks/Stats/Software-Statistical_computing/Bayesian_software/
http://www.mas.ncl.ac.uk/~ndjw1/bookmarks/Stats/Software-Statistical_computing/Bayesian_software/
http://www.mas.ncl.ac.uk/~ndjw1/bookmarks/Stats/Software-Statistical_computing/Bayesian_software/
http://www.mas.ncl.ac.uk/~ndjw1/bookmarks/Stats/Software-Statistical_computing/Bayesian_software/
http://www.mas.ncl.ac.uk/~ndjw1/bookmarks/Stats/Software-Statistical_computing/Bayesian_software/
http://www.mas.ncl.ac.uk/~ndjw1/bookmarks/Stats/Software-Statistical_computing/Bayesian_software/
http://astrosun.tn.cornell.edu/staff/loredo/bayes/#software
http://astrosun.tn.cornell.edu/staff/loredo/bayes/#software
http://astrosun.tn.cornell.edu/staff/loredo/bayes/#software
http://astrosun.tn.cornell.edu/staff/loredo/bayes/#software
http://astrosun.tn.cornell.edu/staff/loredo/bayes/#software
http://astrosun.tn.cornell.edu/staff/loredo/bayes/#software
http://astrosun.tn.cornell.edu/staff/loredo/bayes/#software
http://www.math.wsu.edu/math/faculty/genz/homepage
http://www.math.wsu.edu/math/faculty/genz/homepage
http://www.math.wsu.edu/math/faculty/genz/homepage
http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.ncrg.aston.ac.uk/netlab/
http://www.ncrg.aston.ac.uk/netlab/
http://www.ncrg.aston.ac.uk/netlab/
http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.shef.ac.uk/~st1ao/ps/kron.ps
http://www.shef.ac.uk/~st1ao/ps/kron.ps
http://www.shef.ac.uk/~st1ao/ps/kron.ps


                                                                                        56

D. B. Rubin, “Using the SIR Algorithm to Simulate Posterior Distributions,” in Bayesian 
Statistics 3, eds. J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, Oxford, U. 
K., Clarendon Press, 395-402, 1988. (Ref: Poole and Raftery, 2000)

S. G. Walker, P. Damien, P. W. Laud and A. F. M. Smith, “Bayesian Nonparametric Inference 
for Random Distributions and Related Functions (with discussion),” J. R. Statist. Soc. B, 61(485-
527). 1999. (Ref: Kennedy and O’Hagan, 2001)

Miscellaneous Papers

D. Draper. “Assessment and Propagation of Model Uncertainty.” J. Royal Statistical Society B. 
57, No. 1 (45-97). 1995. [TGT has copy]

R. A. Moyeed and A. Papritz (2002), “An Empirical Comparison of Kriging Methods for 
Nonlinear Spatial Point Prediction,” Mathematical Geology, Vol. 34, No. 4, 365-386. [TGT has 
copy. “This study compares linear and nonlinear kriging methods with respect to precision and 
their success in modeling prediction uncertainty.”]



                                                                                        57

APPENDIX:  Annotated Bibliography

K. Campbell (2002), “A Brief Survey of Statistical Model 
Calibration Ideas.” 

Los Alamos Report, LA-UR-02-3157

Section 1. Context and Nomenclature
Concerned with computer models and their application to decision making. Computer 
models in this context are call simulators and produce simulations.
Simulator Features:

 Contain theoretical and observational information. Claimed that observational 
information in a simulator is substantial [but this is in the eye of the beholder, and 
clearly not true at all in some cases (such as certain agent-based models)]. 
Emphasized that the simulators of interest for this paper are physics based.

 Typically depend on large number of input parameters. 
 Parameters are often estimated for sub-models, independent of the simulator. 

[Example would be calibrating EOS models in a shock wave physics code 
without calibrating the code itself. This is not what the author is thinking of] 
It is assumed that the uncertainty in sub-model parameterization [my phrase] 
is understood and defensible.

 These sub-model calibrations and associated uncertainty distributions are 
called prior or uncalibrated. [Again, she is using this notion in a very 
specific sense – they have not undergone the calibration that she is 
discussing in this paper. 

 Typically output a large number of [potential] observables. She emphasizes that it is 
unlikely that there is observational data for everything that the simulator outputs, 
either in general or in specific simulations. Otherwise, what would be the need for 
the simulator? [This is too narrow a view of why we simulate; but it may be exactly 
relevant to her notion of calibration. My emphasis is how reliable all the outputs are. 
In computational physics, it is hard to argue that the outputs we care about are 
correct while the ones we don’t can be incorrect, because of couplings and so on. 
Her emphasis is really on understanding what outputs calibration should be centered 
on, which is certainly unlikely to be everything a simulator can output.]

Section 2. Non-Iterative Paradigm for Uncertainty Quantification

The following is the clean and philosophically clear paradigm for quantification of total 
uncertainty in simulations:
#1 – Prior uncertainty: assembling prior information (all scenarios, input values, constraints 
on outputs, etc). Uncertainty described by (prior) pdfs. It is emphasized that this information 
is model independent. This is blurred when the inputs include numerical specifications and 
constraints, like meshing, “but even in these cases the allowable ranges may sometimes be 
specified using expert judgment, etc. more or less independently of the simulator.” [Note the 



                                                                                        58

potential difficulties in how clean this uncertainty paradigm might be in reality. Note that the 
problem of specifying pdfs is not discussed.]
#2 – Uncertainty propagation: Map the joint prior pdf to the joint output pdf. This will 
typically be computationally difficult. If the simulator itself is non-deterministic [Monte 
Carlo radiation transport, for example] then the resulting output pdf will have variability due 
to this. [Epistemic uncertainty in the prior is not discussed, but this is dealt with readily in 
the performance assessment paradigm of Helton and colleagues for NRC, WIPP, and Yucca 
Mountain assessments. References TBD.]
#3 – Uncertainty quantification: Quantify the joint output distribution, typically for some 
purpose. For example, in the case of validation, we are interested in

 (1)   computed test nature testy x y x
We are interested in accuracy (bias) and precision (variance) of this comparison.
#4 – Prediction: Extrapolate to characterize the distribution of equation (1) at one or more 
new points . [Note this prediction can be accomplished using formal statistical predictionx
procedures (time series extrapolation, for example); the question is how much do we believe 
the prediction.]

A diagram of this process looks like:

Figure 1. Uncertainty propagation and prediction.

• Quantification
• Uncertainty

INPUT

• Quantification
• Uncertainty

OUTPUT

Simulator

Implicit via numerical 
parameters

ycomputed – ynature

ycomputed – ynature

validation

prediction

“confidence”
Sensitivity analysis and validation 
provide confidence in the prediction. 
Can this be quantified? What is good 
enough?



                                                                                        59

M. C. Kennedy and A. O’Hagan “Bayesian Calibration of 
Computer Models.”

Journal of the Royal Statistical Society B, 2001.  Volume 63, pp. 425-464.

 KOH outline the main types of uncertainty they wish to differentiate/identify:
 Parameter uncertainty
 Model Inadequacy
 Residual Variability
 Parametric Variability
 Observational Error
 Code Uncertainty

In practice, it will be difficult to isolate or separate parameter uncertainty (unknown 
inputs to a model) and parametric variability (when inputs require more detail than we are 
able to use, and so are left uncontrolled and unspecified in the model).  Also, we foresee 
problems isolating residual variability (the variation in the process even when the 
conditions are fully specified – the stochastic nature of the process) and observation error.  
Finally, it may be difficult to isolate some of the aspects of model inadequacy  (the 
difference between the “true” mean value of the real world process and the code output at 
the true value of the inputs) and code uncertainty (including cases where the program is 
wrong).  
We need to understand the subtleties/differences in the approaches of Craig et al., Cox, 
Raftery and Poole, and Kennedy and O’Hagan. 

The basic outline of the KOH approach is as follows: 

Let f(x) be a function mapping an input xX into an output y=f(x) in .  Usually we 
consider the input space a subset of q:  the vector x = (x1, x2, ….xq).  y is a scalar, y .
A function f(x) has a Gaussian process distribution if for every n = 1, 2, 3, the joint 
distribution of f(x1)… f(xn) is multivariate normal for all x1… xn X.  In particular, f(x) 
is normally distributed for all xX.  

LPS note:  Why is it reasonable to think that a simulator output should be normally 
distributed?  If we have an output that is clearly not normally distributed, we could take 
the mean of the simulator output as normally distributed according to the Central Limit 
Theorem.  However, we need to think about how that affects the mean and covariance of 
the GP distribution.  My concern is that if we are dividing the unnormalized mean and 
covariance by n or n2 respectively to obtain a normal distribution, the prior (and 
posterior) distributions could be much narrower than are justified.   Also, we need to 
understand the comment that a Gaussian process is nonparametric.  

A standard representation of a GP is:  f(x)~N(m(x), c(x, x’)), where c(x, x’) = cov (f (x), 
f(x’)).  In the geostatistics method of kriging, the estimation of the covariance function 
(also called the semivariogram) is very important.   KOH suggest a standard form for the 



                                                                                        60

covariance matrix:  c(x, x’) = 2 r(x - x’), where r is a correlation function having the 
property r(0) = 1.  This expression states that the covariance depends on a variance term 
2 and a correlation term r that depends on the difference x - x’.  The underlying 
assumption is that f(x) and  f(x’) are similar if x and x’ are sufficiently close in X.  For 
nonlinear codes, this may not be true.  Also, we need to understand what smoothness 
properties are required of f to have a covariance function like the one outlined in KOH. 

KOH specify .  This formulation requires that we specify })'(exp{ 2

1
jj

q

j
j xxr  



)x' -(x 

a prior on the variance term 2 and on the parameters j.  
The mean of the GP in the KOH formulation is given by m(x) = h(x)T, where h is a 
vector of p known functions over X, h(x) = (h1(x), h2(x)… hp(x)) T and  = (1…p)T is a 
vector of p unknown coefficients which are given a prior distribution.  KOH state that the 
multivariate normal is often used as a prior for , but then they state that “in practice 
information about hyperparameters such as  will typically be weak,” so they suggest 
using an improper uniform density p()1.  The h(x) vector describes a class of shapes 
and the belief that f may be approximated by a function.  For example h(x) = (1, x, …x p-

1) T defines m(x) to be a polynomial of degree p-1 when x is a scalar. 

The important point to remember here is that we are trying to obtain a posterior estimate 
of the mean and covariance term of the GP: f(x)~N(m(x), c(x, x’)).  These terms are 
scalar quantities (for example, the dot product of h(x)T reduces to a single number).  
However, there are many assumptions and estimates of model form (of h(x) and c(x,x’)) 
and of prior distributions that go into developing these estimates.  We should be 
concerned about how sensitive our posterior distribution estimates are to various choices 
for these terms, but also we should be concerned for the amount that can get “lost in 
translation” with Bayesian models that are hierarchical and involve many terms.   Is it 
better, for example, to generate many data points and get as close a functional form as 
possible for h(x)?  Or is it better to assume a simple model for h(x) such as h(x) = a 
constant?  This is what KOH actually do when they develop an example:  they use h(x) = 
1.  This means that their prior on  represents the prior on the GP mean.  

With the background of Gaussian processes outlines, KOH then develop their model for 
calibration.  They assume that the calibration inputs are supposed to take fixed but 
unknown values  = (1…q2).  The output of the computer model when the variable 
inputs are given x = (x1, x2, ….xq1) and when the calibration inputs are given values t = 
(t1, t2, ….tq2) is denoted by (x,t).  KOH differentiate between the unknown value  of 
the calibration inputs which we wish to calibrate and a known particular set of their 
values, t, which we set as inputs when running the model.   They denote the “true” value 
of the real process when the variable inputs take value x by (x).  The code outputs from 
N runs of the computer code are represented as yj = (xj,tj).  The observed data 
(consisting of n points, where n < N usually) is denoted as z = (z1, z2, ….zn) T.  An 
observed data point zi is an observation of the underlying process (xi).  In KOH’s 
formulation, they represent the relationship between the observations, the true process, 
and the computer model output by the equation: 



                                                                                        61

zi = (xi) + ei =  (xi,ti) + (xi) + ei

where ei  is the observation error for the ith observation,  is an unknown regression 
parameter, and (x) is a model discrepancy or model inadequacy function that is 
independent of the code output (x,t).

A few comments:  this is a highly parameterized model, with both the code output (x,t) 
and (x) represented as a Gaussian process.  The error term ei should include both 
residual variability as well as observation error, but KOH do not use replicated points and 
their model is deterministic, so they do not strictly address residual variability.  They 
assume that ei is normally distributed as N(0,).  The constant value of  implies that the 
underlying process (x) is stationary.  

The prior information about (x,t) and (x) is given by Gaussian processes:  (x,t) ~ 
N(m1(x,t), c1((x,t), (x’,t’))) and (x) ~ N(m2(x), c2(x, x’)).  Using the hierarchical form on 
the means outlines above, we have m1(x,t) = h1(x,t)T1 and m2(x) = h2(x)T2.  If a 
noninformative prior is assumed, p(12)1.   KOH then formulate all of the 
hyperparameters relating to this problem.  They denote (,, ) by , where they state 
that  represents some “further hyperparameters” relating to the covariance functions.  
Then they assume that the prior distribution takes the form:  p(,,) = p()p() because 
of the weak prior distribution on  and assumptions of independence.   

In calculating the posterior, the important point is that the full data vector d is normally 
distributed given (,,).  The data vector d is composed of two parts:  the code output 
and the set of observations:  dT = (yT, zT).  D1 is the set of input points at which the code 
outputs y are available:  D1 = {(x1

*,t1),…, (xN
*,tN)}.  D2 is the set of inputs for which 

observations are available: D2 = (x1,…,xn).   This next step seems pretty important to me, 
though it wasn’t emphasized in the paper:  the input points in D2 are “augmented” with 
the true calibration parameters  to define D2() = {(x1, ),…, (xn,)}.  This makes the 
observed set equivalent in dimension to a computer model set.  If H1(D1) is the matrix 
with rows h1(x1

*,t1)T,…, h1(xN
*,tN)T, the expectation of y is then H1(D1)1.  The 

expectation of z is:   H1(D2())1 + H2(D2)2.  The overall expectation for d is: 
E(d|,,) = md() = H(), where    

  









)())((
0)(

22

1

DD
D

21

1

HH
H

θH


The variance matrix of d is defined as follows: 
Define V1(D1) to the matrix with the (j, j’) element = c1((xj

*,tj), ((xj’
*,tj’)).  V2(D2) and 

V1(D2()) are defined similarly.  Then let C1{D1,D2()} be the matrix with (j,i) element 
c1((xj

*,tj), ((xi, )).  The overall variance matrix is given by: 

  











)())(()}(,{
)}(,{)(

22211

2111

DDDD
DDD

ar
T

21
2

n

1

VVIC
CV

,θ,|dv





The full joint posterior distribution is then given by: 



                                                                                        62

p(,,|d) = p()p()f{d; md() ,Vd()}, where f{d; md() ,Vd()} is a normal N(md() 
,Vd()) density function.  

It is this expression for the posterior distribution that is impossible to calculate 
analytically.  Even with simplification, it would require a high-dimensional quadrature to 
integrate p(,,|d) over  and  to obtain the posterior estimate for the calibration 
parameters p(|d).  KOH basically say this is intractable, so they fix many of these 
parameters and use a two stage process, where they estimate the hyperparameters relating 
to the covariance matrix for the code term, c1, separately and before estimating the 
hyperparameters relating to the covariance matrix of the discrepancy term, c2.  

The final theoretical section that KOH present relates to prediction.  Usually, one would 
not just be interested in the updated calibration parameter estimates, but in using these to 
predict future realizations of the true process (x).  The posterior distribution of (x) 
conditional on the estimated hyperparameters  and the calibration parameters  is a 
Gaussian process, with an expectation given by: 

         }θβθH{dθVθx,tθβθ)h(x,d]φ,θ,|E[z(x) 1
d

TT ˆˆ  

KOH specify what the component terms in this equation are in their paper.  Clearly, there 
is some component relating to the original H() in the first expression to the right of the 
equal sign, with a correction factor in the second expression.  

KOH have a section on computational issues where they focus on two problems:  the first 
is that the inverse of the variance matrix Vd() needs to be calculated to calculate the 
posterior distribution.  If the size of this matrix, (N+n)*(N+n), is very large, this can be a 
difficult problem.  In practice with very complex codes, we do not foresee that we would 
be dealing with more than a few hundred observed points and a few hundred simulations, 
which is tractable with today’s linear algebra packages.  The bigger issue is how to do the 
integration necessary to obtain the posterior expectation, for example.  KOH say that they 
use a Gauss-Hermite quadrature method, but they admit that this only works for low-
dimensional problems, and so in practice they suggest that it may be necessary to use 
simulation methods of integration, such as MCMC.  A useful exercise for us would be to 
outline what terms in the calculation of the posterior would involve actual data points 
(from the code runs or the observations) and what terms would need to be generated from 
a simulation. 

The radionuclide deposition example that KOH present is useful, but it leaves out some 
details of the calculations.  The authors do make many simplifications of their overall 
approach. The most important one is that they leave out the code uncertainty entirely, 
saying that “we have treated the plume code as a known function.”  It would be helpful to 
know what this means in terms of the GP terms for (x,t):  they state that they do not 
have to specify a correlation matrix, but they don’t say if they assume a constant mean.  
But since many of the difficulties of the calculations involve the m1(x,t) = h1(x,t)T1 and 
the associated covariance terms, it would be helpful to see the resulting equations that 
they did use.  Another confusing thing was how they aggregated the original 695 



                                                                                        63

observed data points:  they state that they formed subsets of 10, 15, 20, and 25 points.  
We are assuming that subset averages were taken on the subsets and used as the observed 
data.  Finally, this example has the characteristic that the code runs were performed for 
the same conditions/locations as the observed input data.  This may not always be 
feasible with real problems:  we could have code runs that don’t correspond exactly to 
observed data. 

KOH do show that their calibration approach (strategy 2) is much better than a GP 
interpolation of the observed data alone (strategy 1) or a typical least squared regression 
model (strategy 3).  We wish that they had shown the prior and posterior distribution of  
for each case, and not only the residuals of the prediction error. 



                                                                                        64

D. D. Cox, J-S. Park, and C. E. Singer.  “A statistical method 
for tuning a computer code to a data base.”  

Computational Statistics and Data Analysis 37(2001), pp. 77-92.

Overall, there are many similarities between this paper and the Kennedy/O’Hagan paper.  
However, we found this one more readable.  The examples provided were helpful, but we 
found them weak on implementation details.  

We like the goal statement of Cox et al.:  “to develop a statistical procedure for 
efficiently utilizing the computer model in conjunction with the data base to obtain good 
(model) parameter estimates.”  The authors claim that their methodology allows one to 
“combine information from a limited number of noisy executions of the computer code 
with the information in the data base to make inferences about the unknown parameters.”   
Thus, they acknowledge that there may be few experimental runs AND few 
computational runs, and that the computer model involves a Monte Carlo procedure 
(which KOH do not, at least in the form they presented.). 

The approach presented in this paper is similar to KOH in that they assume a Gaussian 
process distribution and have a covariance structure which leads to a complicated 
variance matrix for the full data set.  However, the two main (and important) differences 
are: 

 The calibration parameters are estimated via a Maximum likelihood method 
instead of Bayesian updating. 

 There is no “model discrepancy” term.  The results from the experimental model 
are basically treated the same as the results from the computational model.  

With these differences in mind, we summarize the technical details of the paper: 

The authors present the same statistical model for both the experimental and the 
computational data.  The model is: 
yiE = g(xiE,cE) + iE  where there are nE observations of experimental data.  Each 
observation is given by (xiE ,yiE) where xiE is a vector of values of the independent 
variables and yiE is the response.  g(x,cE) is a regression function where cE is the unknown 
vector of regression parameters.  In classical statistics, the optimal approach to estimating 
cE is to find the values of c which minimize the residual sum of squares (the sum squared 
error terms [yiE = g(xiE,cE)].  

For the computational model, the response is modeled in a similar way: 
yiC = g(xiC,ciC) + iC,  where the subscript C denotes the computer model instead of the 
experimental data which is denoted by subscript E.  The main different here is that 
g(xiC,ciC) involves running an expensive computer code.  The other difference, which the 
authors don’t emphasize but which is important is that the calibration terms in this 
equation are indexed by i:  there is not just “one” optimal setting for the calibration terms 
as there is with the experimental data, but rather an optimal setting for each input set.  In 



                                                                                        65

practice, we may also want to do something like this but for initial problems, we would 
probably want to determine just one set of optimal parameters. 
Cox et al. explain the function evaluations necessary to perform a nonlinear least squares 
optimization to determine the optimal settings of the parameters:  on the order of  nE * M, 
where M is the number of function evaluations required for a numerical optimization 
routine to find the optimal c-dimensional vector.  In practice, nE * M could be on the 
order of 100,000, which is way too large for an expensive computer code.  Thus, the 
authors propose their method as an “approximate nonlinear least squares” technique, or 
ANLS.  

The approximation they use for g(x,c) is assuming that g is a realization of a Gaussion 
process, which they denote by Y(t).  The mean and variance of this GP are: 

E[Y(t)] = (t)
Cov(Y(s),Y(t))=K(s,t)

Note that s and t are vectors composed of both x and c (this is a way of combining 
inputs):  t =(x,c).  t can represent both types of data:  experimental data or computer data:  
tiE (c) =  (xiE,c) and tiC =  (xiC,ciC).  Note that the experimental data assumes a fixed value 
of c. 

The mean function for this GP is expressed as a linear model:  . 



k

j
jjt

1
0)(  t

This is simpler than the KOH model, where they express the mean function as h(x)T.  
The  vector is unknown and needs to be estimated.  The covariance function is taken 
form spatial statistics and is basically the same as in KOH: 

, where and  also need to be estimated. })(exp{
1

22 



k

j
jjy tsK t)(s, 2

y

The formulation of the following terms is almost exactly the same as KOH.  The joint 
normal density of the combined computer observations and experimental data set y = (yC, 
yE) is a multivariate normal:  f(y| cE, , , , , ). 2

E
2
C

2
y

The mean of y is , where each individual ith component of the top ]
),(

)(
[),(

EE

C
E c

c



 

term is given by:  for and each ith component of the lower term )()( iCiC t  cni 1
is given by  for .)((),( )EiEEiE ctc   Eni 1
The covariance matrix of y is: 











)),,,(),,(
),,(),,(

),,,,( 222

222
222

EYEEE
t

EYCE

EYCEYCCC
EYCE cVcV

cVV
cV






The block entries of this matrix are given in further detail in Equation (10) in the paper.  

Each term in this covariance matrix involves some combination of individual covariance 
terms from the K(s,t) covariance function defined above:  the upper left term involves 
covariances between the computer model observations, the lower right term between the 
experimental data points, etc.  



                                                                                        66

Cox et al. then calculate the conditional distribution of the experimental data given the 
computer data.  This is a normal distribution with mean: 

.  Also needed in the )(),(],,,,,,|[ 1222
| ccCC

t
CEEEYCEECECE vyVVE  ccyy 

approach is the marginal density for the computer data y, given by f(yC| , , , ).  2
C

2
y

The approach for the approximate nonlinear least squares estimation is then: 
If the parameters , , ,  are known (LPS note:  what assumed values do we start 2

C
2
y

with?), then for a given value of cE the prediction of yE  given the computer data can be 
calculated according to the conditional expectation formula given above.  This prediction 
is taken to be the conditional expectation . ))((| ctECE Y

Estimates of the parameters , , ,  are calculated by maximizing the marginal 2
C

2
y

computer likelihood f(yC| , , , ).  This is a multinormal distribution.  Cox et al. 2
C

2
y

outline a few ways to do this maximum likelihood estimation.   

Once they get “optimal” MLE estimates of the parameters , , , , these are 2
C

2
y

plugged back into the conditional expectation formula and an estimate for the regression 
function of the experimental data is given by the right hand side of this formula:   

.)(),())((ˆ 1
ccCC

t
CEEEE vyVVg  cct 

The ANLS method then minimizes the approximate residual sum of squares with respect 

to c:  , and this value of c is 2

1

2

1
)],(ˆ[))]((ˆ[)( cxct iE

n

i
iEE

n

i
iE gygycARSS

EE






considered the optimal calibration. 
The authors then discuss how they estimate the optimal values of the parameters in step 
(2).  The first way is to optimize the parameters over the full data set, not just the 
computer observations.  Thus, they maximize the likelihood: f(y| cE, , , , , ).  2

E
2
C

2
y

They call this FMLE for Full MLE.  They also have a method where the separate out 
some of the parameters which are estimated from the computer data only.  The separated 
MLE approach (SMLE) estimates , , ,  from the marginal computer likelihood 2

C
2
y

f(yC| , , , ).  Then these parameters are plugged back into the conditional 2
C

2
y

likelihood estimates for both the mean and variance of the experimental data, and these 
are used to get MLE estimates for and cE. This is basically the same as the ANLS 2

E
method, except there is a different objective function used to obtain the optimal c values:

)()()det( |
1
||| CEECECEECE vyVvyV  

Finally, the authors have a “partial” MLE (PMLE), which is in between the separated and 
full MLE. 

There are some important points to remember here:  the calculations of the MLE will not 
be trivial (although better than Bayesian estimates!)  A standard way to calculate MLE is 



                                                                                        67

to minimize the negative log of the likelihood function, and it looks like this is what Cox 
et al. are doing.  It does not look like they are using an optimization function per se, but 
some theoretical results derived for multivariate normal distributions which state that the 
MLE estimate of a parameter vector has an approximately normal distribution with mean 
equal to the true parameter vector (?) and a covariance matrix equal to the inverse of the 
Hessian of the negative log of the likelihood evaluated at the maximum.  With the linear 
algebra solvers available at SNL, we do not anticipate that it would be difficult to solve 
such for the inverse Hessian even for large data sets.  However, we need to understand 
the MLE method they are using in more detail.  

After outlining their approach, Cox et al. demonstrate it on five “toy model” simulations.  
These are nice in that one can easily see simple exponential functions with all of the 
parameters of interest.  They showed the results for ANLS, SMLE, PLME, FMLE, and a 
regular NLS regression.  They reported their estimates for all the parameters, and the 
absolute difference between the “true” cE and the estimated cE.  Overall, the PLME 
method performs the best on this test set, both in terms of minimizing the difference 
between the estimated and true parameters and in having confidence intervals that 
“cover” the true parameter estimate the majority of the time. 

The authors also briefly discuss an application to the Tokomak data set.  They have data 
from two machines, so the results are somewhat confounded by this.  They reported their 
estimates of four calibration parameters in the code, but it was hard to judge how useful 
these calibrations were:  the authors themselves say that the estimates are not terribly 
accurate because of the large confidence intervals.  They did have 74 experimental data 
points and 64 computer runs, which is comparable to what we might have. 

Overall, we think this is a good approach.  It would be very useful to implement a MLE 
approach and understand the multivariate density functions, the covariance matrices, etc. 
before we go to the Bayesian formulation.  



                                                                                        68

The Design and Analysis of Computer Experiments, by 
Santner, Williams, Notz.

Springer Series in Statistics, 2003.

The most useful information we obtained on Bayesian Design of Experiments was found 
in the book The Design and Analysis of Computer Experiments, by Santner, Williams, 
Notz, Springer Series in Statistics, 2003.  This book and associated papers seemed to 
cover the most important issues: optimization of control parameters under the influence 
of environmental factors (uncontrollable variables), experimental design using a 
hierarchy of models (low to high fidelity), competing objectives, robust optimization, 
space-filling experimental designs, surrogate frameworks, and even a little validation.  

Non Bayesian Approach 
This section briefly reviews some pragmatic engineering issues associated with the non-
Bayesian Taguchi approach. 

(Traditional) Taguchi Approach:
The first step is a 2-level screening experiment typically with a large number of control 
and environmental variables (as possible) each at only two levels. This experiment 
typically ignores all interactions.  Expert knowledge and uncertainty are introduced via 
the initial values and ranges of these experimental variables. The goal is to identify the 
most important variables.  This identification is pragmatic (such as the Pareto 80/20 rule 
of thumb) rather than by statistical significance.  An experiment at the predicted 
maximum (minimum or target level as appropriate) is done to provide some confidence 
that all variables were identified and things are approximately linear over the restricted 
experimental domain. (If not, more screening experiments are done to uncover additional 
variables, to reduce the initial domain or to determine interactions.)

The least important variables are then confounded in order retain their influence on the 
remaining experiments, but not at the expense of too many experimental runs.  The less 
important control variables are confounded together as one or a small number of pseudo 
variables (our terminology). The environmental variables are confounded together 
similarly if necessary (Taguchi’s outer array). The high setting (level) for a pseudo 
variable is defined by setting the confounded variables individually to the level the 
maximized the objective.  The low setting sets the confounded variables to their opposite 
levels.

Dr. Taguchi suggested that variables that directly influence the system energy are the 
most likely candidates for possible interactions.  There is also a hint toward assuming 
only two-way interactions until experiments prove otherwise. Every screening 
experiment is followed by an experiment at the predicted maximum. If the actual values 
disagree from the prediction, then continued screening experiments are preformed to 
detect interactions or to provide clues to missing experimental variables.  When there is 
reasonably close agreement between the predicted and validated maximum, this design 



                                                                                        69

point becomes the origin for the next experiment via an informal hill climbing “pattern 
search”.  If the magnitude of one of the pseudo variables shifts then more screening 
experiments are performed to discover the significant experimental variables.
Later (non screening) experiments are conducted at many levels (3-7 typically) for the 
non-confounded variables in order to measure nonlinearity and to zoom in on a solution. 
The confounded variables and environmental variables generally continue to have two 
levels as a simple check that the “ignored” variables haven’t become significant.  These 
experimental designs have non-confounded interaction columns to identify (generally 
two-way) interactions.

Dr. Taguchi also advocated robust optimization which was achieved by using the “signal 
to noise” ratio of the objective function.  This creates an additional level of confounding 
but frequently finds a solution which is relatively insensitive to variation of the control 
variables.  

Some of these Taguchi engineering heuristics could be used in the Bayesian approach.  
For example, environmental variables should be subject to screening experiments to 
determine factor sensitivity.   The influence of the environmental variables could be 
confounded into a few types to reduce the number of model evaluations.

Most other experimental design methodologies (other than Taguchi and Bayesian) focus 
on strategies to determine design points that sample the entire experimental domain.  
Orthogonal arrays, Latin Hypercube sampling, and distance metrics are popular for 
determining the design points.  The experimental results are used to create a surface 
response (generally limited to linear and quadratic terms). The surface response can be 
used for both traditional optimization and for robust optimization.  These techniques are 
also used in the Bayesian experimental design.

Note that the original research on experimental designs focused on agricultural 
experiments (hence the current terminology: blocks, plots, treatments, etc.)  Because 
anything forgotten had to wait a year (next growing season), these experimental designs 
tried to do everything at once.  Hence they determine significant factors and interactions 
simultaneously.  Modern approaches attempt to minimize the number of experiments 
(since they may be costly) by using sequential methods which augment the existing 
design points based on the past results.  They look to get more data near regions 
containing optima and “neglected” regions.  This sequential design approach works with 
Bayesian methods.

Bayesian Approach to Design of Experiments
This section summarizes parts of the book The Design and Analysis of Computer 
Experiments, by Santner, Williams, and Notz.  This book defines concepts and 
background material on Bayesian experimental design.  The book seems to primarily 
focus on the theory of experimental design for the case of control variables (needing 
optimization, possibly robust optimization) under the constraint of environmental 
variables.  The authors use the notation xc to denote the vector of control variable 



                                                                                        70

settings, xe the vector of environmental settings, Xe denotes treating the environmental 
variables as a random variable, and y() denotes the output (response).  Thus y(xc, Xe) is a 
random variable (response) with a distribution induced by the distribution of Xe.

The mean response is computed over the expected distribution of the environmental 
variables for a given vector of control variables for each optimization step of the control 
variables.

)},({E)( ecc y Xxx 
From here, a number of robust designs are defined. For example,  is π(·) robust 

cx
provided

   (Page 21)θθθxθθθx
x

d)(π),(maxd)π(),(   cc
c

 

where π(·) is a prior density over the values. M-robust, V-robust, and G-robust designs θ
are also discussed.

One concern is how to calculate μ.  If we use a MCMC method to sample the distribution 
of the environmental variables, it may lead to a significant number of model evaluations.  
Taguchi might suggest confounding the least important environmental variables, but this 
implies “confounding” their distributions.

Section 2.3.1 of [Santner et al.] contains a philosophical discussion of the difference 
between the frequentist and Bayesian approaches. The following quote defines their 
approach to this book (their italics):

“In sum, our attitude toward using the Bayesian approach to problems of the 
design and analysis of computer experiments is not dogmatic.  We do attempt to 
control the characteristics of the functions produced by our priors, but do not 
rigidly believe them.  Instead, our goal is to choose flexible priors that are capable 
of producing many shapes for y(·) and then let the Bayesian machinery allow the 
data to direct the details of the prediction process.”

Bayesian experimental design uses a response function similar to a linear regression 
model, but called a Gaussian random function (GRF) model: 

  (*))()()(Z)()(Y T

1
xβxfxxx Zf jj

p

j






In the Gaussian random function model, (·) are known regression functions, is a if β
vector of unknown regression coefficients, and Z(·) is a stationary Gaussian process 
having zero mean, variance , and correlation function R(·).   Gaussian processes are 2

Z
defined more completely in the section below. The “Bayesian” part of the experimental 
design involves specifying priors on parameters in (·), , and Z(·), and updating these if β
priors with the data to obtain posteriors.   There are many prediction methods based on 
the Gaussian random function model.



                                                                                        71

One use of Bayesian experimental design is in the design of experiments on a computer 
code at multiple levels of fidelity.  This is becoming a big area of research interest for us 
at Sandia.  In this approach, an autoregressive model is formulated as:

    mi    YY i1-iii ,...,2),()()( 1   xxx 
where Y1 is the result from the least complex code (lowest fidelity) and higher Yi are 
results from more complex codes (successively greater fidelity). Here the Yi(x) denotes 
the prior for the ith code level, m is the highest level, (·) is a process independent of i
Y1(·),…,Yi-1(·).  Under the assumption that Yi(·) is stationary for each i, this model is 
implied by:

. allfor          ,0)}(Y|)(Y),(Y{Cov 11-ii xwxwx i

The authors state: “which means that no additional second-order knowledge of code i at x 
can be obtained from the lower-level code i-1 at  if the value of code i-1 at x is xw 
known.  Therefore, the spatial autoregressive model can be interpreted as imposing a 
Markov property on the hierarchy of codes.”

Later in the example, the authors write: 
“…suppose that (·) represents the output from fast, but poorer, code and (·) the py gy
output from the slow, but good, code. Our goal is to predict the output of the good code 
at input site , i.e., to predict , based on and 0x )( 0xgy  )( ,...,)( 1

p
np

p
p p

yy xx

.”)(,...,)( 1
g
ng

g
g g

yy xx

,)(W)()(Y pp xβxfx  p
T
p

)(W)(W)()(Y apg xxβxfx  g
T
g

Here “the regression function (·) specifies the large-scale, nonstationary structure of T
pf

(·) and (·) is a stationary Gaussian process that determines the local features of the py pW

code; (·) is assumed to have zero mean, variance , and correlation function  (·).”  pW 2
p pR

 is the prior for the more accurate code.)(Yg x

Obtaining sequential design points
This section is a summary of “Sequential Design of Computer Experiments to Minimize 
Integrated Response Functions”, Williams, Santner, Notz, Statistics Sinica 10(2000)
Quoting their abstract: “We introduce a sequential experimental design for finding the 
optimum of , where the expectation is taken of over the distribution )}),E{y()( eccl Xxx 
of the environmental variables. The approach is Bayesian; the prior information is that 
y(x) is a draw from a stationary Gaussian stochastic process with a correlation function 
from the Matern class having unknown parameters. The idea of the method is to compute 
the posterior expected “improvement” over the current optimum for each untested site; 
the design selects the next site to maximize the expected improvement.”

The algorithm in brief:



                                                                                        72

S0:  Chose an initial set of design points using a space-filling criterion. (They use 
maximin distance design selection from a set of Latin hypercube sampling designs.)
S1:  Estimate the correlation parameter vector by the maximizer of the posterior density 
given the vector of responses.
S2: Chose the (n+1)st control variable site to maximize the posterior expected 
improvement given the current data
S3:  Choose the environmental variable site corresponding to this new control site 
(above) to minimize the posterior mean square prediction error given the current data.
S3:  Determine if the algorithm should be halted.  If not, the new control site is added to 
the set of design points and the algorithm returns to step S1.



                                                                                        73

DISTRIBUTION

MS0370 M. S. Eldred, 9211
MS0847 K. J. Dowding, 9133
MS0847 A. A. Giunta, 9133
MS0770 J.C. Helton, 9133
MS1110 B. A. Hendrickson, 9215
MS0370 S. A. Mitchell, 9211
MS0828 W. L. Oberkampf, 9133
MS0828 M. Pilch, 9133
MS0828 V. J. Romero, 9133
MS0370 L. P. Swiler, 9211 [5]
MS0370 T. G. Trucano, 9211 [2]

R. G. Hills, New Mexico State University

MS9018 Central Technical Files, 8945-1
MS0899 Technical Library, 9616 [2]
MS0612 Review and Approval Desk, 9612 for DOE/OSTI 


