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Abstract

The formulation, implementation and usage of a numerical solution verification code is de-
scribed. This code uses the Richardson extrapolation procedure to estimate the order of accuracy and
error of a computational program solution. It evaluates multiple solutions performed in numerical
grid convergence studies to verify a numerical algorithm implementation. Analyses are performed on
both structured and unstructured grid codes. Finite volume and finite element discretization pro-
grams are examined. Two and three-dimensional solutions are evaluated. Steady state and transient
solution analysis capabilities are present in the verification code. Multiple input data bases are ac-
cepted. Benchmark options are included to allow for minimal solution validation capability as well as
verification.
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Nomenclature

b Duct half spacing in the flat duct analytical formulation
D;, Hydraulic diameter
dp/dx Pressure gradient in the axial direction in the flat duct analytical formulation
E Numerical solution discretization error
F, Exact solution of governing equation in Richardson extrapolation formulation
fn Computational solution on mesh 7 in Richardson extrapolation formulation
H Cross section height in 2-D analytical heat conduction formulation
h Convective heat transfer coefficient
k Thermal conductivity
L Cross section width in 2-D analytical heat conduction formulation
Ly, Hydrodynamic entrance length in analytical flat duct formulation
p Order of accuracy
q Heat flux at a surface in 2-D analytical heat conduction formulation
" Uniform internal heat generation in 2-D analytical heat conduction formulation
Re Reynolds number
r Grid refinement ratio = 9, , /9,
U Dimensionless velocity in the flat duct analytical formulation
T Temperature in 2-D analytical heat conduction formulation
T, Constant temperature boundary condition in 2-D analytical heat conduction formulation
T, Convective sink temperature in 2-D analytical heat conduction formulation
¢ Time
u Local axial velocity in the flat duct analytical formulation
U, Mean inlet axial velocity in the flat duct analytical formulation
v Local vertical velocity in the flat duct analytical formulation
x Axial distance in two-dimensional problem
x* Dimensionless axial distance in the flat duct analytical formulation
y Vertical distance from duct centerline in flat duct analytical formulation

Greek Letters

a Thermal diffusivity in 2-D analytical heat conduction formulation

a, P Spatial coefficient in discretization error expansion for Richardson extrapolation
A Grid spacing in a numerical solution

o) Grid spacing in a numerical solution

Superscripts

p Order of accuracy
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Subscripts

h
hy

~.

S

N R <
N
LW

Hydraulic diameter variable subscript

Hydrodynamic entrance length variable subscript

Inviscid region in flat duct analytical formulation

Mesh number as refinement is performed (n =1 is the finest mesh)
Viscous region in flat duct analytical formulation

X coordinate direction in mesh

Y coordinate direction in mesh

Generally refers to successively refined grid solutions
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1. Introduction

Design procedures for advanced weapon systems have changed dramatically
over the years. A fundamental part of that change has been the move away from an
experimental/test based design to one that relies more heavily on computational pro-
cedures. In part, this has been driven by the desire to reduce costs incurred during
multiple full scale application tests of a prospective system. As the shift has oc-
curred, greater demands have been placed on the computational tools and the people
using them. Simulation models must have more fidelity and be applied over a wider
range of conditions. As such, it is imperative that the software tools developed and
employed by technical personnel have undergone rigorous verification and validation
procedures. Paraphrasing from Blottner!, verification means solving the equations
right, while validation means solving the right equations. The current work is con-
cerned with the former. Specifically, verification is the process by which software de-
velopers or analysts ensure that a code is accurately solving the governing equations
of interest. A significant effort is being made at Sandia by the SIERRA code develop-
ment personnel as part of the Advanced Strategic Computing Initiative (ASCI) Ap-
plications program to develop a formal software verification procedure.2 As a part of
this effort, development of the Visualization of Instrumental Verification Informa-
tion Details (VIVID) code has been pursued. This report documents progress in the
development, usage, and testing of the VIVID software.

VIVID is a Fortran 77 code which runs on the SRN LAN employed by the 9100
Engineering Sciences Center (Unix platforms only - such as sass2889). It is not cur-
rently operational on personal linux workstations. VIVID consists of a number of
subprograms that extract dependent variable information from numerical solutions,
estimate solution error and order of accuracy, and execute benchmark routines for
comparison to the numerical results. The subprograms by name are EXTRACT, OR-
DER, and BENCHMARK. The subprograms executed by VIVID are referred to from
this point as constitutive programs. Each constitutive program was written specifi-
cally for the ASCI project to further the development of a formal verification proce-
dure.

Order of accuracy relates the error reduction characteristics in a numerical so-
lution for a specified amount of grid refinement. For example, if the separation dis-
tance between grid points is reduced by a factor of two, the error in a second order
numerical scheme would be reduced by a factor of four. Following is a brief descrip-
tion of the solution procedure to determine the numerical order of accuracy of a com-
putational program. Initially, the domain geometry, numerical solutions, and user
defined run options are supplied to the program. Either two or three numerical solu-
tions completed for the same problem with different grid refinements may be provid-
ed as input for verification analysis. Per user instructions, dependent variables over
a segment of the solution are extracted for evaluation. At the users discretion, any or
all parts of the solution may be examined for any or all dependent variables. Output
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extracted from the numerical solutions is then used as input in an order of accuracy
analysis. The input data is sorted to match corresponding grid points between the
different grid refinement solutions. Assuming an analytical, numerical, or data base
reference is available, a benchmark dependent variable value is determined at each
solution point for comparison to the numerical method under consideration. Richard-
son extrapolation3 is applied at the coarse grid point solution coordinates to deter-
mine order of accuracy and an estimate of the numerical solution error over the
analysis domain defined by the user. At completion of an evaluation, an output file is
produced for visualization.

Verification work of this nature at Sandia has its roots in theory and analyses
forwarded by Blottner, Oberkampf, Walker*?6 and others. At the time of their pio-
neering work, they did not have the luxury of the computing resources available to-
day. Evaluations were necessarily limited to global variables for relatively simple
geometries. With the implementation of the current code development approach,
VIVID provides a powerful tool for detailed local analyses of numerical solutions on a
domain scale never before achieved.
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2. Program Structure

VIVID is a driver program that coordinates the subprograms to evaluate the or-
der of accuracy and estimate the error of a numerical solution. It has been primarily
developed on solutions generated by computational fluid dynamics programs, but is
class independent. For example, it may be applied to solid mechanics problems. A
schematic of the program, as it functions in an order of accuracy evaluation, is pre-
sented by Figure 2.1. In practice, the independent subprograms ORDER, EXTRACT,

VIVID Initiation

LI ®ORDER - Performs grid convergence
ORDER Initiation order of accuracy calculations making
use of reference data or estimated refer-
+ ence values produced by Richardson ex-

trapolation in the subprogram.
Initiation ®EXTRACT - Performs the file sorting
& and variable selection process to produce
. input data to be used in an order of accu-
Il’lpllt Files Defined racy grid convergence analysis within

the ORDER subprogram.
+ ®BENCHMARK - Performs reference
data production by running internal sub-
: routines for very specific analytical prob-
— Execution lems. The data is used by the ORDER
subprogram in an order of accuracy
Next Time Step analysis.
ORDER Evaluation
ORDER Output BENCHMARK Run
VIVID Termination

Figure 2.1 Schematic of VIVID Order Evaluation

and BENCHMARK are incorporated as subroutines and executed as options of the
main program. Program dimensions are expediently handled by an include file. It
should be noted that both EXTRACT and BENCHMARK can be run in an indepen-
dent mode in VIVID separate from ORDER. Subprograms employed by VIVID are
briefly introduced here in the subsections and discussed in detail in Appendix A. Pro-
gram discussions are of a general nature with most of the mathematical details left
to the references.

Following is a brief description of the VIVID procedure assuming a numerical
order of accuracy evaluation is being pursued. More detailed description of the sub-
programs comprising VIVID are presented in Section 4. Initially, the ORDER pro-
gram is executed by the driver routine to establish basic run parameters. ORDER
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then initiates a run of the EXTRACT subprogram. Depending on the evaluation, two
or three numerical solutions completed for the same problem with different grid re-
finements are supplied to EXTRACT as input. At the discretion of the user, any or all
parts of the solution may be examined for any or all dependent variables. Output
files are generated by EXTRACT at the completion of its run for use as input to OR-
DER as control is returned to this program. At this point, further run parameters
are defined including the options controlling execution of BENCHMARK. ORDER
sorts the input data and matches corresponding nodal points between the different
solutions. Assuming an analytical, numerical, or data base reference is available, the
appropriate BENCHMARK option is invoked from ORDER at each solution point for
comparison to the numerical method under consideration. Richardson extrapolation
is applied at the coarse grid point solution coordinates by ORDER to determine order
of accuracy and an estimate of the numerical solution error over the analysis domain
defined by the user. At completion of the ORDER evaluation, an output file in
TECPLOT format is produced for visualization.

2.1 Input Data Extraction

Input data parsing for VIVID is handled by a program written specifically for
the ASCI/Fuego verification process. Numerical solution data to be evaluated by the
VIVID processor is initially input to the EXTRACT subprogram. Both EXODUS and
TECPLOT data base formats can be used for the multiple input solutions required in
a grid convergence study. The program name comes directly from its functional pur-
pose. It literally sorts through the input files and extracts the parts of each solution
defined by the user to be evaluated in future analyses. Independent and dependant
variables are defined, collected, and output to files for subsequent use by the ORDER
subprogram. This program can be run in an independent mode or as part of an order
of accuracy analysis.

2.2 Reference Data Production

As with the input data extraction process, reference baseline data generated by
VIVID is produced by a program written specifically for the ASCI/Fuego verification
process. Reference solutions used for comparative analysis purposes by the VIVID
processor are created by the BENCHMARK subprogram. The routine name comes
from the procedure’s functional purpose. It produces benchmark solution informa-
tion to be used in grid convergence analyses performed by the user. The reference so-
lutions are produced by subroutines that solve very specific simple analytical
problems. Just as with the EXTRACT procedure, this program can be run in an inde-
pendent mode or as part of an order of accuracy analysis.
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2.3 Order of Accuracy and Error Analyses

The analysis functions, including order of accuracy and error estimation, con-
ducted on the numerical solutions input to VIVID are performed by a third program
written specifically for the ASCI/Fuego verification process. Numerical solution data
evaluated by the VIVID processor is analyzed by the ORDER subprogram. Like the
two previous subprograms discussed in this section, the current procedure name also
comes directly from its functional purpose. The routine evaluates the observed order
of accuracy for the numerical solution over the region defined by the user. As stated
in the first section, order of accuracy relates the amount of error reduction in a nu-
merical solution for a specified amount of grid refinement. Stated mathematically
this means that the ratio of the error between two solutions is equal to the grid re-
finement factor raised to a power corresponding to the order of accuracy of the nu-
merical method (see Eq. 2.1).8 In Equation 2.1, E, r, and p are the solution

E,/ E, = rP (r=mesh 1 element size/mesh 2 element size) (2.1)

discretization error at the grid points, grid refinement ratio, and order of accuracy,
respectively. Subscript one represents the refined grid solution. The refinement ratio
r is the ratio of the physical size of the elements in the same location in solution one
versus solution two. To be strictly applicable, this equation makes the assumption
that the refined grid contains nodal points at all of the same locations as the coarse
mesh. Order of accuracy analyses performed by this subroutine can be done in con-
cert with the VIVID resident EXTRACT and BENCHMARK programs or indepen-
dent of them if the appropriate columnar files are directly generated by a numerical
method. Analyses can be performed with input of either two or three numerical solu-
tion files.
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3. Richardson Extrapolation & Order of Accuracy

For VIVID to achieve its primary purpose, numerical solution verification, it
must be able to estimate the error within a series of refined grid solutions in a grid
convergence study. This implies that it must estimate the exact solution based on the
series of numerical solutions and from that determine the order of accuracy and er-
ror of the numerical method. Richardson extrapolation, as noted in Sections 1 and
2.3, can be used to estimate the exact solution based on numerical results. Following
is a series of mathematical developments demonstrating the extrapolation concept.

3.1 One-Dimensional Extrapolation (p assumed known)

For a steady state one-dimensional problem, the exact solution can be estimated
from the numerical solution (i.e. f;,) and the discretization error by Equation 3.1.5

F,=f,+ aA? + higher—order—terms (3.1

Nominally, there are three unknowns in this equation if you ignore the higher order
terms. They are F, (the estimated exact solution), a (the error coefficient), and p (the
order of accuracy). Three equations (i.e. three numerical solutions with successively
refined grids) would be required to discern all unknowns in a rigorous fashion. How-
ever, by assuming that p is known and is equal to the formal order of accuracy, the
exact solution can be estimated from only two numerical solutions. The numerical
solution (f,,)) in Equation 3.1 was obtained from a solution algorithm of formal order p
with a grid spacing of A. By substituting two different grid size values (& and r9)
into Equation 3.1, while ignoring the higher order terms, the coefficient a is elimi-
nated and an expression for the estimated exact solution to the problem can be de-
rived. A typical value for r (the grid spacing ratio) is two. It is assumed to be a
constant within and between grids in a convergence analysis. Equations 3.2 and 3.3
result when the grid spacing values are inserted into 3.1. Subtracting 3.2 from 3.3

F, = f;+0ad” (fine grid solution) (3.2

F,=f,+ a(rd)” (coarse grid solution) (3.3

e
and solving for a produces Equation 3.4. Substituting Equation 3.4 for the error co-
p
o = (f1-f)/ (=18 (34

efficient in 3.2 produces an extrapolated estimate for the exact solution to the differ-
ential equation approximated by the original difference equation (see Eq. 3.5). The

F,=fi+(f1—f)/ (" =1) (3.5
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grid spacing refinement ratio (r=9,/9, ), used in the derivation, is arbitrary (greater
than 1) and is not confined to an integer value. An estimate of the error for the fine
grid solution is obtained in Equation 3.6 by subtracting the solution (f;) from the es-
timated exact value (F,).

E, = (fl—fz)/(rp—l) (3.6)

3.2 Two-Dimensional Extrapolation

The one-dimensional extrapolation analysis for steady state problems is readily
extended to two-dimensional problems. Three types of extrapolation will be exam-
ined. The specific extrapolation process is dependent on the nature of the grid refine-
ments used in the multiple numeric solutions.

3.2.1 Simultaneous Equal Refinement in Both Coordinates (p assumed)

Two numerical solutions are required for the following approach. Order of accuracy
(p) is assumed to be known to reduce the number of unknowns in the estimated ex-
act value equations to two. It further assumes p is the same in both the x and y direc-
tions. Grid spacing for the fine mesh solution is 6, by d,. Spacing for the coarse
mesh solution is rd, by rd, where r is a number greater than 1 (typically 2). By ig-
noring the higher order terms, an estimate of the two-dimensional exact solution is
expressed by Equation 3.7. A derivation procedure similar to that of Section 3.1 is

F,=1f+ 0(55 + [565 (fine grid solution) 37

e

followed. Initially, a second independent equation for the exact solution estimate is
obtained by substituting in the refined grid separation variables that are multiples
of the original solution grid spacing into 3.7 (see Eq. 3.8). Simultaneous solution of

F, = f,+a(r3,)” +B(r3,)”  (coarse grid solution) (3.8)

these two relations leads to an expression relating the error estimate terms to the
numerical solutions. Equation 3.9 shows the combined result of the x and y error
terms. When 3.9 is substituted back into 3.7, and the fine mesh numerical solution is

ad? +B3> = (f,—f,)/ (" ~1) (3.9)

subtracted from the result, the error estimate for the fine grid is expressed in Equa-
tion 3.10. It should be noted that this is exactly equal to the right side of Equation

Ey = (fy~f,)/ (P =1) (3.0
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3.9. It should be further noted that the two-dimensional error estimate is identical in
form to the one-dimensional solution shown in Equation 3.6. From this, it can be im-
plied that Equation 3.5 then also represents the estimated exact solution for a grid
convergence study of this variety.

F, = f1+(f1=f)/(r"-1) (35)

3.2.2 Selective Directional Refinement (p assumed)

Although the error in the fine grid solution is estimated by Equation 3.10, no in-
formation can be discerned about the specific error contributions resulting from grid
refinements separately in the x and y directions. Pursuit of the individual error con-
tributions from the separate directions requires solution of the fourth unknown vari-
able introduced in Equation 3.7. This unknown is  (the error coefficient in the y
direction). When combined with the three unknown variables defined at the begin-
ning of Section 3.1, a system of four equations would be required for complete rigor-
ous solution. However, by repeating the assumption of p as the formal order of
accuracy, coordinate dependent error information is available with a three solution
approach. With selective choice of the three grid refinements, the x and y solution er-
ror terms (0(65 and [355 respectively) can be evaluated individually. Equation 3.7 is
still the starting point. Three grid refinement solutions of the following nature are
required: 1 -> &, by 6y (fine mesh solution), 2 -> rd, by 6y, and 3 -> 0, by r6y. Sub-
stituting the refinements for one and two into 3.7 and solving for the x error term
yields 3.11. A similar procedure using refinements one and three results in isolation

adl = (f1—f,)/(r"=1) (3.11)

of the y error term (see Eq. 3.12). By substituting the results of the x and y error

36§ = (fl—f3)/(rp—1) (312

terms into 3.7, the estimated exact solution can be derived making use of all three
solutions (see Eq. 3.13). The advantage of this development is that grid refinements

F, = f1+(f1=f)/ (P =1+ (f1—f3)/ (" -1) (3.13)
can now be undertaken in selective directions determining their relative importance.

3.2.3 Single Directional Refinement

Single directional refinement for a two-dimensional grid is an extension of the
one-dimensional approach. Three solutions are employed so that p can be solved for
directly rather than assuming it equal to the solution algorithm formal order of accu-
racy. As noted in the previous section, four unknowns exist in the equation that esti-
mates the exact value for a two-dimensional grid convergence error analysis. From
Equation 3.7, repeated below for convenience, the four unknown variables are the es-
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timated exact value, order of accuracy, and the two directional error coefficients.
F, = f,+ad] +ps) (fine grid solution) (3.7)

However, since only one of the grid spacing coordinates is being refined, the error co-
efficient for the transverse direction is conveniently eliminated in the same step as
F, such that the order may be solved for rather than assumed. The grids are consec-
utively refined between solutions by the same grid spacing constant. For the initial
development, the grid in a single direction (the x coordinate in this illustration) will
be refined. Grid reﬁnements of the following form are required: 1 -> §, by 6 , 2>
rd, by 5 ,and 3->r 6x by 6 . As to be expected, substituting grid reﬁnements one
and two 1nto Equation 3.7 results in the same expression for the x error term as in
3.11. Following this, the substitution of refinements one and three into 3.7 produces

ad? = (f1—f)/(r"=1) (3.11)

a second expression for the x error term (see Eq. 3.14). As was alluded to above and
will be expanded upon in the Section 3.3, combination of Equations 3.11 and 3.14 al-
lows for direct solution of the order of accuracy variable. Note that Equation 3.14 dif-

ad? = (f,—f3)/ (rP=1) (3.14)

fers only by the power on r when compared to the y error term (Eq. 3.12) in the
previous development. The estimated exact solution can be given by 3.15a. Alter-

F, = f1+[(f1=f)/ (r" =1)] +B3] (3.158)

nately, Equation 3.15b makes use of the second estimate for the x error term (Equa-
tion 3.14) to estimate the exact value. A development of this type, making use of

F, = fi+[(f1=13)/ ("7 =1)] +B3} (3.15b)

refinement in the y direction, would lead to similar results with the y coefficient er-
ror term replaced in the equations above by the x error coefficient quantity (i.e. a 55 ).
It should be noted that this type of refinement analysis while able to discern order, is
unable to yield a complete error estimate of the solution or estimate the exact value
due to a lack of error information in the transverse direction. To perform these func-
tions, it would be necessary to either assume p is equal to the formal order of accura-
cy or assume that the errors in the transverse direction were negligible. If it were
assumed that the grid refinement in the y direction was already sufficient to produce
higher order error (approximately zero) in the transverse direction, Equation 3.15a
reduces to the one-dimensional solution (i.e. Equation 3.5).
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Assuming negligible errors in the non-refined grid direction will lead to errone-
ous results if the existing grid is insufficient. To avoid this problem, a simple safe-
guard is to refine equally in both directions. Making use of the single directional
refinement work allows direct extension of the simultaneous equal refinement meth-
od of Section 3.2.1 to encompass a three solution approach. Equations 3.7 through
3.10 apply directly in this case. The grids for solutions one and two are as follows: 1 -
>0, by d,,2->rd, by rd, . The combined x and y eryor term for this case is a repeat
of Equatlon 3.9. If the third grid is assumed to be r 25x by r 6y , substitution of this

ady + B = (f1—f,)/(r"—1) (3.9)

into 3.7 and subsequent simultaneous solution of the resulting equations produces a
second relation for the combined error term (see Eq. 3.16). The right side of this error

ad? + BdY = (fy—f3)/ (r*P - 1) (3.16)

equation is of identical form to that in Equation 3.14. Examination of the two error
terms produced here show that the form of the estimates is identical to those pro-
duced for the single directional refinement analysis of the previous paragraph. How-
ever, in this case, the right hand sides represent the complete error estimate rather
than for a single coordinate direction. Equations 3.5 and 3.15¢ shown below are both
capable of estimating the exact solution for the dual direction refinement approach
just presented. VIVID uses the form shown in 3.5 for grid convergence studies of the

F,=f+(f; —f,)/(r" =1) (fine grid solution) (3.5)

F, = f,+(f —fs)/ (FP =1) (3.15¢)

variety just discussed as well as that of Sections 3.2.1. It should be noted that this
form is not appropriate for estimating the exact solution with single direction refine-
ment of the variety discussed at the beginning of this section (3.2.3) unless the error
in the transverse direction has already been deemed to be essentially zero.

3.3 Order of Accuracy

To this point, the developments have focussed on estimating the error of a se-
ries of numerical simulations with the critical assumption that the order of accuracy
is known. Order of accuracy will now be addressed. Roache® Equation 2.1 of Section
2.3 states the physical significance of the mathematical concept of solution order of
accuracy where subscript one represents the finer grid solution. As stated previously
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in Equation 2.1 (which is repeated here for the convenience of the reader), the ratio
E,/E, = 1"

of the error between two solutions is equal to the grid refinement factor raised to a
power corresponding to the order of accuracy of the numerical method. This implies
that the order of accuracy could be determined directly from estimated error of a
group of numerical solutions. However, it requires that the number of unknowns in
the group of solutions is equal to the number of independent equations available in
the grid convergence study. When the three unknowns are estimated exact value, er-
ror, and order, it is possible to solve for the order directly if there are three succes-
sively refined grid solutions used as input.

The following derivation applies to grid convergence studies that have under-
gone equal grid refinement in all coordinate directions. The results can be used to
evaluate the order of accuracy of two or three-dimensional simulations. It does not
apply to the selective directional grid refinements of the variety discussed in Section
3.2.2. Refer to equations 3.11 and 3.14 in Section 3.2.3. Two independent expres-
sions are given for the error term described in that derivation. A similar thing occurs
in Equations 3.9 and 3.16. Either of these two situations gives rise to the opportunity
to develop an expression for order of accuracy without having to first calculate the
actual error terms. The derivation is begun in Equation 3.17 by equating the right
hand sides of Equations 3.11 and 3.14. Collecting like terms results in Equation

(f1=F2)/ (7 =1) = (f1=f3)/ (P =1) (3.17)

3.18. The numerator on the left hand side is the difference between two perfect
(r*P=1)/ (P =1) = (f1—1f3)/ (F1~12) (3.18)

squares and can be factored. After cancelling out the common term in the numerator
(PP =)+ D]/ (P -1) = (f1—f3)/(f1—1>2) (3.18)

and denominator, an expression relating the grid refinement ratio and the order of
accuracy to the numerical solutions is obtained in Equation 3.19. After simplification

r? = [(fy=f3)/ (f1—f)] -1 (3.19)

on the right hand and reversing the minus signs between the terms in the numera-
tor and denominator, this reduces to Equation 3.20. Taking the log of 3.20 and solv-

rf = (fs_fz)/(fz_fl) (3.20)
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ing for p gives the desired relation (see Equ. 3.21).
p = log[(f3—1,)/(f,—f1)]1/1og(r) (3.21)

This agrees with the form of the equation derived by Roache. As stated at the
beginning of the derivation, Equation 3.21 does not apply to the selective directional
grid refinements. For the selective approach, it would be appropriate to calculate the
error terms directly from the estimated exact value defined by Equation 3.13, then
determine the order of accuracy from the definition provided by Equation 2.1. Such
an option is not yet provided for within VIVID.

It should be obvious that the approach of Equation 3.21 can not be used for two
solution grid convergence studies. In this case, the choice is automatically limited to
the order definition relation (i.e. Equ. 2.1). However, an evaluation of this variety is
superfluous in VIVID since the answer will be preordained as the numerical method
formal order value supplied by the user. This is true since the assumed formal order
was used to generate the estimated exact soution value. In turn, the estimated exact
value is then used to calculate the solution order. They are not independent in a two
solution study. Two solution studies only yield independent beneficial information if
a benchmark value is available to replace the estimated exact value in order calcula-
tions.
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4, Code Development and Functionality

The Visualization of Instrumental Verification Information Details program is
the result of a sizable code development effort. It included the writing of the consti-
tutive driver program (a.k.a. VIVID) as well as the three subprograms required for
various options. The driver routine is strictly a controlling program with no indige-
nous analysis capabilities. Its organization and function are relatively simple. Its
primary purpose is to initiate the run option desired by the user. A synopsis of the
functionality features included in the driver program and the three original subpro-
grams written for VIVID is given in the following sections. Further details are pro-
vided in Appendix B. The programs are discussed in the order in which they would
be initially executed in an order of accuracy analysis.

4.1 Main Program: VIVID

VIVID is a Fortran 77 code which runs on the SRN LAN employed by the 9100
Engineering Sciences Center (Unix platforms only - such as sass2889). It is an inter-
active procedure that is invoked by typing vivid from a command line window. It
may be run in two modes: interactive or control file driven. Following is a discussion
of the primary routines structure and functional attributes. Included in the discus-
sion are its use of command line arguments and interrogative features.

4.1.1 Driver Routine Structure

Functionality of the main program can be categorized into three parts: com-
mand line parser, interactive parser, and program option control. The command line
parser determines the disposition of the control file. If one exists, control file mode is
mitiated. If there 1s not a control file, a new control file is opened and the interactive
mode is initiated. All interactive instructions made by the user in the program que-
ries are written to the new file. Following determination of the control file disposi-
tion, the screen interactive parser of the driver program is executed. Its function is to
define the subprogram execution option (i.e. ORDER, EXTRACT, or BENCHMARK).
Next, the program option control portion of the main routine is executed. This sec-
tion initiates the desired subprogram via a Fortran subroutine call. Following com-
pletion of the selected subprogram option, termination control is exercised.

4.1.2 Command Line Arguments

VIVID has the capability to interpret command line arguments. This is limited
to one argument on the command line invocation. The argument following the vivid
syntax is the name of the control option input file. If no argument is found, all re-
quired input file names and control parameters are defined in the pursuant interac-
tive interrogative screen sessions conducted by the main program and the
subprogram codes it executes. A VIVID run may use anywhere from one to three of
1ts constitutive programs during execution. The precise nature of the run is deter-
mined by the control option file or any required interactive screen session.
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4.1.3 Interactive Interrogation & Constitutive Program Execution

Assuming an input control file run is not invoked, VIVID uses a screen interac-
tive parser to establish the execution control parameters. Most of these parameters
are defined in the subprograms. Subprogram interactive interrogations are dis-
cussed beginning in Section 4.2. A structural summary of the EXTRACT, ORDER,
and BENCHMARK subroutines is outlined in Sections 4.2, 4.3, and 4.4, respectively.
Structural subprogram details are provided in Appendix B. The driver program es-
tablishes two fundamental variables. The first is declaration of the subprogram op-
tion. This determines whether to invoke ORDER, EXTRACT, or BENCHMARK. In
addition, the main program controls the run repeat option. Whether interactive or
control file mode has been chosen, execution parameters containing solution vari-
ables and extent are defined within the solution input files.

4.2 EXTRACT Subprogram

EXTRACT was written to isolate and output specific independent and depen-
dent variables of interest for further analysis. It can be ran independently or as part
of an order of accuracy evaluation. In the independent mode, files are sorted serially
with repetition terminated at the user’s discretion. In the case of error and order ac-
curacy analyses, two or three numerical solution files are accepted serially as input,
processed per the user’s instructions, and output as column formatted files for use by
the ORDER subroutine. Data can be input either as TECPLOT or EXODUS data
base files/

The program begins with an interactive interrogation section that establishes
an initial set of control variables for the file to be extracted. Domain, grid, input file
type, and the all dependent variable option flags are defined in this set. Following
definition of the initial group of flags, the data extraction section of the routine’s in-
teractive parser is encountered. This section of the subprogram is repeated for each
file evaluated and defines the input and output file names. File name selections are
immediately followed by specification of a group of variables that define the extrac-
tion extent of a given file. This includes extraction zones, extraction variables, ex-
traction time planes, and extraction nodes. Following extraction extent definition,
files are immediately read by calls to subroutines specifically written to be compati-
ble with the given input file type. Multiple output files may be produced by this sub-
program including columnar files for ORDER evaluation as well as TECPLOT files.

4.3 ORDER Subprogram

ORDER was written to estimate the order of accuracy and error of numerical
solution methods. To calculate order independently, three numerical solutions are re-
quired for the procedure. Two solution error estimate options are available if the or-
der is assumed equal to the algorithm formal order of accuracy or if a benchmark
reference is available.
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The program begins with an interactive interrogation section that establishes
an initial set of control variables for the files being evaluated. Domain, grid, number
of input files, two-dimensionality, and interpolation option flags are defined first. Fol-
lowing definition of the initial group of flags, control is passed from ORDER to the
EXTRACT subprogram. The input information to be evaluated in ORDER is sorted
out by EXTRACT and passed back to it in the form of columnar input files. An option
exists to bypass the extraction run and operate on a series of preexisting ORDER in-
put files. Immediately upon regaining control from the extraction subroutine, input
and output file names are requested. Input file names must be entered in order
from coarse grid to fine grid. Each solution must be entered in an independent
file. All input solutions can NOT be contained in one file. If this is a domain run (i.e.
the entire computational geometry), a TECPLOT PREPLOT format output file is
also produced for multi-dimensional visualization purposes.

Input and output data definitions are immediately followed by specification
(through interactive queries or control file reads) of a group of variables that define
the analysis options governing the order evaluation. This includes grid refinement
factor, numerical solution formal order of accuracy, error calculation options, and
BENCHMARK solution flags. Unless otherwise specified, error is determined for the
finest grid solution. The interactive parser section concludes after defining the anal-
ysis control variables. At this point, input files are immediately read and the infor-
mation is saved in storage arrays for ease of grid point matching between solutions.
Variable storage considerations require tracking degrees of freedom for three spatial
directions, variable number, zone number, and file number. Following read comple-
tion, the multi-dimensional variable storage arrays are processed by a grid point co-
ordinate matching subroutine. After the grids have been matched, error and order of
accuracy analyses are completed. These analyses are based on the detailed equations
presented in Section 3. The analysis results in the production of order of accuracy
and error variables for all dependent variables analyzed. Results are written to a
TECPLOT PREPLOT block format file (order_tec.o) for multi-dimensional visualiza-
tion. As well, a column formatted output file with details of the extrapolation analy-
sis is written to file order.o. This file contains specific extracted, extrapolated, and
benchmark values at all domain points analyzed for a dependent variable. The order
and error variables are also included in this file.

4.4 BENCHMARK Subprogram

BENCHMARK produces reference data for comparison to numerical program
solutions. It can be run independently or as part of an order of accuracy analysis. In
the independent mode, it is accessed repetitively directly from the main routine with
repetition terminated at the user’s discretion. In the case of order accuracy evalua-
tions, it is accessed by the ORDER subprogram and executed at each point for which
an accuracy analysis is being performed. Column formatted output files are generat-
ed for the reference solutions.
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The BENCHMARK subprogram control routine is similar to the main routine of
VIVID. It is a driver program with no indigenous analysis capabilities. It acts as an
analysis traffic director based on the user’s directions. Currently, it contains two an-
alytical subroutines for verification purposes. However, it is written in a highly mod-
ular fashion for ease of expansion to include future verification subroutines. The
current reference routines available for comparison are the two-dimensional flat
duct incompressible flow program and the two-dimensional heat conduction pro-
gram. Multiple sub-options are available for both current analytical programs. De-
velopment work is proceeding on four other reference routines: Couette flow, inviscid
cross flow cylinder, three-dimensional heat conduction, and manufactured solutions.
The FLAT _DUCT and CONDUCTION_2D subroutines are discussed in detail in the
following sections.

4.4.1 Flat Duct Incompressible Flow

FLAT DUCT is an analytical 2-D planer laminar flow subroutine based on in-
formation contained in the convective heat transfer handbook by Kakac, et. al.? This
procedure contains relations applicable to incompressible constant property low
speed flow. Two types of inlet boundary condition problems are addressed in the rou-
tine. Problem types are categorized by inlet velocity profile. Solutions are given for a
fully developed and a constant velocity inlet profile. Axial velocity, vertical velocity,
and pressure are available from both analytical solutions.

Solution for the fully developed inflow velocity profile is exact and is based on
the relation defined in Equation 4.1. In this equation, u, y, and b are the axial veloci-

i = 3-8 3

m

ty, vertical distance from the duct centerline, and duct half spacing, respectively. The
range of y is from -b at the bottom of the duct to & at the top of the duct. The sub-
script m refers to the mean inlet flow velocity and the origin for the coordinate sys-
tem is assumed to be at the duct centerline. Half duct spacing (b) is equal to the one
fourth of the hydraulic diameter (i.e. D, = 4b). For this type of inlet condition, pres-
sure is related to the mean axial velocity through Equation 4.2. Vertical velocity in

- _ldpo,2
Uy = 3700 (4.2)

fully developed flow is identically zero throughout the flowfield.

Analytical solution to hydrodynamically developing flow (for constant inflow ve-
locity) is approximate in the developing region and should be used for comparison
purposes only. It can not be considered as an exact reference for determining numer-
ical solution error. However, it must be solved to get to the region of the analytical so-
lution that is exact (as such, it is included in this document). The inherent value of
this analytical solution comes at the point that the flow has reached fully developed
status in the duct. At this point, the solution is exact and is a direct reference for ver-
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ification of the numerical method. The developing region is considered to consist of
two separate flow fields, the viscous boundary layer and the inviscid core region.
These two merge vertically at a value of y coincident to the boundary layer thickness.
Further, the developing region asymptotically approaches a fully developed flowfield
in the duct axial direction at the hydrodynamic entrance length defined by Equation
4.3. In this relation, Re refers to the Reynolds number based on the hydraulic diame-

0315 [J
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Lyy = Dyeh011Re 1-00175Rd]

(4.3

ter. Independent analytical solutions exist for both the axial and vertical velocities in
each of the two distinct flow fields of the developing region. All four velocity expres-
sions are quite complex and will not be repeated here. However, it is noted that all
expressions are closed functional forms that include a dimensionless velocity term
(U) that is in turn an implicit function of x* (defined below in Equ. 4.8). Expressions
4.4 through 4.7 define the function variables for each velocity term. The first two

u;, = f(U,u,,) (4.4)

v, = f(U,y,u,) (4.5)

equations apply to the inviscid core region, while the next two are for the viscous de-
veloping boundary layer. The x* variable is defined in Equation 4.8. Making use of

u, = f(U,y,u,,0d) (4.6)
v, = f(U,y,u,,0d) 4.7
o_ x _

this definition allows the subroutine to solve for the dimensionless velocity term in
an iterative fashion. Once it is determined, all four of the absolute velocities can be
evaluated. Local pressure drop is also calculated as a complex function of the dimen-
sionless velocity in the developing region. When the axial location exceeds the hy-
draulic entrance length, velocity and pressure calculations revert to the fully
developed relations in Equations 4.1 and 4.2.

4.4.2 Two-Dimensional Heat Conduction

As in the flat duct subroutine, the heat conduction program begins with an in-
teractive parser. In the heat conduction interactive parser, boundary conditions and
material property variables are defined. In a variance from the flat duct approach,
the user is allowed the option of defining these terms in an input file. An example of
this file is shown in Appendix D. Initially, in the case of an ORDER run, the program
displays the dependent variable being evaluated. The user is provided the option to
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evaluate this quantity analytically. As above, the user may choose to bypass the rou-
tine at this point. If processing is continued, an analytical solution of the two-dimen-
sional heat conduction equation is executed.

CONDUCTION_2D is an analytical subroutine developed by Blackwell and
Dowding.1%11 This procedure contains relations applicable to two-dimensional heat
conduction in an infinitely long rod of rectangular cross section dimensions L and H.
The routine successfully addresses both the steady state and transient conduction
problems. Boundary conditions for the problem solved by the routine are illustrated
in Figure 4.1. They consist of constant heat flux at the left vertical surface, constant

q = h(T-T,)
- L 4 >

q" = C, H |1=T,

y

X
-

Wi

q=0
Figure 4.1 Two-Dimensional Conduction Boundary Conditions

temperature at the right vertical surface, adiabatic at the bottom horizontal surface,
and convective heat removal at the top horizontal surface. The convective sink tem-
perature (7', ) and the convective coefficient (h) are assumed constant. In addition,
constant uniform internal heat generation can be included. Material thermal proper-
ties within the domain are considered constant with temperature.

Solution to the two-dimensional heat conduction problem is exact and is based
on the partial differential equations shown in 4.9 and 4.10 for the steady state and

transient evaluations, respectively. In these equations, 7, ¢”, and % are the tempera-
02T 62T "
e %. =0 (4.9)
dx~ Oy

ture, heat generation, and thermal conductivity, respectively. The terms a and t in

2 2
01,01 q" _ 107 w10
dx ay k 00t

Equation 4.10 refer to the thermal diffusivity and time. Blackwell and Dowding used
the principle of superposition to break the problem of interest down into a series of
smaller more manageable problems. The solution to each of the smaller pieces is an
eigenvalue problem. Further details of the analytical developments for the steady
state and transient analyses are contained in references 10 and 11 respectively. Re-
sulting solution of the eigenvalues gives the temperature field of interest.
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5. Sample Analyses & Results

VIVID’s analysis capabilities are demonstrated in the following sections. Both
structured and unstructured grid convergence studies are presented. Evaluations
using data produced by a number of numerical grograms are illustrated. Programs
employed in the analyses included CFD-ACE,!? MP-SALSA,!3 Calore,'* Premo,®
SACCARA!6:17 and Fuego.!® These solutions and analyses were generated by multi-
ple staff members and contributed work is noted by specific authors in major section
titles. A summary of the sample analyses presented in this section is given in Table
5.1. Order of accuracy and error evaluations were performed for all sample numeri-

Table5.1: Summary of VIVID Sample Problems

Code/ Solution : . Spatial
. o Mechanics | Grid Type Temporal
Formulation | Originator yp Geometry P
MP-Salsa/ F. G. Blottner | Incompressible | Unstructured 2D Steady State
FiniteElement | M. A. Payne Fluid Thermal Cavity
CFD-ACHE/ Potter & Black | Incompressible Structured 2D Steady State
Finite Volume Fluid Flat Duct
SACCARA/ C.J. Roy Compressible Structured 2D Steady State
Finite Volume Fluid Inviscid Nozzle
Premo/ C.J Roy Compressible | Unstructured 2D Steady State
Finite Volume Fluid Manufactured
Fuego/ A. R. Black Incompressible |  Unstructured 2D Steady State
Finite Volume Fluid Flat Duct
Calore/ B. Blackwell Heat Unstructured 2D Steady State
Finite Element Conduction Infinite Rod
FCV-FAM/ D. L. Potter Heat Structured 2D Steady State
Finite Volume Conduction Infinite Rod
FCV/Fuego M. A. Payne | Incompressible | Unstructured 2D Transient
Finite Volume Fluid Duct
Calore/ B. Bainbridge Heat Unstructured 3D Steady State
Finite Element Conduction Cube

cal solutions. All graphical illustrations of order and error are presented on
the coarsest mesh used in each grid convergence study. Problems ranged from
an incompressible flat duct flow to a hypersonic compressible reentry vehicle. Vari-
ous dependent variables are illustrated through the different sections. Two and
three dimensional samples are shown including the unique transient option analysis
treating time as the third dimension. These examples are not meant to be con-
veyed as rigorous order of accuracy studies for the various codes employed.
The point is to show the range of application over which the VIVID tool can
be exercised. It should be further noted that the VIVID results for the first sample
problem are analyzed in detail to illustrate difficulties in determining the order and
percent error of numerical solutions. Subsequent sample problems rely on this dis-
cussion and refer to it, but are presented at a reduced level of detail.
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5.1 MP-Salsa Cavity Unstructured Grid Convergence Analysis
(Fred Blottner)

The first sample problem is concerned with testing Richardson extrapolation
methodology with the VIVID code for a well established benchmark problem of ther-
mally driven flow in a square cavity. This problem has been carefully investigated by
de Vahl Davis,19 de Vahl Davis and J ones,20 and Hortmann, Peric and Scheuerer?!
for a range of Rayleigh numbers. The present solutions to this problem have been ob-
tained by McWherter-Payne with the finite element code MP-Salsa with the results
documented in a Sandia Memo by McWherter-Payne, Lopez and Cochran.??

Richardson extrapolation requires the order of the numerical scheme to be
known or additional numerical solutions are required to determine the order. Expe-
rience with determination of the order throughout a solution domain has shown that
unusual behavior can occur. The order predictions are very sensitive to the accuracy
of the numerical solutions being used. If the numerical scheme is second-order, at
certain locations the order can be significantly higher or lower than two. Also the so-
lution error and the order of the numerical scheme is determined with the Richard-
son extrapolation method from the solution on three different meshes. The present
study for a Rayleigh number of 1000 uses numerical solutions with a mesh refine-
ment factor of r = 2. The number of mesh cells and the applicable mesh names used
in this document are as follows:

Crude Mesh: 20 x 20 400 elements
Coarse Mesh: 40 x 40 1600 elements
Medium Mesh: 80 x 80 6400 elements
Fine Mesh: 160 x 160 25,600 elements

The VIVID code has been used to determine the solution order and error of one
of the dependent variables (horizontal velocity) in the thermally driven cavity flow
problem. The present results are compared to the previously obtained results pre-

sented in the Reference [20}. In addition, further analysis of the results are present-
ed.

Problem Description:

The benchmark problem is the thermally driven flow in a two-dimensional
square cavity: with height H and width W equal to 0.062178 m. The left wall is hot
with temperature T, = T, ,+AT/2 and the right wall is cold with tempera-
ture T, ;= Tref —AT/2 where the reference temperature Tref = 303.0K and

AT =T;,,,—T.,4=0.04630K . The top and bottom walls have zero heat flux. The
tangential and normal gas velocity is zero at the four walls. The governing equations
are the Oberbeck-Boussinesq form of the Navier-Stokes equations. The Rayleigh
Number is one thousand for the case considered in this study and is defined as

Ra = p2,pc,gBATL/ ky = 1000
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The specified values of the parameters in this simulation are as follows:
Prer = 1.165 kg/ m3 ¢, = 1005 J/kg-K g = 9.81 m/s?
Ly,=H =W =0.062178 m k = 0.02637 W/ m—-K

n = 1.864 x 107 kg/m-s
The calculated values of the parameters in this simulation are
Pr = c,u/k=0.7104 B=1/T,, =0.0033003
AT = (kuRa)/p2,c,gBLg = 0.04630

The steady flow in the cavity is clockwise and the horizontal or x-component of ve-
locity v, = VX is given in Figure 5.1.1. The velocity component is zero across the
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Figure 5.1.1 - MP-Salsa Horizontal Velocity Contours
cavity near the center of the cavity. The 40 x 40 mesh is also shown in this figure.

Thermally Driven Cavity Flow Solution Analysis:

Order of Numerical Scheme

The analysis presented in this report has carefully evaluated the solution be-
havior of only the horizontal velocity, one of several dependent variables in this prob-
lem. See Reference [20] for a complete evaluation of all of the dependent variables.
The spatial order of the numerical scheme p, as determined from the numerical so-
lution of one of the dependent variables f with three refined meshes, was computed
from the equation below. This is essentially a repeat of Equation 3.21 as derived in

Pems = log[(fcoarse _fmedium)/(fmedium _ffine)]/log[r] (3.21)

the theory discussion in Section 3.3. Subscript cmf indicates that the coarse, medi-
um, and fine meshes are used. The parameter r is the mesh refinement factor and
r = 2 for the present problem. The order of the finite element code MP-Salsa is sec-
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ond order as shown previously?? and the present results will indicate the same be-
havior as the mesh is refined. The present analysis of the solution with the VIVID
code for the order of the numerical scheme p, as determined from the solution of the
horizontal velocity v, with coarse, medium, and fine meshes, is presented in Figure
5.1.2. These results are in close agreement with the results presented in Figure 5 of
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Figure 5.1.2 - Horizontal Velocity Solution Order

Reference [20]. There are points across the center of the cavity where the solution or-
der is erratic. In addition, there is a region near the bottom and upper walls where
erratic behavior also occurs. However the symmetry in the solution is apparent. A
replot on the data is given in Figure 5.1.3 where the order is restricted to
1.7 < p <2.3. This figure shows the regions where the order is not near the expected
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Figure 5.1.3 - Horizontal Velocity é(olution Order With Refined Scale
value of 2. The order of the numerical scheme using the crude, coarse, and medium
meshes is presented in Figure 5.1.4. These two figures indicate that as the mesh is
refined, the region of non-second-order behavior decreases as the solution approach-
es the asymptotic range.
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Figure 5.1.4 - Horizontal Velocity Solution Order With Crude Mesh

It is not known how much of this non-second-order behavior can be removed with
further mesh refinement. Some of the erratic behavior of p is probably due to the so-
lutions not being in the asymptotic range. If the solutions are in the asymptotic
range, then the discretization error e at any spatial location on the three meshes
are related as follows for a second-order numerical scheme:

€coarse ~ (fcoarse_F) = 16(ffine_F) = 166fine Cmedium ~ 4efine
p = log(12/3)/log2 = 2

where F' is the exact solution. When most of the solutions at the various mesh points
indicate a second-order scheme, perhaps the regions of poor behavior of p can be an
indication the asymptotic range has not been obtained in these regions. For the solu-
tions with the coarse, medium, and fine meshes, there are 1521 interior mesh points
and 160 points on the wall where the boundary condition specifies zero velocity.
Therefore the solution is exact at the wall for the velocity components for all of the
meshes and the order of the scheme can not be determined at the wall mesh points.
This is clearly shown when Equation 3.21 is written in terms of the discretization er-
ror as the numerical scheme order equation becomes indeterminate since
e =0 = 0, and €fine = 0 (see Equ. 5.1). For the present case, the order

coarse » Zmedium
Pemf = log[(ecoarse - emedium)/(emedium - efine)] /log[r] (5.1)
predictions satisfy 1.7 < p <2.3 for all the points except 40 mesh points (2.6%).

The behavior of the solution for the horizontal velocity has been investigated at
three mesh points. The location of the mesh points and the order of the numerical
scheme as determined from the solutions are given in Table 5.2. The subscript ccm
indicates that the crude, coarse, and medium meshes are used while the subscript
cmf indicates that the coarse, medium, and fine meshes are used. The numerical so-
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lutions, solution percent errors, and discretization error, E|,, at the three mesh
points are given in Table 5.3, Table 5.4, and Table 5.5. The be%lavmr of the solution

Table 5.2: Solution Scheme Order Behavior at Three Locations

Mesh Point Number x y Peem Demf
216 0.01094 | 0.03109 1.727 1.939
217 0.01405 | 0.03109 0.5104 1.764
218 0.01756 | 0.03109 3.477 3.074

Table 5.3: Solution of v, at theMesh Point N = 216

Dems = 1.939 x = 0.010943 y = 0.03109
5 E, % error 7

Mesh v, x 10 relativeto Fpp, | £a*10

20x 20 6.34738681 2.619 16.20

40 x 40 6.23224259 0.7578 4.688

80 x 80 6.19745915 0.1955 1.209

160 x 160 6.18839040 0.04887 0.3023
Frg 6.18536748

Table 5.4: Solution of v, at theMesh Point N = 217

Pemf = 1.764 x = 0.01405 y = 0.03109
5 E, % error 7

Mesh v, x 10 relativeto Fpp, | £a*10

20x 20 6.91596506 0.6127 4.212

40 x 40 6.89466906 0.3029 2.082

80x 80 6.87971915 0.08539 0.5869

160 x 160 6.87531719 0.02135 0.1467
Frg 6.87384987
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Table 5.5: Solution of v, at the Mesh Point N = 218

Demy = 3.074 x = 0.01756 y = 0.03109
5 E, % error 8
Mesh v, %10 relativeto Fpp, | £a*10
20x 20 6.47975903 - 1.399 -91.97
40 x 40 6.56306220 -0.1318 - 8.665
80 x 80 6.57054261 - 0.01802 -1.185
160 x 160 6.57143100 - 0.004506 - 0.2961
Frr 6.57172713

error for the horizontal velocity for the three mesh points with a second-order
scheme assumed (p = 2) is given in Figure 5.1.5. It appears that the solutions at
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Figure 5.1.5 - Error Behavior vs. Mesh Refinement at Three Points

mesh points 216 and 217 are approaching second-order behavior as the mesh is re-
fined. At mesh point 216, the solution is in the asymptotic range; while at mesh point
217, the solution is still approaching the asymptotic range. The solution at mesh
point 218 is approaching third-order behavior. If third-order behavior is assumed,
the Richardson extrapolation for the exact solution gives

F= FRE - ffine_(fmedium _ffine)/7 when r = 2

The solution error at mesh point 218 has been determined assuming second-order
and third-order schemes and these results are also given in Figure 5.1.5.

Another issue can also confuse the evaluation of the order of a numerical
scheme and produce an enhanced scheme order at a limited number of points in the
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solution region. This type of behavior appears to be occurring at mesh point 218. The
numerical solution for a two-dimensional problem is related to the exact solution F
as follows for a second-order numerical scheme (see Blottner [1]):

f = F+a,Ax? +b,Ay? + agAxd + by Ay3 + ...

If a,Ax? + b,Ay? = 0, then a higher-order scheme (p >2) can be artificially indicated
in local regions in the solution domain. For this anomaly in solution order to occur,
a, must be of the opposite sign of b, and the mesh ratio must satisfy the relation

Ax/DAy = ,[-b,/a,

With the present mesh refinement approach of reducing both Ax and Ay by a factor
r, the higher order behavior does not disappear as the mesh is refined. To avoid this
behavior, the mesh refinement study should fix Ax;, and obtain solutions on a series
of meshes with Ay refined. In this case, f -~ F'(Ax;) and the numerical solution is
expressed as

f = F(Dxg) + b,Ay? + ... F(Dxy) = F+a,Ax?+ ...

With this procedure, the order of the numerical scheme is approached as the mesh is
refined in the y-coordinate direction. This process is repeated with a fixed Ay, and
for a series of meshes with Ax refined.

If the error of the dependent variable is near zero, then numerical round-off er-
rors can result in poor accuracy of the solution of p from Equation 3.21 and as the
error of the dependent variable approaches zero, the solution becomes indetermi-
nate. This behavior is understood by writing the numerical scheme order equation in
terms of the discretization error as given in Equation 5.1. As will be shown subse-
quently, there is a line across the cavity near the center (y coordinate) where the dis-
cretization error is zero. In addition, near the lower and upper walls there are
regions where the error is also zero. At locations where the discretization error is ze-
ro, Equation 5.1 becomes indeterminate and the evaluation of the order p becomes
impossible. The occurrence of zero solution error at certain locations explains the er-
ratic behavior of p across the cavity near the center and at the lower and upper
walls when the solutions are in the asymptotic range.

Numerical Solution Error

The percent error of the numerical solution for the dependent variable f is de-
fined as shown in Equation 5.2 where F' is the exact solution to the problem for the

% Errorof f = E = 100(f -F)/F (5.2

dependent variable f. When the numerical solution is greater than the exact solu-
tion f>F', the percent error will be positive. When the numerical solution is less
than the exact solution f < F', the percent error will be negative. Since the exact so-
lution is rarely known, the value F' is approximated with the Richardson extrapolat-
ed value Fpp which is obtained for a second-order numerical scheme from the
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relation
F=Fpp = ffine * (f medium =1 fine)”3 when r = 2

The absolute value of the percent error of the horizontal velocity v, is given in Fig-
ure 6 of Reference [20]. VIVID has been used to reproduce this result and is given in
Figure 5.1.6. The agreement with the previous results is very good and helps to veri-
fy the VIVID code. This figure shows that absolute percent error of v, is largest near
the left and right walls. Further mesh refinement near these walls is needed to re-
duce this error.
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Figure 5.1.6 - Absolute Error of Horizontal Velocity for Fine Mesh

Further evaluation of the sign of the percent error and its asymptotic behavior
is illustrated in Figure 5.1.7 for the fine mesh and in Figure 5.1.8 for the coarse
mesh. The percent error of the coarse mesh solution should be 16 times the fine mesh

0.06
0.05
0.04
0.03 \,’>

0.02

0.01

FNIRIN ERINTRNNN [ NN T I SN AA R TR |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
X

Figure 5.1.7 - Percent Error of Horizontal Velocity for Fine Mesh
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solution. If this is true, the two figures should be identical. This condition is nearly
satisfied except at the center of the cavity. This result indicates the 3 solutions are in
the asymptotic range and the order result should be accurate except at the horizon-
tal (y=H/2) center of the cavity.
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Figure 5.1.8 - Percent Error of Horizontal Velocity for Coarse Mesh

The percent error approach will have problems where the solution variable is
zero as one is dividing by zero in Equation 5.2. In the current example problem, this
difficulty shows up where v, = 0 across the center of the cavity as shown in Figure
5.1.1. To avoid this problem, a discretization error can be introduced for each
mesh point as

e = (f-F)=(f-Fgg)

The discretization error of v, for this problem has been obtained with the VIVID
code and is presented in Figure 5.1.9 for the fine mesh and in Figure 5.1.10 for the
coarse mesh. Since the error range in Figure 5.1.10 is 16 times the error range in
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Figure 5.1.9, the two figures should be identical if the solutions are in the asymptotic
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range. Again, the results indicate the three solutions are approximately in the as-
ymptotic range. The discretization error is smooth without any unusual behavior for
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Figure 5.1.10 - Discretization Error of Horizontal Velocity for Coarse Mesh

this problem. It is important to notice that the discretization error is zero near a line
across the center of the cavity and, of course, along the four walls of the cavity. There
are regions where this error is larger and where mesh refinement is needed if the
ideal of a uniform discretization error is to be obtained.

The locations where the percent error and numerical scheme order results for
the horizontal velocity have difficulties are presented in Figure 5.1.11 and Figure
5.1.12. Horizontal velocity and discretization error are zero at the interface between
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Figure 5.1.11 - Location of Zero Percent Error of Horizontal Velocity for Fine Mesh

the red and blue regions. The regions of zero horizontal velocity occur across the cen-
ter of the cavity. Comparison of Figure 5.1.11 with Figure 5.1.7 shows that larger er-
rors occur across the center of the cavity. Regions of zero discretization error occur
across the center of the cavity and at a small region near the top and bottom walls. A
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comparison of Figure 5.1.12 with the numerical scheme order results given in Figure
5.1.3 shows that the erratic behavior of the order calculation occurs in the locations
where the discretization errors are near zero. The locations where the discretization
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Figure 5.1.12 - Location of Zero Discretization Error of Horizontal Velocity for Fine Mesh
error is zero for the other dependent variables will be different than the present re-
sults. In the analysis of the order of a numerical scheme, the behavior of the numeri-
cal solution error needs to be understood first. At mesh points where the numerical
solution discretization error is near zero, the predictions of the order of a numerical
scheme should be ignored as these results are unreliable.
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5.2 CFD-ACE Flat Duct Structured Grid Convergence Analysis
(Donald Potter)

A two-dimensional flat duct incompressible flow with constant inlet velocity at
the left boundary was evaluated with the structured finite volume CFD-ACE numer-
ical program. Steady state solutions were obtained with x and y nodal dimensions of
51x 11,101 x 21, and 201 x 41, respectively (refinement factor of 2).

Problem Description:

The second sample problem demonstrates VIVID analysis of incompressible
flow in a two-dimensional flat duct: with height H and length L equal to 0.50 and 22
m respectively. The top and bottom walls are fixed at a constant boundary condition
temperature of 310 K. Flow entering the duct at the left boundary has a temperature
of 300 K. The gas velocity at the inlet on the left is constant across the height with an
axial value of 0.0171 m/s. Gas velocity boundary conditions of zero are set for the ax-
ial and vertical components at the top and bottom walls. In addition, a vertical veloc-
ity of zero is set at the inlet. The Reynolds Number is 1000 and is defined as

Re = pu,D;,/pn = 1000

Dy, in the Reynolds number is the hydraulic diameter and has avalue of 1 min this problem. The
other constant specified values of the parameters in this simulation are as follows:

p = 1.1563 kg/m?3 c, = 1000 J/kg-K H =050 m
L=220m Pr = cpu/k=0.70

W= 1.977x107 kg/m—s
The fine mesh axial velocity field (on the coarse grid) is shown in Figure 5.2.1 The x
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and y proportionality was sacrificed to increase detail of the illustration.

Flat Duct Incompressible Flow Solution Analysis:

The order of accuracy (using the estimated exact solution as a reference) over
0.5

P-U
4.00
.80
.60
3.40
320
.00
280
.60
Z.40
220
.00
1.80

0.3

0.2 1.60

1.40
1.20
1.00
0.20
0.60
0.40
.20
0.00

d 5 19 15 29

Figure 5.2.2 - CFD-ACE Str)l(lctured Grid Velocity Order

the domain for fine grid axial velocity solution is shown in Figure 5.2.2, but illustrat-
ed at the locations of the coarse grid points (i.e. only locations where three solutions
exist). The full width of the duct is illustrated as evidenced by the symmetry of the
solution. VIVID limits the order value output between zero and four. Values outside
these bounds are set to the limits. A second order accurate solution is seen over the
majority of the domain (shown in green). Regions of blue indicate order of accuracy
approaching zero. This should be interpreted with caution. These regions are subject
to the same asymptotic range limitation presented by Blottner in the first problem.

The definition in Equation 2.1 indicates that a zero order implies that no error
reduction is obtained by refinement of the grid. At the inlet and wall boundaries, this
is certainly true since the values of dependent variables are established as boundary
conditions and do not change regardless of how fine a mesh is used to solve the prob-
lem. It should be noted that by definition in VIVID where consecutive solution values
are identical (e.g. at specified boundaries), the order value is set to two. It appears
the boundary condition specification still propagates lower order contamination into
the body of the solution. Possibly, the definition is causing the contour corruption. In-
terpretation of regions of zero order away from the boundaries requires closer exam-
ination of order evaluation Equation 3.21. Variables f;, fo, and f3 refer to the
dependent variable solution values for grids one to three from finest to coarsest, re-
spectively. Since expression 3.21 is logarithmic, any argument of the numerator of
this function that is one or less will produce a zero entry in the illustration. For this
to occur when this argument is positive, there must be less error change between the
coarse and medium grid solution than between the medium and fine grid simulation.
When this argument is negative, f5 does not lie between f3 and f;. This behavior is
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contradictory to the asymptotic region requirement that grid refined solutions must
approach the "true" solution from the same side; either from above or below. Further
grid refinement is necessary to resolve the problem. This is precisely the erratic be-
havior discussed by Blottner in Section 5.1 in reference to the indeterminate nature
of the order equation; either in the form of Equation 3.21 or 5.1.

Regions of order higher than second also deserve examination (yellow and red
areas). Equation 3.21 implies the opposite of the observation made for the blue re-
gions. Error reduction between the coarse and medium solutions is much greater
than between the medium and fine grids. The three solutions are well into the as-
ymptotic behavior for the numerical method. An order value of four indicates that
the local error in these regions is reduced by a factor of sixteen by doubling the num-
ber of grid points. Since the numerical method is not fourth order (i.e. no terms above
second order are saved in the numerical method’s Taylor series expansion), another
explanation must account for this behavior. Blottner advanced the discussion of this
topic in the first sample problem through postulation of the sign differences for the
error coefficients in the series expansions used to estimate the exact solution of the
dependent variables. That discussion is extended here to further define the error co-
efficients. Discretization error is defined by Blottner? as the difference between de-
pendent variable values obtained by solution of the differential equation and the
difference equation describing the same problem. It is the discretization error that is
used in determining the order of accuracy of the numerical method. Starting with
Equation 3.7, repeated here for convenience, the discretization error is represented

F, = f, +ad] + B3} (3.7

by Equation 5.3. Coefficients o and [3 in this relation are referred to here as the di-
E=Fe—f=0(6£+[35§ (5.3

rectional error coefficients. They are indicative of the solution error resulting from
discretization refinement in the x and y directions, respectively. When multiple grid
solutions have been obtained for a problem, it is possible to solve for these coeffi-
cients from expressions of the form of Equation 5.4. Examination of the directional

a = [(fy=fo)/ (" =1)]/8 (54)

error coefficients for regions showing higher order behavior indicates that they are of
opposite sign. Error cancellation produced by multiple directional refinements gives
the appearance of higher order behavior.

For comparison purposes, the order evaluation for a second dependent variable
from the flat duct numerical solution is shown. Figure 5.2.3 shows the order of accu-
racy achieved for static pressure. As with the velocity variable, most of the domain
exhibits second order behavior. Also similar to the velocity evaluation, the regions
showing lower order tendencies are those dominated by boundary conditions. Re-
gions of higher order are more limited than from the previous variable analysis.
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Proper evaluation of the quality of a numerical solution also requires examina-
tion of the error characteristics as well as its order of accuracy (see Fig. 5.2.4). In
practical terms, this variable is more meaningful and in many ways more useful to
analysts. It is the intent of this document to put equal emphasis of importance on the
error and order variables. Figure 5.2.4 illustrates the percent error determined
throughout the domain for the axial velocity. This is the error for the fine grid solu-
tion (i.e. 201 by 41 grid points). It is instructional to examine the same quantity for
the 101 by 21 grid (see Fig. 5.2.5). The error values are based on the Richardson ex-
trapolated estimate of the exact solution. Over the preponderance of the domain, fine
grid error is very small. Further, this representation shows that even in regions
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where order was deemed to be zero, the error is generally less than one percent. Fig-
ure 5.2.5 shows that the error for the medium grid solution has grown perceptibly.
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Figure 5.2.5 -CFD-ACE Medium Grid Axial Velocity Error

Examination of the illustration shows the errors are 4 times larger than the fine grid
solution. This is a mathematical requirement in the areas where grid refinement has
attained second order asymptotic behavior (just as Blottner’s comparison of coarse
and fine grid solutions required an error ratio of 16).
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5.3 SACCARA Compressible Structured Grid Convergence Analysis
(Chris Roy)

An axisymmetric nozzle flow was evaluated with the structured finite volume
CFD code SACCARA. The inviscid Euler equations were solved using the ideal gas
equation of state. Sample Mach number contours are shown in Figure 5.3.1. The flow
is slightly supersonic at the inflow (left) and expands to roughly Mach 6 at the exit
(right). This problem was solved numerically using five different grid levels. The fin-
est level employed 400x160 grid cells, while the coarsest was 25x10 cells. Grid halv-
ing was employed to obtain the coarser meshes from the finest mesh.
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Figure 5.3.1 - SACCARA Structured Grid Mach Number Contours

Various norms of the discretization error in axial velocity are shown in Figure
5.3.2 for the five mesh levels. The normalized dimensionless length parameter h is a
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Figure 5.3.2 - SACCARA Structured Grid u-Velocity Error Norms

measure of the grid size (e.g., Ax) and is plotted logarithmically along the abscissa.
This parameter is normalized such that h=1 for the fine grid and h=16 for the coars-
est grid. The local discretization error for the axial component of velocity is simply
the discrete solution minus the exact solution (i.e., Ugjserete-Uexact), Where the exact
solution is estimated using Richardson extrapolation. Discrete L, and L, norms were cal-
culated by the following equation where k indicates the mesh level and n is summed over the N
points used in the norm calculation.
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In this case, all of the nodal mesh points were used including boundary points.The norms of the
discretization error for u-velocity are shown on the ordinate, again on a log scale.
The first and second order slopes (dashed and solid lines, respectively) are also
shown for reference. All of the error norms display the expected second-order slope
on the finer meshes, thus verifying the solution are second-order accurate in space.

The local order of accuracy for the axial component of velocity is presented in
Figure 5.3.3 using the three finest meshes. The order of accuracy is approximately
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two everywhere except at the outflow boundary, where errors are introduced due to
the fact that the properties here are determined via grid-aligned extrapolation from
the interior rather than streamline-based extrapolation. Due to the supersonic na-
ture of the flow, there errors do not influence the solution within the domain.

The local discretization error in the axial velocity is shown in Figure 5.3.4 for
the finest mesh. The discretization error is a percentage of the exact (Richardson ex-
trapolated) solution. The errors are largest near the inflow, but the magnitude of the
errors is small with a maximum discretization error of approximately 0.03%.
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5.4 Premo Compressible Unstructured Grid Convergence Analysis
(Chris Roy)

A two-dimensional Manufactured Solution was solved using the Premo/SIERRA
unstructured, finite-volume CFD code. The Manufactured Solution methodology is a
code verification procedure used to find coding mistakes (see Reference 23 for de-
tails). The Manufactured Solution was comprised of sinusoidal functions of the x and
y spatial coordinates and was applied to the inviscid Euler governing equations us-
ing the ideal gas assumption. The solution for the mass density is presented below in
Figure 5.4.1. Similar solutions were specified for the two velocity components (which
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Figure 5.4.1 - Premo Unstructured Grid Density Contours

were chosen to be everywhere supersonic) and the pressure. The Manufactured Solu-
tion was solved on five meshes: 9x9, 17x17, 33x33, 65x65, and 129x129 nodes.

Discretization error norms for the mass density relative to the exact manufac-
tured solution are presented in Figure 5.4.2 for the five mesh levels. In this case, the
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Figure 5.4.2 - Premo Unstructured Grid Density Error Norms

=
S,
S
T

discretization error is found by taking the difference between the discrete solution
and the exact (Manufactured) solution. The Ly, Lg, and Li,qpity (max) norms are
shown on the log-log plot versus the normalized grid spacing. The expected second
order slope (solid line) is matched for all three norms on the finer meshes, thus veri-
fying that the spatial accuracy is second order.
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The local order of accuracy for the density is presented in Figure 5.4.3 using the
three finest meshes. The order of accuracy is approximately two throughout the do-

ISV uru wuuc
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L
Figure 5.4.3 - Premo Unstl)'(uctured Grid Density Order

main, with deviations occurring at the inflow boundaries (bottom and left) and along
three lines originating from the origin. Dirichlet values were specified at the inflow
boundary, thus exactly giving zero discretization error. VIVID produces a zero for the
order of accuracy in this case. In order to determine the source of the deviations from
second order within the domain, the local discretization error is examined.

The local discretization error in the density for the fine mesh is presented in
Figure 5.4.4. There is some error generated at the lower left-hand corner of the do-
1
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main. This is not surprising since the horizontal and vertical components are ap-
proximately equal, leading to velocity vectors that lie along the diagonals (i.e., not
grid aligned). This error appears to convect downstream along the diagonal, as well
as propagate along the local supersonic characteristics, which in this case are ap-
proximately +30 degrees to the diagonal. The locations where the local discretization
error crosses over from positive to negative denotes a location where the order of ac-
curacy evaluation becomes undefined (see Figure 5.4.3), as demonstrated in Section
5.1. It should be noted that the magnitude of the density error on the fine mesh is
small, with a maximum of 0.006%.
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5.5 Fuego Flat Duct Unstructured Grid Convergence Analysis
(Amalia Black)

A two-dimensional flat duct incompressible flow problem similar to that evalu-
ated by CFD-ACE was analyzed with the unstructured grid finite volume Fuego nu-
merical program (see Fig. 5.5.1). VIVID has been used to determine the solution
order and error for two dependent variables (axial velocity and pressure) in the 2-D
flat duct problem. The flat duct problem is an incompressible laminar flow problem
which was simulated with the Fuego code on three non-uniform meshes: coarse
(101x21x2) with 2000 elements; medium (201x41x2) with 8000 elements; and fine
(401x81x2) with 32000 elements. Since Fuego is a 3-D code, two symmetry planes
were specified in the third coordinate direction to simulate a 2-D domain. Exact ana-
lytical solutions do not exist for the developing duct flow problem; therefore, Rich-
ardson extrapolation method was used to estimate the exact solution.

Problem Description:

The 2-D flat duct geometry is 10 m long by 0.5 m high. Figure 5.5.1 shows the
solution for the axial velocity. This problem is similar (different inlet conditions &
properties) to the problem demonstrated for CFD-ACE in the second example in Sec-
tion 5.2. A constant velocity of 1.0 m/s was specified at the inlet and a constant pres-
sure of 0.0 Pa was specified at the outlet. The density was 1 kg/m3, the molecular
viscosity was 0.002 kg/m-s, and the corresponding Reynolds number was 250 based
on duct height. The entrance length was estimated to be 5.25 m such that fully de-
veloped flow exists over roughly half of the duct. In this region, the axial velocity pro-
file is parabolic across the duct. At the inlet, the solution is singular at the two
corners where the inlet intersects the walls.

2 4 6 8 10
X
Figure 5.5.1 - Fuego Unstructured Grid Velocity Contours
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Flat Duct Incompressible Flow Solution Analysis:

Each double precision simulation was run until a steady state solution was ob-
tained and all residuals were reduced below 1.0e-18. The calculations were per-
formed using the turbulence mechanics in Fuego stable version 0.7.0. The turbulence
terms were set to zero to simulate laminar flow. The modified linear profile skew up-
wind (LPS) convection scheme was used in the Fuego simulation. Expected order of
accuracy is between 1.0 and 2.0 based on the Peclet number of the flow. A second or-
der accurate scheme was assumed in the Richardson extrapolated solution.

Figure 5.5.2 shows the order of accuracy contours for the fine mesh solution ax-
ial velocity variable throughout the duct (illustrated on the course mesh nodes). It

2 4 6 8 10

Figure 5.5.2 - Fuego Unstructured Grid Axial Velocity Order

should be noted that the y-axis has been expanded independently of the x-axis. The
order pattern produced by VIVID for Fuego is similar to the contour profiles pro-
duced for CFD-ACE for a similar flat duct problem (see Fig. 5.2.2 in Section 5.2). A
reduction in the lower order regions are seen for the current evaluation. This may be
the result of the finer grids used in the Fuego numerical solutions. Twice as many
grid points were used on a shorter domain in both the x and y directions. This makes
average spacing between grid points one-fourth what it was in the CFD-ACE prob-
lem. As expected, variable order values are shown in the entrance region of the duct.
A much finer mash is required near the singularities to capture the gradients in this
region. In the fully developed region, the order values are closer to 2.0. A second or-
der scheme shouald capture a parabolic velocity profile exactly. The calculated dis-
cretization erro between the Fuego fine solution and the Richardson extrapolated
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estimate is shown in Figure 5.5.3. In areas of negative discretization error values in
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Figure 5.5.3 - Fuego Unstructured Grid Axial Velocity Error

the entrance region of the duct and at the dividing line (between positive and nega-
tive error values) where the error values are zero, the extrapolation method will fail
(see Figure 5.5.2).

In addition to local order values at discrete nodes, it is important to look at the
order of accuracy value based on integral variables. In Figure 5.5.4, the axial velocity
L1, L2, and L_ norms output from VIVID are shown as a function of grid cells in the
x-direction. The slope of the L1 norm curve appears to be approaching second order
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5.00x10°

accuracy. It is difficult to attain a value of 2 due to the lower order region near the
inlet. Further grid refinement is required to approach second order behavior over the
entire domain.
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Figure 5.5.5 shows the order of accuracy plot for the pressure along the duct.
0.5 pm

2 4 6 8 10

Figure 5.5.5 - Fuego Unstructured Grid Pressure Order
Second order accuracy values appear over most of the duct, except near the inlet
where the order values drop to one or less. The calculated discretization error be-
tween the Fuego fine mesh solution and the Richardson extrapolated solution is
shown in Figure 5.5.6. Again, the errors are on the order of 10" beyond the entrance

region.
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Figure 5.5.6 - Fuego Unstructured Grid Pressure Error

In Figure 5.5.7 L1, .2, and L, norms for pressure are shown as a function of
the grid cells in the x-direction. The slope of the norm curves suggests that the solu-
tion is converging at a first order rate. Second order convergence was expected for
the pressure variable. This value was used in the Richardson extrapolation. The glo-
bal order value is largely influenced by the low order values near the inlet of the
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duct. Finally, the change in slope of the norm curves suggests that the coarse mesh
solution is not in the asymptotic region of convergence. Finer meshes are required to
accurately capture the developing flow region in the duct.
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Overall, the VIVID code has provided the solution order and solution error
based on the Richardson extrapolation method. The results indicate that the numer-
ical scheme is first order in the developing flow region and second order in the fully
developed region of the duct. A finer mesh is required to accurately capture the gra-
dients in the developing flow region. An additional mesh would also provide a better
understanding of the behavior of the order as the mesh continues to be refined.

The 2-D flat duct problem is not ideal for code verification due to the singulari-
ties at the inlet-wall locations. In addition, the discretization error in the axial veloc-
ity is zero at some locations and Richardson extrapolation does not work at these
points. In general, the calculated order of a numerical scheme is very sensitive to the
properties of the problem solution (i.e. singularities), numerical error behavior (i.e.
zero values), and the computational mesh (i.e. non-uniform spacing).
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5.6 Calore Conduction Unstructured Grid Convergence Analysis
(Donald Potter)

An example of a two-dimensional class of problems addressed by the unstruc-
tured finite element Calore program is included in the sample analyses in this sec-
tion. The steady state thermal response solution of an infinitely long rectangular
cross section rod was evaluated. This is the two-dimensional heat conduction prob-
lem discussed in Section 4.4.2. Steady state solutions were obtained with 200
(11x11x2 nodes), 800 (21x21x2 nodes), and 3200 (41x41x2 nodes) elements (i.e. grid re-
finement factor of 2 in both directions). Since Calore is a 3-D code, two symmetry planes
were specified in the third coordinate direction to simulate a 2-D domain. Ben Blackwell of de-
partment 9133 provided the simulations.

Problem Description:

The sixth sample problem demonstrates VIVID analysis of heat conduction so-
lutions in a two-dimensional rectangular infinitely long rod: with horizontal (L) and
vertical (H) dimensions 0.10 and 0.05 m respectively. As defined in Section 4, this
problem used boundary conditions of constant heat flux on the left (i.e. x=0), con-
stant temperature on the right (i.e. x=L), adiabatic at the bottom (i.e. y=0), and con-
vective heat flux at the top (i.e. y=H). A uniform heat generation term was also
included. The internal heat generation term was constant throughout the spatial do-
main with a value of 1.353x10° W/m?. Boundary condition parameters specified for
this problem are defined as follows:

q,, = 3500 W/cm? T, = 1000 K q, =0 W/cm?
T,=25K  h,=60W/(m°K)

The constant specified values of the parameters employed in this simulation are as
follows:

p = 7000 kg/m? c, =500 J/kg-K  H =005m
L=010m k=040 W/ m-K

Qgen = 1.353%10° W/m®

Temperature field contours for the fine grid solution values on the coarse grid point
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locations are shown in Figure 5.6.1 Dimensional proportionality for the x and y coor-
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Figure 5.6.1 - Calore Unstructured Grid Temperature Contours

dinates was maintained in this illustration.

Two-Dimensional Heat Conduction Solution Analysis:

Order and error analyses based on both the estimated exact and an analytical
solution are demonstrated in this section. Order of accuracy, based on the Richard-
son estimate of the exact solution, obtained over the domain for the temperature is
shown in Figure 5.6.2. Calore showed a predominantly second order solution over
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Figure 5.6.2 - Calore Grid Temp}:arature Order from Extrapolated

the majority of the domain. Two small regions of lower order behavior are observed.
One of these regions is in proximity to the upper wall convective boundary condition.
This could possibly be the result of the heat flux discontinuity in the upper right
hand corner of the cross section. Small regions of higher order behavior caused by
multi-dimensional refinement error cancellation also appear.
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Error analysis of the two-dimensional conduction solution was performed. Tem-
perature percent error determined over the domain is illustrated in Figure 5.6.3. As
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Figure 5.6.3 - Calore % Tem;erature Error vs. Extrapolated
in the fluid analyses, error values are based on the Richardson extrapolated estimate
of the exact solution. The error is very small. Maximum absolute error observed oc-
curs along the convective boundary and is less than 0.2%. For comparison purposes,
error based on an exact analytical solution of the conduction problem is shown in
Figure 5.6.4. The scales on the two error illustrations were kept the same for ease of
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Figure 5.6.4 - Calore Temperature Error vs. Analytical

comparison. Error estimates using the analytical solution are similar to those deter-
mined with the extrapolated estimate. Slightly more error is calculated relative to
the exact analytical solution along the convective boundary.

In addition to the error calculation illustration with the analytical reference,
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the order of accuracy using this reference is shown in Figure 5.6.5. As expected, the
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results are very similar to those obtained with the extrapolated reference. Non-sec-
ond order results were reduced even further than in the first examination. Regions of
irregular order occurred in the same physical locations as before. Obtaining similar
results for both approaches supports the validity of the extrapolation approach when
an exact analytical reference is not available for more complex problems.

0.075 0.

61



5.7 FCV-FAM Conduction Structured Grid Convergence Analysis
(Donald Potter)

Analysis of the sample problem examined in the previous section was repeated
with FCV-FAM, a structured finite volume numerical code written by the author for
the explicit purpose of verification research. This code is based on the Face Assembly
Method (FAM) for producing the difference equations approximating the governing
partial differential equations governing. A limited discussion of the details of this
code is contained in Appendix E. Steady state thermal response two-dimensional
heat conduction solutions of the infinitely long rectangular rod were again evaluated
relative to the Richardson extrapolated exact estimate and analytical references. So-
lutions were obtained with nominal meshes with 100 (11x11 nodes), 400 (21x21 nodes),
and 1600 (41x41 nodes) cells (i.e. grid refinement factor of 2 in both directions).

Problem Description:

Problem description specifics are the same as before and are only partially re-
peated here. Sample seven heat conduction solutions are for a two-dimensional rect-
angular infinitely long rod: with horizontal (L) and vertical (H) dimensions 0.10 and
0.05 m respectively. Boundary conditions are as follows: constant heat flux on the left
(i.e. x=0), constant temperature on the right (i.e. x=L), adiabatic at the bottom (i.e.
y=0), and constant convection coefficient and ambient temperature at the top (i.e.
y=H). Heat generation was also included. Internal heat generation was constant
throughout the spatial domain at 1.353x10° W/m?. Boundary condition parameters
and simulation constant parameter values can be obtained from the problem de-
scription in Section 5.6. Temperature field contours for the fine mesh solution are
shown in Figure 5.7.1 Dimensional proportionality for the x and y coordinates was
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Figure 5.7.1 - FCV-FAM Structured Grid Temperature Contours

maintained in this illustration. The contour scale for this figure is the same as used
in Figure 5.6.1 for the Calore solution. Visual comparison of the two solutions shows
some significant differences. This will be used to illustrate a potential pitfall of the
Richardson extrapolation analysis approach in the next section.
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Two-Dimensional Heat Conduction Solution Analysis:

The order of accuracy, based on the Richardson estimate of the exact solution,
obtained over the domain for the temperature is shown in Figure 5.7.2 using the
same scale as in the previous section. FCV-FAM showed an order of accuracy some-
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Figure 5.7.2 - FCV-FAM Temperature Order from Extrapolated

what greater than two over the majority of the domain. A global order value of
2.6608 was calculated, compared to 1.8877 for the Calore example. This gives the im-
pression of a more computationally accurate algorithm. Both methods are second or-
der, but have different error coefficients for this problem. As in the previous section,
a few small anomalous regions of lower and higher order were present.

Temperature error determined over the domain is illustrated in Figure 5.7.3 for
the FAM solution. Like the Calore analysis, error values were based on the Richard-
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Figure 5.7.3 - FCV-FAM Tem:;)erature Error vs. Extrapolated
son estimate of the exact solution. Again, the errors are small, but as illustrated by
the larger region of blue contours (common contour scale), absolute values of error
for this algorithm are larger (maximum 0.7%) than for Calore. As before, error based
on an exact analytical solution of the conduction problem was also determined as a
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further check (see Fig 5.7.4). The scale was allowed to float to highlight the differ-
ence. Error estimates using the analytical solution are greater than those deter-
mined from the extrapolated estimate. They are in excess of 35%. This is the pitfall
mentioned in the problem description. Solution error was greatly underestimated by
the extrapolation method.
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In addition to determining error with the analytical reference, the order of accu-
racy using this reference is shown in Figure 5.7.5. Despite the large errors noted in
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the previous figure, order representation was still above two in the majority of the
domain. However, indications of a problem occur along the upper and lower bound-
ary where reduced order of the solution is indicated. These coincide with the regions
of large error in the solution. A possible inference of this is that the interior discreti-
zation scheme is reasonable, but there is a problem with the boundary condition im-
plemetation. There was a bug in the boundary conditions of this code. VIVID results
pointed to this fact and this case demonstrates how the tool can be of value locating
such problems. This example highlights the precarious nature of relying on
Richardson extrapolation as the sole indication of the quality of a solution.

64



5.8 Fuego Transient Unstructured Grid Convergence Analysis
(Donald Potter)

An example of a convergence study of transient FCV/Fuego solutions is present-
ed in this section. This was an early developmental version of the code and is NOT
representative of any current tool. The purpose of this example is to demonstrate the
transient analysis capability of VIVID. Specific boundary conditions and problem
definition details are intentionally omitted due to the experimental nature of the
computational tool used. Solutions were generated by Mary McWherter-Payne.
Transient order of an incompressible two-dimensional flat duct was evaluated. Solu-
tions were obtained for a mesh with 2000 cells. Each of the three solutions was ran
transiently to a final time of 0.012 seconds. The time step for each successive solu-
tion was reduced by a factor of two. A backward Euler first order accurate transient
solver was used in these solutions.

The axial velocity solution is illustrated in Figure 5.8.1 below. Time is treated as
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Figure 5.8.1 - FCV Transient Velocity Contours

the third dimension in this process. Order of accuracy was obtained over the domain
at each of these time planes for axial velocity with VIVID (see Fig. 5.8.2). In this
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case, the third (i.e. time) dimension was refined by a factor of two between solutions.
Only the temporal dimension was refined, x and y geometrical nodal dimensions re-
mained constant. Constant pressure inlet and exit boundary conditions were applied
on the ends of the duct at time zero. Contrary to the steady state two-dimensional
flat duct examples, flow in this illustration is from right to left. FCV/Fuego demon-
strated a variable order of accuracy with time. At the initial time plane, second order
was shown everywhere by VIVID definition since the initial condition is the same for
all three solutions. For the solutions obtained at a time of 0.004 seconds, a predomi-
nantly second order time accurate behavior is attained. Second order behavior occurs
at this and all time planes for the solutions as they approach the fixed wall no slip
boundary conditions. Second order behavior by definition is also observed at the inlet
and exit boundaries. Subsequent time planes of 0.008 and 0.012 seconds demonstrat-
ed accuracy behavior tending to first order. This is expected since a backward Euler
first order solver is used in this transient solution. The region of higher order behav-
ior decreases with time. This is to be expected as the solution tends toward a steady
state with fixed boundary conditions. With the same spatial grid, at a time of infinity,
all solutions will ultimately reach the same end point culminating in a second order
representation by VIVID definition.

Error analysis for the transient flat duct finite volume solution was performed.
Axial velocity error in percentage terms determined throughout the time variant do-
main is illustrated in Figure 5.8.3. As in previous analyses, error values are based on
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Figure 5.8.3 - FCV Transient Velocity Error vs. Extrapolated

the Richardson extrapolated estimate of the exact solution. Error over the majority
of the solution is less than one percent. However, there was a significant region
where the error in predicted velocity is excessive. For the most part, the large error
region is restricted to the early time plane. This combined with a correspondingly
larger region of reduced order determined in the order analysis suggests that a more
refined spatial grid may be warranted to resolve the earlier time planes.
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5.9 Calore 3-Dimension Unstructured Grid Convergence Analysis
(Donald Potter)

Finally, a three-dimensional convergence study for steady state finite element
Calore solutions is presented in this section. The order of accuracy of a solid cube in-
depth conduction problem was evaluated. Solutions were obtained with grids of 250,
2000, and 16000 elements respectively. The solutions were obtained by Bruce Bain-
bridge of department 9116. These solutions had a grid refinement factor of two; pro-
ducing eight times the elements in successive runs. Boundary conditions for the
conduction problem are illustrated in Figure 5.9.1. They included convection, fixed
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Adiabatic

Heat Flux

+ Volumetne Heating

Figure 5.9.1 - Calore 3-D Example Boundary Conditions
heat flux, and fixed temperature.

Order of accuracy was determined over the domain for the temperature solution
shown in Figure 5.9.2. Order of accuracy obtained for the fine grid over the domain
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Figure 5.9.2 - Calore 3-D Unstructured Grid Temperature Solution
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for the steady state solution of temperature is shown in Figure 5.9.3. Three types of
boundary conditions were applied to the cube walls. In addition, a volumetric source
term was included. A predominantly second order accurate solution is obtained over

Figure 5.9.3 - Calore 3-D Unstructured Temperature Order

the domain. To aid in visualization of the three-dimensional order, solution slice
planes at x, y, and z of zero are illustrated in Figure 5.9.4. As seen earlier, second or-
der behavior occurs by definition as the solutions approach the fixed boundary condi-
tions. Some lower order behavior is observed away from the boundaries. This is
likely the result of insufficient grid resolution. Isolated regions of higher order be-
havior possibly caused by multi-dimensional refinement error cancellation are also
apparent in the solution domain.
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Error analysis was performed for the finite element cube solid conduction solu-
tion. Temperature error in determined throughout the domain is illustrated in Fig-
ure 5.9.5. As in previous analyses, error values are based on the Richardson
extrapolated estimate of the exact solution. Error over the entire solution is less

than 0.20 percent. Further error illustration is shown in Figure 5.9.6 with the same
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slice planes used for order. For the boundary conditions employed in this problem,
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the temperature solution is accurate to within 0.10 percent (even in areas of lower
order behavior).
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6. Conclusions and Future Work

A software program (VIVID) has been developed to aid in the formalization of
the verification process. VIVID enables order of accuracy and error analyses of a va-
riety of numerical method programs. As a numerical solution analysis program, it
greatly simplifies the task of performing meaningful detailed grid convergence stud-
ies. This is an extremely important milestone in this time of shrinking experimenta-
tion and increased demands on the computational community. The Richardson
extrapolation procedure forms the heart of the VIVID analysis process. This proce-
dure was developed for finite difference and control volume numerical methods. It is
strictly applicable only to uniform mesh problems. It has been applied to a wide vari-
ety of simulation programs and mesh types. The results coming from nonuniform ap-
plications need to be viewed in an inquisitive light. There is much yet to comprehend
from the results. VIVID’s employment of the procedure has allowed evaluation of de-
pendent variable solution order behavior for a number of quantities at the local level
over solution domains never before attempted.

VIVID evaluates numerical solutions created by computational programs re-
gardless of whether the grid employed is structured or unstructured. As indicated in
Sections 2 and 4, both EXODUS and TECPLOT data base formats can be used for
the multiple input solutions required in a grid convergence study. Finite volume and
finite element solutions were processed with this tool. Due to the similarity of the
numerical formulation of finite volume and finite difference techniques, Richardson
extrapolation can be applied directly to solutions based on this method. On the con-
trary, there is an open question as to the applicability of this methodology to the fi-
nite element numerical formulation. Regardless, in all cases examined (including
finite element solutions), significant regions of second order behavior were observed
for programs nominally based on a formal second order numerical scheme. It should
also be noted that there were some regions of lower order behavior in these same so-
lutions. It is the consensus of the community that these regions could be an indica-
tion of insufficient grid refinement when they occurred away from an imposed
boundary condition.

Single dimension and multiple dimension refinement schemes were evaluated
in these analyses. Either approach may be used successfully in a grid convergence
study. Two-dimensional and three-dimensional numerical examples were presented.
Primarily second order behavior characteristics were observed in the steady state
three-dimensional solutions. These results were very similar to those of the two-di-
mensional analyses. Order analyses, based on error relative to extrapolated esti-
mates of the exact solution, yielded similar results to those based on error relative to
an exact analytical benchmark when such a comparison was possible. As such, it was
concluded that Richardson extrapolated estimates are sufficient for order analyses
when benchmarks are not available. Most analyses discussed were of the steady
state variety. However, an order of accuracy analysis was performed on a transient
two dimensional problem. In this case, VIVID’s unique ability to treat time as a third
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dimension was invoked. The results illustrated an essentially first order time accu-
rate behavior for the FCV/Fuego finite volume program.

Although significant analysis capability has been provided by the current ver-
sion of VIVID, considerable work remains to bring it to the level of being broadly use-
ful in the computational community. Currently, it has recognized weakness in three
areas. First, it needs broadening in its input and output data formats. Its interface
capabilities need to be expanded to handle a wider variety of input and output op-
tions commensurate with those in use in the technical community. This should most
certainly include the common data base format yet to be standardized among the
ASCI establishment. Second, the benchmarking subroutine options are in their in-
fancy. A number of accepted standards within the computational community need to
be incorporated into the program; not the least of which is the De Vahl Davis prob-
lem. Finally, a more efficient method of handling large computational problems must
be developed. For VIVID to fulfill its role as a verification tool for ASCI, it must be
able to evaluate tera-flop sized calculations. In its current form, this is not possible.
Manipulation of multiple variables in multi-block, three-dimensional, transient solu-
tions for multiple input files quickly leads to a seven dimensioned analysis space.
Conventional storage of such arrays rapidly leads to exhaustion of recognized stor-
age addresses for a short word machine (such as the work station environment). A
number of approaches may help this situation; beginning with dynamic memory
management and parallellization. Addressing these areas will require significant ef-
fort in the future with the end result being a dynamic, versatile, robust verification
capability.
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Appendix A. Program Structure Details

This appendix provides details for the program structure. It is meant to act as a
supplement to Section 2 contained in the main body of the report. The paragraphs
contained in Section 2 introducing each subprogram are repeated here for the conve-
nience of the reader.

A.1 Input Data Extraction

Input data parsing for VIVID is handled by an original program written specifi-
cally for the ASCI/Fuego verification process. Numerical solution data to be evaluat-
ed by the VIVID processor is initially input to the EXTRACT subprogram. The
program name comes directly from its functional purpose. It literally sorts through
the input files and extracts the parts of each solution defined by the user to be eval-
uated in future analyses. This program can be ran in an independent mode or as part
of an order of accuracy analysis.

Depending on user discretion and the mode of operation, one, two, or three in-
put files can be handled in a single run. Order of accuracy analyses can be performed
for either two or three numerical solution input files. Currently, numerical solutions
may be input to the VIVID program in the form of EXODUS unformatted binary
files or TECPLOT Preplot block formatted files. As used in this procedure, EXODUS
file solutions are strictly for unstructured grid problems. However, TECPLOT input
files may be for structured or unstructured grid numerical solutions. EXTRACT can
accept input of a two-dimensional or three-dimensional nature. Input TECPLOT
files can have multiple zones, while EXODUS input files may have multiple blocks.
As well, multiple dependent variables are allowed for both input formats. Multiple
time planes are also accommodated for the EXODUS format. In association with this
option, it is possible to choose output for a dependent variable as a function of time
at specified coordinate locations from within EXTRACT. At the end of the data sort-
ing process, column formatted output files are written for further analysis. For an in-
dependent run of EXTRACT, this may take the form of simple plotting or input to
another user defined program. For a run that is part of an order of accuracy evalua-
tion, the output files are directly usable as input to the ORDER program. As an addi-
tional visualization feature, EXODUS style input files are translated and output as
TECPLOT Preplot formatted files.

A.2 Reference Data Production

As with the input data extraction process, reference baseline data generated by
VIVID is produced by an original program written specifically for the ASCI/Fuego
verification process. Reference solutions used for comparative analysis purposes by
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the VIVID processor are created by the BENCHMARK subprogram. The routine
name comes from the procedure’s functional purpose. It produces benchmark solu-
tion information to be used in future analyses by options defined by the user. Just as
with the EXTRACT procedure, this program can be ran in an independent mode or
as part of an order of accuracy analysis.

In general, reference data for numerical solution comparative analyses can
come from several sources. Currently, efforts within the verification group are fo-
cussed on three options. Those options are analytical solutions for relatively simple
problems, professional community accepted numerical benchmark solutions, and a
relatively new class of manufactured solutions making use of source term inputs de-
termined from solution of the governing partial differential equations for an as-
sumed answer. At this time, only references of the first variety (analytical solutions)
are available within BENCHMARK. Baselines from all three categories will be in-
stalled in the future. Two analytical solutions are available for current analyses.
They are the Flat Duct Incompressible Flow problem and Two-Dimensional Heat
Conduction analysis for a rectangular geometry. Specific boundary condition restric-
tions are placed on each problem and are discussed in detail in the code functionality
section of this document (Section 4). Two problem sub-types are available within
each analytical solution class. Flat duct problems may have a constant velocity or
fully developed velocity profile inlet flow boundary condition. Heat conduction evalu-
ations may be of a steady state or transient variety.

At the conclusion of the analytical run, a column formatted output file is writ-
ten for further analysis. For an independent run of BENCHMARK, this may take
the form of simple plotting or input to another user defined program. For a run that
is part of an order of accuracy evaluation, error analysis using the analytical solution
as the baseline value is output in the ORDER subprogram’s TECPLOT Preplot for-
matted file.

A.3 Order of Accuracy and Error Analyses

The analysis functions, including order of accuracy and error estimation, con-
ducted on the numerical solutions input to VIVID are performed by a third original
program written specifically for the ASCI/Fuego verification process. Numerical so-
lution data evaluated by the VIVID processor is analyzed by the ORDER subpro-
gram. Like the two previous subprograms discussed in this section, the current
procedure name also comes directly from its functional purpose. The routine evalu-
ates the order of accuracy for the numerical method over the region of the solution
defined by the user. As stated in the first section, order of accuracy relates the
amount of error reduction in a numerical solution for a specified amount of grid re-
finement. Stated mathematically this means that the ratio of the error between two
solutions is equal to the grid refinement factor raised to a power corresponding to the
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order of accuracy of the numerical method (see Equ. 2.1). In Equation 2.1, E, r, and p
E,/ E, = P (r=mesh 2 nodes/mesh I nodes > 1) (2.1

are the solution discretization error at the grid points, grid refinement ratio, and or-
der of accuracy, respectively. Subscript one represents the refined grid solution. The
refinement ration r is the ratio of the physical size of the nodes in solution two ver-
sus solution one. Order of accuracy analyses performed by this subroutine can be
done in concert with the VIVID resident EXTRACT and BENCHMARK programs or
independent of them if the appropriate columnar files are directly generated by a nu-
merical method. Analyses can be performed with input of either two or three numer-
ical solution files.

It is implicit from the discussion of the EXTRACT program in Section 2.1 that
ORDER can evaluate two or three-dimensional geometries for either structured or
unstructured grid problems. It is further implied that multiple dependent variables
may be analyzed for multiple block or multiple zone input geometries. The multiple
time plane option noted in the EXTRACT discussion is used by ORDER to provide a
unique feature for two-dimensional geometry order of accuracy analyses. At the us-
er’s discretion, time can be interpreted as the third dimensional variable allowing
transient order accuracy evaluations for multiple solutions varying time step size.

Estimation of solution error within ORDER can be performed in two different
fashions. Error can be estimated from the BENCHMARK solutions as alluded to in
Section 2.2. In addition, the option exists to determine error from an estimated exact
solution obtained from application of the Richardson extrapolation procedure. The
mathematics of this procedure are discussed in detail in Section 3. When using the
Richardson approach, the option exists within ORDER to estimate the exact solution
from either the formal order of accuracy of the numerical method or from the demon-
strated order calculated from the analysis of the input numerical solutions. At the
end of the analysis process, a column formatted output file is written for further
analysis. This may take the form of simple plotting or input to another user defined
program. Additionally, an output file is generated in TECPLOT Preplot block format
containing the calculated order of accuracy and error estimate variables for each de-
pendent variable examined.
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Appendix B. Code Development and Functionality

This appendix provides details about the code development and functionality. It
is meant to act as a supplement to Section 4 contained in the main body of the re-
port. Some of the information contained in Section 4 introducing each subprogram is
repeated here for the convenience of the reader. Most paragraphs have been expand-
ed in an effort to ease mastering the use of VIVID to perform grid convergence stud-
ies on a series of numerical solutions. With that in mind, Section B.5 contains the
interactive screen output during a typical run for an unstructured evaluation.

B.1Main Program: VIVID

VIVID is an interactive procedure that is invoked on the Sandia - Albuquerque
9100 Engineering Sciences IRN LAN by typing vivid from a command line window.
It may be run in two modes: interactive or control file driven. Following is a discus-
sion of the primary routines structure and functional attributes. Included in the dis-
cussion are its use of command line arguments and interrogative features.

B.1.1 Driver Routine Structure

The main program’s functionality can be categorized into three parts: command
line parser, interactive parser, and program option control. For VIVID, the command
line parser determines the disposition of the control file. It checks for its existence on
the command line invoking the procedure. If one exists, control file mode is initiated.
The file is opened for subsequent reads performed by the main and subprograms ex-
ecuted in the analysis. From this point, the run is controlled by the directions in the
namelist format file. No further user interaction is allowed. If there is not a control
file, a new control file is opened and the interactive mode is initiated. All interactive
instructions made by the user in program queries are written to the new file. This is
a namelist format file and is readily interpreted by and available to the user for edit-
ing for later runs. Use of the input control file option eliminates the need to pass
through the lengthy interactive process associated with a VIVID run.

Following determination of the control file disposition, the screen interactive
parser of the driver program is encountered. A single operational parameter defining
subprogram control is specified in this section of the routine. If no control file is
present, the user is asked to interactively define the subprogram execution option
(i.e. ORDER, EXTRACT, or BENCHMARK). Otherwise, the subprogram option is
read from the first segment of the namelist control file. Next, the program option
control portion of the main routine is executed. This section initiates the desired sub-
program via a Fortran subroutine call. Following completion of the selected subpro-
gram option, termination control is reached. For an interactively controlled
execution (i.e. no input control file), the user is given the option of initiating another
VIVID run. Otherwise, the program is terminated.

77



B.1.2 Command Line Arguments

VIVID has the capability to interpret command line arguments. This is limited
to one argument on the command line invocation. The argument following the vivid
syntax is the name of the control option input file. If no argument is found, all re-
quired input file names and control parameters are defined in the pursuant interac-
tive interrogative screen sessions conducted by the main program and the
subprogram codes it executes. A VIVID run may use anywhere from one to three of
its constitutive programs during execution. The precise nature of the run is deter-
mined by the control option file or any required interactive screen session.

Following activation, the code checks for a command line argument. If one is
present, the code assumes this is the name of the control option input file mentioned
previously. A sample of the syntax for code execution by control file is shown in the
following line.

vivid filename

The file name, filename as denoted above, is completely arbitrary. The user may ap-
pend any name for execution in this mode. A control file by the name vivid_control.i
is generated automatically by the main program every time VIVID is executed inter-
actively and run to conclusion. This file can be renamed to suit the user’s purpose
and employed in subsequent runs. Some typical examples are illustrated below.

vivid vivid_control.i
vivid vivid_structured.i
vivid unstructured_control

The only limitation on the input file name is that it must be fifty characters or less in
length. Samples of typical input files are contained in Appendix C.

B.1.3 Interactive Interrogation & Constitutive Program Execution

Assuming an input control file run is not invoked, VIVID uses a screen interac-
tive parser to establish the majority of the execution control parameters. Most of
these parameters are defined in the subprograms. The specifics of the subprogram
interactive interrogations are discussed beginning in Section B.2. However, the driv-
er program does establish two fundamental variables. The first is declaration of the
subprogram option. This determines whether to invoke ORDER, EXTRACT, or
BENCHMARK. In addition, the main program controls the run repeat option.
Whether interactive or control file mode has been chosen, execution parameters con-
taining solution variables and extent are defined within the solution input files.

Constitutive program execution is begun after the subprogram option is defined
interactively or from reading the input control file in the main routine. All subpro-
grams are incorporated as subroutines of VIVID. A directed GO TO statement is
used in the program to sort the run alternatives. Specifics of the EXTRACT, ORDER,
and BENCHMARK subroutines are discussed in Sections B.2, B.3, and B.4, respec-
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tively. EXTRACT and ORDER share run control information efficiently through com-
mon blocks during order of accuracy runs. Common block dimensions associated
with solution size are controlled throughout the main and subprograms by an in-
clude file (sample file contained in Appendix D). This allows VIVID to be simply tai-
lored to match limiting problem dimensions or for the computing platform being
employed. A simple change of a controlling dimension, prior to compilation on a plat-
form, re-dimensions the entire code. ORDER’s communication with BENCHMARK
is done explicitly through the subroutine call. This approach was taken due to the
single point nature of the evaluations done by the subroutines called under these cir-
cumstances.

B.2 EXTRACT Subprogram

EXTRACT was written to isolate and output specific information of interest for
further analysis. It can be ran independently or as part of an order of accuracy eval-
uation. In the independent mode, files are sorted serially with repetition terminated
at the user’s discretion. In the case of order accuracy analyses, two or three numeri-
cal solution files are accepted serially as input, processed per the user’s instructions,
and output as column formatted files for use by the ORDER subroutine.

The program begins with an interactive interrogation section that establishes
an initial set of control variables for the file to be extracted. Domain, grid, input file
type, and the all dependent variable option flags are defined first. This group of flags
is set on the first run of the program and remains fixed regardless of how many files
are processed by EXTRACT. The domain flag defines the overall nature of the extrac-
tion run. If the domain option is invoked, every nodal point within every computa-
tional zone extracted will be evaluated for at least one dependent variable. Use of
either structured or unstructured grid evaluation subroutines are set by the grid
flag. In the case of an order of accuracy run of EXTRACT, the domain and grid flags
are set in ORDER prior to execution of the extraction subprogram. The input file
type flag sets the input data format. This is limited to TECPLOT PREPLOT files or
EXODUS data base files. Although, an option has been included to allow an experi-
enced programmer to easily add a subroutine to read a file format of their own desig-
nation. Definition of the all dependent variables flag (i.e. ALLDEP) determines
whether the user will be required to define specific dependent variables for data ex-
traction in subsequent interactive interrogations. Setting it to the affirmative en-
sures that each dependent variable in a solution file will be extracted. Affirmatives
for ALLDEP and DOMAIN flags for all zones amounts to extraction of an entire file.

Following definition of the initial group of flags, the serial repetitive section of
the routine’s interactive parser is encountered. This section of the subprogram is re-
peated for each file evaluated. It begins with definition of the input and output file
names. A convenience feature has been included in the interactive input file selec-
tion procedure. From the second file on, a list of files with the same root name as the
first file processed is presented for the user to choose from. The program’s default in-
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put selection corresponds to the next logical file choice (i.e. increasing or decreasing
file suffix number).

File name selections are immediately followed by specification of a group of
variables that define the extraction extent of a given file. This includes extraction
zones, extraction variables, extraction time planes, and extraction nodes. First, the
extraction zone numbers (blocks for EXODUS files) are defined. The option has been
provided for selective evaluation of any or all computational zones within a solution.
Zone number selection is allowed for the first file only. The assumption is made that
all subsequent files processed in the same execution of EXTRACT should use the
same zone definitions. Similar features are provided for file variables to be extracted.
Assuming that the all dependent variables flag was answered with a negative in the
previous section, the code requires definition of variables to be extracted from the in-
put file. As with zone numbers, this selection is allowed on the first pass only and
may include any or all variables within the file. At this point, a divergence of options
exists depending on whether the input files are structured or unstructured. Struc-
tured input allows the user to select the extraction range on the x, y, and z dimen-
sions by specifying nodal range in each direction. This option allows for isolation of
very specific regions within numerical solutions. The selection is made independent-
ly for each file processed. If a full domain extraction is desired, the entire nodal ex-
tent should be specified in all directions. Currently, a comparable option is not
available for unstructured input files. However, unstructured files do present the op-
tion of multiple time planes. This allows for examination of transient order of accu-
racy. Time planes of interest are specified for examination as well as the option of
examining specific locations within the solution domain as a function of time.

The serial repetitive interactive parser section concludes after defining the ex-
traction extent variables. Files are immediately read by calls to subroutines specifi-
cally written to be compatible with an input type. Control of this feature is
accomplished with a directed GO TO structure. Extraction of the data of interest and
output to formatted files follows the file read by employing the extraction extent pa-
rameters as limits in multiple nested DO loops. Multiple output file types may be
produced by this subprogram. A maximum of three file types may be produced for
each file processed. Multiple time plane unstructured EXODUS input files may re-
sult in the output of two column formatted files as well as a TECPLOT PREPLOT
file of the original input data. The two column formatted files are the time dependent
information at specific grid locations and the extracted information ready for use in
an order of accuracy analysis.
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B.3 ORDER Subprogram

ORDER was written to estimate the order of accuracy and error of numerical
solution methods. To calculate order independently, three numerical solutions are re-
quired for the procedure. Two solution error estimate options are available if the or-
der is assumed equal to the algorithm formal order of accuracy or if a benchmark
reference is available.

The program begins with an interactive interrogation section that establishes
an initial set of control variables for the files being evaluated. Domain, grid, number
of input files, two-dimensionality, and interpolation option flags are defined first. The
domain and grid flags are the same as those discussed in the EXTRACT subprogram.
The domain flag defines the overall nature of the order run. If the domain option is
invoked, every nodal point within every computational zone examined will be evalu-
ated for at least one dependent variable. Use of either structured or unstructured
grid evaluation subroutines are set by the grid flag. The flag setting the number of
input files is used by both the EXTRACT and ORDER programs for I/O purposes.
Special options relating to transient functions are controlled by the dimensionality
flag. Definition of the interpolation flag determines how to treat non-coincident grid
points. This option is in its early stages of development and is not widely available to
the user community.

Following definition of the initial group of flags, control is passed from ORDER
to the EXTRACT subprogram. As discussed earlier, the input information to be eval-
uated in ORDER is sorted out by EXTRACT and passed back to it in the form of co-
lumnar input files. An option exists to bypass the extraction run and operate on a
series of preexisting ORDER input files. These files could come from previous runs of
EXTRACT that can now be operated on directly with a variety of analysis options.
Immediately upon regaining control from the extraction subroutine, input and out-
put file names are requested. Current program default input file names are set to the
output file names produced by EXTRACT. Input file names must be entered in
order from coarse grid to fine grid. Each solution must be entered in an indepen-
dent file. All input solutions can NOT be contained in one file. If this is a domain
run, a TECPLOT PREPLOT format output file is also produced for multi-dimension-
al visualization purposes. Immediately after defining the input files, independent
and dependent variable columns are set. If the ALLDEP flag (discussed in the EX-
TRACT subprogram) is set to the affirmative, all dependent variable columns in a
file will be evaluated for order of accuracy. Otherwise, the user will be queried at this
point to define a single independent and a single dependent variable column for eval-
uation.

Input and output data definitions are immediately followed by specification
(through interactive queries or control file reads) of a group of variables that define
the analysis options governing the order evaluation. This includes grid refinement
factor, numerical solution formal order of accuracy, error calculation options, and
benchmark solution flags. First, the grid refinement factor is defined. This is a con-
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stant defining the relative spacing relationship between nodal points for successive
solutions. Although it must be constant, it does not have to be an integer. Numerical
method formal order of accuracy is defined next. This variable relates to the discreti-
zation formulation used for the difference equations in the numerical program that
produced the solutions. For example, keeping the second order terms in the Taylor
series expansions in a numerical method and truncating higher order terms would
provide a formal accuracy of two. Subsequent to the formal order definition, control
flags defining error calculation options are set. Errors calculated from extrapolated
estimates of the exact solution (such as in Equ. 3.10) are a function of the order of ac-
curacy. Thus, the solution error may be estimated from the calculated order of accu-
racy from the multiple solutions or from the formal order of accuracy specified for the
numerical method. A user option is provided for this choice. In addition, the user is
given the option of choosing the input solution for which error is to be evaluated. Un-
less otherwise specified, error is determined for the finest grid solution. Finally, op-
tions relating to BENCHMARK solution use are defined. The user is asked to specify
the availability of a BENCHMARK program contained within VIVID which matches
the current problem type being evaluated. Further, a flag is set defining the use of
any such existing BENCHMARK calculation for error determination purposes.

The interactive parser section concludes after defining the analysis control vari-
ables. At this point, input files are immediately read by multiple nested explicit and
implicit do loops using file extent variables as indices. The read process stores the
data in a high dimensional array (6-D for structured & 4-D for unstructured input)
for ease of grid point matching between solutions. Array dimensions in the struc-
tured storage variable represent three spatial directions, variable number, zone
number, and file number. Since unstructured methods do not necessarily adhere
strictly to x, y, and z orientations, the storage variable array replaces the three spa-
tial dimensions with a single node number dimension. However, the storage variable
size requirements are not reduced. Since the same physical domain must be defined
to similar accuracy, a similar number of nodes are required regardless of the grid
type. The node number dimension is equal to the product of the x, y, and z dimen-
sions in the structured variable array. Following read completion, the multi-dimen-
sional variable storage array is processed by a grid point coordinate matching
subroutine (i.e. GRID_MATCH_S or GRID_MATCH_U). This subroutine compares
the values of the spatial variables of the refined grid solution(s) to those of the coarse
grid solution to determine matching nodes. This results in a revised storage array
with comparable physical points stored at matching array indices across all files. Af-
ter the grids have been matched, error and order of accuracy analyses are completed.
These analyses are based on the detailed equations presented in Section 3.

The analysis results in the production of order of accuracy and error variables
for all dependent variables analyzed. Results are subsequently written to a TEC-
PLOT PREPLOT block format file (order_tec.o) for multi-dimensional visualization.
The original dependent variables analyzed are also written to this file for conve-
nience. Independent and dependent variable names are automatically extracted
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from the original input files and output to the TECPLOT file. In addition, the names
for the order and error variables are generated automatically from the dependent
variable names. As well, a column formatted output file with details of the extrapola-
tion analysis is written to file order.o. This file contains specific extracted, extrapolat-
ed, and benchmark values at all domain points analyzed for a dependent variable.
The order and error variables are also included in this file.

B.4 BENCHMARK Subprogram

BENCHMARK was written to produce reference data for comparison to numer-
ical program solutions. It can be ran independently or as part of an order of accuracy
analysis. In the independent mode, it is accessed repetitively directly from the main
routine with repetition terminated at the user’s discretion. In the case of order accu-
racy evaluations, it is accessed by the ORDER subprogram and executed at each
point for which an accuracy analysis is being performed. Column formatted output
files are generated for the reference solutions.

The BENCHMARK subprogram control routine is similar to the main routine of
VIVID. It is a driver program with no indigenous analysis capabilities. The subpro-
gram acts as an analysis traffic director based on the user’s directions. Currently, it
contains two analytical subroutines for verification purposes. However, it is written
in a highly modular fashion for ease of expansion to include future verification sub-
routines. The current reference routines available for comparison are the two-dimen-
sional flat duct incompressible flow program and the two-dimensional heat
conduction program. Multiple sub-options are available for both programs. In addi-
tion, development work is proceeding on four other reference routines: Couette flow,
inviscid cross flow cylinder, three dimensional heat conduction, and manufactured
solutions.

Assuming that this is not an input file controlled run, BENCHMARK begins
with an interactive interrogation section like other routines within VIVID. In the
reference program driver routine, the analytical program option (i.e. flat duct or con-
duction) is defined first. Depending on run mode (independent or order), the solution
extent option is defined; single point or complete geometry domain analysis. Subse-
quent to the run extent definition, relevant geometry parameters are set. At this
point, control is passed to the FLAT DUCT or CONDUCTION_2D subroutine
through a directed GO TO arrangement. These subroutines are discussed in detail in
the following two sections.

B.4.1 Flat Duct Incompressible Flow

Functionally, the flat duct subroutine begins with an interactive parser to set up
boundary conditions, geometry, and fluid variables. Initially, in the case of an OR-
DER run, it shows the user what dependent variable is being examined and presents
the option to evaluate this quantity analytically. The user may choose to bypass the
routine at this point. Should the procedure be continued, an analytical solution
based on the following development is executed.
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B.4.2 Two-Dimensional Heat Conduction

As in the flat duct subroutine, the heat conduction program begins with an in-
teractive parser. In the heat conduction interactive parser, boundary conditions and
material property variables are defined. In a variance from the flat duct approach,
the user is allowed the option of defining these terms in an input file. An example of
this file is shown in Appendix D. Initially, in the case of an ORDER run, the program
displays the dependent variable being evaluated. The user is provided the option to
evaluate this quantity analytically. As above, the user may choose to bypass the rou-
tine at this point. If processing is continued, an analytical solution of the two-dimen-
sional heat conduction equation is executed.

B.5 Interactive Screen Session for VIVID

Following is a copy of the reports back and forth between the user and the pro-
gram for a typical VIVID ORDER analysis. This run is for an unstructured grid ge-
ometry. The length of the interactive session illustrated here was the driving
function for development of the control file run capability. The control file illustrated
in Appendix Section C.2 was produced by this run.

irn $ vivid

* % * *

*

*

* * % * *
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R Aerosciences Department Fkk

L R R o ok R o ok o R R R R o R o ok e R R o ok R S R R R R S R R R R

WELCOME !! You are Running VIVID/Version 4.4 ! (Revised 6-27-00)
(Last Minor Moifications Made 9-1-00.)

Direct Inquiries to: D. L. POTTER
SANDIA National Laboratories,
Department 9115, {(505) 844-5573}

Lk R R S R R T R ok R o R o R o A R R SR e R R R S R R T R R R R R R S R R R R R R ok R R R R R R R R R

*** VIVID Execution began on: Fri Sep 1 15:43:52 2000 ***

Specify Desired VIVID Subprogram Option:
1-ORDER (Calculates Error & Numerical Program Effective Computational Order)
2-EXTRACT (Produces Column Formatted files from TECPLOT/PREPLOT & EXODUS Files)
3-BENCHMARK (Runs a Benchmark Tool Independently)
4-Stop Execution !!!

ENTER HERE (CR->1):1

How Many GRID POINTS are in Your Fine Mesh File ?
ENTER HERE [CR->100000]:6601

How Many TIME PLANES are to be Stored for Analysis ?
* NOTE * Modifies Dynamic Memory Allocation so Time can be used as Spatial Coordinate.

ENTER HERE [CR->1]:1

How Many SPATTIAL Dimensions are in Your Problem ?
ENTER HERE [CR->2]:2

Currently Making Dynamic Memory Allocation for 14639147 Double Precision Spaces !!!

Lk R R S R R R R ok R e o R R R e T A o S SR S R R R S R R T R ok R R R R R R R R R R R ok R R R ok R R R R R

WELCOME !! You are Running ORDER/Version 2.1 ! (Revised 3-6-98)
(Last Minor Moifications Made 3-13-98.)

Direct Inquiries to: D. L. POTTER
SANDIA National Laboratories,
Department 9115, {(505) 844-5573}

**%* ORDER Execution began on: Fri Sep 1 15:44:22 2000 ***
85



Do You Wish to Evaluate Error at EVERY Node in EACH Zone of Interest ?
* NOTE 1: This is the DOMAIN Option. At least 1 Dependent Variable is evaluated
at EVERY Node in EVERY Zone Analyzed !!!
* NOTE 2: The DOMAIN Option MUST be Activated to Produce TECPLOT Output Files !!!
ENTER HERE [YES/CR OR NO]J:y

What Solution Difference Definition do You Want Set as Equivalent to ZERO ?
* NOTE 1: This is Directly Effects the Order of Accuracy Results When

Consecutive Solution Differences Become Excedingly Small !!!
ENTER HERE [CR->1.0 E-14]:1.e-7

Is this a STRUCTURED/S or UNSTRUCTURED/U Grid ?
ENTER HERE [S OR U/CR]:u

Is this a 2 or 3 File Evaluation ?
* NOTE * For a 2 File Evaluation, the Computed Order of Accuracy from the

Estimated Exact Solution will be IDENTICAL to the Declared FORMAL ORDER !!!
ENTER HERE [CR->3]:3

Specify the Grid Point ZONE/BLOCK Mapping Option:
1-Compare Points Within LIKE Numbered Zones/Blocks Only.
2-Compare Points Across ALL Zones/Blocks.

ENTER HERE (CR->1):1

Will You Allow Linear Interpolation Between Grid Points in the ORDER Calculation ?
* NOTE * This Option is Temporarily Disabled !!!
ENTER HERE [YES OR NO/CR]:n

Do You Need EXTRACT Processing of Your Input Files ?

* NOTE 1: This is REQUIRED to Create Input Files Compatable with ORDER !!!

* NOTE 2: Not Necessary if This is a Rerun working with Previously Extracted Files !!!
ENTER HERE [YES/CR OR NOJ:y

LR R A R R R R R R R R R R o A R R R S R R R S R R S R R R R R R R R R R R R S R R R S R R R R R R

WELCOME !! You are Running EXTRACT/Version 2.1 ! (Revised 3-13-98)
(Last Minor Moifications Made 3-13-98.)

Direct Inquiries to: D. L. POTTER
SANDIA National Laboratories,
Department 9115, {(505) 844-5573}

*** EXTRACT Execution began on: Fri Sep 1 15:45:01 2000 ***
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Specify the Input File Data Base Type:
1-TECPLOT (PREPLOT BLOCK, POINT, or FEBLOCK Compatable)
2-EXODUS II (Binary Data)
3-PLOT3D
4-ASCI Common Data Base Format
5-User Supplied Read Subroutine
6-Stop Execution !!!
ENTER HERE (CR->2):2

Do You Wish to EXTRACT ALL Dependent Variables from the Input Files ?
ENTER HERE [YES/CR OR NOJ.y

* NOTE * Enter DATA BASE Files from Coarse to Fine Grid in Order.

Specify DATA BASE Input File # 1 to be Converted to Column Formatted Data.
* NOTE 1: The TECPLOT File is a PREPLOT Input file !!!

* NOTE 2: The EXODUS II File is an Unformatted Binary file !!!

ENTER HERE (CR->extract_i.1):maw_ran_exo.1

ICHS = 22

Specify Output File Name to be Created by Extracting Information from the Input File.

* NOTE * For Computational Accuracy Evaluations, Output File Names Created here
MUST be the Same as Input File Names Requested Later by ORDER Subprogram !!!

ENTER HERE (CR->maw_ran_exo_1_extract_1.0):

Specify the Computational Region Numbers to be Converted to a Column Formatted File.

* NOTE 1: Currently Limited to 10 Data Bocks !!!

* NOTE 2: This is ELEMENT Blocks for Unstructured !!!

* NOTE 3: You will be asked to Specify the Total Number of ZONES/BLOCKS in the File !!!
* NOTE 4: TECPLOT Input File ZONES MAY be Spatial or Temporal in Nature !!!

ENTER HERE (CR->All Zones):

How many ZONES/BLOCKS are there in the TEC/EXODUS Input File ?

* NOTE 1: For EXODUS Files, This is referring to Spatial Computational Regions !!!
* NOTE 2: For TECPLOT Files, The ZONES may be Spatial or Temporal !!!

ENTER HERE (CR->1):

Number of Nodes = 451 in File 1.

Element Block/Zone Numbers: 1

Current Extraction # 1 Reading Element Block 1.

Number of INPUT File Times = 1.

Time Plane Values: 1: 0.0000E+00

NTPLANE(NTPLANES)= 1
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Maximum EXODUS Time Plane of Interest = 0.000000E+00 seconds.
Following are the Header Lines from Input File 1.
Refined Mesh 0001
Variables: X Y zcoor VX VY Pres
Is the THIRD Variable in the List Above a Coordinate (i.e. Z) ?
* NOTE * If the Third Coordinate Variable is NOT Shown, It WILL be Supplied !!!
ENTER HERE [YES/CR OR NOJ:
INPUT File Time Plane 1 Read from EXTRACTED Block 1 of File 1.
QUAD Elements = 400 for EXTRACTED Block 1 of File 1.
1 Grid Points Stored for EXTRACTED Block 1 at EXTRACTED Time Plane 1 of File 1.
133 Grid Points Stored for EXTRACTED Block 1 at EXTRACTED Time Plane 1 of File 1.
266 Grid Points Stored for EXTRACTED Block 1 at EXTRACTED Time Plane 1 of File 1.
399 Grid Points Stored for EXTRACTED Block 1 at EXTRACTED Time Plane 1 of File 1.
451 Grid Points Stored for EXTRACTED Block 1 at EXTRACTED Time Plane 1 of File 1.
* NOTE * Enter DATA BASE Files from Coarse to Fine Grid in Order.
Specify DATA BASE Input File # 2 to be Converted to Column Formatted Data.
* NOTE 1: The TECPLOT File is a PREPLOT Input file !!!
* NOTE 2: The EXODUS II File is an Unformatted Binary file !!!
* NOTE 3: The Following Files in the Input Family are Present:
maw_ran_exo.1
maw_ran_exo.2
maw_ran_exo.3
maw_ran_exo.4
*** WHICH ONE DO YOU WISH TO USE ? ***
ENTER HERE (CR->maw_ran_exo.2):
ICHS =22
Specify Output File Name to be Created by Extracting Information from the Input File.
* NOTE * For Computational Accuracy Evaluations, Output File Names Created here
MUST be the Same as Input File Names Requested Later by ORDER Subprogram !!!
ENTER HERE (CR->maw_ran_exo_2_extract_2.0):

Number of Nodes = 1701 in File 2.
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Element Block/Zone Numbers: 1
Current Extraction # 1 Reading Element Block 1.
Number of INPUT File Times = 1.
Time Plane Values: 1: 0.0000E+00
NTPLANE(NTPLANES) = 1
Maximum EXODUS Time Plane of Interest = 0.000000E+00 seconds.
Following are the Header Lines from Input File 2.
Refined Mesh 0003
Variables: X Y zcoor VX VY Pres
INPUT File Time Plane 1 Read from EXTRACTED Block 1 of File 2.
QUAD Elements = 1600 for EXTRACTED Block 1 of File 2.
1 Grid Points Stored for EXTRACTED Block 1 at EXTRACTED Time Plane 1 of File 2.
533 Grid Points Stored for EXTRACTED Block 1 at EXTRACTED Time Plane 1 of File 2.
1066 Grid Points Stored for EXTRACTED Block 1 at EXTRACTED Time Plane 1 of File 2.
1599 Grid Points Stored for EXTRACTED Block 1 at EXTRACTED Time Plane 1 of File 2.
1701 Grid Points Stored for EXTRACTED Block 1 at EXTRACTED Time Plane 1 of File 2.
* NOTE * Enter DATA BASE Files from Coarse to Fine Grid in Order.
Specify DATA BASE Input File # 3 to be Converted to Column Formatted Data.
* NOTE 1: The TECPLOT File is a PREPLOT Input file !!!
* NOTE 2: The EXODUS II File is an Unformatted Binary file !!!
* NOTE 3: The Following Files in the Input Family are Present:
maw_ran_exo.1
maw_ran_exo.2
maw_ran_exo.3
maw_ran_exo.4
*** WHICH ONE DO YOU WISH TO USE ? ***
ENTER HERE (CR->maw_ran_exo.3):
ICHS =22

Specify Output File Name to be Created by Extracting Information from the Input File.
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* NOTE * For Computational Accuracy Evaluations, Output File Names Created here
MUST be the Same as Input File Names Requested Later by ORDER Subprogram !!!

ENTER HERE (CR->maw_ran_exo_3_extract_3.0):

Number of Nodes = 6601 in File 3.

Element Block/Zone Numbers: 1

Current Extraction # 1 Reading Element Block 1.

Number of INPUT File Times = 1.

Time Plane Values: 1: 0.0000E+00

NTPLANE(NTPLANES)= 1

Maximum EXODUS Time Plane of Interest = 0.000000E+00 seconds.

Following are the Header Lines from Input File 3.

Refined Mesh 0005

Variables: X Y zcoor VX VY Pres

INPUT File Time Plane 1 Read from EXTRACTED Block 1 of File 3.

QUAD Elements = 6400 for EXTRACTED Block 1 of File 3.

1 Grid Points Stored for EXTRACTED Block 1 at EXTRACTED Time Plane 1 of File 3.

2133 Grid Points Stored for EXTRACTED Block 1 at EXTRACTED Time Plane 1 of File 3.

4266 Grid Points Stored for EXTRACTED Block 1 at EXTRACTED Time Plane 1 of File 3.

6399 Grid Points Stored for EXTRACTED Block 1 at EXTRACTED Time Plane 1 of File 3.

6601 Grid Points Stored for EXTRACTED Block 1 at EXTRACTED Time Plane 1 of File 3.

*** EXTRACT Execution Ended on: Fri Sep 1 15:45:51 2000 ***

*** ORDER Subroutine Re-Entered on: Fri Sep 1 15:45:51 2000 ***

Specify the ORDER Output File Name.
ENTER HERE (CR->order.o):

Specify the ORDER Tecplot File Name.
ENTER HERE (CR->order_tec.0):
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Specify Tecplot File Title.
ENTER HERE (CR->"Numerical Domain Order"):

Do You Wish to Process ALL Dependent Variables in the ORDER Input Files ?
ENTER HERE [YES/CR OR NOJ:

Number of Columns in ORDER Input File 1= 6
Number of Columns in ORDER Input File 2= 6
Number of Columns in ORDER Input File 3= 6

Specify the Constant Grid Refinement Factor.

* NOTE 1: This DOES NOT have to be an Integer !!!

* NOTE 2: Between any 2 Grids, A Single Array or Both May be Refined at a time !!!
* NOTE 3: A Single Refined Array may be in the I or J Direction for the 3 grids !!!
ENTER HERE [CR->2]:

Specify the Numerical Solution Formal Order of Accuracy.
ENTER HERE [CR->2]:

Specify Extrapolation Option for Calculating Error:
1-Calculate Error using FORMAL Order of Accuracy
2-Calculate Error using COMPUTED Order of accuracy

ENTER HERE (CR->1):

Specify the Grid for which the Error is Calculated:
1-Fine Grid
2-Medium Grid
3-Coarse Grid

ENTER HERE (CR->1):

Specify the Output Error Type:
1-Error Output in % Difference Relative to Reference.
2-Error Output in Simple Difference from Reference.
ENTER HERE (CR->1):
Is there a BENCHMARK Program Available for Comparison to the Numerical Results ?
* NOTE * This Could be Analytical, Data, etc !!!
ENTER HERE [YES OR NO/CR]:
Matching Grid Points in Files 1, 2, & 3 for ZONE/BLOCK 1 at EXTRACTED Time 1.
1 Grid Points Matched in EXTRACTED Zone/Block 1 at EXTRACTED Time 1.
90 Grid Points Matched in EXTRACTED Zone/Block 1 at EXTRACTED Time 1.

180 Grid Points Matched in EXTRACTED Zone/Block 1 at EXTRACTED Time 1.
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270 Grid Points Matched in EXTRACTED Zone/Block 1 at EXTRACTED Time 1.
360 Grid Points Matched in EXTRACTED Zone/Block 1 at EXTRACTED Time 1.
450 Grid Points Matched in EXTRACTED Zone/Block 1 at EXTRACTED Time 1.
451 Grid Points Matched in EXTRACTED Zone/Block 1 at EXTRACTED Time 1.

Variable Name Format -->
'("VARIABLES =" A4,A4,A8,A7,A7,A9,A9,A9,A11,A5,A5,A7)

F2-F1 Equals 0 Denominator Warnings Logged for 143 Order Calculations in Zone 1.
Log Function Argument LE 0 Warnings Logged for 272 Order Calculations in Zone 1.

Do You Wish to Run ORDER Again ?
ENTER HERE [YES OR NO/CR]:

*** ORDER Execution Ended on: Fri Sep 1 15:46:18 2000 ***
Do You Wish to Run VIVID Again ?

ENTER HERE [YES OR NO/CR]:

*** VIVID Elapsed CPU Usage = 20.695 seconds ***

*** VIVID Execution Ended on: Fri Sep 1 15:46:19 2000 ***

irn §
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Appendix C. Sample Control Input Files

This appendix provides the sample control namelist input files for problems
solved by VIVID. Included are the input files necessary to handle structured and un-
structured order of accuracy analyses. EXODUS and TECPLOT input examples are
illustrated. The first four examples are for standard evaluations without the use of
BENCHMARK validation subroutines. Samples five and six make use of the flat
duct and the two-dimensional conduction routines respectively. Example six shows a
transient conduction controlling input file. Finally, the seventh example control file
shows a time variant analysis for unstructured grid EXODUS input files.

C.1 Control File for Structured Grid TECPLOT Input Files
$VIVID1
IVOPT=1
N_N= 8241
N_E= 8060
MEM_TOT= 5216767
NUM.T= 1
NUM_D= 2
$END
$ORDER1
DOMAIN=Y’
ZERO_DIF= 1.00000E-07
GRID="S’
NIF=3
INTERP=N’
EXTRUN=Y’
$END
$EXTRACT1
IDOPT=1
ZONETYPE="S’
ALLDEP=Y
INFILE_E(1)="duct_TFG.2 ’
OUTFILE_E(1)="duct_TFG_2_extract_1.o ’
IZONES=1
IZONESX=1
IZONE(1)= 1
ZVAR=Y’
IPLANE(, 1)= 1 51
JPLANE(, 1)= 1 11
KPLANE(1,1)= 1 1
NPTS(1, 1)= 561
$END
$EXTRACT2
INFILE_E(2)="duct_TFG.4 ’
OUTFILE_E(2)="duct_TFG _4_extract_2.o ’
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IPLANE(, 1)= 1101

JPLANE(, 1)= 1 21

KPLANE(1,1)= 1 1

NPTS(2,1)= 2121

$END

$EXTRACTS

INFILE_E(3)="duct_TFG.8 ’
OUTFILE_E(3)="duct_TFG_8_extract_3.0 ’
IPLANE(, 1)= 1201

JPLANE(, 1)= 1 41

KPLANE(1,1)= 1 1

NPTS@3,1)= 8241

$END

$ORDER2
INFILE_O(1)="duct_TFG_2_extract_1.0
INFILE_O(2)="duct_TFG_4_extract_2.0 ’
INFILE_O(3)="duct_TFG_8_extract_3.0 ’
OUTFILE_O<=’order.o ’
TECFILE="order_tec.o ’
TITLE="Numerical Domain Order" ’
ALLDEP=Y

RF=2.00

PF=2.00

IXOPT=1

IGERR=2

ITERR=1

BMRF=N’

IRUN=N’

$END

$VIVID2

IRUN=N’

$END

C.2 Control File for Unstructured Grid TECPLOT Input Files

$VIVID1

IVOPT=1

N_N= 6601

N_E= 6440
MEM_TOT= 4174247
NUM_ T= 1
NUM_D= 2

$END

$ORDER1
DOMAIN=Y’
ZERO_DIF= 1.00000E-07
GRID="U

NIF=3
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INTERP=N’

EXTRUN=Y’

$END

$EXTRACT1

IDOPT=2

ALLDEP=Y’

INFILE_E(1)="maw_ran_exo.1 ’
OUTFILE _E(1)="maw_ran_exo_1 extract 1.o ’
IZONES=1

IZONESX=1

IZONE(1)= 1

$END

$READEXO1

ZVAR=Y’

NPTS(1, 1)= 451

$END

$EXTRACT2

INFILE_E(2)="maw_ran_exo0.2 ’
OUTFILE_E(2)="maw_ran_exo_2_ extract 2.0 ’
$END

$READEXO2

NPTS(2, 1)= 1701

$END

$EXTRACTS

INFILE_E(3)="maw_ran_exo0.3 ’
OUTFILE_E(3)="maw_ran_exo_3_extract 3.0 ’
$END

$READEXO3

NPTS(3,1)= 6601

$END

$ORDER2

INFILE O(1)="maw_ran_exo_1_extract_l.o0 ’
INFILE O(2)="maw_ran_exo_2_ extract_ 2.0 ’
INFILE O(3)="maw_ran_exo_3_extract_3.0 ’
OUTFILE_O=’order.o ’
TECFILE="order_tec.o ’
TITLE=""Numerical Domain Order"
ALLDEP=Y’

RF=2.00

PF=2.00

IXOPT=1

IGERR=1

ITERR=1

BMRF=N’

IRUN=N’

$END

$VIVID2

IRUN=N’

$END
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C.3 Control File for Unstructured Grid Single Block EXODUS Input Files
$VIVID1
IVOPT=1
N N= 6601
N E= 6440
MEM_TOT= 4174247
NUM T= 1
NUM_D= 2
$END
$ORDER1
DOMAIN=Y’
ZERO _DIF= 1.00000E-07
GRID="U"
NIF=3
INTERP="N’
EXTRUN=Y’
$END
$EXTRACT1
IDOPT=2
ALLDEP=Y’
INFILE _E(1)="maw_ran_exo.1 ’
OUTFILE E(1)="maw_ran_exo_1 extract 1.o ’
IZONES=1
IZONESX=1
IZONE(1)= 1
$END
$READEXO1
ZVAR=Y’
NPTS(1, 1)= 451
$END
$EXTRACT2
INFILE_E(2)="maw_ran_exo0.2 ’
OUTFILE_E(2)="maw_ran_exo_2_ extract_2.0 ’
$END
$READEXO2
NPTS(2,1)= 1701
$END
$EXTRACTS3
INFILE_E(3)="maw_ran_exo0.3 ’
OUTFILE_E(3)="maw_ran_exo_3_extract_3.0 ’
$END
$READEXOS3
NPTS(3,1)= 6601
$END
$ORDER2
INFILE _O(1)="maw_ran_exo_1_extract_l.o0 ’
INFILE _O(2)="maw_ran_exo_2_extract_2.0 ’
INFILE_O(3)=maw_ran_exo_3_extract_3.0 ’
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OUTFILE_O=’order.o ’
TECFILE="order_tec.o ’
TITLE=""Numerical Domain Order" ’
ALLDEP=Y’

RF=2.00

PF=2.00

IXOPT=1

IGERR=1

ITERR=1

BMRF=N’

IRUN=N’

$END

$VIVID2

IRUN=N’

$END

C.4 Control File for Unstructured Grid Multiple Block EXODUS Input Files

$VIVID1

IVOPT=1

N_N= 11663
N_E= 10632
MEM _TOT= 48695980
NUM T= 1

NUM D= 3
$END

$ORDER1
DOMAIN=Y’
GRID="U"’

NIF=3

IZMOPT=1
INTERP=N’
EXTRUN=Y’
$END

$EXTRACT1
IDOPT=2
ALLDEP=Y’
INFILE E(1)="aaa.exo ’
OUTFILE E(1)="aaa_exo_extract_1.o ’
ZONES=ALL’
IZONES=9
IZONESX=9

$END

$READEXO1
NTIMES= 102
ALLTIMES=N’
ITOPT=1
NTPLANES= 1
NTPLANE(1)= 102
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TIMESX(1)= 1.0007E+05
IZONE(1)=9123 456178
ZVAR=Y’

NPTS(1, 9)= 243

NPTS(1, 1)= 8279

NPTS(1, 2)= 1636

NPTS(1, 3)= 1258

NPTS(1, 4)= 324

NPTS(1, 5)= 1023

NPTS(1, 6)= 250

NPTS(1, 7)= 225

NPTS(1, 8)= 243

$END

$EXTRACT2

INFILE E(2)=’aaa.exo ’
OUTFILE_E(2)="aaa_exo_extract_2.0
$END

$READEXO2

NTIMES= 102
ALLTIMES=N’

ITOPT=1

NTPLANES= 1

NTPLANE(1)= 102
TIMESX(1)= 1.0007E+05
IZONE(1)=9123 456178
NPTS(2, 9)= 243

NPTS(2, 1)= 8279

NPTS(2, 2)= 1636

NPTS(2, 3)= 1258

NPTS(2, 4)= 324

NPTS(2, 5)= 1023

NPTS(2, 6)= 250

NPTS(2, 7)= 225

NPTS(2, 8)= 243

$END

$EXTRACTS3

INFILE E(3)=’aaa.exo ’
OUTFILE E(3)="aaa_exo_extract_3.o
$END

$READEXOS3

NTIMES= 102
ALLTIMES=N’

ITOPT=1

NTPLANES= 1

NTPLANE(1)= 102
TIMESX(1)= 1.0007E+05
IZONE(1)=9123 456178
NPTS(3, 9)= 243



NPTS(3, 1)= 8279

NPTS(3, 2)= 1636

NPTS(3, 3)= 1258

NPTS(3, 4)= 324

NPTS(3, 5)= 1023

NPTS(3, 6)= 250

NPTS(3, 7)= 225

NPTS(3, 8)= 243

$END

$ORDER2

INFILE _O(1)=’aaa_exo_extract_1.o ’
INFILE O(2)="aaa_exo_extract_2.0 ’
INFILE_O(3)="aaa_exo_extract_3.0 ’
OUTFILE_O=’order.o ’
TECFILE="order_tec.o ’
TITLE=""Numerical Domain Order" ’
ALLDEP=Y’

RF=2.00

PF=2.00

IEOPT=1

IGERR=1

ITERR=1

BMRF=N’

IRUN=N’

$END

$VIVID2

IRUN=N’

$END

C.5 Control File for Unstructured Grid EXODUS Input Files with Analytic
Flat Duct Verification

$VIVID1

IVOPT=1

N_N= 20000

N_E= 19718
MEM_TOT= 44411296
NUM.T= 1
NUM_D= 2

$END

$ORDER1
DOMAIN=Y’
ZERO_DIF= 1.00000E-07
GRID="U’

NIF=3

TWODIM="Y’
IZMOPT=1
INTERP="N’
EXTRUN=Y’
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$END

$EXTRACT1

IDOPT=2

ALLDEP=Y

INFILE_E(1)="ex0.2 ’
OUTFILE_E(1)=’exo_2_extract_1.o ’
ZONES="ALL’

IZONES=1

IZONESX=1

$END

$READEXO1

NTIMES= 3

ALLTIMES=N’

ITOPT=1

NTPLANES= 1

NTPLANE(1)= 3

TIMESX(1)= 5.0000E+01
IZONE(1)= 1

ZVAR=Y’

NPTS(1, 1)= 861

$END

$EXTRACT2

INFILE_E(2)="ex0.3 ’
OUTFILE_E(2)=’exo_3_extract_2.0 ’
$END

$READEXO2

NTIMES= 3

ALLTIMES=N’

ITOPT=1

NTPLANES= 1

NTPLANE(1)= 3

TIMESX(1)= 5.0000E+01
IZONE(1)= 1

NPTS(2,1)= 3321

$END

$EXTRACTS

INFILE_E(3)="ex0.4 ’
OUTFILE_E(3)="exo_4_extract_3.0 ’

$END
$READEXO3
NTIMES= 3
ALLTIMES='N’
ITOPT=1
NTPLANES= 1

NTPLANE(1)= 3
TIMESX(1)= 5.0000E+01
IZONE(1)= 1

NPTS(@3, 1)= 13041
$END
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$ORDER2
INFILE_O(1)=’exo_2_extract_1.0
INFILE_O(2)=’exo_3_extract_2.0
INFILE O(3)=’exo_4_extract_3.0

OUTFILE_O=’order.o ’

TECFILE="order_tec.o ’
TITLE="Numerical Domain Order"
ALLDEP=Y
RF=2.00

PF=2.00

IXOPT=1

IGERR=1

ITERR=1

BMRF=Y’
ANAERR=Y’
ANAORD=N’

$END
$BENCHMARK1
IUOPT=1

$END
$FLAT_DUCT1

V=3

H= 1.000000E+00
IVP=1

UM= 1.000000E+00
RE= 2.000000E+01
PIN= 4.100000E+00
RHO= 1.000000E+00
IYCS=1

$END

$FLAT _DUCT2

Iv=1

$END
$FLAT_DUCTS3

V=2

$END

$FLAT _DUCT4

IV=4

$END
$FLAT_DUCT5

IV=4

$END

$FLAT _DUCTS®6

IV=4

$END

$ORDER3

IRUN=N’

$END

$VIVID2
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IRUN=N’
$END

C.6 Control File for Unstructured Grid EXODUS Input Files with Analytic
Transient Heat Conduction Verification

$VIVID1

IVOPT=1

N_N= 1681

N_E= 1600
MEM_TOT= 3716859
NUM_T= 1

NUM_D= 2

$END

$ORDER1
DOMAIN=Y’
ZERO_DIF= 1.00000E-07
GRID="U’

NIF=3

TWODIM=Y’
IZMOPT=1
INTERP=N’
EXTRUN=Y’

$END

$EXTRACT1

IDOPT=2

ALLDEP=Y
INFILE_E(1)="mesh1_rec 2x1_plot exo ’
OUTFILE_E(1)="1.0
ZONES="ALL’
IZONES=1
IZONESX=1

$END

$READEXO1
NTIMES= 2
TZDIM=N’
ALLTIMES=N’
ITOPT=1

NTPLANES= 1
NTPLANE(1)= 2
TIMESX(1)= 0.0000E+00
IZONE(1)= 1
ZVAR=Y’

NPTS(1, 1)= 121
$END

$EXTRACT2
INFILE_E(2)="mesh2_rec 2X1_plot exo
OUTFILE_E(2)="2.0
$END
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$READEXO02
NTIMES= 2
ALLTIMES="N’
ITOPT=1
NTPLANES= 1
NTPLANE(1)= 2

TIMESX(1)= 0.0000E+00

IZONE(1)= 1
NPTS(2, 1)= 441
$END

$EXTRACT3

INFILE_E(3)="mesh3_rec_2x1_plot.exo

OUTFILE_E(3)="3.0

$END
$READEXO03
NTIMES= 2
ALLTIMES="N’
ITOPT=1
NTPLANES= 1

NTPLANE(1)= 2

TIMESX(1)= 0.0000E+00

IZONE(1)= 1
NPTS(3, )= 1681
$END
$ORDER2
INFILE_O(1)="1.0
INFILE_O(2)="2.0
INFILE_O(3)="3.0
OUTFILE_O=’order.o
TECFILE="order_tec.o

TITLE="Numerical Domain Order"

ALLDEP=Y’
RF=2.00
PF=2.00
IXOPT=1
IGERR=1
ITERR=1
BMRF=Y’
ANAERR=Y’
ANAORD=N’
$END
$BENCHMARK1
IUOPT=3
XL=1.00000E-01
YH= 5.00000E-02
ZW= 0.00000E+00
$END
$CONDUCTION_2D1
Iv=1
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INOPT=1
HCID="x21b11y23b01g1 ’
TOL= 1.000000E-06

$END

$ORDER3

IRUN="N’

$END

$VIVID2

IRUN="N’

$END

C.7 Control File for Unstructured Grid EXODUS Transient Input Files
$VIVID1

IVOPT=1

N_N= 2121

N_E= 2030

MEM_TOT= 3841873

NUM_T= 4

NUM_ D= 2

TZDIM=Y’

$END

$ORDER1

DOMAIN=Y’

ZERO_DIF= 1.00000E-07

GRID="U’

NIF=3

INTERP="N’

EXTRUN=Y’

$END

$EXTRACT1

IDOPT=2

ALLDEP=Y’

INFILE _E(1)="maw_tran_exo.1 ’
OUTFILE_E(1)="maw_tran_exo_1_extract_l.0 ’
IZONES=1

IZONESX=1

IZONE(1)= 1

$END

$READEXO1

NTIMES= 4

ALLTIMES="N’

ITOPT=2

NTPLANES= 4

NTPLANE(1)= 1 2 3 4
TIMESX(1)= 0.0000E+00 4.0000E-03 8.0000E-03 1.2000E-02
TVAR=N’

ZVAR=Y’

NPTS(1, 1)= 2121
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$END

$EXTRACT2

INFILE_E(2)="maw_tran_exo.2 ’
OUTFILE_E(2)="maw_tran_exo_2 extract_2.0 ’

$END
$READEXO02
NTIMES= 7
ALLTIMES=N’
ITOPT=2
NTPLANES= 4

NTPLANE(1)= 1 3 5 7

TIMESX(1)= 0.0000E+00 4.0000E-03 8.0000E-03 1.2000E-02
TVAR="N’

NPTS(2, 1)= 2121

$END

$EXTRACTS3

INFILE_E(3)="maw_tran_exo.3 ’
OUTFILE_E(3)="maw_tran_exo_3_extract_3.0 ’

$END
$READEXO3
NTIMES= 13
ALLTIMES="N’
ITOPT=2
NTPLANES= 4

NTPLANE(1)= 1 5 9 13

TIMESX(1)= 0.0000E+00 4.0000E-03 8.0000E-03 1.2000E-02
TVAR=N’

NPTS@3,1)= 2121

$END

$ORDER2
INFILE_O(1)="maw_tran_exo_1_extract_1.0 ’
INFILE_O(2)="maw_tran_exo_2_extract_2.0 ’
INFILE_O(3)="maw_tran_exo_3_extract_3.0 ’
OUTFILE_O<=’order.o ’
TECFILE="order_tec.o ’
TITLE="Numerical Domain Order"
ALLDEP=Y

RF=2.00

PF=2.00

IXOPT=1

IGERR=1

ITERR=1

BMRF=N’

IRUN=N’

$END

$VIVID2

IRUN=N’

$END
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Appendix D. Dimension & Conduction Files

This appendix contains files relevant to the VIVID code. The first file is the For-
tran common block include file. This file sets the dimensions of the code for critical
program variables. It is used to resize the program to fit specific purposes prior to
compilation. The second file is the namelist input file for a run of the two-dimension-
al heat conduction subroutine. This particular file is for a transient run.

D.1 Fortran Common Block Include File
C
PARAMETER (N_I=1000, N_J=1000, N_K=10, N_V=15, N_7Z=10, N_F=3,
+ N_T=99, NPE=8, NTV=3*(IN_V-3)+3, M_M=100000)
C
COMMON /CONTROL/ ZERO_DIF,MAXARG,N_N,N_E,NUM_D,NUM_T,NTX
C

D.2 Heat Conduction Subroutine Input file
$INPUT
HCID="x21b11y23b01g1 ’
TINI= 2.500000E+01
TIME_F= 1.000000E+04
COND= 4.000000E-01
VOLSRC= 1.353000E+05
DENS= 7.000000E+03
SPECHT= 5.000000E+02
HFLUX= 3.500000E+03
TEMPBC= 1.000000E+03
TCONV= 2.500000E+01
HCOEFF= 6.000000E+01
TOL= 1.000000E-06

XMAX= 1.00000E-01

YMAX= 5.00000E-02

$END
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Appendix E. FCV-FAM Numerical Program

This appendix contains a description of the Finite Control Volume Face Assem-
bly Method (FCV-FAM) numerical heat conduction program. It was written by the
lead author of this report for specific use in the development of VIVID. The descrip-
tion below was derived from the development log at the beginning of the source code
file.

FCV-FAM is a Finite Control Volume (FCV) computational numerical program
that is based on the Face Assembly Method (FAM) introduced to the author by R. J.
Cochran. The current version of the program solves the steady state heat conduction
problem in two dimensions. Four solvers are included in the code: two direct and two
iterative. The direct solvers are Gauss-Jordan and LU Factorization. The iterative
solvers are Gauss-Seidel and Jacobi. All 4 solvers have been demonstrated as second
order accurate making use of linear interpolating polynomials in the matrix fill sub-
routine.

This is a cell centered program. It currently handles specified surface tempera-
ture and specified heat flux boundary conditions. These conditions can be specified
in any fashion on the boundaries. The boundary conditions can be input as distribu-
tions on the surfaces or as constants along the surface. An initial temperature is
specified to begin the solution with temperature dependent material properties.

Geometry options are currently limited to rectangular and axisymmetric cylin-
drical geometries. Non-Orthogonal issues have not been dealt with in the initial
version. It has two internal gridding options to generate computational meshes. It
has a simple uniform gridding option and a geometric progression gridding option to
handle high gradient problems.

The code includes the convection difference operators to the energy equation so-
lution subroutine derived from the general transport equation. This implementation
included the central and upwind difference operators. Specified and zero-gradient
(i.e. fully developed) velocity boundary conditions were included in its capabilities.
Varying velocity distributions on the boundaries are allowed. In addition, the code
contains the ability to include uniform internal heat generation. The generation
term appears along the main diagonal in the matrix formulation.

Input is handled with a NAMELIST format approach. This allows for intuitive
descriptive input files. The code allows inputs of the material properties as a func-
tion of temperature. As such, it allows for multi-pass solutions to converge on a con-
sistent in-depth and surface temperature solution. This allows for fully coupling the
in-depth temperature solution with the surface boundary conditions through a sur-
face energy balance subroutine. The surface energy balance subroutine takes into
account surface radiative heat exchange with a background ambient radiation tem-
perature.

A number of output files are generated for analysis, code debugging, and prob-
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lem visualization. A TECPLOT block format file is generated for visualization of the
temperature field contours. The code contains a restart capability to handle long run
time problems. A convergence accelerator option has been included. This option
cuts convergence time by about 20%.
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