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Abstract

Two methods for creating a hybrid level-set (LS) / particle method for modeling surface
evolution during feature-scale etching and deposition processes are developed and tested. The
first method supplements the LS method by introducing Lagrangian marker points in regions of
high curvature. Once both the particle set and the LS function are advanced in time, minimiza-
tion of certain objective functions adjusts the LS functionso that its zero contour is in closer
alignment with the particle locations. It was found that theobjective-minimization problem
was unexpectedly difficult to solve, and even when a solutioncould be found, the acquisition
of it proved more costly than simply expanding the basis set of the LS function. The second
method explored is a novel explicit marker-particle methodthat we have named the grid point
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particle (GPP) approach. Although not a LS method, the GPP approach has strong procedural
similarities to certain aspects of the LS approach. A key aspect of the method is a surface redis-
cretization procedure—applied at each time step and based on a global background mesh—that
maintains a representation of the surface while naturally adding and subtracting surface dis-
cretization points as the surface evolves in time. This method was coded in 2-D, and tested on
a variety of surface evolution problems by using it in the ChISELS computer code. Results
shown for 2-D problems illustrate the effectiveness of the method and highlight some notable
advantages in accuracy over the LS method. Generalizing themethod to 3D is discussed but
not implemented.
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LDRD Final Report: On the
development of hybrid level-set/particle
methods for modeling surface evolution

during feature-scale etching and
deposition processes

1 Introduction

The problem of representing accurately the temporal evolution of a moving interface is a frequent
one when modeling many different physical phenomena including interfacial fluid mechanics, and
materials science just to name two. The interest here is the need to model accurately and re-
liably the evolving solid/gas interfaces in MEMS fabrication processes. What’s modeled is the
formation of usually a single component, partially constructed, of a device called a feature. The
manufacturing processes in question are classed as either deposition or etch processes. The classes
are identified by the net addition or subtraction of materialthough often in each case there is a
competition between material deposition by chemistry and material removal by chemistry and ion
sputtering. In this report we describe results from a small LDRD-funded research effort that has
explored several ideas for creating a hybrid level-set (LS)/ particle method for modeling surface
evolution during feature scale etching and deposition processes.

1.1 Motivation

Theoretical modeling of the detailed surface chemistry andconcomitant surface evolutions dur-
ing microsystem fabrication processes has great potentialfor improving surface micro-machining
(SMM) based process fabrication technologies. A fundamental aspect of this problem is the ability
to model accurately large changes in surface topology that occur during etching and deposition
processes. The level-set method is one viable method due to its ability to model such changes
reliably without user interaction or other ad hoc treatments. A potential disadvantage of the LS
method is that the spatial accuracy is such that very refined grids in regions of high curvature must
be used to maintain model fidelity.

1.2 Quck Review of Free-Boundary Modeling

A variety of both explicit and implicit methods for modelinginterface evolution have been de-
veloped over the years. Explicit, or so-called Lagrangian methods represent the interface by a
collection of discrete points or material filaments which share material coordinates with the sur-
face, and which are advected with the velocity of the surface. These methods can be classified as
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either front-tracking methods [2]—where the surface is represented by contiguous material fila-
ments, or marker-point methods [9]—where the surface is represented by a collection of points on
it. Implicit, or so-called Eulerian methods, such as the volume-of-fluid [7] and the level-set method
[9], define the interface implicitly by a scalar quantity from which the interface can be deduced
locally on a stationary grid. Each of these approaches has particular advantages and disadvantages,
and the problem of interface tracking continues to be an areaof active research [8].

For problems with large topological changes, such as may occur in the feature length-scale
modeling of MEMS and microprocessor fabrication processes, the level-set method has distinct
advantages. In particular, the merging or pinching-off of colliding surfaces is handled naturally
withoutad hoc rules or the necessity of user interference.

In the level-set method, a domain-spanning signed distanceor level-set function,φ, is defined;
the zero-value contour, or level set, of which conforms to the feature surface. The level-set function
is evolved by solving the scalar partial-differential equation,

∂φ
∂t

+v ·∇φ = 0 (1)

over the volume and integrating through time. The velocity,v, in Equation 1 is called the extension
velocity and is defined over the entire domain. The extensionvelocity must be chosen so that the
level set ofφ evolves in such a way that it remains true to the evolution of the physical surface;
i.e. it is chosen based on the velocity of the surface—the deposition or etch rate in our case. The
level set method avoids the debilitations of the explicit methods because the mesh which is used
to solve Equation 1 does not deform, so grid-distortion issues are avoided. Likewise, because a
volume-defined function is evolved, merging surfaces do notcreate problems in the method.

When the level-set method is employed, errors can accrue in the computed shapes and locations
of the evolving surface from two sources. First, when the signed distance function is represented
by a finite set of basis functions, as it must be in computer implementations of the method, in-
sufficient resolution from the use of too few basis functionsof the signed distance function can
result in an inaccurate resolution of the surface. This can manifest itself as an artificial rounding
or smoothing of corner regions, and can only be improved by the costly addition of more basis
functions,i.e. the mesh must be refined. Figure 1 illustrates this for the idealized problem of uni-
form deposition near convex and concave corner regions. Likewise, if the extension velocity is
not chosen perfectly, the interface will not evolve faithfully to that which the physics demands.
Lagrangian approaches, such as front tracking or marker-point methods, can represent regions of
high surface curvature and evolve surfaces with greater accuracy, but require complicatedad hoc
treatments when surfaces merge or pinch-off. This leads to reliability problems on implementation
that can require significant user interaction.

To model feature-scale MEMS fabrication processes accurately, it is imperative that both the
high-curvature and the merging/pinch-off events be accurately represented. However, as described
above, no one method is completely satisfactory under theseconstraints. In a recent Sandia project,
these issues were carefully considered and the level-set method was chosen as the best alternative
for a new feature-scale model called ChISELS of both 2D and 3DMEMS fabrication technologies.
To capture the evolution of sharp corners and edges, very finemeshes created using locally adaptive
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Figure 1. Illustration of the effect of grid refinement on level-set
error near corners.

meshing techniques must be generated to minimize the effects of artificial rounding. Experience
with ChISELS suggests that the resolution required by the level-set method to capture the sharp
corner regions is much higher than the resolution needed by the species transport and reaction
models to resolve spatial variations in the surface growth rate. At present, accurately resolving
many 3D problems of interest requires considerable computationally cost. To be parsimonious
with computing resources, it is desirable to develop a method that represents the feature with the
fewest number of surface elements required to model accurately the surface’s evolution while still
resolving regions of high curvature.

1.3 Research Goals

Recently, a hybrid particle/level-set method was developed by [1] to improve the accuracy of the
standard level-set method. In their approach, a large number of Lagrangian marker particles are
randomly placed on each side of an interface. If marker particles initially seeded on one side
of the interface are found on the opposite side after a brief interval of time integration, they are
flagged. The flagged particles are used to correct the level-set function based on their location
relative to the interface as represented by the uncorrectedlevel-set function. Their hybrid method,
however, can be quite expensive requiring thousands of particles to work well, and would not
reduce computational cost appreciably, if at all, in the applications of interest here. The thrust of
the LDRD research described here was to explore the hybridization concept further in hopes of
developing an improved approach for modeling feature-scale etching and deposition processes.
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After evaluating a variety of possible strategies, two ideas were developed and tested. The first
method, described in Section 2, supplements the LS method byintroducing Lagrangian marker
points in regions of high curvature. Once both the particle set and the LS function have been
advanced in time, minimization of certain objective functions adjusts the LS function so that its
zero contour is as close as possible to the particle locations. Unfortunately, it was found that the
objective-minimization problem was often unexpectedly difficult to solve. Even when a solution
could be found, the acquisition of it sometimes proved more costly than simply expanding the basis
set of the LS.

The second method explored is a novel particle method calledthe grid point particle (GPP)
method. This method is described in Section 3. Although not aLS method, the GPP method has
steps that are similar to some steps of the LS method. A key aspect of the method is a surface
rediscretization procedure employed at each time step thatmaintains a more accurate representa-
tion. A 2D version of the method was developed in the ChISELS computer code and tested on a
variety of surface evolution problems. Results shown for 2-D problems illustrate the effectiveness
of the method and highlight some significant advantages in speed and accuracy over the standard
LS method. Generalizing the method to 3D is discussed but notimplemented.
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2 Method One

The first method to hybridize the level-set and particle methods borrows ideas from curve fitting
and optimization. Whereas the method remains substantially a level-set method, fix-ups to the
level-set function are made to help alleviate some of the inaccuracies in it;viz., it alleviates inac-
curacies in integrating the first-order wave equation, which models the evolution of the level-set
function, and those due to the construction of the so-calledextension velocity field in Equation 1.
The following discussion assumes knowledge of the level-set method and how it is employed in
ChISELS; details are available in [6].

When modeling MEMS fabrication processes by the method described in [6], the surface must
be rendered for the transport calculations. This is done by representing the surface by elements as a
contiguous set of line segments or triangular patches. At the onset of the computation, the surface
elements are user provided—the initial level-set functionis computed from them. Otherwise, the
collection of surface elements is computed by solving for the zero contour of the level-set function.
In either case, once an explicit representation of the surface has been made, specified regions of
the surface—namely those where curvature is high compared to some tolerance—can be seeded
with particles at any density. So the surface has two representations: that of the level-set function
and locally that by a collection of surface-embedded particles.

A velocity is assigned to each surface element. The magnitude of the velocity is equal to the
local growth or etch rate and the velocity’s direction is parallel to the normal vector to the surface
element. Particles are assigned a velocity identical to that of the surface element in which it is
embedded.

Once a surface velocity field has been been assigned, the level-set function is advanced by one
time step by the method reported in [10]. Simultaneously, particles are relocated according to

xp (t +∆t) = xp (t)+vp∆t (2)

wherexp is the particle’s location,vp is the particle’s velocity and∆t is the time elapsed in the time
step. In general, the new location of the particles will not lie on the new level set. As it is assumed
here that particle representation of the surface is more accurate than the level-set representation, a
method has been devised to correct the level set so that it is in the closest possible alliance with the
particle locations.

The level-set function is brought into closer accord with the particle locations by minimizing a
pair of quadratic objective functions that are subject to a single, linear inequality constraint. the
first objective function is a least-squares fit of the level set to the particle locations,viz.

f1 = min
np−1

∑
p=0

(ψp −φ(xp))
2 (3)

wherenp is the number of particles,φi is the level-set function evaluated at the spatial location
of the particlep. ψp is the desired value of the level-set function at the particle location, which,
of course, equals zero. This objective function forces the zero value contour ofφ to be as close
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as possible—in a least-squares sense—to the locations of the particles, but it also admits a trivial
solution whereφ = 0 for all values ofx. This malady is cured by a second objective function.

The second objective function is the integral over the volume of the square of the so-called
Eikonal equation,viz.

f2 = min
Z

V
(‖∇φ‖2−1)2 dV. (4)

this function forces the gradient of the level-set functionto have as near as possible a unit magni-
tude throughout the domain. In regions where the gradient does have exactly a unit magnitude, it
meets the definition of a signed-distance function [9]. It eliminates everywhere the possibility of a
trivial solution.

One linear constraint is added to ensure thatφ has a unique sign. The constraint is
Z

∇φ0 ·∇φdV > 0 (5)

whereφ0 is the uncorrected level-set function. In order to solve theproblem with this constraint, a
slack variable is added to Equation 5:

g =

Z

(

∇φ0 ·∇φ− s2)dV = 0 (6)

From Equations 3, 4 and 6, an equation set is formed and solvedto get the corrected level-set
function. The equation set is

ω∇φ f1 +(1−ω)∇φ f2−λ∇g = 0 (7)

g = 0 (8)

whereω is a user-prescribed weight factor,λ is a Lagrange Multiplier and only solutions withs > 0
are accepted.

Ultimately, the end goal of the hybridized method was to improve upon inaccuracies attendant to
the level-set method when a finite basis set is used to represent the level-set function. Thus coarser
discretizations, i.e. fewer basis functions, could be enabled and corresponding CPU savings real-
ized. As it turns out, however, the objective-minimizationproblem proved unexpectedly difficult to
solve. Even with Newton linearization and an analytical Jacobian matrix, solutions often could not
be found. In addition to the newly written Newton solver, NOX[3], a Sandia-produced nonlinear
equation solver, a part of the Trilinos suite, was employed,with equal success. It was determined
that, even when a solution could be found, the acquisition ofit proved so costly as to make it not a
viable alternative to expanding the basis set of the level-set function representation.
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3 A Grid-Point Particle Method for Modeling Surface
Evolution

In this section an explicit particle method is described formodeling the evolution of surfaces when
the surface velocities are always normal to the surface. It is called the grid-point particle (GPP)
method because at each time step new surface marker particles are scribed on the surface at the
nearest point to the grid points on a uniform grid. A high level overview of the method is first
provided in section 3.1, followed by a detailed descriptionin Section 3.2. In this section the method
is illustrated in a sequence of three time steps. In the first timestep, the basic algorithm is described
by which a surface in motion is advanced in the model. The subsequent two timesteps show how
the method handles two special cases that arise when modeling MEMS fabrication processes.

3.1 Model Overview

The GPP method is defined by a sequential process that incorporates, at various points in time, the
following key operations:

1. Surface discretization: A novel technique described here for creating a unique discrete ap-
proximation of any arbitrarily defined surface based on a given background mesh.

2. Calculation of surface element velocities: This consists of using an appropriate physics
model to calculate normal velocities on all discrete surface elements. In problems of interest
here, these are etching and/or deposition models based on surface and gas?phase chemical
reactions.

3. Element-to-point velocity transformation: A scheme for converting surface element veloci-
ties to equivalent surface point velocities.

4. Constrained Lagrangian movement: The displacement of surface points during a discrete
time step as constrained by certain geometric limits.

5. Surface reconciliation: A check for surface overlap locations and, if they exist, thereconcil-
iation of the new topology through local Boolean operations.

To evolve the surface topology in time, a calculation proceeds through a series of these steps.
Each calculation has two phases, an initialization phase and a time integration phase. The steps
associated with each of these phases are summarized below.

GPP Initialization Phase:

1. Input problem description and run parameters
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• S: The initial surface

• h: The background mesh length scale

• ε: The subgrid resolution length scale

2. Perform surface discretization (Before evolving in timethe initial surface must be approxi-
mated by performing an initial surface discretization.)

GPP Time Integration Phase:

Begin time step

1. Calculate surface-element velocities

2. Convert surface-element velocities to point velocities

3. Constrain time-step with local information. Move point locations based on velocity and time
step.

4. Reconcile surface topology if surface overlap is detected

5. Construct a new discrete approximation of the surface by performing a surface discretization
operation.

End time step

3.2 Details of the GPP method

Details of the GPP method will be described by reference to a series of figures illustrating each
substep taken in the overall algorithm as it proceeds duringan illustrative 2D calculation. The
calculation will begin with an initilization phase during which the user-specified intial state of the
surface is discretized based on the background mesh resolution. The calculation then proceeds
through three sequential time steps. The first time step illustrates the basic method by which a
surface is advanced in the model. The second two time steps illustrate how two important special
cases are handled; (1) how to treat multiple surfaces in a cell, and (2) how to treat multiple surfaces
in a cell when the surfaces merge or intersect, creating a major change in topology.

3.2.1 Initialization phase

Substep 1 A problem is initialized as illustrated in Figure 2. The boundary between two
regions is defined by a fully-resolved surface indicated by the blue line. A background mesh of
size h is shown by the vertical and horizontal grey lines. We also define a subgrid resolution length
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Figure 2. Initialization of illustrative problem

Figure 3. Surface-containing mesh cells
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Figure 4. Finding surface discretization points.

scaleε. The value ofε must be smaller than h, and for all calcultions performed here ε = 0.1h.
As will be described below, the values of h andε affect the resolution of the surface discretization
algorithm.

Substep 2 (Figure 3) Every cell in the background mesh through which the surface passes is
identified and placed in a sequential list. If the surface passes through a cell more than once, the
cell information is ”cloned”. Since this does not occur here, a description of what this entails and
its purpose will be discussed later.

Substep 3 (Figure 4) In each surface-containing cell, we conceptually draw a line from each
corner mesh point to the nearest location on the surface within the cell. Because neighboring cells
share common corner points, multiple lines might be drawn from a single mesh point. However,
each of these lines is associated with a different surface-containing cell. Note that at this stage
multiple surface points may lay on top of each other.

Substep 4 (Figure 5) Next we create a sequential set of unique surface points and associated
line segments (surface elements) that define a new (red) surface. In this process, any surface
points that are withinε of each other are consolidated into a single point. This creates our discrete
approximation to the original (blue) surface, which is now discarded.

Substep 4 completes the initialization phase.

16



Figure 5. Surface discretization.
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Figure 6. Compute surface-element velocities.

3.2.2 Illustrative time step one

Substep 5 (Figure 6) We begin the time step by computing the velocity on each surface
element based on the physics of the problem at hand. For the surface chemistry involved in etching
and deposition of microsystems, the direction of each surface velocity is always normal to the
surface element.

Substep 6 (Figure 7) In this substep velocity vectors are calculated for each surface element
endpoint. These must be calculated as a function of the surface element velocities, and a variety of
alternatives can be constructed for doing this. Tests from several choices showed that the procedure
used to compute these velocities is important to the overallaccuracy and robustness of the method.
In all our tests, we found the method described in the following subsection to be very satisfactory
for 2D problems.

A method to convert surface-element velocities to point velocities in 2D The method
begins by conceptually moving each line segment to a new location based on its specified normal
velocity.

If neighboring line segments intersect, then the intersection point defines the vector direction and
magnitude of the point shared by the two line segments.

Else,

we compute a velocity vector at each line segment endpoint asthe vector average of the velocities
on each of the two line segments (A and B) that share the point.This defines the vector direction.
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Figure 7. Compute surface-point velocity vectors from surface-
element velocities

The vector magnitude,M, is computed as

M =
(|VA|+ |VB|)

2
+ABS (sin(φ))∗

[

MAX (|VA|, |VB|))−
(|VA|+ |VB|)

2

]

(9)

whereφ is the angle formed between line segments A and B, and|V | denotes the magnitude of
velocity vector V.

Substep 7 (Figure 8) At this stage we loop over each point on the surface and find if the
velocity vector at this point intersects any of its neighboring-point velocity vectors. From this we
can compute a maximum time step for surface advancement based on the shortest distance to any
intersection point that may have been found.

Substep 8 (Figure 9) All surface points are now moved in a Lagrangian fashion to new
locations based on the time step and their respective velocities. In this process element-to-point
connectivity is maintained, and a new surface location (here denoted by blue line segments) is
thereby obtained. Also, any neighboring points that are within ε of each other are consolidated
into a single point.

Substep 9 (Figure 10) Every cell in the background mesh through which the surface now
passes is identified and placed in a new sequential list. If the surface passes through a cell more
than once, the cell information is cloned. Once again, sincethis does not occur here, a description
of this entails will be deferred.

This is our preliminary discrete approximation for the surface at time t +∆t. Up to this point,
the method can be thought of as essentially a string method (see e.g. [cite Sethian]). However, we

19



Figure 8. Constrain time step based on geometry.

Figure 9. Lagrangian movement of points
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Figure 10. New surface-containing mesh cells.

have not yet adjusted the surface representation based on its relationship to the underlying grid, nor
described how this process and the underlying grid is used toaddress major topological changes
as they occur.

Substep10 (Figure 11) In each surface-containing cell, we conceptually draw a line from each
corner mesh point to the nearest location on the surface within the cell. Because neighboring cells
share common corner points, multiple lines might be drawn from a single mesh point. However,
each of these lines is associated with a different surface-containing cell. Note that at this stage
multiple surface points may lay very close to or on top of eachother.

Substep 11 (Figure 12) The surface discretization is completed after consolidating any
surface points that are withinε of each other. This new discrete representation of the surface is
shown in red. The blue preliminary representation of the surface (mostly hidden in Figure 12), is
now discarded.

The first time step in the time integration phase of the methodis now finished.

3.2.3 Illustrative time step two

Substeps 12-14 (Figure 13) The next three steps are now a repeat of what has been described
previously in time step 1, and include calculating surface element velocities based on the problem
physics, converting the surface element velocities to equivalent surface point velocities, and the
determination of a maximum time step for surface advancement based on the shortest distance
to any intersection point that may have been found. For brevity, these are illustrated together in
Figure 13.
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Figure 11. New surface discretization points.

Figure 12. New surface discretization after point consolidation.
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Figure 13. Calculation of surface velocities, point velocities, and
maximum time step (time step 2).

Substep 15 (Figure 14) All surface points are once again moved in a Lagrangian fashion
to new locations based on the time step and their respective velocities. Because element-to-point
connectivity is maintained, a new surface location is obtained as denoted by blue line segments.
Also, any neighboring points that are withinε of each other are consolidated.

Substep 16 (Figure 15) Every cell in the background mesh through which the surface now
passes is identified and placed in a sequential list. If the surface passes through a cell more than
once, as occurs twice in Figure 16, the cell information is cloned, and the cell is marked as a 2-
surface cell. Its information is now found twice in the sequential list. If the surface passes into a
cell more then twice, the cloned cell is simply created everyadditional time. Each cloned cell is
treated as unique for the purposes of the next substep in the algorithm.

Substep 17 (Figure 16) In each surface-containing cell, we once again conceptually draw
a line from each corner mesh point to the nearest location on the surface within the cell. Cloned
cells are treated as distinct in this step, and the portion ofthe surface that is associated with each
cloned cell is not seen by its other copies. As before, cornerpoints shared by neighboring cells are
treated as distinct so that multiple lines might be drawn from a single mesh point. However, each
of these lines is associated with a different surface-containing cell.

Substeps 18 and 19 (Figure 17) Substep 18 consists of consolidating any surface points that
are withinε of each other. The new discrete representation of the surface is shown in red. Because
cloned cells are present, we must now check for overlap of surfaces. In substep 19 we check to
see if any line segments from surfaces in clones cells intersect each other. In this case no overlap
exists.
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Figure 14. Lagrangian movement of points (time step 2).

Figure 15. Identification of surface-containing mesh cells and
the need for cell cloning.
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Figure 16. New surface-discretization points.

Figure 17. New surface discretization after point consolidation.
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Figure 18. Calculation of surface velocities, point velocities, and
maximum time step (time step 3).

The second time step in the time integration phase of our illustrative calculation is now com-
plete.

3.2.4 Illustrative time step three

Substeps 20-22 (Figure 18) The next three substeps include calculating surface element
velocities based on the problem physics (not shown here in Figure 18 because of the small element
sizes), converting the surface element velocities to equivalent surface point velocities, and the
determination of a maximum time step for surface advancement based on the shortest distance to
any intersection point that may have been found.

Substep 23 (Figure 19) All surface points are once again moved in a Lagrangian fashion
to new locations based on the time step and their respective velocities. Because element-to-point
connectivity is maintained, a new surface location is obtained as denoted by blue line segments.
Also, any neighboring points that are withinε of each other are consolidated.

Substep 24 (Figure 20) Every cell in the background mesh through which the surface now
passes is identified and placed in a sequential list. If the surface passes through a cell more than
once the cell information is cloned, the cell is tagged, and its information is now found multiple
times in the sequential list. As explained before, each cloned cell is treated as unique for the
purposes of the next substep in the algorithm.
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Figure 19. Lagrangian movement of points (time step 3).

Figure 20. Identification of surface-containing mesh cells and
the need for cell cloning.
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Figure 21. New surface-discretization points.

Substep 25 (Figure 21) New surface discretization points are found by conceptually drawing
a line from each corner mesh point to the nearest location on the surface within each surface
containing cell. Cloned cells are treated as distinct in this step, and the portion of the surface that
is associated with each cloned cell is not seen by its other copies. The distinction between the old
Lagrangian particle points (to be discarded) and the new discretization points is particularly clear
in Figure 21.

Substep 26 and 27 (Figure 22) Substep 26 consists of consolidating any surface points that
are withinε of each other. The new discrete representation of the surface is shown in red. Because
cloned cells are present, we must now check for overlap of surfaces. In substep 27 we check to
see if any line segments from surfaces in clones cells intersect each other. In this case two such
intersection points are found, indicating that surface overlap now exists.

Substep 28 (Figure 23) All surface elements contained in the overlap loop are removed
through a 2D Boolean operation. The operation consists of first creating two closed loops, one
from each cloned cell, that are formed by the surface line segments and the cell boundary. When
they are overlaid on top of each other the two loops intersectin space and three new loops can be
formed. The center loop corresponds to the overlap region, and from a computational standpoint,
can now be discarded. The interior elements of the remainingtwo loops define the two new sets
of surface elements that are needed. In the calculations performed here, these simple 2D boolean
operations are performed by calling appropriate subroutines in the 2D boolean library described in
[4]. Note that because the number of surface elements is always very small, these operations are
computationally very fast.

This substep marks the completion of the third time step in the time integration phase of our
illustrative calculation. Figure 24 provides a comparisonof our discrete representation of the
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Figure 22. Consolidation of discretization points and identifica-
tion of overlap intersection points.

Figure 23. Removal of overlap surface elements to create final
surface discretization.
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Figure 24. The discrete surface representation at the end of time
step 3 compared to the original surface.

surface at this point with the original surface shown in Figure 2.
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3.3 Example calculations with the GPP method

The GPP method was coded and implemented as an option in ChISELS [5], a Sandia code for
modeling the evolving surface topology during MEMS fabrication. ChISELS was originally writ-
ten to use the LS method, so adding the GPP method facilitatedcomparing its performance in a
very direct way with that of the GPP model.

3.3.1 Uniform deposition on and in a 2D notch

The initially specified surface is a simple 2D notch (or trench), as illustrated by the black surface
seen in Figure 25. An idealized surface deposition process that yields extremely uniform surface
growth rates is specified. Calculations are run using both the level set method and the GPP method,
with varying degrees of mesh resolution. Figure 25 shows thepredicted state of the surface after
deposition has continued for a suficient time to build up a fairly significant growth layer.

Figure 25. The effect of grid resolution in test problem 1.

Surface contours obtained using the LS method with varying degrees of mesh refinement are
shown on the left side of the figure. As the numerical mesh is refined, the error introduced near
corners is reduced. But only the calculation with the finest mesh refinement (corresponding to an
equivalent uniform mesh of 128x128) appears to be nearing a mesh-converged solution.

Surface contours obtained using the GPP method are shown on the right side of this figure. In
the GPP case only two levels of mesh refinement are shown, corresponding to a 10x10 and a 20x20
uniform background mesh. Here we can observe that the solution is very nearly a mesh-converged
solution with the 20x20 grid, as the only differences between the two runs occurs in the region
around the upper corner of the notch, and these differences are very small.

This test calculation demonstrates the ability of the GPP method to more accurately represent
the deposition process near sharp corner regions. This is primarily due to the ability of the GPP
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method to pick out the points on the surface where large surface curvature is present, and place
surface elements in these regions in such a way that the curvature is captured in a fairly optimal
way. Thus for the same level of accuracy, many fewer surface elements are required with the GPP
method than with the LS method.

3.3.2 Uniform deposition in a complex 2D geometry

In this second test problem the initially specified surface is a more complex 2D geometry. Once
again, an idealized surface deposition process that yieldsextremely uniform surface growth rates
is specified and calculations are run using both the level setmethod and the GPP method. In this
case, the LS method was run with a mesh resolution equivalentto a 32x32 background mesh.
(Adaptive mesh refinement of the LS grid enables the code to refine to this level only near the
surface itself.) The GPP method was run using a somewhat coarser 28x28 grid so that the total
number of surface-elements, about 90, would be essentiallythe same for both methods.

Figure 26. GPP and LS discretized surfaces after reconstruction
of the initial surface in test problem 2.

Figure 26 shows the respective background meshes and the initial surface representation for this
problem using both methods – the GPP method on the left, and the LS method on the right. Here
we can see that in reconstructing the initial idealized surface, the GPP method captures the sharp
corners exactly, while the LS method effectively rounds thecorners at a scale proportional to the
mesh size.

The next five figures show the background mesh and the state of the evolving surface using both
methods at five subsequent points in time in the calculation.

In Figure 27 we see the surface at step 25. The major differences seen here are the radius of
curvature at corners.
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Figure 27. GPP and LS discretized surfaces after step 25 in test
problem 2.

Figures 28 and 29 correspond to time steps 30 and 35. Of note here is that portions of the left
and right vertical sides are approaching each other. In the GPP method, the right vertical side
remains vertical. In the LS method an artificial bulging of the right side-wall is observed as the
spacing between the left and right sidewalls becomes less than the mesh spacing. This happens
because the surface reconstruction method, which relies oninterpolation from a signed-distance
function known at discrete points, cannot accurately reconstruct the separation distance between
the two approaching walls when the distance between them approaches the mesh size. As can be
seen, the GPP method does not suffer from this problem.

Figures 30 and 31 correspond to time step 40 and 45 in the calculation. Here the surface
geometry has pinched off, and a small void region is left isolated while the upper surface continues
to move with the deposition. Note that both the timeing of when the pinch-off occurs, as well as the
shape of the resulting voided region are very different because of the numerical error introduced
by the LS method.

This test problem and the figures illustrating the results demonstrate that, for the same num-
ber of surface-elements, the GPP method provides a more accurate representation of the temporal
surface evolution process than the LS method. One reason forthis is that the GPP method auto-
matically concentrates surface elements in regions where large surface curvature (relative to the
grid) ) is present. Another important factor is the surface reconstruction method. In LS, the surface
must be found by interpolation from the local mesh point values of the signed distance function.
This introduces a numerical smearing of order the mesh size when surface regions merge. In
GPP, the surface is reconstructed directly from current surface-element location information, using
background mesh points only as geometric reference points.
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Figure 28. GPP and LS discretized surfaces after step 30 in test
problem 2.

Figure 29. GPP and LS discretized surfaces after step 35 in test
problem 2.
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Figure 30. GPP and LS discretized surfaces after step 40 in test
problem 2.

Figure 31. GPP and LS discretized surfaces after step 45 in test
problem 2.
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3.4 Extending the GPP method to 3D

In this report the GPP method has been formulated in 2D. Issues and ideas for extending the method
for use in 3D are discussed here.

A 3D GPP method would consist of basically the same sequence of conceptual substeps as those
for 2D problems. However, certain important differences inthe geometric nature of the problem
must be addressed in 3D. The first difference concerns the 3D discretization process.

In 2D, the surface discretization step identifies (A) the setof four surface points in each 2D cell
that are closest to the four cell corners, and (B) all intersection points between the surface and the
2D cell side faces. These points are often the same, thus the number of unique points may be as
few as two.

In 3D, the surface discretization must also have two parts. In part A, we must compute a set
of eight points in each 3D cell that are closest to the eight cell corners. In part B, the intersection
of the surface which each face of the 3D mesh must be identified. In 2D, the intersection is only
a point, but in 3D this intersection is a 2D curve. Thus for each face intersected by the surface, a
2D surface discretization must also be performed to properly discretize the side-face intersection
curve. Given the collection of points so identified, non-unique points are discarded, leaving the
remainder as the basis for defining the discrete representation of the surface within the 3D cell.

The second important difference is faced at the end of the discretization process. In 2D, the
discretization points are easily connected into a sequential set of up to 3 line segments. In 3D,
a more complex algorithm must be used to assemble the points into a contiguous set of surface
triangles. The well known Delaunay triangulation method isan obvious candidate for this, as it is
robust and well understood. However, it should be noted thatwhen the process is complete for all
cells, the collection of surface-containing cells cannot be stored as a simple 1D list of sequential
cells. Instead, the cell information must be stored in an unstructured data format that contains
surface connectivity information – such as is maintained for finite elements analysis.

In section 3.2.2 above, the calculation of point velocitiesfor the 2D algorithm was described. In
2D only two surface elements can share a given point, but in 3Dmany surface elements can share
the same point. For 3D, Equation (9) must therefore be generalized to account for contributions
from each surface element sharing a given point.

In 2D, neighbor point entanglement is easily prevented by limiting the time-step as described
in section 3.2.2. This is straightforward because the velocity vectors all exist in the same 2D
geometric plane. However, this is not true 3D and therefore this same method cannot be used to
limit the time-step in 3D. An appropriate explicit solutionto this issue in 3D has not been worked
out by the authors. Without an explicit formula, the time step would need to be estimated, and the
resulting surfaces checked for entanglement after the fact. If entanglement was detected, the time
step would have to be reduced and the advection substep repeated.

When a given cell is intersected more than once by a given surface, the process of determining
if the different surface parts intersect changes from beingone of checking for the intersection of
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line segments in 2D, to the process of checking for the intersection of triangular surface elements
in 3D.

When 3D cloned cells exist and a surface intersection is determined, the resulting boolean
operation that must be performed to change the topology is also 3D in nature. These 3D operations
are more expensive than their 2D analogs. However, because the number of surface elements is
bounded by a fairly small number, the cost should still be reasonable.

Although the additional complications just noted are non-trivial, the numerical operations re-
quired are all commonly performed in other contexts, and theremaining challenges noted do not
appear insurmountable. The motivation for pursueing this approach in 3D is that the key advan-
tages evident in 2D would be expected to also extend into the 3D realm. In particular, the number
of surfaces required to model the evolution of a surface withsharp corners and edges would be
significantly reduced because the method automatically finds these regions of high curvature and
places marker points on them. The most important question tobe answered is whether the addi-
tional complexities mentioned could be addressed in a completely robust way, so as to handle all
cases in all situations without running into numerical exceptions that would cause the application
code to fail.
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