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Abstract 
 
This report documents the results of an LDRD program entitled �System of Systems Modeling and 
Analysis� that was conducted during FY 2003 and FY 2004.  Systems that themselves consist of 
multiple systems (referred to here as System of Systems or SoS) introduce a level of complexity to 
systems performance analysis and optimization that is not readily addressable by existing 
capabilities.  The objective of the �System of Systems Modeling and Analysis� project was to 
develop an integrated modeling and simulation environment that addresses the complex SoS 
modeling and analysis needs.  The approach to meeting this objective involved two key efforts.  
First, a static analysis approach, called state modeling, has been developed that is useful for 
analyzing the average performance of systems over defined use conditions.  The state modeling 
capability supports analysis and optimization of multiple systems and multiple performance 
measures or measures of effectiveness.  The second effort involves time simulation which 
represents every system in the simulation using an encapsulated state model (State Model Object 
or SMO).  The time simulation can analyze any number of systems including cross-platform 
dependencies and a detailed treatment of the logistics required to support the systems in a defined 
mission. 
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Executive Summary 
Evaluating design concepts for a complex system of systems (SoS) is an immediate need for 
military systems like Future Combat Systems (FCS).  SoS analysis requires predicting 
performance at the SoS level in contrast to the traditional platform-by-platform approach.  SoS 
analysis must examine a multitude of design and technology options in order to optimize mission 
effectiveness across wide parameter spaces.  The U.S. Army is facing the need to establish SoS 
performance requirements and translate these SoS requirements down to optimal or near-optimal 
individual platform requirements for system design and development.  This challenge is further 
extended by the complexity presented with new technology.  Currently, about the only method to 
gain some performance knowledge at the SoS level is through traditional warfight simulation 
codes, which are costly and time-consuming.  

The goal of the System of Systems Modeling and Analysis LDRD program was to develop an 
integrated modeling and simulation (M&S) environment that addresses these complex SoS 
modeling and analysis needs.  The approach involves developing, enhancing and integrating state 
modeling methodologies, time simulation methodology, and agent-based simulation objects for 
detailed concept and scenario analysis.  The methodology has been applied to a FCS UA concept 
to demonstrate the approach. 

To achieve goals relating to the state modeling methodologies, a state modeling capability has 
been added to Sandia�s SyOp software.  At the core of SyOp are fault trees, which are typically 
used to model a single system.  With the addition of a state modeling capability, SyOp will gain 
a more powerful way to model multiple systems and to incorporate non-system elements into 
models of system performance. 

A major step toward analyzing complex SoS analysis has been the development of a multi-
system time simulation capability.  This multi-system simulation capability has centered on the 
development of a State Model Object (SMO) that enables a system, its elements, and its 
functionality to be encapsulated for use in the simulation.  The concept behind the multi-system 
simulation is illustrated in Figure 1.1. 

The state model object (SMO) is the central feature of the simulation with an SMO used to 
represent each system in the system of systems being simulated.  The controlling simulation 
software provides needed information on environmental conditions, terrain, use conditions, 
supply network information, etc.  There is a scenario model that describes the detailed scenarios 
that the systems will follow during the simulation.  A combat damage model provides a 
mechanism to simulate the effects of combat damage including damage to individual system 
primary elements or completely disabling the system.  Finally, a supplies and services model 
provides a means for spare parts and consumables to move from system to system in the 
simulation and makes maintenance services available to systems that require repairs. 
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Figure 1.1 Multi-System Simulation Concept 

The state modeling approach that has been added to SyOp and that forms the basis for the 
multi-system simulation capability has several benefits. 

• A state model is quite flexible in the level of modeling detail.  The approach 
readily adapts to high-level, overview models or to very detailed models that 
analyze systems in depth. 

• A state model can have multiple goal states which means that multiple 
performance measures can be analyzed using a single model. 

• A state model can have different sets of initial states.  Typically results are desired 
for the case when every system is initially in its fully operational state.  On the 
other hand if some systems are inoperable or are partially operable, the user can 
define the initial states that way.   

• Goal states are not restricted to inoperable states.  The state model can contain 
partially operable conditions.   

• A state model can contain multiple systems.   

• It is easy to incorporate dependencies between systems in a state model.  

• External elements such as bad weather, rough terrain, or turbulence can be readily 
incorporated into a state model.          

In summary, a SoS simulation capability has been designed, developed, and demonstrated 
under the SoS Modeling and Analysis LDRD that incorporates state model objects for 
detailed simulation of hundreds of interacting systems.  This capability represents a 
significant accomplishment toward providing an ability to evaluate systems of systems.  
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This ability did not exist at the beginning of the program and, as far as is known, does not 
currently exist elsewhere. 

As indication of the success of this LDRD, the U.S. Army, based on initial LDRD 
accomplishments, funded a large program with Sandia for SoS evaluation of the Future 
Combat Systems program, with $1.4M in FY04 non-LDRD funding.  Funding for FY05-
FY06 is projected to be $2.6M per year.  Further, the SoS evaluation methodology has 
been defined as core to the Program Manager, UA Logistics Integration Directorate 
logistics assessment needs and the Army Evaluation Center�s approach to developing test 
plans based on SoS performance evaluation.  For application to the FCS, a 
comprehensive SoS logistics treatment approach was conceived and designed under this 
LDRD.  The actual implementation in the SoS simulation was accomplished under the 
program with the U.S. Army. 
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1 Introduction 

1.1 Problem Background 

Evaluating design concepts for a complex system of systems (SoS) is an immediate need 
for military systems like Future Combat Systems (FCS).  This evaluation involves 
predicting SoS performance and identifying critical operational parameters across a broad 
trade space, presenting a multidimensional research challenge.  Even for a single system, 
performance is characterized by several measures of effectiveness (MOEs).  For FCS, the 
SoS level is defined to be a 1,000-platform Unit of Action (UA).  Analyzing the 
performance of several design options of a complex SoS across external parameters and 
multiple MOEs generates a massive number of trade space combinations, producing 
extreme computational issues. 

The ability to evaluate performance at the SoS level is critical for FCS to achieve high 
performance objectives.  SoS analysis requires predicting performance at the SoS level in 
contrast to the traditional platform-by-platform approach.  SoS analysis must examine a 
multitude of design and technology options in order to optimize mission effectiveness 
across wide parameter spaces.  The U.S. Army is facing the need to establish SoS 
performance requirements and translate these SoS requirements down to optimal or near-
optimal individual platform requirements for system design and development.  This 
challenge is further extended by the complexity presented with new technology.  
Currently, about the only method to gain some performance knowledge at the SoS level 
is through traditional warfight simulation codes, which are costly and time-consuming. 

1.2 Goals and Objectives of the Project  

The goal of the System of Systems Modeling and Analysis LDRD program was to 
develop an integrated modeling and simulation (M&S) environment that addresses the 
complex SoS modeling and analysis needs.  The approach involves developing, 
enhancing and integrating state modeling methodologies, time simulation methodology, 
and agent-based simulation objects for detailed concept and scenario analysis.  The 
methodology has been applied to a FCS UA concept to demonstrate the approach. 
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2 State Modeling 
A state modeling capability has been added to Sandia�s SyOp software.  At the core of 
SyOp are fault trees, which are typically used to model a single system.  State modeling 
provides an alternative approach to fault trees.  While state modeling will not replace 
fault trees, it will provide a more convenient way to model multiple system functions and 
a system of systems. 

The new State Modeling Software (SMS) component of SyOp is comprised of a user 
interface and a state model interpreter.  They act in concert to implement the concepts 
described in section 3.1.  An overview of the solution process is given in sections 3.2 and 
3.3.  Section 3.2 describes how the SMS fits into the SyOp framework and section 3.3 
focuses on the specific tasks of the SMS.  Instructions on how to use the interface can be 
found in Appendix A.  

The sample problem in section 3.4 demonstrates many of the features of the SMS.  The 
problem models an NLOS cannon, an unmanned aerial vehicle, and a forward spotter.  
The cannon is at full targeting capability if the UAV is operable or if there is a forward 
spotter available that has a functioning laser target marker.  If the UAV is inoperable, 
there is a forward spotter, but his target laser is not operable, the spotter can relay 
estimated coordinates.  In that case the targeting capability of the cannon is not lost but 
may be severely reduced. 

The benefits of using the SMS are summarized in section 3.5.   

2.1 Introduction and Background 

The State Modeling Software (SMS) component is based on traditional dynamic state 
modeling found in state charts (Harel and Naamad, 1996), also called activity charts.  
State charts are used to define a hierarchy of states and a means of moving from state to 
state.  The status of system(s) and their functions can be determined based on which 
states are occupied.  The states of the system can be designed such that if a command and 
control vehicle loses an axle, its mobility status moves from the mobile state to the 
immobile state, for example.  So if this latter state is occupied we know that the vehicle 
currently has no mobility. 

The SMS offers considerable flexibility for the design of state models.  The user can 
provide as much or as little detail as desired for a system.  Generally the greater the 
number of detailed states the greater the potential flexibility.  The mobility state for the 
command and control vehicle above can be broken down into states for axles, wheels, 
and engine parts.  The finest level of detail is associated with failure events.  When they 
occur, the failure events can trigger the move from one state to another.  As required by 
SyOp, events must have numerical properties such as failure probability or failure rate.       

The basics of state charts that are adopted by the SMS include: 

• A state model contains a hierarchical system of states.  Each state is either a 
parent state or a leaf state, that is, one with no children.  Each parent state is 
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decomposed into its children either as an AND configuration or an OR 
configuration.  If the system occupies an AND parent state, it must occupy each 
child state.  If the system occupies an OR parent state, it must occupy exactly one 
of the children.  So the OR in this case is an exclusive OR.  If the system does not 
occupy a parent state, it cannot occupy any of its child states and vice versa. 

• There is one state, called the root state, which is a parent of every state.  It is the 
only state in the model that does not have a parent. 

• The user must define a subset of the states as initial states.  The system initially 
occupies each of these states and they cannot be conflicting.  For example, two 
children of an OR parent state cannot both be initial states as the children would 
be conflicting. 

• The system transitions from one set of states to the next set one step at a time.  It 
does so by taking user-defined transitions.  Figure 3.1 shows a simple example.  
Transition X is characterized by a source state S, a destination state D, a guard 
state G, and a trigger T.  If at some step, the system occupies state S, the trigger T 
is true, and the guard state G is true then the system will transition from state S to 
state D.  In general terms a trigger activates a transition and a guard state allows 
the transition.  Both have to be true for the transition to fire.  A transition can have 
a trigger, a guard state, or both. 

State S State D
X(G, T)

   

  Figure 3.1 A Transition from State S to State D 

• The source state for a transition is the state the transition emanates from and it can 
be a parent state or a leaf state. 

• There can be multiple destination states for a transition, all of which must be leaf 
states.  In traditional state charts if a destination state is a parent state, then the 
transition enters the destination state at a predefined default entry state.  In the 
SMS the default entry state is included as a destination state for the transition. 

• A trigger is a Boolean expression of events.  The SMS determines which 
combinations of event occurrences cause the trigger to be true. 

• Events are at the level in the SMS that can be quantified.  Currently each event 
referenced in the trigger expressions must point to a failure mode in a SyOp data 
library.  The failure mode must have either a failure probability or a failure rate 
and downtime. 
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• A guard is a Boolean expression of states and external elements.  If the system 
occupies a state in a guard expression then effectively that state variable is set to 
true.  The SMS determines which combinations of states will cause the guard to 
be true. 

• External elements are variables that can appear in guard expressions.  They are 
assigned a Boolean value prior to the model run.  An example might be a 
sandstorm.  For one run it could be assigned to true and for another it could be 
assigned to false.   

• A goal state is a special state.  If the system reaches this state there is a particular 
meaning or consequence.  The primary function of the SMS is to determine what 
combinations of events must occur for the system to reach a goal state. 

The SMS adds the concept of functions to traditional state charts.  Functions are linked to 
goal states so that each goal state indicates some degree of functionality of the systems in 
the state model.  Each function is evaluated for a standard set of performance measures.  
It is the responsibility of the user to provide the interpretation of these performance 
measures in the context of the function. 

Figure 3.2 shows a simple system for a light.  The parent states are blue and the leaf 
states are green.  The decomposition of each parent is noted by the AND or OR to its 
immediate right.  Transitions are labeled X1 through X4.  Each transition either has a 
trigger T or a guard G. 

The Light state has two child states: it is providing illumination or it is not.  Just one of 
these can be true.  Illumination depends on the switch, the bulb, and the electrical power.  
All of these have a status at all times, so the Illumination state has an AND 
decomposition.  Each of the switch, bulb, and power are either operable or inoperable. 

The three transitions on the right {X1, X2, X3} each have a trigger {T1, T2, T3}.  Recall 
that a trigger can be any Boolean expression of events.  A bulb could become inoperable 
if the filament fails, its contact point with the socket becomes corroded, the glass breaks, 
etc.  If this is the desired level of detail, each of these events must be represented by a 
failure mode in a SyOp data library.  If the event IDs are FILAMENT-FAILS, 
CONTACT-CORRODED, and GLASS-BREAKS, then the trigger expression is  

FILAMENT-FAILS ∪ CONTACT-CORRODED ∪ GLASS-BREAKS 

Here the union symbol indicates the Boolean OR operator.  It is the inclusive OR 
operator so if any of these events occur, the bulb becomes inoperable. 



  

18 

Light
OR

Illumination

No 
Illumination

X4(G4)

AND

Switch
Operable

Switch
Inoperable

X1(T1)

Bulb
Operable

Bulb
Inoperable

X2(T2)

Power
Operable

Power
Inoperable

X3(T3)

Switch
OR

Bulb
OR

Electrical
Power

OR

 

Figure 3.2 A State Model for a Light 

Alternatively there could be a single event named BULB-FAILS.  It is associated with a 
failure mode in the data library and the trigger expression is simply BULB-FAILS.  The 
level of detail is a user decision. 

Transition X4 has a guard, G4.  Recall that a guard is a Boolean expression of states.  It 
can also contain external element variables, but there are none in this simple example.  
The expression for the guard is 

Switch Inoperable ∪ Bulb Inoperable ∪ Power Inoperable 

The effect of this guard is that the light will pass from its Illumination state to its No 
Illumination state if the light reaches any of its states Switch Inoperable, Bulb Inoperable, 
or Power Inoperable. 

There are four candidate goal states for this example: Switch Inoperable, Bulb 
Inoperable, Power Inoperable, and No Illumination.  In the SMS the user can declare any 
subset of these as goal states.  The SMS will evaluate each goal state specified in a single 
run, i.e., for a single solution-build command.  Results will include the probability of 
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reaching each of the specified goal states (non-repairable model) or the frequency of 
reaching each of the specified goal states (repairable model). 

The complete set of results depends on the functions that are tied to the goal states.  For a 
nonrepairable analysis the user specifies what the probability of reaching the goal state 
means for its function.  The No Illumination goal state is naturally linked to the 
operability function for the light.  The probability of reaching this goal state is the 
probability that the light becomes inoperable. 

For a repairable system for this example the standard performance measures would be 
interpreted as: 

• MTBF = mean time between those occurrences when the light becomes 
inoperable 

• Downtime = the average downtime when the light becomes inoperable 

• Availability = the fraction of time that the light is operable 

This interpretation can become more challenging for those cases when the function has 
intermediate levels.  An example will be given in section 3.4.  

2.2 Solution Steps  

In traditional state charts the user can define an initial set of events in addition to the 
initial set of states.  Also, each transition can cause other events to occur.  The initial 
states and initial events together become the initial state model status.  The process then 
begins taking steps.  The initial step uses the initial status to determine which guards and 
triggers are true and thence to determine which transitions can fire.  At the end of the step 
the process finds the new set of occupied states and collects the events that occur in 
response to the transitions that fired.  Thus, a new system status is defined and the 
process is repeated.  The typical questions posed are: which states are reachable given the 
initial status and can the system reach a specified state (goal state) given the initial status.   

The SMS differs from traditional state charts at this point.  The question posed by the 
SMS is: what events must occur for the model to transition from the initial states to a 
specified goal state.  To this end SMS assumes that any event can occur at any time.  
Thus, there is no need for initial events to be specified and no need for transitions to 
cause other events to occur.  Neither of these is included in the SMS model input. 

To answer the question, the SMS finds each possible path from the initial states to the 
goal state.  A path consists of a sequence of states that must be passed through.  In 
parallel is the set of transitions that must fire along the path to move from state to state.  
The events that cause the triggers to be true for these transitions are the events of interest.  
These events become variables in the Boolean expression that describes which events had 
to occur in order to reach the goal state.  Ultimately the Boolean expression is converted 
to an algebraic expression in order to quantify performance measures for the state model.  
For example, what is the probability of reaching the goal state? 
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It is more efficient to solve the backward problem.  That is, the SMS finds the paths by 
starting at the goal state and working back.  When an initial state is encountered, the path 
terminates.  Alternative paths can arise from two sources: there can be more than one 
transition that points to a state that must be passed through or the guard expression for a 
transition can contain states configured with a Boolean OR. 

There is a variety of approaches to finding and storing this path information.  The SMS 
approach is motivated by the existing SyOp technology.  For this reason the paths are 
found and stored in the form of a tree.  The tree is passed to SyOp�s Boolean reduction 
scheme that generates a Boolean expression of events in disjunctive form. 

The disjunctive form is a union of intersections.  In a SyOp fault tree application the 
events in each intersection are said to form a cutset.  Thus fault trees are transformed to a 
union of cutsets.  If any cutset occurs, the top event in the fault tree occurs.  Also, the 
cutsets are minimal.  If {E1, E2} is a cutset, there will be no larger cutsets that contain 
both E1 and E2. 

Given the failure properties of the events, SyOp has technology to quantify each cutset 
and thence to quantify system performance measures.  The SMS utilizes this capability 
from SyOp to quantify the performance measures for each function.  Because the 
calculations are the same, the difference is the interpretation of the calculations.  The user 
can label the results according to their meaning for the state model in general and in 
particular for the function/goal state. 

In summary the SMS finds all paths from the goal state(s) back to initial states by 
traversing the transitions backwards.  The SMS stores these paths in the form of a tree.  
Existing SyOp technology is then used to complete the solution.  SyOp converts the tree 
into a Boolean expression of events in disjunctive form.  SyOp converts this form into an 
algebraic expression and evaluates the expression, given input from a data library, to 
quantify various performance measures.  It is the users� responsibility to interpret these 
measures in the context of their state model.  The tasks performed by SyOp are discussed 
in SyOp documentation.  The primary task of the SMS is discussed in the next section. 

2.3 Finding Paths 

Before initiating the path detection process, the SMS applies two state chart solution tools 
to the state model.  First, the SMS encodes the states (Helbig and Kelb, 1994).  It 
determines a set of Boolean state-representation variables whose values indicate whether 
a state is occupied or not.  The variables are defined to honor the rules of AND and OR 
states.  For example, suppose state A and state B are children of parent state C which is 
an OR state.  Variables are configured so that if the state model occupies state A, it also 
occupies state C.  Similarly for state B and state C.   However, for the state model to 
occupy both A and B simultaneously at least one of the representation variables must be 
both true and false.  Thus, the encoding scheme disallows state conflicts. 

The second tool is the use of binary decision diagrams (BDDs) first introduced in 1978 
(Akers, 1978).  A BDD is a rooted finite directed acyclic graphical representation of a 



  

21 

Boolean expression.  Two BDDs can be combined under Boolean operators to form a 
third BDD.  If the BDDs are ordered (the variables always appear in order of increasing 
index for example) and reduced, they are unique.  Some authors refer to these as 
ROBDDs, but most still use the simpler BDD terminology where reduced and ordered are 
understood. 

Consider the Boolean expression [(E1 ∪ E2) ∩ E3].  Letting the variables increase in 
index from the root outward, the BDD for this expression is shown in Figure 3.3.  There 
are five nodes numbered 0 through 4 shown in red.  Terminal node 0 is reserved for the 
false node and terminal node 1 is reserved for the true node.  All non-terminal nodes refer 
to a variable as shown in blue italics.  Although not the case for this simple example, a 
variable can appear at more than one node.  There is a true branch (solid line) and a false 
branch (dashed line) emanating from each node. 

A satisfying set is a set of variable assignments that leads to the true node.  From Figure 
3.3, the BDD is true if both E3 and E1 are true or if both E3 and E2 are true and E1 is 
false.  If this is a Boolean expression for a trigger in the SMS, we only are concerned 
with event occurrences.  The nonoccurrence of an event is of no concern.  Thus, the fact 
that E1 is false in the second set is ignored.  If the Boolean expression is for a guard, the 
variables that must be false are included in the satisfying set.  Such variables are 
important when interpreting which states must be occupied for the guard to be true. 

E1

0 1

2

3

4

E2

E3

 

Figure 3.3 A Simple BDD Example 

The process of finding the satisfying sets is equivalent to transforming the expression 
represented by the BDD into disjunctive form.  Thus for a trigger application, the 
Boolean expression takes the equivalent form: (E1 ∩ E3) ∪ (E2 ∩ E3). 

 

For a guard application, states whose encoding agrees with the variable assignments are 
identified.  Similar to a trigger the final result consists of alternative sets of states such 
that if the model occupies all states in the set, the guard expression is true. 
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Traditional state charts can use BBDs extensively.  After state encoding and event 
encoding, BDDs are created for each state and each event.  Using these, the Boolean 
expressions found for each guard and each trigger are cast as BDDs.  For a transition to 
fire, its source state must be occupied, its guard must be true, and its trigger must be true.  
So the BDDs for each are combined with the Boolean AND operator yielding a BDD to 
represent the transition.  Because each transition can fire or not, the BDDs for all 
transitions in the state model are combined using the Boolean OR operator.  The resulting 
BDD is the state-transition BDD and it can be used at each step in the forward stepping 
process.  The BDD is found that represents the current system status and it is combined 
with the state-transition BDD using the AND operator.  The satisfying sets for the 
resulting BDD are interpreted to find the new set of occupied states and events that occur.  

The SMS uses the state encoding scheme to formulate a BDD for each state.  If state 
encoding requires N variables, the SMS starts event encoding at variable number N+1.  
Given these basic BDDs, the SMS finds BDDs for the Boolean expressions provided by 
the user for both guards and triggers.  The satisfying sets are found thereby transforming 
the expressions into disjunctive form.  This transformation step is the primary use of 
BDDs in the SMS.  Given the backward tracing procedure used by the SMS, there is no 
need to find the BDD for each transition, nor for the combined transitions. 

The backward path tracing starts at the goal state.  The SMS finds all paths that lead to 
this state in the form of a tree.  The tree is represented by a collection of nodes.  The goal 
state node and intermediate state nodes have branches emanating from them.  Ending 
nodes have no such branches.  As the SMS traces backwards from state to state each new 
state encountered is treated with the same procedure as the starting (goal) state.  So for 
state A in the path 

1. Make a node for state A and find all transitions that point to state A.  These 
include all transitions that have state A as a destination state.  Because the SMS 
traces paths backwards, these transitions represent alternative upstream outlets 
from state A.  Because these are alternatives, the node for state A is labeled as an 
OR node. 

2. Make a node for each transition found in step 1 and determine what makes it fire.  
In general firing of the transition requires that the model occupies the transition�s 
source state, the guard is true, and the trigger is true.  So, the node is labeled as an 
AND node. 

3. Make a node for the source state for the transition.  If the source state is not an 
initial state, mark it for further investigation.  At some point in the process the 
SMS will return to this state to continue tracing the path from this state starting at 
step 1. 

4. Make a node for the guard for the transition, if there is one.  As discussed above, 
the guard expression is in disjunctive form.  In the general case of multiple 
satisfying sets which identify multiple states per set, the guard node is labeled as 
an OR node.  Make a node for each satisfying set.  Because each state belonging 
to a satisfying set must be occupied for the set to be true, the node for each 



  

23 

satisfying set is an AND node.  Make nodes for each state under a satisfying set 
node.  If a state is not an initial state, mark it for further investigation.  At some 
point in the process the SMS will return to this state to continue tracing the path 
starting at step 1. 

5. Make a node for the trigger for the transition, if there is one.  As discussed above, 
the trigger expression is in disjunctive form.  In the general case of multiple 
satisfying sets which identify multiple events per set, the trigger node is labeled as 
an OR node.  Make a node for each satisfying set.  Because each event belonging 
to the set must occur for the set to be true, the node for each satisfying set is an 
AND node.  Make nodes for each event under a satisfying set node.        

When step 5 is completed the SMS checks to see if any states that were marked for 
further investigation remain.  If so, steps 1 through 5 will be repeated starting at the next 
such state.  When finished, all branches in the tree will terminate either with an initial 
state or an event. 

The SMS recognizes that a state could be introduced into the tree on more than one path 
from the initial states to the goal state.  When this occurs the SMS marks the node for 
such a state as a transfer.  This effectively places the node for the state at the top of a 
separate tree.  In this way the subsequent tracing backward from this state is only done 
once and any time this state is referenced in the main tree, control passes to this separate 
tree.  This feature saves computer time and memory. 

Once the tree is constructed it undergoes three reduction steps. 

1. If a path ends in a dead-end, the path is removed from the tree. 

2. If a path ends with a node that does not represent an event, the node is removed 
from the tree. 

3. For all but the goal state node, if a node has only one branch under it, the node at 
the end of that branch is moved up and replaces the existing node.  

The SMS can encounter a dead-end path if it reaches a state that has no transitions 
pointing to it and the state is not an initial state.  This is detected in step 1 above.  At that 
point in the process the state is marked as a dead-end and steps 2 through 5 are skipped.  
All dead-ends are removed after the tree is constructed.   

The removal of a dead-end state can cause a chain reaction in the tree.  If the state was 
introduced because it is the source state for a transition, the transition can never fire.  
Thus, the transition and all its branches are eliminated from the tree.  If the transition has 
only one destination state and that state has no other transitions that point to it, 
elimination of this transition creates a new dead-end state and the process is repeated. 

If a dead-end state was introduced through a guard expression, then every satisfying set 
that contains this state is now false.  The node for each such satisfying set is removed.  If 
every satisfying set node is removed for a guard, the guard can never be true.  This 
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implies that the transition that introduced the guard can never be true and the steps in the 
preceding paragraph are applied to the transition. 

Once all dead-ends have been removed the SMS generates its first output.  It creates a 
collection of states that are represented by nodes in the surviving tree.  These are the 
states that appear on the possible paths from the initial states to the goal states.  When the 
user requests path validation, the interface will display a list of the path states.  The 
interpretation is that these states affect the functionality associated with the goal state. 

The elimination of non-event nodes that terminate branches is an iterative process.  The 
elimination of each such node can create additional nodes that have no branches.  After 
this task, every branch in the tree must terminate with an event.  

The elimination of non-event nodes that have only one branch is more of a convenience 
than a necessity.  It is done to minimize the size of the tree.   

2.4 Example Problem 

2.4.1 Introduction 
The example problem models three systems: a Non-Line-Of-Sight Cannon (NLOS-C), an 
unmanned aerial vehicle (UAV), and a forward spotter.  They are linked by the fact that 
both the UAV and forward spotter can provide targeting information to the cannon.  The 
potential targets for the cannon are on the order of 20km distant. 

This example NLOS-C has the capability to fire smart bullets, similar to the 155mm 
Copperhead projectile, but smaller.  The bullets have a guidance system and fins and they 
are capable of honing in on a target that has been painted by a laser.  Thus if the target is 
marked by either the UAV or the forward spotter, it is assumed here that the target will be 
hit within 1m.  This assumption implies, in part, that the bullet performs perfectly.  Hence 
in this example we will not model the functionality of the bullet itself. 

The NLOS-C has five major functions that potentially affect its operability: Mobility, 
Sensing, Electrical, Lethality, and Communications.  In this example, loss of mobility, 
electrical, lethality, or communications causes the NLOS-C to become inoperable.  The 
sensing equipment is assumed to be passive (such as a glint detector) and is used for 
short-range targets.  So even though the sensing function is included in the model for the 
NLOS-C, it does not affect its operability given the long range targets anticipated for this 
exercise.  Also given the parameters of this exercise, the M240 machine gun that the 
NLOS-C carries does not affect the lethality of the NLOS-C. 

The UAV has four major functions that affect its operability: Mobility, Sensing, 
Electrical, and Communications.  In this example, loss of any of these four functions 
makes the UAV useless to the NLOS-C.  Hence in this model, loss of any of the four 
functions causes the UAV to become inoperable.  The UAV Inoperable state can then be 
incorporated into guard expressions for targeting transitions for the NLOS-C.  
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Because of the high casualty risk involved, the army would prefer unmanned target 
detectors such as the UAV over the use of human spotters.  The example problem will 
have states for spotter available and not available.  If there is one available, the spotter 
will use a laser marker to pinpoint the target.  If the laser marker is inoperable, the spotter 
will use landmarks and a gridded map to estimate target coordinates.  With precise 
targeting unavailable the NLOS-C will fire dumb bullets.  The circular error probable 
(CEP) for this case is estimated to be 150m. 

By incorporating all functions for each system into the model, the assumptions of the 
previous three paragraphs can be easily modified.  In this case the required modifications 
are typically confined to guard expressions. 

2.4.2 State Model Construction 
The steps for constructing the state model for the NLOS-C, UAV, and spotter example 
are given in this section.  The one preliminary task is to create a SyOp data library for the 
events that will appear in trigger expressions for transitions in the model.  The procedure 
for creating a data library in SyOp can be found in SyOp documentation.  The failure 
events shown in Table 3.1 comprise the failure modes for the data library. 

In a SyOp fault tree the failure events can be mapped to failure modes in a SyOp data 
library.  This feature is planned for the SMS but has not yet been implemented.  With that 
implementation for the failure of an axle on the NLOS-C, for example, the four failure 
events will point to a single failure mode in the data library.  That is, all four axles are 
presumably of the same design and manufacture for the NLOS-C.  In this problem there 
would be similar mapping for the wheels of the NLOS-C and the FBCB2 network and 
Sincgars radio that appear in both the UAV and the NLOS-C systems. 

The first 32 events in Table 3.1, ending at WHEEL-4R, apply to the NLOS-C.  As stated 
above the sensing function of the NLOS-C is not germane to this example.  Also, the 
M240 machine gun has no use in the long-range fire model.  However, states relative to 
these events will be included and the events will be placed into appropriate triggers.  In 
that way the model is available for analysis under other scenarios. 

The next 11 events in Table 3.1 will affect the operability of the UAV.  As for the last 
two events we do not attempt to break down the operability of the spotter into separate 
functions.  The spotter�s laser marker will possibly fail due to the occurrence of the event 
LASER-MARKER.  The SPOTTER-LOST event includes that the spotter is not in 
position, has vacated the area, or is otherwise disabled.  There will be a separate state for 
the case of no spotter in the first place. 

Although not shown in Table 3.1, each failure mode has probability distributions 
assigned to describe the uncertainty in failure rates, downtimes, and failure probabilities.  
Generally these are triangular distributions with the best-estimate being the nominal 
value shown and the minimum and maximum being the nominal value ±20%.  
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Table 3.1 Failure Events and Their Properties for the Example Problem 

Function ID Nominal Failure 
Rate 

Nominal Failure 
Probability 

Nominal 
Downtime 

Lethality 105MM-CANNON 0.00180 0.0926 4.0 
Lethality FIRE-CONTROL 0.00090 0.0474 3.0 
Lethality M240-MACHINE-GUN 0.00003 0.0014 2.0 
Sensing FLASH-DETECTOR 0.00009 0.0048 2.0 
Sensing FLIR-IMAGING 0.00036 0.0193 1.0 
Sensing FUEL-SYSTEM 0.00018 0.0097 8.0 
Sensing GLINT-DETECTOR 0.00036 0.0193 2.0 
Sensing NBC-SENSOR 0.00018 0.0097 2.0 
Sensing VISIBLE-IMAGING 0.00009 0.0048 1.0 
Electric MGV-BATTERIES 0.00031 0.0165 2.0 
Electric MGV-ELEC-SYS 0.00031 0.0165 10.0 
Comm NLOS-FBCB2-NETWORK 0.00045 0.0161 0.5 
Comm NLOS-SINCGARS-RADIO 0.00018 0.0065 0.5 
Mobility ALTERNATOR 0.00032 0.0170 6.0 
Mobility DIESEL-ENGINE 0.00054 0.0287 12.0 
Mobility INSTRUMENTATION 0.00011 0.0058 4.0 
Mobility STEERING-SYSTEM 0.00031 0.0165 8.0 
Mobility SUSPENSION 0.00013 0.0073 21.0 
Mobility TRANSFER-CASE 0.00014 0.0077 10.0 
Mobility TRANSMISSION 0.00011 0.0058 12.0 
Mobility AXLE-1 0.00013 0.0073 10.0 
Mobility AXLE-2 0.00013 0.0073 10.0 
Mobility AXLE-3 0.00013 0.0073 10.0 
Mobility AXLE-4 0.00013 0.0073 10.0 
Mobility WHEEL-1L 0.00036 0.0193 1.0 
Mobility WHEEL-1R 0.00036 0.0193 1.0 
Mobility WHEEL-2L 0.00036 0.0193 1.0 
Mobility WHEEL-2R 0.00036 0.0193 1.0 
Mobility WHEEL-3L 0.00036 0.0193 1.0 
Mobility WHEEL-3R 0.00036 0.0193 1.0 
Mobility WHEEL-4L 0.00036 0.0193 1.0 
Mobility WHEEL-4R 0.00036 0.0193 1.0 
Sensing ADVANCED-EO-IR 0.00009 0.0016 2.0 
Sensing HYPER-SPECTRAL 0.00009 0.0016 2.0 
Sensing LASER-RANGE-FINDER 0.00009 0.0016 2.0 
Sensing SAR 0.00225 0.0397 2.0 
Sensing TARGET-MARKER 0.00009 0.0016 2.0 
Mobility AIR-FRAME 0.00450 0.0778 1.0 
Mobility CONTROL-SYSTEM 0.00450 0.0778 1.0 
Mobility PROPULSION 0.00360 0.0627 1.0 
Electric UAV-BATTERIES 0.00180 0.0319 1.0 
Comm UAV-FBCB2-NETWORK 0.00045 0.0161 0.5 
Comm UAV-SINCGARS-RADIO 0.00018 0.0065 0.5 

 LASER-MARKER 0.00090 0.0162 2.0 
 SPOTTER-LOST 0.00963 0.5000 4.0 

We use the data in Table 3.1 to create a SyOp data library named NLOS_UAV.RDL.  
The other required property for each record in the data library is failure mode name.  
These were generally the same as the failure mode ID except without the dashes and 
using mixed case.  It is not a requirement that the data library exist prior to building a 
state model, but there are two advantages.  Selecting failure events for trigger expressions 
from a list is easier than typing them in and this also helps minimize typing errors. 

Given that the data library has been constructed, run the SMS and select New from the 
file menu.  The new file wizard prompts for run parameters.  Select the Non-Repairable 
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radio button as shown in Figure 3.4.  This means that the results will be expressed in 
terms of probabilities.  Change the number of trials to 200, the mission time to 72 hours, 
and the seed for the random number generator to 8312004, as shown in Figure 3.4.  

On the next step specify the data library name.  Browse to the appropriate directory and 
select NLOS_UAV.RDL.      

On the functions page define four functions:  

1. Targeting CEP 150m @ 20km.  If the UAV and the spotter�s laser marker become 
inoperable, targeting accuracy drops to this level. 

2. No Targeting.  If both the UAV and the spotter are inoperable, there is no long 
range targeting capability. 

3. No Lethality.  If the NLOS-C loses its targeting capability, the 105mm cannon, or 
the fire control, it loses its lethality. 

4. NLOS Inoperable.  If the NLOS-C loses its lethality, mobility, electrical system, 
or communications, it becomes inoperable. 

We will define a goal state for each one of these as part of the state model input.  The 
next step is to interpret the performance measures for each function. 

 

Figure 3.4 Entering Model Options for the Example Problem 

Generally each function has three performance measures that must be interpreted for a 
non-repairable model.  We ignore the Cost measure for this example and interpret only 
reliability and unreliability (failure probability).  Because SyOp is based on a failure 
equation and data libraries contain failure data, unreliability is the probability that the 
model reaches the goal state associated with the function.  On the other hand reliability is 
the probability that the model does not reach the goal state. 
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For each performance measure for each function we must define a caption, a label, and 
units, all for use by SyOp�s Results Viewer.  The captions are used as menu selections.  
The labels are placed on all plots and tabular output.  Units are used as column headers 
and axis labels.  Table 3.2 lists the text as defined for this example. 

The last input form for the new file wizard prompts for external elements.  This example 
problem does not include any, so the form is skipped.  The SMS exits the wizard and 
displays a state model building form that has one state already in place.  All state models 
are anchored to a root state.  It can be renamed but not eliminated.  The first step in the 
state model building process is to add children to the root state.   

Table 3.2 Captions and Labels for Metrics for Nonrepairable Problem 

Function SyOp Metric Menu Caption Label 
Targeting CEP 
150m @ 20km 

Reliability Prob Not at CEP = 
150m 

Probability of Not Operating at CEP = 
150m @ 20km 

 Unreliability Prob CEP = 150m Probability of Operating at CEP = 150m 
@ 20km 

No Targeting Reliability Prob Targeting Probability of Some Targeting Capability 
 Unreliability Prob No Targeting Probability of No Targeting Capability 

NLOS Lethality Reliability Prob Lethality Probability of Lethality 
 Unreliability Prob No Lethality Probability That Lethality Fails 

NLOS 
Inoperable 

Reliability Prob NLOS 
Success 

Probability of NLOS Cannon Success 

 Unreliability Prob NLOS Failure Probability of NLOS Cannon Failure 
    

Figure 3.5 shows the state model after we have taken the following steps. 

• Add two child states to the root state and define the root state decomposition as an 
OR.  Name the two child states as Mission Operable and Mission Failed. 

• Add three child states to Mission Operable and define its decomposition as an 
AND.  Name the three child states as UAV, NLOS Cannon, and Forward Spotter. 

• Each of these three child states will be developed into their functions and 
components.  We will show the development for part of the UAV as an example. 
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Figure 3.5 First Six States for the Example Problem 

The state model for the UAV is fairly straightforward.   

• Add two child states UAV Operable and UAV Inoperable and ensure that UAV 
has an OR decomposition.   

• Add four child states to UAV Operable named UAV Mobility, UAV Sensing, 
UAV Comm, and UAV Elec Power and change UAV Operable to an AND 
decomposition. 

• Add two child states to UAV Comm named UAV Comm Operable and UAV 
Comm Inoperable and ensure that UAV Comm has an OR decomposition  

• Add two child states to UAV Comm Operable named UAV FBCB2 Network and 
UAV Sincgars Radio and change UAV Comm Operable to an AND 
decomposition. 

• To each of UAV FBCB2 Network and UAV Sincgars Radio add two states and 
ensure that their decomposition is OR.  The child state names are UAV FBCB2 
Operable, UAV FBCB2 Inoperable, UAV Sincgars Operable, and UAV Sincgars 
Inoperable. 

Figure 3.6 shows the states added to the UAV Operable state with the communications 
function shown in detail.   
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Figure 3.6 UAV Operable States with Communication States Completed 

For this particular section of the state model there will be three transitions added.  It is 
good practice to add transitions only after the entire state structure has been defined.  For 
now we note that there will be a transition from UAV FBCB2 Operable to UAV FBCB2 
Inoperable and another from UAV Sincgars Operable to UAV Sincgars Inoperable.  Each 
will have a trigger whose expression consists of a single event (Table 3.1): UAV-FBCB2-
NETWORK or UAV-SINCGARS-RADIO.  The third transition will be from UAV 
Comm Operable to UAV Comm Inoperable.  It will have a guard whose expression is: 

UAV FBCB2 Inoperable ∩ UAV Sincgars Inoperable 

The intersection symbol indicates the Boolean AND operator.  It means that both the 
network and the radio have to fail for the communications function for the UAV to fail. 

The other three functions for the UAV (Mobility, Sensing, and Electrical) are expanded 
in a similar manner.  Each function is operable or not.  The operable state has a number 
of child states based on the components selected to model that state.  The child states 
each have two children which are operable and inoperable.  The trigger expressions for 
the transitions between these states each contain an event from Table 3.1.  The guard 
expressions for the operability of the function are based on:  
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1. Mobility.  If any of the air frame, the propulsion, or the control system fail, the 
UAV loses its mobility. 

2. Electrical.  If the batteries fail, the electrical system fails. 

3. Sensing.  If the advanced EO-IR, hyper-spectral, and SAR all fail or if either of 
the laser range finder or target marker fails, the UAV loses its sensing capability. 

There are five functions for the NLOS-C: Mobility, Sensing, Electrical, Lethality, and 
Communications.  Each function state has an OR decomposition with operable and 
inoperable child states.  The operable states are expanded as follows. 

1. Mobility.  The NLOS Mobile state has two intermediate children:  NLOS 
Axles/Wheels and NLOS Engine/Drivetrain.  If either the wheels/axles or the 
engine/drive train fail, the mobility becomes inoperable.  The NLOS 
Axles/Wheels state has children NLOS Axles and NLOS Wheels.  The wheels fail 
if any 2 of the 8 wheels fail.  The axles fail if any of the four axles fail.  The 
engine/drive train fails if any of the following fail: alternator, diesel engine, fuel 
system, instrumentation, steering system, suspension, transfer case, or 
transmission. 

2. Electrical.  If the batteries or electrical system fail, the electrical fails. 

3. Communications.  If both the Sincgars radio and the FBCB2 network fail, 
communications fail. 

4. Sensing.  If the glint detector, the flash detector, the NBC sensor, FLIR imaging, 
or visible imaging fail, sensing fails. 

5. Lethality.  If the targeting capability, the 105mm cannon, or the fire control fail, 
the NLOS-C loses its lethality. 

The transition from NLOS Wheels Operable to NLOS Wheels Inoperable has a guard 
with a tedious expression.  Each of the eight wheels is numbered according to its position 
on the vehicle and each has a separate state assigned, which itself has operable and 
inoperable child states.  The transition from NLOS Wheels Operable to NLOS Wheels 
Inoperable occurs when any two of the eight individual wheels reach their inoperable 
state.  The 28 possible combinations must be explicitly included in the guard expression.  
Using the ampersand for the Boolean AND operator and the plus sign for the Boolean 
OR operator, the guard expression is shown in Figure 3.7.  

In future versions of the software the SMS will accommodate load-sharing lists for states 
in guard expressions.  At that point the user will be required to supply the names of the 
eight wheel-inoperable states and the minimum number that allow the transition to fire, in 
this case two.  This shortcut will be allowed as long as no event that causes wheel failure 
appears outside the triggers for the wheel states. 
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(NLOS Wheel 1L Inoperable&NLOS Wheel 1R Inoperable)+(NLOS Wheel 1L Inoperable&NLOS Wheel 2L Inoperable)+ 
(NLOS Wheel 1L Inoperable&NLOS Wheel 2R Inoperable)+(NLOS Wheel 1L Inoperable&NLOS Wheel 3L Inoperable)+ 
(NLOS Wheel 1L Inoperable&NLOS Wheel 3R Inoperable)+(NLOS Wheel 1L Inoperable&NLOS Wheel 4L Inoperable)+ 
(NLOS Wheel 1L Inoperable&NLOS Wheel 4R Inoperable)+(NLOS Wheel 1R Inoperable&NLOS Wheel 2L Inoperable)+ 
(NLOS Wheel 1R Inoperable&NLOS Wheel 2R Inoperable)+(NLOS Wheel 1R Inoperable&NLOS Wheel 3L Inoperable)+ 
(NLOS Wheel 1R Inoperable&NLOS Wheel 3R Inoperable)+(NLOS Wheel 1R Inoperable&NLOS Wheel 4L Inoperable)+ 
(NLOS Wheel 1R Inoperable&NLOS Wheel 4R Inoperable)+(NLOS Wheel 2L Inoperable&NLOS Wheel 2R Inoperable)+ 
(NLOS Wheel 2L Inoperable&NLOS Wheel 3L Inoperable)+(NLOS Wheel 2L Inoperable&NLOS Wheel 3R Inoperable)+ 
(NLOS Wheel 2L Inoperable&NLOS Wheel 4L Inoperable)+(NLOS Wheel 2L Inoperable&NLOS Wheel 4R Inoperable)+ 
(NLOS Wheel 2R Inoperable&NLOS Wheel 3L Inoperable)+(NLOS Wheel 2R Inoperable&NLOS Wheel 3R Inoperable)+ 
(NLOS Wheel 2R Inoperable&NLOS Wheel 4L Inoperable)+(NLOS Wheel 2R Inoperable&NLOS Wheel 4R Inoperable)+ 
(NLOS Wheel 3L Inoperable&NLOS Wheel 3R Inoperable)+(NLOS Wheel 3L Inoperable&NLOS Wheel 4L Inoperable)+ 
(NLOS Wheel 3L Inoperable&NLOS Wheel 4R Inoperable)+(NLOS Wheel 3R Inoperable&NLOS Wheel 4L Inoperable)+ 
(NLOS Wheel 3R Inoperable&NLOS Wheel 4R Inoperable)+(NLOS Wheel 4L Inoperable&NLOS Wheel 4R Inoperable) 

Figure 3.7 Guard Expression for Failure of NLOS-C Wheels 

The targeting function that falls under the lethality function for the NLOS-C has a special 
treatment in this example.  Figure 3.8 shows the hierarchy of the states. 

 

Figure 3.8 Targeting Function for the NLOS-C 

There are three transitions shown in the block of targeting states.  Transition 58 originates 
in the Precise Targeting @ 20km state and points to the Targeting CEP 150m @ 20km 
state.  The guard expression for the transition is UAV Inoperable & Spotter Operable & 
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Laser Marker Inoperable.  This implies that there is a spotter in place but his laser marker 
is inoperable and the UAV is inoperable so it cannot mark the target.  Only in this 
circumstance will the model resort to the old-fashioned way of targeting.  This reduces 
targeting accuracy to a CEP of 150m at 20km. 

Transition 59 originates in the Targeting CEP 150m @ 20km state and points to the 
NLOS Targeting Inoperable state.  The guard expression for the transition is Spotter 
Inoperable.  So if the NLOS-C is already at reduced precision by relying on a spotter, it 
loses targeting totally if the spotter leaves the area or becomes disabled. 

Transition 63 originates in the Precise Targeting @ 20km state and points to the NLOS 
Targeting Inoperable state.  The guard expression for the transition is UAV Inoperable & 
(No Spotter in Area OR Spotter Inoperable).  This transition bypasses the reduced 
targeting state and goes straight to the no targeting state if the UAV becomes inoperable 
and either there was not a spotter in the area or the spotter was there and is now 
inoperable. 

In Figure 3.8 note that the Precise Targeting @ 20km state is marked as an initial state, 
whereas both the Targeting CEP 150m @ 20km state and the NLOS Targeting Inoperable 
state are marked as goal states.  These two goal states are associated with the functions 
Targeting CEP 150m @ 20km and No Targeting. 

The third system in this example is the forward spotter.  The states and transitions are 
shown in Figure 3.9. 

 

Figure 3.9 State Model for the Forward Spotter 
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For this example we assume that there is a spotter in the area and that the spotter is 
initially capable of providing targeting information.  So the Spotter Operable state is an 
initial state.  If none was available in the area the No Spotter in Area state would be an 
initial state.  Transitions number 61 and 62 have triggers whose expressions are the single 
events LASER-MARKER and SPOTTER-LOST, respectively. 

For additional information for the analysis, the states named NLOS No Lethality and 
NLOS Inoperable are also marked as goal states.  They are associated with the No 
Lethality and NLOS Inoperable functions, respectively.  In addition to the initial states 
already discussed, for all leaf state pairs of Operable/Inoperable states the Operable state 
is marked as an initial state. 

The SMS generates results for each goal state that has an associated function.  This 
example has four such (goal state, function) pairs.  Currently the SMS is required to use 
the same set of initial states for all four model evaluations.  Future versions will allow the 
user to assign ({initial states}, goal state, function) triplets. 

2.4.3 State Model Results 
When the state model for the example problem is run the SyOp Results Viewer is 
automatically accessed.  Figure 3.10 shows histograms for two of the functions.  The 
probability of operating at the CEP of 150m is much smaller than the probability of no 
targeting capability.  We estimate the probability of operating at full targeting accuracy 
by adding these probabilities and subtracting from 1.0.   

 

Figure 3.10 Histograms of Probability for the Targeting Functions 

The SMS does not currently have he capability to do the subtraction on a trial by trial 
basis, but such capability is planned for future versions.  So even though results have 
uncertainty, we are required to focus on the nominal results.  Nominal results are 
available under the Summary Statistics menu in the SyOp Results Viewer.  They are: 

• Probability of operating at CEP 150m @ 20km ≈ 0.0041 

• Probability of no targeting = 0.1210 

Thus, the estimate for the probability of operating at full accuracy is 0.8749. 
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The first approximation is good to first order.  Although the estimates for the 
probabilities are quite good for this example, future versions of the SMS will likely 
provide more accurate values for general cases.  In addition the user will have the 
opportunity to specify how the performance measures should be combined, if at all.  In 
this way customized results can be found for each trial and statistics will be available. 

Figure 3.11 shows the events that are the important contributors to the magnitude of the 
probabilities of reaching the two goal states.  The contribution of the loss of the spotter 
and the spotter�s laser marker are greater than the contributions of the individual 
components of the UAV.    However, adding the individual UAV component 
contributions shows that the loss of the UAV has about the same contribution as the loss 
of the spotter or the spotter�s laser marker.   

 

Figure 3.11 Contributors to the Probability of Reaching Goal States 

Figure 3.12 shows histograms for the other two functions that were included in the run.  
The SMS does not have a limit on the number of function/goal state pairs.  Each is 
evaluated separately but all can be viewed simultaneously using the Results Viewer. 
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The analyst may be more interested in the frequency of failure rather than the probability 
of failure.  If so, the state model should be run as a repairable system.  On the form 
shown in Figure 3.4, the Repairable button should be selected and the utilization should 
be addressed.  In this example we assume that the utilization is 1.0. 

 

 

Figure 3.12 Histograms of Probability for NLOS-C Operability and Lethality 

For a repairable system there are four performance measures per function.  Again we will 
ignore cost for this example and address the standard SyOp measures of mean time 
between failures (MTBF), downtime, and availability.  The interpretation of these metrics 
is fairly straightforward for the three functions No Targeting, NLOS Lethality, and NLOS 
Inoperable.  The interpretations are given in Table 3.3.   

The standard measures for the function Targeting CEP 150m @ 20km are less clear.  
MTBF in this case is the mean time between occurrences of dropping from precise 
targeting to Targeting CEP 150m @ 20km.  This is difficult to squeeze into a short menu 
caption so the caption MTB Resorting to 150m CEP is defined (Table 3.4).  A second 
interpretation of this MTBF is the time not spent in the Targeting CEP 150m @ 20km 
state.   

The downtime for this function is the time spent in this state while making repairs to 
enable the return to precise targeting.  Hence, this is a reasonable approximation to the 
average time spent in the Targeting CEP 150m @ 20km state. 

SyOp calculates the availability metric as MTBF / (MTBF + Downtime).  Unavailability 
is the complement of this or Downtime / (MTBF + Downtime).  Using the second 
interpretation for MTBF above, this latter definition is a measure of the availability for 
the Targeting CEP 150m @ 20km function.  Because SyOp reports the complement, the 
availability metric should be interpreted as the unavailability of the Targeting CEP 150m 
@ 20km function. 
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Table 3.3 Captions and Labels for Metrics for Repairable Problem 

Function Metric Menu Caption Label 
NLOS Inoperable MTBF MTB NLOS-C Failures Mean Time Between NLOS Cannon Failures 

 Availability Availability NLOS-C Availability of the NLOS Cannon 
 Downtime NLOS-C Downtime Downtime for NLOS Cannon Failures 
    

NLOS Lethality MTBF MTB Lethality Failures Mean Time Between Lethality Failures 
 Availability Lethality Availability Lethality Availability 
 Downtime Lethality Downtime Downtime when Lethality Fails  
    

No Targeting MTBF MTB NLOS-C 
Targeting Failures 

Mean Time Between NLOS Cannon 
Targeting Failures 

 Availability Availability NLOS-C 
Targeting 

Availability of NLOS Cannon Targeting 

 Downtime NLOS-C Targeting 
Downtime 

Downtime for NLOS Cannon Targeting 
Failures 

    
Targeting CEP 
150m @ 20km 

MTBF MTB Resorting to CEP 
150m 

Mean Time Between Resorting to Targeting 
CEP 150m @ 20km 

 Availability Unavailability Unavailability of Targeting CEP 150m @ 
20km 

 Downtime Time at Targeting CEP 
150m 

Mean Time Spent Per Occurrence at 
Targeting CEP 150m @ 20km  

Figure 3.13 shows histograms for four of the performance measures obtained from the 
SyOp Results Viewer.  These can be used to determine the mean time spent in each of the 
states Precise Targeting @ 20km, Targeting CEP 150m @ 20km, and NLOS Targeting 
Inoperable.     

The histogram on the upper left is the mean time spent in the NLOS Targeting Inoperable 
state.  The one on the upper right approximates the mean time spent per occurrence in the 
Targeting CEP 150m @ 20km state.  The two histograms on the bottom both show a 
measure of the mean time between failures of precise targeting.  Restated, they show the 
average time spent in the Precise Targeting @ 20km state.  The one on the left measures 
the length of time between total failures and the one on the right measures the length of 
time between failures that drop the targeting precision to a CEP of 150m @ 20km.  
Because the times on the left histogram are much smaller than those on the right, the 
histogram on the left is more indicative of the mean time spent in the Precise Targeting 
@ 20km state. 
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Figure 3.13 Example Histograms for Repairable Results 

The mean values for the appropriate measures are found to be: 

• Downtime for NLOS Cannon Targeting Failures Per Event =       0.85 hrs 

• Mean Time Spent at Targeting CEP 150m @ 20km Per Event =       0.67 hrs 

• Mean Time Between NLOS Cannon Targeting Failures = 1171.37 hrs 

Changing these to normalized percentages the percentage of time spent in each targeting 
state is: 

• Percent of time spent in the NLOS Targeting Inoperable state =   0.07% 

• Percent of time spent in the Targeting CEP 150m @ 20km state =   0.06% 

• Percent of time spent in the Precise Targeting @ 20km state = 99.87% 

The example problem has demonstrated some of the flexibility of the SMS.  Although the 
focus of the discussion was on targeting capability, inoperability results for the NLOS-C 
and the lethality of NLOS-C were also generated and can be viewed.  There could be 
more detail added or some of the detail could be consolidated.  The interdependence of 
systems was shown to be easy to incorporate.  This problem does not include external 
elements, but it is simple to define such elements and add them to guard expressions. 

There are four areas where future versions of the SMS will make the software more user-
friendly. 

1. The failure events will be mapped to failure modes in the supporting data library. 
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2. Special load sharing lists will be incorporated to simplify guard expressions. 

3. The process of interpreting results will be simplified. 

4. The user will be able to customize the results.     

2.5 Benefits of State Modeling 

State modeling offers several benefits. 

• A state model is quite flexible concerning the definition of states and transitions, 
in particular the trigger expressions for the transitions.  In general the more states 
that are included the simpler the trigger expressions.  On the other hand, the 
number of states can be reduced by defining more complex trigger expressions.  If 
the detailed states are required because it is anticipated that they could be a goal 
state, it is important to include them in the state model detail.  Otherwise, their 
inclusion becomes optional.  For example, a function of a system may go from its 
operable state to its inoperable state for a variety of reasons.  The light fails 
because the switch fails, the bulb fails, or the electrical power fails.  As presented 
in section 3.1.1, each of these components was assigned a state with operable and 
inoperable child states.  When any one of these reached their inoperable state, 
transition X4 fired which moved the light to its No Illumination state.  We could 
have eliminated all of the children of the Illumination state and replaced the guard 
in transition X4 with a trigger that described the failure of the events.     

• A state model can have multiple goal states.  When the SMS builds a solution, the 
solution contains results for every goal state in the model.  Results for all goal 
states can be displayed simultaneously using SyOp�s Results Viewer. 

• A state model can have different sets of initial states.  Typically results are desired 
for the case when every system is initially in its fully operational state.  On the 
other hand if some systems are inoperable or are partially operable, the user can 
define the initial states that way.   

• Goal states are not restricted to inoperable states.  The state model can contain 
partially operable conditions.  A military system that has two weapons has full 
lethality when both are functioning, has partial lethality when one is down and the 
other is up, and has no lethality when both are down.  The state model can define 
the conditions that reduce the lethality function from full to partial and the partial 
lethality state can be defined as a goal state.  It can be informative to run the 
model with both partial and no lethality as goal states.  This arrangement can be 
used to estimate the fraction of time spent in each state for example. 

• A state model can contain multiple systems.  Suppose a state model has 10 assault 
guns defined.  What is the probability that 7 are operable at the end of a specified 
mission time?  This question can be incorporated into a guard expression. 

• It is easy to incorporate dependencies between systems in a state model.  Suppose 
that the targeting for an NLOS Cannon depends on coordinates fed to it from an 
unmanned aerial vehicle.  If the UAV loses its mobility, its sensing capability, or 
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its ability to communicate with the NLOS-C, it is no longer useful as a targeting 
mechanism.  By incorporating both systems into a single state model, it becomes 
easy to include the functions of the UAV into a guard expression for the NLOS-C.     

• It is simple to incorporate external elements into a state model.  The occurrence of 
bad weather, rough terrain, or turbulence, for example can be defined as an 
external element and incorporated into guard expressions.  At the beginning of a 
run the user defines each of these as true or false.  This can disable or enable 
different parts of the guard expression causing the SMS to examine different 
paths.          
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3  System of Systems Simulation  

3.1 Overview  

A major step toward analyzing complex SoS analysis has been the development of a 
multi-system time simulation capability.  Key to the multi-system simulation capability 
has been the development of a State Model Object (SMO) that enables a system, its 
elements, and its functionality to be encapsulated for use in the simulation.  The concept 
behind the multi-system simulation is illustrated in Figure 4.1. 

State Model Object

Mobility
Lethality
Survivability
Mission Probability
....

Controlling Simulation
Software

Environmental
Conditions
Terrain
Use Conditions
Supply Network
...

 

Figure 4.1 Multi-System Simulation Concept 

Every system in the simulation is represented by an SMO which models the system�s 
functionality while the controlling simulation software provides needed information on 
environmental conditions, terrain, use conditions, supply network information, etc.   

A simplified view of the SMO Simulation architecture is shown in Figure 4.2. The state 
model object is the central feature of the simulation with an SMO used to represent each 
system in the system of systems being simulated.  A scenario model describes the 
detailed scenarios that the systems will follow during the simulation.  A combat damage 
model provides a mechanism to simulate the effects of combat damage including damage 
to individual system primary elements or damage that completely disables the system.  
Finally, a supplies and services model provides a means for spare parts and consumables 
to move from system to system in the simulation and makes maintenance services 
available to systems requiring repairs.  The following sections discuss these components 
of the SMO Simulation. 
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SMOs
Representing

Systems

Scenario
Model

Supplies and Services
Model

Combat
Damage Model

Real Time Results
System States
Function States
Scenario Completion Probability
Status of Supplies
...

Statistical Results
Systems Availability by Platform Type
Systems Availability in Force Structure
Logistics Information
...

Figure 4.2 SMO Simulation Architecture 

3.2 The State Model Object  

The SMO can be configured to represent a wide variety of systems.  Examples of the 
types of systems that might be represented by the SMO include air vehicles, ground 
vehicles, manufacturing equipment, a soldier and the equipment he carries, etc.  For 
modeling and simulation purposes, the SMO can be used to represent almost any system 
whose functionality can be described by the states of the system�s elements. 

The SMO is made up of a collection of elements that may be subsystems, components, 
failure modes, external conditions, or functional elements of other systems. The SMO can 
have multiple functions such as mobility, communications, sensing, lethality, etc.  
Furthermore, any function can itself have multiple states and is not restricted to success 
or failure.  The state of any function is determined by the states of the elements that 
contribute to that function.  Elements and functions of the SMO are described in the next 
two sections. 

3.2.1 Elements of the SMO 
Elements of an SMO can be any one of the following four types: 

• Primary Elements: These should be considered the elements that are subject to 
normal reliability processes such as failures and repairs.  Primary elements might 
be components, field replaceable units, failure modes, etc. 

• Consumables: A consumable can be any item that is used by a system during its 
operation.  Examples might be fuel, ammunition, and water.  Once a system is 
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assigned a consumable, the consumable becomes an element whose state becomes 
false when the consumable is used up.   

• External Elements: These are elements outside a system that can affect a system�s 
functionality.  Examples of external elements might be a sandstorm or heavy 
forestation. External elements are defined as part of the scenario model and may 
then be identified as applicable to any system.   

• Reference Elements: These are references to functions of another system that the 
current system may require for its functionality.   

3.2.1.1 Primary Elements 
Primary elements are elements that change through normal reliability processes as 
characterized by time-to-failure (TTF) or time-to-repair (TTR) distributions. Primary 
elements can identify spare parts and maintenance services required for their repair and 
are the means by which systems request and use parts and maintenance services.   

Currently available time-to-failure distributions in the SMO Simulation are as follows: 

1 Exponential: The only parameter needed for the exponential distribution is a failure 
rate which is assumed to be constant. 

2 Weibull: The Weibull distribution is often used as a time-to-failure distribution.  The 
version used in SMO Simulation requires three parameters; 

• Shape: This parameter defines the shape of the distribution (dimensionless), 

• Scale: This parameter determines the scale of the distribution (hours), and 

• Location: This parameter locates the distribution on the time scale (hours).   

3 Wearout.  This distribution is a three-part distribution developed for use as a time-to-
failure distribution.  Its three parts are burn-in, normal life, and wear out.  During the 
burn-in period, the failure rate is assumed to be linearly decreasing.  During the 
normal life, a constant failure rate is assumed.  In the wear out portion of the 
distribution, the time-to-failure distribution is assumed to be normal.  The wear-out 
distribution requires five parameters as follows: 

• Burn-In Fraction: This parameter determines the fraction of failures that occur 
during the burn-in period, 

• Burn-In Duration: This parameter sets the duration of the burn-in period.  Its units 
are hours, 

• Random Fraction: This parameter sets the fraction of failures that are assumed to 
occur during the component�s normal life,   

• Mean: This is the mean of the normally-distributed end-of-life portion of the 
distribution.  Its units are hours, and 

• Standard Deviation: This is the standard deviation in hours of the normally-
distributed end-of-life portion of the distribution. 
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Currently available time-to-repair distributions are as follows: 

1 Fixed: This option simply specifies a fixed time-to-repair. 

2 Normal: The normal distribution is defined by two parameters which are; 

• Mean: This is the average value in hours for the time-to-repair and 

• Standard Deviation: The standard deviation is a measure of the spread of the 
distribution (hours). 

3 Lognormal: The lognormal distribution is defined by two parameters which are; 

• Mean: This is the average value in hours for the time-to-repair and 

• Standard Deviation: The standard deviation is a measure of the spread of the 
distribution (hours). 

4 Uniform: The uniform time-to-repair distribution requires two parameters; 

• Minimum: This is the lower bound of the range of time-to-repair values to be 
sampled and 

• Maximum: This is the upper bound of the range of time-to-repair values to be 
sampled.  

5 Triangular: The triangular time-to-repair distribution requires three parameters; 

• Minimum: This is the lower bound of the range of time-to-repair values to be 
sampled,  

• Most Likely: The most likely value must fall between the minimum and 
maximum values, and 

• Maximum: This is the upper bound of the range of time-to-repair values to be 
sampled.  

The time-to-repair distribution is intended to represent just the time to repair a failed 
element after any required parts and maintenance services become available.  Delay times 
in acquiring a need part or maintenance service are treated through the supply network. 

3.2.1.2 Consumable Elements 
Any system may be assigned one or more consumables such as fuel, ammunition, etc.  A 
consumable is defined by the following key properties: 

• Capacity: This is the maximum amount the system can carry. 

• Initial Quantity: This is the amount that the system carries at the start of the 
simulation. 

• Reorder Level: This is the amount below which the system begins to request that 
the consumable be replenished. 
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• Usage Rate: This is the amount of the consumable used per hour of operation.  
This rate can be varied throughout the simulation scenario. 

• Quantity: This is the current amount of the consumable as the simulation 
proceeds. 

The state of the system element that represents a consumable is True so long as the 
quantity of the consumable is greater than zero.  If the consumable is all used up before 
being replenished, the state of the corresponding element becomes False. Because the 
element that represents the consumable can be included in the success or failure 
equations for any system function, running out of a consumable can cause a system 
function to fail or degrade.   

3.2.1.3 External Elements 
External elements are defined for the simulation and may be assigned to as many systems 
as desired.  Examples of external elements might be a sandstorm, rough terrain, heavy 
forestation, etc.  Each external element has a desired state and an actual state.  When the 
actual state is the same as the desired state, the element returns True.  When the actual 
state is not the same as the desired state, the element returns False.  As an example, 
suppose an external element called Sandstorm has been defined with False as its desired 
state. Suppose further that the Sandstorm element has been assigned to a group of 
systems and included in the failure equation for their visible imaging function.  Then if 
the state of the Sandstorm external element becomes True (i.e., a sandstorm occurs), then 
all those systems with the Sandstorm element in their visible imaging functions would 
lose visual imaging or have their visual imaging function degraded.   

3.2.1.4 Reference Elements 
Reference elements are references to functions of another system that the current system 
may require for its functionality.  For example, suppose a weapon system�s targeting 
accuracy relies on laser target marking provided by an air vehicle.  The weapon system 
can be given a reference to the air vehicle�s target marking function.  The reference 
element can then be included in the weapon�s failure or success equations for targeting 
accuracy or lethality.  If the air vehicle becomes inoperable, the targeting accuracy of the 
weapon system could be reduced. 

3.2.2 SMO Functions 
An SMO may have as many functions or measures of effectiveness (MOEs) as needed for 
the scenario to be simulated.  The relationship between any SMO function and its 
contributing elements is characterized by a combination of failure and success equations.  
The failure equation is used to determine whether a function is available at all whereas 
success equations determine whether a function is partially available and at what level.  
The SMO characterizes a system�s overall operability and as many functions of the 
system as desired.  For system operability and each system function, the SMO provides 
the following information: 

• Real-time status of any function (available, partially available, unavailable), 
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• The probability of maintaining the function for a specified future time interval, 

• The most likely problem areas for the function (elements most likely to cause loss 
of function), and 

• Detailed statistics such as the cumulative time in each state, number of state 
changes, etc. 

Failure and success equations for a system can be derived from a state model as discussed 
in Section 2 or from one or more fault trees.  In its current form, the user must directly 
input the desired equations when setting up a multi-system simulation.  As development 
of the tools reported here becomes more mature, failure and success equations will be 
imported directly into the SMO Simulation from the state model or fault tree solvers.   

To illustrate the development and use of failure and success equations, a simple weapons 
system is examined that consists of an M240 Machine Gun, M242 Chain Gun, and an 
Electrical System that provides needed electrical power.  Three goal states are of 
intereest: 1) no lethality, 2) partial lethality with only the M240 Machine Gun operable, 
and 3) partial lethality with only the M242 Chain Gun operable.  The state model is 
shown in Figure 4.1. Leaf states are shown in green and transitions are labeled as X.   

Lethality

No
Lethality

Partial Lethality:
M240 Only

Partial Lethality:
M242 Only

Weapons
System O R

M240
Machine

Gun

M242 Chain
Gun

Electrical
System

M240
Operable

M240
Inoperable

M242
Operable

M242
Inoperable

Electrical
System

Operable

Electrical
System

Inoperable

AND

O R

O R

O R

X1

X2

X3

X4

X5

X6

X7

X8

 

Figure 4.1 State Model for Simple Weapons System 

The transitions shown in Figure 4.1 are defined as follows: 



  

47 

X1 = X1(G1): Transition from Lethality to Partial Lethality: M240 Only. 

X2 = X2(G2): Transition from Lethality to Partial Lethality: M242 Only. 

X3 = X3(G3): Transition from Lethality to No Lethality. 

X4 = X4(G4): Transition from Partial Lethality: M240 Only to No Lethality. 

X5 = X5(G5): Transition from Partial Lethality: M242 Only to No Lethality. 

X6 = X6(T6): Transition from M240 Operable to M240 Inoperable. 

X7 = X7(T7): Transition from M242 Operable to M242 Inoperable. 

X8 = X8(T8): Transition from Electrical System Operable to Electrical System 
Inoperable. 

The guard expressions G1 to G5 are defined as follows: 

G1 = (Electrical System Operable) ∩ (M240 Operable) ∩ (M242 Inoperable) 

G2 = (Electrical System Operable) ∩ (M240 Inoperable) ∩ (M242 Operable) 

G3 = (Electrical System Inoperable) ∪ ((M240 Inoperable) ∩ (M242 Inoperable)) 

G4 = (Electrical System Inoperable) ∪ (M240 Inoperable) 

G5 = (Electrical System Inoperable) ∪ (M242 Inoperable) 

The triggers T6 to T8 are defined as follows: 

T6 = M240-Fail (M240 Machine Gun fails). 

T7 = M242-Fail (M242 Chain Gun Fails). 

T8 = Elec-Fail (Electrical System Fails). 

To address how the state model arrives at the No Lethality state, a Boolean equation for 
arriving at this state is built based on the initial conditions.  It is assumed that each 
component is initially in its operable state.  Thus, M240 Operable, M242 Operable, and 
Electrical System Operable are initial states.  By extension, this implies that the parent 
states Lethality and Weapons System are also initial states. 

In the context of the state model Boolean equation, if a state is an initial state it is 
assigned a value of true because it can be reached unconditionally.  In other words, 
nothing has to occur to reach the state because the system starts out in the state. 
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The construction of the Boolean equation for the No Lethality state follows the 
procedures outlined in section 3.3.  The starting point is the No Lethality state and the 
first step is to find all transitions that lead to the state.  Hence, 

No Lethality = X3 ∪ X4 ∪ X5. 

A transition is true only if its source state is occupied and its guard and trigger are true.  
None of these three transitions has a trigger so this reduces to source state is occupied and 
its guard is true.  Expanding these conditions for transition X3: 

X3  = Lethality ∩ G3 

X3  = True ∩ G3 

X3  = G3 

X3  = Electrical System Inoperable ∪ (M240 Inoperable ∩ M242 Inoperable) 

Expanding for transitions X4 and X5: 

X4  = Partial Lethality: M240 Only ∩ G4 

X4  = Partial Lethality: M240 Only ∩ (Electrical System Inoperable ∪ M240 
Inoperable) 

X5  = Partial Lethality: M242 Only ∩ G5 

X5  = Partial Lethality: M242 Only ∩ (Electrical System Inoperable ∪ M242 
Inoperable) 

To further expand transitions X4 and X5 we need to determine how the state model 
reached their source states.  So for both of these two states, find the transitions that point 
to them as destination states.  In each case there is only one such transition.  Hence the 
source state can be replaced with the appropriate transition.  Rewriting then, 

X4  = X1 ∩ (Electrical System Inoperable ∪ M240 Inoperable) 

X5  = X2 ∩ (Electrical System Inoperable ∪ M242 Inoperable) 

The next step is to expand transitions X1 and X2.  Because each only has a guard and 
because the source state in each case (Lethality) is an initial state, the equations for the 
transitions reduce to those of the guards: 

X1  = G1 

X1  = Electrical System Operable ∩ M240 Operable ∩ M242 Inoperable 

X1  = M242 Inoperable 
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X2  = G2  

X2  = Electrical System Operable ∩ M240 Inoperable ∩ M242 Operable 

X2  = M240 Inoperable 

Here we have again replaced the initial (operable) states with a value of true.  Substitute 
X1 back into the equation for X4 and X2 into X5.  Use the distributive law to rewrite the 
equations in disjunctive form as shown. 

X4  = M242 Inoperable ∩ (Electrical System Inoperable ∪ M240 Inoperable) 

X4  = (M242 Inoperable ∩ Electrical System Inoperable) ∪  

(M242 Inoperable ∩ M240 Inoperable) 

X5  = M240 Inoperable ∩ (Electrical System Inoperable ∪ M242 Inoperable) 

X5  = (M240 Inoperable ∩ Electrical System Inoperable) ∪  

(M240 Inoperable ∩ M242 Inoperable) 

Recall that X3, X4, and X5 are combined under the Boolean OR operator.  The 
intersection term (M240 Inoperable ∩ M242 Inoperable) appears in the expressions for 
all three.  Hence using the idempotent law, it only appears once when the union taken and 
is simplified.  Also, the law of absorption is used twice.  That is for example, by 
adsorption 

Electrical System Inoperable ∪ (M240 Inoperable ∩ Electrical System Inoperable) 

is equivalent to  

Electrical System Inoperable   

Accounting for the steps taken thus far we have: 

No Lethality = Electrical System Inoperable ∪ (M240 Inoperable ∩ M242 Inoperable)  

It remains to address how the state model reached the three states shown in the latest 
equation.  Each one can be arrived at via a single transition.  So again, replace the state 
with the appropriate transition. 

No Lethality = X8 ∪ (X6 ∩ X7) 

A transition is true only if its source state is occupied and its guard and trigger are true.  
None of these three transitions has a guard so this reduces to source state is occupied and 
its trigger is true.  Also, for each of these three transitions the source state is an initial 
state, hence true, so each transition can be replaced by its trigger. 
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No Lethality = T8 ∪ (T6 ∩ T7) 

Even though in general a trigger can be a Boolean expression of events, each of these 
triggers has but a single event.  Making the final substitution: 

No Lethality = Elec-Fail ∪ (M240-Fail ∩ M242-Fail)   (4.1) 

Thus, lethality is lost if the electricity fails or both of the guns fail.  This expression is 
already in disjunctive form which is appropriate for defining the cutsets that constitute a 
failure equation for the lethality function in an SMO.  Using the terminology of the user-
interface for SoS input (Appendix B), there is a Simple (or Series) cutset Elec-Fail and 
an And (or Parallel) cutset {M240-Fail, M242-Fail}.  If either of these cutsets occurs, 
the lethality function fails. 

Since there is redundancy in the failure equation, the question arises whether there might 
be intermediate levels of lethality � not just full lethality or no lethality.  For example, 
suppose the M240 fails but the M242 remains operable as does the electrical system.  To 
find all the ways the lethality function can be successful, we will apply negation to the 
failure equation.  First, it is convenient to rewrite the failure equation (4.1) as follows: 

( )242M240MElecLethality ∩∪=     (4.2) 

The rewritten failure equation is read as No Lethality = No Electrical System or (No 
M240 and No M242) where No Electrical System implies electrical system failure, etc. 
We will now apply negation to the above equation to get 

( )242M240MElecLethality ∩∪=     (4.3) 

Now by De Morgan�s theorem,  

BABA ∩=∪  

and 

BABA ∪=∩  

Applying De Morgan�s theorem to the negated lethality equation we get 

( )242M240MElecLethality ∪∩=  

Using the distributive law and noting the double negation, 

( ) ( )242MElec240MElecLethality ∩∪∩=    (4.4) 
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Or lethality succeeds if both the electrical system and the M240 succeed or both the 
electrical system and the M242 succeed.  When the success equation is written in 
disjunctive form as above, one can examine the terms in parenthesis and consider 
whether system performance differs depending on which success term is true. In this 
example we can see that the two intermediate levels of lethality, partial lethality with the 
M242 operable and partial lethality with the M240 operable, are represented by the terms 
in parenthesis.  The two success equations for these intermediate states are 

Partial Lethality: M240 Only = Elec ∩ M240 

Partial Lethality: M242 Only = Elec ∩ M242 

Notice that the series term from the failure equation 4.1 (actually it�s negative), appears 
in both success equations.  In general one would expect that all series terms in the failure 
equation would appear in every success equation.  In other words, if a system fails by any 
of its series elements, there is no need to evaluate success equations since they will all 
evaluate to false.  

3.3 The Scenario Model  

Scenarios allow the analyst to provide detailed specifications for the location of a system, 
its expected performance, and any external conditions that might affect its behavior.  The 
analyst can define as many scenarios as desired.  Further, multiple systems can follow the 
same scenario or, if desired, every system can follow a different scenario.   

3.3.1 Scenario Segments 
A scenario is made up of time intervals or segments and a scenario can have as many 
segments as desired.  For each time segment, the following information is required: 

• Duration: This is the length of the time segment in hours. 

• Location: The location is an enumerated property with three values: 1) field, 2) 
repair facility, and 3) other.  These locations help determine such things as where 
a failed system can be repaired.  For example, some failures may be repairable in 
the field while others might only be repairable when the system is at a repair 
facility. 

• Desired System State: This is the desired state of systems that follow this 
scenario.  Desired system states would usually be either operating (the system is 
expected to operate) or operable (the system is not expected to operate but should 
be capable of operating) during the segment. 

• External Condition: External conditions (discussed below) provide a mechanism 
for modifying system properties.  For example, an external condition such as air 
turbulence might increase the probability of failure or aging rate of aircraft 
elements that would undergo additional stress in turbulent conditions. 

• Condition Probability: This is the probability that a specified external condition 
will actually occur during the scenario segment.   
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3.3.2 External Conditions 
External conditions are conditions within the simulation that are external to any of the 
systems but may affect the properties or performance of one or more systems.  An 
external condition may affect a system directly or affect the elements of the system.  
Specifically, at the system level, external conditions can have the following effects: 

• Combat Damage Change: A combat damage definition can be applied to a system 
to enable combat damage to occur or to change the type of combat damage that 
occurs. 

• Combat Damate Rate: The rate or probability per unit time of combat damage can 
be modified by applying an external condition to a scenario segment. 

For primary elements, external conditions can have the following effects: 

• Failure Rate: The failure rate of any primary element having an exponential time-
to-failure distribution to be increased or decreased from its baseline input value. 

• Aging Rate: The aging rate of any primary element of any system can be 
increased or decreased from its baseline input value. 

• Repair Time: The repair time of any primary element can be modified. 

• Weibull Location Parameter: For primary elements having a Weibull time-to-
failure distribution, the location parameter can be modified.  This effectively 
reduces or increases the expected life of the element. 

• Wearout Mean Life: For primary elements having a wearout distribution, the 
mean of the end-of-life portion of the distribution can be modified to increase or 
decrease the expected life of the element. 

• Wearout Random Fraction:  For primary elements having a wearout distribution, 
the probability of a random failure during the element�s normal life can be 
modified. 

Other possible effects of external conditions include a change in the rate of consumable 
usage and changing the state of an external element.  Planned development in this area of 
the simulation include allowing external conditions to modify the delay times associated 
with delivering spares, consumables, and maintenance services.   

3.4 The Combat Damage Model  

Combat damage is represented by a model that is similar to a decision tree.  A simple 
example is shown in Figure 4.2. 
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Figure 4.2 Example of a Combat Damage Tree 

For the root node (NLOS-C Combat Damage in Figure 4.2), the required information is 
the combat damage rate (probability per hour of combat damage) and an indication of 
whether the child nodes are disjoint.  If the child nodes are disjoint, only one child node 
can occur.  In this case, the probabilities of the disjoint child nodes must add to 1.  If the 
child nodes are not disjoint, the probabilities of the child nodes are not required to add to 
1.  For nodes other than the root node, the required information is the conditional 
probability of reaching that node (given that its parent has occurred), and whether its 
children are disjoint.  

With the above explanation, we can interpret Figure 4.2 as follows: 

• The probability per hour of combat damage for the NLOS cannon is 0.1.   
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• If the NLOS-C experiences combat damage, it will come from either an RPG 
(50% chance) or a land mine (50% chance).  

•  If the damage comes from an RPG, the damage will be to the left (30% chance), 
right side (30% chance), front (20% chance), or rear (20% chance) of the 
platform. 

• If the RPG hits the left side of the NLOS-C, there is a 50% chance that the left 
track will be damaged and a 10% chance the left armor will be damaged.     

The tree can go to as many levels as necessary or can be a single node.  Not shown in 
Figure 4.2 is the kill probability which can be applied at any level of the tree. 

3.5 The Supplies and Services Model  

This section discusses the approach for modeling the movement and use of supplies and 
services in the SMO Simulation.  The supplies and services model in SMO Simulation is 
designed to meet the following needs: 

• Orders for spares needed for repairs, 

• Orders for parts to replenish inventories, 

• Orders for consumables by users, 

• Orders for consumables to replenish supplies, and  

• Orders for service 

The process by which these needs are met during a simulation is illustrated in Figure 4.3.  
The need for a supply or service is identified when a part or service is required to repair a 
primary element, when a consumable is running low, or when a supplier of parts or 
consumables needs to replenish their inventory.  When the need for a supply or service is 
identified, an order is created that identifies the customer (the SMO that needs the supply 
or service).  If the order is for parts or consumables, they are identified along with the 
quantity needed.  If the order is for a service, the required service is identified.  

Any system in the simulation can be a user or supplier of parts or consumables.  
Similarly, any system can be a user or provider of maintenance services.  To manage 
orders for supplies and services, every system maintains collections of active orders for 
parts, consumables, and services.  When a system requires a supply or service, an order is 
created and placed in the customer system�s collection of active orders.  Then a supplier 
or provider is sought using the supply connections established for the customer system.  
When the best supplier or provider is found, the order is added to its active orders.  The 
best supplier or provider is the one with the best priority who can provide the supply or 
service in the shortest time.  There is a delay time associated with every delivery of parts, 
consumables, or services.  The delay time is a random variable whose value depends on 
the supply connection that is used.  The delay time count down for parts begins as soon as 
the order is accepted by a supplier.  Orders for consumables and services are placed in a 
queue and delivered by the supplier or provider in the order that they are received.  The 
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exception to this rule is when a system self-supplies a consumable or self-provides a 
service in which case the order is placed at the front of the queue.  

Identify Need for Supply or Service
Part for repair
Service needed for repair
Consumable running low
Need to replenish parts inventory
Need to replenish supplies

Create Order
ID of Customer
What is needed
Quantity or number requested
Add to Customer's active orders

Find Supplier
Search supply connections
Select best priority with shortest
time
Add to Supplier's active orders

Deliver Supply or Service
Note delay time
Add order to Completed
Orders for Supplier

Figure 4.3 Process for Using the Supply Network 

 

3.5.1 Spare Parts 
The treatment of spare parts begins with a collection of all parts to be used in the 
simulation.  Spares are characterized by the following properties: 

• ID: This property identifies the part. 

• Cost: The cost of the part. 

• Weight: The weight of the part in consistent units. 

• Volume: The volume of the part in consistent units. 

Any carrier or storage area for spare parts will be a system as defined by the State Model 
Object (SMO). To assign spares to be carried by a system, we first create spares kits or 
inventories.  For every part in the inventory, the following information is needed: 

• Desired Number: This is the number of a particular part that should be in the 
inventory. 
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• Actual Number: This the actual number of the part in the inventory at any time. 

• Reorder Level: This is the level at which an order is placed to take the inventory 
of a particular part back up to desired number. 

• Lot Size: Orders for replacement parts are made in multiples of lot size.   

The user may create as many different parts inventories as desired and assign them to the 
various systems in the simulation.  If desired, evey system in the simulation can carry a 
different spares kit or inventory. 

3.5.2 Consumables 
Any supplier or storage area for consumables will be a system as defined by the State 
Model Object (SMO).  Similarly any system (SMO) may be a user of one or more 
consumables.   

Consumables are defined by the following properties: 

• ID: This property uniquely identifies the consumable. 

• Units: This property specifies the units in which the consumable will be used and 
replenished.  Examples are gallons of fuel or rounds of ammunition. 

• Weight per unit: The weight per unit will allow weights of consumables to be 
calculated.  Weight values should be in internally consistent units. 

• Volume per unit: The volume per unit will allow consumable volumes to be 
calculated.  Volume values should be in consistent units. 

• Cost per unit: The cost per unit allows consumable costs to be calculated. 

Consumables as they are used by a system are defined by the following properties: 

• ID: This string uniquely identifies the consumable and must match a consumable 
definition. 

• Initial Quantity: This is the amount of the consumable at the beginning of the 
simulation. 

• Quantity: This is the current quantity as the simulation proceeds. 

• Capacity: This is the maximum amount of the consumable that the system can 
carry. 

• Request Level: This is the level below which the system requests replenishment.  

• Order Quantity: This is equivalent to lot size for spares.  For example, if water 
comes in 5 gallon containers and water volume is measured in gallons, this value 
should be 5.   

• Usage Rate: This quantity defines the baseline rate at which the consumable is 
used when the system uses it. The usage rate can be varied throughout the 
simulation if desired.  
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Supplies (consumables provided by supplier systems to end users) have the same 
properties as consumables except for the usage rate.   

Consumables used by a system become elements of the system and as elements, they can 
be included in the failure or success equations for any system function.  An example 
might be fuel which could be included in the failure equation for the mobility function.  
The state of the element represented by a consumable remains true so long as its quantity 
is greater than 0.  So, continuing the fuel example, the fuel element would transition to 
the false state when the system runs out of fuel.  If fuel were included as a series element 
in the failure equation for mobility, then mobility would be lost when the fuel was all 
used up.   

3.5.3 Maintenance Resources 
Maintenance resources are services that may be required to repair a failed primary 
element.  Such services may be provided by the crew of the system being repaired or may 
be provided by another system that is equipped for the service.  The service may be the 
actual element repair in which case the time to perform the service is the repair time.  Or, 
a service may required in order to allow the repair to take place; e.g., towing.  In this 
case, the service may require time to perform that is not part of the normal element repair 
time.  In any case, there is a delay time required to access the service, even if it is 
provided by the crew.  When a service provider takes multiple requests for service, each 
service order in the queue will have an access delay time.  So, for the second user in the 
queue, the delay time will be the sum of the time required for the first user to access the 
service, the time required to perform the service for the first user, and the time required 
for the second user to access the service. 

The simulation treats three types of services as follows: 

1. Basic service: This is a basic service such as a track repair, an engine repair, a 
tow, etc.  Basic services should be defined at a level of granularity that is 
appropriate to the details of the simulation.   

2. User service: A user service consists of one or more basic services that a system 
may require in order to repair a failed primary element.  An example of a user 
service might be just a basic service such as track repair or an ordered list of basic 
services such as towing followed by engine repair.    

3. Provider services: Provider services are collections of basic services that are 
available from service providers.  Provider services parallel spares inventories.  If 
a particular system can provide more than one basic service, these basic services 
must be grouped together into a provider service so that the corresponding 
collection of basic services can be assigned to the provider system.  

Provider services are assigned, much like spares inventories, to systems that will provide 
the various basic services to other systems.  For example, all the basic services that the 
crew of NLOS cannons can perform should be grouped together into a provider service 
and assigned to NLOS cannons.  
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Primary elements of every system can identify a user service or basic service that is 
required to repair the element when it fails.  For example, an element representing the 
transmission of a manned ground vehicle might identify a required user service that 
includes a tow followed by a transmission repair.   

Services are made available to systems needing services through the SupplyConnections 
class.  SupplyConnections are discussed below in section 4.5.4.  

3.5.4 Supply Connections 
A Supply connection establishes a link between customers or users of supplies or services 
and suppliers or providers of these supplies and services.  For example, a self-supply 
connection might be established to allow a fuel truck to refill its own fuel tank when 
necessary.  Similarly, a connection might be established with all manned ground vehicles 
in a platoon as customers of a single field repair team in the same platoon.  A supply 
connection can tie any group of customers or users to any group of suppliers or providers 
and can be used for any or all of the following purposes:  

• Provide a spare needed for a repair. 

• Replenish the spares inventory for a supplier of spares. 

• Supply a consumable for an end user of the consumable 

• Replenish the consumables supply for a consumable supplier. 

• Access a maintenance service needed to repair a system.  

Key properties of the supply connection are as follows: 

• ID: This string uniquely identifies the connection. 

• Connection Uses: This is a bitwise summed value that indicates which of the 
above purposes the connection can be used for.   

• Delay Time: This distribution characterizes the uncertainty in the time required to 
acquire a supply or service using the connection.  There is a different distribution 
for each use of the connection. 

• Users: This is a collection of all system names that can use the connection for the 
specified purposes.   

• Suppliers: This is a collection of all systems that are suppliers/providers through 
this connection. 

When a system identifies a need for a part, supply or service, it examines the supply 
connections that are available to it as a user to see if any of the connections can be used 
for the desired purpose.  For example, if a primary element fails and a part is needed for 
its repair, the system looks through its supply connections for a connection that can be 
used to acquire a spare for a repair.  If it finds such a connection, it then searches through 
all the suppliers specified by the connection to see if any of them have the required spare.  
If there are multiple potential suppliers, the one having the combination of best priority 
and shortest delivery time is chosen.    
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3.6 Results for 99 System Example 

Because of its size and complexity, the example problem will not be presented in detail.  
The construction of an input file is described in Appendix B and, for this example 
problem, the input file contains thousands of lines of set-up data.  Instead, the discussion 
will focus on the kinds of results that are currently available.  

The example problem models a battalion with a total of 99 systems with the types and 
numbers shown in Table 4.1.  The force structure setup consists of a battalion with two 
companies and each company has two platoons.  The distribution of the 99 systems 
within the force structure is shown in Table 4.2.   

Table 4.1 Systems in the Example Problem 

System Type Number 

Command and Control (C2V) 7 

Fuel Truck (FT) 8 

Infantry Carrier Vehicle (ICV) 16 

Non Line-of-Sight Cannon (NLOS-C) 16 

Reconnaissance and Surveillance Vehicle (RSV) 16 

Unmanned Air Vehicle (UAV) 32 

Parts Truck (PT) 2 

Parts Depot (PD) 1 

Forward Spotter (FS) 1 

 
 

Table 4.2 Distribution of Systems in the Force Structure 

 C2V FT ICV NLOS-C RSV UAV PT PD FS 

Battalion 1  1 

Company A 1 4 1  

Platoon 1  1 4 8 4   1

Platoon 2 1 4 4 16   

Company B 1 4  1  

Platoon 1 1 4 8 4   

Platoon 2 1 4 4 16   
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The manned ground vehicles and the spotter all follow a scenario that consists of three 
segments � 72 hours of activity followed by a 24 hour replenishment interval followed by 
a final 72 hours of activity.  The UAVs have 2 hour flights every eight hours for the two 
72 hour intervals of activity with a 24 hour replenishment interval in the middle. The 
parts depot has a single interval of 168 hours of activity. 

All the manned ground vehicles have the following 5 functions: 

• Operability: This function includes all the capabilities considered necessary for 
the mission. 

• Command and control: This function includes communications, computing, 
network and other control functions as appropriate to the platform. 

• Sensing: This includes all sensing capabilities available on the platform. 

• Mobility: This function includes every system element required for the platform 
to be able to move. 

• Lethality: This function takes into account any weapons on the platform and their 
control systems. 

The UAVs have all the functions except lethality since they are assumed to have no 
weapons.   

The only consumable in the simulation is fuel which is used by all the manned ground 
vehicles.  The next several figures illustrate the outputs that are currently available. 

 

Figure 4.4 Functions by System 
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Figure 4.4 shows systems and their functions in real time as the simulation proceeds. The 
tree structure on the left side can be shown with the systems organized by system type as 
is the case in Figure 4.4 or the systems can be organized within the system-of-systems 
structure.  All functions are shown for each system.  When a system function fails, the 
green circle beside that function turns red.  If the function is reduced to an intermediate 
state (partially operable), the circle turns yellow.  The right side of the form shows the 
probability of successful operation of the selected function for the remainder of the 
mission.  In Figure 4.4, we can see that the probability that C2V-001 will remain operable 
for the remainder of the mission is 0.74.  Should C2V-001 lose operability, the most 
likely causes are shown in the Pareto chart.   

Figure 4.5 shows the same output screen where NLOS-C-010 has become inoperable.  
The results on the right side of the form are for the C2 function of the NLOS-C-010.   

 

Figure 4.5 Loss of Operability for NLOS-C-010 

The next form (Figure 4.6) shows the states of elements of a selected system.  On the left 
side of the form is a list of all the systems in the simulation.  The right side shows 
elements of the selected system.  We can see that NLOS-C-010 has been selected.  The 
grid on the right of the form shows that the alternator has failed (column 2) which has led 
to the loss of mobility and operability of the system.  The time the element has spent in 
its current state is shown in the third column and the fourth column shows the length of 
time the element is expected to spend in that state.  In the case of the alternator, we don�t 
know how long it will remain failed because the failure cannot be repaired until the 
replenishment interval which has not been reached by the simulation. 
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The bottom right of the form shows consumables in use by the system.  We can see that 
NLOS-C-010 had over 49 gallons of fuel left when the failure occurred.  The projected 
time remaining is infinite since the system has failed and is not using fuel. 

 

Figure 4.6 Elements of NLOS-C-010 

The last of the real-time output forms is shown in Figure 4.7.  In this case, the form 
shows instantaneous availability of the different platform types.  The instantaneous 
availability is defined as the fraction of the systems of a particular type that are operating 
or operable at the time.  The left side of the form lists the different system types plus a 
category called All at the top of the list.  When All is selected, the grid on the right of the 
form shows the total number of systems of each type, the number operating or operable, 
the number inoperable, and the fraction of systems of that type that are operating or 
operable.  When a particular type of system is selected in the list on the left of the form, 
the grid on the right side shows the number of systems for which each function is 
operable (green), partially operable (yellow) or inoperable (red) (Figure 4.8).  It also 
shows the fraction of systems of the given type that are operable (green or yellow). 
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Figure 4.7 Instantaneous Availability by System Type 

 

Figure 4.8 Instantaneous Function Availability for RSVs 
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The remaining figures in this section show statistical results obtained from running the 
simulation through several replications; in this case 25 replications were used.   Figure 
4.9 shows MTBF by system type.  The three values in parenthesis represent the 5th 
percentile, mean, and 95th percentile.  For example, for the 32 UAVs in the simulation, 
the mean MTBF was 14.9 hours with the 5th and 95th percentiles being 12.81 and 16.54 
hours.  Results for the NLOS-C show that the 5th percentile is >144.  This means that the 
results, when sorted by simulation, show that at the 5th percentile no NLOS-C failed 
during the entire 144 hours it was expected to operate.  The simple average option for the 
MTBF calculation finds the average MTBF for each system under a node then finds the 
average of those averages as the mean value for the node.  If the global average option is 
selected, the mean MTBF for a node is determined by finding the total operating hours 
for all systems under a node and dividing by the total number of failures for all systems 
under the node. 

 

Figure 4.9 MTBF by System Type 
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Figure 4.10 Availability by System Type 

Figure 4.10 shows availability by system type.  The values in parenthesis represent the 
5th, mean, and 95th percentiles for availability for all systems under the node.  Similar 
results can be found for mission capable rate (MC rate).  The difference in the availability 
and MC Rate calculation is that availability accounts for operating and downtime hours 
whereas MC Rate includes operating, operable and downtime hours.  

The next tab (Availability Rollup) in the summary results output form provides several 
options for evaluating the probability of mission success.  Figure 4.11 shows a case 
where the success criterion is 70% availability throughout the mission for each system 
type.  Figure 4.11 indicates that the probability of maintaining at least 70% availability is 
1.0 for every system type except the spotter which has a 0.64 probability of maintaining 
at least 70% availability.  Thus the probability that every system type in the battalion will 
maintain at least 70% availability is 0.64.   

Similar calculations can be performed by specifying a minimum MC Rate by node or a 
minimum number of operable systems by node.   
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Figure 4.11 Probability of Mission Success for Availability Requirement 

The Availability vs. Time tab displays the instantaneous availability as a function of time 
for any node in the force structure.  Figure 4.12 shows results for the 16 RSVs.  The four 
columns of results show the time, the 5th percentile, mean, and 95th percentile of 
instantaneous availability.  Results can be copied and pasted into a spreadsheet for further 
analysis or display.   

 

Figure 4.12 Instantaneous Availability versus Time for RSVs 
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The Details tab provides a means for examining detailed results for a system or group of 
systems.  Figure 4.13 shows an example of the available results for the 32 UAVs.  
Results are shown by simulation or run number and include operating, operable, 
inoperable, and downtime hours as well as number of failures (not visible in Figure 4.13).  
Note that inoperable hours represent time when a system�s desired state was operable but 
the system was inoperable.  Downtime hours represent time when a system�s desired state 
was operating but the system was not able to operate.   

The final tab (Sensitivity) has not yet been implemented. 

 

Figure 4.13 Detailed Results for the UAVs 
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4 Conclusions 
A state modeling approach has been developed and implemented into both static (SyOp) 
and time-simulation (SMO Simulation) analysis capabilities.  State modeling as 
developed in this LDRD has several benefits: 

• A state model is quite flexible in the level of modeling detail.  The approach 
readily adapts to high-level, overview models or to very detailed models that 
analyze systems in depth. 

• A state model can have multiple goal states which means that multiple 
performance measures can be analyzed using a single model. 

• A state model can have different sets of initial states.  Typically results are desired 
for the case when every system is initially in its fully operational state.  On the 
other hand if some systems are inoperable or are partially operable, the user can 
define the initial states that way.   

• Goal states are not restricted to inoperable states.  The state model can contain 
partially operable conditions.   

• A state model can contain multiple systems.   

• It is easy to incorporate dependencies between systems in a state model.  

• External elements such as bad weather, rough terrain, or turbulence can be readily 
incorporated into a state model.          

The time simulation capability, incorporating state model objects, has been used for 
detailed simulation of hundreds of interacting systems.  This capability represents a 
significant accomplishment toward providing an ability to evaluate systems of systems.  
This ability did not exist at the beginning of the program and, as far as is known, does not 
currently exist elsewhere 

As indication of the success of this LDRD, the U.S. Army, based on initial LDRD 
accomplishments, funded a large program with Sandia for SoS evaluation of the Future 
Combat Systems program, with $1.4M in FY04 non-LDRD funding.  Funding for FY05-
FY06 is projected to be $2.6M per year.  Further, the SoS evaluation methodology has 
been defined as core to the Program Manager, UA Logistics Integration Directorate 
logistics assessment needs and the Army Evaluation Center�s approach to developing test 
plans based on SoS performance evaluation.  For application to the FCS, a 
comprehensive SoS logistics treatment approach was conceived and designed under this 
LDRD.  The actual implementation in the SoS simulation was accomplished under the 
program with the U.S. Army. 

Some of the specific accomplishments of this LDRD are: 

1. A state model object has been designed, developed, and demonstrated to serve as 
the basis for representing individual systems in a SoS simulation. 
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2. A new state modeling capability has been developed that can analyze multiple 
measures of effectiveness for individual systems or SoS.  This capability was 
implemented in software with an innovative, new interface. 

3. An approach has been developed for handling and analyzing the large scale 
redundancy present in many SoS problems. 

4. Techniques for handling potential sources of �singularities and nonlinearities� 
have been researched.  These �singularities and nonlinearities� are phenomena 
that can cause a system-of-systems to exhibit behaviors that are substantially 
different from what might be expected by analyzing individual systems. 

5. Several large-scale FCS UA supportability assessments have been performed. 

6. A full supply network has been added to the SoS simulation for comprehensive, 
flexible treatment of spare parts, consumables, and constrained maintenance 
resources. 

7. A beta version of the State Modeling Interface (SMI) is currently being tested. 
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Appendices  

Appendix A: State Model Input 
State models are created and edited using the State Model Interface (SMI).  This 
appendix describes the steps required by the SMI to create and execute state models.  
State models in the SMS are comprised of the state hierarchy and transitions (section 3.1) 
and functions and other supporting information.  The user provides the latter using the 
New Model Wizard and the former using the Editor Screen.  

When creating a new state model the SMI automatically runs the New Model Wizard, so 
it is discussed first (section A.1).  After all steps have been completed, the Editor Screen 
(section A.2) appears so that the state hierarchy can be drawn.  It is good practice to 
completely define the state hierarchy before entering transitions.  The Editor Overlays 
(section A.3) can be of assistance to the user during the state model building process.  
Section A.4 describes how to run a model. 

A.1. New Model Wizard 
Creating a new State Model is simplified by using the New Model Wizard.  To start the 
wizard, select New from the File menu.  The wizard will display 7 pages which prompt 
for information necessary to create the model. 

Except for the introductory page and the finish page, the pages are there to enable you to 
provide input for the functions and other supporting information.  All of this input can be 
later changed as necessary.  To do so, select the Model Properties item from the File 
menu.  From there the RunTime tab gives access the Model Options Page (section A.1.2), 
the Model tab gives access to the Data Libraries Page (section A.1.3), and the Functions 
tab gives access to the Functions Page (section A.1.4).  The performance measures 
(section A.1.5) can be edited from the Functions tab also.    

A.1.1 Wizard Introduction Page 
The introduction page (Figure A.1) serves as a welcome and a preview of the upcoming 
pages.  The upcoming pages are listed in this appendix in the order presented by the 
wizard.  They are previewed on the left hand side of Figure A.1.  Select Next to proceed 
to the Model Options page. 
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Figure A.1 New Model Wizard Introduction Page 

A.1.2 Model Options Page 
The Model Options Page has two radio buttons and 5 edit boxes, as shown in Figure A.2.  
This page can be reached for editing an existing model by selecting Model Properties 
from the File menu and selecting the RunTime tab. 

 

Figure A.2 New Model Wizard Model Options Page 
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One radio button must be selected.  Select Repairable if the frequency of reaching a goal 
state function is of interest.  If the probability of reaching the goal state function is of 
primary interest, select the Non-Repairable button. 

Data entry for two of the edit boxes is specific to the radio buttons, as described next.  
After entering all information, click Next to proceed to the Data Libraries page. 

• Repairable: Select whether the model is Repairable or Non-Repairable. 

• Run Title: The run title is used to label outputs.  The title should be short and 
descriptive. 

• Number of Trials: The SMS uses statistical sampling and repeated trials to 
characterize the uncertainty in analysis results.  Enter the number of trials here.  
The number should typically be between 200 and 500. 

• Mission Time: The mission time is only needed for a non-repairable analysis.  It is 
the time (hours) over which you want to determine the probability that the 
modeled system will reach one or more of its goal states.  

• Utilization: Utilization is only needed for a repairable analysis.  Utilization is the 
fraction of time that the system is expected to be in its operating state.  For 
example, if a system operates 8 hours a day for 7 days a week, its utilization 
would be 0.33. 

• Seed: � The random seed is used to initialize the random-number generator before 
statistical sampling is done.  For a particular model, use the same seed and same 
number of trials if you want to duplicate a previous run.   

A.1.3 Data Libraries Page 
The Data Libraries page is used to attach one or more Data Libraries to the model (Figure 
A.3).  Select Add Data Library to attach a Data Library.  Select Remove Data Library to 
remove the currently selected Data Library.  This page can be reached for editing an 
existing model by selecting Model Properties from the File menu and selecting the Model 
tab. 

As described in section 2.1, the SMS develops a failure expression that describes the 
combinations of events that must occur in order for the state model to transition from the 
initial states to the goal state.  To quantify this expression for obtaining useful metrics for 
the goal state, each event must have numerical properties.  The events and their properties 
are maintained in a SyOp data library.  Here you are providing the name of that data 
library.   

It is anticipated that some models must utilize more than one data library in order to 
provide all pertinent events.  At this point however, only one data library can be used.  
After attaching the data library, select Next to proceed to the Functions page. 
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Figure A.3 New Model Wizard Data Libraries Page 

A.1.4 Functions Page 
The Functions Page (Figure A.4) is used to define names and symbols for functions that 
are important for the state model.  Each function will also have a Performance Measure 
Page (section A.1.5, below) where additional information is required.  On the Functions 
Page each function will be named and have a symbol and color associated with it.  To 
delete a function, either type over the Function name to reuse the row or highlight the 
row and select Delete Function to remove the row.  This page can be reached for editing 
an existing model by selecting Model Properties from the File menu and selecting the 
Functions tab. 

Suppose your state model hierarchy describes the condition of a military system.  
Candidate functions can describe the lethality, the mobility, and the operability of the 
system, for example.  Lethality need not necessarily be modeled as fully operable versus 
fully inoperable.  A partially operable function could also be defined; for example, one of 
its two weapons may be down.  Enter the functions here that you intend to model and 
examine.  

Other features of this form include: 

• Populate works in conjunction to the drop down list to its left.  As the user builds 
models, previously defined functions will be collected into the drop down list.  If 
a previously used function is the same, or is very nearly the same, as a new 
function to be specified here, the user can select it from the drop down list and 
click the Populate button.  The previous function will be added as a new function. 
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• Delete Function deletes the highlighted function from the list. 

• Default works in lieu of having a collection of previously defined functions.  
Default functions are available from the SMI using this button.  

During the input of the state model hierarchy whenever you declare a state as a goal state 
(section A.2.5, below), you must associate that state with a predefined function.  The SMI 
will display the list of candidate functions according to the information you enter here.  
When you execute the state model (section A.4, below), the SMS generates results for 
those functions that have assigned goal states.    

The symbols entered here are a convenience.  They will be used to identify which states 
are relevant to the function (in addition to the goal state).  More specifically, each state 
that must be passed through to transition from the initial states to the goal state associated 
with this function will contain the symbol defined for the function. 

 

Figure A.4 New Model Wizard Functions Page 

A.1.5 Performance Measures Page 
The Performance Measures Pages are used to define a set of Performance Measures for 
each Function.  So this page will be repeated for each function defined in section A.1.4.  
If you are editing performance measures for an existing model, they are reachable by 
selecting Model Properties from the File menu, selecting the Functions tab, and then 
clicking in the Performance Measure column.   

The Performance Measures shown in Figure A.5 are relevant to a Repairable model 
(section A.1.2).  If the state model was to be analyzed as a non-repairable model, there 
would be three rows, one each for reliability, unreliability, and cost. 
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The Performance Measures column is hard-wired.  These are the performance metrics 
that are evaluated by SyOp.  It is at this point where the user can tailor these metrics to 
the functions within the state model that are to be evaluated.  The SyOp Results Viewer 
uses the text entered here.  Uses for each column include: 

• Performance Measure: These are the performance metrics that are evaluated by 
SyOp. 

• Caption: This text will appear on menu items.  Enter brief yet meaningful text for 
the performance measure for the relevant function. 

• Label: This text will appear on the graphical and tabular displays.  Brevity is not 
as important here, but be aware that this will be the default plot title. 

• Units: Supply the units for the metric.  The text is used for labeling columns and 
axes.  

 

Figure A.5 New Model Wizard Performance Measures Page 

For a repairable model the calculations assume that when an event occurs a component 
fails and that component can be repaired or replaced to be like new.  The MTBF is the 
mean time between failures and the downtime is the time required to acquire replacement 
parts and to make the repair.  For a nonrepairable model, there is a mission time on which 
the metrics depend.  If an event occurs before the end of the mission time there is no 
repair.    

Each performance measure is tailored to a function, which is associated with a goal state.  
The descriptions that follow may be helpful in naming the captions and labels. 
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• MTBF: The mean time between reaching the goal state.   

• Downtime: The mean time spent in the goal state (or beyond).   

• Availability: The approximate fraction of time not spent in the goal state. 

• Cost (repairable): The cost incurred when the goal state is reached. 

• Reliability: The probability of not reaching the goal state. 

• Unreliability: The probability of reaching the goal state (or beyond). 

• Cost (nonrepairable): The cost of reaching the goal state during the mission. 

The parenthetical �(or beyond)� in the descriptions is relevant only if the goal state does 
not represent inoperability.  If the goal state is for some intermediate level of partial 
functionality, then the �or beyond� includes the time spent when or probability of, exiting 
the goal state.  An illustration of this is given for the example problem (section 2.4). 

After entering all performance measure information for a function, click Next to proceed 
to the next function.  After all functions are addressed, click Next to proceed to the 
External Elements page.   

A.1.6 External Elements Page 
The External Elements page is used to define the external elements that are relevant to 
the state model.  Two examples are shown in Figure A.6.  These elements can be 
included in guard expressions along with state names.  For a given model execution each 
of these must be assigned a value, true or false.  Currently if an external element is 
defined on this page and then used in a guard expression, the element is assumed to be 
true (occur).  In the future there will be a second column on this page where Boolean 
values can be assigned to the element.  After entering the desired External Elements, 
select Next to proceed to the Finish page. 

A.1.7 Finish Page 
Select Finish on this page (Figure A.7) to exit the New Model Wizard and proceed to the 
Editor Screen.  It would be a good time to save your model input thus far. 
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Figure A.6 New Model Wizard External Elements Page 

 

Figure A.7 New Model Wizard Finish Page 
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A.2 SMI Editor Screen 
After completing the New Model Wizard, the SMI automatically displays the Editor 
Screen.  The Editor Screen also appears each time an existing SMS file is opened.  The 
menus and horizontal tool bar shown in Figure A.8 are present to perform standard 
operations.  Only the Build menu is specialized for the SMI and therefore discussed in 
this document (section A.4).  The nonstandard features of the initial Editor Screen are the 
vertical toolbar on the left, the Root state, the Legend, and the Map. 

 

Figure A.8 SMI Editor Screen 

The vertical toolbar provides several shortcuts that can be used while editing a state 
model.  The meaning of each symbol is summarized in Table A.1.  More detail can be 
found in the task descriptions throughout section A.2.  Note that the number of function 
symbols shown on the toolbar is governed by the number of functions defined (section 
A.1.4).   

Every state model hierarchy is anchored to a root state.  The root state is the ultimate 
parent for every state in the model.  The SMI provides this state as a starting point.  It can 
be renamed but not deleted.   
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Table A.1 Description of Vertical Toolbar Symbols 

Symbol Meaning 

 
Add a child state to the state that currently has focus 

 
Add a transition that will emanate from the state that currently has focus 

 
Change the decomposition for the state that currently has focus from OR to AND or vice 

versa  

 
Show states that are causing the state model to be unrunnable 

 
Show symbols for functions in all states for all functions 

 

Show/don�t show symbols for functions in all states for the selected function  

 

Add the selected symbol to the state that currently has focus 

The Legend and the Map are discussed in section A.3.  Briefly, the Legend shows the 
functions and their symbols.  The Map shows a shrunken picture of the state hierarchy. 

The Editor Screen also displays error conditions for your state model.  The SMI attempts 
to determine whether your model is runnable or not on a real time basis.  If there is an 
obvious input error or missing input, either a red Error flag is shown at the bottom of the 
window or a yellow Warning flag.  To find the offending states use the finger pointer 
icon on the vertical toolbar (Table A.1).  Following the completion of the New Model 
Wizard there is always an error.  The reason is that there are no user-defined states in the 
model. 

The remainder of this section discusses how to perform the basic tasks of state model 
construction.  The recommended approach is to generally follow the three steps below.  
In practice however, steps 2 and 3 are interchangeable.  

1. Build the state hierarchy.  Add child states and declare the decomposition of the 
parent states. 

2. Define initial states and goal states.  Associate goal states with functions.  

3. Define the transitions.  Each must have a source state, at least one destination 
state, and either a guard or a trigger. 

A.2.1 Adding New States 
To add child states to a state, highlight the state by left clicking one time with the mouse 
and selecting Add State icon from the Toolbar on the left side of the screen.  
Alternatively, right click for the popup menu (Figure A.9) and select Add.  The new state 
will be displayed on both the Editor screen as well as the Map overlay.   

In Figure A.10 we have added four states.  When a state is first added, it is displayed as a 
leaf state (light green).  When children are added to a state, its color changes to that of a 
parent state (light blue) and its decomposition is displayed by the union symbol to the 
right of the state.  To change the decomposition to AND, see section A.2.3, below.  
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Figure A.9 Popup Menu for States 

 

Figure A.10 SMI Editor Screen with New States 

A.2.2 Renaming States 
As shown on Figure A.10 the SMI initially numbers each new state, thereby assigning a 
unique default name to the state.  To change a state name to a more meaningful name 
double click on the state using the left mouse button and enter the new name in the text 
box.   Another method to change the name of a state is to right click the state, select 
Properties from the popup menu (Figure A.9), and enter the new name on the properties 
form.  Example properties forms are shown in Figure A.11 below. 

The SMS requires that all states have unique names.  It is typical that a state model will 
have several states that represent inoperable states.  It is prudent to prepend a system 
name, a function name, or an event name to the word Inoperable for such states.  In that 
way UAV Inoperable is readily distinguished from NLOS Alternator Inoperable during 
model building and the state names will be unique.  

A.2.3 Changing Parent State Decomposition   
When children are added to a state, its color changes to that of a parent state (light blue) 
and its decomposition is displayed.  The decomposition is defaulted to OR.  Change the 
decomposition as necessary using the OR/AND icon (Table A.1) or the popup menu 
(Figure A.9). 
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A.2.4 Deleting States 
To delete a state, right click the state and select Delete from the popup menu (Figure 
A.9).  If the state is the source of a transition, the transition will be deleted as well.  If the 
state is the destination of a transition with multiple destinations the state will be removed 
from the transition.  If the state is the destination of a transition with a single destination, 
the transition will be deleted. 

A.2.5 Setting Initial and Goal States 
As described in section 2.3 the SMS traces all paths (sequences of states and transitions) 
from the initial states to the goal state and then finds a Boolean expression to describe the 
event occurrences along those paths.  Setting initial states is defining the state model 
initial condition for the beginning of the analysis.  Setting goal states defines the 
termination of the path finding analysis.  The SMS finds a separate Boolean expression 
for each goal state/function pair. 

To identify a state as being an Initial or Goal state, right click the state and select 
Properties from the popup menu (Figure A.9).  On the property page (Figure A.11), select 
Initial State to identify this state as an initial state.  Select Goal State and select a function 
from the Goal State combo box to identify this state as a goal state.  After exiting the 
state properties page, the state model for System A is as shown in Figure A.12.  Note the 
appearance of the �I� and �G� to designate the states as initial and goal.   

 

Figure A.11 State Property Pages for an Initial State and a Goal State 
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Figure A.12 exhibits a typical initial state and goal state pair.  The state model begins in 
the initial state, System A Operable, and somehow transitions to the goal state, System A 
Inoperable.  The transition can occur according to the terms you define.  Do certain 
events have to occur (trigger) or does the state model have to have reached certain states 
(guard)?  The mechanics of defining transitions and their guards and triggers begins in 
section A.2.6. 

 

Figure A.12 States Shown as Initial States and Goal States 

A.2.6 Adding Transitions, Define Source State 
A transition has four properties, at least three of which must be defined � its source state, 
its destination state(s), and either a guard or a trigger, or both.  You define the source 
state for the transition in the act of creating the transition.  Select the desired source state 
and then select Add Transition from the toolbar on the left side of the editor screen (Table 
A.1).  This automatically pairs the source state to the transition and the Transition Wizard 
appears (Figure A.13) where you define the remaining properties for the transition. 

 

 Figure A.13 Transition Wizard 
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A.2.7 Adding Transitions, Define Destination States 
The Transition tab for the Transition Wizard initially lists all states that have been 
defined in the state model, except the source state for the transition, in the list box on the 
left hand side.  Declare a destination state by highlighting the state name and selecting the 
right arrow.  The state name will be moved to the list on the right hand side.  States may 
be removed from the list box on the right by highlighting the state name and selecting the 
left arrow.   

In Figure A.13 the transition for the virus detector state model is from the VS-Running 
state to the VS-Found state.  If there is a use for a transition having multiple destination 
states, they can all be declared here.  Alternatively, multiple transitions could be defined 
each having a single destination state. 

A.2.8 Adding Transitions, Define Guards and Triggers 
Clicking either the Trigger tab or the Guard tab on Figure A.13 brings up an editor whose 
appearance and mechanics are quite similar for either task.  Figure A.14 shows the form 
as tailored for the guard expression.  On display is the current expression for the guard.  
The names are state names and the plus sign indicates union (or).  So the guard in Figure 
A.14 is true if the state model occupies any of the states listed.  Thus, if the UAV loses its 
communications, electrical, mobility, or sensing functions, the guard expression is true.  
Presumably this guard belongs to a transition from the UAV Operable state to the UAV 
Inoperable state. 

 

Figure A.14 Guard Display Form 

For the initial definition of a transition, the display box will be empty.  To enter an 
expression or to edit an existing guard expression, click the Edit Guard button.  For 
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triggers there is the display of the trigger expression and an Edit Trigger button.  The 
form that appears (for editing guards) is shown in Figure A.15.    

 

Figure A.15 Guard Editor Form 

The guard expression, if there is one, is repeated in the edit box at the top of the form.  To 
help enter or edit the expression the entire list of states in the state model is displayed in 
the bottom list box in alphanumeric order.  To insert a state name at a particular point in 
the expression, first place the cursor at that point in the top box.  Then, double-click the 
desired state name from the bottom box.   

The only other symbols that can appear in a guard expression are the union and 
intersection symbols and the left and right parentheses.  These can be inserted by placing 
the cursor at the desired point in the top box and clicking the symbol shown. 

The difference for editing triggers is that the choices of names for the expression are 
event names.  The SMI lists the failure mode IDs found in the attached data library 
(section A.1.3) in the bottom box. 

A.2.9 Navigating Transitions 
Figure A.16 shows how the SMI displays transitions.  Transition number 3 connects its 
source state UAV Propulsion Operable to its destination state UAV Propulsion 
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Inoperable.  The source state is denoted by a lavender circle and an outward arrow.  The 
destination state is denoted by a peach home plate and an inward arrow. 

 

Figure A.16 Example Transition Display 

The SMS assigns each transition a unique number for identification and bookkeeping 
purposes.  The transition numbers are not editable.  The viewer matches the outward 
transition number with the inward number to know which states are being connected.   

For large models two connected states may not be displayable on the same screen at the 
same time.  If the source state is viewable you can change the Editor Screen to display the 
destination state (and vice versa).  Right click the input or output transition symbol to 
display a popup menu (Figure A.17).  The third and fourth items show that the display 
can be moved to either the source or destination state.  

 

Figure A.17 Popup Menu for Transitions 

A.2.10 Editing Transitions 
To edit an existing transition, right click the transition and select Properties from the 
popup menu (Figure A.17).  The Transition Wizard will be displayed and you will have 
the same options as when creating the transition (Figure A.13). 

A.2.11 Deleting Transitions 
To delete a transition, right click the transition and select Delete from the popup menu 
(Figure A.17).  The editor prompts for confirmation of your intent to delete the transition. 

A.2.12 Adding Function Symbols 
Each state can have one or more function symbols displayed within its border.  In the 
state model fragment shown in Figure A.18 the loss of the 105mm cannon causes the 
NLOS Cannon to lose lethality.  If it loses lethality, it loses operability.  Thus, the states 
for the 105 mm cannon affect those two functions.  The cannon itself relies on other 
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inputs for targeting rather than the reverse.  So the state of the cannon does not affect the 
ability to identify and locate potential targets.  That�s why the symbols for the targeting 
functions do not appear in the cannon states. 

 

Figure A.18 Placing Function Symbols on States 

The user can place the symbols into each contributing state using the appropriate function 
icons on the vertical toolbar (Table A.1).  The legend for the functions can be of 
assistance here, as shown in Figure A.18.  The legend is further described in section A.3.   

It is not always obvious in a complex model whether all states have been correctly 
marked according to the functions to which they contribute.  However, there is an 
automated way to verify the assignments described in section A.4.1, Path Validator. 

A.2.13 Displaying Function Symbols  
It may be useful at times for the analyst to be able to focus in on the states that affect just 
a single function.  The focus symbols for the functions (Table A.1) act as toggle switches.  
Pressing in a switch dims all states that do not contain that symbol.  Releasing the switch 
brightens the appropriate states.  The master switch brightens all states that contain at 
least one symbol.   

A.3 Overlays 
There are two overlays that initially float over the Editor Screen.  They provide additional 
information for state model construction.  The Map overlay presents a bird�s eye view of 
the model and allows the user to move their point of reference by moving the overlay�s 
scrollbars.  The Map overlay will always show the current portion of the model within a 
viewing window.  Functions and associated symbols are displayed in the Legend overlay.  
Both are shown in Figure A.19. 
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Figure A.19 The Map and Legend Overlays 

From the initial location of the overlays, the user may: 

• Pin the overlay into position by switching the pin button to pinned or unpinned.  
The Map is shown pinned and the Legend is shown unpinned in Figure A.19. 

• Resize the overlay by clicking on at the bottom right corner of the overlay. 

• Close the overlay using the close icon in the upper right. 

• Display the overlay by selecting the overlay to display from the View menu. 

• Return the overlays to their home positions by selecting Home overlay from the 
View menu. 

A.4 The Build Menu 
The two sub-items of the Build menu discussed here are Path Validator and Build Output.  
Each causes the State Model Interpreter to run in order to create the output described in 
the following subsections. 

A.4.1 Path Validator 
The primary function of the State Model Interpreter is to trace paths between the initial 
states and the goal state (section 2.3).  The states that are passed through along these 
paths are the states that affect the function associated with the goal state.  When you 
select Path Validator from the Build menu, these states are identified by the interpreter 
and displayed for the current goal state (Figure A.20).  The current goal state appears in 
the title for the display. 

Feature of this form include: 

• States column shows the states that were determined by the interpreter to be in the 
relevant paths to the goal state, plus any states that had been manually checked by 
the user (section A.2.12) that the interpreter did not detect.  

• Original column has a check mark for each of the states that were assigned to this 
goal state prior to the current run of the Path Validator.  These would include 
those manually checked by the user (section A.2.12) and those found from a 
previous run of the Path Validator.  In Figure A.20 there were no previous 
assignments made for any state so none are checked. 
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• Reflected column shows the states that were determined by the interpreter to be in 
the relevant paths for the goal state.  Each is shown as checked 

• Apply button will make the assignments for the current goal state/function to the 
states checked in the Reflected column. 

 

Figure A.20 Example Reflected States 

A.4.2 Build Output 
To evaluate the state model and generate output files, select Build Output from the Build 
menu.  The SMI will prompt for an output file name, generate multiple output files, and 
run the SyOp ResultsViewer with pre-loaded model output files. 

Because the SMS has been integrated into SyOp, it must follow SyOp�s file handling and 
naming conventions.  The file name requested by the SMI is called a fault tree group file 
in SyOp and has an FTG extension.  This is the only file name that the user must provide. 

Each file within a fault tree group must have an RFT extension.  The SMS creates these 
files, one for each goal state/function pair.  The root names of the RFT files are formed 



  

90 

by appending the goal state name to the name you provide for the FTG file.  Each RFT 
file will contain the name of the associated data library (section A.1.3).   

Finally, the results of the run are placed into files with an MOD extension.  These are 
paired with RFT files so they have the same root name as the RFT file.  So SyOp/SMS 
creates two files for each goal state, one with an RFT extension and one with an MOD 
extension.   

The SyOp documentation provides complete definitions of the outputs available from the 
Results Viewer.  The sample problem in section 2.4 shows some examples.   
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Appendix B: Input Description for SMO Simulation 
The amount of input required by the SyOp Simulation software (SMO Simulation) varies 
by problem size but in general it can be quite large.  A system-of-systems simulation may 
have multiple system types (platform types) and multiple instances of each type.  
Examples of system types could be NLOS cannons, RSVs, C2Vs, etc.  If the simulation 
involves 10 NLOS cannons, then there are 10 instances of the NLOS cannon system type.   

The input for a single instance of a system can be quite lengthy.  Fortunately for most 
problems much of the input for one instance of a system is identical to that of every other 
instance of the same system type.  So, considerable time can be saved if you enter the 
input for one instance and then duplicate it.  That is, define the input for one NLOS 
cannon and then tell SMO Simulation to make 9 copies. 

This alpha version of SMO Simulation has been developed quickly to meet an evolving 
need � the analysis of complex SoS with dependencies across systems.  As a result, the 
organization of the input is certainly not optimal.  Furthermore, many of the features 
described here have not been fully tested.  While the user interface is serviceable, no 
claim is made as to its robustness.  The user should expect to encounter some input 
problems and inconsistencies.  We expect to redesign the user interface over the coming 
months to make it easier to use.  Until then, the user is cautioned to be patient and 
careful.  

The items under SMO Simulation�s Edit menu are shown in Figure B.1. Selecting an item 
brings up an associated editing form.  Each of these forms is displayed and discussed in 
the subsections of this section. 

 

Figure B.1 Items under the Edit Menu 

B.1. Simulation Parameters Input 
The form for defining simulation parameters is shown in Figure B.2.  Each input 
parameter is described below. 
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Figure B.2 Simulation Input 

• Simulation Duration is the mission time in hours. 

• Simulation Time Step is the size of time step SMO Simulation will take for 
simulation in hours. 

• Seconds per Time Step is the amount of clock time between updates of the display 
that shows progress for the simulation. This input can be used to slow down the 
simulation when you want to watch real-time results. 

• Number of Simulations is the number of times SMO Simulation repeats the 
simulation. 

• Random Seed is used to initialize the random number generator.  

• Simulation X Dimension is maximum distance any system can move in the x-
direction, in kilometers.   

• Simulation Y Dimension is maximum distance any system can move in the y-
direction, in kilometers.   

• Randomize Initial Age should be checked if you want SMO Simulation to 
randomly assign initial ages to each primary element.  These initial ages will 
change from simulation to simulation.  This feature is not yet fully implemented 
into SMO Simulation. 

B.2. Systems Input 
The form for defining systems has three tabs.  They are described in sequence in the 
following subsections.  Special buttons on each tab and any supporting forms are also 
described.  If the simulation will include external elements (Section B.8.1) or 
consumables (Section B.6.2), you should input that data before entering systems 
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information.  Then, information on external elements and consumables will be available 
as you create the individual systems of the simulation. 

B.2.1 System Properties 
Figure B.3 shows the first tab, the System Properties tab. You cannot navigate the tabs in 
this form by clicking the tab labels at the top of the form.  Instead, you must use the 
indicated buttons to move from tab to tab.  In this case the Edit Elements button takes you 
to the Primary Elements tab, for example. 

 

Figure B.3 Edit System Properties Tab 

• The List of Systems is initially blank for a new setup.  Use the Add button to enter 
a new system ID, which brings up another form (Figure B.4).   

If you plan to simulate multiple systems of one or more system types, you should 
enter one instance of each system type first.  After completing all input for the 
system (all 3 tabs here and the Functions for the system, section B.3), you can 
return here and duplicate the system as many times as desired using the Copy 
button.  At that point SMO Simulation will assign a unique identifier to each copy.  
If you do plan to have multiple copies of a given system type, you should enter the 
name for the first one as Name-001.  Subsequent copies of the system will then 
automatically be given names as Name-002, Name-003, etc.  For example, if your 
first instance of a system type has a sequence number appended such as C2V-001, 
copies will continue the sequence as C2V-002, C2V-003, etc.  So if you want to 
create additional copies of a system, select the highest number in the current 
sequence to be copied.   
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Figure B.4 Form to Add a New System 

The remaining input for the system properties applies to the system selected in the 
list of systems.  SMO Simulation repeats the appropriate system identifier in the 
grayed-out System ID field.  As will be seen below, SMO Simulation shows the list 
of systems on the left for each subsequent tab, with the selected system highlighted. 

• System Type is the type assigned to the system.  For example, C2V-001, C2V-
002, etc. might all be of type C2V. 

• System Group This string identifies the group to which a system belongs.  This 
input is not currently used. 

• Supply Category indicates whether the system carries consumables to resupply 
other systems (not to be confused with carrying spares).  Currently there are only 
two choices: Supply Vehicle or Other.   

• Utilization is the fraction of time during the mission that the system is supposed to 
be operating.  It is used to partition system up time between operating time and 
operable time, which is important for availability calculations. A more direct way 
to determine the operational time for a system is by defining detailed scenarios 
that specify when a system is expected to operate (see Section B.5). 

• Initial X, Initial Y, and Initial Z are the initial position of the system in the x, y, 
and z-directions, in kilometers.  These coordinates act in conjunction with the 
Simulation X Dimension and Y Dimension (section B.1) to locate the system in 
the plane.  The system moves from this position forward according to its assigned 
speed.  Since the focus of the simulation is on the time behavior of systems rather 
than their location, this input may become obsolete.  

• Randomize Initial Positions should be clicked if you want SMO Simulation to 
assign initial positions to the system.  The form shown in Figure B.5 appears 
where you give ranges for the x, y, and z positions.  SMO Simulation will select 
coordinates at random within those ranges for the system.  Note that if you 
duplicate this system, each new instance will be subject to these ranges but will 
have different randomly generated coordinates.  Because positioning of a system 
may not be supported in future versions of SMO Simulation, this property may 
become obsolete. 
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Figure B.5 Form for Initial Position Ranges 

• Element Uncertainty button is present to be used in the following special case.  As 
you will see, the button should be used only after you have entered the elements 
on the Primary Elements tab and have made all required copies of the system 
type. 

Suppose we can model the time-to-fail distribution for the transmission for a C2V 
with an exponential distribution, which has a constant failure rate.  Further, we 
know a range for this failure rate.  Specifically from historical records, the failure 
rate is somewhere between R1 and R2 and as is equally likely to be anywhere in 
that range.  Because we are including the transmission as a primary element for the 
C2V, we want to use this information in SMO Simulation.  Suppose there are 7 
C2Vs in the mission.  To represent our knowledge, sample 7 failure rates from the 
distribution of failure rates.  In this case the distribution is a uniform distribution on 
the range [R1, R2].  We then want to use these sampled values as our estimates of 
the constant failure rate for the 7 transmissions.  This means that we need to assign 
the sampled values to the required parameter (failure rate) for the exponential 
distribution for the 7 transmissions found on the 7 C2Vs.  When you click the 
Element Uncertainty button (Figure B.3), the form shown on Figure B.6 appears to 
help facilitate the assigning of the sampled values.  A couple of cautions are useful 
here.  When the number of systems of a given type is small, as in the above 
example, you might want to use median stratified sampling to select the values to 
represent uncertainty in the time-to-failure parameter. For median stratified 
sampling, first divide the distribution into N (7 in the above example) intervals of 
equal probability or area.  Then select the median value from the interval to 
represent that interval.  This approach ensures that a small sample is still spread 
over the distribution which might not be the case for a small, random sample.  The 
second caution is to ensure that the sampled values are randomly mixed before use 
so that you do not inadvertently place all high or low reliability systems in a 
particularly grouping.  

The properties of the Element Uncertainty form include:  

• List of Elements shows all of the elements pertinent to the system type.  In our 
example the desired element is the Transmission.   
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• Failure Rate column is to contain the sampled values for the failure rate.  Note 
that as a preliminary step you must ensure that each transmission element for the 
C2Vs has an exponential time-to-fail distribution.  Otherwise, the headings for the 
grid on the right would be the parameters for a different distribution.  SMO 
Simulation recognized that there are 7 C2Vs each with one transmission, so it 
placed 7 rows in the grid.  Enter the sampled failure rates in the 7 rows.  
Currently, you must do the sampling outside SMO Simulation and enter the 
sampled values by hand.  Future versions of SMO Simulation may automate this 
process. 

• Paste button will paste values in the selected column of the grid if you have 
copied an appropriate number of values from a source such as a spreadsheet.  The 
values in the grid are assigned to the appropriate time-to-failure parameter values 
when you click the Done button. 

 

Figure B.6 Form for Element Uncertainty 

B.2.2  Primary Elements 
Figure B.7 shows the Primary Elements tab.  The information on this tab is specific to the 
highlighted system on the System Properties tab (Figure B.3).  It is reached by clicking 
the Edit Elements button on that tab. 
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Figure B.7 Edit Primary Elements Tab 

• The List of Systems includes all systems defined on the first tab and the selected 
system will be highlighted here.  All editing changes you make will be applied to 
the selected system.  If you need to edit a different system, use the Save or Cancel 
buttons, as appropriate, to return to the System Properties tab to highlight the new 
system. 

• Element ID is a unique identifier for the element.   

• Initial Age is the age in hours of the element at the start of the mission.  The initial 
age for the SATCOM Radio 1 of C2V-001 most likely differs from the initial age 
for the SATCOM Radio 1 of C2V-002.  So after making all copies of C2V, 
theoretically you would have to return here to enter the initial ages for each 
element of each instance of the system.  Practically however, this information is 
probably not known.  If you are using an exponential time-to-failure distribution, 
the initial age does not matter so it can be left at the default value of 0.  However, 
if you are using a wearout or Weibull distribution, the initial age of the elements 
can be very important.  If you do not know the initial age, you may want to use 
the option to randomize the initial age.  Clicking the Randomize Age button 
displays the form below (Figure B.8). Selecting the Default Option will 
randomize initial element ages of elements between 0 and their median (50th 
percentile) age based on the time-to-failure distribution for the element.  
Otherwise, you can specify a range as shown in Figure B.8 and the initial ages of 
all the elements will be randomly initialized within the specified range.  If the 
Apply to All Systems of Same Type option is selected, all systems of the same 
system type will assign like elements the same initial age. 
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Figure B.8 Randomize Initial Element Ages 

• The Repair When Columns are used to indicate the system states during which the 
repair of the elements can be accomplished.  Suppose a C2V has two computers 
either of which can fully support the C2V.  If one goes down the C2V has not lost 
any functionality.  The question here is, can the failed computer be replaced while 
the C2V is operating, while the C2V is operable (but not operating), or when the 
C2V is inoperable.  Check as many boxes as apply.  

• The Age When Columns are used to indicate the system states during which the 
elements age.  Most elements will probably only age while the system is 
operating.  But it is possible for tires to deflate or seals to dry out when the system 
is idle (operable or inoperable).  Check as many boxes as apply.    

• The Repair At Columns (not visible on Figure B.7) are used to indicate the system 
locations at which the repair of the elements can be accomplished (field, repair 
facility, other).  If a system is in the field but its required repair cannot be done in 
the field, the repair has to wait until the system reaches a repair facility.  This 
usually requires that the system must reach a new segment in its scenario.  Check 
as many boxes as apply.  Future versions will probably generalize and expand the 
possible locations.    

• Spare ID is used to identify the spare part required to make the repair (Figure 
B.9). All available spares are listed during spares input (section B.6). 

• Required Service identifies a service that is required to return the element to its 
useful state when it fails. See section _ for maintenance services input. 

• Time to Fail Distribution describes the failure probability versus time for the 
element.  The cumulative probability at time t is the probability that the element 
failed at some time prior to time t.  There are currently three distributions to 
choose from: wearout, Weibull, and exponential. 

The wearout distribution can account for all three phases of an element�s lifetime: 
burn-in, random failures, and wear out.  The SMO Simulation version of this 
distribution requires 5 parameters.  The first two parameters assume that the end-
of-life portion of the time-to-fail distribution can be described by a normal 
distribution.   

! The mean time to wear out (hours) 
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! The standard deviation for the wearout phase (hours) 

! The fraction of failures that occur during the random failure phase 

! The fraction of failures that occur during the burn-in phase 

! The duration of the burn-in phase (hours) 

The Weibull distribution can account for one of the three phases of an element�s 
lifetime: burn-in, random failures, and wear out.  The SMO Simulation version of 
this distribution requires 3 parameters.   

! The shape parameter 

! The scale parameter (hours) 

! The location parameter (hours) 

The exponential distribution models the constant failure rate assumption.  The 
distribution requires 1 parameter, the failure rate (hours-1).   

• Time to Repair Distribution describes the time to repair the element.  There are 
currently five distributions to choose from: uniform, triangular, normal, 
lognormal, and fixed.  In addition to repair time, there are several simple delay 
time distributions required by the input.  At each instance you will be referred 
back to here for distribution definitions.  Simply replace the word �repair� below 
with the appropriate time category. 

The uniform distribution requires 2 parameters.   

! The minimum repair time (hours) 

! The maximum repair time (hours) 

The triangular distribution requires 3 parameters.   

! The minimum repair time (hours) 

! The best estimate repair time (hours) 

! The maximum repair time (hours) 

The normal distribution requires 2 parameters.   

! The mean repair time (hours) 

! The standard deviation for the repair time (hours) 

The lognormal distribution requires 2 parameters.   
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! The mean repair time (hours) 

! The standard deviation for the repair time (hours) 

The fixed distribution assumes the repair time is known and hence requires only 
one parameter, the repair time (hours).   

 

Figure B.9 Edit Primary Elements Tab 

B.2.3. Other Elements 
Figure B.10 shows the Other Elements tab.  It is reached by clicking the Other 
Elements button on the Primary Elements tab (Figures B.8 and B.9).  The consumables 
(section B.6.2) and external elements (section B.8.1) are eligible entries here.   

All External Elements are listed on the lower half of the window and the input for an 
external element is simple - simply select the ones that affect the system.  If you select an 
external element for the system, the element is available to affect a function of the system 
(section B.3).   

We describe the properties for consumables on the upper half of the window.  

• Name is one of the names you specified for consumables in section B.6.2.  Click 
on a cell under the Name column and SMO Simulation gives you a drop-down list 
to select a name. 
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Figure B.10 Edit Other Elements Tab 

• Capacity is the amount of the consumable that the system can hold.  The units 
here must be those declared for the consumable (section B.6.2).   

• Request Quantity is the amount of the consumable remaining for the system that 
is sufficiently low to trigger a request for replenishment.  The units here must be 
those declared for the consumable (section B.6.2). 

• Use When Columns are used to indicate the system states during which the 
consumable is used by the system.  Check as many boxes as apply.  

• Usage Rate is the rate at which the system uses the consumable, when it is being 
used.  The numerator for the rate must be in the units declared for the consumable 
(section B.6.2) and the denominator is in hours. 

• Generation Rate is the rate at which the system generates the consumable, when it 
is being generated.  The numerator for the rate must be in the units declared for 
the consumable (section B.6.2) and the denominator is in hours.  It is possible that 
some future combat systems will generate water, for example.   

• The Generate When Columns are used to indicate the system states during which 
the consumable is generated by the system.  Check as many boxes as apply.    

B.3. Functions 
The form for defining functions has three tabs.  They are described in sequence in the 
subsections.  It saves input time if you have only one instance of a system defined at this 
point.  That way when you duplicate the system to the required number of instances, all 
of this input is also duplicated (section B.2.1).    
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B.3.1. General Function Properties 
Figure B.11 shows the first tab, the General tab. 

 

Figure B.11 General Tab for Functions 

• List of Systems contains all systems defined thus far.  All input on this tab applies 
to the highlighted system. 

• List of Functions contains all functions defined thus far for the selected system.  It 
is initially blank.  You add a function by clicking the Add button, which brings up 
the simple form shown in Figure B.12.  Enter the function name.  The highlighted 
function is repeated in the grayed out Function ID box.  All editing applies to this 
function of the highlighted system.  

 

Figure B.12  Form to Add a Function Name 

• Description is a place for you to add any notes about this function. 

• System State if Yellow declares the state of the system if this function is yellow.  A 
function can be green (fully functional), yellow (partially functional), or red (non-
functional).  SMO Simulation assumes that if the function is green, it does not 
reduce the state of its system.  On the other hand, yellow and red functions can 
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reduce it to operable or inoperable.  Select the system state if this function is 
yellow. An approach to using these options has evolved that seems to work well.  
For each system, the recommended approach is to define a function called 
Operability that represents all needed capabilities for the scenario being analyzed.  
Then only the Operability function would cause the system to fail.  Other 
functions can then be added to represent such things as mobility, lethality, etc. but 
these would not necessarily cause the system to fail.   

• System State if Red declares the state of the system if this function is red.  Select 
the system state if this function is red. 

B.3.2 Failure Equation  
Figure B.13 shows the Failure Equation tab.  You access this tab by clicking the Edit 
Failure Equation button on the General tab (Figure B.11).  The currently selected system 
and function are highlighted in the lists on the left side.  The list on the upper right side 
shows all of the elements that were assigned to the system (sections B.2.2 and B.2.3). 

The failure equation is the logical �or� of a set of cut sets.  If every member of a cut set 
occurs (fails) the cut set fails.  The logical �or� implies that if any cut set fails, the 
function fails.  If a cut set contains a single entry, called a simple cut set here, then the 
failure of that entry causes the function to fail.  If a cut set contains N entries, all N have 
to fail to cause the function to fail.   

 

 

Figure B.13 Failure Equation Tab for a System/Function 

• Series or Parallel Elements indicate the cut set to be added is to have one member 
(simple) or multiple members (and).  When you are ready to add a cut set to the 
list, first select the appropriate radio button. 
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• Select Cut set Members is the next step to adding a cut set.  Click on the elements 
to be included in the cut set from the list on the right.  For a simple cut set, select 
one element.  For a multiple cut set select as many elements as desired.  To select 
multiple elements, hold down the Ctrl key while clicking on the elements. 

• Add will add a cut set of selected type consisting of the highlighted elements.  It 
adds the cut set to the first free row in the cut set grid. 

• Delete will remove the cut set currently highlighted in the cut set grid.  Cut sets 
cannot be edited.  So, if you make a mistake while adding a cut set, delete it and 
then add it again. 

B.3.3. Success Equations 
Figure B.14 shows the Success Equations tab.  You can access this tab page by clicking 
the Edit Success Equations button on the Failure Equation tab (Figure B.13).  The 
currently selected system and function are highlighted in the lists on the left side.  The list 
on the right side shows all of the elements that were assigned to the system (sections 
B.2.2 and B.2.3) except those elements that appear in a simple cut set in the failure 
equation.  

Success paths are similar to cut sets in their structure.  To understand how to input them, 
it helps to know how SMO Simulation treats success paths.   

1. Success paths are only examined in a time step if no cut set occurs.  That is, if a 
cut set occurs (fails), the function is red and no further checking is necessary, so 
steps 2 through 5 are skipped. 

2. A success path is true if all its elements are true.  Otherwise the success path is 
false (down).  SMO Simulation counts the number of success paths that are down, 
say D. 

3. If D = 0, then none are down and the function is green 

4. If D = the number of success paths, then all are down.  In that case, the function is 
red. 

5. For any other count, the function is yellow and the state of the function is the first 
success path that is up.   

Note in Figure B.13 we have shown the M240 Machine Gun and M242 Chain Gun in 
parallel.  That means that we have no lethality only if both these weapons fail.  Otherwise 
we have full or partial lethality.  Suppose now that we want to distinguish between 
lethality with the M240 machine gun, the M242 chain gun, or both.  We can do this with 
success equations.   

In Figure B.14 we have defined two very simple success equations; 1) the M240 machine 
gun is operating and 2) the M242 chain gun is operating.  At any time, the SMO 
Simulation will check the failure equation for lethality function of ICV-002.  If the 
lethality function has not failed according to the failure equation, the success equations 
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will be evaluated.  If the M240 Operating success equation evaluates to true while the 
M242 Operating equation evaluates to false, we know that ICV-002 only has the M240 
machine gun operable at that time and its lethality function is at an intermediate state 
between operable and failed.   

 

Figure B.14 Success Equations Tab for a System/Function 

• Name Edit Box is the name given to the success path.  Provide the name as the 
first step in adding a success path. This is used to identify the actual level of 
functionality if a function state is yellow. 

• Select Success Path Members is the next step to adding a success path.  Click on 
the elements to be included in the success path from the list on the right.  For a 
success path with multiple elements, hold down the Ctrl key while clicking on the 
elements. 

• Add will add a success path at the first free row in the success path grid. 

• Delete will remove the success path currently highlighted in the success path grid.  
Success paths cannot be edited.  So, if you make a mistake while adding a success 
path, delete it and then add it again. 

B.4. External Conditions 
The form for defining external conditions is shown in Figure B.15.  Recall that external 
conditions can affect the properties of the elements of a system or of the system itself.  
External conditions can enter a simulation by being assigned to a scenario segment 
(Section B.5). 
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Figure B.15 Editing External Conditions 

• List of External Conditions shows the external conditions defined thus far.  To 
add a new condition, click the Add button.  This brings up the form shown in 
Figure B.16, where you enter a name for the condition. 

 

Figure B.16 Entering a New External Condition Name 

• Element is the list of elements affected by the external condition, or this could be 
the system itself.  To add an element, go to the first blank row.  Click on the cell 
in the Element column and SMO Simulation gives a drop-down list of primary 
elements, except for the first entry which is �System�.  Select the affected element 
or select �System�. 

• Apply To and Value columns define the specific property affected and how it is 
affected.  There are drop-down lists that depend on what was entered under the 
Element column.   

If you selected �System� under the Element column, the drop-down list of choices 
in the Apply To column will be:  
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! Maximum speed.  Enter the new maximum speed for the system.  Note 
that the speed of a system is used to determine position of the system 
and hence the distance traveled.  However, the concept of distance 
traveled as a means of exiting a segment of a scenario may not be 
supported in future versions of SMO Simulation, so this feature may 
become obsolete. 

! Combat damage rate multiplier.  Enter a multiplier that will be applied 
to the base combat damage rate for the any combat damage model that 
is attached to the systems being simulated (section B.9). 

! Combat damage change.  Enter the ID for a new combat damage model 
(section B.9).  Doing the input in this order, these IDs are not yet 
defined.  So, you need to anticipate what you will be entering in section 
B.9. 

If you selected a specific element under the Element column, the drop-down list 
of choices in the Apply To column will be:  

! Failure rate multiplier.  This is a valid choice only if the element has an 
exponential time-to-fail distribution.  The constant failure rate will be 
multiplied by the factor you enter. 

! Downtime multiplier.  SMO Simulation will multiply the sampled 
repair time by the factor you enter. 

! Wearout mean life multiplier.  This is a valid choice only if the element 
has a wearout time-to-fail distribution.  The mean (and standard 
deviation) of the wearout portion of the distribution will be multiplied 
by the factor you enter. 

! Wearout random fraction multiplier.  This is a valid choice only if the 
element has a wearout time-to-fail distribution.  The fraction of failures 
that are assumed to occur randomly will be multiplied by the factor you 
enter. 

! Aging rate multiplier.  This multiplier typically accelerates the aging 
for the element, thereby causing it to wear out faster.  The amount of 
time an element ages during a time step is multiplied by the factor you 
enter here.   

! State change.  This potentially causes the element to change state.  The 
state that the element changes to is selected from the drop-down list in 
the Value column, which simply contains True and False. 

The choices of ways in which external conditions can influence systems will be 
expanded as SMO Simulation is further developed. 
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B.5. Scenarios 
The form for defining scenarios is shown in Figure B.17.  Scenarios are made up of 
segments that occur in sequence.  Each system could have its own scenario, but it is 
likely that several systems have the same planned scenario.   

 

Figure B.17 Editing Scenarios 

• Selected Scenario appears in the box at the bottom left of the form (Figure B.17).  
There is a drop-down list of scenarios defined thus far.  To add another scenario 
click the Add button and the window shown in Figure B.18 will appear.  Enter a 
unique scenario name.  There can be any number of segments for the scenario.  
These are edited in the grid that appears above the scenario name. 

 

Figure B.18 Entering a New Scenario Name 

• End On column has a drop-down list for the 3 ways a segment can end.  We 
currently recommend only using time as the ending criterion.  The other 2 may 
not be available in future versions of SMO Simulation.   
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Distance.  When the system travels a given amount of distance, this segment ends 
for that system and the next segment begins for that system.  The next 3 columns 
must be filled in for this ending criterion. This option is not recommended in the 
current version. 

! Length.  The distance that must be traveled. 

! Direction.  Enter 0 for north, 90 for east, etc. 

! Speed.  Enter the desired speed in kilometers per hour. 

Time.  When the system has spent the specified time in this segment, it moves to 
the next segment in this scenario.  Of the Length, Direction, and Speed columns, 
only Length (hours) is required. 

All States True.  The system will exit this segment and enter the next segment 
only when all element states for the system are True.  This can apply when the 
system is at a repair facility, for example.  None of the Length, Direction, and 
Speed columns are required in this case. This option is not recommended in the 
current version. 

• Location column has a drop-down list for the 3 locations for the segment: field, 
repair facility, and other.  The system will be at the selected location throughout 
the segment. 

• Desired State column has a drop-down list for the 3 system states: operating, 
operable, and inoperable.  Select the one that describes the state you want the 
system to be in while it in is this segment. For example, for a segment that is 
specified as field, the desired state should be operating.  For a segment that is 
specified as a repair facility, the desired state should be operable even though the 
system might undergo repairs in that segment. 

• Condition column has a drop-down list for the external conditions you defined 
(section B.4).  The list also contains the word None.  Select None or select the 
external condition that could apply to this segment of this scenario. 

• Condition Probability column contains the probability that the specified external 
condition will occur.  This is not required if you selected None.  Otherwise enter a 
number between 0 and 1. 

• Systems List contains all of the systems (section B.2).   

• The Apply button assigns the displayed scenario to the highlighted system(s).  
First select the scenario to be assigned then select the system(s).  One way to 
select a system is to scroll the list to the desired system and click on it.  Multiple 
selections can be made by holding down the Ctrl key (or shift key for a block of 
systems) while clicking on the system IDs. 
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The controls below the systems list give you additional ways to select the systems to be 
assigned.  These appear as a group multiple times throughout the input.  For each 
occurrence you will be referred back to here for the description.  

• To select all of the systems, choose the Select All option then click the Select 
button. 

• To select all systems of a given system type (section B.2.1), choose the By Type 
option and a drop-down list of system types will appear.  Choose one system type 
and then click the Select button to select all systems of that type. 

• To select all systems that have been assigned a particular scenario, choose the By 
Scenario option and a drop-down list of scenario names will appear.  Choose a 
scenario and click the Select button, and all systems that have been assigned that 
scenario will become highlighted.  If you then click the Apply button, all of these 
systems will be assigned the chosen scenario. 

B.6. Supplies and Services 
This menu item allows the user to set up spares, consumables and maintenance services.  
It also provides access to an input form for defining the supply chain or network through 
which these supplies and services can be accessed. 

B.6.1. Spares Inventories 
The form for defining spares has three tabs.  The first tab is used for defining all possible 
spares for the mission.  The second tab is used to aggregate the spares into kits or 
inventories.  The final tab is used to assign kits to systems.   

B.6.1.1. Spares Tab 

The Spares tab is shown in Figure B.19.  Enter all spares that will be available for the 
mission. 
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Figure B.19 Defining Spares 

• Spare Name is the unique name for the spare.  To add a new name click on the 
first blank cell in this column and enter the name. 

• Weight is the weight of one spare.  SMO Simulation does not require specific 
units here but they should be consistent across all spares and consistent with 
weight units for consumables. 

• Volume is the volume of one spare.  SMO Simulation does not require specific 
units here but they should be consistent across all spares and consistent with 
volume units for consumables. 

• Cost is the cost of one spare. 

B.6.1.2. Spares Inventories Tab 

The Spares Inventories tab is shown in Figure B.20.  This form is accessed by clicking 
the Edit Spares Inventories button on the Spares tab (Figure B.19).  It is anticipated that 
spares will typically be carried in kits or inventories.  To access a spare, you have to 
access the kit that contains it.  So, every spare in the kit will have the same access time.  
This does not preclude having a spare part carried independently, that is, a kit can contain 
a single spare. 
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Figure B.20 Defining Spares Inventories 

• Spares Inventories List contains the unique names for each spares kit.  To add a 
new name click on the Add button.  Enter the name onto the form shown in 
Figure B.21.  The contents of the grids on the right side of Figure B.20 apply to 
the selected spares kit in this list. 

  

Figure B.21 Adding Spares Inventory Name 

• Spare Name column contains all of the spares defined on the Spares tab (Figure 
B.19).  SMO Simulation fills in this column and it cannot be edited. 

• Selected is checked if the spare belongs in the highlighted kit. 

• Count is the normal number of spares in the kit. 

• Reorder Level is the level at which an order is placed to replenish the inventory. 

• Maximum Level is the maximum number of a spare that the inventory will accept.  
This allows the inventory to temporarily go above the desired level if necessary to 
accommodate incoming parts orders. 

• Lot Size is the number of spares ordered at a time.  
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B.6.1.3. System Spares Tab 

The System Spares tab is shown in Figure B.22.  This form is accessed by clicking the 
Assign Inventories button on the Spares Inventories tab (Figure B.20).  Each system can 
carry at most one kit or inventory.  So if there is a system that carries several spares kits, 
you must combine those into a single inventory on the Spares Inventories tab, and assign 
the inventory to the carrying vehicle here.  

 

Figure B.22 Assigning Spares Inventories to Systems 

• Spares Inventories List contains the unique names for each spares kit.  You 
defined these on the Spare Inventories tab (section B.6.1.2) and the list is not 
editable here. 

• Systems List contains all of the systems (section B.2.1).   

• The Apply button assigns the highlighted kit to the highlighted system(s).  First 
select the kit to be assigned then select the system(s) to which the kit belongs.  
One way to select a system is to scroll the list to the desired system and click on 
it.  Multiple selections can be made by holding down the Ctrl key (or shift key for 
a block of systems) while clicking on the system IDs. 

• The Select button gives you additional ways to select the systems to be assigned 
(see section B.5).   

B.6.2.  Consumables 
The form for defining consumables has three tabs that parallel spares input.  The first tab 
is used for defining all possible consumables for the mission.  The second tab is used to 
aggregate the individual consumables into inventories.  The final tab is used to assign 
consumables inventories to systems that will act as suppliers.  Recall that consumable use 
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is defined for each system is defined on the third tab of the systems input form (Figure 
B.10). 

B.6.2.1. Supplies Tab 

The Supplies tab is shown in Figure B.23.  

  

Figure B.23 Supplies Tab for Consumables Input 

The columns in the Supplies tab grid contain the following information: 

• Name is the name of the consumable that will be used throughout the simulation. 

• Units is the name of the units in which the supply will be consumed and 
replenished.  This allows a consumable to be simulated in units other than the 
primary weight and volume units used in the analysis. 

• Weight per Unit allows the consumable quantity to be converted to the primary 
weight units of the analysis. 

• Volume per Unit allows the consumable quantity to be converted to the primary 
volume units of the analysis. 

• Cost per Unit is the cost associated with a unit of the consumable. 

The Import button allows information on consumables to be imported from a text file. 

B.6.2.2. Inventories Tab 

The Supply Inventories tab is shown in Figure B.24.  This form is accessed by clicking 
the Edit Inventories button on the Supplies tab (Figure B.23).  An inventory can contain 
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one or more consumables.  This tab defines the quantity and other parameters for each 
consumable in an inventory.  The list on the left side of the form shows all current 
consumables inventories.  To create an inventory click the Add button and enter a name 
for the inventory.  All consumables are listed in the grid on the right side of the form.  
The values in the grid represent the selected inventory in the list on the left side. 

 

Figure B.24 Supplies Inventory Input 

• The Consumable ID column contains all of the consumables defined on the 
Supplies tab (Figure B.23).  SMO Simulation fills in this column and it cannot be 
edited. 

• Selected is checked if the consumable belongs in the highlighted inventory. 

• Initial Quantity is the initial amount of the consumable in the units specified for it 
in Figure B.23.  The same units are required for the next two items. 

• Capacity is the maximum amount of the consumable that the inventory can hold. 

• Request Level is the level at which an order is placed to replenish the inventory. 

• Order Quantity is similar to the lot size for spares.  For example, if water is 
ordered in 10 gallon containers, the order quantity would be 10.  

B.6.2.3. System Supplies Tab 

The System Supplies tab is shown in Figure B.25.  This form is accessed by clicking the 
Assign Inventories button on the Inventories tab (Figure B.24).   
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Figure B.25 Assigning Consumables Inventories to Systems 

• Consumables Inventories List contains the unique names for each consumables 
inventory.  You defined these on the Inventories tab (section B.6.2.2) and the list 
is not editable here. 

• Systems List contains all of the systems that have been identified as supply 
vehicles (section B.2.1).   

• The Apply button assigns the highlighted kit to the highlighted system(s).  First 
select the inventory to be assigned then select the system(s) to which the 
inventory belongs.  One way to select a system is to scroll the list to the desired 
system and click on it.  Multiple selections can be made by holding down the Ctrl 
key (or shift key for a block of systems) while clicking on the system IDs. 

• The Select button gives you additional ways to select the systems to be assigned 
(see section B.5).   

B.6.3.  Services 
Maintenance resources are services that may be required to repair a failed primary 
element.  Such services may be provided by the crew of the system being repaired or may 
be provided by another system that is equipped for the service.  The service may be the 
actual element repair in which case the time to perform the service is the repair time.  Or, 
a service may required in order to allow the repair to take place; e.g., towing.  The form 
for editing services has four tabs:  

6. A tab to define basic services,  

7. A tab for grouping basic services into combinations that may be required by 
systems for repair (user services),  

8. A tab for combining basic services for assignment to service providers, and  
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9. A tab to assign provider services to systems. 

B.6.3.1.  Basic Services Tab 

This tab (Figure B.26) allows you to define the individual basic services that will be used 
throughout the simulation.   

 

Figure B.26 Input Tab for Basic Services 

The columns in the services input grid contain the following information: 

• Name is the name of the basic service.  To add a new service, first enter its name 
on the first nonblank row. 

• Cost per Hour is the cost of providing the service. 

• Requires Additional Time is a Boolean property that indicates whether the service 
requires time other than the normal repair time of the element.  If this column is 
not checked, the service is assumed to be the actual element repair and the time 
required for the service is the repair time for the element.  If the column is 
checked, the service is assumed to require time in addition to the element repair 
time. 

• Distribution and Distribution Parameters columns define the uncertainty in the 
time required to perform the service.  This input is only needed if the Requires 
Additional Time column is checked.  The available distributions and the 
definitions of their parameters can be found in section B.2.2.    

B.6.3.2. User Services Tab 

The tab for defining user services is shown in Figure B.27. User services are required 
because more than one basic service may be required to return a failed element to a useful 
condition.  An example might be a vehicle with a failed engine that requires towing to an 
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area where engine repairs can be performed.  The list on the left side of the form contains 
all defined user services.  To create a new user service, click the Add button and enter a 
unique name for the service.  The information in the grid on the right side of the form 
reflects the currently selected user service.   

 

Figure B.27 User Services Input Tab 

The columns in the user services input grid contain the following information: 

• The Service column contains names of all the basic services defined in the 
Services Tab (Figure B.26).  This column is not editable. 

• The Selected column indicates whether basic service is included in the selected 
user-service grouping. 

• The Order column indicates the order in which basic services will be performed.  
In Figure B.27, towing would be performed prior to staging area service. 

• Alternate indicates whether the basic service is an alternative to another basic 
service. In Figure B.27, NLOS Towing and NLOS Restrain are alternates to 
Towing.  The interpretation is that the user service first tows the failed system to a 
staging area where it is repaired.  If a tow vehicle is not available, an alternative is 
to use two NLOS cannons, one in front to pull and one behind to restrain.  

• Preference must be included for services that have, or are, alternatives to indicate 
which alternative should be sought first. 

B.6.3.3. Provider Services Tab 

Provider services parallel spares or consumables inventories.  They represent a collection 
of basic services that can be assigned to a system that will then be able to provide any of 
the services to a system that requires service.  The Provider Services tab is shown in 
Figure B.28 and can be reached by clicking the Edit Provider Services button on the 
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User Services tab.  The list on the left side of the form contains all provider services and 
the grid on the right shows the basic services that are included in the selected provider 
service.  To create a provider service, click the Add button then enter a unique name for 
the provider service.   

 

Figure B.28 Provider Services Input Tab 

The Service column in the provider services grid contains all the basic services that were 
defined in the Services tab (Figure B.26) and it is not editable.  The Selected column 
indicates whether a basic service is included in the currently selected provider service.    

B.6.3.4. Assign Provider Services Tab 

The Assign Provider Services tab is shown in Figure B.29.  You can reach this form by 
clicking the Assign Services button on the Provider Services tab (Figure B.28). The left 
side of the form displays a list of all provider services defined on the previous tab. To 
assign a provider service to one or more systems, select the provider service on the left 
side of the form, select the desired systems on the right side of the form, then click the 
Apply button. 
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Figure B.29 Assigning Provider Services to Systems 

The select controls below the list of systems on the right side of the form provide a short-
cut means for selecting groups of systems (see section B.5). 

B.6.4. Supply Connections 
Supply connections provide the information needed to allow systems to access supplies 
and maintenance services.  Supply connections establish a relationship between users and 
providers of supplies and services.  Figure B.30 shows the supply connections input form. 

 

Figure B.30 Input Form for Supply Connections 
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To create a supply connection click the Add button and enter a unique name for the 
connection. The list on the left side shows all the supply connections.  Properties of the 
selected connection are displayed and can be edited in the grid at the top right of the form 
and the two tree controls under the grid.  A connection can be specified to allow any of 
the following actions: 

• Acquire a spare � the connection can be used to obtain a spare when needed for a 
repair. 

• Replenish spares � the connection can be used to replenish a spares inventory or 
kit when the numbers of one or more spares falls below their reorder levels. 

• Acquire consumables � the connection can be used to obtain a consumable when 
the amount remaining for a user falls below the request level. 

• Replenish consumables supply � the connection can be used to replenish a 
consumable for a supplier whose supply has fallen below the reorder level. 

• Access services � the connection can be used by a system that needs repair to 
access a maintenance service. 

The time for any of these actions to occur via the connection is determined by an 
uncertainty distribution as specified in the time-to-supply distribution shown in the 
Supply Time Data grid.  The available distribution types and the definitions of their 
parameters can be found in section B.2.2. 

The tree control labeled Users in Figure B.30 identifies the systems that can use the 
selected connection to acquire needed supplies or services.  The tree control labeled 
Suppliers identifies the systems that will provide the supplies or services when the 
connection is used.  In figure B.30, the Self Supply option is checked meaning that the 
MGV Self Supply connection involves the User systems providing spare parts for their 
own needed repairs. The Supply Time Data grid shows that the user systems can self-
supply spare parts for repairs at any location (field, repair facility or other) and the time 
required is uniformly distributed between 0.1 and 0.2 hours. 

Figure B.31 shows the supply connections input form with the Parts Truck-001 of 
Company A connection selected.  In this case, the supplier is Parts Truck-001.  Users of 
the connection include all manned ground vehicles in Company A plus the Battalion level 
C2V-001.  The connection can be used at any location to acquire a spare that is needed 
for a repair and the required time is a triangular distribution with parameters 2, 3, and 5 
hours.  The connection can also be used to replenish a spares kit or inventory but only 
when the user is at a repair facility.  In this case, the time required also follows a 
triangular distribution with parameters 0.5, 1.0, and 2.0 hours.  Note that this connection 
has priority 2.  Any time a supply connection is used, self-supply is preferred although 
self-supply is probably limited to a few parts.  When self-supply is not available, the 
connection with the best priority and the lowest time to provide the supply or service is 
chosen. 
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Figure B.31 Input Form for Supply Connections 

B.7. Structure 
This input form allows you to create a hierarchical structure for the systems in the 
simulation.  The form has two tab pages.  The first page allows you to create the 
hierarchical structure for the simulation.  The second tab page allows the systems of the 
simulation to be placed within the structure.  Figure B.32 shows the Structure tab of the 
form.   

B.7.1 Structure Tab 
For new files, the structure will have only one node labeled Top.  In Figure B.33 we have 
renamed the Top node to Battalion and added a node under it.  To rename a node, select 
the node and click the Rename button to display a text entry form for the new name. To 
add a node, select a node under which you wish to add a child node then click the Add 
button.  When the text input form appears, enter a name for the new node. The buttons to 
the right of the hierarchy tree allow nodes to be added, deleted, copied, pasted, and 
renamed. The underlying rule for uniqueness in the tree node naming is that the full path 
to any node must be unique.  The two arrow buttons in the lower right of the form allow 
you to move nodes up or down in the structure.  This is useful for arranging the structure.  
Figure B.34 shows a completed hierarchy. 
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Figure B.32 Input form for Simulation Hierarchy 

 

Figure B.33 Simulation Hierarchy with First Two Nodes 
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Figure B.34 Completed Simulation Hierarchy 

Notice that in Figure B.34 we have built a force structure that is a battalion with two 
companies (Company A and Company B).  Each company has two platoons (Platoon 1 
and Platoon 2).  Within each level of the structure we have included a node for platform 
types.  For example, the battalion will have a C2V and two depots (fuel and parts).  
Platoon 1 in Company A will have C2Vs, ICVs, NLOS-Cs and Reconnaissance vehicles.  
Putting each platform type under its own node provides performance measures by 
platform type in the statistical results. 

B.7.2. Assign Systems Tab 
The Assign Systems tab allows you to assign the systems in the simulation to their 
intended place in the hierarchy.  Figure B.35 shows the Assign Systems tab.  You can 
access this tab page by clicking the Assign Systems button on the Structure tab (Figure 
B.34).  When you first visit the Assign Systems tab, all systems of the simulation will be 
listed on the left side and the structure is shown on the right.  To assign systems to the 
structure, select one or more systems from the list on the left and select a node under 
which they will be assigned on the right.  Then click the >> button to move systems from 
the list to the structure.  Figure B.36 shows the result.  If you made an incorrect 
assignment, select the system in the structure tree and click the << button to move it back 
to the list.  The structure with all systems assigned is shown in Figure B.37. 
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Figure B.35 Tab Page to Assign Systems to Hierarchy 

 

Figure B.36 ICVs Assigned to the Structure 
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Figure B.37 Structure with All Systems Assigned 

B.8. Other Elements 
In addition to primary elements and consumables, other element states can affect the 
states of a system and its functions.  Two additional categories of states are external and 
reference.  External states represent elements that are external to the systems that can 
affect the performance of the systems.  An example might be a sandstorm or a change in 
terrain.  A reference state provides a means for expressing the dependence of a system on 
the functionality of another system.   

B.8.1. External Elements 
The form for editing external states is shown in Figure B.38.  The input is simple and 
consists of the following: 

• Name is the name of the external element. 

• Initial State specifies whether the initial state of the element is true or false. 

• Desired State is the state that is desired for the external element.  Recall that 
external elements, once defined, can be included for any system (Figure B.10) and 
thereby become available for inclusion in the failure and success equations for 
any function of the system (section B.3).  As a term in a failure or success 
equation, an external element returns True when it is in the desired state and False 
when it is not.   
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Figure B.38 Form for Editing External Elements 

B.8.2. Reference Elements 
References provide a means for establishing dependencies between systems.  Figure B.39 
shows the form for editing reference elements.  The tree control on the left side of the 
form shows systems organized within the simulation hierarchy.  On the right side of the 
form, a tree control shows the same systems including their functions.  To create a 
reference, first select the system that will add the reference to its elements then click the 
Add button on the lower left side of the form.  When the text input form appears (Figure 
B.40) enter the desired name for the reference. 

 

Figure B.39 Form for Editing References 
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Figure B.40 Adding a Reference 

Once the reference has been created the form should show the new reference and the 
system that will use it as shown in Figure B.41.  Now the actual references can be added 
by selecting the function that will be referenced from the tree control on the right.  Once 
the desired system and function have been selected, click the Add button. 

In Figure B.42 we have referenced the sensing function for UAV-001 and UAV-002 in 
Company A, Platoon 2.  Note from the lower right hand side that the minimum 
requirement is for one of the two functions.  The result of this exercise is that Remote 
Sensing is now an element for NLOS-C-001.  If, for example, we include remote sensing 
in the failure equation for lethality for NLOS-C-001, lethality will fail if the sensing 
function for both the UAVs fails.  As long as either of the two UAVs has its remote 
sensing function operable, lethality of the NLOS-C-001 will not be affected by its 
dependence on remote sensing. 

  

 

Figure B.41 Adding a Reference 
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Figure B.42 The Remote Sensing Reference for NLOS-C-001 

B.9. Combat Damage 
The form for editing combat damage is shown in Figure B.43.  The form includes two 
tabs � one for creating combat damage definitions and the second for assigning combat 
damage definitions to systems. On the first tab, the left side of the editing form (Figure 
B.43) will display a list of all combat damage definitions.  The right side will display the 
currently selected combat damage definition in tree form.  

 

Figure B.43 Form for Editing Combat Damage Input 
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B.9.1. Combat Damage Definitions  
Combat damage definitions allow SMO Simulation to answer the following questions: 

1. Was there any combat damage to this system on this time step? 

2. If so, was the system totally disabled? 

3. If damaged but not disabled, which elements of the system were damaged to the 
point that they require replacement? 

Combat damage is represented using a tree structure.  The tree has a combat damage rate 
which is used by SMO Simulation (assuming a Poisson process) to answer the first 
question.  Each branch of the tree can have a nonzero �kill� probability that may be used 
to answer the second question.  The leaves, or ending branches, of the tree are elements.  
If the branch probabilities lead to the leaf for Element A, then SMO Simulation assumes 
that Element A is damaged and requires replacement. 

To create a new combat damage definition, click the Add button on the lower left side of 
the form to display the form shown in Figure B.44. 

 

Figure B.44 Creating a New Combat Damage Definition 

The form for adding a new combat damage definition (Figure B.44) requires the 
following input: 

• Apply To Type.  Because the tree is normally tailored to a system, first select the 
system type to which this combat damage model will apply.  SMO Simulation 
provides a drop-down list of system types for convenience. 

• Name.  SMO Simulation makes the name for the top node in the tree the same as 
the name of the combat damage model.  Enter a meaningful name here. 

• Damage Rate.  Only the top branch of the tree has a damage rate.  For other nodes 
in the tree SMO Simulation wants the probability of the branch. The damage rate 
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is the probability per hour that combat damage will occur when the definition is 
active. 

• Kill Probability.  The combat damage model could be as simple as �kill or no 
kill�.  Suppose that you do not enter any other branches to the model.  Then on a 
time step if combat damage occurs, the system is either disabled or not based on 
the kill probability.  If you add more branches to the tree, they are examined in 
case the system is not disabled. 

• Child Node Probabilities Disjoint refers to the branches under the node.  If only 
one of the branches can occur at any point in time, then select Yes.  If any 
combination of the branches can occur, select No.   

When you first add a combat damage definition, only the top branch is shown.  You add 
more branches by clicking the Add button on the right.  This brings up the form shown in 
Figure B.45. 

 

Figure B.45 Form to Add a Node to the Combat Damage Tree 

• Name.  If this is an intermediate node, enter the name of your choosing, such as 
RPG.  If this is a leaf branch, select from the drop-down list of elements that are 
relevant for the selected system type.   

• Probability.  This is the probability of the branch.  For the RPG branch it is the 
probability that the system gets hit by a RPG given that combat damage occurs.  
So, probabilities below the top branch are conditional. 

• Kill Probability.  This is the probability that if the branch is true, the system is 
disabled. In this case we do not want to include kill probabilities until the tree is 
developed further to include the direction from which the hit occurred. 

• Child Node Probabilities Disjoint refers to the branches under the node.  If only 
one of the branches can occur at any point in time, then select Yes.  If any 
combination of the branches can occur, select No.     
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In Figure B.46 we have further developed the combat damage definition tree. In the 
example of Figure B.46, there are two possible munitions considered: RPG and Mortar.  
We specified that these are disjoint, that is, it is highly unlikely that more than one of 
these munitions would hit the system at the same time.  On the other hand if a Mortar hits 
the vehicle, it will hit the front, left, rear or right side.  The RPG is represented similarly. 
Clicking on any node in the tree displays properties for that node. 

Figure B.47 shows the combat damage definition tree with all nodes expanded.  We have 
shown only the wheels to keep the example simple.  Note that if an RPG hits the vehicle 
from the right side, any or all wheels on that side may be damaged (the child nodes are 
not disjoint).  Also, notice that a kill probability has been specified at the level that we 
know what type of munition hit the NLOS-C and the direction of the hit.   

 

Figure B.46 Combat Damage Definition Including RPG and Mortar 
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Figure B.47 Combat Damage Tree Expanded 

B.9.2. Assign Systems Tab 
The Assign Systems tab is shown in Figure B.48.  This form is accessed by clicking the 
Assign button on the Combat Damage Definitions tab (Figure B.47).  The task here is to 
assign combat damage models to the systems.  This assignment can change during a 
simulation due to the affects of an external condition that can arise during a segment of 
the system�s assigned scenario.  Note that combat damage is optional so not every system 
need be assigned a combat damage model. 
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Figure B.48 Assigning Combat Damage Models to Systems 

• Combat Damage Model List contains the unique names for each combat damage 
model.  You defined these on the Combat Damage Definitions tab and the list is 
not editable here. 

• Systems List contains all of the systems (section B.2).   

• Apply button assigns the highlighted combat damage model to the highlighted 
system(s).  First select the model to be assigned then select the system(s) to which 
the model belongs.  One way to select a system is to scroll the list to the desired 
system and click on it.  Multiple selections can be made by holding down the Ctrl 
key (or shift key for a block of systems) while clicking on the system IDs. 

• Select button gives you additional ways to select the systems to be assigned as 
discussed in section B.5.   
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