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Introduction 

This brief Introduction to Measure Theory, and its applications to Probabilities, corresponds to the lecture 
notes of a seminar series given at Sandia National Laboratories in Livennore, during the spring of 2003. 

The goal of these seminars was to provide a minimal background to Computational Combustion scientists 
interested in using more advanced stochastic concepts and methods, e.g., in the context of uncertainty quan- 
tification. Indeed, most mechanical engineering curricula do not provide students with formal training in the 
field of probability, and even in less in measure theory. However, stochastic methods have been used more 
and more extensively in the past decade, and have provided more successful computational tools. 

Scientists at the Combustion Reseach Facility of Sandia National Laboratories have been using computational 
stochastic methods for years. Addressing more and more complex applications, and facing difficult problems 
that arose in applications showed the need for a better understanding of theoretical foundations. This is why 
the seminar series was launched, and these notes summarize most of the concepts which have been discussed. 

The goal of the seminars was to bring a group of mechanical engineers and computational combustion scien- 
tists to a full understanding of N. WIENER’S polynomial chaos theory. Therefore, these lectures notes are built 
along those lines, and are not intended to be exhaustive. In particular, the author welcomes any comments or 
criticisms. 

Acknowledgements 

The author was supported by the United States Department of Energy, Office of Defense Programs. Thanks 
to the attendees of the seminar series, for their patience, comments and feedbacks; in particular, H.N. NAJM, 
B.J. DEBUSSCHERE, J.C. LEE, P.T. BOGGS and K.R. LONG, and to Pr J. POUSIN (INSA, Lyon) for his 
careful proofreading. Special thanks to Ms J. MATTO for having edited most of the manuscript. 
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'1[Srpographic Conventions 

Since several types of structures will potentially be built on any given set, the following typographic conven- 
tions will be used in order to facilitate the reading: 

- for a set with no particular structure on it, a slanted font: S; 

- for a boolean algebra on S, a script font: S; 

- for a 0-algebra on S, a Gothic font: 6. 

Exceptions will be made for some standard and well-established notations, such as BOREL (Bd) and LEBESGUE 
(td) a-algebras on Etd. 

Vocabulary Conventions 

In order to avoid confusion, the following conventions regarding positiveness and negativeness will be used 

- positive means stricly greater than 0, denoted > 0 

- negative means stricly smaller than 0, denoted < 0 

- nonpositive means smaller than or equal to 0, denoted 5 0 

- nonnegative means larger than or equal to 0, denoted 2 0. 

In particular, 0 is neither positive nor negative, but it is both nonpositive and nonnegative. 
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I Background: Sets, Functions and Structures 

Die ganzen Zahlen hat der liebe Gott gemacht, alfes andere ist Menschenwerk. 

L. KRONECKER~ 

The goal of this chapter is certainly not to provid an exhaustive coverage, but rather an overview of the very 
minimal background required for the understanding of the core text. The interested reader will find in-depth 
presentations of the matters discussed here in, e.g., [Jec02] and Lan021. 

In all that follows, d will denote a positive integer. 

1.1 Sets and Functions 

1.1.1 Sets 

It is largely beyond the scope of the present report to address the question “what is a set?”, however the 
naive definition of a set constituted of elements will be sufficient for the matter discussed here. In particular, 
x E S means that x is an element of a set S. For the interested audience, we mention that we place ourselves 
in the context of the VON NEUMANN2-BERNAYS3-GbDEL4 set theory (NBG), which is a generalization of 
the ZERMEL05-FRAENKEL6 (ZF) set theory. In particular the sets of natural (IN), integer (X), rational (Q), 
nonnegative real ([a,-[), real (IR) and complex (43) numbers will be used. This being said, a few Set Theory 
concepts will be needed: 

Definition I.1. A set is a singleton if it contains exactly one element. Denoting as x this element, the singleton 
is written {x}. 

Definition 1.2. A set B is a subset of another set A if any element of B is an element of A. It is denoted B C A. 

Definition 1.3. The intersedion of two sets, A and B ,  is the set of elements common to A and B.  It is denoted 
as A f l  B.  The intersection of sets A1 to A,, is written njz;Ai. 

Definition 1.4. The union of two sets A and B is the set obtained by combining the elements of A and B. It is 
denoted as A U B. The union of sets A1 to A,, is written Uiz;Aj. 

DefinitionI.5. The sets [O,-[Ut-) and RU {--,w} are denotedrespectively [O,-] and [--,-I. 
Definition 1.6. The set containing no elements is called the empry ser. It is denoted 0. 

Definition 1.7. The set difference of two sets A and B is the set obtained by removing all the elements from 
A which also belong to B. It is denoted A \ B and also called complement of B in A. 

‘Leopold KRONECKER, Prussian mathematician, 1823-1891. 
’John VON NEUMANN. Hungarian then American mathematician, 1903-1957 
3Paul BERNAYS, Swiss mathematician, 1888-1977. 
4 K ~ r t  GODEL, Austrian then American mathematician, 1906-1978. 
’Ernst ZERMELO, German mathematician, 1871-1953. 
6Adolf FRAENKEL, German then Israeli mathematician, 1891-1965. 
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I Background: Sets, Functions and Structures 

1.1.2 Functions 

Definition 1.8. If A and B are two sets, a correspondence from the origin set A to the target set B is a triple 
f = (G,A, B )  where G is a subset of A x B called a graph, and the set 

gf = {X EA : (3y E B )  (x,Y) E G }  

is called the definition set of f. The graph G is said to befslnctional if, for all x in A, the set {y E B : (x,y) E G} 
is either empty or a singleton. 

Definition 1.9. A correspondence f = (G,A, B) is a mapping, or map, orfilnction from A to B if G is func- 
tional and 9, =A. It is generally symbolized as follows: 

f : A + B  
x c-) fb) 

where f (x) is the element of {y E B : (x,y) E G}. For all x in A ,  f (x) is called the image of x tinder f .  By 
extension, for any subset E of A, 

f ( a = { Y E B :  f b ) = y }  

is called the image set of E under f. 

Remark 1.10. The fact that f(x) is actually well-defined is ensured by the fact that 9f = A.  Therefore, the 
set {y E B : (x,y) E G} is not empty thus, by definition, it is necessarily a singleton. 
Example 1.11. If A = {a ,b ,c ,d)  and B = {1,2,3}, then G = {(a,3),(c,l),(d,3)} is a functional graph 

trated by Figure 1, left. To the contrary, H = 
E B : (c,y) E H} has two elements, 1 and 2 and 

a function from {a ,c ,d}  to G, 
,3)} is not a functional g 

in particular, it cannot define a function. 

Figure 1. Functional (left) and nonfunctional (right) graphs. 

Definition 1.12. The set of mappings from a set A to a set B is denoted p .  
Definition 1.13. If A and B are two sets and f is a function in BA, then for any y in B and any subset F of B, 
the sets 

f‘-”(y) = {x E A : f (x) = y }  
f<-”(F) = {x E A : (3y  E B )  f (x) E F }  

are called inverse image of x (resp. B) under f. 
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1.1 Sets and Functions 

Example 1.14. According to Definition 1.12, A” is the set of the mappings from IN to A. In other words, 

and such mappings are called seqzwnces of elements of A,sequence denoted (zdn)nEN- By extension, (Un)nEE, 
where E C IN, denotes the elements of (ZlnfllEN such that n E E. 

Definition I.15. Let A and B be two sets and f a function in BA. If, for all y in B, f <-‘>(y) contains at most, 
at least, or exactly one element, then f is respectively an injection, a siirjection, or a bijection. It can also be 
said that f is, respectively, injective, ~r j ec t i ve ,  or bijective. 

Exanzple I. 16. Given any subset E of S, the indicatorfimction of E is defined by 

and is a surjection from S to (0,l) if and only if E # 0 and E # S (otherwise, llE<-l>(O) or l l~(-”( l )  is 
empty). If S has more than two elements, IlE cannot be injective, since either IlE<-”(O) or nEc-l’(l) has 
more than one element. 

Definition 1.17. A set is denumerable or countably infinite if it is bijective to IN. 
Proposition 1.18. Let A and B be two sets and f afwnction in BA. 

- f is injective if and on13J if 

( V ( x i ~ 2 )  EA’) xi #x? I f(xi) # f (~? ) .  

- f is surjective ifand only iff (A) = B. 

- f is bijective if and only if it is injective and surjective. 

Prooj Left to the reader as an exercise. 0 

Definition 1.19. Given a set S, the power set of S is the set of all subsets of S and is denoted 2’ or 9 ( S ) .  

The following ZF axiom is essential in Measure Theory: 

Axiom 1.20. For any given set, its power set exists. 

Remark 1.21. The notation 2‘ is justified by the fact that the notion of subset of S can be interpreted in an 
equivalent1 way as being a map from S to (0, l}, formally denoted 2. More precisely, the following function: 

9 ( S )  + 2’ 
E n E  

is obviously bijective, thus justifying the identification between 9 ( S )  and 2s. 

Definition 1.22. Given a sequence ( U ~ , ) , , ~ N  in [ - W , W ] ~ ,  its infimiini limit andstrpretnrrm lirnir are respectively 
defined as follows: 

lim sup idn = inf sup i t f ,  
I ,  1nEH n>m 

liminfu,, = sup inf i f l l .  
I1 niEN”’”’ 
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I Background: Sets, Functions and Structures 

Example 1.23. If, for all n in IN, it,, = (- 1 )", then liminf, u,, = - 1 and limsup,, un = 1. 

Proposition 1.24. I ~ ( U , ~ ) ~ ~ ~ J  is  a sequence in [-=,=I", then: 

lim sup u , ~  = lirn sup itl, 
n I n  n>m 

lim inf til1 = lim inf u,,. 
It in n>rn 

Remark 1.26. For any k in IN, it is also possible to define the mappings Inf,,>kfis and Sup,,2k fn in a similar 
way. 

1.2 Algebraic Structures 

The axiomatic construction of semigroups, groups, rings, fields and vector spaces is now briefly recalled. 
These definitions are summarized in Figure 2. 

1.2.1 Semigroups and Groups 

Definition 1.27. Lei S be a set. A binary operation on S is a function with the form: 

s x s  + s 
(4.Y) * X*Y. 

Reinark 1.28. Under the above assumptions, the binary operation is itself denoted *. 
Example 1.29. Both + and x are binary operations on IN, but - is not, since the difference between two 

However, - is a binary operation on, e.g., Z which 
realty allows to count (z 

Definition 1.30. A binary operation + on a set S is said to be associative if 

s is not necessarily a 
en in German, whence the symbol). 

(V(x,y,z) E S3) x*(y*z)  = (x*y) * z  

12 



1.2 Algebraic Structures 

(S\ {O},.) is a group 

distributivity of 0 
I ! 

Labelian group (S,*) 

commutativity of * 

existence of an identit element e 
symmetrizability of allelements 1 I 

semigroup (s, e) I I semigroup (s, *) 1 
associative binary operation 0 associative binary operation * 

Figure 2. Construction of elementary algebraic structures. 

and to be commutative if 

If * is an associative (resp. associative and commutative) binary operation on S, then (S,*) is said to be a 
seinigroup (resp. abelian seinigroiip). 

Remark 1.3 1. In the case where a binary operation * is associative, and in this case only, the expressionx*y*z 
is meaningful; otherwise, it is ambiguous except is some precedence properties are explitly defined. The fact 
of being associative (resp. commutative) is referred to as the property of associativity (resp. conminrctativiry). 
However, in naeinoriam of the pioneering work (and tragic fate) of N. ABEL7 the adjective abelian is generally 
used in Group Theory, rather than commutative. 
Example 1.32. (Z,-) is not a semigroup, since x - (y - z )  is not, in general, equal to (x - y) - z. To the 
contrary, both (IN, +) and (M, x)  are semigroups, and, moreover, abelian semigroups. 

Definition 1.33. Let (S,*) be a semigroup. If 

2 
(V(x,y) E S ) x*y = y*x. 

(3e E S) (Vx E S) x*e  = e + x  = x 

then e is said to be an identity elentenr of (S,*). In this case, any x E S such that 

(3y  E S) x*y = y*x = e 

is said to be sywnetrizable in (S,*) and y is called the symmetric element of x (and conversely). If each 
element of S is symmetrizable in (S,*), then (S,*) is said to be a groiip. In this case, if * is commutative, 
then (S,*) is said to be an abelian group. 

7Niels ABEL, Norwegian mathematician, 1802-1829. 
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I Background: Sets, Functions and Structures 

Proposition 1.34. A semigroup lzas at most one identity element. Ifsuch un identity element exists, then each 
clement of the semigroup has at most one symmetric element. 

Pmo$ It is clear that a semigroup (S,*) does not necessarily have an identity element; e.g., (W* ,+) exhibits 
such a case. Now, let (S,*) be a semigroup and assume it has two identity elements el and e2. Then, by 
definition of e l ,  

el *e2 = e2*el = el 

and, by definition of e l ,  
e2*el = el*e2 = e2 

thus, necessarily, el = e2. Now, not all elements of a semigroup (S,*) with identity element e are necessarily 
symmetrizable: e.g., 1 does not have a symmetric element in (IN,+). since one cannot find x E JN such 
that x+ 1 = 0. On the other hand, assume x E S has two symmetric elements y1 and y2 in (S,*). Then, by 
definition of yl, 

y1*x=e 

thus, using the associativity of *, 

but, by definition of y2, x*y2 = e,  hence y1 = y2. 

( Y l * X ) * Y 2  =Yl*(X*Y2) =Y2 

0 

Example 1.35. Both (IN, +) and (M, x)  have identity elements (respectively, 0 and I) ,  but none of them is 
a group: e.g., 1 has no symmetric element in (IN, +), and neither does 0 in (IN, x ) .  In order to be able to 
symmetrize each element of (IN,+), one has to allow for negative integers. In othex words, (Z,+) is an 
abelian group. Now. if one wants to build a group from the semigroup (M, x), two problems must be solved: 

ated because it cannot be symmetrized; second, all rational numbers must be added; 

To summarize: a group is a set equipped with an associative binary operation which has an identity element 
and such that each element is symmetrizable. One would now now like to have more than one operation, in 
order to generalize the usual arithmetics. 

1.2.2 Rings and Fields 

Definition 1.36. If * and 0 are two binary operations on a set S such that 

then it is said that 0 is distributive over *. In this case, if (S,*) is an abelian group and (S, 0 )  is a semigroup 
(resp. an abelian semigroup), then the triple (S,*, 0 )  is said to be a ring (resp. a commutative ring). If, in 
addition, (S,.) has a unit element, then (&*,a) is a unit ring (resp. a commurative unit ring). If (S,*,o) is a 
ring, then the identity element of (S,*) is called zero of S, denoted OS or, if there is no risk of confusion, 0. 

Exaiqle 1.37. Historically, the notion of ring appeared to describe sets such as: 

14 



1.2 Algebraic Structures 

equipped with the usual addition and multiplication. Indeed, ( Z [ f i ] ,  +, X)  is a commutative unit ring, but 
the most intuitive example of such a structure is certainly (Z,+, x). A finite case can be easily constructed 
by considering Z 2  = {0,1} equipped with the two following binary operations: -* .* 
and it is possible to check directly (by enumeration) that ( 2 2 ,  +, x) is a commutative unit ring, with 0 and 1 
as respective identity elements of + and x. In fact, one can easily view it as the two classes of integer 
numbers modulo 2 along with the usual arithmetics transpofied onto them (odd plus odd is even, odd times 
even is odd, etc.). 

Definition 1.38. A unit ring (S,*, 0 )  with at least two elements such that (S \ {0}, m) is a group (resp. abelian 
group) is said to be afield (resp. a comnzutativejeld). 

Remark 1.39. The requirement of having at least two elements is intended to eliminate the undesireable case 
of the nullring (O,*, 0 )  with O*O = 0 0 0 = 0. 
Example 1.40. Enforcing the extra requirements on (Z,+, x) leads to the construction of the field (Q,+, X): 
in fact, rational numbers precisely fill the need of being able to invert the multiplication of integer numbers. 

In the present context, a few important fields will be needed: 

Theorem 1.41. The sets $, IR and 6, equipped with the usual addition and rnirltiplication, am commutative 
jields. 

Proof: See, e.g., [Lan021. 0 

Remark 1.42. For the sake of concision and although this is not perfectly rigorous, the field will be denoted 
as its underlying set when there is no risk of confusion; e.g., ,“the field E’ will be used as a synonymous of 
“the field (a, +, x)”. In all this report, IK will denote a field that might be either IR or Q: (equipped with their 
respective usual additions and multiplications). 

1.2.3 Vector Spaces 

Only a very brief reminder is provided here, since even a simple introduction to the most important vector 
spaces properties would require an entire chapter on its own; cf: [Lano21 for more details. 

Definition 1.43. If (E,*) is an abelian group and - is a mapping in E K x E  such that: 

then (E,*,-) is said to be a IK-vector space. In this case, the elements of IK and E are called, respectively, the 
scalars and the vectors of the vector space. 

15 



I Background Sets, Functions and Structures 

Example 1.44. The simplest examples of IK-vector spaces are the IKd sets equipped with their natural component- 
by-component addition and multiplication by a scalar. Another important class of K-vector fields is that of 
filnctional spaces, ie. ,  those whose vectors are functions. For example, the set of continuous functions over 
an interval can be naturally viewed as a R-vector field. 

In this report, two kinds of vector field will be dealt with, depending on the finiteness of their bases: finite- 
dimensional and infinite-dimensional vector spaces. Most undergraduate textbooks restrict themselves to the 
formers; the reader familiar with those but not with the latters should be extremely careful, since numerous 
essential finite-dimensional results do not extend to the infinite dimensions. Unfortunately, most of the vector 
spaces interesting for the purpose of this report are infinite-dimensional. 

16 



11 Measures and Probablilities 

In all that follows, S will denote a non-empty set. For any given subset A c S, the set S \ A  will be denoted 
A‘. For simplicity, it will be refered to as the complenzent of A (omitting “in 5”’). 

11.1 Measure Spaces 

11.1.1 o-Algebras 

Definition 11.1. Any 6 c 2’ such that 

i. S E ~  

ii. if A E 6, then AC E 6 

iii. if (An)nEm* E @*, then U A n  E 6 
nEN* 

is called a a-algebra on S. The elements of 6 and the double (S, 6) are called, respectively, measwable sets 
and nieaslarable space. 

Remark II.2. A o-algebra necessarily contains 0 and is closed for set difference and for denumerable inter- 
section. In addition, closedness for denumerable union and intersection implies closedness for finite union 
and intersection. 
Example 11.3. (0,s) and 2’ are two o-algebras on S, respectively, the smallest and largest (for inclusion) 
possible o-algebras on S. Using the same language as for other structures, a a-algebra 6 is smaller than a 
a-algebra 6’ if each element of the former belongs to the latter. 
Example 11.4. If S = { O,O, A} and 6 = { 0, S, { O}, { 0, A}}, theri (S, 6) is a measurable space. To the 
contrary,if B’= {0,S,{O),{O},{A)}then (S,6’) isnot ameasurablespace, since,e.g., (0)” = (0,A) $! 
(3’. 

Proposition II.5. The intersection of two o-algebras is a o-algebra. Moreover; given any 9 C 2‘. the 
intersection of all o-algebras containing !3 is  a o-algebra. 

Proofi Exercise. 0 

Definition II.6. Under the hypothesis of Proposition US, the intersection of all a-algebras containing 9 is 
called the a-algebra generated by 9. In the case where S = Rd. the a-algebra generated by the set of all 
open sets (in the sense of the usual topology on Rd) is called the BoREL*a-algebra on Rd and denoted Bd; 
its elements are called BOREL sets. 

Renmrk 11.7. As a direct consequence of Definition 11.6, the o-algebra generated by any given 9 C 2‘ is the 
smallest (for inclusion) o-algebra on S that contains 9. It is also clear that, because any a-algebra is closed 
for the complement, intersection and union operations, real singletons and intervals are BOREL sets. 

Proposition II.8. Any denumerable subset of R is a BOREL set. 

8%mile BOREL, French mathematician and politician, 1873-1956. 
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I1 Measures and Probabilities 

Pmoj By definition, if A C R is denumerable, there exists a bijection cp E A", thus 

A = cp(W = (Ip(.)l. E IN> = u ((a<.>)- 
ne?N 

Now, since real singletons are BOREL sets and 0-algebras are closed for denumerable union, A is a BOREL 
set. 0 

Example 11.9. N, Z and Q are BOREL sets. 
Example 11.10. A non-BOREt set: let S = lR and E be the set of all real numbers with continued fraction 
expansion: 

If F is defined as the subset of E such that there exists an increasing sequence ( r f l ) , , E p  in $"* such that 
des qri+, for all i in N*, then F is not a BOREL set. The main reason is that each particular choice 

of the r-sequence gives a BOREL set, and there are non-de rably many different such sequences. More 
precisely, it is impossible to express F as a denumerable union of BOREL sets (cJ: Lusin, Fund. Mafh. 10 
(1927) p. 77). 

II.1.2 Measures 

Definition 11.11. A measure on a measurable space (S, a) is a mapping ,u in [0, -le such that: 

i. 40) = 0 

ii. for any sequence ( A f z ) f l E ~ *  of pairwise disjoined measurable sets, 

Under these assumptions, the triple (S, 6 , p )  is a iiieasiire space. For any A in 6, p(A) is called the measure 
of A. 

Exarnple 11.12. Given a measurable space (S, e), and xa in S, if p is the mapping defined on B by p(A) = 
lLA(xo), then (S,2s,,u) is a measure space. 
Example 11.13. Denoting # as the cardinality of a set, (IN, 2",#) is a measure space. 
Example 11.14. With ( S , 6 )  as defined in Example 11.4, the mapping p, defined by p ( 0 )  = p ( ( O , A } )  = 0 
andp(S) = p ( { O } )  = 1, is a measure on (&e). 
Proposition II.15. Let ( X ,  e+) be a measure space. If(A,B) in B2 is such thatA C B, rhen p(A) < p(B).  

PmoJ By definition, A and B \ A  are disjoined while B = A U (B  \A). Therefore, it follows from the second 
axiom of Definition II. 1 1 that 

A B )  - 44) = P(B \A) b 0 
since a measure is always positive. 0 
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II.1 Measure Spaces 

Pmo$ Assuming B1 = A I ,  define B,+1 = A,,+, \ U$l Ai for all n in IN*. These B,, are all measurable sets 
and, using the commutativity and associativity of the intersection, 

( v ( ~ , n ) € N * * , ~ < n )  BntnB,,= 

=0 

since M < n - 1. Therefore, fi=,?-'AY contains Ai, thus its intersection with A,,, is empty. In other words, the 
B, sets are pairwise disjoined and 

U A "  = U B n .  
nEN' nEN* 

Now, by applying Proposition 11.15 to the fact that, Bn c A,, for all n in IN*, it follows directly from the 
definition of a measure that 

< CCI(A~)* 
nEH* 

Definition 11.17. The property of p exhibited by Proposition 11.16 is called countable subaddits'vity. 

Renutrk 11.18. Countable subadditivity can be intutitively seen as corresponding (in the case of measure on 
o-algebras) to the triangle inequality in the context of vector space norms. 

Proposition 11.19. Let ( X , e , p )  be a measure space. I ' ~ ( A ~ ) ~ ~ E H *  is a sequence in 6 such that, for all n in 
IN*, An C An+1, then 

Pmoj Assuming A0 = 0, define B, =A,, \A,,-l for all n in IN*. Each B,, is a measurable set and, using the 
commutativity and associativity of the intersection, 

(v(m,I?) E N*',m < n) BJnnB,, = (Ani\Am-1) (AJz \&- I )  

= (A,,, nA:,-,) n (An n A L 1 )  
=0 

since m < n - 1. Hence, A,,, c A,*-] (in particular, A,, c A,,,) thus Ajn nAn-l  is empty. In other words, the B,, 
sets are Dairwise disioined and 
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I1 Measures and Probabilities 

Therefore, on the one hand, 

On the other hand, 
n 

(Vn E N*) An = U B i  
i= 1 

from which follows, since the Bn are pairwise disjoined, 

thus 

and, finally, the result arises by combining (11.1) and (II.2). 

01.2) 

Proposition II.20. Ler (X ,G ,p )  be a measiire space. I f ( A r l ) , 2 ~ ~ *  is sequence in G such thatp(A1) isfinite 
and, for ail n in W*,  A,,+] C A,, then 

Pmo$ Similar to the the previous one. 

EXERCISE 11.21. Given a measure space ( X , G , p )  and Y in G, prove that: 

i. 6’ = {A f 6 : A c Y) is a o-algebra on Y; 

ii. plat, restriction of ,U to 6’. is a measure on (Y, 6’). 

11.1.3 Probability Spaces 

Definition II.22. A probability space (S ,  6 ,  P )  is a measure space such that P(S) = 1. In this case, any A in 
6, P and P(A)  are called, respectively, event, probability ineasiire on ( S , 6 )  and probability of A. 

Proposition II.23. V(S ,  6 , P )  is a pivbability space, 

(VA E 6 )  P(Ac) = 1 -P(A) .  

ProoJ: Immediate, since for any event A, A n A C  = 0 and A UAC =S. 

Examnple 11.24. Let S be a finite subset of N and define the mapping P by 

#A 
P(A) = - 

#S’ &’A E 2’) 

In this setting, P is a probability measure on (S,2’), called the uniform probability measitre. In this case, 
measuring a probability amounts to a combinatorial problem. 
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II. 1 Measure Spaces 

Remark II.25. When no confusion for G is possible, it is also possible to speak of a probability function 
on S. P is often referred to si y as a “probability,” instead of probability measure; however, such an 
approximation is discouraged since it leads to potential confusion between various concepts. 

Now, using the framework of measure spaces, the concept of conditional probability arises naturally a~ fol- 
lows: 

Proposition 11.26. Let (S, G,P) be a probability space. For any B in 6 such that P(B) # 0, the mapping 
defined as follows: 

P(A n B) 
PB(A) = - (VA E G )  

P(B) 
is a probability measure on (S ,  e). In addition, for any A such that P(A) # 0, 

P(A)PA(B) = P(B)Ps(A) = P(AnB).  

Pro08 For any B in 6, 

i. P is a measure, thus P( 0)  = 0 and therefore P B ( ~ )  = % = 0. 

ii. For any sequence (A&H* of pairwise disjoined sets of 6, 

Thus, (S,G,PB) is a probability space. Now, with the additionalcondition that P(A) # 0, (&e, PA) is also a 

Definition II.27. Under the assumptions of Proposition lI.26, PB is called conditional probabilify rneasrire 
assuming B (on ( S ,  e)). For any A in 6, Po(A) can also be written P(A1B) and called the probability of A 
assuming B. A and B are said to be mutually independent if P(AIB) = P(A). 

Remark 11.28. The mutual independence of A and B can be expressed equivalently as P(A n B )  = P(A)P(B), 
since P(AIB)P(B) = P(A n B). 

probability space for the same reasons; the final equality then directly results from the definition. 

The following result will prove very useful when dealing with events with unit probability, but which are not 
necessarily equal to S: 
Lemma II.29. Let (S, 6, P)  be a probability space. I fA  is an event such that P(A) = 1, then for any event B, 
P(A f l  B)  = P(B). 

Pro05 By hypothesis, P(Ac) = 0; in addition, B n A C  c AC thus P(B n A C )  = 0. Now, since A and AC are 
disjoined, so are B n A  and B n AC, therefore 

P(B) =P(Bn(AUA‘)) = P ( ( B n A ) U ( B n A C ) )  =P(BnA)+P(BnAC)  

which leads to the conclusion. CI 
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I1 Measures and Probabilities 

TheoremII.30 (Total Probability and BAYES’ Formulas). Lct (S, 6 , P )  be uprobability space and (An)nEN* 
be a sequence of pairwise disjoined events such that 

For any B in 6, 

and, i fP(B) # 0, 

(11.3) 

Proof: If P(B) = 0 then, given that BflA,,  c B for all IZ in IN*, P (B(An) = P(BflA,,)  = 0 which proves the first 
result. If P(B) # 0 then assu A = &EN*Anl P(A) = 1 because of the hypothesis. Therefore, combining 
Lemma 11.29 with the disjunction of the A,l shows that 

C P A , ( B ) P ( A ~ )  = x P ( B t l A , , ) = P  U ( B n A n )  = P ( E n A ) = P ( B ) .  
IiEN’ nEH+ G e N *  ) 

Finally, combining (11.3) with Proposition 11.26 establishes (11.4)- 0 

Example H.31. An individual has been purchasing candy at the vending machine daily over an extended 
period of time, and intends to quit doing so. Based on his experience over the past months, he estimates that 
each day his behavior is governed only by the outcome of the previous day, and 

I 

i. chances that he will use the vending machine are CL in 10, 1 [ if he did not the previous day; 

ii. chances that he wiil not use the vending machine are p in IO, 1 [ if he did the previous day. 

Starting with a day away from the vending machine, what are the chances that the individual will permanently 
quit? First, a proper measurable space ($6) must be defined. Formally, the outcome of each day can be 
expressed as 0 (failure) or 1 (success), thus leading to boolean sequences. In other words, S = 2N* and, in 
this context, the event “not hitting the vending machine on day k,” with k in IN’ can be formulated as follows: 

l )  Ak = { ( ~ i , , ) ~ , g g *  E 2”* : cik = 

and its contrary as 
Ai = { ( U , ~ ) I ~ E N *  E 2”* : tik = 0} 

The notations are consistent because Ak n A i  = 0 and Ak UAi  = 2N’. All such events are a priori acceptable, 
thus it is natural to choose 6 = 2s = 22ma as the o-algebra, since ($2‘) is the largest measurable space 
which can be built on S. Now, the hypothesis assumes the. existence of a probability measure P over (S, e), 
satisfying the conditions (i) and (ii) above, which can be translated as follows: 

gThomas BAYES, English minister and mathematician, 1702-1761. 
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11.2 Measurable Functions and Random Variables 

thus, using the Total Probability Formula of Theorem II.30, 

@fkE]N*) { P(Ak+l) = (1 - a - p)P(Ak) + p 
P(A;+I) = (1 - a - B)P(AC) + a 

and, using the classical fixed-point sequence explicitation technique, along with the hypothesis that P(A 1) = 1 
and P(A;) = 0, it follows that 

NOW, using the hypothesis about conditionality, the probability that the individual manages to stay away from 
the vending machine during the R first days (starting when he decided to quit), given n E N*, is: 

whence, by recurrence, 

Finally, the probability that the individual permanently quits his unhealthy (and expensive) habit can be 
determined using Proposition K20 as follows: 

which is a sad conclusion. 

11.2 Measurable Functions and Random Variables 

In this Section, (S, e) will denote a measurable space. 

II.2.1 Measurable Functions 

Definition 11.32. A function f i n  [--,-Is is said to be measirmble if, for any interval I in [--,-I, f‘-”(Z) 
is measurable, A complex function over S is said to be measurable if both its real and imaghary parts are 
measurable. 

Example 11.33. Given any E in (3, n E  is measurable. 
Remark 11.34. In the case of a BOREL o-algebra, the measurable functions are called B O R E L ~ ~ R C ~ ~ O ~ W .  
Example 11.35. Any f i n  @(R) is a BOREL function: for all open intervals I c R, f‘-”(I) is an open, thus 
BOREL, set. 
Example II.36. llQ is a BOREL function, since Q is a BOREL set. 
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I1 Measures and Probabilities 

Proposition II.37. The following pmperties are equivalent: 

i. f E [-=,=Is is measurable. 

ii. (Va E R) f+”(la,=]) is measirmble. 

iii. (Vu E B) f<“’([a,=]) is measurabb. 

iv. (Va E a) f+’>([-- ,uo is  measurable. 

v. (Va E R) f+l>([-- ,a])  is meusirruble. 

PmoJ (i) clearly implies each of the four other statements. Conversely, assume (ii) is true. Then, for all a in 
IR and all n in IN*, f<-’>(]a - ;,-]) is measurable; therefore, 

f < - l > ( [ a , w ~ )  = {. E s : f ( x )  9 = n (x E s : f ( x )  > a - ;I 
nEN* 

= n f ~ - ~ ~ ( ] ~  - ;,=I) 
nEN’ 

is measurable. Using the complement shows that both f‘”’([--,a]) and f<-I>([-=,a[) are measurable 
thus, by intersection, any i es ( i )  and, because it has 
already been proved that ( i )  implies the other four statements, the equivalences are deduced immediately. 0 

Proposition II.38. I f F  is ufilnction ~f%?~(lR,~,lR,) and f and g are two measurablefirnctions in [-=,=Is, 
then h = F( f , g )  is measurable. 

a1 of [-=,-I is measurable. Therefore, (i i)  i 

Pmo$ For any u in R, let G, denote { ( u , v )  E R2 : F(u,v) > u}. G, is an open subset of R2, i.e., it is a 
denumerable union of open rectangles: 

Now, 

{X E S : h(x)  > a }  = {X E S : ( f (X) ,g (x ) )  E Go} 
= u {X E S : (f(x),g(.))  E & I } .  

nEH* 

In addition, for each n E IN*, 

{X E S : (f(X),g(X)) E Rn} ={x E S : an < f(x) < bit} 

n { X E S : c l t < g ( x )  <di l l  

is a measurable subset of S. Therefore, the denumerable union of all such sets is measurable, which proves. 
that h is a measurable function. 0 

From this result the following corollary can be immediately deduced 

Corollary II.39. 
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II.2 Measurable Functions and Random Variables 

i. Iff and g are hvo measurableefirnctions in [--,-Is, then f +g and f g  are measurable. 

ii. Iff is a rneasurablefuncrion in [--,m]’, then, for any p in IN*. If IP is measurable. 

The important cases of the injmum and the supremum are now discussed 

PropodtionII.40. If( fn),,€:a* is a sequence of measiirablefirnctions in [--,m]’, then for all k in N, Infn>k fn 

and fn are measurable. 

Pmo$ This results immediately from the fact that, for all (u,k) in R x N, 

{xES:supfn(x)>a = U(xES: f n ( x ) > a } -  
n>k 1 n>k 

Corollary 11.41. Let ( f,,),lEB* be a sequence of measurnblejimctions in [--,-Is. 

i. Iim sup,, fn and liminf,, f,, are measnrable. 

ii. If; for all x in S, the sequence ( fn (X) ) , ,~B*  has a limit f (x), then f is measurnbk 

1. 

11. 

For all rn in IN, define gIn = S~p,,~,f,. According to Proposition 11.40, gin is measurable and so is 
lim sup,, since 

limsup fn = inf gllJ- 
n inEN 

The proof is similar for liminf,,f,,. 

If for all x in S, ( f o ( ~ ) ) , ~ ~ ~ *  tends to f ( x ) ,  then 

tJ. E S) limsup(f,(x)) = liminf(f,(x)) = Iirn fn(x) = f (x). 
1, IJ n 

Hence, f = lim SUP,, j l  is measurable. 

11.2.2 Simple Functions 

In the general case, a function is said to be simple if it takes a finite number of values. In the context of 
measurable functions, the definition is specialized as follows: 

Definition lI.42. A function f in Ets is said to be simple iff ( S )  is a finite subset of R. 

Renlark 11.43. It is important to notice that a simple function is not allowed to take on infinite values. An 
equivalent expression is piecewise constant. 
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II Measures and Probabilities 

Proposition II.44. I f f  is a siinplefunction in RS, then there exists n E IN*, n real numbers (ai)l<i<, and n 
pairwise disjoined sets (Ai)l<i<n such that 

f = cy=lainAi 
S = G ! l A j .  

Pmu& Direct consequence of Definition 11.42. 0 

Proposition II.45. A simple function f in Rs is measurable if and only if all rhe sets Ai, as defined in 
Proposition 11.44, are measurable. 

Pmo& By definition o f f ,  for all a in R the set f +”([a,-]) is a union of k sets Ai, 0 < k < n. More precisely, 
k is the cardinality of [a,-] n (ai)lgiGtr.  Therefore, if ai4 these Ai are measurable, so is any k-union themof, 
and in paptidar f <-!>([a, 
Conversely, if one of the swabie, &en let I be a an interval such as In  (ai) l<j<n 
contains only aio. Such te subset of B, which is separable. Then, 
f < - I >  (I) is aot measurable thus neither is f .  

Theorem II.46. Let f be a m functiOn in fO,-]’. There exists n sequence ( u , ~ ) , ~ ~ N *  of simple 
meusrmddefilnctions in f0, -[S, 

(Vn E H*) Mn < %+I 

Pmqf For a8 n in IN* and all 1 Q i Q n T ,  &fine rke feibwmg sets and functions: 

All these E,,j and E, sets are measurable, thus the Uj are measurable simple functions. The cases n = 1 and 
n = 2 itre illustrated by Figure 3. 

n = l  11 = 2 

Figure 3. A monotonic sequence of simple functions: ) I =  1 and n=2. 
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11.2 Measurable Functions and Random Variables 

When n is incremented, F, and each E,,i are split; more precisely: 

En,i = En+1,2i-l u & + l , ~  

while 

On the other hand: 

while 

Therefore, since 

it follows that 

Concerning limn itl1, two cases arise: 
(Vn E N*)(Vx E S) la,&) < lf,?+I(X). 

- if f(x) is finite, then, for all 11 > f(x), 

If(4 - U l l ( 4 1  < $ + 0 

- if f(x) = 00, then iirl(x) = n 4 00. 

Remark II.47. If, in addition, f is bounded, then the convergence is uniform (Le., l l z t l l  -film -b 0). 

11.2.3 Random Variables 

Let (T,%) denote a measurable space; practically, the domain of interest considered here is limited to the 
cases where ( T , n )  is either a denumerable set along with its power set or ( E t d , @ ) .  

Definition II.48. Given a probability space (S, 6, P), a random variable from S to T is a measurable function 
in T S .  X ( T )  is called the state space and its elements the srures of the random variable. If T is denumerable 
(resp. real, complex), the random variable is said to be discrete (resp. real, complex). The function Px = 
POX<-'> is called the probability distribution of X. 
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I1 Measures and Probabilities 

Proposition Il.49. Under the previous assumptions, ( T , g ,  P x )  is aprobabiliry space. 

Proof: By hypothesis, (T,%) is a measurable space. In  addition, because ( S , 6 , P )  is probability space, 

i. Px(0) = P o X < - ' > ( 0 )  = P ( 0 )  = 0; 

ii. for any sequence (A,JflEw* measurable sets (with respect to (T,%), 

iii. Px(T) = PoX<-'"(T) < 1. In addition, S c X<-"(T) thus 

1 = P(S) < PoX<-'>(T)  = &(T)  

and therefore Px ( T )  = 1 .  

0 

exp€icitly, but rather implicitly by 
, c.g., by chosing X<-'>(T) f a  S, the 

s to hide the probability 

Remark 11.51). In genera& the 
the means of a random varihl 
0-algebra generated by X<-'>(%) m 2s for 6 and 
space behind the random variable and its probabi 

II.2.4 Introduction to MARKOV Chains 

The concept of MARKOV" chain is introduced here in an informal, inductive way; it will be formalized later. 

Example 11.51. Using the probability space of Example H.31, for all k in lN* the mapping Xk is defined on 
2"* by 

(v(un),len.. E 2"") Xk ( (u , ) ,a*)  = 4- 

Each Xk is a discrete random variable with two states, 0 and 1. Its probability distribution is given by 

a + -(i -a-  py-1 B Px,(l) = - 
PXk(0) = ---(1-a-P)"-' 

a+p a+p 

a+P a a,'P 

In fact, the sequence (Xk)kE#* presents the simplest case of a uniform MARKOV chain, with 2 states. 
behavior can be summarized as in Figure 4. 

Its 

'OAndrei MARKOV, Russian mathematician, 1856-1922. 
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Figure 4. Two-state uniform MARKOV chain. 
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I11 The LEBESGUE Measure 

[...I une g6n6ralisation faite Ron pour le vain plaisir de g6nkraljser, mais pour rhoudre des 
probl2mes antkrieurement posb ,  est toujours une g6n6ralisation fkonde. 

H. LEBESGUE~~,  in Revue de m6taphysique et de morale, 34:2 (1927) 

In this chapter, S will denote a nonempty set. 

Now that an abstract measure framework has been defined, one would like to apply it so that it retrieves 
the results known in the particular case of the RIEMANN'~ integral, when it exists. In particular, simply by 
considering the case of constant functions, it appears clearly that such a measure must satisfy the following 
axioms: 

Axiom III.1. The measure of any real interval is the difference between its upper and lower bounds. 

Axiom III.2. The measure is invariant by translation. 

Although only necessary, these axioms will prove restrictive enough so that it is impossible to make the 
entire 2R measurable while complying with them. The goal of section 111.1 will precisely be to establish 
this impossibility, and the rest of this chapter will aim at defining a measure on as much of 2R as possible, 
while maintaining compliance with Axioms III. 1 and 111.2. At this point, several different approaches can be 
chosen; in particular, [Rud86] proposes an inductive method based on URYSOHN'S'~ Lemma. On the other 
hand, the method chosen in the present chapter is a constructive one that provides a direct way to construct 
measures on B (and in particular the LEBESGUE measure) from right-continuous non decreasing functions 
(thus in particular from cumulative distribution functions). This angle of attack is especially appropriate here, 
because it is directly connected to applications in probability theory. 

111.1 Preamble 

The aim of this section is, first, to explain why there is no way to define a measure complying with Ax- 
ioms 111.1 and III.2 on the entire 2". To this goal, a counter-example will be exhibited. Then, in order to 
provide a clear overview of this somewhat lengthy process, the construction of the LEBESGUE measure by 
the means of C A R A T H ~ O D O R Y ' S ' ~  Extension is summarized. 

III.l.l Fountainhead 

The fountainhead counter-example is based on the following axiom, which is part of the NBG Set Theory. 

"Henri LEBESGUE, French mathematician, 1875-1941. 
I2Bernhard RIEMANN, German mathematician. 1826-1866. 
I3hvel URYSOHN, Russian mathematician, 1898-1924. 
Wonstantin CARATHEODORY, German mathematician. 1873-1950. 
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III The LEBESGUE Measure 

Axiom III.3 (Axiom of choice). Given any set of pairwise disjoined nonempty sets, there exists at least one 
set that contains exactly one element of each of the nonempty sets. 

Lemma III.4. There exists a subset oflo, 11, which is n set of class representatives of R/Q. 

Proof: First, notice that (R,+) is abelian 
addition, recall that because Q is a nomal 
relation with each other if and 
to equivalence classes over B; the cdbckion of these eqtlivakence classes c 
Moreover, the axiom of choice guarantees $le existence of a set E of class representatives, Le., a set formed by 
taking exactly one element in each equivalence ciass. Let denote E such a set and, for any x in E, [x] its integer 
part; x - [x] is equivalent to x and belongs to ]0,1[ if x %, thus x - [x] provides another class representative 

U which complies with the requirements. If x E Z, it suffices to take 5 as a class representative. 

Prior to exhibiting the counter-example, the following 

Definition IILS. For any subset A of 3w. a d  r in R, the set (x + r, x E A )  is denoted A+r. 

Proposition III.6. There is no measure on (R,2R) which coinplies with Axioms III.1 and 111.2. 

Proof: Let p be a meas 
the set E defined in the 

satisfies Axioms 111.1 and III.2; this implies, in particular, that 
is measurable. Let also denote 

F = If {E+r) .  
rEQn1- 1 ,I [ 

In particular, F is a subset of ] - 1,2( thus, because of Axiom III. 1,  

<P(]-Lql=3- (II1.1) 

Moreover, for dl x in 10, I ( ,  there is an ale- class in "/Q to which x belongs; in other words, by 
definition of E, there exists y in E such that x - y = r is rational, thus x = y + r belongs to E+r. Therefore, 
IO, 1(c F and 

(111.2) 
Now, let r and s be two distinct rational numbers; any x which belongs to E + r  and E+s must satisfy 

P P f  >P(lO, if) = 1- 

(3(y , z )  E E') x = y + r = z + s 

and thus, y - z = s - r # 0. Hence, y and z are distinct and belong to the same equivalence class of R/Q, 
which contradicts the construction of E .  Therefore, E + r  and E+s  are disjoined and, using Axiom 111.2, 

(111.3) 

which contradicts the fact that 1 < p { F )  < 3. Therefore, the hypothesis is inconsistent, Le., there cannot be a 
0 measure on (lR,2") that satisifies Axioms 111.1 and 111.2. 

A direct consequence of Proposition III.6 is that it is impossible to extend the RIEMANN integral to arbitrary 
sets of reals. The goal of this chapter will therefore be to extend of the classical notions of length and area 
to more complicated sets than those acceptable in the framework of RIEMANN integral; a 
possible to do so for the entire 2", it will be shown that a iarge class of such sets can be addressed. in 
particular all BOREL sets. 
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II1.1 Preamble 

Definition set r w-0 3 a s )  
boolean alg. a-algebra a-algebra a-algebra 

Table 1. Summary of CARATH~ODORY’S Extension: =% and -& denote, 
respectively, an extension and a restriction. Note: S C e(S). 

III.1.2 Constructive Approach to the LEBESGUE Measure 

Due to the complexity of the LEBESGUE measure construction, it is decomposed into several steps to make 
it easier to understand. It shall be kept in mind from the beginning that, as it often happens with constructive 
approaches, the whole picture will emerge only at the end, 

The construction can be summarized as follows: 

Step 1: The set I, formed of all intervals ]a, b] with a < b in IR, is introduced. Although I does not have any 
structural properties, in particular is not closed for set operations, it is shown that from any nondecreas- 
ing right-continuous function F of RR, a function p , ~  can be defined over I with properties similar to 
those of measures. In particular, p~ is a-additive over I. 

Step 2: The closure 3 of I for the usual set operations turns out to be the set of all possible finite unions of 
intervals with theform]-eo,a],]b,c] or]d,w[witha, b <  candd inB. Inaddition,anyinterval]-=,a] 
or Id, -[ can be expressed as a denumerable union of pairwise disjoined elements of I. Therefore, the 
o-additivity of p , ~  is used to extend it to a function p defined on 3. 

Step 3: The triple (R,3,p) has most of the properties of measure spaces, but still lacks a key one: 3 is not 
closed for denumerable union (nor for intersection); in fact, 3 is a boolean algebra and, for the sake of 
generality, this concept will be formalized. For instance, 23 @ 3, e.g., a closed interval is not measurable 
and neither is a finite set. The approach chosen here is to use a technique called CARATH~ODORY’S 
Extension; this approach is generic, and thus not limited to the case of B. Summarized in Table 1, this 
constructive approach proceeds as follows: 

i. from a measure on a boolean algebra S on S, is built an outer-measirre p*, defined on the the 
entire 2s. Such objects are more general and in particular, lack a-additivity. However, the relative 
roughness of p* allows it to remain compatible with Axioms III.1 and III.2 on the entire 2’; 

ii. then, the outer-measure is restricted top’, defined over a particular subset 6501”) of S; this subset 
is chosen in such a way so that (S,B(p*),p’) forms a measure space; 

iii. now, the most striking aspect of this process is that B(,d) is not only large enough to be interest- 
ing, but that, provided an additional condition called o-finireness, it actually contains the initial 
boolean algebra S. Since this implies that e@*) also contains the a-algebra 6(S) generated by 
S, p’ is finally restricted to it, thus providing a measure p on the desired a-algebra. 

Step 4: This process is specialized, in the case where S is IR; this gives birth to a measure on the BOREL 
a-algebra introduced in chapter II. However, it is established that the resulting measure space is not 
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I 

complete measure, in a newly-defined sense (and intuitively close to that of completeness of metric 
spaces). 

Step 5: A new meaning is given for the concept of conylleteness in the context of probability spaces. It is then 
explained how a measure space can be complered with respect to this definition. Finally, applying this 
process to the BOREL &algebra and measure concludes tsle construction of the LEBESGUE measure. 

III.2 Measures on Boolean Algebras 

The goal of this section is to construct, on a structure that is less restrictive than a o-algebra on R, a measure 
complying with Axioms III.1 and 111.2. 

III3.1 Interval Measures 

First, it is shown that with any right-continuous re ction, &ere can be associated a set function defiwze4 
lass over left-open, right-ciosed intervals. Moreover, this set function will comply with Axiom III.2 
a particular choice of the “generating” function, with Axiom III.1. 

Definition III.7. Let I denote the set of ail intervals of the hm b , b ] ,  where (a$) E B2 with a < b. 

Remark III.8. I is indeed a set of subsets of a; in other words, I C 2“. 

Proposition IIIS. For any right-continuous and nondecmasing F E RR, lor p F  be the$tnction defined over 
I as follows: 

Then p~ satisfies the following pmperties: 

(V(a,b) E R 2 1 ~  < b )  p&,b]) =F(b)  -F(a) .  

i. p~ is nonnegative and p F ( 0 )  = 0; 

ii. for ull a E It, p~ (]a$])  J 0 when b J. a; 

iii. p~ is  monotonic over I;  

iv. forall (a,b,c) E R3, a < b < c irnpliesp~@,c]) = p ~ @ , b j )  + p ~ ( ] b , c ] ) ;  

v. p~ is o-additive over I .  

Prooj Only the proof of the last point is detailed here since the are trivial and left to the reader. Let 
(Jaklbk])kEme be a sequence of pairwise disjoined intervals of I, at their denumerable union belongs 
to I and thus can be written as ]a,b]. For all n E E?*, it is always possible to re-index the n first intervals of 
the sequence such that bk < ak+l for each 1 < k < n - 1, which also 3 s a < a1 and b,, < b; then 

thus, taking the limit, 
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111.2 Measures on Boolean Algebras 

In order €0 demonstrate the inverse inequality, it shall first be acknowledged that if a = b, then the result is 
immediate. If a < b, then let E be in ]O,b-a[. F is right-continuous, therefore 

E 
(VnEN*)(% E [o,=[*) ~ ~ ( ( I b n , b n + ~ n ] ) = F ( b n + ~ n ) - F ( b n )  <--. 2” 

Now, 
(Vn E IN*) [a + ~ , b ]  c ]a,b] = U ]an,bn] c U ]an,bn + E n [ ,  

nEB* n E W  

but because Of HEINE”-BOREL-LEBESGUE’s Theorem16, 

k=m 

thus, by recurrence on k, 

Thus, because F is left-continuous, the conclusion arises by taking the limits when E tends to 0. 0 

III.2.2 Boolean Algebras as Closures 

First, a structure slightly more general than o-algebras is introduced: 

Definition III.10. Any S c 2$ such that: 

i. S E S  

ii. if A E S, then AC E S 

iii. if (A$) E S2, then A U B  E S 

is called a boolean algebra on S. 

Example 111.1 1 .  Any o-algebra on S is a boolean algebra on S. 
Example III. 12. The set of all finite unions of real intervals is a boolean algebra on R. 
Remark III.13. A boolean algebra on S necessarily contains 0 and is closed for set difference, finite union 
and finite intersection. In fact, the name is somewhat misleading, since a boolean algebra is nor an algebra. 
It is in fact a semialgebra, when S is equipped with the n, U and \ binary operators. 

Proposition III.14. The boolean algebra 3 generated by I is the collection of all Jinite unions of intervals 
with thefornz]-=,a],]b,c] or]d,=[ ,  a, b < c a n d d  i n R  

”Heinrich HEINE, German mathematician, 1821-1881. 
l6FrOm any open cover of a closed bounded domain can be extracted a finite open cover. 
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Pioof. Exercise. Check the condition between 6 and c. 

The notion of measure is now extended, via a skight modification, to the case of boolean algebras: 

Definition III.15. Let 0 be a boolean algebra on S. A memiire on (S,  0 )  is a mapping p in { O , W ] ~  such that: 

i. p ( @  =O; 
ii. for any sequence ( A , l ) n E ~ *  of pairwise disjoined sets in 0 sudr that their denumerable union belongs 

to s. 

For any A in 0, p{A) is called the measure of A. 

Proposition III.16. A measure on a boolean algebra is countably subadditive. 

Proof: The proof is very similar to that of Proposition 11.16, using the sets defined, for all n in N*, by 
Ba = A  nAn and Cn+l = Bn+i \ Bi with Cf B1. 0 

Proposition III.17. Under the hypothesis ofpmposition 111.9, thee exists a unigue measur'e p on 9 such that 
PI1 = PF.  

PmoJ First, any interval with the form ] - -,a] or ]a,mft where E E, can be written as a denumerable 
union of pairwise disjoined intervals in I. Therefore, in order to extend p p  to 3, it suffices to show that p is 
compktely determined by 

P W  = C c l F ( I n ) ,  
/?EN* 

for all (In)rtEpp E I N *  with de 
with pairwise disjoined terms ( J , , ) n ~ ~ *  E IN', 

rable union A. In fact, if A is also the denumerable union of the sequence 

(Vn E IN*) I,, = A ~ I , ,  = U ( J , , ~  nI,J 

(vnt E IN*) J ~ , ,  = A n J~ = U (In nJ,,,). 

mEN* 

and 

/,EN* 
Now, I is closed for n, thus each In nJ,, belongs to I ,  and because of the o-additivity of I, 

CI 

Remark IIl.18. An immediate consequence of the latter result is that, in the particular case where F is the 
identity function over B then, if the (Ik) ldk+,  n E IN*, are pairwise disjoined intervals with respective lower 
and upper bounds a~ and bk, 

which clearly complies with Axioms 111.1 and 111.2. 
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III.3 CARATHI~ODORY’S Extension 

Now that the first “brick” constituted by the boolean algebra3 and its measurep has been planted, CARATH~ODORY’S 
Extension can built. 

III3.1 Outer-Measures 

The goal here is to introduce a new class of maps on 2s. Albeit too crude to be measures, these maps 
have enough properties to prepare the construction of measure spaces, starting from parts of 2’ that are not 
necessarily o-algebras. 

Definition III.19. An outer-measure on S is a mapping p* from 2’ to [O,-] such that 

i. ,u*(o) = 0; 

ii. for all subsets A and B of S, A c B implies p*(A) ,< p*(B); 

iii. p* is countably subadditive. 

Example 111.20. Any measure on (S,2s) is also an outer-measure on S, since the axioms of Definition 11.1 1 
imply those of Definition In. 19. 
Remark III.21. Outer-measures are more general objects than measures because they do not require a- 
additivity: this allows them to address larger classes of objects without encountering the kind of contra- 
dictions met before. For instance, in the the proof of Lemma 111.4, if an outer-measure p* was used instead 
of p, then (111.1) as well as (III.2) would still hold. but (lI1.3) would not, precisely because of the loss of 
o-additivity. Instead, (III.3) would become 

which is not contradictory with the fact that p*(F) is in [I ,3]. This only implies that p*(E) # 0. 

In the case where a measure on a boolean algebra is already known, there is a very convenient and general way 
of deducing an outer-measure from it. This technique is used, in particular, to demonstrate CARATHEODORY’S 
Extension. 

Definition III.22. Let S be a either a boolean algebra or a o-algebra on S. For any given A E S, an S-cover 
of A is a sequence (An),lE~* E SN* such that 

A C  U A , .  
flErn* 

The set of all S-covers of A is denoted as Covs(A). 

Proposition III.23. Let 8 be a boolean algebra on S and p a measure on (S,S). The mapping p* defined on 
2s hv 

is an outer-measure on S such thatp*p = p. 
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III The LEBESGUE Measure 

P ~ Q $  With the usual convention that the infimum of any function over 0 is -, p* is well defined on 2s and 
is nonnegative by construction. In addition, 

i. p*(0) = o since (0)pp E @* = covs(0); 

il. if A c B c S, then 
(V(AJll~~* E s"') B C U A n  A C UAlt ,  

nEH* IlEN' 

thus, Covs(A) c Covs(B) and, therefore,p*(A) < p*(B); 

iii. in order to establish the countable sub 
consider the two ing cases: 

tivity for jf*, let (A,l)ilEN* be a sequence of subsets of S, and 

- either jf*(An) = 00 for at least one n E PI* and the conclusion is immediate; 
- or, for all n E N*, jf*(An) is finite; by definition of jf*, this means that, given any E E [O,=[*. 

, p* is an outer-measwe on S. Finally, jf*ls = p s h e  for any A E S, (A,0,...) E Covs(A) thus 
p*(A) 6 AA); cmversely, for a11 B-cover (A,JnEp of A, considerhg the (B&N* defined by Bt = A I  nA 
and 

(tbn E m*) &+I = (An+] nA) \&t, 

one has that p(A) < jf*(A). Since this is true for akl A E 8, it fdbws that p*ls = j f .  0 

Nevertheless, in the goal of extending the classical properties of the RIEMANN-integral, one wants to maintain 
o-additivity, therefore the outer-measure must be restricted to a specific class of sets on which it will turn out 
to be a meastlre. 

III.3.2 p*-measurability 

A striking property of outer-measures is that they permit the construction of measure spaces in a straightfor- 
ward manner. First, a particular class of subsets of S is defined: 

Definition III.24. Let p* be an outer-measure on S. Any A C S such that 

(VE c S) jf*(E) = p*(E n A) +p*(E nAC) (Ill.4) 

is said to &e p*-measurable. 

Now, the following result justifies the entire approach: 
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I11.3 CARATHEODORY'S Extension 

Theorem IlI.25. For any outer-measure p* on S, let denote Sw) the collection of all p*-rnensurable sets; 
rhen, ( S ,  B ( p * ) , p * \ s ~ ~ ) )  is a measure space. 

Proof. First, 

i. for all E c S, p*(E n 0) +p*(E n 0.) = p*(E) thus 0 E S(p*);  

ii. for all A E e ( p * ) ,  Acc =A.  Thus, because of the symmetry of (II1.4), AC E G(,d); 

iii. establishing that 6017 is closed for denumerable union is quite long, and is split in two steps for the 
sake of clarity: first, union, then denumerable union. Hence, let A and B be in e@*) and S be any 
subset of E; in particular, En (A UB)' =E nAC nBc, thus, 

E n (A u B )  = (E n A n B )  u ( E  n A n Bc) u ( E  n AC n B ) .  

Therefore, 
p*(E n (A UB)') = p*(E nAC n p), 

and because of the subadditivity of p*, 

(III.5) 

p * ( ~  n (A u ~ ) )  < p * ( ~  n A  n B )  + p * ( ~  n A nBC) + p * ( ~  n AC nB). (Iw 

Now, applying successively the definition of a p*-measurable set to A and B shows firs€ that p*(E) = 
p*(EnA) +p*(EflAC),  then 

p * ( ~ )  = p * ( ~  n A n B )  + p*(E n A n B ~ )  + p * ( ~  n AC n B )  + p * ( ~  n AC n Bc) 

thus, combining with (111.5) and (IIIA), 

p*(E) ,<p* (En(AUB))+p*(En(AUB) ' ) .  

Conversely, the subadditivity of p* shows directly that 

$(E)  2 p*(E n (A U B ) )  +p*(E n (A UB)'), 

whence 
p*(E) = p*(E n (A U B ) )  +p*(E n (A U B y ) .  

Thus, since this is true for all E c S, A U B  belongs to e($). In other words, 6w) is closed for union, 
and since A n B  = (Ac UBC)', it is also closed for intersection, and furthermore, for set difference. Now, 
if (A&w is a sequencep*-measurable sets, assume B1 = A1 and define, for all n in N*, B,3+~ =An+i \ 
UiZYAi. By definition, these Bn are pairwise disjoined moreover, by recurrence on union closedness, 
they are p*-measurable and 

i=n i=n 
(Vn E IN*) U B i  = U A i  E 6017- (III.7) 

Therefore, establishing closedness for denumerable union amounts to establishing closedness for dis- 
joined denumerable union: the question is that of the p*-measurability of 

i=l i=l 

B = u B,, = U A , f .  
nEN* /IEH* 
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On the one hand, for all E c S and all n in N*, it follows from the p*-measurability of A,, that 

i=n-I 

since the Bi are pairwise disjoined. Therefore, by recurrence, 

(V(E,n)  E 2'xIN*) p* 

Now, by definition of B, 

(v(E,~) E ~'xIN*) Bc c 

thus. 

which, combined with (III.7) and (111.8). leads to: 

( " ( E , n ) ~ 2 ' x N * )  p*(E)=p* ( 1 )  E n U B i  +p* (C)') E n  U B i  

(III.8) 

i=n 

i= 1 
2 Cp*(EnBi )+p*(EnBC) .  

and since this is true for all n in IN*, one can take the limit when n tends to 
inequalities: 

while conserving 

("E c S) p * ( ~ )  3 &d(EnBll)+p*(EnBC). (111.9) 
nEH* 

On the other hand, for all E c S, E = (E f l B )  U (E nBC) .  Thus, because of the subadditivity of p*, it 
follows that 

("E C S) $(E) < p*(E n B) + p*(E n Bc) 
while, by definition of B and because of the countable subadditivity of p*, 

Hence, 
( V E C S )  p*(E)Gp*(EnB)+p*(EnBC) G p*(EnB, )+p*(EnE) ,  

(VE c S)  $(E) = p*(EnB,,) +p*(EnBc) 

nEH* 

which, combined with (IIL9), shows the two following equalities: 

nEN* 

and 

reaching to the conclusion that (S, 6 ( p * ) )  is a measurable space. 
("E c S) p * ( ~ )  = p * ( E n B )  +p*(EnBC), 

(III. IO) 
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iv. Now, p*ls,p) being denoted for simplicity as p’, it follows directly from the definition of p* that p‘(0)  = 

v. Finally, if ( A n ) n E ~ *  is a sequence of pairwise disjoined p*-measurable sets, with denumerable union A, 

p*(0 )  = 0. 

it follows directly from (111.10) that 

p’(A) = p*(A) = p*(A nA,) +p*(A nAc)  = p’(An). 
flElN* nEN* 

Therefore, (S,G(p*),p’) is a measure space. 

0 

RemcrrklII.26. Thep*-measurable subsets of S are exactly the measurable sets of the measure space (S, G($),p’). 

III.3.3 a-Algebra Associated with an Outer-Measure 

Theorem 111.25 concludes that there is always a straightforward way to construct a measure space from an 
outer-measure on a set. A definition summarizes this result: 

Definition III.27. Under the hypothesis of Theorem III.25, e@*) is called the a-algebra associated with p*. 

Now that all the preliminary work has been done, CARATHEODORY’S Extension arises naturally. 

Definition III.28. Let S be a either a boolean algebra or a a-algebra on S and p a measure on (S,S). I f  there 
exists a sequence (An),,€m* E S”’ such that 

then p is said to be a-finite. 

Example III.29. The counting measure # on ( N , 2 N )  is a-finite since e.g., N can be covered with singletons, 
each of those having, by definition, a unit thus finite counting measure. 

Theorem III.30 (CARATHI~ODORY’S Extension). Let S be a boolean aZgebru on S and 6 ( S )  the a- 
algebra on S generated by S. Any a-finite measure on (S,S) can be uniquely extended to a o-finite ineasure 
on (S, (W)) .  

Pr00.f The proof results directly from Lemma 111.23 and Theorem U1.25; the only part which remains to be 
0 proved is the fact that G(S) C G(p*). This is left to the reader as an exercise. 

Now, this technique permits to exhibit particular measures having the relevant properties. 

Corollary III.31. IfF E BE is a right-continuous nondecreasingfimction, rhen there exists a unique measurn 
p defined on (B, 8) such that 

(\d3a,bI c R) p(la,bl) = F(b) -q4. 
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ication of Theorem 111.30. 0 

Definition III.32. Under the hypothesis of Corollary II1.31 and in the particular case where F is the identity 
over Rd, p is called the BUREL measurn 012 B*. 
Rernat-k III.33. At this stage, it should be noted that the BOREL measure on IR complies with Axioms III.1 
and I11.2 by construction. In partic the measure of a real sbgleton (which is a BOREL set as mentioned 
in Remark 11.7) is 0. 

Are we there yet? No, since there are still pl sets which could be measured with very 
itional efforts (e.g., Example 11.10 But it is already possible to apply these 
sults to reformulate the concept of on functions in a very generic way: 

Definition III.34. A cumulative distrtbution function, or CDF, on B is a right-continuous nondecreasing 
function F E EO,-[" such that F(-m) = O  and F(-)  = 1. 

Using CARATH~ODORY'S Extension, it immediately follows that: 

Theorem III.35. Let F be a CDF on IR There exists a unique pm6ability measure, also denoted F, on 
(It,%) such that 

(V}a,b] C B) F(]a ,b ] )  = F(b)  -F(a ) .  

Pmot The proof is immediate, from Corollary 111.31, except for the fact that F is indeed a probability 
measure on (a, d) . This arises because ] - n, n] t W, thus, 

F ( R )  = lip FO - n,n]) = lim(F(n) - F(-n))  = 1 - 0 = 1. 

0 

Corollary III.36. Any CDF on B is the CDF of a real random variable. 

PrwJ This results directly from the fact , as explained in Remark 11.50, on each probability space 
X with PDF Px = P O X .  

Example 111.37. If j i  denotes the BOREL measure on &, Q is a zero measure set in (R,%,p) since, for any 
bijection cp E $" (its existence is guaranteed by the denumerability of Q), 

(R, 8, P) can be defined a real random vmi 

P(Q) =i4(P(W) = P  

111.4 Measure Completion 

III.4.1 Complete Measures 

Measure completion consists of enriching, at no cost, a o-algebra with sets or set differences whose measure 
is equal to 0. 

Definition III.38. Given a measure space, a zero meuswe set is a measurable set whose measure is equal 
to 0. 
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Exanzple I11.39. 0 is a zero measure set of (IN,2",#). Moreover, it is the only zero measure set of this 
measure space. 

It is clear that any measurable subset of a zero measure set is also a zero measure set. However, any subset of 
a zero measure set is not necessarily measurable, although this would be a practical situation. The following 
concept is therefore introduced 

Definition III.40. A measure space is said to be complete if every subset of a zero measure set is measurable. 

Exnmpte 111.41. (IN,2",#) is a complete measure space since its only zero measure set is 0, which belongs 
to the 0-algebra. 
ExampZe 111.42. The measure space (S,G,p) defined in Example 11.14 is not complete since p({O, A}) = 0, 
but neither (0) nor {A} are measurable. 
Renzark 111.43. Although the notion of completeness is defined for measure spaces, it is also accepted to use 
it for measures, when no confusion is possible: saying that p is complete means that the underlying measure 
space (S, 6 , p )  is complete. 

In the case where a measure space is not complete, a natural question arises: is it possible to complete" it? 
The following result addresses this question: 

Proposition IU.44. v(S,G,p) is a measure space and 

W = { E  C S : (3(A,B) E G2)  A C E C B, p(B \ A )  = 0 } ,  

then (S,W) is a measurable space. In addition, under the above conditions regarding A, B and E ,  and 
defining thefruzction on by F(E) = p(A) ,  (S ,  is a complete measure space. 

ProoJ The first part of the proof concerns the measurability of (S, W): 

i. by definition, (3 c CY', thus, S E CY; 

ii. on the one hand, if A C E C B, then Bc c E' C AC; on the other hand, AC \ Bc = B \A, thus, if E E w, 
so does E'; 

iii. similarily, if for all n in IN" Aa C E,, C BI1, then 

while 

Thus, if for all n in IN* p(& \A,?) = 0, then 

which proves that W' is closed for denumerable union. 

= 0, 

"intuitively, as it is done for incomplete metric spaces. 
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Now, the second part of the proof consists of establishing that 5 is a measure on (S, e.), based in particukir 
on the fact that, by definition, Zls = p: 

iv. first, it must be ensured that actually is a function in [ O , = J ] ~ .  Definition and target sets are obvious, 
but is must be checked that it is indeed a function, i.e., each E in 6:. has one and only one image under 
Z. The existence is ensured by construction of 15. and concerning the uniqueness, assume that the 

2 in 6: are such thatAl c E c B I ,  A2 c E c BZ, p(B1 \AI) = 0 andp(&\A2) = 0. 
In this case, A2 \A1 c B1 \AI, thus, 

=IFI(A2)+P(A2\AI) =cI(A2), 

which proves the uniqueness of @(E) = p(A1) = p(A2); 

v. 0 E e thusZ(0) = p ( 0 )  =o; 
vi. for any sequence ( E n ) , t E ~ *  of pairwise disjoined meawabb (with respect to (S, 6:")) sets, using the 

same notations as for (iii) above, the A, are pairwise disjsinded, since for all n in N* A,, c En. Hence. 

since p is a measure on (S, 6). 

The last part of the proof concerns the completeness of (S, CY'$): given any zero measure set E in W, there 
exists, by definition, (A, B) in B2 such that A C E C B and p{B \A)  = 0. In particular, p(A) = Z(A) = 0, thus, 

A B )  =CIw +P(B\A) = 0- 

Now, any subset F of E clearly satisfies 0 C F c B and P(B \ 0 )  = 0, thus, F E B", and therefore P ( F )  = 
0. 0 

Definition III.45. Under the hypothesis of Proposition 111.44, (S,W$) is said to be the complefion of 

EXERCISE 111.46. Complete the measure space (S, 6 , p )  defined in Example 11.14. 
Reinark IlI.47. Caution must be used when handling the concept of measure space completion when S is 
also equipped with a metric: there might be an ambiguity with completion in the sense of convergence of 
CAUCHY'* sequences. 

(S, e#). 

III.4.2 BOREL-STIELTJES Measures 

Theorem III.48. Under the hypothesis of Theorem 111.25, (S ,  6 : ( $ ~ , p * ~ G ~ ~ ~ )  is a complete measure space. 

Pmoj Exercise. 0 

Remark 111.49. As a consequence of the restriction of pJ from 6w) to e(8) in CARATHI~ODORY'S Exten- 
sion, (S, 6 ( S ) , p ' )  is not necessarily complete; for instance, this is the case for BOREL measure spaces. 

'*Augustin CAUCHY, French mathematician, 1789-1857 
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Definition I I I S O .  Under the hypothesis of Corollary 1II.3 1 ,  the complete measure ji defined on the 0-algebra 
%p is called the s71ELTJES'9-LEBESGUE measure on 1R. induced by F. In particular, if p is the BOREL measure, 
then W (resp. 4 = ii) is called the LEBESGUE 0-algebra (resp. LEBESGUE measure) on IR and denoted C (resp. 

Remark III.51. For the sake of simplicity, the STIELTJES-LEBESGUE measure induced by a right-continuous 
nondecreasing function F E IRR is often also denoted F. Provided basic caution, this notation is unambiguous 
while being very intuitive. 

0. 

'gThomas STIELTJES, Dutch astronomer and mathematician, 18561894. 
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IV LPSpace~ 

This new integral of Lebesque is proving itself a wonderfil tool. I might compare it with a 
modern Ki-upp gun, so easily does it penetrate barriers which were impregnable. 

E.H. VAN V L E C K ~ ,  in Bulletin of the American Mathematical Society, 23 (19 16) 

In this Chapter, (S,G,p) will denote a measure space. 

JY.l Integrals of Positive Functions 

IV.l.l From Measures to Integrals 

In order to avoid handling special cases at = in the definitions and results presented below, the usual arithmetic 
of [O,=[ is extended to [O,=] by the means of the following conventions: 

i. for all a in [O,=],  a + = = = + a  = =; 

ii. for all a in [O,-]', a x = = 00 x a = =; 

iii. 0 x = = 0. 

Remark IV. 1. Note that the arithmetic of limits is consistent with the two first conventions, but not with the 
third one since 0 x =, in the case of limits, is not necessarily 0. 

Definition IV.2. Let u be a measurable simple function in [O,W[~, thus, with the notations of Proposition 11.44, 
u can be written as follows: 

The integral of 11 is defined as: 
n 

Proposition W.3. Under the previoiis assumptions, the integral of if is independent of the representation 
chosen for u: it is a unique value in [O,=]. 

Pwo$ Exercise. 0 

Definition W.4. Let f be a measurable function in [0,=Is. The integral of f is defined as: 

1 1 f dp = sup { / u  dp, CI E [0, -ES, u measurable simple, LI < f 
''Edward B. VAN VLECK, American mathematician, 1863-1943. 
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Remark IV.5. In the case where p is the STIELTJES-LEBESGUE measure 1, de is often denoted by dx, be- 
cause L is induced by x e x. Although not rigorously correct, this notation is acceptable when there is no 
risk of confusion. An advantage of this is that it permits rehievd of the classic RIEMANN-integrd 
notation since JR f (x) dx is equal J f di! for any f that is RIEMANN-integrable over Ht. 

Definition IV.6. Iff is a measurable function in [0,=Is and E belongs to 6, define 

Remark IV.7. The fact that f I E  is measurable is guaranteed by Corollary II.39. 

Proposition IV.8. 

i. Iff and g are two measiarablefidnctions in [0,=Is such that f < g, then 

Proof: 

i. For any measurabk simple function u in u < f implies M < g. Thus, 

1 tr dp, u E [0, =[’, ii measurable simple, u < f 
C { /udp,u E [O,=[’,u measurable simple,rr < g 

whence the conclusion arises immediately. 

ii. Clearly, u is simple if and only if cu is simple, thus 

c f dp = sup u dp, I I  E [0, -[’, 11 measurable simple, u < cf 

= sup { /cudp,u E [O,-[’,u measurable simple,w < f 
= csup { /udp,u E [O,=[’,u measurablesimple,u < f 
=c/fdp. 

s { J  
1 
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Proposition IV.9. I f f  is a nieasurablefunction in [O,=]’ and E belongs to G, then 

p ( E ) = O  / f C = O .  
E 

Pmo$ By definition, 

f dp = /fm, d,u = sup { Judp, u E [O, -[’, u measurable simp]e,u < f I E  . } 
With the notations of Proposition II.44, any measurable simpie function u in [O,-[’ can be expressed as: 

where n is in IN* and the Ai are pairwise disjoined measurable sets. Now, if u < f PE. it is clear that 14 = lrIE 
(since u must be zero on EC).  Therefore, 

thus, 

but, combining the n 

thus, 

Finally, 

n-neg 

= aip(Ai n E >  

tivity of measures and Proposition 11.15, 

(VI <i< in)  O < p ( A i n E )  < p { E ) = O ,  

/udp = f: aip(Ai n E )  = 0. 
i= 1 

sup { /udp, LL E [Oy -Is, zl measurable simple, I I  f f n E  = sup(0) = 0. } 
ExampZe IV.10. Iff is a function in [O,-]“, then, using the fact that Q is a zero BOREL measuTe set as 
explained in Example I11.37, it follows that JQ f dL = 0. This illustrates one of the advantages of the Lebesgue 
integral over the RIEMANN one, since the latter does not permit to integrate over Q. 

IV.1.2 Monotonic Convergence Theorem 

Lemma IV.11. Let u be a measurable simplefunction in [0,-[’. The mapping v defined on B by 

(VE E 6) v(E)  = /udp 
E 

is a measure on (S,  6). 
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Proog With the notations of Proposition 11.15, u can be wrirten as 

n 

t 1 
14 = ai%, 1 

where n is in IN* and the Ai are pairwise disjoined measurabIe sets. Therefore, 

i. p ( 0 )  = 0 since, for all i, aiilAiilpr = 0. 

ii. For any sequence (Ek)kEp of pairwise disjoined measurable sets, their union being denoted E ,  

0 

Theorem IV.12 (Monotonic Convergence or Beppo LE VI'S^^ Theorem). If ( J , ) n E ~ *  is a sequelice of 
measurablefunction in [O,=Is such that 

(V. E IN*) fn < fn+l 

then f is a nzeasurablefunction, and 
Jf dp = ]i,m J h  Q. 

Proof. The measurability of f results directly from Corollary 11.41. Now, the sequence ( j fn dp)nEN mono- 
tonically increases, thus, it has a limit L E [Ol-]. Since fn < f for all n in IN*, then Jf,,d,u < Jf dp, and 
therefore L < Jfdp. Let u be a simple function in [O,W[~ such that c4 < f (this is always possible, according 
to Theorem I1.46), and for any given c in 10, 1 [. define 

(Vn E N*) E,, = (X E S : fn(X)  3 CltJ l (X) )  * 

For dl n in IN*, En is measurable, E,, c E,,+I and E,, c S. Moreover, for all x in S, fn(x) + ~ ( x )  > cu(x), thus 
there exists n E IN* such that x E E,,; therefore, 

u E,, = S.  
JV%' 

Now, 
(VnEIN*) / . f n d p 2 J  J 2 d p 2 c  J ud,u 

En En 

"Beppo LEVI, Italian mdthematicial, 18761961 
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hence, according to Lemma IV.11 and Proposition II.19, 

and this is true for all c in IO,][ and all simple functions u in [O,=[’ such that u < f, thus 

~2 sup c Judp= Ju+ 
O<c<l 

and 

L > sup { J u c i p , ~  E [O,+’,U measurable simple,u < f  = f d p  

0 
> J  

whence, finally, L = Jf dp. 

Corollary 1x13 (FATOU’S~~ Lemma). I f ( f n ) n E ~ ~  i s  a sequence ufmeaszrrablefuncrion in [O,-]’, then 

/limpffndp < liminf fndp. 
81 I 

Proof: For all k in IN, define g k  = Infn>kftr and ak = Infn>kJfndp. By definition, the sequences (g&N 
and ( a k ) k ~ ~  monotonically increase, thus tends to, respectively, liminf, A1 and lim inf, J f n  dp (each of these 
limits can be infinite). Now, for all k in IN and all n > k, gk < f;, thus 

pk E ~ ( v n  > k) j g k d p  < J f n  + 
hence 

(Vk E IN) Jgkdp < Inf J f .  dp = ak- 

Now, according to Proposition 11.40, the gk are measurable functions, thus applying Theorem 1V.12 to (gk)kEar 
show that liminf,f,, is measurable and that, in addition, 

n>k 

IV.1.3 Additivity 

Theorem Iv.14. r f  f nndg are two nzensurublefunctions in [O,m]‘, then 

J ~ + g ) d p = J f d p +  J~c.  
PIDO$ This result is established, first, for simple functions, then generalized to all measurable functions. 

77 --Pierre FATOU, French mathematician and astronomer, 1878-1929. 
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Let f and g be two measurable simple functions in [O,m[S, i.e., according to Proposition 11.44, there exists 
Iff is a simple function in Ets, then there exists ( n , p )  in IN*2, ( a i ) l ~ i < ~  and ( b j ) l < j < p  in [O,-[, n pairwise 
disjoined measurable sets (Ai) I and p pairwise disjoined measurable sets (bi) 1 <i<p such that: 

f = 
g = C;=1 b i b j  
S = Uy=lAi = UiP,IBj 

from which it follows directly tbat f + g takes at most n p  non-negative values (among all a; + bj >, 0), thus 
is a simple function in (O,-[. In addition, Corollary II.39 shows that f +g is measurable, hence, according to 
Lemma IV. 11, the mapping defined over B by E c) JE (f + g)  dp is a measure on (S, 6). Now, 

* thus, since the A; n B j  are pairwise disjoined, 

Now, i f f  and g are any two measurable functions in [O,=]', Theorem II.46 shows that there exists two 
sequences ( z i i l ) , , E ~ +  and ( V , , ) , ~ ~ H +  of simple measurable functions in [(I,-[', such that: 

(Vn E N*) 

(Vn E N*) 

lln < iin+l 

(Vx E S)  limit it&) = f(x) 

(Vx E S)  limn v,~(x) = g(x) 
vri < \',+I 

which implies that 
(Vn E IN*> un + vi1 ,< un+~ + v n + ~  

thus, according Theorem IV.12 applied to the sequence(u, + V , ~ ) , ~ N L  of measurable functions in [O,-[', f +g 
is measurable and 

/(f +g) dp = li," (u, +vn'n)dp J 
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IV.1 Integrals of Positive Functions 

but, since the additivity of dp is already proven in the case of simple measurable functions, it finally follows 
that 

/( f +g)dp = lim / u n  dp+lip/vn dp = / f dp + /gdi. 

0 

Theorem IV.15. If(fn)rtEw* is a sequence of nzeasiirablefirnctions in [O,m]' and f is defined by 

P x  E f(x) = fn(x> 
nEH' 

then f is measurable on [O,=]' and 

P m J  For any k in IN*, define 

By definition, (&a* monotonically increases and, for all x in S, limkgk(x) = f (x) while, for all k in IN*, 
gk(x) < f (x). In addition, it follows fromTheorem IV.14 that 

thus, it follows from Theorem IV. 12 that 

0 

Remark IV.16. The series &iAi(x) might well be divergent, in this case f(x) = 00 since all fn (x )  are non- 
negative. 
Example IV.17. In the case where the measure space is (IN,2",#), Theorem 1V.15 shows directly that, if 
ajj > 0 for all i and j in IN*, then 

aij = aij 
iE#* j€N* jEN* iEH* 

in a much more straightforward way than the classical Theory of Series does. This result is no longer valid if 
the non-negativity does not hold. 

Iv.1.4 Density 

Theorem IV.18. Let f be a meas~lrablefitnction in [O,=]s and define the mapping v over 6 by 

(VE E 6) V ( E )  = Jfdp. 
E 

i. (S ,  G,v) is a measure space. 
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(IV.1) 

i. It is clear that v is non-negative and that v(0) = 0. Now, for any sequence ( A n ) , l E ~ *  of pahvise 
disjoined sets in 6” with denumembfe u denoted A, one has 

f g A  = f a A ,  
nEN* 

thus, since all f a A ,  are measurable, it follows from Theorem IV.15 that f 4 is also measurabk, with 

or, equivalently. 
v(A)  = v(An)- 

JlEW* 

ii. If g is simple then, according to Proposition H.#, there exists n in N* real numbers (ai)l<i<a and R 
pairwise disjoined measurable sets (Ail1 <i<n such that: 

g = C g l a i k i  I S = UkIAi 
thus, using the definition of v combined witk Theorem IV.14, 

Now, if g is any measurable function i 
(un)jlCm* of simple measurable fmtions iR  [O,m[S, such that: 

,=]‘, Theorem 11.46 shows that €here exists a sequence 

(Vx E S) limn uJI(x) = g(x) 
thus, in particular, 

(Vn E N*) &If < &!+If { (vx S, lirnJt %(x)f(x) = dx)f (.) 
whence, according to Theorem IV. 12, 

/gdv = l i p  Ju ,dv  = lim Junfdp = Jgfdp 

Definition W.19. Under the assumptions of Theorem IV.18, it is said that the measure v has the densify f 
with respect to p ,  written dv = f dp or, if no confusion i e, v = f p .  
Remark IV.20. No specific meaning is granted to d i dp; it only means that (IV.1) is hue for any 
measurable function g in [O,-]. 
Proposition IV.21. I f F  E %“(3R.) is non-decreasing, then dF = F ’ a .  

Proof: Exercise. 0 
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IV.2 Probability Density Functions 

IV.2 Probability Density Functions 

In this Section, (T ,Z ,p )  will denote a measure space, where (T ,Z)  can be either a finite set along with its 
power set or (Etd, ‘13”). 

Definition Iv.22. Let ( S , @ , P )  be a probability space, andX a random variable in T S .  Iff is a measurable 
function in [O,=LT such that dPx = fdp, then f is said to be the probability densipfunction, or PDF, of X 
with respect to p .  

Remark IV.23. This denomination is consistent with the notion of density in the more general case of measure 
spaces and measurable functions. When no confusion is possible, the mention to p can be omitted. 
Example IV.24. Let X be a discrete random variable with two possible values, I and 0, with respective 
probabilities p E [0,1] and 1 - p. X can, e.g., model the outcome of a coin toss. Hence, (1 - p)Il{,} + p a { ] }  
is the PDF of X ,  since: 

X is said to have the BEIWOVLLI~~ distribution with parameter p ,  denoted B(p). 

Definition IV.25. Let (S, 6 , P )  be a probability space, X a random variable in TS with PDF f ,  and cp in ET 
a measurable function. When the following integral exists and is finite: 

it is called the moment of cp(X), denoted E [ c p ( X ) ] .  For n in IN* and when they exist, E [ X n ] ,  E[IXI’*] .  
E [(X - l E [ X ] ) ” ]  and E [IX - E [XI I”] are respectively called nIh moment, n“ absolufe moment, n”‘ centered 
moment and n”’ absolute centered nzoment of X .  In particular, the first moment and the second absolute 
centered moment are respectively called expectation and variance of X. The latter is also denoted V [ X ] .  

Remark IV.26. According to Theorem IV.14, when V [XI exists it is equal to E [ X 2 ]  - E [XI2. 
Example 1V.27. If the discrete random variable X has: 

- the BERNOULLI distribution B(p), then 

E[X] = /Idfa# = 0(1 -p)#{O) + Ip#{l) = p 

V[X] = /1(1- p)Id12 f d# = p2(1 -p)#{O) + ( p  - l)*p#{ 1) = p(1 -p ) ;  

- the PDF n i+ k($+l) with respect to the counting measure on (IN,2”), then it has no expectation, 
since C l l E ~  + = 00. n +l 

23Jacob BERNOULLI, Swiss mathematician, 1654-1705 
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Proposition IV.28 (MARKOV Inequality). If X is a non-negative real random variable with probability 
distribution PX and expectation lE[X], then 

Piuof. For a11 E in [0, -[*, 

0 

Corollary 1x29. IfX is a i-eal random variable with pivbability distribution Px and expectation E [XI, then 
for all n in N* such that the n"' absolute centei-ecl moment of X exists, 

Proof. It suffices to apply Proposition IV.28 to IX - E[X] I". 0 

Remark IV.30. In the case n = 2, c o r n b y  N.29 becomes the BIENAYME24-i5EBIeEV25 hequdity. 

IV.3 Integrability 

N.3.1 Integrable Functions 

Definition 1x31. For any given f E [-=,=IsI define the following functions of [0,=]': 

f+ = m=(f,O> 
f = ma(-f,O). 

Rentark 1V.32. Clearly, for all f E [-..,=Is. f = ff - f- and If I = f+ + f-. 
Definition IV.33. A function f E [-=,m]' is said to be p-inregrable if it is measurable and if 

In this case, the p-integral of f is defined as follows: 

Remark IV.34. If p is a LEBESGUE measure, then the expressions LEBESGUE-integrable and LEBESGUE- 
integral can also be used. Another advantage of the LEBESGUE Integral appears here: Definition IV.33 
does not make sense in the context of the RIEMANN Integral; it suffices e.g., to consider the function 
f = I$o,J]~Q - I[o,~]\Q, which is LEBESGUE-integrable with 11 f I d& = J f d l  = 0. Now, in the context of 
the RIEMANN Integral, Jlf(x)\ dx = I but J f (x) dx does not exist. 

241rhie-Jules BIENAYME, French civil servant and mathematician, 1796-1878. 
25Pafnuti ~ E B I ~ E V ,  Russian mathematician, 182 1-1 894. 
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IV.3 Integrability 

Exanzple IV.35. Let consider the function cos, which belongs to R”. One has: 

/If1 dl = /qo,,,l cos IU < Jqo,Y@ = It < O0 

and f is LEBESGUE-integrable. Now, f+ =B[o,zl cos and f = -ll[-n 0] cos, thus 
2 ,  

because of the symmetry of cos with respect to f . 

The definition is now slightly modified for complex-valued functions; the two cases are not comprised in a 
single definition, since the complex case does not allow for infinite values (since no such topology has been 
defined): 

Definition IV.36. A function f E Cs is said to be p-integrable if it is measurable and if 

JlfIC<- 

In this case, the yintegral off is defined as follows: 

Exnntple 1V.37. Iff E @“ is defined by f ( t )  = e’B[o,xl(f) for all t E R, then 

/ I f 1  d l  = Jqo,, d l  = 

I 
therefore f is LsBEscuE-integrable. Moreover, %(f) = B[O,~] cos, 9 (f) = B[o,,l sin, thus, using the results of 
Example IV.34, 

/f d l  = /I$,,,] cos d l  + i qO,,] sin dL = i /sin ll[o,,l d l  = i l r s i n r d r  = 2i 

since sin is continuous over [O,X] thus RIEMANN-integrable. 

Proposition IV.38. Iff is ,u-integrable, then 

PIDO$ Let z = Jfdp; z is a complex number and thus there exists a E Q: such that 
N = %(af), then ii < I f 1  and 

= 1 and IzI = w.. If 
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113.2 Almost Everywhere 

on of a measure, a zero measure set is not necessarily empty; moreover, as explained in Subsec- 
tion III.4.1, if the measure space is complete, all subsets of zero measure sets are, themselves, zero measure 
sets. This apparently benevolent aspect wifl actually prove to be one of rhe most convenient features of the 
LEBESGUE integral. First, it allows to define a more general form of equality, as follows: 

Definition IV.39. A property P(x) defined for x E S is said to be true yalmost everywhere, abbreviated 
j.t-a.e., if there exists a zero measure set A such that P(x) is true for afl x E AC. In the context of a probability 
measure, the expression almost surely is generally used, instead of almost everywhere. 

Remark IV.40. It is important to understand why the definition of truth almost everywhere is given in such 
an (apparently) obfuscated way: the set of all x for which the property is m e  (or false) is not necessarily 
measurable. An alternate way of understanding the definition is to consider the following equivalence: 

A'C(~ES:P(X)}  ( x E S : ~ ' ( ~ ) } C A  

and to see hvth almost everywhere as the fact that the set of all x for which the property is false is a subset of 
a ze 
Example IV.41. Iff and g are two functions defined over S, 

e space. Obviously, if ( S , 6 , p )  is complete, this difficulty vanishes. 

f 2 g (34 E ei,p(A) = O)(Vx E A') f (x) = g(x)  

and '2 is clearly an equivalence relation. In the context of probability measures, 2' 
Exampte IV.42. If ( f n ) n E p  is a sequence of functions defined over S, 

f i t  f * (34 E B,p(A) = O)(Vx E A') lim f (x) = limg(x). 

o acknowledge that is a pointwise convergence (Le., in the target set, and not in the 

Remark IV.43. In fact, the principle of truth almost everywhere turns out 
Measwe Theory, since it allows to consider functions which are defined " 
such a function, ie . ,  f is defined in the complement of a zero measure set A, then define (over the entire S) 
the functionI= f &c; by definition, f shares the same properties {measurability, integrability and integral) 
as those of f .  This convention is clearly consistent with everything done before. and extends the scope of 
measurable functions. 

From now on, everything will have to be understood in this context. 

Proposition IV.44. Let f be a non-negative rneasumblefunction; then, 

/ fdp=O * f g 0 .  

Pmo$ Let f E [O,w]' be measurable. First, iff %' 0, 

(34 E G,p(A)  = 0)Px E A') f (x) = 0 

thus, by additivity and because of Proposition IV.9, 
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Conversely, assume S f dp = 0 and define 

(VnEIN*) A,, = xES:f(x)  2 - . { n 7 
s 

Now, for all n E IN*, til.,, ,< f thus 

(Vn E IN*) p(A,) < n fdp  = 0 

and, because of Proposition 11.19, 

The following theorem is, in many respects, one of the most powerful results of Measure Theory: 

Theorem IV.45 (LEBESGUE Dominated Convergence Theorem). Let ( f n ) n E ~ ~  a sequence of p-integrable 
functions such that fn f and: 

then f is p-integrable a.e. and 

i. limn J Ifn - f l  dp = 0; 

ii. limn Jf,, dp = Jf dp. 

Pmo$ By hypothesis, there exists a zero measure set A such that, for all x E A', lim,Ifn(x) = f(x). Using 
the same conIentions as in Rema@ IV.43, fl is the pointwise limit o$ the sequence of the pintegrable, thus 
measurable, fn functions; hence, f is measurable and, since lfl < g, f is p-integrable. For the sake of clarity, 
and because this does not change anything to the result, f is now used, instead off? Applying FATOU Lemma 
(Corollary lV.13) to the sequence of functions defined by h,, = 2g - If,, - f l  leads to 

/2gdp,< Sliminf2g- Ifn-fldp=2g-/l iminf(f; ,--fl~ 

/ f iTpf l fn - f~dp<o  

I"," Ifn - f l  dp = 0. 

i.e., 

whence 

Finally, 

from where the second equality arises. 0 

59 



IV LP Spaces 

Corollary IV.46. If ( fn)nEB* is a sequence of measurablefuncn'ons of I--, -Is, then 

and, ifthis number is finite, then each lJl I is p-integrable, the series xnEm*fn pointwise converges a.e. and 

Proo$ Exercise. 

IV.3.3 9' Spaces 

First, a new bind of conjugation is introduced 

Definition IV.47. Any two positive reals p and q an: said to be conjugate exponents if f + 4 = 1. A5 a 
convention, 1 and 00 are considered to pertain to this case. 

Remark IV.48. Clemiy, if p and q are conjugate exponents, then both of them are in [I, -1. Moreover, given 
p E [I ,-I, there is only one p', such that p and p' we conjugate exponents. If p E]I,=f, p' = 5. 
Example IV.49. An important case is that of p = p' = 2. 

The following preliminary lemma will be very helpful: 

Lemma Iv.50. Given any (a, f3) E such that a + Q = 1 then, 

( V ( M , V )  E [0,-]2) u'@ < au+ pv 

ProoJ If u or v is 0 or -, the result is trivial. Otherwise, assuming s = In K and t = In v, the convexity of exp 
ensures rhat 

uavB = ew+C < aes + pe' = mi + pv. 

Theorem N.51 ( H ~ L D E R ~ ~  Inequality for Integrals). Given any p in 11 ,-[ #hen,for all measurablejknc- 
lions f and g of [O, -Is, 

1 I 
Prooj For the sake of clarity, define a = (J fPdp)p and b = (Sg" &)7. If a = 0 or b = 0, then f E? 0 or 
g 2% 0 thus J'fgdp = 0, and if a = - or b = 00 the inequality is obvious. Therefore, assume that both a and b 
are inlo,-[ and define F = 6 and G = f .  According tooemma IV.50, one has, p-a.e., 

1 1 
P 4 

F(x)G(x) < - F ( X ) P  + -G(x)B 

from which the result follows by integration. 0 

260tto H ~ L D E R ,  Cernian mathematician, 1859-1937. 
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Corollary 1x52 (CAUCHY-SCHWARZ27 Inequality for Integrals). For a11 measumblefrrnctions f and g 
of l0,=lS1 

Pmo$ Immediate, with p = p’ = 2. 0 

Theorem Tv.53  MINKO OW SKI^^ Inequality for Integrals). Given any p in 11,  -[ then, for all measumble 
filnctions f and g of [0, =Is, 

Pmo$ Exercise: use the convexity oft c) t P  and apply HOLDER Inequality to f(f + g)P-’ .  0 

DefinitionIV.54. Given any p E [l ,=[, the set of all measurable functions f E Cs such that lflp is p-integrable 
is denoted 4 9 p ( S , b , p ) .  on which the function 11-11, is defined as follows: 

Definition IV.55. A measurable function f E Cs such that 

(W E [O,=[) Y({X  E s : lf(X)I > M I )  = 0 

is said to be essentially bounded and the set of such functions is denoted L”(S, B , p ) ,  on which the function 
II.Ifw is defined as follows: 

( v ~ E ~ ’ ’ ( s , G , ~ ) )  llfllw=inf{ME [O,-[:P({XES: &)I >M}) =O}. 

Remark IV.56. The nomenclature hars several exceptions; in particular: 

- if no confusion is possible, YP(S ,G,p )  is often simply denoted 9 P ( p )  or even Y P ;  

- for any interval I C IR, although this is not consistent with the previous point, 2f‘ (I ,S(I ) , t , )  is gener- 
ally denoted 2 p ( Z )  in the literature and, in particular, LZ”’(lR) stands for 2l’(R,S,t). 

At the expense of a new definition, the essential properties of the 23”’ spaces can be elegantly summarized. 

Definition IV.57. A function 11-11 defined on a X-vector field E is said to be a sentinonn on E if: 

i. (Vf € E )  llfll 10; 
ii. M a , f )  E JK x E )  ll Wll = la1 Ilf II; 

iii. ( W f d  E E 2 )  Ilf+sll 5 Ilf II + Ilsll. 
”Hermann SCHWARZ, German mathematician, 1843-1921. 
**Hermann MINKOWSKI, Russian then German mathematician, 1864-1909. 
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IV LP Spaces 

Theorem IV.58. For all p E [ 1 , 031, 

i. .W’(S,Ei,p) is a C-vecrorjeld; 

ii. 11-11, is a seminorm on 9 p ( S y G y p ) ;  

iii. for all f E _EP”(s, G,,u) andg E -w’ 

Proof: Directly from H ~ L D E R  and MINKOWSKI Inequalities (Theorems IV.5 1 and IV.53). 

IV.4 From S’ to Lp 

IV.4.1 Quotientization 

First, it is useful to notice that, in the context of 9’ spaces, the equivalence relation 
in a more convenient way: 

Proposition W.59. Given any p E [ 1 ,-I, for all f and g in S p ( S ,  6 , p ) ,  

can be reformulated 

f E g  Ilf -g IJp=O.  

Proof: Because the modulus is positive definite, f (x) = g(x )  if and only if If (x) -g(x)lP = 0. Therefore, 

f E g  I f -g lPEO e /lf-glpdp=O 

according to Proposition IV.44, and the result follows by taking plh roots. 0 

Now, the following quotientization allows to get rid of “doublets”, i.e., functions which do not differ in terms 
of integration: 

Definition IV.60. Given any p E [1,-], LP(S, 6 , p )  denotes the quotient space of 9 p ( S , G , p )  by the equiv- 
alence relation E, or, in a more synthetic form, 

LP = Y P p .  

Remark IV.61. Lightweight notations similar to those described in Remark IV.56 are acceptable, when no 
confusion is possible, such as Lp(p), L’’(R) and LP(Z). 

Proposition W.62. For all p E [1,-], (Lp(S,C3,,cI),((-({p) is a normed space. 

ProoJ: By construction and because of Theorem IV.58, l / . l l P  is a seminorm on Lp(S,G,p). In addition, if 
11 f 11, = 0 then Proposition IV.44 shows that If IP E’ 0 thus, clearly, f E‘ 0; in other words, 11-11, is definite and 
therefore is a norm. U 

Proposition IV.63. IfI is  an interval of R such rlznr p(Z) < -, then 

0 
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IV.4 From 4 4 P  to LP 

ii. (V(p,q) E [lY-l2,p < q) L9(Z) c LP(1) and the injection is continuous. 

i. Given any f E L"(Z) and any p E [l , -1, one has 

L l f I P 4 u  < P V )  IVIIL .e O0- 

ii. Given any ( p , q )  E [1,-12 such that p < q and any f E LP(I), let denote J =Znf'-"([l,m]); by 
definition, over J lflP < If19 thus 

thus f E Lq(Z). Concerning the continuity of the injection, let h E LP(1) and apply H ~ L D E R  Inequality 
(Theorem IV.51) to the case where f = IhlP, g = 1, r = 9/p and s = 5: 

IV.4.2 Approximation in BANACH Spaces 

First, a few reminders: 

Definition IV.64. A seminorm 11-11 on a IK-vector field E is said to be a nom on E if: 

(Vf E E )  l l f l l =  0 f = OE.  

In this case, the ordered pair (E, 11.11) is said to be a normed space. 

Reinark IV.65. An equivalent definition is to say that a norm is posirive dejinite seminorm. In fact, the first 
axiom of Definition IV.57 implies that the converse of (IV.64) holds. 
Example IV.66. Defining the functions 11-111, 1 1 - 1 1 2  and ll-llo, on Kn as follows: 

I I ( ~ I , ~ ~ , - - - J ~ ) I I ~  = max Ixil, 1 <i<d 

then ( K d ,  ll.lll), (Eld,  1 1 - 1 1 2 )  and (IKd, 11.11J are normed spaces. 11-112 and 11-11.. are often referred to as, respec- 
tively, the euclidean norm and the supremum n o m  on Eld .  
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IV LPSpaces 

Any given normed space can be viewed as a metric space, by the distance between two vectws as 
the nom of their difference. Therefore, any given normed space turaliy be equipped with a topology, 
the one of its associated metric space. Except otherwise indicated, a normed space is always cons 
to be equipped with this topology. Now, the fust question that arises when toplogizing a set is that of the 
completeness; it is not true in genera3 that normed vector spaces are complete. Therefore, the foUowing 
particular class of spaces is introduced: 

Definition IV.67. A complete normed space is called a 

Example IV.68. All finite dimension normed p e s  are BANACH spaces. 
EXERCISE IV.69. Show that the converse statement is not true. 

space. 

The following result is often seen as a generalization of the famous RIEsz30-FIsCHER31 Theorem for L2 
spaces: 

Theorem IV.70. For all p E [l,-], (LP(S,6,p),l\-l],,) is R BANACH space. 

Proof. The case p = - is easy to estaldish: given a CAUCHY sequence ( f t i ) f z E N *  in 
consider,for all (n,m) E W2, 

6,p), it suffices to 

Using the fact S ’ ( S , 6 , p )  is a vector field, it foliows that for aN (n,nt) E 3N*2, fn -.Azl E . kpp(S ,6 ,p )  thus, 
by definition of l i - l lm,  p(An,,,l) = 0. Therefore, the de le union A of the Angn is a zero measure set 
while 

(cJxEAC) l.fn(x)-hii(x)\ < IIfia-finII.. 

i.e., ( fr) , jE~* is uniformely CAUCHY overAC thus converges uniformely towards a function f defined overAC. 
0 

Remark IV.7 1. To avoid obfuscation, Ce same ion f is used for the function of 9 P ( S ,  6,p) and it class 
representative in LP(S,B,p). In this sense f is uniquely defined in LP(S,e,p) while, in ..!P(S,@,p), f is 
only uniquely defined on AC. 
Rentark IV.72. When p = -, the results are no longer true; i.e., L’ (R) and L2(R) are not comparable. 

Theorem 1\73. IfZ c IR is a bounded interval, then, for all p E [l,-[, %‘:(I) is dense in LP(1). In addirion, 
@(Z) is dense in L”(Z). 

ng, e.g., f = 0 overA, (fn)nEa* tends to f in (LP(S,e,p), II-[],J. 

PmoJ Exercise 0 

Rentark IV.74. Focusing on the case where 1 = B and p = 1 is particularly instructive; in this case, The- 
orem IV.73 can be interpreted as follows: if the “distance” between two compact support continuous func- 
tions f and g is henceforth &fined as JRlf(t) - g( t )  I dt, then the completion of the subsequent metric space 
is, exactly, L’(1R) (through the previously mentioned canonical injection of L’(B) in .5Y1(R)). This shows 
that the LEBESGUE Integral is, undoubtlessly, the “good” generalization of the RIEMANN Integral. 

29Stefan BANACH, Polish mathematician, 1892-1945. 
30Frigyes RIESZ. Hungarian mathematician, 1880- 1956. 
3’Ernst FISCHER, German mathematician, 1875-1954. 
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V HILBERT Spaces 

Une gt?ome’trie ne peut &&e plus vraie qu’une autre ; 
elle peut seulement &tre plus commode. 

H. POINCARE32, [Poi021 

In this chapter, IK will denote a field which can be either B or 

C. Due to the extent of the topic, this chapter only provides an overview of the essential definitions and 
properties; for a more in-depth understanding, [Yos95j is particularily recommended. 

V.1 Pre-HILBERT Spaces 

In this Section, E, F and G are IK-vector fields. The goal of this section is the construction of the pre- 
HILBERT33 spaces by the formal definition of an inner product over a vector space. It is then explained how 
such an inner product can induce a norm and, therefore, a topology on the vector field. 

V.l.l Inner Products 

Definition V.l. A function f E FE is said to be h e a r  if: 

(V(a,P) E K2) (Vh,Y)  E E 2 )  f(m+ PY) = af(4 + P f ( Y )  

(V(a,P) E K2) (V(x,r) E E 2 )  f(m+ PY) =W(4 +BfW 
and conjugate linear i f  

Remark V.2. If IK = B, conjugate linearity and linearity coincide. 
Example V.3. Given a and b distinct in R, N E %‘([~ ,b]~) ,  and f E @([u,b]),  define 

S(f) : b,bI + It 
x t-) J,bN~,Y)f(Y) dY- 

One can prove that S(f) E ‘i?O([a,b]) thus that S is a function from @([a,b]) onto itself. In addition, S is 
linear since for all a and /3 in R and all f and g in @([u,b]) ,  

S(af+ Pg) = l b N x , Y ) ( a f ( Y )  + PdY))dY 

= a l b  N ( x , y ) f ( y )  dY+ P f k x , s ) g ( Y )  dr 

= W f )  + P W .  
3’Henri POINCAR& French mathematician, 1854-1912. 
33David HILBERT, German mathematician, 1862-1943. 
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V HILBERT Spaces 

Example V.4. The operator 2 can be seen as a linear mapping from %?I (Et) onto @(R) since 

Definition V.5. A function in GExF is said to be bilinear if it is linear with respect two both variables, and 
sesquilinear if it is linear (resp. conjugate linear) with respect to the first (resp. second) variable 

Remark V.6. It is equivalent to say that f E GExF is bilinear if: 

(V(XIJ2,Y) EE2  x F )  f(x1 +X2,Y) =f(xl,Y) f f ( X 2 , Y )  
(V(X,Yl,Yd E E X F 2 )  f ( W l  +n) =f(x,Yl)+f(Wz) 
(V(X,Y) E E x F)Cda E f(U%Y) = af(X,Y) = f (x,aY) 

and sesquilinear if: 

(V(n-lJ2,Y) E E2 x F )  f(X1 +X2,Y) = f(x1 ,Y) +f(XZ,Y) 
(V(X,Yl,YZ) E E x  FZ> f b , Y l  +n) =f(X,Yl) + f ( ~ , Y Z )  
(V(x,u) E E x  F)Pa E K) f (%Y) = af(w) 
(V(X,Y) E E x F )  Pa E f(x, ar) = W(X,Y)  

In particular, if IK = B then sesquilinearity and bilinaity coincide. 

Definition V.7. A linear (resp. conjugate linear, sesquilinear, bilinear) function into IK is called a linear (resp. 
conjugate linear, sesquilinear, bilinear) form over E .  The set of all continuous linear forms over E is called 
the topological dual of E and denoted E'. 

Remark V.8. In this context, the target set K is seen as a vector space over itself: each element of IK is at the 
same time a scalar and a vector. It is -vector field. When no confusion 
with the algebraic dual is possible, E' 
Example V.9. The trace is a linear form over 2Rn(IK), for all n E W*. 
Example V.10. The following mapping: 

(e,-): E ' x E  3 IK 
(fJ) c--) f(4 

is a bilinear form called the d~talizy pairing over E .  

Definition V.11. A function in EXExE is said to be symmetric if 

P ( X , Y )  E E Z )  f (w) = f ( Y 4  

v(x>Y) E E2)  f(X>Y) = m. and conjugate symmetric if 

Reniark V.12. If IK = lR,, then any conjugate symmetric mapping is symmetric, and conversely. 

Definition V.13. A hennitiun form is a conjugate symmetric sesquilinear form. 

Rentark V.14. In order to establish that a form is hermitian, it thus suffices to prove that it is left-linear and 
satisfies (V.1). If IK = R, a hermitian form is a symmetrical bilinearform (also called euclideanformn). 
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v.l Pre-HILBERT Spaces 

Definition V.15. A bilinear or sesquilinear form f over E2 is said to be degenerate if 

and non-degenerate otherwise. 

Definition V.16. A bilinear or sesquilinear form f over E’ is said to be positive definite if 

@k E E \ { O d )  f (X,4 > 0- 
Remark V.17. A positive definite bilinear or sesquilinear form is necessarily non-degenerate. The converse is 
clearly untrue: e.g., the bilinear form defined over lR2 by (x ,y)  I-) -xy is non-degenerate, but is not positive 
definite. 

Definition V.18. An inner product over E, generally denoted (-I.), is a positive definite hermitian form 
overE2. In this case, the ordered pair (E,(.!.)) is said to be apre-HlLl+ERTspace. 

Example V.19. Given two distinct real numbers a and b, E denotes here the K-vector field formed by 
%@([a,h]lK) along with its usual operators (sum of functions, multiplication of a function by a scalar). The 
mapping (-1.) is defined overE2 as follows: 

Clearly, for all ( f , g , k )  E E’, 

which proves that (-I-) is an inner product over E. 

V.1.2 Norm induced by an Inner Product 

Provided the following important results, it is possible to make a normed space from any given PE-HILBERT 
space, and therefore to derive an associated topolgy. 

Proposition V.20 (CAUCHY-SCHWARZ Inequality for Inner Products). If (E, (-1.)) is a ~E-HILBERT 
space, then 

@I(X,Y) E E2> I ( X l d  I ,< (.I.) (YlY) 1. 

ProoJ: The following three cases are considered: 

- if (yly) = 0, Le., y = OE, then the inequality is trivially satisfied; 
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V HILBERT Spaces 

- if (yly) = 1, then 
- - 

(x- (x1Y)Ylx- (XlY)Y) = (XI4  - ( 4 Y )  (XI34 - (.Id (XlY)+ ( 4 Y ) O ( Y l Y )  

= (44 - I ( 4 Y )  I2 
whence, since (x - (xly)ylx - (xly) y) 2 0, the inequality arises; 

- if (yly) # 0 then, assuming z = 4, one retrieves the latter case for x et z since (zlz) = 1; hence, 
bid 2 

and the result follows. 

0 

Proposition V.21 (MINKOWSKI Inequality for Inner Products). I f (E,  (-1.)) is  a ~W-NILBERT space, then 

I I I 
(x+ylx+y)~ < (xlx)' +(YlY)'. 

PmoJ: By definition of an inner product, for all (x,y) E E 2 ,  

(x+Ylx+Y) = (44 + (xlu) + ($4 + Db) 
= (x14 + (YiY) + 2WlY))  
< (44 + (YlY) + 21 (Xb) I 
< (44 + DIY) + 2(xlx)4 (YlY)t 

according to CAUCHY-SCHWARZ Inequality (Proposition V.20). Hence, 

(X+YlX+Y) < ((xlx)J +(Ylr)i)2 
and since both sides are non-negative, one can take their square roots while preserving the inequality. 0 

Provided this framework, the construction of a topology naturally associated to a PIE-HILBERT space now 
arises naturally: 

Proposition V.22. If ( E ,  (-1.)) is a pre-HILBERT space, then rhefollowingfidnction: 

11-11 : E --+ K 
x H (XI.): 

is n n o m  on E.  

PmoJ: It results immediately from the definition of an inner product that (-I-)& is positive definite. Positive 
homogeneity is trivial and the triangle inequality is just another way to formulate MINKOWSKI Inequal- 
ity (Proposition V.21). 0 
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Definition V.23. Under the hypothesis of Proposition V.22, 11-11 is called the nonn inducedby (-I-). 

Remark V.24. Except otherwise indicated, a pre-HILBERT space is always considered to be normed by its 
induced norm. 

The existence of the induced norm allows to extend many topological concepts, such as that of continuity. 

Proposition V.25. If (E,  (-1.)) is a$nite-dimensioPaalpre-HILBERT space, then its induced nonn C O R ~ ~ ~ U O L S .  

In addition, for any given y E E, the mappings over E by x I+ (xly) andx c) (yb) are also continuous. 

ProoJr In fact, these mappings are even uniformly continuous; for 11-11, this directly arises from the Triangle 
0 Inequality. Concerning the two other functions, it suffices to apply CAUCHY-SCHWARZ Inequality. 

As it is possible to associate a norm to each inner product, one naturally wonders whether the convene is 
true. The following result provides a convenient and intuitive necessary condition: 

Proposition V.26 (Parallelogram Law). I f (E ,  (-1.)) is ~ ~ W - H I L B E R T  space, rhen the norm 11-11 induced by 
(- I -) satisfies 

WJ(x,y) € E 2 )  Ilx+~112+Ilx-Yll2 =2(11x112+Ilrl12). 

Pmo$ By definition of ll.lls for all (x,y) E E2 one has 

whence the conclusion. 0 

Example V.27. Consider, for n E IN*, the vectors x and y in R" usual, such that all their components are 0, 
except x1 = y2 = 1. One has, on the one hand, 

while, on the other hand, 
~ ~ x + y ~ ~ ~ + ~ ~ x - y [ ~ ;  = ( 1 + 1 ) 2 + ( 1 + 1 ) 2 = 8 ,  

This suffices to conclude, because of Proposition V.26, that neither 1 1 - 1 1 1  nor 11-11.. can be derived from an 
inner pmduct on IR". To the contrary, the euclidean norm satisfies the Parallelogram Law in th is  p d c u l s  
case (in fact, it does in all cases, since it is indeed derived from the usual inner product on R"). 
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V HILBERT Spaces 

V.1.3 Orthogonality 

The abstract definition of an inner product allows the generalization of some classical Euclidean Geometry 
concepts and results to less intuitive geometries stich as those of functionat spaces. In particular, m h o  
is extended as follows: 

Definition V.28. Let E1 and E2 be two IK-vector fields, f be a bilinear form over E1 x E?. If (x,y) E E1 x E2 
is such that f ( x ,  y )  = 0,  then it is said that x and y are orthogonal with respect to f. 

Remark V.29. When the of confusion, the reference to the bilinear form is omitted; in this case, 
two vectors x and y will s be said to be orthogonal, denoted x I y .  particular, in the context of a 
pre-HILBERT space and e wise indicated, orthogonality will be stood with respect to its inner 
product. 
Example V.30. Given any bilinear form over E2,  OE is always orthogonal to all others vectors of E, including 
itself; the latter property is generally formulated by saying that OE is isotropic. 

Definition V.31. Let ( E , ( - [ - ) )  be a pre-HILBERT space. For anyA C E ,  the set 

A~ = {f E E’ : (VXEA) ( f , ~ )  =o) 

is called the onhogonal space of A. 

Proposition V.32. Because of the lefrlineari’ty of (-,-), AL is a vector s~i6space of E‘, even ifA is not a 
subspace. 

Proof: Immediate consequence of the left-linearity of (-, -), It shall be acknowledged that this property holds 
0 

Reinark V.33. In the case where E’ is ide ed to E ,  and in particular in the finite-dimensional case, the 
identification of (e,.) to (-1.) allows to view A‘ as a subspace of E and, therefore, to retrieve the euclidean 
p i n t  of view of orthogonality between vectors. 

Proposition V.34. Let (E,(-l-)) be ape-HILBERT space. For any n E IN* and any family (Vi)I<i<n E E” of 
pairwise orthogonal vectors, then 

even if A is not a vector subspace of E. 

Pmo$ It suffices to develop the left-hand side as follows: 

and the result arises because of the pairwise orthogonality of the V i .  0 

corohry V.35 (PYTHAGORAS34 Theorem). k t  ( E ,  (-1.)) be a pre-HILBERT space. The following State- 
inent holds: 

(V(X,Y) E E 2 )  x 1 Y * ll..+Y1I2 = 11..112 + llY1I2. 

%PYTHAGORAS OF SAMOS, Greek philosopher, mathematician and astronomer, cn.569BC-cn.475BC 
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V.2 Completeness-Based Projectors 

Pmo$ Immediate from Proposition V.34, with n = 2 and hl = h2 = 1. 0 

Remark V.36. In the case where IK = B, the converse of PYTHAGORAS Theorem is true, shce the proof 
of MINKOWSKI Inequality (Proposition V.21) then implies (x(y) = 0. However, this is no longer true if 
lK = C, precisely because, in this case, %( (xly))  = 0 does not imply (xly)) = 0; a simple counter-example 
can be exhibited with E = C2 equipped with its usual K-vector field sff~cture, over which the inner product 
is defined by 

andtakingx=(I,i),y=(-$1). 

(v(xl,X2,YI1Y2) E e) ((xlIX2)I(YI,Y2)) =x17i+x2E 

V.2 Completeness-Based Projectors 

By adding a topological requirement, namely completeness, it will now be seen that many important results 
classicaly viewed as pertaining to Analysis can be interpreted or established from a geometric standpoint. 

V.2.1 Convex Minimization 

Definition V.37. A PB-HILBERT space, complete with respect to its induced norm, is said to be a H/LBERT 
space. 

Example V.38. L2(lR,C,e), equipped with the usual L2 inner product defined as follows: 

( W g )  E L 2 ( I R , W 2 )  ( f l d L 2  = / f i d e  

is a HILBERT space. 
Remark V.39. When there is no risk of confusion, the identification between a HILBERT space (H, (-1.)) 
and H will be made, in order to simplify notations. This is consistent with similar mathematical conventions 
aiming at concision; e.&, a vector field is a triple (E,  +, .), but the usage is to refer to it as, simply, E. 
Example V.40. For all n E IN*, 6" equipped with ( - I - )  defined as follows: 

i=n 

i= 1 
w x =  (xi)l<i<n E CJi) (V.Y = (.Yi)l<i<n E e',) (x-1~) = C-riF 

is a HILBERT space, by transport of the completeness of 6. 
Example V.41. The set -!* (6) equipped with the inner product defined as follows: 

is a HILBERT space. 
Remark V.42. By definition, a HILBERT space is also a BANACH space. The converse is not true, as exhibited 
by Example V.27. 

It is now possible to establish one of the most important Optimization results: 
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V HILBERT Spaces 

Theorem V.43 (F. RIESZ Theorem). Let @,(-I-)) be a ~ ~ V - H I L B E R T  space and 1l-H its induced norm. 
IfA # 0 is a complete convex subset of E, then minA 11-11 exists a d  is reached only once. 

Pro05 The norm ll-li satisfies the Paralielogram Law (Proposition V.26), which can be equivalently written 
as follows: 

2 
(VblY) (a2) M.-YIl2 = 2(11x112+llYl12) - 4 ~ ~ ~ ~ ~  X + Y  

thus, defining 6 = i n f r a  IIxII, it 

W'(X,Y> E A2) Ilx - Y1I2 Q 2( Ic.1I2 + llYL12 ) - 46' (V.2) 

since the convexity of A ensures that 
EXISTENCE: Let ( X " ) , & ~ N *  E AN* be such  at limn I]x,II = 6, which is always possible since the sequence of 
norms is a real sequence and IR is complete. According to (V.2), one has 

E A. The proof is now split into existence and uniqueness aspects: 

M n , m )  E H * ~ )  \ I ~ ~ ~ - ~ ~ I I ~  < 2(Iixnt12 -s2+~ixln~t2 -a2) 
thus (x,),~N* is a CAUCHY sequence in A. By hypothesis, A is complete with respect to 11-11 and therefon? 
this sequence converges towards a limit in A; necessarily, lim,x, = 6. 
UNIQUENESS:  If 6 is reached in x and y, then it foHows directly from (V.2) that IIx - y1l2 = 0 thus x = y, since 

0 a norm is positive definite. 

In the context of HILBERT spaces, the theorem can be expressed in a somewhat lighter formulation: 

Corollary V.44. ZfA # 0 is a convex subset of a HILBERT space with induced norm 11-11. then minA 11-11 exists 
and is reached only once. 

Prooj Trivial: if H is a HILBERT space, &en it is complete and therefore A, being a closed subset of H, is  
I3 also complete and the conditions of Theorem V.43 are satisfied. 

V.2.2 Best Approximation Projector 

An important consequence of F.RIESZ Theorem concerns the best approximation among a complete set: 

Corollary V.45 (Best Approximation Theorem). Let (E ,  (-1.)) be a ~ E - H I L B E R T  space and A # 0 be a 
complete convex subset of E. For 411 x E E, the twofollowing properties are equivnlenf: 

In addition, for all x E E, there exists one and only one PAX E A which satisJies these properties. 

Pivot Exercise. 0 

Remark V.46. As for Theorem V.43, if E is a HILBERT space, it suffices to know that A # 0 is a dosed 
convex. 
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n 

Figure 5. Best approximation on a complete convex subset. 

The Best Approximation Theorem is illustrated by Figure 5 ,  and formalized by a new definition: 

Definition V.47. Under the assumptions of Theorem V.43, the mapping P from E to A defined by PA : x c) PAX 
is called the best approximation projector fmm E onto A. 

And, in particular, 

Proposition V.48. The best approximation projectorfrom a ~W-HILBERT space onto any of its convex com- 
plete non-empty subsets is an idempotent contraction. 

Proof: Given any best approximation projector P from a pre-HILBERT (E,( .I-))  onto a convex complete 
non-empty A c E, the idempotence is immediate since P ( E )  C A and, for all y E A, P(y)  = y. In addition, 
according to Theorem V.43, 

%( ( x  - PAXIPA)? - PAX)) < 0 
n((y - PAY PAX - PAY)) < 0 

(V(.%Y) E E 2 )  { 
thus, by right-bilinearity, 

(V(x,r) E E 2 )  %((x-Y-(PAX-PAY)IPAX-P~)) k 0 

(v(x,Y) E E ~ )  %((~-~\P,,X-P,Y)) 3 WIIPAX-PAYII~) = IIPAX-PAYII~; 
whence 

now, according to CAUCHY-SCHWARZ Inequality (Proposition V.20), 

(v (~ ,Y)  E E ~ )  % ( ( x - Y ~ P A ~ - P A Y ) )  < I Ix-YI I I I~A~-~AYI I~ 

I IPAX-PAYI~~  < I I ~ - Y I I I I ~ A ~ - P A Y I I  

therefore, 

which proves the contractivity of PA. 
(v(x,Y) E E ~ )  

0 

V.2.3 Orthogonal Projectors 

An other important consequence of the Best Approximation Theorem arises when the projection is made onto 
some particular vector subspace; the vocabulary is first specialized, in order to retrieve and extend a classical 
geometric concept: 

Definition v.49. If (E, (.I.)) is a pre-HILBERT space andA # 0 is a complete vector subspace of E, then the 
best approximation projector of E onto A is called the onhogonal projector of E onto A. 
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Reinark V.50. As before, it shall be acknowledged that this definition holds in particular when E is a HILBERT 
space of which A is a closed vector subspace. 

This extension of a well-known concept of Euclidean Geometry makes plenty of sense when understanding 
it in the following context: 

Corollary V.51. If (E ,  (-1.3) is a pre-HILB 
of E, PA E L(E,A) and: 

T space then, for all complete dosed vector SiibSpaceS A # 0 

@xEE)  PAX +=+ (’&EA) ( x - y l t ) = o )  

Proof. First, the fact that, for all x E E,  PAX exists, is unique and belongs toA is guaranteed by Corollary V.45, 
since a vector subspace is, in particular, convex. This result also shows that 

(Vx E E )  I k - P ~ x l l =  minllx-yll 
>‘a 

thus, for all ( x , t )  E E x A, the mapping 

f :  K + [O, -1 
h c-) IIX-PAx-ht112 

is minimal for h = 0, since PAX - hz E A.  Now, 

(V(x,z,h) E E x A x  a;() f ( h )  = ( n - P ~ x - h s l x - P ~ X - k )  

= 1x1’ l lZ112-2~((x-PAxlt)h)+ Ib-pAX112 

shus f is a polynomial function and, because it reaches a minimum in 0, its derivative there vanishes, implying 
that %((x - PAXJZ)) = 0. If K = B, then it immediately follows that 

(V(X,Z) E E x A )  (X - PAX~Z) = 0. W.3) 

If K = C, then applying the same reasoning to it which also belongs to F leads to ~ ( ( X - P A X I Z ) )  = 0 and 
therefore to (V.3). Conversely, given x E E, assume that y E A is such that, for all z E A, (x - ylz) = 0. It then 
follows immediately from PYTHACORAS Theorem that 

(Vt E A )  I I x - ~ - z ~ ~ ’  = ll~-y11’+ 1 1 ~ 1 1 ~  2 ~ ~ ~ - y ~ ~ ~  

and, therefore, 11.- yll= minllfA IIx - ul}, Le., y = PAX according to Corollary V.45. Concerning the linearity 
of PA, it then suffices to acknowledge that, on the one hand, 

hence, by left-linearity, 

thus, for all (x ,y )  E E 2 ,  PAX+ PAY = P A ( x + ~ )  because of the equivalence established above. On the other 
hand, 

@(x, y, Z )  E E’ X A )  (X +y - PAX - P ! ) l z )  = 0 

(V(h,X,y) E X E X A )  h (X - &Xly) = (hr - h p A X b )  = 0 
thus, for all (h ,x ,y )  E K x E ,  P ~ ( h r )  = PAX. 0 
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Remark V.52. As usual, if E is a HILBERT space, it suffices to require that xE = A. 
EXERCISE V.53. Show that Corollary V.51 still holds if A # 0 is only assumed to be a finite-dimensional 
vector subspace of a HILBERT space. 

Finally, the results above lead to: 

Corollary V.54. I f (E,  (.I.)) is a  HILBERT space andA is a complete vector subspace of E, then : 

E = A C B A ~ .  

ProoJ’: If P is the orthogonal projector on A, then any x E H can be written as follows: 

x = PAX + (x - PAX), 

where, by definition, PAX E A and x - PAX E A l ;  in addition, this decomposition is unique because of the 

Remark V.55. Here, A can be empty: in this case, A l  = E. As usual, i f  E is a HILBERT space, it suffices to 
require xE = A. 

uniqueness of PAX. 0 

Now, it has already been observed that, for all x in a ~R-HILBERT space, y I+ (xl.y) is a continuous linear 
form. Theorem V.43 allows to address the converse statement: 

Theorem V.56 (RIESZ Representation Theorem). I f (E ,  (-1.)) is U~W-HILBERT space then, for  any rp E E’, 
there exists a uniqiie y E E such that 

In addition, llCpllEt = IlyllE. 
w x  E E )  CpW = (XlY). 

PmoJ’: Exercise. 0 

V.3 Approximation in HILBERT Spaces 

In this Section, I will denote a non-empty set. 

V.3.1 HILBERT Bases 

Definition V.57. 
orthogonal if 

Let (E, ( - l . ) )  be a pre-HILBERT space. Any family {ei} iGl of vectors of E is said to be 

(V(i, j )  E 12,i # j )  (ei lej)  = 0 
and orthoiaonnal if 

( ~ ( i , j )  E 1’) (ei lej) = 6 i j -  

Exanyle V.58. In 12(N) as defined in Example V.41, the family of vectors {U,~}, ,~EJ defined as follows: 

is orthonormal. 



Definition V.59. Let 9 = (ei}iEl be an orthogonal family of a pre-HILBERT space (E, (-1.)). For all x E E, 
the scalars (X?.)ieI defined by 

( V i E I )  E=- (xlei) 
IMI2 

are called the 

Example V.60. In the case where E = L$(]0,2~[), the “standard” definition of FOURIER coefficients is 
retrieved (-I-) is the L2 inner product, for which the family {x I+ einx}nEa. is, indeed, orthogonal. 

coeficients of x wizh respect to 9. 

In the case where I is den 
of separable HILBERT spaces), this allows to generalize immediately the classic BEssEL36’s Inequality. 

Theorem V.61 (BEsSEL’s Inequality). If$= {ei}ieI is an orthogonalfamily ofa pre-HILBERT space (E, (.I.)), 

, and this wiil be the case from mw on ( i e . ,  the study is restricted to that 

then 

Proof: Let J be a finite subset of I, and denote (xlei) = xi for all i E I .  Using the definition of an orthogonal 
family, one has for all x E E :  

whence the conclusion. 

Remark V.62. An equivalent formulation of BESSEL’S Inequality, using the notations of Definition V.59, is: 

which is especially interesting when the family is orthonormal since, in this case, the llei112 are all equal to 1.  

Now, in the context of HILBERT spaces, these results become more accurate. 

Definition V.63. A subsetA of a HILBERT space H is said to be total in H if A’ = {OH}. 

Definition V.64. Let H be a HILBERT space. An orthonormal family gC = {e i } iu  of a H is said to be a 
HILBERT basis of H if 

(Vx C? H )  x = z z e j  
iEI 

where the x7. denote the FOURIER coefficients of x with respect to 9. 

Provided these definitions, one can characterize the HILBERT bases: 

35Joseph FOURIER, French mathematician. 1768-1 830. 
36Friedrich BESSEL, German astronomer and mathematician, 1784-1846. 
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Theorem V.65. Let 9= {ei}iEI be an orthononnal fanzily of a HILBERT space H .  The following statements 
are equivalent: 

i. 9 is a HILBERT basis of H; 

ii. 9 is total in H ;  

iii. the linear span of 9 is dense in H ;  

iv. for all (x,y) E HZ, (xly) = &%jjj 
- 

Proof: Exercise. 0 

In addition, in the case of HILBERT bases, BESSEL'S Inequality becomes: 

Corollary V.66 (PARSEVAL37's Theorem). Let H be a HILBERT space. 9 = {ej}jc1 is a HILBERT basis 
of H if and only if 

(VX E H) llx11* = C1%l2 llej11* W.4) 
iEI 

Proof: Assume (V.4) is true, and consider x E 9l. For all i E I, (.lei) = 0 thus llxll = 0 whence x = OH. 
Hence, by Theorem V.65, 9 is a HILBERT basis of H. The converse statement is immediate, by using the 
same proof as for BESSEL'S inequality combined with the density of the linear span of 9. 

V.3.2 Orthogonal Polynomials 

Orthogonal polynomials are a particularly useful application of HILBERT spaces, in numerical analysis as 
well as in probability theory. The general idea is quite simple: let f be a continuous positive function over a 
given interval Zsuch that, for all n E IN, thex I+ x" monomials belong to the HILBERT space H = L*(Z,!B2p), 
where p is the measure with density q with respect to the LEBESGUE measure. In other words, 

(vn  E N) Ixl"q(x) < m. 

By orthogonalizing this sequence, a family (pn),iEH of pairwise orthogonal (in the sense of H) polynomials 
is obtained: 

( ~ ( 1 2 , m )  E ~ * , i z  + in) /'pn(x)p,n(x)q(x) I = 0. 

If, in addition, the family 9 = ( p s ) , l E ~  is total, then it is a HILBERT basis and one can express any function 
of H in terms of its FOURIER coefficients with respect to 9. In the context of numerical analysis, this means 
that any function of this space can be approached as closely as desired by means of linear combinations of p n  
polynomials. 

The study will be restricted here to that of HERM1TE3* polynomials, because they are directly related to 
WIENER3' spaces. In fact, the mathematical literature uses two different and not equivalent definitions of 
HERMITE polynomials: probabilists generally work with the following ones: 

"Marc-Antoine PARSEVAL DES CHENES. French mathematician, 1755-1836. 
3*Charles HERMITE. French mathematician, 1822-1901. 
39Norbert WIENER, American mathematician, 1894-1964. 
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V HILBERT Spaces 

Definition V.67. For all n E N*, the function H,, defined over IR by 

is called the n”‘ HERMlTEpolynomial. In addition, HO is defined as being identically equal to 1. 

Example V.68. One can easily check that, for all x E IR, 

Ho(x) = 1 
HI (x) = x 
H ~ ( x )  =1- 1 

H ~ ( x )  =X3 - 3 ~  

H ~ ( x )  =x4-6x’+3 

Hs(x) = X5 - laX3 f 1 5 ~  

H~(x) = ~ ~ - 1 5 ~ ~ + 4 5 ~ - 1 5 .  

Remark V.69. HERMITE polynomials are also often defined by 

(v(n,x) E N x R) hfi(X) = ( - 1 ~ 2 ~  d 9  

which leads to a completely different set of polynomials. 

The H,, satisfy the following pmperties: 

Proposition V.70. YH,, denotes the n‘ HERMITE polynomial, then 

and in pamkular each H,, is a polynomial with d e p e  n. 

Pmoj These identities result directly fmm the fact that the H,(x) are the coefficients of the expansion in 
powers o f t  of exp(tx- i?). A recurrence on the second identity combined with the fact that Ho = 1 yields 

Remark V.71. A direct consequence of Propositon V.70 is that, for all n E IN, s e - 2  is the product of e - 2  
by a polynomial function. This implies that each &e--$ tends to 0 at f-. 

Proposition V.72. If H,, denotes the n* HERMITE polynomial, then the family { 

the last property. 

is a HILBERT 

Pmoj One obtains the following equality with n integrations by parts and using Remark V.7 1 : 

78 



V.3 Approximation in HILBERT Spaces 

Similaxily, k integrations by parts yield 

Therefore, combining the linearity of the integral with the fact that each H,, has degree n, 

m 
and 

(V(n~,n) E IN2,t1t < n) (H,,IHIn)H = / Hn(x)H,(x)e-Pdr=O. 

The orthogonality for all in # M arises by switching the roles of m and n. The proof that the family is indeed 
total is left as an exercise. 0 

-m 

The following property of HERMITE polynomials is especially useful for stochastic applications: 

Proposition V.73. ZfX is a gaussian random variable with V [XI = 1, then 

E [H,,(X)] = E [XI" 

Pmo$ If n = 0 the result is immediate. Otherwise, if n E IN*, let E[X] = p ;  then, 

IE[H,,(X)] = w/ m &d" &+,e -4 - e -kg& 
J2?t -- 

-- 

thanks to an integration by parts. According to Remark V.71, the bracketed term vanishes, and thus 

By recurrence, it then follows that 

E[H,,(X)] = &e-$ L1cPe-T 12 dx = - 

Remark V.74. It is also interesting to notice, and left to the reader as an exercise, that 

For any fixed x, the radius of convergence of this power series in t is 00. In particular, differentiation can be 
made term by term, and thus 

d" 
-es,r- ds,* Is' ISd=Hl , (x ) -  (v (n ,x)  E IN x R) 
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V.4 Application: WIENER Chaoses 

In this Section, H will denote a real separable HILBERT space and (S, 6, P )  a complete probability space. 

Definition V.75. A stochastic process W = { W ( / Z ) } / ~ ~ H  defined in (S,6,P) is said to be an isonorrnal gans- 
sian process on H if W is a fa of gaussian centered random variables such that: 

(V(h,g) E H 2 )  w w ) W ( g ) l =  (hlg)ff .  

Propositian V.76. Let W = (W(h))hEH be an isononnal garmian process on H. The map h t) W ( h )  is a 
linear isometry fmnz H to a closed vector subspace of L2(S, 6 ,  P), denoted &$. 

Proot Each W(h)  is a random variable on S and, according to the hypothesis, 

Therefore, the image set of 11 C )  W(h)  is in L2(S,B,P), and 

(V(h,P,f , g )  E Et* x H 2 )  E [ ( W ( k + P h )  - W g )  -PW(hN2] = 0, 

whence 

which proves the linearity, in the sense of L2(S, B,P).  In addition, it follows directly from (V.5) that the 
mapping is isometric since, by definition, 

(V(h,p, f , g )  E IR2 x H 2 )  W ( h g + p h )  -hW(g) -pW(h) 20, 

Now, the image by a linear isometry of a complete set being also complete (this result, easy to establish, 
is left to the reader as an exercise), the image set 4 of H by h I+ W(h) is a complete vector subspace 

Remark V.77. By definition, each element of SEp is a centered gaussian random variable; however, the con- 
verse is not true. 

Definition V.78. Let W = {W(h)}lZE~ be an isonormal gaussianprocess on H. For all n E M*, the nrb WIENER 
chaos is defined as being the closed vector subspace of L2(S,6:,P) generated by the family of random 
variables {H, , (W(h)) ,h  E H,}lhllH = 1 ) .  The set of constants of L2(S,6,P) is denotedas Ho. 
Reninrk V.79. This is indeed consistent with the previous definition of a, because of the linearity of h cs 
W(h) :  

ofL2(S,6,P), whichi 0 

( V h E H , h Z O )  W(h)=l lhl l*W(&) 

which belongs to the closed vector subspace ofL2(S,B,P) generatedby {W(h),h E H,llAllH = I}. 
Example V.80. In the case where H = IR, along with its standard HILBERT space structure, then the only 
h E H such that lllzl{H = 1 are fl. Combining Proposition V.70 and the linearity of h I+ W ( h )  yields 

(“n E N) Hn(W(- l ) )  = Hn(-W(1)) = (-l)RHn(W(I)), 

and thus each A!& is a one-dimensional subspace of L2(S,6,P) generated by Hn(W( l ) ) .  For instance, 
since W(l) is by definition the standard normal random variable on L2(.S,B,P), the elements of a are 
the centered gaussian random variables on this space. 
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Lemma V.81. IfX and Y atz two random variables with joint gaussian normal centered distribution and Hi, 
denotes the nth HERMITE polynomial, then 

ProoJ By definition, the random vector (X ,Y)  is centered, gaussian, with the following variance-covariance 
matrix: 

r = ( ) . 
Therefore, for each (s , t )  E IC2, the linear combination of sX fry is a centered gaussian random variable with 

Now, if s = t = 0, each s'"-k$tl' vanishes, except if k = n = m. Therefore, 

On the other hand, in a neighborhood of (O,O), 

and thus, according to Remark V.74, 

which yields the desired result. 

Theorem V.82. For all (n,m) E IN2,  n # in, one has Hn I Sn. 
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PmoJ This result is a direct consequence of Lemma V.81. 0 

Exnnzple V.83. With H = B dong with its standard HILBERT space structure, let X, Y and Z belong to, 
respectively, Ho, 4, and #2. According to Example V.80, there exists a unique (a,b,c) E R3 such that 
X = a , Y  =bW(l)andZ= ( I ) ) ,  and one has 

Henceforth the o-field generated by the random variables { W ( h ) ) h E ~ ,  i.e., the smallest o-algebra on S such 
that these random variables are measurable, will be denoted Ei(W). 

Lemma V.84. The famiry (eW(b)),3EH is  a rotal subset ofL2(S,G,P). 

PmoJ Technical, cf: ENua95J. 0 

The fundamental result for WIENER chaos decomposition can then be stated as follows: 

Theorem V.85. Zfa stochastic process W on L2(S, G,P) is an isonomal gaiissianprocess on H, then 

L 2 ( ~ , 6 ( W ) , P )  = @ 
IlEH 

ProoJ If X E L2(S,6{W),P) is such hatX I XI for all n E IN, then 

W E 'JN)(Vh E H, IlhtIH = 1) E[XHn(W(h))] = 0 

It can be easily shown that each monomial with degree n can be expressed as a linear combination of HER- 
MITE polynomials of order not greater than n; therefore, 

cdn E ' JNWh E H, Ilhlb = 1) ~fX(W(h))"I = 0, 

and thus 
(V? E R)(Vh E H,llhllH = 1) E [XdW(h)] = 0. 

Using the linearity of h c) W(h) ,  it then follows that 

( ~ h  E H, h # 0) E [Xew('l)] = E b e x p  ( 1 1 ~ 1 1 ~  w (&I*))] = 0, 

whence, by Lemma V.84, X = 0. 0 

Example V.86. Let (S ,B ,P)  = (R,C,v), where v has a standard normal density with respect to e, H = Et, 
with its standard HILBERT space structure, and define W by 

(V(h,x) E R2) W(h)(x)  = hx. 
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Each W ( h )  can thus been naturally seen as a real random variable on ( R , ~ , v )  and, by definition of v, the 
CDF of W ( h )  for any h  # 0 is given by 

while W ( 0 )  is identically zero. Therefore, each W ( h )  has indeed a centtifed gaussian distribution. In addition. 
for all W ( g )  and W ( h ) ,  the linearity of h  c, W ( h )  ensures that any linear combination of them has also a 
centered gaussian distribution, and E [ W ( ! I ) W ( ~ ) ]  = hg = Hence, the hypotheses of Theorem V.85 
are met, and since W ( I  ) : x c, x. Proposition V.72 is retrieved. 
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