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Introduction

This brief Introduction to Measure Theory, and its applications to Probabilities, corresponds to the lecture
notes of a seminar series given at Sandia National Laboratories in Livermore, during the spring of 2003.

The goal of these seminars was to provide a minimal background to Computational Combustion scientists
interested in using more advanced stochastic concepts and methods, e.g., in the context of uncertainty quan-
tification. Indeed, most mechanical engineering curricula do not provide stadents with formal training in the
field of probability, and even in less in measure theory. However, stochastic methods have been used more
and more extensively in the past decade, and have provided more successful computational tools.

Scientists at the Combustion Reseach Facility of Sandia National Laboratories have been using computational
stochastic methods for years. Addressing more and more complex applications, and facing difficult problems
that arose in applications showed the need for a better understanding of theoretical foundations. This is why
the seminar series was launched, and these notes summarize most of the concepts which have been discussed.

The goal of the seminars was to bring a group of mechanical engineers and computational combustion scien-
tists to a full understanding of N. WIENER’s polynomial chaos theory. Therefore, these lectures notes are built

along those lines, and are not intended to be exhaustive. In particular, the author welcomes any comments or
criticisms.

Acknowledgements

The author was supported by the United States Department of Energy, Office of Defense Programs. Thanks
to the attendees of the seminar series, for their patience, comments and feedbacks; in particular, H.N. NAIM,
B.J. DEBUSSCHERE, J.C. LEE, P.T. BoGGs and K.R. LONG, and to Pr J. POUSIN (INSA, Lyon) for his
careful proofreading. Special thanks to Ms J. MATTO for having edited most of the manuscript.



Typographic Conventions

Since several types of structures will potentially be built on any given set, the following typographic conven-
tions will be used in order to facilitate the reading:

— for a set with no particular structure on it, a slanted font: §;
— for a boolean algebra on §, a script font: §;

— for a c-algebra on S, a Gothic font: &.

Exceptions will be made for some standard and well-established notations, such as BOREL (¥8¢) and LEBESGUE
(£9) o-algebras on RY.

Vocabulary Conventions

In order to avoid confusion, the following conventions regarding positiveness and negativeness will be used:

positive means stricly greater than 0, denoted > 0

negative means stricly smaller than 0, denoted < 0

nonpositive means smaller than or equal to 0, denoted <0

nonnegative means larger than or equal to 0, denoted > 0.

In particular, 0 is neither positive nor negative, but it is both nonpositive and nonnegative.



I Background: Sets, Functions and Structures

Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.

L. KRONECKER!

The goal of this chapter is certainly not to provid an exhaustive coverage, but rather an overview of the very
minimal background required for the understanding of the core text. The interested reader will find in-depth
presentations of the matters discussed here in, e.g., [Jec02] and [Lan02]}.

In all that follows, d will denote a positive integer.

1.1 Sets and Functions

L.1.1 Sets

It is largely beyond the scope of the present report to address the question “what is a set?”, however the
naive definition of a ser constituted of elements will be sufficient for the matter discussed here. In particular,
X € S means that x is an element of a set S. For the interested audience, we mention that we place ourselves
in the context of the VON NEUMANN2-BERNAYS®-GODEL* set theory (NBG), which is a generalization of
the ZERMELO’-FRAENKEL® (ZF) set theory. In particular the sets of natural (IN), integer (Z), rational (Q),
nonnegative real ({0,<[), real (R) and complex (C) numbers will be used. This being said, a few Set Theory
concepts will be needed:

Definition L1. A setis a singleton if it contains exactly one element. Denoting as x this element, the singleton
is written {x}.

Definition 1.2. A set B is a subset of another set A if any element of B is an element of A. It is denoted B C A.

Definition 1.3, The intersection of two sets, A and B, is the set of elements common to A and B. Itis denoted
as AN B. The intersection of sets Ay to A, is written (}.=] A;.
Definition L4, The union of two sets A and B is the set obtained by combining the elements of A and B. It is

denoted as A U B. The union of sets A} to A, is written Uf:ﬁ'A,-.

Definition I.5. The sets [0,00[U{>} and R U {—oo,0} are denoted respectively {0,c0] and [—oo,o0].
Definition 1.6. The set containing no elements is called the empty set. It is denoted @.

Definition 1.7. The ser difference of two sets A and B is the set obtained by removing all the elements from
A which also belong to B. It is denoted A \ B and also called complement of B in A.

lL(:opold KRONECKER, Prussian mathematician, 1823-1891.

2John VON NEUMANN, Hungarian then American mathematician, 1903-1957.
3Paul BERNAYS, Swiss mathematician, 1888-1977.

4Kurt GODEL, Austrian then American mathematician, 1906-1978.

SErnst ZERMELO, German mathematician, 1871-1953.

6 Adolf FRAENKEL, German then Israeli mathematician, 1891-1965.



I Background: Sets, Functions and Structures

1.1.2 Functions

Definition 1.8. If A and B are two sets, a correspondence from the origin set A to the target set B is a triple
S =(G,A,B) where G is a subset of A x B called a graph, and the set

Pr={x€A: (3y€B) (x,y) €G}

is called the definition set of f. The graph G is said to be functional if, for all xin A, the set {y € B: (x,y) € G}
is either empty or a singleton.

Definition 1.9. A correspondence f = (G, A, B) is a mapping, or map, or Junction from A to B if G is func-
tional and 2y = A. It is generally symbolized as follows:

fi A — B
x —r fx)

where f(x) is the element of {y € B: (x,y) € G}. For all x in A, f(x) is called the image of x under f. By
extension, for any subset E of A,

f(E)={yeB: (Ix€E) f(x) =y}
is called the image set of E under f.

Remark 1.10. The fact that f(x) is actually well-defined is ensured by the fact that @y = A. Therefore, the
set {y € B: (x,y) € G} is not empty thus, by definition, it is necessarily a singleton.

Example 1.11. If A = {a,b,c,d} and B = {1,2,3}, then G = {(&,3),(c,1),(d,3)} is a functional graph
from A to B, defining a function from {a,c,d} to G, illustrated by Figure 1, left. To the contrary, H =
{(a,3),(c,1),(c,2),(d,3)} is not a functional graph, since {y € B : (c,y) € H} has two elements, 1 and 2 and
in particular, it cannot define a function.

— —
- -
-~ -~
~ >
~ ~
~ ~
~ ~
R — -

Figure 1. Functional (left) and nonfunctional (right) graphs.

Definition 1.12. The set of mappings from a set A to a set B is denoted B4,

Definition I.13. If A and B are two sets and f is a function in B4, then for any y in B and any subset F of B,
the sets

P ={xea: f(x) =y}
FECP(F)={xeA: QyeB) f(x) eF}

are called inverse image of x (resp. B) under f.

10



1.1 Sets and Functions

Example 1.14. According to Definition 1.12, AY is the set of the mappings from IN to A. In other words,

AN e N — A
- no o— uy

and such mappings are called sequences of elements of A,sequence denoted (1, ),cx- By extension, (4, )nek,
where E C N, denotes the elements of (i,),ew such thatn € E.

Definition 1.15. Let A and B be two sets and f a function in BA. If, for all y in B, £<~'>(y) contains at most,
at least, or exactly one element, then f is respectively an injection, a surjection, or a bijection. It can also be
said that f is, respectively, injective, surjective, or bijective.

Example 1.16. Given any subset E of S, the indicator function of E is defined by

~_J 1 if x€eE
(Vx€S) ]15(1)—{ 0 if x¢E

and is a surjection from S to {0,1} if and only if E # & and E # S (otherwise, 1g<~">(0) or 1<"'>(1) is
empty). If § has more than two elements, Iz cannot be injective, since either 1g<~">(0) or 1<'>(1) has
more than one element.

Definition 1.17. A set is denumerable or countably infinite if it is bijective to N.

Proposition 1.18. Let A and B be two sets and f a function in BA.

~ fisinjective if and only if
(V(x1,x2) €4%) x1#£x = flx) # f(x).
~ fis surjective if and only if f(A) = B.

Proof. Left to the reader as an exercise. ]

Definition I.19. Given a set 5, the power set of S is the set of all subsets of S and is denoted 2° or £2(S).

The following ZF axiom is essential in Measure Theory:

Axiom 1.20. For any given set, its power set exists.

Remark 1.21. The notation 25 is justified by the fact that the notion of subset of S can be interpreted in an
equivalent] way as being a map from S to {0, 1}, formally denoted 2. More precisely, the following function:

2(5) — 2
E — 1

is obviously bijective, thus justifying the identification between 2(S) and 25.

Definition 1.22. Given a sequence (i, )nen in [—oo,00)¥, its infimum limit and supremum limit are respectively
defined as follows:

limsupu, = inf supu,

n meN p>m
liminfu, = sup inf u,.
n mE]N">'"

11



I Background: Sets, Functions and Structures

Example1.23. If, for all n in N, u, = (—1)", then liminf, u, = —1 and limsup, u, = 1.

Proposition L.24. If (us)nen is a sequence in [—eo,0}N, then:
limsupu, = limsupu,
n m p>m

liminfu, = lim inf u,.
" m n>m

Proof. Exercise. O

Definition 1.25. Given a set § and a sequence (f, )nem of functions in [—co,o0]%, the mappings Infren fis
Sup,ew fr, liminf, f,, and limsup,, f;, of [—oo,o]® are defined as follows:

e () 0 =ph

(wes) (1nfh) 0= jnf oo
(Vx € ) (lim sup f,,) {(x) =limsup f,(x)

(Vx € 5) (}i'n}, inf f,,) (x) = liminf £, (x)

Remark 1.26. For any k in IV, it is also possible to define the mappings Inf, 3 f,, and Sup, 5, f, in a similar
way.

L2 Algebraic Structures

The axiomatic construction of semigroups, groups, rings, fields and vector spaces is now briefly recalled.
These definitions are summarized in Figure 2.

1.2.1 Semigroups and Groups

Definition 1.27. Let S be a set. A binary operation on § is a function with the form:

Sx§ — S
(xy) — x*y.

Remark 1.28. Under the above assumptions, the binary operation is itself denoted .

Example 1.29. Both + and x are binary operations on IN, but — is not, since the difference between two
natural numbers is not necessarily a natural number. However, — is a binary operation on, e.g., Z which
really altows to count (zédihlen in German, whence the symbol).

Definition 1.30. A binary operation * on a set S is said to be associative if

(V(x,%,2) € 8%} x*(y*z) = (xxYy)*z

12



1.2 Algebraic Structures

| field (S, %, ») |

(5\ {0},e) is a group

iring (S,%, )

distribntivity of ® over x

| abelian grzl)up (S,%) l

commutativity of

[eroue 5.4

existence of an identity element e
symmetrizability of all elements

semigroup (S,e) I ‘ semigroup (S, *)J

associative binary operation e associative binary operation x

Figure 2. Construction of elementary algebraic structures.

and to be commutative if

(V(x,y) €S%) xxy=yxx.
If % is an associative (resp. associative and commutative) binary operation on S, then (S,%*) is said to be a
semigroup (resp. abelian semigroup).

Remark1.31. In the case where a binary operation * is associative, and in this case only, the expression x*yz
is meaningful; otherwise, it is ambiguous except is some precedence properties are explitly defined. The fact
of being associative (resp. commutative) is referred to as the property of associativity (resp. commutativity).
However, in memoriam of the pioneering work (and tragic fate) of N. ABEL the adjective abelian is generally
used in Group Theory, rather than commutative.

Example 1.32. (Z,-) is not a semigroup, since x — (y —z) is not, in general, equal to (x—y) —z. To the -
contrary, both (IN, +) and (N, x) are semigroups, and, moreover, abelian semigroups.

Definition 1.33. Let (8,*) be a semigroup. If
(BeeS)(VxeS) xxe=exx=x
then e is said to be an identity element of (S,*). In this case, any x € S such that
Fyes) xxy=yxx=e

is said to be symmetrizable in (S,x) and y is called the symmerric element of x (and conversely). If each
element of S is symmetrizable in (S,), then (S,) is said to be a group. In this case, if * is commutative,
then (S, ) is said to be an abelian group.

7Niels ABEL, Norwegian mathematician, 1802-1829.

13



I Background: Sets, Functions and Structures

Proposition 1.34. A semigroup has at most one identity element. If such an identity element exists, then each
element of the semigroup has at most one symmetric element.

Proof. Ttis clear that a semigroup (S,*) does not necessarily have an identity element; e.g., (IN*,+) exhibits
such a case. Now, let (5,%) be a semigroup and assume it has two identity elements e; and e>. Then, by
definition of e,

e ke =er%e| =¢e)
and, by definition of e3,
€r%e1 =C1%ker=¢
thus, necessarily, e; = e;. Now, not all elements of a semigroup (S,*) with identity element e are necessarily
symmetrizable: e.g., 1 does not have a symmetric element in (IN,+), since one cannot find x € N such

that x4+ 1 = 0. On the other hand, assume x € S has two symmetric elements y; and y; in (S,%). Then, by
definition of y;,

yikx=¢e
thus, using the associativity of *,
(1xx) *y2 = y1x (xky2) =2
but, by definition of y;, xxy> = e, hence y; = y. (|

Example 1.35. Both (IN,+) and (IN, x) have identity elements (respectively, O and 1), but none of them is
a group: e.g., 1 has no symmetric element in (IN,+), and neither does 0 in (N, x). In order to be able to
symmetrize each element of (IN,+-), one has to allow for negative integers. In other words, (Z,+) is an
abelian group. Now, if one wants to build a group from the semigroup (IN, x ), two problems must be solved:
first, 0 must be eliminated because it cannot be symmetrized; second, all rational numbers must be added;
namely, (@, x) is an abelian group.

To summarize: a group is a set equipped with an associative binary operation which has an identity element
and such that each element is symmetrizable. One would now now like to have more than one operation, in
order to generalize the usual arithmetics.

1.2.2 Rings and Fields

Definition 1.36. If x and e are two binary operations on a set S such that

venaes) {55 2 GRS

then it is said that e is distributive over *. In this case, if (§,%) is an abelian group and (S, ) is a semigroup
(resp. an abelian semigroup), then the triple (S,,®) is said to be a ring (resp. a commutative ring). If, in
addition, (S,#) has a unit element, then (S, %, ) is a unit ring (resp. a commutative unit ring). If (S,x,#) is a
ring, then the identity element of (5,«) is called zero of S, denoted Os o, if there is no risk of confusion, 0.

Example1.37. Historically, the notion of ring appeared to describe sets such as:

2[v2) = {a+bV2, (a,b) € B?},

14



1.2 Algebraic Structures

equipped with the usual addition and multiplication. Indeed, (Z[\/i], +, X) is a commutative unit ring, but
the most intuitive example of such a structure is certainly (Z,+, x). A finite case can be easily constructed
by considering Z; = {0, 1} equipped with the two following binary operations:

+(0 1 01
0{0 1 00
1{1 0O 01

- Ol X

and it is possible to eheck directly (by enumeration) that (Z;,+, %) is a commutative unit ring, with 0 and 1
as respective identity elements of 4+ and x. In fact, one can easily view it as the two classes of integer
numbers modulo 2 along with the usual arithmetics transported onto them (odd plus odd is even, odd times
even is odd, etc.).

Definition 1.38. A unit ring (S, *,#) with at least two elements such that (S'\ {0}, ) is a group (resp. abelian
group) is said to be a field (resp. a commutative field).

Remark 1.39. The requirement of having at least two elements is intended to eliminate the undesireable case
of the nullring (0,%,9) with0x0=0e0=0,

Example 1.40. Enforcing the extra requirements on (Z,+, X) leads to the construction of the field (Q, +, X):
in fact, rational numbers precisely fill the need of being able to invert the multiplication of integer numbers.

In the present context, a few important fields will be needed:

Theorem 141, The sets Q, R and C, equipped with the usual addition and multiplication, are commutative
fields.

Proof See, e.g., [Lan02]. O

Remark 1.42. For the sake of concision and although this is not perfectly rigorous, the field will be denoted
as its underlying set when there is no risk of confusion; e.g., ,“the field R” will be used as a synonymous of
“the field (R, +, x)”. In all this report, K will denote a field that might be either R or C (equipped with their
respective usual additions and multiplications).

1.2.3 Vector Spaces

Only a very brief reminder is provided here, since even a simple introduction to the most important vector
spaces properties would require an entire chapter on its own; ¢f [Lan02] for more details.

Definition L.43. If (E,*) is an abelian group and - is a mapping in EX*Z such that:
i. (Ww€E) l.x=ux;
ih. (VOu3) €KX E) A (u-x) = (Axp)-x;
ili. (YA p,x) €EK2 X E) (A+u)-x=(A-x)+ (u-x);
iv. (V(hx,y) EKXE?) A-(x+y)=(A-x)+(A-),

then (E,*,-) is said to be a K-vector space. In this case, the elements of K and E are called, respectively, the
scalars and the vectors of the vector space.
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I Background: Sets, Functions and Structures

Example1.44. The simplest examples of KK-vector spaces are the K¢ sets equipped with their natural component-
by-component addition and multiplication by a scalar. Another important class of K-vector fields is that of
Junctional spaces, i.e., those whose vectors are functions. For example, the set of continuous functions over
an interval can be naturally viewed as a R-vector field.

In this report, two kinds of vector field will be dealt with, depending on the finiteness of their bases: finite-
dimensional and infinite-dimensional vector spaces. Most undergraduate textbooks restrict themselves to the
formers; the reader familiar with those but not with the latters should be extremely careful, since numerous
essential finite-dimensional results do not extend to the infinite dimensions. Unfortunately, most of the vector
spaces interesting for the purpose of this report are infinite-dimensional.
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II Measures and Probabilities

In all that follows, S will denote a non-empty set. For any given subset A C S, the set §'\ A will be denoted
AC, For simplicity, it will be refered to as the complement of A (omitting *“in $”).

IL.1 Measure Spaces
IL1.1 o-Algebras
Definition IL1. Any & C 2° such that

i. Se6
il. fA€6,thenAfe S

ifi. if (An)nen+ € G, then | JA, €6
nelN*

is called a 6-algebra on S. The elements of & and the double (S, G) are called, respectively, measurable sets
and measurable space.

Remark 11.2. A oc-algebra necessarily contains & and is closed for set difference and for denumerable inter-

section. In addition, closedness for denumerable union and intersection implies closedness for finite union
and intersection.

Example 11.3. {@,S} and 25 are two c-algebras on S, respectively, the smallest and largest (for inclusion)
possible ¢-algebras on S. Using the same language as for other structures, a ¢-algebra & is smaller than a
o-algebra &' if each element of the former belongs to the latter.

Example 1L4. 1f S = {0,00,A} and & = {2,5,{0},{0, A}}, ther (5,8) is a measurable space. To the
contrary, if &' = {,5,{0},{0},{A}} then (S, &) is not a measurable space, since, e.g., {0} = {0, A} ¢
6’. .

Proposition ILS. The intersection of two G-algebras is a 6-algebra. Moreover; given any 2 C 25, the
intersection of all o-algebras containing 9 is a 6-algebra.

Proof. Exercise. 0

Definition IL6. Under the hypothesis of Proposition 11.5, the intersection of all c-algebras containing 2 is
called the o-algebra generated by 9. In the case where S = R, the o-algebra generated by the set of all
open sets (in the sense of the usual topology on R) is called the BoRELG-algebra on R and denoted B,
its elements are called BOREL sets.

Remark IL7. As a direct consequence of Definition 11.6, the o-algebra generated by any given 2 C 25 is the
smallest (for inclusion) c-algebra on S that contains 2. It is also clear that, because any c-algebra is closed
for the complement, intersection and union operations, real singletons and intervals are BOREL sets.

Proposition I1.8. Any denumerable subset of R is a BOREL ser.

8Fmile BOREL, French mathematician and politician, 1871~1956.
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II Measures and Probabilities

Proof. By definition, if A C R is denumerable, there exists a bijection ¢ € AY thus

neN

Now, since real singletons are BOREL sets and c-algebras are closed for denumerable union, A is a BOREL
set. O

Example11.9. N, Z and @) are BOREL sets.
Example 11.10. A non-BOREL set: let S = R and E be the set of all real numbers with continued fraction

expansion:
1 }
i .
q + gt

If F is defined as the subset of E such that there exists an increasing sequence (r,)sen+ in QN* such that
qr; divides g, , for all i in IN*, then F is not a BOREL set. The main reason is that each particular choice
of the r-sequence gives a BOREL set, and there are non-denumerably many different such sequences. More

precisely, it is impossible to express F as a denumerable union of BOREL sets (¢f. Lusin, Fund. Math. 10
(1927) p. 77).

E= {x €ER: (E(q,,),,em € QN) x=go+

IL1.2 Measures
Definition IL11. A measure on a measurable space (S,&) is a mapping p in [0,00]® such that:

i. u(@)=0;

it. for any sequence (A, ) e+ of pairwise disjoined measurable sets,

“(,UA") = Y ulh).

nelN* nelN*

Under these assumptions, the triple (S, S,u) is a measure space. For any A in &, u(A) is called the measure
of A.

Example 11.12. Given a measurable space (S,G), and xg in S, if u is the mapping defined on & by u(A) =
14(x0), then (§,25,4) is a measure space.

Example11.13. Denoting # as the cardinality of a set, (IN, 2, #) is a measure space.

Example 11.14. With (S,8) as defined in Example 11.4, the mapping p, defined by p(@) = u({0,A}) =0
and p(S) = p({0}) = 1, is a measure on (S, S).

Proposition IL15. Let (X,8,u) be a measure space. If (A,B) in &2 is such that A C B, then p(A) < u(B).

Proof. By definition, A and B\ A are disjoined while B = AU(B\ A). Therefore, it follows from the second
axiom of Definition I1.11 that

u(B) = n(A) =pu(B\A) 20
since a measure is always positive. O
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1.1 Measure Spaces

Proposition IL16. Let (X,8,u) be a measure space. If (Ay)nen+ is a sequence in G, then

u( UA,,) < Y uAn).

€N+ nelN*

Proof. Assuming B = Ay, define B,y = Any1 \ Ui  Ai for all nin IN*. These B, are all measurable sets
and, using the commutativity and associativity of the intersection,

i=m—1 i=n-1
(V(m, n) € ]N*z,m < n) B.,NB, = (Am\ U Al) N (An\ U A‘)

=] =1

=1 i=n=1
= (Amn N A?) n (A,,ﬂ M 4

=1 i=1

1]

since m € n — 1. Therefore, (Y=}~'A¢ contains AS, thus its intersection with A,, is empty. In other words, the

Ua.= B

B, sets are pairwise disjoined and
nelN* nelN*

Now, by applying Proposition I1.15 to the fact that, B, C A, for all n in IN*, it follows directly from the
definition of a measure that

l-‘( UAn) =I~‘( UBn) = ZI-‘(BH) < ZP(AH)-

eN* eN* nelN* neN*

Definition IL17. The property of u exhibited by Proposition 11.16 is called countable subadditivity.

Remark 11.18. Countable subadditivity can be intutitively seen as corresponding (in the case of measure on
G-algebras) to the triangle inequality in the context of vector space norms.

Proposition IL19. Let (X,8, ) be a measure space. If (Ap)nen= is a sequence in & such that, for all nin
IN*, A, CAyal, then

H ( UAn) = li'l;n/-l(An)'

nelN*

Proof. Assuming Ag = @, define B, = A, \ A,— for all n in N*. Each B, is a measurable set and, using the
commutativity and associativity of the intersection,

(V(m,n) eN’,m< n) BBy = (Am\ A1) N (An \ An—1)

= (AnNAS_) N(AnNAG_,)
=2

since m € n— 1. Hence, A,;, C Ap—1 (in particular, A,, C A,,) thus A, NA,_; is empty. In other words, the B,
sets are pairwise disjoined and
Ua.= B

neW* nelN*
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11 Measures and Probabilities

Therefore, on the one hand,

T (’UAH) =u( UBn) = ) u(Bn). Ly

neIN* nelN* nelN*
On the other hand,

n
(VneN*) A=|JB:
=1

from which follows, since the B, are pairwise disjoined,

(VneN*) plAn)= iﬂ(Bi)

=]

thus
limu(A,) = Z u(By) 11.2)
" nelN*
and, finally, the result arises by combining (11.1) and (11.2). a

Proposition I1.20. Let (X,&,u) be a measure space. If (An)nen~ is a sequence in & such that p(A,) is finite
and, for alln in N*, A,4.1 C Ay, then

u( ﬂAn> = limu(A,).

eN*

Proof. Similar to the the previous one. a

EXERCISE I1.21. Given a measure space (X,8,u) andY in &, prove that:

i. 6'={A€6:ACY}isac-algebraonY;

ii. pye, restriction of u to &', is a measure on (¥, &').

IL1.3 Probability Spaces

Definition I1.22. A probability space (S,S, P) is a measure space such that P(S) = 1. In this case, any A in
&, P and P(A) are called, respectively, event, probability measure on (S,8) and probability of A.

Proposition IL23. If (S, 8, P) is a probability space,
| (VA€ ®) P(A°)=1-P(A).

Proof. Immediate, since for any event A, ANA°=g and A UA®=S$.
Example 11.24. Let S be a finite subset of IN and define the mapping P by

#A

#S°

In this setting, P is a probability measure on (S,25), called the uniform probability measure. In this case,
measuring a probability amounts to a combinatorial problem.

(VAe2%) P@A)=
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II.1 Measure Spaces

Remark 11.25. When no confusion for & is possible, it is also possible to speak of a probability function
on S. P is often referred to simply as a “probability,” instead of probability measure; however, such an
approximation is discouraged since it leads to potential confusion between various concepts.

Now, using the framework of measure spaces, the concept of conditional probability arises naturally as fol-
lows:

Proposition IL26. Let (S,8,P) be a probability space. For any B in & such that P(B) # 0, the mapping
defined as follows:
P(ANB)
P(B)
is a probability measure on (S,8). In addition, for any A such that P(A) # 0,

P(A)P4(B) = P(B)Pg(A) = P(ANB).

(VAe®) Pya)=

Proof. For any Bin G,

i. Pis a measure, thus P(2) = 0 and therefore Pp(&) = P B) =0.

ii. For any sequence (A )rem+ of pairwise disjoined sets of &,

P A B) P(A,NB
B(keLlJ\I*A) P(B (U( Lﬂ) P(B)AZ (ArNB)

keIN¥

= Y Ps(As).

kel

iii. Pg(S)= J—; =1

Thus, (5,8, Ps) is a probability space. Now, with the additional condition that P(A) # 0, (5,8,F,) is alsoa
probability space for the same reasons; the final equality then directly results from the definition.

Definition I1.27. Under the assumptions of Proposition 11.26, Pp is called conditional probability measure
assuming B (on (S, )). For any A in &, Pg(A) can also be written P(A|B) and called the probability of A
assuming B. A and B are said to be mutually independent if P(A|B) = P(A).

Remark 11.28. The mutual independence of A and B can be expressed equivalently as P(A NB) = P(A)P(B),
since P(A|B)P(B) = P(ANB).

The following result will prove very useful when dealing with events with unit probability, but which are not
necessarily equal to S:

Lemma I1.29. Let (S, 8, P) be a probability space. If A is an event such that P(A) = 1, then for any event B,
P(ANB) = P(B).

Proof By hypothesis, P(A°) = 0; in addition, BNA® C A® thus P(BNA®) = 0. Now, since A and A® are
disjoined, so are BN A and BN A®, therefore
P(B) = P(BN{AUA®)) = P((BNA)U(BNA®)) = P(BNA)+ P(BNA®)

which leads to the conclusion. O
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II Measures and Probabilities

Theorem I1.30 (Total Probability and BAYES® Formulas). Let (S,&, P) be a probability space and (A, ynen+
be a sequence of pairwise disjoined events such that

{(VnelN*) P(4,) # O

Y P(A) = L
nelN*
ForanyBin8,
P(B) = Y P(B|A,)P(As) (IL3)
nelN*
and, if P(B) #0,
P(B|Ax)P(Ar)

(keI PAB) = & Bl P@Y aa

Proof. If P(B) = 0 then, given that BNA, C B for all n in N*, P(B|A,) = P(BNA,) = 0 which proves the first
result. If P(B) # O then assuming A = {J,cpv+An, P(A) = 1 because of the hypothesis. Therefore, combining
Lemma I1.29 with the disjunction of the A, shows that

Y PA(B)P(A)= Y P(BNA)=P| | J(B nA,,)) = P(BNA) = P(B).

nelN* nelN* (nE]N *

Finally, combining (I1.3) with Proposition 11.26 establishes (I11.4). O

Example 11.31. An individual has been purchasing candy at the vending machine daily over an extended
period of time, and intends to quit doing so. Based on his experience over the past months, he estimates that
each day his behavior is governed only by the outcome of the previous day, and:

i. chances that he will use the vending machine are o in ]0, 1{ if he did not the previous day;

il. chances that he will not use the vending machine are B in ]0, 1] if he did the previous day.

Starting with a day away from the vending machine, what are the chances that the individual will permanently
quit? First, a proper measurable space (§,S) must be defined. Formally, the outcome of each day can be
expressed as O (failure) or 1 (success), thus leading to boolean sequences. In other words, S = 2% and, in
this context, the event “not hitting the vending machine on day k,” with k in IN* can be formulated as follows:

Ap= {(“ﬂ)nE]N* € Pl = 1}
and its contrary as
Al = {(“n)nelN* e uy= 0} .

The notations are consistent because Ay NA} = & and Ay UA§ = 2X*_ AH such events are a priori acceptable,

thus it is natural to choose & =25 =22 a5 the o-algebra, since (S,25) is the largest measurable space
which can be built on §. Now, the hypothesis assumes the existence of a probability measure P over (8, &),
satisfying the conditions (i) and (ii) above, which can be translated as follows:

" [ P(AS.]Ar) = o
(Vk € ) {P(AﬁlilAﬁ) = B

9Thomas BAYES, English minister and mathematician, 1702-1761.
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11.2 Measurable Functions and Random Variables

thus, using the Total Probability Formula of Theorem 11.30,

o [ PlAe) = (1—a—PB)P(A)+B
(vk € I°) {P§A§13 O 2o

and, using the classical fixed-point sequence explicitation technique, along with the hypothesis that P(A;) =1
and P(A{) = 0, it follows that

- B L ® B

‘e IV P(Ay) = a_-l-B+a+B(1 o—B)!

(Vk e ") Py = 2 % (1—a-py-!
Ko™ a+4+B a+P

Now, using the hypothesis about conditionality, the probability that the individual manages to stay away from
the vending machine during the n first days (starting when he decided to quit), given n € IN*, is:

P (r"]Ak) =P (AnllﬁAk) P (nﬁAL) -‘:P(AnIAn—l)P (ﬁAk)
k=1 k=1 k=1 k=1

whence, by recurrence,
n n—1
P (ﬂAk) =PA) [[PArsilar) = (1 — )™
k=1 k=1

Finally, the probability that the individual permanently quits his unhealthy (and expensive) habit can be
determined using Proposition I1.20 as follows:

P ( ﬂAk) =Hm(l —a)™' =0,
nelN* "

which is a sad conclusion.

I1.2 Measurable Functions and Random Variables

In this Section, (S, &) will denote a measurable space.

IL2.1 Measurable Functions

Definition IL.32. A function f in [—co,0]" is said to be measurable if, for any interval I in [—eo,e0], f<~1>(1)

is measurable. A complex function over S is said to be measurable if both its real and imaginary parts are
measurable.

Example 11.33. Given any E in &, 1 is measurable.
Remark 11.34. In the case of a BOREL G-algebra, the measurable functions are called BOREL functions .

Example 11.35. Any f in ¥°(R) is a BOREL function: for all open intervals I C R, £<~'>(J) is an open, thus
BOREL, set.

Example 11.36. 1g is a BOREL function, since @ is a BOREL set.
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I Measures and Probabilities

Proposition IL37. The following properties are equivalent:

i. f€][—o0,)" is measurable.
ii. (VaeR) f<'>(a,)) is measurable.
iii. VaeR) f<'([a,)) is measurable.
iv. (VaeR) f<>([~oo,d]) is measurable.
v. (VaeR) [f<'>([—oo,a]) is measurable.

Proof. (i) clearly implies each of the four other statements. Conversely, assume (i7) is true. Then, for all @ in
R and all n in IN*, f<~'>(Ja — 1,c0]) is measurable; therefore,

f<—l>({a’°°])

Il

{xeS:f(x)=a}= ﬂ {xes:f(x)>a-1}

nelN*

Nr<>a—1,=)

nelN*

is measurable. Using the complement shows that both f<~'>([—c0,d]) and f<~'>(|—o,a[) are measurable
thus, by intersection, any interval of [—eo,o0] is measurable. Therefore, (ii) implies (i) and, because it has
already been proved that (i) implies the other four statements, the equivalences are deduced immediately. O

Proposition I1.38. If F is a function of €°(R2,R) and f and g are two measurable functions in [—oo,o]5,
then h = F(f,g) is measurable.

Proof. For any a in R, let G, denote {(u,v) € R? : F(u,v) > a}. G, is an open subset of R?, i.e.,it is a
denumerable union of open rectangles:

(3 Re=lanbulxlensdal) o) Ga= URn.
nelN*

Now,

{x€S:h(x)>a}={xeS:(f(x),e(x)) € Gu}
= |J {xeS: (f(x),8(x) € Ra}.

neN*

In addition, for each n € IN*,

{X €S: (f(x),g(x)) € Rn} ={x €S:ia, < f(x) < bn}
{x€S: e <glx) <dn}

is a measurable subset of S. Therefore, the denumerable union of all such sets is measurable, which proves.
that h is a measurable function. [m]

From this result the following corollary can be immediately deduced:

Corollary I1.39.
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11.2 Measurable Functions and Random Variables

i. If f and g are two measurable functions in [—oo,00|5, then f + g and fg are measurable.

ii. If f is a measurable function in [—oo,00]5, then, for any p in N*, | f|P is measurable.

The important cases of the infimum and the supremum are now discussed:

Proposition IL40. If (f,)ren- is a sequence of measurable functions in [—oo,o0]5, then for all k in I, Inf,> fa
and Sup,,,;. fn are measurable.

Proof. This results immediately from the fact that, for all (a,£) in R x N,

{xeS: sup fa(x) >a} = U{xeS:f,,(x) >a}.

n>k >k

Corollary IL41. Let (f,)uen+ be a sequence of measurable functions in [—eo,]5.

i. limsup, f, and liminf, f, are measurable.

ii. If, for all x in S, the sequence (fn(x))nen* has a limit f(x), then f is measurable.

Proof.

i. For all m in IN, define g = Sup,>,, fa- According to Proposition 11.40, g,; is measurable and so is
limsup,, fr since

]imnsupfn = "32%31"‘
The proof is similar for liminf, f,.
ii. M for all x in S, (f,(x))nene tends to f{x), then
(vx€ ) Timsup(fy(x) =liminf(fo(2)) = lim fo(s) = £
n

Hence, f = limsup,, f; is measurable.

IL2.2 Simple Functions

In the general case, a function is said to be simple if it takes a finite number of values. In the context of
measurable functions, the definition is specialized as follows:
Definition IL42. A function f in RS is said to be simple if f(S) is a finite subset of R.

Remark 11.43. It is important to notice that a simple function is not allowed to take on infinite values. An
equivalent expression is piecewise constant.
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11 Measures and Probabilities

Proposition IL.44. If f is a simple function in RS, then there exists n € N*, n real numbers (a;)1gigq and n
pairwise disjoined sets (Ai)1gign such that

{ f = Liiaily
S = L}?___ lAl"
Proof. Direct consequence of Definition I1.42. O

Proposition IL45. A simple function f in RS is measurable if and only if all the sets A;, as defined in
Proposition 11.44, are measurable.

Proof. By definition of f, for all a in R the set f<~'>([a, ) is a union of k sets A;, 0 < k < n. More precisely,
k is the cardinality of [a,°0) N (a;)1gigs. Therefore, if all these A; are measurable, so is any k-union thereof,
and in particalar f<-'>([a,]), thus f is measurable.

Conversely, if one of the A; sets, say A;,, is not measurable, then let  be a an interval such as /N (a,-)lgg,,
contains only a;,. Such an interval exists, since (ai)1<;<,, is a finite subset of R, which is separable. Then,
F<1> (1) is not measurable thus neither is f. O

Theorem I1.46. Let f be a measurable function in EO,oO]S. There exists a sequence (uy),en* of simple
measurable functions in [0,c0[S, such that:

{ (Vre N*)  uy < tini
1 (V¥x€S8) limyuu{x) = f(x)

Proof. For all nin IN* and all 1 i < n2", define the following sets and functions:

Ey = <> (5D

F, = f<(h,e))
i=n2!
wy = nlg+ Y S,

=1

All these E,; and F, sets are measurable, thus the u; are measurable simple functions. The cases n =1 and
n = 2 are illustrated by Figure 3.

n=1 n=2

Figure 3. A monotonic sequence of simple functions: 7=1 and n=2.
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I1.2 Measurable Functions and Random Variables

When # is incremented, F, and each E,, ; are split; more precisely:

Epi = Ep412i-1 UEn412i

while
(Vx € En,i) un(x) = "-Fl
(Vx € Eng1pic1) () =53 =5
(Vx €Epg12i) tnp1(x) = %ﬁ} > %—"—1
On the other hand:
i)l
Fy,=Fuyi U U En+],i
=214
while

(Vx€F) u{x)=n
(VxeFn+1) uppi(x)=n+1>n
(Vx € By, )(Vi 2 n2"™ + 1) i (x) = '2’n;+1T =n
Therefore, since

i=n2"
S=FJ ( Ul E) )
=

it follows that
(VneINYWVx€S)  un(x) < tng1 ().

Concerning lim,, u,,, two cases arise:
— if f(x) is finite, then, for all n > f(x),
|f(x) = ualx)| < 55 = O

— if f(x) = oo, then 1, (%) = n— oo

Remark 1147, If, in addition, f is bounded, then the convergence is uniform (i.e., [|uy — f||.. = 0).

11.2.3 Random Variables

Let (T,9%) denote a measurable space; practically, the domain of interest considered here is limited to the
cases where (T,0) is either a denumerable set along with its power set or (RY,39).

Definition IL.48. Given a probability space (S, &, P), a random variable from S to T is a measurable function
in TS. X(T) is called the state space and its elements the states of the random variable. If T is denumerable
(resp. real, complex), the random variable is said to be discrete (resp. real, complex). The function Py =
PoX<'> is called the probability distribution of X.
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II Measures and Probabilities

Proposition IL.49. Under the previous assumptions, (T, M, Px) is a probability space.

Proof. By hypothesis, (T,) is a measurable space. In addition, because (S, 8, P) is-probability space,
i. Px(®)=PoX<>(@)=P(@)=0;
ii. for any sequence (A,),ci+ measurable sets (with respect to (T, M),

PX( UA") =P( UX(A")) = ZP(X(A,,)) = ZRX(An);

ncIN* elN* nelN* nelN*
ifi. Py(T) = PoX<">(T) < 1. In addition, S C X< (T thus
1=P(S) K PoX<""(T) = Px(T)

and therefore Py(T) = 1.

0

Remark 11.50. In general, the probability space (5,8, P) is not defined explicitly, but rather implicitly by
the means of a random variable along with its probability distribution, e.g., by chosing X <~'>(T) for S, the
c-algebra generated by X <~'>(91) in 25 for & and Px o X for P. Technically, this allows to hide the probability
space behind the random variable and its probability distribution.

11.2.4 Introduction to MARKOV Chains
The concept of MARKOV ! chain is introduced here in an informal, inductive way; it will be formalized later.

Example 11.51. Using the probability space of Example I1.31, for all k in IN* the mapping X; is defined on
2% by
(v(”n)nel‘l* € ZN*) . Xk((un)nEN“) = Up.

Each X} is a discrete random variable with two states, 0 and 1. Its probability distribution is given by

Py(1) = a—%+ﬁ-(i—a—ﬂ)‘“‘
() = grggapl-o-Br

In fact, the sequence (Xi)rew+ presents the simplest case of a uniform MARKOV chain, with 2 states. Iis
behavior can be summarized as in Figure 4.

10 Andrei MARKOV, Russian mathematician, 1856-1922.
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I1.2 Measurable Functions and Random Variables

S OE==On

Figure 4. Two-state uniform MARKOV chain.
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II The LEBESGUE Measure

[...] une généralisation faite non pour le vain plaisir de généraliser, mais pour résoudre des
problémes antérieurement posés, est toujours une généralisation féconde.

H. LEBESGUE!!, in Revue de métaphysique et de morale, 34:2 (1927)

In this chapter, S will denote a nonempty set.

Now that an abstract measure framework has been defined, one would like to apply it so that it retrieves
the results known in the particular case of the RIEMANN!2 integral, when it exists. In particular, simply by
considering the case of constant functions, it appears clearly that such a measure must satisfy the following
axioms:

Axiom ITL1. The measure of any real interval is the difference between its upper and lower bounds.

Axiom ITL.2, The measure is invariant by translation.

Although only necessary, these axioms will prove restrictive enough so that it is impossible to make the
entire 2R measurable while complying with them. The goal of section II1.1 will precisely be to establish
this impossibility, and the rest of this chapter will aim at defining a measure on as much of 2R as possible,
while maintaining compliance with Axioms III.1 and I11.2. At this point, several different approaches can be
chosen; in particular, [Rud86] proposes an inductive method based on URYSOHN’s!? Lemma. On the other
hand, the method chosen in the present chapter is a constructive one that provides a direct way to construct
measures on R (and in particular the LEBESGUE measure) from right-continuous non decreasing functions
(thus in particular from cumulative distribution functions). This angle of attack is especially appropriate here,
because it is directly connected to applications in probability theory.

II1I.1 Preamble

The aim of this section is, first, to explain why there is no way to define a measure complying with Ax-
joms III.1 and 112 on the entire 2®. To this goal, a counter-example will be exhibited. Then, in order to
provide a clear overview of this somewhat lengthy process, the construction of the LEBESGUE measure by
the means of CARATHEODORY’s!# Extension is summarized.

II1.1.1 Fountainhead

The fountainhead counter-example is based on the following axiom, which is part of the NBG Set Theory.

1THenri LEBESGUE, French mathematician, 1875-1941.

2Bernhard RIEMANN, German mathematician, 1826-1866.

13pavel URYSOHRN, Russian mathematician, 18981924,
14Constantin CARATHEODORY, German mathematician, 1873-1950.
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Axiom IL3 (Axiom of choice). Given any set of pairwise disjoined nonempty sets, there exists at least one
set that contains exactly one element of each of the nonempty sets.

Lemma ITL4. There exists a subset of |0, 1], which is a set of class representatives of R/Q.

Proof. First, notice that (R,+) is abelian, thus each of its subgroups, and in particular Q, is normal. In
addition, recall that because @ is a normal subgroup of (R, +), saying that two real numbers, x and y, are in
relation with each other if and only if x — y is rational defines an equivalence relation on (R, ), thus leading
to equivalence classes over R; the collection of these equivalence classes constitutes ]R/Q, by definition.
Moreover, the axiom of choice guarantees the existence of a set E of class representatives, i.e., a set formed by
taking exactly one element in each equivalence class. Let denote E such a set and, for any x in E, [x] its integer
part; x — [x] is equivalent to x and belongs to ]0, 1{ if x € Z, thus x — [x] provides another class representative
which complies with the requirements. If x € Z, it suffices to take % as a class representative. W

Prior to exhibiting the counter-example, the following definition will be useful:
Definition IIL5. For any subset A of R and r in R, the set {x+r, x €A} is denoted A+r.
Proposition IIL.6. There is no measure on (R,2®) which complies with Axioms IIl.1 and II1.2.

Proof. Let u be a measure on (R,2%) which satisfies Axioms I11.1 and II1.2; this implies, in particular, that
the set E defined in the proof of Lemma I11.4 is measurable. Let also denote

F = U (E+r).
reQn]-1,1{
In particular, F is a subset of | —1,2[ thus, because of Axiom lI.1,

wF)<p(-1.2) =3. (IIL1)

Moreover, for all x in ]0,1{, there is an equivalence class in R/Q) to which x belongs; in other words, by
definition of E, there exists y in E such that x — y = r is rational, thus x = y + r belongs to E +r. Therefore,
10, HC F and

wF)zu(o,th=1. (11.2)
Now, let r and s be two distinct rational numbers; any x which belongs to E +r and E+s must satisfy
(3n2) €E?) x=y+r=z+s

and thus, y—z =5 —r # 0. Hence, y and z are distinct and belong to the same equivalence class of m/Q,
which contradicts the construction of E. Therefore, E+r and E -+ are disjoined and, using Axiom 111.2,

0 if wE)=0
uF) = Y, wE+n)= Y, pE)= { : (11L3)

reQNI=1,1] reQnI- L] = it WE)#0,
which contradicts the fact that 1 € p(F) < 3. Therefore, the hypothesis is inconsistent, i.e., there cannotbe a
measure on (R,2R) that satisifies Axioms HL1 and 111.2. 0

A direct consequence of Proposition IH1.6 is that it is impossible to extend the RIEMANN integral to arbitrary
sets of reals. The goal of this chapter will therefore be to extend of the classical notions of length and area
to more complicated sets than those acceptable in the framework of RIEMANN integral; although it is not
possible to do so for the entire 2&, it will be shown that a large class of such sets can be addressed, in
particular all BOREL sets.
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1.1 Preamble

Map o= oy S oy S

measure  outer-measure complete measure  measure

Definition set § c 25 o & > 6(8)

boolean alg.  c-algebra c-algebra c-algebra

Table 1. Summary of CARATHEODORY’s Extension: = and — denote,
respectively, an extension and a restriction. Note: 8 C &(8).

IIL.1.2 Constructive Approach to the LEBESGUE Measure

Due to the complexity of the LEBESGUE measure construction, it is decomposed into several steps to make
it easier to understand. It shall be kept in mind from the beginning that, as it often happens with constructive
approaches, the whole picture will emerge only at the end.

The construction can be summarized as follows:

Step 1: The set /, formed of all intervals |a, b] with @ < b in R, is introduced. Although 7 does not have any
structural properties, in particular is not closed for set operations, it is shown that from any nondecreas-
ing right-continuous function F of R, a function yr can be defined over I with properties similar to
those of measures. In particular, ur is -additive over I.

Step 2: The closure J of J for the usual set operations turns out to be the set of all possible finite unions of
intervals with the form ] — e, a], ]b, ¢] or }d, o] with a, b < c and d in R. In addition, any interval ] —co,a]
or Jd, oo can be expressed as a denumerable union of pairwise disjoined elements of /. Therefore, the
o-additivity of ur is used to extend it to a function u defined on J.

Step 3: The triple (IR,J,u) has most of the properties of measure spaces, but still lacks a key one: J is not
closed for denumerable union (nor for intersection); in fact, J is a boolean algebra and, for the sake of
generality, this concept will be formalized. For instance, B ¢ J, e.g., a closed interval is not measurable
and neither is a finite set. The approach chosen here is to use a technique called CARATHEODORY’s
Extension; this approach is generic, and thus not limited to the case of R. Summarized in Table 1, this
constructive approach proceeds as follows:

i. from a measure on a boolean algebra 8 on S, is built an outer-measure u*, defined on the the
entire 25, Such objects are more general and in particular, lack c-additivity. However, the relative
roughness of y* allows it to remain compatible with Axioms III.]1 and II1.2 on the entire 25,

ii. then, the outer-measure is restricted to ¢, defined over a particular subset &(u™) of S this subset
is chosen in such a way so that (S, &(u*),,) forms a measure space;

iii. now, the most striking aspect of this process is that &(u*) is not only large enough to be interest-
ing, but that, provided an additional condition called o-finiteness, it actually contains the initial
boolean algebra 8. Since this implies that G(u*) also contains the o-algebra G(8) generated by
8, ¢/ is finally restricted to it, thus providing a measure [ on the desired o-algebra.

Step 4: This process is specialized, in the case where S is R; this gives birth to a measure on the BOREL
¢-algebra introduced in chapter II. However, it is established that the resulting measure space is not
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I The LEBESGUE Measure

complete measure, in a newly-defined sense (and intuitively close to that of completeness of metric
spaces).

Step 5: A new meaning is given for the concept of completeness in the context of probability spaces. It is then
explained how a measure space can be completed with respect to this definition. Finally, applying this
process to the BOREL ¢-algebra and measure concludes the construction of the LEBESGUE measure.

I11.2 Measures on Boolean Algebras

The goal of this section is to construct, on a structure that is less restrictive than a o-algebra on R, a measure
complying with Axioms IH.1 and HL2,

12,1 Interval Measures

First, it is shown that with any right-continuous real function, there can be associated a set function defined
on the class over left-open, right-closed intervals. Moreover, this set function will comply with Axiom IIL.2
and, for a particular choice of the “generating” function, with Axiom IIL.1,

Definition ITL7. Let 7 denote the set of all intervals of the form Ja, b], where (a,b) € R? with a < b.
Remark TIL8. 1 is indeed a set of subsets of R; in other words, 7 ¢ 2&.

Proposition IILY9. For any right-continuous and nondecreasing F € RR, let pr be the function defined over
1 as follows:

(V(a,b) € R:,a<b) pr(la,b]) = F(b) — F(a).
Then pr satisfies the following properties:

I. pr is nonnegative and pp (&) = 0;
ii. forall a € R, pr(Ja,b]) L O when b} a;
iil. pp is monotonic over I;
iv. forall (a,b,c) € R, a < b < c implies pr(Ja,c]) = pr(a, b)) +ur(b,c)):

V. pr is c-additive over I.

Proof. Only the proof of the last point is detailed here since the others are trivial and left to the reader. Let
(Jar, b)) ens be a sequence of pairwise disjoined intervals of 7, such that their denumerable union belongs
to I and thus can be written as ]a,b]. For all n € IN*, it is always possible to re-index the n first intervals of
the sequence such that b; < apy) for each I < k < n — 1, which also implies a < @) and b, < b; then

k=n k=n—

k=n 1
Lf:ur(]ak,bk]) < Y ur(lar,bi]) + ; #r (b axn]) = pr(ar, ba]) < pr(la,b])
k=1 k=1 b=1

thus, taking the limit,

ZI—’F(]an, bn]) < )UF(]“’b])'
neN*
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In order to demonstrate the inverse inequality, it shall first be acknowledged that if a = b, then the result is

immediate. If a < b, then let € be in ]0,b—a]. F is right-continuous, therefore
€
(Vne N*)(e, €[0,59*)  ur(bn,bn+€4)) = F(bu+81) — F(bn) < 7

Now,

(VneN*) [a+e,b]Cla,bl= | lan,ba] C U Jan, bn+eal,
neN* nelN*

but because of HEINE!>-BOREL-LEBESGUE’s Theorem!9,

k=m

(BmeN*) [a+eb)C U]ak,bk +&[
k=1

thus, by recurrence on k,

k=m k=in k=m

pr(la+e,0) < Y prQabi+e) = Y prQae b)) + Y #r(bis bi+ )
i=1 k=1 k=1

k=m k=m
€
< ;l#r(]ak,bk]) + ‘Zl 7 S ezl,qﬂf(]ambn]) +e.
b= (= 14 *

Thus, because F is left-continuous, the conclusion arises by taking the limits when € tends to 0. a

II1.2.2 Boolean Algebras as Closures

First, a structure slightly more general than ¢-algebras is introduced:

Definition ITIL.10. Any 8 C 25 such that:

i. S€8
ii. ifA€8,thenA®€§
iii. if (4,B) € 8%, then AUB€ §

is called a boolean algebra on §.

Example 111.11. Any c-algebraon S is a boolean algebra on S.
Example 111.12. The set of all finite unions of real intervals is a boolean algebra on R.

Remark N1.13. A boolean algebra on § necessarily contains & and is closed for set difference, finite union
and finite intersection. In fact, the name is somewhat misleading, since a boolean algebra is not an algebra.
Itis in fact a semialgebra, when 8 is equipped with the N, U and \ binary operators.

Proposition IIL.14. The boolean algebra J generated by 1 is the collection of all finite unions of intervals
with the form ] —eo,a}, 1b,¢] or Jd,o|, a, b < candd in R.

3Heinrich HEINE, German mathematician, 18211881,
16From any open cover of a closed bounded domain can be extracted a finite open cover.

35



III The LEBESGUE Measure

Proof. Exercise. Check the condition between b and c. a

The notion of measure is now extended, via a slight modification, to the case of boolean algebras:

Definition IIL15. Let 8 be a boolean algebra on S. A measure on (S,8) is a mapping u in [0,00]® such that:

i p(@)=0;

ii. for any sequence (A;),en+ of pairwise disjoined sets in 8 such that their denumerable union belongs

to §,
#(UAn) = Y uA).

€IN* nelN*

For any A in 8, u{A) is called the measure of A.

Proposition IIL16. A measure on a boolean algebra is countably subadditive.

Proof. The proof is very similar to that of Proposition 11.16, using the sets defined, for all n in IN*, by
By =ANApand Cyq1 =B,,+1\U,',~l._.1Bi with C; = By. [}

Proposition HI.17. Under the hypothesis of Proposition 111.9, there exists a unique measure p on J such that
M = YF.

Proof. First, any interval with the form | —eo,a] or ]a, o[, where a € R, can be written as a denumerable
union of pairwise disjoined intervals in 1. Therefore, in order to extend ur to J, it suffices to show that p is
completely determined by )

pA) = Y pr(l),

nelN*
for all (I)pem+ € 1 N* with denumerable union A. In fact, if A is also the denumerable union of the sequence
with pairwise disjoined terms (Ju)nems € 1Y,

(Vn EN") Li=ANI= U (J,,,ﬂ],,)
melN*
and

(YmeN*) Ju=ANTy= {JUNIu).
nelN*
Now, 1 is closed for N, thus each I, NJ,, belongs to 1, and because of the o-additivity of /,

ZIJF(]n)= Z ZPF(JmnIn)= Z ZﬂF(’nnJm) ZIJF(Jm)-

nelN* neN*melN* melN*nelN* melN*
0

Remark 111.18. An immediate consequence of the latter result is that, in the particular case where F is the

identity function over R then, if the (I;)1gkgn, 1 € IN*, are pairwise disjoined intervals with respective lower
and upper bounds ;. and by,

= k=n
u (U lk) =Y (bx—a)
k=1 k=1

which clearly complies with Axioms II1.1 and IIL.2.
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113 CARATHEODORY’s Extension

III.3 CARATHEODORY’s Extension

Now that the first “brick” constituted by the boolean algebra J and its measure p has been planted, CARATHEODORY’s
Extension can built.

I11.3.1 Outer-Measures

The goal here is to introduce a new class of maps on 25. Albeit too crude to be measures, these maps
have enough properties to prepare the construction of measure spaces, starting from parts of 25 that are not
necessarily o-algebras.

Definition IIL.19. An outer-measure on S is a mapping u* from 2° to [0, 0] such that

i. p(@)=0;
ii. for all subsets A and B of 5, A C B implies p*(A) < u*(B); -
iii. p¥is countably subadditive.
Example 11.20. Any measure on (S,2%) is also an outer-measure on S, since the axioms of Definition I1.11
imply those of Definition I11.19.

Remark 111.21. Outer-measures are more general objects than measures because they do not require G-
additivity: this allows them to address larger classes of objects without encountering the kind of contra-
dictions met before. For instance, in the the proof of Lemma II1.4, if an outer-measure u* was used instead
of p, then (IIL1) as well as (II1.2) would still hold, but (111.3) would not, precisely because of the loss of
o-additivity. Instead, (111.3) would become

" N N 0 if p(E)=0
H(F) < (E+r)= #(E)={ £
reQ§]:—1,1[ reQnZ]—l,l[ o if u(E)#0,

which is not contradictory with the fact that u*(F) is in [1,3). This only implies that y4*(E) #0.

In the case where a measure on a boolean algebra is already known, there is a very convenient and general way

of deducing an outer-measure from it. This technique is used, in particular, to demonstrate CARATHEODORY’s
Extension.

Definition IIL.22. Let 8 be a either a boolean algebra or a ¢-algebra on S. For any given A € 8, an S-cover
of A is a sequence (Ap)nen+ € S™* such that

Ac A
nelN*

The set of all 8-covers of A is denoted as Covg(A).

Proposition II1.23. Let 8 be a boolean algebra on S and p a measure on (S,8). The mapping y* defined on
25 by
A€2%) pA)= inf u(An)
vA€?) W)= it Tplh

is an outer-measure on S such that p*ig = p.
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11 The LEBESGUE Measure

Proof. With the usual convention that the infimum of any function over & is oo, u* is well defined on 2° and
is nonnegative by construction. In addition,

i. 4*(®) = 0since (@)n+ € 8% = Covg(@);
ii. if A CBCS, then

(V(An)ueN* € SN*) BC UAn = AC UAm
nel* nelN*

thus, Covg(4) C Covg(B) and, therefore, y*(A) < u*(B);

iti. in order to establish the countable subadditivity for u*, let (A,).em+ be a sequence of subsets of S, and
consider the two following cases:

— either u*(A,) = o for at least one n € IN* and the conclusion is immediate;
- or, for all n € IN*, y*(A,) is finite; by definition of u*, this means that, given any € € [0, [*,
€
(Vn € N*)(3(AF) pen+ € Covg(A,)) Z HAD) < p*(An)+ o
pEN*

therefore,
H(An) € Z Z BAD) < Z,F‘(An) +E,

neN*peN* nelN*
and since this is true for all € € [0, o], the countable subadditivity arises.

Therefore, 41" is an outer-measure on S. Finally, y*s = u since for any A € 8, (A4,8,:++) € Covg(A) thus
H(A) < i(A); conversely, for all G-cover (A,),em+ of A, considering the (B, )nen+ defined by By = A NA
and

(Vn € ]N*) Bn+lv = (An+l ﬂA) \Blh
one has that y(A) < u*(A). Since this is true for all A € 8, it follows that y*g = p. ]

Nevertheless, in the goal of extending the classical properties of the RIEMANN-integral, one wants to maintain
o-additivity, therefore the outer-measure must be restricted to a specific class of sets on which it will turn out
to be a measure,

H1.3.2 p*-measurability

A striking property of outer-measures is that they permit the construction of measure spaces in a straightfor-
ward manner. First, a particular class of subsets of S is defined:

Definition ITL.24. Let u* be an outer-measure on S. Any A C S such that
(VECS) wpYE)=u(ENA)+u(ENA") (HL.4)

is said to be y*-measurable.
Now, the following result justifies the entire approach:
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Theorem ITL.25. For any outer-measure y* on S, let denote &(u*) the collection of all y*-measurable sets;
then, (S,8(u), 1) is a measure space.

Proof. First,

i. forall E C S, pEN@) +p(ENS°) = y*(E) thus @ € S(u*);
ii. forall A € (i), A°° = A. Thus, because of the symmetry of (I11.4), A° € S(r);

iii. establishing that &(u*) is closed for denumerabls union is quite long, and is split in two steps for the
sake of clarity: first, union, then denumerable union. Hence, let A and B be in &(¢*) and S be any
subset of E; in particular, EN (AU B)° = ENA°NBC, thus,

EN(AUB)=(ENANB)U(ENANB)U(ENA°NB).
Therefore,
H(EN(AUB)®) = f(ENA°NE°), (111.5)
and because of the subadditivity of u*,

HEN(AUB)) K (ENANB)+p(ENANBS) +u{ENANB). (111.6)

Now, applying successively the definition of a y*-measurable set to A and B shows first that y*(E) =
W(ENA) +uy*(ENAS), then

WHE) =1 (ENANB)+ p(ENANBY)+ i (ENA°NB) + p(ENA°NB°)
thus, combining with (I11.5) and (1I1.6),
H(E) Su(EN(AUB))+u(EN(AUB)).
Conversely, the subadditivity of u* shows directly that
W(E) > w'(EN(AUB)) +p(EN(AUBY),

whence
H(E) =p(EN(AUB)) + 1 (EN(AUBY).

Thus, since this is true for all E C S, AUB belongs to & (u*). In other words, &(u*) is closed for union,
and since ANB = (A°UB°)", it is also closed for intersection, and furthermore, for set difference. Now,
if (Au)sen is a sequence p*-measurable sets, assume By = A; and define, for all nin IN*, B,y.1 = Apq1 \
Uﬁ:’l'A,-. .By definition, these B, are pairwise disjoined; moreover, by recurrence on union closedness,
they are y*-measurable and

i=n i=n

(VnelN*) |JBi=|JAi € 6. .7

i=1 =1

Therefore, establishing closedness for denumerable union amounts to establishing closedness for dis-
joined denumerable union: the question is that of the y*~measurability of

B= |JB,= |JAn

nelN* neN*
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On the one hand, for all E C S and all n in IN*, it follows from the p*-measurability of A,, that

i=n i=n i=n
o (Eﬂ UB,-) =u* (EnB,,n UB,-) +u" (Ean,n UB,-)

i=] i=1 i=]

i=n—1
=y ENB,) +u* (En U Bi)

=1

since the B; are pairwise disjoined. Therefore, by recurrence,

(V(E,n) € 25xIN*) * (E n UB,-) =Y 4*(ENB,). (LIL8)
i=1 =1

Now, by definition of B,

(V(E,n) € 25xN*) B°C ('UB,-)

i=1

thus, 3 .
(V(E,n) € 25°xN*) p*(EnB°) <t (En (L_JB;) ) ,

i=1

which, combined with (111.7) and (I11.8), leads to:

i=n i=n ¢
(V(E,n) € stlN*) U(E)=p* (E n UB,-) +u* (E N (U B,-); )
=1 / =t J
i=n
2 Y W(ENB)+pu*(ENB).
i=1
and since this is true for all #n in IN*, one can take the limit when n tends to o« while conserving
inequalities:
(VECS) w{E)> Y u(ENB,)+u"(ENB). (11.9)
nelN*
On the other hand, for all E C S, E=(ENB)U (E NB®). Thus, because of the subadditivity of ¥, it
follows that
(VECS) p{(E)<p(ENB)+u(ENE°)

while, by definition of B and because of the countable subadditivity of u*,

(VECS) wu(ENB) =p*( UE ﬂBn)) < Y #{ENB,).

nelN* neN*
Hence,
(VECS) pE)SH(ENB)+p(ENE)K Y, u(ENB,) +i(ENEY),
nelN*
which, combined with (I11.9), shows the two following equalities:
(VECS) w(E)= Y w(ENB,)+p{ENB) (I11.10)
nelN*
and

(VECS) pi(E)=p"(ENB)+u(ENB°),
reaching to the conclusion that (S, S (1)) is a measurable space.

40



I11.3 CARATHEODORY’s Extension

iv. Now, u/* e ,» being denoted for simplicity as 4/, it follows directly from the definition of y* that /(@) =
H(@) =0.

v. Finally, if (A,),cn- is a sequence of pairwise disjoined y*-measurable sets, with denumerable union 4,
it follows directly from (I11.10) that

H(A) = p*(A) = Z}N H(ANA,) + 4" (ANAS) = ZN H (An)-
nelN* nelN*

Therefore, (S, S(u*),4') is a measure space.

O

Remark111.26. The u*-measurable subsets of S are exactly the measurable sets of the measure space (S, &(u*), ).

I1.3.3 o©-Algebra Associated with an Outer-Measure

Theorem II1.25 concludes that there is always a straightforward way to construct a measure space from an
outer-measure on a set. A definition summarizes this result:

Definition ITIL.27. Under the hypothesis of Theorem I11.25, S(u*) is called the 6-algebra associated with y*.

Now that all the preliminary work has been done, CARATHEODORY's Extension arises naturally.
Definition ITL.28. Let 8 be a either a boolean algebra or a G-algebra on S and y a measure on (§,8). If there
exists a sequence (A,)yeny+ € 8™ such that

(VneN") u(A,) <ee

S= UA,,,

nelN*

then u is said to be o-finite.

Example 111.29. The counting measure # on (IN,2¥) is o-finite since e.g., IN can be covered with singletons,
each of those having, by definition, a unit thus finite counting measure.

Theorem IIL.30 (CARATHEODORY’s Extension). Let § be a boolean algebra on S and &(8) the o-
algebra on S generated by 8. Any o-finite measure on (S,8) can be uniquely extended to a o-finite measure

on (§,6(8)).

Proof. The proof results directly from Lemma II1.23 and Theorem I1.25; the only part which remains to be
proved is the fact that &(8) C &(u*). This is left to the reader as an exercise. 0

Now, this technigue permits to exhibit particular measures having the relevant properties.

Corollary IIL31. IfF € RR is a right-continuous nondecreasing function, then there exists a unique measure
u defined on (R, B) such that

(Va,b) CR)  p(la,b]) = F(b) - F(a).
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Proof. Direct application of Theorem I111.30. O

Definition II1.32. Under the hypothesis of Corollary IIL.31 and in the particular case where F is the identity
over R, u is called the BOREL measure on RY.

Remark 111.33. At this stage, it should be noted that the BOREL measure on R complies with Axioms I1I.1
and II1.2 by construction. In particular, the measure of a real singleton (which is a BOREL set as mentioned
in Remark I1.7) is 0.

Are we there yet? No, since there are still plenty of non-BOREL sets which could be measured with very
limited additional efforts (e.g., Example I1.10 exhibits such a set). But it is already possible to apply these
powerful results to reformulate the concept of cumulative distribution functions in a very generic way:

Definition IIL.34. A cumulative distribution function, or CDF, on R. is a right-continuous nondecreasing
function F € [0,00[® such that F(—occ) =0 and F(e0) = 1.
Using CARATHEODORY’s Extension, it immediately follows that:

Theorem I35, Let F be a CDF on R. There exists a unigue probability measure, also denoted F, on
(R, D) such that

(V]a,b) CR) F(la,b]) = F(b) - F(a).

Proof. The proof is immediate, from Corollary IIL31, except for the fact that F is indeed a probability
measure on (R, B). This arises because | — n,n] 1 R, thus,

F(R) = li:l]FG-—n,n]):litfln(F(n) —F(-n))=1-0=1.

Corollary I11.36. Any CDF on R is the CDF of a real random variable.

Proof. This results directly from the fact that, as explained in Remark 11.50, on each probability space
(R, %, P) can be defined a real random variable X with PDF Py = PoX.

Example TI1.37. If p denotes the BOREL measure on R, Q is a zero measure set in (R, B, ) since, for any
bijection ¢ € QN (its existence is guaranteed by the denumerability of Q),

H(Q) = u(o(IN)) =u( U {(P(n)}) = GN”({QP(")}) =0.

nelN

II1.4 Measure Completion
IIl4.1 Complete Measures

Measure completion consists of enriching, at no cost, a c-algebra with sets or set differences whose measure
is equal to 0.

Definition ITL.38. Given a measure space, a zero measure set is a measurable set whose measure is equal
to 0.
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114 Measure Completion

Example 11139, @ is a zero measure set of (IN,2N,#). Moreover, it is the only zero measure set of this
measure space, ‘

It is clear that any measurable subset of a zero measure set is also a zero measure set. However, any subset of
a zero measure set is not necessarily measurable, although this would be a practical situation. The following
concept is therefore introduced:

Definition IT11.40. A measure space is said to be complete if every subset of a zero measure set is measurable.

Example 111.41. (]N,ZN,#) is a complete measure space since its only zero measure set is &, which belongs
to the c-algebra.

Example 111.42. The measure space (S, &, u) defined in Example I1.14 is not complete since ({0, A}) =0,
but neither {{1} nor { A} are measurable.

Remark 111.43. Although the notion of completeness is defined for measure spaces, it is also accepted to use

it for measures, when no confusion is possible: saying that u is complete means that the underlying measure
space (S, &, u) is complete.

In the case where a measure space is not complete, a natural question arises: is it possible to complete!” it?
The following result addresses this question:

Proposition ITL44. If (5,6, ) is a measure space and
& = {E CS: (3(4,B) € 6%) A CE CB, u(B\A) =o},

then (S,6*) is a measurable space. In addition, under the above conditions regarding A, B and E, and
defining the function ti on G by Ti(E) = p(A), (S, 6H,1) is a complete measure space.

Proof. The first part of the proof concerns the measurability of (S, G*):

i. by definition, & C &*, thus, S € &#,

ii. on the one hand, if A C E C B, then B C E° C A®; on the other hand, A®\ B¢ = B\ A, thus, if E € &,
so does E€;

iii. similarily, if for all n in N* A, C E, C B, then
Uarc UEc UBw
nelN* nelN* nelN*

while

UBn\ UAn c U(Bn\An)'

nelN* neN* nelN*
Thus, if for all n in IN* u(B, \ A,) =0, then

p( UB:\ UA,,) =0,

nelN* nelN*

which proves that &* is closed for denumerable union.

Pintuitively, as it is done for incomplete metric spaces.
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11 The LEBESGUE Measure

Now, the second part of the proof consists of establishing that 1 is a measure on (S, 8#), based in particular
on the fact that, by definition, ﬁis =

iv. first, it must be ensured that g actually is a function in [O,oo]s". Definition and target sets are obvious,
but is must be checked that it is indeed a function, i.e., each E in G* has one and only one image under
4. The existence is ensured by construction of G and fI; concerning the uniqueness, assume that the
sets A, By, A; and B, in & are such that Ay C E C By, A2 CE C By, u(B1 \ A1) =0 and u(B\ A3) = 0.
In this case, A2 \ Ay C B\ A}, thus,

HA1) = p(A2) + 1(A2\ A1) = p(4A2),
which proves the uniqueness of i{(E) = p(4,) = u(A2);
v. @ €Gthusfi(@)=pu(@)=0;

vi. for any sequence (Ep),em+ of pairwise disjoined measurable (with respect to (S, &#)) sets, using the
same notations as for (iii) above, the A, are pairwise disjoinded, since for all n in IN* A,, C E,,. Hence,

ﬁ( UEn) =F( UAn); = ZP(An) = Zﬁ(En),
neN* nelN* neN* nelN*
since p is a measure on (S, S).

The last part of the proof concerns the completeness of (S, &¥,1): given any zero measure set E in &#, there
exists, by definition, (4, B) in &2 such that A C E C B and (B \ A) = 0. In particular, p(A) = i {A) = 0, thus,

u(B) = p(A) +u(B\A) = 0.

Now, any subset F of E clearly satisfies @ C F C B and fi(B\ &) =0, thus, F € &, and therefore [i(F) =
0. O

Definition II.45. Under the hypothesis of Proposition 111.44, (S,&*,1) is said to be the completion of
(S,8,u).

EXERCISE II1.46. Complete the measure space (S, &,u) defined in Example 11.14.

Remark 111.47. Caution must be used when handling the concept of measure space completion when S is

also equipped with a metric: there might be an ambiguity with completion in the sense of convergence of
CAucHY'® sequences.

IIL4.2 BOREL-STIELTJES Measures
Theorem ITL48. Under the hypothesis of Theorem I11.25, (S,&(u*),u"\e ) is a complete measure space.

Proof. Exercise. O

Remark I11.49. As a consequence of the restriction of ' from &(i*) to G(8) in CARATHEODORY s Exten-
sion, (S,6(8),4/) is not necessarily complete; for instance, this is the case for BOREL measure spaces.

'8 Augustin CAUCHY, French mathematician, 1789-1857
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1I1.4 Measure Completion

Definition II1.50. Under the hypothesis of Corollary 111.31, the complete measure i defined on the 6-algebra
9B# is called the STIELT/ES'?-LEBESGUE measure on R induced by F . In particular, if u is the BOREL measure,

then B¥ (resp. £ = i) is called the LEBESGUE G-algebra (resp. LEBESGUE measure) on R and denoted £ (resp.
£).

Remark111.51. For the sake of simplicity, the STIELTJIES-LEBESGUE measure induced by a right-continuous
nondecreasing function F € RR is often also denoted F. Provided basic caution, this notation is unambiguous
while being very intuitive.

9 Thomas STIELTIES, Dutch astronomer and mathematician, 1856-1894.
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IV L” Spaces

This new integral of Lebesque is proving itself 2 wonderful tool. I might compare it with a
modern Krupp gun, so easily does it penetrate barriers which were impregnable.

E.H. VAN VLECK®, in Bulletin of the American Mathematical Society, 23 (1916)

In this Chapter, (S, &, u) will denote a measure space.

IV.1 Integrals of Positive Functions

IV.1.1 From Measures to Integrals

In order to avoid handling special cases at oo in the definitions and results presented below, the usual arithmetic
of [0, o[ is extended to [0,c0} by the means of the following conventions:

i. forallain [0,00), a+ 0 =00+ = oo}
ii. forall ain [0,00]*, a X 0o =00 X @ = oo}
jii. Oxeo=0.

Remark IV.1. Note that the arithmetic of limits is consistent with the two first conventions, but not with the
third one since 0 X oo, in the case of limits, is not necessarily 0.

Definition IV.2. Let u be a measurable simple function in [0,o0[, thus, with the notations of Proposition I1.44,
u can be written as follows:

n
u= Za,']lA,..
i=1
The integral of u is defined as:

n
/ udp =Y aip(Ai).
i=1

Proposition IV.3. Under the previous assumptions, the integral of u is independent of the representation
chosen for u: it is a unique value in [0, c0].

Proof. Exercise. O

Definition IV.4. Let f be a measurable function in [0,0]°. The integral of f is defined as:

/ fdu=sup { / udp,u € [0,00%, u measurable simple,u < f } .

20Edward B. VAN VLECK, American mathematician, 1863-1943.
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IV L7 Spaces

Remark 1V.5. In the case where p is the STIELTJES-LEBESGUE measure £, d£ is often denoted by dx, be-
cause £ is induced by x — x. Although not rigorously correct, this notation is acceptable when there is no
risk of confusion. An advantage of this tolerance is that it permits retrieval of the classic RIEMANN-integral
notation since [ f(x) dx is equal f fdf for any f that is RIEMANN-integrable over R.

Definition IV.6. If f is a measurable function in [0,]" and E belongs to &, define
[fau=[1zdn

Remark IV.7. The fact that f1g is measurable is guaranteed by Corollary 11.39.

Proposition IV.8.
i. If f and g are two measurable functions in [0,50] such that f < g, then

ffdﬂsfgdu-

ii. If f is a measurable function in [0, and c belongs to [0,o], then
/cfdp: c/fdp.
Proof.
i. For any measurable simple function u in [0,c0[%, u < f implies u < g. Thus,
{ / udy,u € [0,c0[%,u measurable simple,u < f }

C { / udp,u € [O,w{s,u measurable simple,u g} ,

whence the conclusion arises immediately.

ii. Clearly, u is simple if and only if cu is simple, thus
/ cf dp = sup { / udu,u € [O,oo[s ,u measurable simple,u < ¢f }
= sup { / cudu,u € [0,oo[s, u measurable simple,u < f }

= csup { / udp,u € [O,oo[s , i measurable simple,u < f

=c/fdy.
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IV.1  Integrals of Positive Functions

Proposition IV.9. If f is a measurable function in [0,20]5 and E belongs to &, then
p(E)=0 = /;fdy=0.
Proof. By definition,
/fd,u = /f]lgd,u = sup {/ud,u,u € [O,eo[s,u measurable simple,u < f]lg} .
E

With the notations of Proposition I1.44, any measurable simple function u in [0,co[® can be expressed as:

n
u=Y aily
i=1

where » is in IN* and the A; are pairwise disjoined measurable sets. Now, if u < flg, it is clear that u = ulg
(since u must be zero on E®). Therefore,

n n
u=ulg =Y ailale =Y ailyne,

i=1 i=1

thus,
it
/ud/.l = Za,-,u(A,-ﬁE)
=1
but, combining the non-negativity of measures and Proposition I1.15,
(Vigig<n) O0Spu(AiNE)<KE) =0,
thus,
n
/ud,u =Y awu(ANE)=0.
i=1
Finally,
sup { / udp,u € [O,oo[s ,u measurable simple,u < f 115} = sup{0} =0.

a

Example IV.10. If f is a function in [0,]®, then, using the fact that @ is a zero BOREL measure set as
explained in Example I11.37, it follows that fQ fd€=0. This illustrates one of the advantages of the Lebesgue
integral over the RIEMANN one, since the latter does not permit to integrate over Q.

IV.1.2 Monotonic Convergence Theorem
Lemma IV.11. Let u be a measurable simple function in [0,e0[5. The mapping v defined on & by

(VE€®) V(E) =/Eudy

is a measure on (S,6).
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IV L” Spaces

Proof. With the notations of Proposition I1.15, u can be written as

U= Zn:a,-]l,\,.,

i=1

where n is in IN* and the A; are pairwise disjoined measurable sets. Therefore,

i. #(®) =0 since, for all i, ¢;14,1z = 0.
ii. For any sequence (E;)rew+ of pairwise disjoined measurable sets, their union being denoted E,
: n
v UEk =V(E)=/ullgdp=/2a;]1,4illgdp
kelN* i=1

= z,;aiy(A;nE) = i Z aii(A; N Ey)
=]

i=1 kR
n
=Y YapuAnE)= Y /uﬂzkdﬂ
kEN® = rensJ
= Z V(E];).
kEN*

a

Theorem IV.12 (Monotonic Convergence or Beppo LEVI’s?! Theorem). If (fu)nen+ is a sequence of
measurable function in [0,00)5 such that

(Vn € N*) fa < fn+l
l  (Vxe8) tLim,fi{x) = f(x),
then f is a measurable function, and

f fdu=lim f fadu.

Proof. The measurability of f results directly from Corollary 11.41. Now, the sequence ( [/, du)new mono-
tonically increases, thus, it has a limit L € [0,c0]. Since f, < f for all n in IN*, then ff,du < [fdy, and
therefore L < [fdu. Let u be a simple function in {0, oo[s such that u < f (this is always possible, according
to Theorem I1.46), and for any given ¢ in ]0, 1{, define

(VnelN*) E,={xe€S: fulx) = cu.(x)}.

For all nin IN*, E,, is measurable, E, C E,+1 and E, C §. Moreover, for all xin S, f,(x) = u(x) > cu(x), thus
there exists n € IN* such that x € E,,; therefore,

U E.=S5.

nelN*

Now,

(VneN™) /f,.dp)Lﬁ,dy?cLud,u

21Beppo LEVI, ltalian mathematician, 1876-1961

50



IV.1 Integrals of Positive Functions

hence, according to Lemma IV.11 and Proposition 11.19,

L=Ii,rln/f,,dp2cli’r,n/ udp=chm udu=c fudu
Eﬂ

n Une]N*En

and this is true for all ¢ in ]0, 1] and all simple functions u in [0,c0[* such that u < f, thus

L> sup c/udp:/udp
O<e<l
and

L>sup { / udp,u € [0,00[%, u measurable simple,u < f } = / fdu

whence, finally, L = [f du.

Corollary IV.13 (FATOU’s?? Lemma). If (£, )ne+ is a sequence of measurable function in [0,0]5, then

f liminffy du < limin / fodu,
n

Proof. For all k in IN, define g; = Inf,s; f; and a; = Inf,si [ fudu. By definition, the sequences (gr)ren
and (ax)rew monotonically increase, thus tends to, respectively, liminf,, f, and liminf,, [ f, du (each of these

limits can be infinite). Now, for all k in IN and all n > k, g; < f, thus

(Vk e N)(Vn > k) fgkdusffndu

hence
(Vk € IN) fgkdﬂs Ig{ffndﬂ=ak-
ok

Now, according to Proposition I1.40, the g; are measurable functions, thus applying Theorem V.12 to (g )ren

show that liminf;, £, is measurable and that, in addition,

/ limint , dps = i f e < limay = liminf / o

IV.1.3  Additivity

Theorem IV.14. If f and g are two measurable functions in [O,M]S, then

[o+adu= [rau+ [ean.

Proof. This result is established, first, for simple functions, then generalized to all measurable functions.

22pierre FATOU, French mathematician and astronomer, 1878-1929.
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Let f and g be two measurable simple functions in [0,[3, i.e., according to Proposition 11.44, there exists
If £ is a simple function in RS, then there exists (n,p) in N*’, (a;)1<icn and (b;)1<j<p in [0,00[, n pairwise
disjoined measurable sets (A;)1gig, and p pairwise disjoined measurable sets (b;)1<igp such that:

f = Z,..l ar]LA
& = EJ-l bj 131
S = Undi = s i=1Bj

from which it follows directly that f + g takes at most np non-negative values (among all a; +b; 2 0), thus
is a simple function in [0,es[. In addition, Corollary I1.39 shows that f + g is measurable, hence, according to
Lemma IV.11, the mapping defined over & by E + [ (f +g)dy is a measure on (S,6). Now,

UU(A,nB,) UA n UB,_s

i=] j=} J=1

* thus, since the A; N B; are pairwise disjoined,

JU0w= [ o gy %

= Z Zf l(f+g)dﬂ

i—-lj*l
= Z Z(a, +b)u(AiNB;))
= j-—-l
n p n
aip(AiNBj) + Z Z bju{AiNB;)
i=1 j=1 i=1j=1
Y }'i [ sarLy
i=] j=1 ANBj i=1 ]—1 ﬂB]
= fdp+ gdu
(9 U?=| (AinB;) du U,—1 1(AinB))

Now, if f and g are any two measurable functions in [0,o0]%, Theorem I1.46 shows that there exists two
sequences {#t, )y~ and (v, )pen+ of simple measurable functions in [O,w[s , such that:

(VneN*)  w, Sty
(Vx€S) Hmyu,(x) = f(x)

(v" EN*} vy <Vl
(Vx€S8) lim,vy(x) = g(x)

which implies that
(VREN*)  uy+ vy S tpt1 + Vot
(vxe8) limyu, (x) +va(x) = f(x) +&(x)

thus, according Theorem IV.12 applied to the sequence (it + vy )nen+ of measurable functions in [0,e5[5, f+¢
is measurable and

/(f+g)d.u = li;,r!/(u,,+v,,)dy
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IV.1 Integrals of Positive Functions

but, since the additivity of [ du is already proven in the case of simple measurable functions, it finally follows

that
/(f+g)d#= li,rln/undu+li;n/vndu=ffdp+fgdy-

Theorem IV.15. If (f)uen+ is a sequence of measurable functions in [0,%0)° and f is defined by

(Vx€S) f(x)= ), fulx)

neN*

then f is measurable on [0,)% and

[rau= X [ fucu

Proof. For any k in IN*, define
k
8k = Z fa-

n=1

By definition, (gi)remw+ monotonically increases and, for all x in S, limy gr(x) = f(x) while, for all k in IN¥,
gk (x) < f(x). In addition, it follows from Theorem IV.14 that

(Vk € V") [gkdu=nzi;1ffndu

thus, it follows from Theorem IV.12 that

ffdy=1i;pfgkdp="eszﬁdy.

o

Remark IV.16. The series Y, f,(x) might well be divergent, in this case f(x) = o since all f,(x) are non-
negative.

Example IV.17. In the case where the measure space is (IN,2N,#), Theorem 1V.15 shows directly that, if

a;j 2 Oforall i and j in IN*, then
Y Loay=) ) ay
i€lN* jEN* JEN* jeN*
in a much more straightforward way than the classical Theory of Series does. This result is no longer valid if
the non-negativity does not hold.

IV.14 Density
Theorem IV.18. Let f be a measurable function in [0,50)° and define the mapping v over & by
(VE€®) V(E)= fE Fdu.
i. (8,6,Vv) is a measure space.
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For any measurable function g in {8,%0]%,

/ gdv = f efdu. av.1)

It is clear that v is non-negative and that v(&) = 0. Now, for any sequence (A, ),en+ of pairwise
disjoined sets in G¥ with denumerable union denoted A, one has

fla=Y fi,,
nelN* .
thus, since all f1,4, are measurable, it follows from Theorem I'V.15 that f1, is also measurable, with
[ruade= ¥ [rin,du,
nelN*
or, equivalently,

vA) = Y v(Al)-

nelN*
If g is simple then, according to Proposition 11.44, there exists n in IN* real numbers (a;)1gig, and n
pairwise disjoined measurable sets (A;)1gign such that:
g = Lijaily
S = Ui
thus, using the definition of v combined with Theorem IV.14,

/gdv:i:ilaiv(A,-) =i;ila,'[4ifd,u=figaifh,.dp=/gfdp.

Now, if g is any measurable function in {0,cc]%, Theorem 1146 shows that there exists a sequence
(#n)nem» of simple measurable functions in [0, [5, such that:

(Vn € N*) Uy s‘ Upt1
(Vxe8) lim,u,(x) = g(x)
thus, in particular,

{ (VneWN*) unf Sttprf
(¥xeS) limy,uy{x)f(x) = g(x)f(x)

whence, according to Theorem IV.12,

/gdv=l»i'x‘n/u,,dv=li’x,n/u,,fdy=/gfdﬂ

O

Definition IV.19. Under the assumptions of Theorem IV.18, it is said that the measure Vv has the density f
with respect to u, written dv = fdu or, if no confusion is possible, v = fu.

Remark 1V.20. No specific meaning is granted to d in dv and dy; it only means that (IV.1) is true for any
measurable function g in [0, o].

Proposition IV.21. If F € €!(R) is non-decreasing, then dF = F'd{.

Proof. Exercise. O

54



IV.2 Probability Density Functions

IV.2 Probability Density Functions

In this Section, (7,%,u) will denote a measure space, where (7, %) can be either a finite set along with its
power set or (R4, B).

Definition IV.22. Let (S,&,P) be a probability space, and X a random variable in 5. If f is a measurable
function in [0,o07 such that dPx = fdy, then f is said to be the probability density function, or PDF, of X
with respect to .

Remark IV.23. This denomination is consistent with the notion of density in the more general case of measure
spaces and measurable functions. When no confusion is possible, the mention to u can be omitted.

Example 1V.24. Let X be a discrete random variable with two possible values, 1 and 0, with respective
probabilities p € [0,1] and 1 — p. X can, e.g., model the outcome of a coin toss. Hence, (1 — p)Lig} + plj1}
is the PDF of X, since:

,

[ (1= PYiigy+ gyt = (1= p)#{O}+ p#{1} = 1 = Pe({0,1)

(1= p)lgoy + plyyd#t = (1 - p)#{0} = 1 — p=Px(0)

.

{0}
/{1}(1 — p) oy + plyyy d#t = p#{1} = p= Px(1)

X is said to have the BERNOULLI®? distribution with parameter p, denoted B(p).

Definition IV.25. Let (S, 8, P) be a probability space, X a random variable in 75 with PDF f, and @ in R7
a measurable function. When the following integral exists and is finite:

/«pfdu= ftp(X)fdP
it is called the moment of ®(X), denoted E[p(X)]. For n in IN* and when they exist, E[X"], E[|X|"],
E[{(X —E[X])"] and E[|X —E[X]|"] are respectively called n"* moment, n" absolute moment, n" centered

moment and n" absolute centered moment of X. In particular, the first moment and the second absolute
centered moment are respectively called expectation and variance of X. The latter is also denoted V [X].

Remark IV.26. According to Theorem IV.14, when V [X] exists it is equal to E [X?] —E [x].
Example 1V.27. 1f the discrete random variable X has:

-- the BERNOULLI distribution B(p), then

E[X) =/Idfd#=0(] — D)0} + 1p#{1}=p

VIX]= 101 - PP a# = p2(1 = PO} + (p — 1)2p#{1} = p(1 =)

— the PDF n -5-—5—6 with l'CSpCCt to the counting measure on ]N,ZlI , then it has no ex ctation,
"2 (n+1) pe
since Lpew g i T =00

BJacob BERNOULLI, Swiss mathematician, 1654—1705
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Proposition IV.28 (MARKOV Inequality). If X is a non-negative real random variable with probability
distribution Py and expectation E{X), then

(vee0.f) Prlesd < 2L
Proof. For all £ in [0,e0[*,

E[X] = / ddPy > /[s,m{lddpx > f[ [sdpx=ePX([e,m[)-.

O

Corollary IV.29. If X is a real random variable with probability distribution Px and expectation E[X), then
for all nin IN* such that the n" absolute centered moment of X exists,

<EX-EX]"]
e

(Ve € [0,[")  Px—_mpey(fe. =D <

Proaf. It suffices to apply Proposition IV.28 to |X — E[X]|". O
Remark IV.30. In the case n = 2, Corollary IV.29 becomes the BIENAYME?*-CEBICEV?S Inequality.

IV.3 Integrability
IV3.1 Integrable Functions

Definition IV.31. For any given f € [-~c0,00]5, define the following functions of [0,ed]5:
fro= max(f,0)
f~ = max(~£0).

Remark 1V.32. Clearly, forall f € [—o0,00]5, f = f+ — f~ and |f| = f+ + f~.

Definition IV.33. A function f € [—eo, o]’ is said to be p-integrable if it is measurable and if

[ifidu<os

In this case, the y-integral of f is defined as follows:

[rau= [rrou- [

Remark 1V.34. If y is a LEBESGUE measure, then the expressions LEBESGUE-integrable and LEBESGUE-
integral can also be used. Another advantage of the LEBESGUE Integral appears here: Definition IV.33
does not make sense in the context of the RIEMANN Integral; it suffices e.g., to consider the function
f =1 1jnq — Njo,1)\@> Which is LEBESGUE-integrable with [|f|d¢= ffdf =0. Now, in the context of
the RIEMANN Integral, [|f(x)|dx = 1but f f(x)dx does not exist.

21rénée-Jules BIENAYME, French civil servant and mathematician, 1796-1878.
25Pafnuti CEBICEV, Russian mathematician, 1821~1894.
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Example IV.35. Let consider the function 1jg zj cos, which belongs to RE. One has:

[in1ae= [1p5icos|ae< [t =m <<

and f is LEBESGUE-integrable. Now, f+ =1p,z)cos and f~ =—1_z g)cos, thus

/fd!:f]llo,§]cos dé—/—ll[_g’nlcos dé = /]I{O’QHCOS df—-/]].[o’%]COS d=0

because of the symmetry of cos with respect to .

The definition is now slightly modified for complex-valued functions; the two cases are not comprised in a

single definition, since the complex case does not allow for infinite values (since no such topology has been
defined): )

Definition IV.36. A function f € C° is said to be u-integrable if it is measurable and if

fmw<n

In this case, the y-integral of f is defined as follows:
[rau= [du+i [3074n
Example 1V.37. If f € C® is defined by f(t) = e’ Ljoz(t) forallz € R, then

[r1de= [10,ae=r,

therefore f is LEBESGUE-integrable. Moreover, R(f) =1z} c0s, S(f)= 1oz sin, thus, vsing the results of
Example IV.34,

24
[£et= [tpncosce+i [qsince =i [sintpgae=i ["sinxar=2i
since sin is continuous over {0, %] thus RIEMANN-integrable.

Proposition IV.38. If f is p-integrable, then

’/fd.u’sflfldp-

Proof. Let z = ffdu; z is a complex number and thus there exists & € C such that [ = 1 and |z| = az. If
u = R(af), then u < | f] and

l/fdu‘=cx/fdp=fafdp=fudﬂgf|f|dy.
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IV.3.2 Almost Everywhere

By definition of a measure, a zero measure set is not necessarily empty; moreover, as explained in Subsec-
tion 1H.4.1, if the measure space is complete, all subsets of zero measure sets are, themselves, zero measure
sets. This apparently benevolent aspect will actually prove to be one of the most convenient features of the
LEBESGUE integral. First, it allows to define a more general form of equality, as follows:

Definition IV.39. A property P(x) defined for x € S is said to be true p-almost everywhere, abbreviated
u—a.e., if there exists a zero measure set A such that P(x) is true for all x € A®. In the context of a probability
measure, the expression almost surely is generally used, instead of almost everywhere.

Remark IV.40. It is important to understand why the definition of truth almost everywhere is given in such
an (apparently) obfuscated way: the set of all x for which the property is true (or false) is not necessarily
measurable. An alternate way of understanding the definition is to consider the following equivalence:

Ac{xeS:Px)} <= {xeS5:-P)}cA

and to see truth almost everywhere as the fact that the set of all x for which the property is false is a subset of
a zero measure space. Obviously, if (S, S, 4) is complete, this difficulty vanishes.

ExampleIV.41. If f and g are two functions defined over S,
fEs = (AE6,uA)=0)(VxeA) f(x)=2g()

and = is clearly an equivalence relation. In the context of probability measures, =
Example IV.42. If (f,)qen+ is a sequence of functions defined over §,

fo==f = (BAEB,uA)=0)(Vx€A") limf(x) =limg(x).

It is important to acknowledge that ==» is a pointwise convergence (i.e., in the target set, and not in the
function space).

Remark 1V.43. In fact, the principle of truth almost everywhere turns out to be one of the most fruitful of
Measure Theory, since it allows to consider functions which are defined “only” almost everywhere. If f is
such a functign, i.e., f is defined in the complement of a zero measure set A, then define (over the entire S)
the function f = flc; by definition, f shares the same properties (measurability, integrability and integral)
as those of f. This convention is clearly consistent with everything done before, and extends the scope of
measurable functions.

From now on, everything will have to be understood in this context.

Proposition IV.44. Let f be a non-negative measurable function; then,

/fdy:O < f=o0

Proof. Let f € [0,0]° be measurable. First, if f = 0,
(34 € B8,u(A) = 0)(¥x € A°) f(x)=0

thus, by additivity and because of Proposition IV.9,

/fd,u:/fﬂAcdp+[flAdp=/fﬂAcdp=/Odp:O.
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Conversely, assume [ fdy = 0 and define

(Vn € ) A,,={xeS:f(x)2%}.

Now, foralln € N*, 11, < f thus

n

(VneN) u(An) gn/fdp=o

and, because of Proposition I1.19,

(VneWN*) p({xeS:f(x)#0}) =F( UAn) =limp(A,) =0.

nelN*

The following theorem is, in many respects, one of the most powerful results of Measure Theory:
Theorem IV.45 (LEBESGUE Dominated Convergence Theorem). Let (f,)nem+ a sequence of p-integrable
functions such that f, = f and:

(308, flelan <) e W) 17l

then f is p-integrable a.e. and

i lim, f|f,— fldu=0;
ii. lim, [ fadp = [fdu

Proof. By hypothesis, there exists a zero measure set A such that, for all x € A®, lim, f,(x) = f(x). Using
the same conventions as in Remark 1V.43, f is the pointwise limit of the sequence of the u-integrable, thus
measurable, ﬁ, functions; hence, fis measurable and, since |ﬂ <8 fis p-integrable. For the sake of clarity,
and because this does not change anything to the result, f is now used, instead of f Applying FATOU Lemma
(Corollary IV.13) to the sequence of functions defined by h,, = 2g — | f, — f| leads to

/ngys /lin},iang—|f,,—f|dp=2g—flin%inflﬁ,—fldy

ie.,
[iimin|, - fldu <0
whence
[iimifa = flau=o0.
Finally,
[ #vtu= [ 10| < [ 15 e
from where the second equality arises. 0
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IV L7 Spaces

Corollary IV.46. If (fu)nen+ is a sequence of measurable functions of [—oo,]5, then

Y [iddu= [ ¥ Ifrlu

neN* ne€lN*

and, if this number is finite, then each |f,| is p-integrable, the series ¥, cw+fn pointwise converges a.e. and

L [Adu=[ e

nelN*

Proof. Exercise. O

IV.3.3 £7” Spaces

First, a new kind of conjugation is introduced:

Definition IV.47. Any two positive reals p and g are said to be conjugate exponents if -,‘;+% =1 Asa
convention, 1 and co are considered to pertain to this case.

Remark 1V.48. Clearly, if p and ¢ are conjugate exponents, then both of them are in {1,2]. Moreover, given
p € [1,9), there is only one p/, such that p and p' are conjugate exponents. If p €]1,oo, p’ = FET

.

Example IV.49. An important case is that of p = p' = 2.

The following preliminary lemma will be very heipful:

Lemma IV.50. Given any (0.,,) € [0,0f? such that .+ B = 1 then,
(Y(u,v) € [0,002)  u®WP < o+ By

Proof. If u orvis 0 or oo, the result is trivial. Otherwise, assuming s = Inu and ¢ = Inv, the convexity of exp
ensures that

U = e < o’ + B = o + B
O

Theorem IV.51 (HOLDER? Inequality for Integrals). Given any p in 11,20] then, for all measurable func-
tions f and g of [0,%]%,
! r r l/p'
Jreeus ([rran)” ([e )

: ‘ _
Proof. For the sake of clarity, define a = ([ f? dy)% andb = (fg”du)?. lfa=0o0rb=0, then f ¥ 0 or
g =0 thus [ fgdu=0, and if a = o or b = o the inequality is obvious. Therefore, assume that both a and b
are in ]0,co[ and define F = 5 and G = 1,;—' According to Lemma IV.50, one has, y—a.e.,

FGE) < ;-)F(x)v + %G(x)"

from which the result follows by integration. a

260tto HOLDER, German mathematician, 1859~1937.
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IV.3 Integrability

Corollary IV.52 (CAUCHY-SCHWARZ?' Inequality for Integrals). For all measurable functions f and g

of 0, | |
[raaus (/fzdp)/2 (fgzdu)/z

Proof Immediate, with p = p’ = 2. O

Theorem IV.53 (MINKOWSKI?® Inequality for Integrals). Given any p in ]1,co[ then, for all measurable
functions f and g of [0,]",

(/(f+g)"dp)v" <( f”du)vp+ (/g”dp)l/p.

Proof. Exercise: use the convexity of  + t” and épply HOLDER Inequality to f(f +g)P~!. a

Definition IV.54. Given any p € [1, <], the set of all measurable functions f € ©S such that | f]” is p-integrable
is denoted .£7(S, &, ), on which the function ||-{|, is defined as follows:

1
Ir
(v € 2(5,8) Il = (frraw)
Definition IV.55. A measurable function f € €5 such that

@1e.) u({xes:F@I>M)) =0

is said to be essentially bounded and the set of such functions is denoted £7(S, &, z1), on which the function
I/l is defined as follows:

(Vf e £7(5,8,1)) |fll. =inf{M e [0,0of: u({x€S:|f(x)| >M}) =0}.

Remark 1V.56. The nomenclature hars several exceptions; in particular:

— if no confusion is possible, £7(S, 8, u) is often simply denoted .#”(u) or even £7;
— for any interval I C R, although this is not consistent with the previous point, £7 (1, £(I), £;) is gener-
ally denoted #?(I) in the literature and, in particular, #”(R) stands for £”(R, £, ).
At the expense of a new definition, the essential properties of the .£’7 spaces can be elegantly summarized.

Definition IV.57. A function ||-|| defined on a K-vector field E is said to be a seminorm on E if:

i (Vfe€E) [fll20;
ii. (V(o,f)€KxE) |lof|l = el lifll;
iil. (V(f,8) €E?) |If +ell < If1l+llgl.

27Hermann SCHWARZ, German mathematician, 1843-1921.
28Hermann MINKOWSKI, Russian then German mathematician, 1864-1909.
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IV L7 Spaces

Theorem IV.58. Forall p € [1,)],
i. £7(S,6,p) is a C-vector field;
ii. |l-ll, is a seminorm on £7(S,8,u);

iii. forall f € £7(S,6,u) and g € £7 (S,6,u), | [ fgdpl < IFIl, llell -

Proof. Directly from HOLDER and MINKOWSKI Inequalities (Theorems IV.51 and IV.53). (]

IV4 From .Z?to P
IVi4.1l Quotientization

First, it is useful to notice that, in the context of .£’? spaces, the equivalence relation %2 can be reformulated
in a more convenient way:

Proposition IV.59. Given any p € [1,9), for all f and g in £7(S,6, ),

=g < |If-sl,=0.
Proof. Because the modulus is positive definite, f(x) = g(x) if and only if | f(x) — g(x)|? = 0. Therefore,
fEs = |f-elf20 <= flf—gl"dﬂ=0

according to Proposition IV.44, and the result follows by taking p" roots. O
Now, the following quotientization alows to get rid of “doublets”, i.e., functions which do not differ in terms
of integration:

Definition IV.60. Given any p € [1,0], L?(S,S,u) denotes the quotient space of £7(S,S,u) by the equiv-
alence relation =, or, in a more synthetic form,

LP = ZP s

Remark 1V.61. Lightweight notations similar to those described in Remark IV.56 are acceptable, when no
confusion is possible, such as L?(u), L?(R) and L?(7).

Proposition IV.62. For all p € (1,0}, (LP(S,8, 1), ||:||,) is a normed space.

Proof. By construction and because of Theorem IV.58, ||-||,, is a seminorm on L”(S,6,u). In addition, if

[l = O then Proposition IV.44 shows that | /|7 220 thus, clearly, f = 0; in other words, [|-|| p is definite and
therefore is a norm.

Proposition IV.63. If I is an interval of R such that i(I) < oo, then
i. (Vpe(l,=]) L=() cLrP(I);
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ii. (¥(p,q) €[1,5%,p<q) LII) CLP(I) and the injection is continuous.
Proof.

i. Givenany f € L*(J) and any p € [1, 0], one has
J1rr < AL < .

ii. Given any (p,q) € [1,%)? such that p < g and any f € L?(l), let denote J = IN f<~>([1,]); by
definition, over J | f|? < |f]¢ thus

firaus fistdut [ifran< firrdns it <o

thus f € L9(J). Concerning the continuity of the injection, let 1 € L (I ) and apply HOLDER Inequality
(Theorem IV.51) to the case where f = |h|P, g=1,r=9,and s =

r— l

e aus ( / lfl’dn) " (/ du) ’

thus [|hll,, < Cl{kll,. where C € [0,o0]:

IV.4.2 Approximation in BANACH Spaces

First, a few reminders:

Definition IV.64. A seminorm |-|| on a K-vector field E is said to be a norm on E if:
(VfeE) [fll=0== f=0c.

In this case, the ordered pair (E, ||||) is said to be a normed space.

Remark 1V.65. An equivalent definition is to say that a2 norm is positive definite seminorm. In fact, the first
axiom of Definition IV.57 implies that the converse of (IV.64) holds.

Example 1V.66. Defining the functions ||-||,, ||-l, and ||-]|.. on K¢ as follows:

( i=d
Il(xl,xz,...,x,,)”] = Z |x,-|
~
d l i=d ) a
(V(xl,XZa-.-,Xn)GlK ) < “(xl,xz’_“’xn)”z —_ (le‘I )
i=1
\ Hx1,32,- %)l = 1n<1a<)ii|x,|,

then (K4, [|-|l,). (K, ||-l,) and (K?,|-||..) are normed spaces. ||-||, and || ||.. are often referred to as, respec-
tively, the euclidean norm and the supremum norm on K<.
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Any given normed space can be viewed as a metric space, by defining the distance between two vectors as
the norm of their difference. Therefore, any given normed space can naturally be equipped with a topology,
the one of its associated metric space. Except otherwise indicated, a normed space is always considered
to be equipped with this topology. Now, the first question that arises when toplogizing a set is that of the
completeness; it is not true in general that normed vector spaces are complete. Therefore, the following
particular class of spaces is introduced:

Definition IV.67. A complete normed space is called a BANACH? space.

Example IV.68. All finite dimension normed spaces are BANACH spaces.
EXERCISE IV.69. Show that the converse statement is not true.

The following result is often seen as a generalization of the famous RiEsz3C-FiscHER?! Theorem for L2
spaces:

Theorem IV.70. Forall p € [1,%)}, (L7(S,6,u), |}-l|,) is a BANACH space. .

Proof. The case p = oo is easy to establish: given a CAUCHY sequence (f, )ael+ in £7(S, &, ), it suffices to
consider, for all (n,m) € N*2,

Ann = {x: |[ful8) = fn@| > s = il }-

Using the fact £7(S, &, 4) is a vector field, it follows that for all (n,m) € N*2, f, — f, € £P(S,6,u) thus,
by definition of [|-||.., #{Ansm) = 0. Therefore, the denumerable union A of the A,, is a zero measure set
while

(Vx € A%) ‘f,,(x) ~ fn (J\)‘ < o= finlles

i.e., (fa)nem is uniformely CAUCHY over A€ thus converges uniformely towards a function f defined over A°.
Assuming, e.g., f =0 over A, (fu)new+ tends to f in (LP(S, 8,4}, [|l..)- O

Remark 1V.71. To avoid obfuscation, the same notation f is used for the function of .£7(S, S, u) and it class
representative in LP(S, S, ). In this sense f is uniquely defined in LP(S, S, u) while, in £P(S,6,u), f is
only uniquely defined on A®.

Remark IV.72. When p1 = oo, the results are no longer true; i.e., L' (R) and L2(R) are not comparable.

Theorem IV.73. If I C R is a bounded interval, then, for all p € [1,%], €2(I) is dense in LP(I). In addition,
€(1) is dense in L=(1).

Proof. Exercise o

Remark IN.74. Focusing on the case where / = R and p = 1 is particularly instructive; in this case, The-
orem IV.73 can be interpreted as follows: if the “distance” between two compact support continuous func-
tions f and g is henceforth defined as [ |f(r) — g(z)| dr, then the completion of the subsequent metric space
is, exactly, L!(R) (through the previously mentioned canonical injection of L!(R) in .#' (R)). This shows
that the LEBESGUE Integral is, undoubtlessly, the “good” generalization of the RIEMANN Integral.

BStefan BANACH, Polish mathematician, 1892-1945.
3Frigyes RIESZ, Hungarian mathematician, 1880-1956.
31Emst FISCHER, German mathematician, 1875-1954.



V HILBERT Spaces

Une géométrie ne peut étre plus vraie qu’une autre ;
elle peut seulement étre plus commode.

H. POINCARE?Z, [P0i02]

In this chapter, K will denote a field which can be either R or

C. Due to the extent of the topic, this chapter only provides an overview of the essential definitions and
propetties; for a more in-depth understanding, [Yos95] is particularily recommended.

V.1 Pre-HILBERT Spaces

In this Section, E, F and G are K-vector fields. The goal of this section is the construction of the pre-
HILBERT?? spaces by the formal definition of an inner product over a vector space. It is then explained how
such an inner product can induce a norm and, therefore, a topology on the vector field.

V.1.1 Inner Products

Definition V.1. A function f € FE is said to be linear if:

(V(e,B) € K?) (V(x,) € E?)  flox+By) = af (x) +Bf DY)
and conjugate linear if:
(V(e,B) € K?) (V(x,y) € E?)  f(owx+By) =Tf(x) +BfO)-

Remark V.2. If K = R, conjugate linearity and linearity coincide.
Example V.3. Given a and b distinct in R, N € ¥°([a,b}?), and f € €°([a,b)), define

S(f) : [a’b] — IR;,
x = [N&YfO)dy.
One can prove that S(f) € ¥°([a,b]) thus that S is a function from €°([a,b]) onto itself. In addition, S is
linear since for all o and B in R and all £ and g in €°([a, b]),

S(os +B8) = [ NG )(00) +BeO))

=0 /,, bN(x, V() dy+B /f N(x,y)g(»)dy
= aS(f) +BS(g)-

32Henri POINCARE, French mathematician, 1854-1912.
33David HILBERT, German mathematician, 1862-1943.
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Example V.4. The operator & can be seen as a linear mapping from ¢! (R) onto ¢°(R) since

d d d
2 LR)? — = O— —g.
(V(e,B) € K)(V(/,8) € €' (R)?) (of +Bg) = oS +Bs
Definition V.5. A function in GE*F is said to be bilinear if it is linear with respect two both variables, and
sesquilinear if it is linear (resp. conjugate linear) with respect to the first (resp. second) variable

Remark V.6. It is equivalent to say that f € GE*F is bilinear if:

(V(x,31,y2) € E x F?) FOey1+y2) = F@,y1) + f(x,32)

{ (V(xl 1x2,y) € Ez X F) f(xl +x23y) =f(X] 7)’) +f(x2’y)
(V(x,y) eExF)Ya € K) f(ow,y) = of (x,y) = f(x,ay)

and sesquilinear if:

(V(.X],Xg,y) GEZ XF) f(xl +x2,y) =f(xl ,y) +f(x2:y)
(V(x,y1,y2) €E X F?) Floy +32) = flny1) + £(x,2)
(V(x,y) EExF)(Va. € K) f(ax,y) = of (x,y)
(Vx,y) eExF)(Va € K) flx,ay) =Tf(x,y)

In particular, if K = IR then sesquilinearity and bilinearity coincide.

Definition V.7. A linear (resp. conjugate linear, sesquilinear, bilinear) function into K is called a linear (resp.
conjugate linear, sesquilinear, bilinear) form over E. The set of all continuous linear forms over E is called
the topological dual of E and denoted E'.

Remark V.8. In this context, the target set K is seen as a vector space over itself: each element of K is at the
same time a scalar and a vector. It is immediate that the dual is also a -vector field. When no confusion
with the algebraic dual is possible, E' will simply be called the dual of E.

Example V.9. The trace is a linear form over 9t, (K), for all n € IN*.
Example V.10. The following mapping:

(+): EExE — K
) — f(®)

is a bilinear form called the duality pairing overE.

Definition V.11. A function in KE*E is said to be symmerric if

(V(xy) €E?)  flx,y) = f(,)
and conjugate symmetric if

(V(x.y) €E?) f(xy) = F0)- (V1)
Remark V.12. If K = R, then any conjugate symmetric mapping is symmetric, and conversely.

Definition V.13. A hennitian form is a conjugate symmetric sesquilinear form.

Remark V.14. In order to establish that a form is hermitian, it thus suffices to prove that it is left-linear and
satisfies (V.1). If K = IR, a hermitian form is a symmetrical bilinear form (also called euclidean form).
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Definition V.15. A bilinear or sesquilinear form f over E? is said to be degenerate if
(Axe EN{0c}) f(x,x)=0
and non-degenerate otherwise.
Definition V.16. A bilinear or sesquilinear form f over E? is said to be positive definite if
(Vx€e E\{0c}) f(x,x)>0.
Remark V.17. A positive definite bilinear or sesquilinear form is necessarily non-degenerate. The converse is
clearly untrue: e.g., the bilinear form defined over R? by (x,y) —» —xy is non-degenerate, but is not positive

definite.

Definition V.18. An inner product over E, generally denoted (:|-), is a positive definite hermitian form
over E2. In this case, the ordered pair (E, (-]-)) is said to be a pre- HILBERT space.

Example V.19. Given two distinct real numbers a and b, E denotes here the K-vector field formed by
¢Y([a,b),K) along with its usual operators (sum of functions, multiplication of a function by a scalar). The
mapping (-|-) is defined over E? as follows:

(Vr.0€E) (o= ’ )R d.

Clearly, for all (f,g,h) € E3,

i (fIf) eK;

ii. (f|f) >0and (f|f) = 0if and only if f = 0;
iii. (V(0,B) € K?)  ((af +Be)lh) = a(flh) + B (glh);
iv. (fle) = (el

which proves that (+|-) is an inner product over E.

V.1.2 Norm induced by an Inner Product

Provided the following important results, it is possible to make a normed space from any given pre-HILBERT
space, and therefore to derive an associated topolgy.

Proposition V.20 (CAUCHY-SCHWARZ Inequality for Inner Products). If (E,(-|-)) is a pre-HILBERT
space, then
1 1
(V@xy) € EY)  |Gb) < ()2 0D)?.
Proof. The following three cases are considered:

- if (y) =0, i.e., y = Og, then the inequality is trivially satisfied;
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~ if (yly) = 1, then
(= (xy) b= (xly) ) = () = Gely) Bely) = (x1) Goly) + Gely) GD) )
= (x}x) = | ) [P
whence, since (x — (x}y) y}x — (x|y) ¥) 2 0O, the inequality arises;

- if (y]y) # O then, assuming z = axi—%— one retrieves the latter case for x et z since (z|z) = 1; hence,
y

L) )
ot | (xl2) | < (x}x)

and the result follows.

]
Proposition V.21 (MINKOWSKI Inequality for Inner Products). If (E,(+|-)) is a pre-HILBERT space, then

x+yle+y)T < @) +0b)E.

Proof. By definition of an inner product, for all (x,y) € E2,

(- ry) = (xx) + Gl) + O1x) + O)
= (x}x) + Oby) + 2R((:1y))
< (5) + Oby) + 21 (xly) |
< (9 + Ob) +2(xx) F o

according to CAUCHY-SCHWARZ Inequality (Proposition V.20). Hence,

! 1\ 2
x+yl+y) < ((x|x)‘! + (y|y):)

and since both sides are non-negative, one can take their square roots while preserving the inequality. O

Provided this framework, the construction of a topology naturally associated to a pre-HILBERT space now
arises naturally:
Proposition V.22. If (E,(:|")) is a pre-HILBERT space, then the following function:

W-ll: E — ]Kl
x — (xx)?

isanormonkE.

Proof. Tt results immediately from the definition of an inner product that (-|-)§ is positive definite. Positive
homogeneity is trivial and the triangle inequality is just another way to formulate MINKOWSKI Inequal-
ity (Proposition V.21). a
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Definition V.23. Under the hypothesis of Proposition V.22, ||-|| is called the norm induced by (-|-).

Remark V.24. Except otherwise indicated, a pre-HILBERT space is always considered to be normed by its
induced norm. '

The existence of the induced norm allows to extend many topological concepts, such as that of continuity.

Proposition V.25. If (E,(-|-)) is a finite-dimensional pre-HILBERT space, then its induced norm continuous.
In addition, for any given 'y € E, the mappings over E by x »+ (xly) and x = (y|x) are also continuous.

Proof. In fact, these mappings are even uniformly continuous; for ||-||, this directly arises from the Triangle
Inequality. Concerning the two other functions, it suffices to apply CAUCHY-SCHWARZ Inequality. 0

As it is possible to associate a norm to each inner product, one naturally wonders whether the converse is
true. The following result provides a convenient and intuitive necessary condition:

Proposition V.26 (Parallelogram Law). If (E, (-|-)) is a pre-HILBERT space, then the norm ||-|| induced by
(") sarisfies

Vo) €EY)  |lx+yIP + I =37 = 2(IIxll? + IlylP)-

Proof. By definition of |||, for all (x,y) € E? one has
e+ 712 + e =P = &+l +3) + = ylx—)
= 2( [l + 1P + () + ) — () — )

whence the conclusion. 0

Example V.27. Consider, for n € IN*, the vectors x and y in R" usual, such that all their components are 0,
except xj = y2 = 1. One has, on the one hand,

2112 +IIF) =213 + 11B) =2( 1% + IDI2) =201 +1) =34,
while, on the other hand,
e+ I3 + e =yl = A+ 1)+ (1+1)2 =8,
I +315+ kI3 = P+ 12+ 12+ 1 =4

and

422 + =il = 14+1=2.

This suffices to conclude, because of Proposition V.26, that neither ||-||; nor ||-||., can be derived from an
inner product on R”. To the contrary, the euclidean norm satisfies the Parallelogram Law in this particular
case (in fact, it does in all cases, since it is indeed derived from the usual inner product on R").
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V.1.3 Orthogonality

The abstract definition of an inner product allows the generalization of some classical Euclidean Geometry
concepts and results to less intuitive geometries such as those of functional spaces. In particular, orthogonality
is extended as follows:

Definition V.28. Let E; and E; be two K-vector fields, f be a bilinear form over E) x E;. If (x,y) € E1 X E2
is such that f(x,y) =0, then it is said that x and y are orthogonal with respect to f.

Remark V.29. When there is no risk of confusion, the reference to the bilinear form is omitted; in this case,
two vectors x and y will simply be said to be orthogonal, denoted x | y. In particular, in the context of a

pre-HILBERT space and except otherwise indicated, orthogonality will be understood with respect to its inner
product.

Example V.30. Given any bilinear form over E2, O is always orthogonal to all others vectors of E, including
itself; the latter property is generally formulated by saying that Og is isotropic.

Definition V.31. Let (E,(:|-)) be a pre-HILBERT space. For any A C E, the set

L={feE (YxeA) (f,x) =0}
is called the orthogonal space of A.
Proposition V.32. Because of the left-linearity of (-,-), A is a vector subspace of E', even if A is not a
subspace.
Proof. Immediate consequence of the left-linearity of {-,-). It shall be acknowledged that this property holds
even if A is not a vector subspace of E.

Remark V.33. In the case where E' is identified to E, and in particular in the finite-dimensional case, the
identification of {-,-) to (-]-) allows to view A" as a subspace of E and, therefore, to retrieve the euclidean
point of view of orthogonality between vectors.

Proposition V.34, Let (E,(-|-)) be a pre-HILBERT space. For any n € N* and any family {v;}1<iga € E" of
pairwise orthogonal vectors, then

i=n i=n
(V{xi}lﬁsn € ]K") NZ }"lvll = Z M’i'2 ||"i”2 .
i=1

Proof. It suffices to develop the left-hand side as follows:

i=n

Z A v,

and the result arises because of the pairwise orthogonality of the v;. O

('-)fxv,fx v,) 'i“"x,x milv) + Y, Mk (vilvy)

1gi#jgn

Corollary V.35 (PYTHAGORAS> Theorem). Let (E,(-|-)) be a pre-HILBERT space. The following state-
ment holds:

(V) €E?) xLly = |x+yl =P+

M PYTHAGORAS OF SAMOS, Greek philosopher, mathematician and astronomer, ¢a.569BC-ca.475BC
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Proof. Immediate from Proposition V.34, withn=2and A = Az = 1. 0

Remark V.36. In the case where KK = R, the converse of PYTHAGORAS Theorem is true, since the proof
of MINKOWSKI Inequality (Proposition V.21) then implies (x|y) = 0. However, this is no longer true if
K = C, precisely because, in this case, R((x|y)) = 0 does not imply (x|y)) = 0; a simple counter-example
can be exhibited with E = C? equipped with its usual K-vector field structure, over which the inner product
is defined by

(Y(x1,32,51,2) € €Y ((r1,%2)| (01, 02)) = X157 + %277
and taking x = (1,i), y = (—i,1).

V.2 Completeness-Based Projectors

By adding a topological requirement, namely completeness, it will now be seen that many important results
classicaly viewed as pertaining to Analysis can be interpreted or established from a geometric standpoint.

V.2.1 Convex Minimization
Definition V.37, A pre-HILBERT space, complete with respect to its induced norm, is said to be a HILBERT
space.

Example V.38. L*(R, £,£), equipped with the usual L? inner product defined as follows:

((,0) €LA(R,2,07)  (Flg)z = [ f5ae

is a HILBERT space.

Remark V.39. When there is no risk of confusion, the identification between a HILBERT space (H,(+|-))
and H will be made, in order to simplify notations. This is consistent with similar mathematical conventions
aiming at concision; e.g., a vector field is a triple (E, +,-), but the usage is to refer to it as, simply, E.

Example V.40. For all n € N*, C" equipped with (-|-) defined as follows:

f=n

(Vx = (xi)igign € €") (W = (i)igign €€ (xly) = ) i
i=l

is a HILBERT space, by transport of the completeness of C.
Example V.41, The set £2(C) equipped with the inner product defined as follows:

(Vi = (nerve € € ) (Vo= (duenve € €)= LnaTa

nelN*
is a HILBERT space.
Remark V.42, By definition, a HILBERT space is also a BANACH space. The converse is not true, as exhibited
by Example V.27.

Itis now possible to establish one of the most important Optimization results:
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Theorem V.43 (F. R1ESZ Theorem). Let (E,(-|-)) be a pre-HILBERT space and ||-|| its induced norm.
IfA # @ is a complete convex subset of E, then miny ||-|| exists and is reached only once.

Proof. The norm ||-}] satisfies the Parallelogram Law (Proposition V.26), which can be equivalently written
as follows:

2
(V) € B ll—olP =2( +1biF) - | 52
thus, defining 8 = infe4 ||x}], it follows that
(V(xy) €47 = < 2( Il + Il ) — 482 (V.2)

since the convexity of A ensures that 5‘—2*2 € A. The proof is now split into existence and uniqueness aspects:

EXISTENCE: Let (xn)nen+ € AN be such that lim,, ||, || = 8, which is always possible since the sequence of
norms is a real sequence and R is complete. According to (V.2), one has

(Y(nm) € N?)  Jixy — xall® < 2(Ipiall? — & + nll® — 87)

thus (x,),en+ is a CAUCHY sequence in A. By hypothesis, A is complete with respect to ||-]| and therefore
this sequence converges towards a limit in A; necessarily, limyx, = 8.

UNIQUENESS: If 8 is reached in x and y, then it follows directly from (V.2) that [Jx — y||*> = 0 thus x = y, since
a norm is positive definite. a
In the context of HILBERT spaces, the theorem can be expressed in a somewhat lighter formulation:
Corollary V.44, IfA # © is a convex subset of a HILBERT space with induced norm ||-||, then ming ||-|| exists

and is reached only once.

Proof. Trivial: if H is a HILBERT space, then it is complete and therefore A, being a closed subset of H, is
also complete and the conditions of Theorem V.43 are satisfied. (3]

V.2.2 Best Approximation Projector

An important consequence of F.RIESZ Theorem concerns the best approximation among a complete set:

Corollary V45 (Best Approximation Theorem). Let (E,(-|-)) be a pre-HILBERT space and A # & be a
complete convex subset of E. For all x € E, the two following properties are equivalent:

i. Pax € Ais such that [|x — Pyx|| = minyea ||lx — ¥l

ii. Ppx € A is such that, for all y € A, R((x — Pax|y— Pax)) < 0.
In addition, for all x € E, there exists one and only one Pax € A which satisfies these properties.

Proof. Exercise. 0

Remark V.46. As for Theorem V.43, if E is a HILBERT space, it suffices to know that A # @ is a closed
convex.
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Figure 5. Best approximation on a complete convex subset.

The Best Approximation Theorem is illustrated by Figure 5, and formalized by a new definition: -
Definition V.47. Under the assumptions of Theorem V.43, the mapping P from E to A defined by P : x + Pax
is called the best approximation projector from E onto A.

And, in particular,

Proposition V.48. The best approximation projector from a pre-HILBERT space onto any of its convex com-

plete non-empty subsets is an idempotent contraction.

Proof. Given any best approximation projector P from a pre-HILBERT (E,(:]-)) onto a convex complete
non-empty A C E, the idempotence is immediate since P(E) C A and, for all y € A, P(y) = y. In addition,
according to Theorem V.43,

- y— P, <0
(V(x,y) € EZ) 9{((x PAxlpA) Ax))

R((y — PaylPax—Pay)) <0

thus, by right-bilinearity,
(V(x,y) € E?) R((x—y— (Pax = Pay)|Pax~Fay)) 2 0
whence
(V(x,y) € E?)  R((x—|Pax— Pay)) > RUIPax — Pay|?) = ||Pax — Payl*s
now, according to CAUCHY-SCHWARZ Inequality (Proposition V.20),
(V(x,y) € E%)  R((x—y|Pax— Pay)) < [lx = M| [|Pax— Pay|;

therefore,
(V(x,y) € E?)  [[Pax— Payll® < llx = Yl [1Pax — Payl)
which proves the contractivity of Py. O

V.2.3 Orthogonal Projectors

An other important consequence of the Best Approximation Theorem arises when the projection is made onto

some particular vector subspace; the vocabulary is first specialized, in order to retrieve and extend a classical
geometric concept:

Definition V.49. If (E,(-|)) is a pre-HILBERT space and A # @ is a complete vector subspace of E, then the
best approximation projector of E onto A is called the orthogonal projector of E onto A.
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V HILBERT Spaces

Remark V.50. Asbefore, it shall be acknowledged that this definition holds in particular when E is a HILBERT
space of which A is a closed vector subspace.

This extension of a well-known concept of Euclidean Geometry makes plenty of sense when understanding
itin the following context:

Corollary V.51. If (E,(-|)) is a pre-HILBERT space then, for all complete closed vector subspaces A # &
of E, Py € L{E,A) and:

(Vx €E) ()’=PAX &= (VzeA) (x-—y|z)=0)

Proof. First, the fact that, for all x € E, Pyx exists, is unique and belongs to A is guaranteed by Corollary V.45,
since a vector subspace is, in particular, convex. This result also shows that

(Vx€E) |px—Paxl|= l)l}eigllx—yll

thus, for all (x,z) € E X A, the mapping
fi K — [0, 09f
A — lx—Pax—Agl?

is minimal for A = 0, since Pyx — Az € A. Now,

V(x,z,A) EExAXC) f(A) = (x—Pax— Az|]x— Pax—Az) |
= [M2l2li? = 2% ((x — Pax|z) A) + [lx — Paxi]®

thus f is a polynomial function and, because it reaches a minimum in 0, its derivative there vanishes, implying
that R((x — Pax|z)) = 0. If K = R, then it immediately follows that

(V(x,z) €EExXA) (x—Pax|z)=0. v.3)

If K = €, then applying the same reasoning to iz which also belongs to F leads to S((x — Pax{z)) = 0 and
therefore to (V.3). Conversely, given x € E, assume that y € A is such that, for all z € A, (x —y|z) = 0. It then
follows immediately from PYTHAGORAS Theorem that

(Vz€A) lx—y=al =l =2+ lzli* > Il =¥

and, therefore, ||x — y|| = min,ea [}x — ul}, i.e., y = Pax according to Corollary V.45. Concerning the linearity
of Py, it then suffices to acknowledge that, on the one hand,

(x—Pax|z) =0

(V(x,y,2) € E* x A) { (y—Paylz) =0

hence, by left-linearity,
(Vx,2) €E*xA)  (x+y—Pax—Fayld) =0

thus, for all (x,y) € E%, Pyx+ P4y = P4(x+y) because of the equivalence established above. On the other
hand,

(V(h,x,y) EKXEXA) A{x—Pax|y) = (Ax—APax[y) =0
thus, for all (A, x,y) € K X E, Py(Ax) = APsx. O
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Remark V.52. As usual, if E is a HILBERT space, it suffices to require that A® = A.

EXERCISE V.53. Show that Corollary V.51 still holds if A # @ is only assumed to be a finite-dimensional
vector subspace of a HILBERT space.

Finally, the results above lead to:
Corollary V.54. If (E,(:|)) is dpre-HILBERT space and A is a complete vector subspace of E, then :

E=A®AL

Proof. 1f P is the orthogonal projector on A, then any x € H can be written as follows:
x = Pax+ (x — Psx),

where, by definition, Pyx € A and x — P4x € AL; in addition, this decomposition is unique because of the
uniqueness of Pyx. a

Remark_y.SS. Here, A can be empty: in this case, Al = E. As usual, if E is 2 HILBERT space, it suffices to
require A* = A,

Now, it has already been observed that, for all x in a pre-HILBERT space, y — (x|y) is a continuous linear
form. Theorem V.43 allows to address the converse statement:

Theorem V.56 (RIESZ Representation Theorem). If (E,(+|)) is a pre-HILBERT space then, for any @ € E',
there exists a unique y € E such that
‘ (Vx€E) ox)=(x]y).

In addition, ||0||z = |lyllg-

Proof. Exercise. 0

V.3 Approximation in HILBERT Spaces

In this Section, / will denote a non-empty set.

V.3.1 HILBERT Bases

Definition V.57. Let (E,(-|-)) be a pre-HILBERT space. Any family {e;}ic; of vectors of E is said to be

orthogonal if
(V@) ePi#)) (ele)=0
and orthonormal if
(V. J) €P)  (eile;) =8y
Example V.58. In £2(IN) as defined in Example V.41, the family of vectors {u, }acwv defined as follows:
(V(n,m) € INZ) U, = S

is orthonormal.
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Definition V.59. Let & = {¢;}ic; be an orthogonal family of a pre-HILBERT space (E, (-|-)). Forallx€ E,
the scalars (¥;);es defined by

iel) TH= (xler)

el

are called the FOURIER® coefficients of x with respect to F.

Example V.60. In the case where E = L3,(]0,2x), the “standard” definition of FOURIER coefficients is
retrieved: (-|-) is the L? inner product, for which the family {x -+ ¢€"*},¢z is, indeed, orthogonal.

In the case where I is denumerable, and this will be the case from now on (i.e., the study is restricted to that
of separable HILBERT spaces), this allows to generalize immediately the classic BESSEL3¢’s Inequality.

Theorem V.61 (BESSEL’s Inequality). If & ={e;}i¢; is an orthogonal family of a pre-HILBERT space (E, (:|-)),

then )
(vxeE) ¥ |(xled | <kl

il

Proof. LetJ be a finite subset of /, and denote (xle;) = x; for all i € I. Using the definition of an orthogonal
family, one has for all x € E:

2
0g |lx— Z(x[e,-) eil = (x-— Zx,-e,-lx - Zx,-e;)
i€l iet iel

= |xl? = Yo (xler) — Lowi (ealx) + Y oxiki
iel iel iel

=[xl = Yl
iel

whence the conclusion. - 0

Remark V.62. An equivalent formulation of BESSEL's Inequality, using the notations of Definition V.59, is:

(Vx € E) é;lﬁ?fl2 el < Ibxli®

which is especially interesting when the family is orthonormal since, in this case, the ||e;|” are all equal to 1.

Now, in the context of HILBERT spaces, these results become more accurate.
Definition V.63. A subset A of a HILBERT space H is said to be total in H if A+ = {0y}

Definition V.64. Let H be a HILBERT space. An orthonormal family & = {e;}ies of a H is said to be a
HILBERT basis of H if
' (VxeH) x= Z)?,-e,-
iel
where the X; denote the FOURIER coefficients of x with respect to &,

Provided these definitions, one can characterize the HILBERT bases:

35Joseph FOURIER, French mathematician, 1768-1830.
38Friedrich BESSEL, German astronomer and mathematician, 17841846,
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Theorem V.65. Let & ={e;}ics be an orthonormal family of a HILBERT space H. The following statements
are equivalent:
i. & is a HILBERT basis of H;
ii. & istotalinH;
iii. the linear span of & is dense in H;

iv. forall (x,y) € HZ, (y) = Lies 555
Proof. Exercise. O

In addition, in the case of HILBERT bases, BESSEL’s Inequality becomes:

Corollary V.66 (PARSEVAL?"’s Theorem). Let H be a HILBERT space. F = {e;}ier is a HILBERT basis

of H if and only if
(vxeH) |xl® =Y %P lledl® (V4)
iel

Proof. Assume (V.4) is true, and consider x € #+. For all i € I, (x|e;) = O thus ||x|| = 0 whence x = 0p.
Hence, by Theorem V.65, & is a HILBERT basis of H. The converse statement is immediate, by using the
same proof as for BESSEL’s inequality combined with the density of the linear span of &. a

V.3.2 Orthogonal Polynomials

Orthogonal polynomials are a particularly useful application of HILBERT spaces, in numerical analysis as
well as in probability theory. The general idea is quite simple: let f be a continuous positive function over a
given interval Isuch that, for all n € IN, the x — x" monomials belong to the HILBERT space H = L2(1,8,u),
where p is the measure with density g with respect to the LEBESGUE measure. In other words,

(VneNN) /, Ix{"g(x) dx < oo.

By orthogonalizing this sequence, a family (p,)sew of pairwise orthogonal (in the sense of H) polynomials
is obtained:

(V(n, m) e N2,n # m) ./1 Pn(x}pm(x)g(x)dx = 0.

If, in addition, the family & = (p,)se is total, then it is a HILBERT basis and one can express any function
of H in terms of its FOURIER coefficients with respect to #. In the context of numerical analysis, this means
that any function of this space can be approached as closely as desired by means of linear combinations of p,
polynomials.

The study will be restricted here to that of HERMITE® polynomials, because they are directly related to
WIENER? spaces. In fact, the mathematical literature uses two different and not equivalent definitions of
HERMITE polynomials; probabilists generally work with the following ones:

37 Marc-Antoine PARSEVAL DES CHENES, French mathematician, 1755-1836.
38 Charles HERMITE, French mathematician, 1822-1901.
39Norbert WIENER, American mathematician, 1894-1964.
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Definition V.67. For all n € IN*, the function H,,‘ defined over R by

(VreR) Hid)=(-1)ed T e

is called the n'" HERMITE polynomial. In addition, Hy is defined as being identically equal to 1.
Example V.68. One can easily check that, for all x € R,

Hy(x)=1
Hy(x)=x
Hy(x) =x*—1
Hy(x)=x-3x

Hy(x) =x*— 62 +3
Hs5(x) =x — 105> + 15x
Hg(x) =x5% - 15x* +45x* - 15.

Remark V.69. HERMITE polynomials are also often defined by
> d" 2
VM(n,x) eENxR) hy(x) =(-1)"¢" Exn——e"’"
which leads to a completely different set of polynomials.

The Hj satisfy the following properties:

Proposition V.70. If H, denotes the n* HERMITE polynomtial, then

{ Hy(-x) = (=1)"Hy(x)
(V(n,x) e N xR) Hpi(x) = xHp{x)—nH,-y(x)
Hi(x) = nHp-1(x)

and in particular each H, is a polynomial with degree n.

Proof. These identities result directly from the fact that the H,(x) are the coefficients of the expansion in
powers of ¢ of exp(tx — -{,—tz) A recurrence on the second identity combined with the fact that Hy = 1 yields
the last property.

Remark V.71. A direct consequence of Propositon V.70 is that, for all n € I, %e‘r’ is the product of e
by a polynomial function. This implies that each %}e"‘z tends to 0 at oo,

Proposition V.72. If H, denotes the n* HERMITE polynomial, then the family {7',7}1,,} is @ HILBERT

nelN
basis of H =12 (m., L, V%e-*‘.? dx).

Proaf. One obtains the following equality with n integrations by parts and using Remark V.71:

(VneN") /«H,,(x)x"e"";drzn!./“e""”f'.x”dxzn!\/iﬁ.
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Similarily, k integrations by parts yield:

(Y(k,n) € N2,k < ) /_ " H, (x)xke= T dx = (=1)" [ %e—"‘frxkdx=o.

Therefore, combining the linearity of the integral with the fact that each H,, has degree n,

00 Az
(VneN) [HE = / Ho(x)?%e™ dx = n!V/3T,

and
(Vm,m) € N, m <n)  (HolHn)y = / Hy()Hu(x)e~ T dx = 0.

The orthogonality for all m # n arises by switching the roles of m and n. The proof that the family is indeed
total is left as an exercise. a

The following property of HERMITE polynomials is especially useful for stochastic applications:
Proposition V.73. If X is a gaussian random variable with V [X] = 1, then

E[H,(X)] = E[x]".

Proof. If n = 0 the result is immediate. Otherwise, if n € IN¥, let E[X] = y; then,

B = G [ Lo o i90

\/'— dx?
( l)n E,— . n _52_
\/_ / e dx"e dx

et (et oL Zete)

thanks to an integration by parts. According to Remark V.71, the bracketed term vanishes, and thus

(__1)11-1 _ 2 poa dn—l _“2
E[H, (X)) = T / T dx.
[ i )] \/_ZE He _mepxd.x""le
By recurrence, it then follows that

[Hn(X)]——\/——-_e_e’: e‘“e 'de—ﬁ - ’_L#de =",

Remark V.74. ltis also interesting to notice, and left to the reader as an exercise, that
12 5"
(V(s,x) eR?) e 2% = Z —in ().

=on

For any fixed x, the radius of convergence of this power series in # is oo. In particular, differentiation can be
made term by term, and thus

1

E—e""‘észlmo = H,(x).

(Y(n,x) eNx R) i
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V.4 Application: WIENER Chaoses

In this Section, H will denote a real separable HILBERT space and (S, S, P) a complete probability space.

Definition V.75. A stochastic process W = {W(h)},ey defined in (S,S, P) is said to be an isonormal gaus-
sian process on H if W is a family of gaussian centered random variables such that:

(V(hg) € H?) E[W(R)W(g)] = (hlg)y-

Proposition V.76. Let W = {W(h)}ueu be an isonormal gaussian process on H. The map h— W(h) is a
linear isometry from H to a closed vector subspace of L2(S,&, P), denoted 38,

Proof. Each W(h) is a random variable on S and, according to the hypothesis,
(VheH) E[WH)?] =l < . (V.5)
Therefore, the image set of i~ W(h) is in L2(S, &, P), and
(V. f,8) €ER? x H?)  E[(W(Ag+ph) — AW(g) —puW(h))?] =0,

whence
(V()":#,fag) eR?x Hz) W(kg-l—ph) _.xw(g) "MW(h) s 0,

which proves the linearity, in the sense of L2(S,&,P). In addition, it follows directly from (V.5) that the
mapping is isometric since, by definition,

E[W(r)?] = f W) dP = [W(h)lli2(s.6.p):

Now, the image by a linear isometry of a complete set being also complete (this result, easy to establish,
is left to the reader as an exercise), the image set J# of H by h ~ W(h) is a complete vector subspace
of L2(S, &, P), which implies that is closed. 0

Remark V.77. By definition, each element of # is a centered gaussian random variable; however, the con-
verse is not true.

Definition V.78. Let W = {W(h)}sen be an isonormal gaussian process on H. For all n € IN*, the n'" WIENER
chaos €, is defined as being the closed vector subspace of L*(S, S, P) generated by the family of random
variables {H,(W(h)),h € H,||h||,; = 1}. The set of constants of L%(S, &, P) is denoted as J#3.

Remark V.79, This is indeed counsistent with the previous definition of 4%, because of the linearity of 1+
W(h):

(Vhe H,h#0) W(h) =l W (ﬁ)

which belongs to the closed vector subspace of L2(S, &, P) generated by {W(k),h € H, ||A||; =1}.

Example V.80. In the case where H = R along with its standard HILBERT space structure, then the only
h € H such that ||k}l =1 are +1. Combining Proposition V.70 and the linearity of h — W(h) yields

(VnER) Hy(W(=1)) = Hy(=W(1)) = (=) B, (W(1)),

and thus each &, is a one-dimensional subspace of L2(S,S,P) generated by H,(W(1)). For instance,
since W(1) is by definition the standard normal random variable on L?(S,&, P), the elements of 3 are
the centered gaussian random variables on this space.
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Lemma V.81. IfX andY are two random variables with joint gaussian normal centered distribution and H,
denotes the n" HERMITE polynomial, then

0 if n#&m

(V¥(m,n) € N?) E[H,,(X)Hm(Y)]={ aEXY])" if n=m

Proof. By definition, the random vector (X,Y) is centered, gaussian, with the following variance-covariance

matrix:
r=( E[}l(Y] E[)lﬂq )

Therefore, for each (s,1) € R?, the linear combination of sX +1Y is a centered gaussian random variable with

variance
VsX+tY)=(s 1) ( ]E[;{Y] EPI(Y] ) ( f ) = + 25 B[XY] + 17,
whence
(V( 5,) € IRZ) E[e""*"'] = e,_}(s!+zszm[xz']+:2)’

and thus, multiplying both sides by e“’}(sz%z)'
(V(s,;)eR?) E [e‘x -3 erY—aﬂ] _ BT,

On the one hand,

an+m

2
(V(S,t) €R ) dstorm

SEXY] ]E[XY]" % (tnestE[XY])

k=n m—k
=BT Y, (7)ot o™

= \k ok opm—k

=E[XY! st]E[XY]k=m m E{xy]’""‘sm—ka_k;"
=Efxr)e ,&, k atk -’

. - ot . .
Now, if s =t =0, each s’"‘"g—l,;t” vanishes, except if k = n = m. Therefore,

A est]E[XY]l _ 0 if n#m
35" ot =00 = aE[XY)" if n=m

On the other hand, in a neighborhood of (0,0),
au+m

ds"or™

sX—4s? y-12 — i sX—%szﬂ 1Y =42
REr T )

and thus, according to Remark V.74,

an+m X 10
WE [e X zszerY %' ] |(.;-,1)=(0,0) = E[H,,(X)]fm(Y)] )

which yields the desired result. O
Theorem V.82. For all (n,m) € N2, n# m, one has #, L .
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Proof. This result is a direct consequence of Lemma V.81, ' O
Example V.83. With H =R along with its standard HILBERT space structure, let X, ¥ and Z belong to,

respectively, 5%, 4, and JB. According to Example V.80, there exists a unique (a,b,c) € R3 such that
X=a,Y =bW(1) and Z = cH(W(1)), and one has

E[xY] =ab/W(1)dP= 0,
E[XZ]:ae/Wkl)z—de=a~c (/W(])de-fdp) =ac(1-1) =0,
E{rZ] =bc/W(l)r(W(l)2— 1)dP = be (/W(1)3dP—/W(1)dP) = be(0—0) =0.

Henceforth the o-field generated by the random variables {W ()} nen. i.e., the smallest 6-algebra on § such
that these random variables are measurable, will be denoted S(W).

Lemma V.84. The family {ew(") }hEH is a total subset of L>(S,6, P).
Proof. Technical, ¢f. {Nua95]. a

The fundamental result for WIENER chaos decomposition can then be stated as follows:

Theorem V.85. If a stochastic process W on L2(S, &, P) is an isonormal gaussian process on H, then

L*(S,6(W),P) = P #
nelN

Proof. 1f X € L*(S,&(W),P) is such that X L ¢ for all n € N, then
(Wne N)(Vhe H, ||hlly =1) E[XH,(W(h))]=0

It can be easily shown that each monomial with degree n can be expressed as a linear combination of HER-
MITE polynomials of order not greater than n; therefore,

(Vn e N)(Vh € H,[jhlly =1) EX(W())]=0,

and thus
(e R)(Vhe H,|jhlly=1) E [erW(h)] —o0.

Using the linearity of k — W (h), it then follows that
winy] — 1 =
(VheH,h#0) E[xe"®] =E[xexp(Ihll; W (1)) =0,
whence, by Lemma V.84, X = 0. ' (]

Example V.86. Let (S,6,P) = (R,£,V), where v has a standard normal density with respect to £, H =R
with its standard HILBERT space structure, and define W by

(V(h,x) €R?)  W(h)(x) = hx.
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V.4 Application: WIENER Chaoses

Each W(h) can thus been naturally seen as a real random variable on (R,£,V) and, by definition of v, the
CDF of W (h) for any h # 0 is given by

P 5 2
(Vx€R) Fygy(x) =V (W)™ (- o)) = _\/1?_1; /_:e_'f dr = ﬁ /_ae % du

while W(0) is identically zero. Therefore, each W (k) has indeed a centered gaussian distribution. In addition,
for all W(g) and W (h), the linearity of i + W(h) ensures that any linear combination of them has also a
centered gaussian distribution, and E[W (h)W (g)] = hg = (h|g)y. Hence, the hypotheses of Theorem V.85
are met, and since W (1) : x — x, Proposition V.72 is retrieved.
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