
SANDIA REPORT

SAND2004-6602
Unlimited Release
Printed January 2005

Sandia National Laboratories Advanced
Simulation and Computing (ASC)
Software Quality Plan
Part 1: ASC Software Quality
Engineering Practices
Version 1.0

Edward A. Boucheron, Richard R. Drake, H. Carter Edwards, Molly A. Ellis,
Christi A. Forsythe, Robert Heaphy, Ann L. Hodges, Constantine Pavlakos,
Joseph R. Schofield, Judy E. Sturtevant and C. Michael Williamson

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

32

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online
http://www.osti.gov/bridge

3

SAND2004-6602
Unlimited Release

Printed January 2005

Sandia National Laboratories
Advanced Simulation and Computing (ASC)

Software Quality Plan

Part 1: ASC Software Quality Engineering Practices

Version 1.0

Edward A. Boucheron, Thermal/Fluid Computational Engineering Sciences
Richard R. Drake, Computational Physics Research and Development

H. Carter Edwards, Advanced Computational Mechanics Architectures
Molly A. Ellis and Christi A. Forsythe, Enabling Technologies

Robert Heaphy, Discrete Algorithms and Math
Ann L. Hodges, SEPR Systems Engineering

Constantine J. Pavlakos and Judy E. Sturtevant, Visualization and Data
Joseph R. Schofield, Capability Development

C. Michael Williamson, Software Systems

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-0826

Abstract

The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality
Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software
products. The plan defines the ASC program software quality practices and provides mappings of these practices to
Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software
Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and
software project teams' responsibilities in implementing the software quality practices and in assessing progress
towards achieving their software quality goals.

4

Acknowledgements

The authors would like to thank the following individuals for their careful and thoughtful reviews,
comments, and contributions in preparing this document: Ken Alvin, Kathy Aragon, Noel Belcourt,
Manoj Bhardwaj, Ted Blacker, Bill Bohnhoff, Steve Bova, Pete Dean, Karen Devine, Martha Ernest,
Ernest Friedman-Hill, Brian Grant, Pat Griffin, Arne Gullerud, Patricia Hackney, Mike Heroux, Gene
Hertel, Rob Hoekstra, Lisa Ice, Karen Jefferson, Philip Kegelmeyer, Tom Laub, Alfred Lorber, Len
Lorence, Mike McGlaun, Sue Kelly, Bob Kerr, John Noe, Pat Notz, Curt Ober, Shawn Pautz, Sharon
Petney, Kendall Pierson, Allen Robinson, Leonard Stans, Jim Stewart, Randy Summers, Pamela
Williams, and David Womble, and all other code team members and managers who reviewed this
document.

5

Table of Contents

Executive Summary .. 8
Commitment .. 9
1 Introduction ... 11

1.1 Quality Definition and Goals ... 12
1.2 Overview .. 13

2 Drivers and Standards ... 13
3 Software Quality Plan Implementation... 13

3.1 Management Roles and Responsibilities .. 13
3.2 Stakeholder Expectations... 14
3.3 Project Team Tailoring and Implementation .. 15

4 ASC SQE Practices .. 17
4.1 Organization of the Practice Tables ... 17
4.2 Project Management .. 19
4.2.1 Strategic Planning ... 19
4.2.2 Determination of Applicable Practices and Level of Formality................................. 20
4.2.3 Process Implementation and Improvement... 25
4.2.4 Requirements Engineering... 26
4.2.5 Risk Management.. 27
4.2.6 Project Planning, Tracking and Oversight .. 28
4.3 Software Engineering .. 29
4.3.1 Software Development .. 30
4.3.2 Integration of Third Party or Other Software.. 31
4.3.3 Configuration Management ... 32
4.3.4 Release and Distribution Management ... 33
4.3.5 Customer Support.. 34
4.4 Software Verification .. 35
4.5 Training .. 37
4.6 Summary of Practices and Artifacts ... 38

5 Assessment Strategy for Conformance to ASC Practices 40
References .. 41
Appendix A. Glossary and Acronyms... 42
Appendix B. Summary of Practices and Artifacts.. 47
Appendix C Mappings from Software Quality Plan to Original

ASCI Applications and S&CS Practices ... 49
Appendix D. Template for an Assessment Checklist .. 52

D.1 Instructions for Completing Assessment Checklist... 52
D.2 Assessment Checklist for ASC Software Areas.. 54

Appendix E. Test Categories... 56
Appendix F. Techniques and Tools .. 58
Appendix G. SNL Practices as an Implementation of the GP&G SQE Guidelines 60
Distribution .. 62

6

List of Figures

Figure 1. Relationship of Drivers, Software Quality Plan and Project Implementations. 12
Figure 2. ASC SQE Practice Areas. ... 17

List of Tables

Table 1. ASC Software Quality Plan Roles and Responsibilities. ... 14
Table 2. Stakeholder Expectations. .. 14
Table 3. Risk-Based Assessment to Determine Level of Formality... 21
Table 4. AQMC Implementation Expectations Based upon Determined Level of Formality. 22
Table 5. Rules of Thumb for Level of Formality. ... 24
Table 6. Practices and Generated Artifacts. .. 38
Table 7. Software Quality Plan Practices. .. 47
Table 8. Software Quality Plan Artifacts. ... 48

7

Foreword

The genesis of this document is a long and involved tale. In the beginning the ASC Advanced
Applications program element leader undertook rewriting ASCI Applications Software Quality
Engineering Practices, Version 2, utilizing the experience gained through two internal and one external
NNSA SQE practices assessments. Simultaneously the ASC program office decided to expand the scope
of this rewriting effort to encompass the entire range of software development activities within the ASC
program at Sandia. The writing team was correspondingly expanded to include representatives from the
larger code development community. The writing team’s charter was reworked to embrace this new
constitution and to establish a revised set of end goals.

The broad and diverse community of code development embodied within the ASC program naturally
leads to a wide range of software quality practices and philosophical underpinnings as to what software
quality practices should be. This makes the task of finding common ground and coming to agreement on
software quality practices particularly difficult.

The best analogy that comes to mind is that of religion, with the various authors of the document
representing different faiths; they gather around the table to discuss and write, and it is an uneasy
ecumenical council. As relationships within the team mature, all learn to acknowledge each others
different beliefs, to respect each others opinions and to drive toward as best a set of compromises as
possible. Due to the maturity and professionalism of the individuals involved, an impressive ability to
subsume individual desires in favor of realized teamwork can be witnessed. Unfortunately, returning such
a committee result to the development communities represented in this writing effort did not meet with
similar understanding “around the table.” A formal comment resolution process that had been adopted by
the writing team received a deluge of substantive comments, thus providing ample evidence through sheer
volume of comments alone that the intended inclusive goals of the document were not being realized.

At this point, management concluded that the comment resolution process was not achieving its intended
goal because it did not allow broad or sweeping changes that could accommodate what much of the
practitioner community was requesting. Many reviewers commented on the value of individual sections
of the draft documents and many statements that it was “very close”, led to the idea that a small, tight
team, focused in intent, could quickly and easily modify the current draft to conform to their needs and be
satisfied with the result. The AQMC heartily agreed and immediately appointed one representative from
each program element to form a small team that would spend two days “locked in a room” with the
express goal of producing a distilled document. This final review team consisted of the following
individuals: Ted Blacker, Edward A. Boucheron (chair), H. Carter Edwards, Molly Ellis, Patricia
Hackney (editor), Robert Heaphy, Sue Kelly, Bob Kerr, and Judy Sturtevant.

In the end, after all is said and done, one must leave the table and practice whatever faith you believe you
are committed to. As chair of the final review team, I accept full responsibility for the particular SQE
faith represented in this document, realizing full well that it may be viewed as heresy by some.

Edward A. Boucheron, Chair

8

Executive Summary

The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC)
Software Quality Plan is to clearly identify the practices that are the basis for continually improving the
quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to
customer requirements and expectations.

This quality plan defines the ASC program software quality practices and provides mappings of these
practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of
Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines
(GP&G). This quality plan identifies ASC management and software project teams’ responsibilities for
cost-effective software engineering quality practices.

The SNL ASC Software Quality Plan establishes the signatories’ commitment to improving software
products by applying cost-effective software engineering quality practices. This document explains the
project teams’ opportunities for tailoring and implementing the practices; enumerates the practices that
compose the development of SNL ASC’s software products; and includes a sample assessment checklist
that was developed based upon the practices in this document.

9

Commitment

The SNL ASC programs that develop and/or deploy software will follow the practices, processes, and
activities outlined in the SNL ASC Software Quality Plan (Software Quality Plan). Our purpose is to
produce quality software products that satisfy our customers’ requirements and expectations and provide
tangible evidence demonstrating high confidence in ASC software projects at SNL. An additional intent
of the Software Quality Plan is to foster organizational consistency by defining common practices and by
facilitating the use of cost-effective, common tools and processes where feasible. This Software Quality
Plan will be modified and improved as the code development process matures.

Approved By:

10

Approved By (continued):

Concurred By:

11

1 Introduction
The National Nuclear Security Agency (NNSA) oversees the Stockpile Stewardship Program (SSP) to
provide and ensure confidence in the safety, performance, and reliability of the U.S. nuclear stockpile in
the absence of underground testing. To this end, NNSA enabled the Accelerated Strategic Computing
Initiative (ASCI) to support the SSP in transitioning from using test-based methods to using more
computational and simulation-based methods. Since Accelerated Strategic Computing is no longer an
initiative, the program has been renamed Advanced Simulation and Computing (ASC).

The ASC program involves coordination among the three nuclear weapon laboratories, all of which have
contributed to the development of a set of guiding principles. The ASCI Software Quality Engineering:
Goals, Principles, and Guidelines (GP&G) provides direction for all ASC software projects. The GP&G
specifies that each laboratory select and tailor their best practices to achieve the stated goals of (1)
establishing confidence in codes and (2) establishing credibility in results.

The Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan
(Software Quality Plan) follows ASC program direction from the GP&G. This Software Quality Plan
consists of Part 1: ASC Software Quality Engineering Practices (Part 1) and Part 2: Mappings for the
ASC Software Quality Engineering Practices (Part 2). The Software Quality Plan is SNL’s
implementation of the GP&G and is intended for a broad audience. This document provides the
background, high level information and overall practices that the ASC software projects are required to
address and is expected to be utilized by the software project team practitioners. Figure 1 illustrates the
relationship among the software quality plan, drivers for this plan, and expected project implementations.

The Software Quality Plan, as part of process improvement, is a consolidation of previously separate
efforts by the ASC Applications and the Simulation and Computer Science/Ongoing Computing
(S&CS/OC) programs based upon feedback from the assessments, adherence to corporate process
requirements, and the desire of ASC management to address elements in other quality frameworks (for
example, ISO 9000). The Software Quality Plan is intended to combine the efforts of these groups to
create one plan for all ASC software projects. The Software Quality Plan replaces the existing
Application and S&CS/OC practice documents.

Although this Software Quality Plan was generated to conform with the SNL corporate and QC-1
revision 9 standards, QC-1 revision 10 and DOE O 414.1C were issued during the writing of this
document; therefore, SNL's corporate policies are also currently in transition. As such, conformance with
the practices contained in this Software Quality Plan will not guarantee conformance with the evolving
SNL corporate quality requirements. Mappings of the practices in this document to QC-1 revision 10 are
provided in Part 2 as a guide to assess compliance with these standards in transit. This document will be
annually reviewed under the oversight of the ASC Quality Management Council (AQMC) to consider
revisions, including those required to incorporate or otherwise address changes in the governing
standards.

 12

Figure 1. Relationship of Drivers, Software Quality Plan and Project Implementations.

1.1 Quality Definition and Goals
The purpose of this document is to describe software quality engineering practices that lead to a high
level of confidence in ASC software products and projects at SNL. The intent of the practices stated
herein is to promote quality for software products and projects.

Multiple sources for defining quality were studied and a common theme surfaced: not all requirements
are explicitly stated, however, all implied as well as explicit needs must be met. Expectations are often
defined as customer needs that have not been explicitly stated as requirements. Considering this theme
plus the close traceability between the GP&G and the DOE Quality Criteria (QC-1), main drivers of this
document, the definition from the QC-1 became the basis of the Software Quality Plan:

Quality - Conformance to customer requirements and expectations.

The quality goals of the Software Quality Plan are to:

• provide guidance for software quality engineering practices that will
♦ satisfy the stated and implied needs, budget, and schedules of the customer,
♦ be effective and cost efficient, and
♦ provide a common foundation for ASC projects;

• ensure continual quality improvement of SNL�s ASC software products, software operation and
support activities, and software development activities; and

• satisfy requirements specified in the ASC GP&G and SNL Corporate Process Requirements
(CPR) drivers to the practical extent within the scope of this document.

13

1.2 Overview
This document is organized into the following sections:

• Section 1 introduces the Software Quality Plan and provides the goals,
• Section 2 discusses the drivers and standards,
• Section 3 discusses the implementation of the practices,
• Section 4 identifies the Software Quality Engineering (SQE) practices for the ASC software

projects, and
• Section 5 discusses the assessment strategy.

2 Drivers and Standards
The Software Quality Plan is based upon the following drivers:

• ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G),
• Corporate Process Requirement CPR001.3.2, Corporate Quality Assurance Program, and
• Corporate Process Requirement CPR001.3.6, Corporate Software Quality Assurance.

All requirements specified in these drivers are addressed by mappings in Part 2 of the Software Quality
Plan. A mapping of the practices to the GP&G is also included in Appendix G of this document (Part 1).
In some cases the mappings identify gaps to various sections or paragraphs contained in the drivers. In
many such instances these gaps are handled in other related documents. In other instances, these gaps will
be addressed as the Software Quality Plan matures or as SNL and ASC management so direct.

The International Organization for Standardization (ISO) is the source of ISO 9000. The ISO 9000
standard specifies requirements for a quality management system that should address the organizational
structure, responsibilities, procedures, processes and resources necessary for implementing quality. The
Software Quality Plan, the foundation of the ASC’s quality management system, contains these ISO
elements. While the ISO 9000 standard is not a primary driver, there is a significant overlap between ISO
9000 and the requirements for the Software Quality Plan. The ASC program is fully aware of ISO 9000
and is interested in identifying gaps that may exist between the requirements as specified in the GP&G,
Corporate Process Requirements (CPRs), and the ISO 9000 standard.

The Software Capability Maturity Model® (SW-CMM®) and Capability Maturity Model Integration®
(CMMI®) are software capability assessment frameworks developed by the Software Engineering
Institute (SEI) to determine a software supplier’s capability to deliver a negotiated quality product. Many
of the practices in the Software Quality Plan can be mapped directly to the SW-CMM®/CMMI®,
although this is not a requirement. The Software Quality Plan attempts to take the most critical software
development elements and incorporate them into its own process improvement effort, but no mapping to
SW-CMM®/CMMI® is provided.

3 Software Quality Plan Implementation
The Software Quality Plan allows for tailoring of software project activities in implementing the
practices. The implementation of the practices described in this Software Quality Plan is the joint
responsibility of ASC management and project teams. Stakeholders are expected to provide guidance,
concur with the Software Quality Plan, and participate in the implementation details.

3.1 Management Roles and Responsibilities
Management support and advocacy of software quality are required for the successful implementation of
this Software Quality Plan. Two distinct management entities are identified: (1) the ASC Quality
Management Council (AQMC) and (2) ASC management with oversight or other direct responsibilities

14

for ASC-funded software projects. Table 1 defines high-level roles and describes associated
responsibilities for the AQMC and ASC management.

Table 1. ASC Software Quality Plan Roles and Responsibilities.

Roles Responsibilities
ASC Quality
Management
Council

The AQMC is an oversight group that is responsible for:
• setting policy and developing strategy for implementing quality systems for all

ASC software projects,
• sponsoring and promoting the Software Quality Plan and quality initiatives,
• ensuring that the Software Quality Plan provides a framework for defining and

reviewing quality objectives,
• ensuring the Software Quality Plan is communicated and understood by the

community,
• authorizing modifications to policies and strategies,
• reviewing and assessing quality initiatives in the ASC program,
• reviewing the results of independent and external assessments, and
• convening working groups to support development of policies and strategies.

ASC
Management

ASC management, which may consist of several levels of managers, has oversight
or other direct responsibilities for ASC-funded software projects. ASC management
ensures consistent and cost-effective implementation of the AQMC’s policies and
strategies and is responsible for:
• directing and ensuring project team implementation of this Software Quality

Plan that balances risk, quality, cost, and schedule;
• maintaining the Software Quality Plan;
• approving and tracking the level of formality established for projects under their

direction;
• monitoring, improving, and documenting compliance with the Software Quality

Plan;
• sponsoring and determining the scope, goals, and procedure of independent

SQE assessments of software projects;
• communicating best software quality practices across the ASC software

projects; and
• identifying organizational and stakeholder training needs and providing

necessary training opportunities that map to these organizational needs.

3.2 Stakeholder Expectations
Stakeholders are individuals or organizations, internal and external to SNL, that are actively involved in a
project. Customers and users are stakeholders. Stakeholders may not be accountable to the ASC program;
therefore, the ASC Software Quality Plan practices cannot be stated for stakeholders. Expectations for
stakeholder are provided in Table 2.

Table 2. Stakeholder Expectations.

Role Expectations
Stakeholder Project expectations of the stakeholder include:

• providing guidance and concurrence with the Software Quality Plan;
• identifying, clarifying, and prioritizing their product expectations and

requirements;
• negotiating acceptance criteria, schedule, and intended use;
• participating in appropriate reviews; and
• identifying customer support expectations and requirements for the installation,

operation, and training of the product.

15

3.3 Project Team Tailoring and Implementation

The Software Quality Plan provides descriptions and details to the software projects for implementing the
practices identified in this document. All software projects are expected to address each of the appropriate
practices and are allowed to tailor their implementation. The project team’s practices, processes, and
artifacts are a natural part of quality software development. These artifacts are the foundation for
satisfying customer requirements, obtaining software engineering/quality feedback for continual process
improvement, and for demonstrating consistency with the practices.

The Software Quality Plan does not prescribe any specific implementation of these software quality
practices. Project team implementation of the practices must take into account the consequences implied
if the delivered product fails to meet its intended use(s). The determination of such consequences involves
considering the defined mission of the project (see section 4.2.1). Depending upon the identified
consequence level and the associated likelihood that the project will not be able to meet its commitments,
each ASC software project may tailor implementation of the practices described in this Software Quality
Plan. Project tailoring considers risk factors such as software size, complexity, cost, schedule, visibility,
and uniqueness as well as project size (see section 4.2.2).

Software products that are identified as supporting a high consequence mission (for example, weapon
certification) will need to implement the majority of the practices at a level of formality (LOF)
appropriate to the mission consequence. The LOF suggests which practices are necessary and influences
how those practices are implemented, reviewed, and approved.

16

This Page Intentionally Left Blank

 17

4 ASC SQE Practices
The ASC SQE practices are organized in this document under sections 4.2 Project Management, 4.3
Software Engineering, 4.4 Software Verification, and 4.5 Training. In the GP&G there were three practice
areas: Project Management, Software Engineering, and Software Verification (see Figure 2). Each of
these GP&G areas contained training. Rather than discuss training three times, this document combines
the training into one section for all three areas. This organization responds to the requirement that each
site develop specific practices to appropriately implement the guidelines.

Each section first summarizes the overall scope for the area followed by one or more pertinent practice
areas (also shown in Figure 2). Each practice area contains a practice table that covers the expectations of
ASC management, statements of the practices, and suggested artifacts that demonstrate implementation.

Figure 2. ASC SQE Practice Areas.

4.1 Organization of the Practice Tables
The practice tables contain an overview description, numbered practice statements, numbered artifacts
resulting from the practices, example inputs, and example metrics and measurements.

Overview Description
The overview description provides a high level discussion of particular practices that are involved in an
area. The overview also provides additional elaboration that is intended to guide the practitioner in
implementing the practices described. The overview of one section may reference the overview or details
of another related section.

18

Practices
Practices are software development and deployment activities. Each practice describes the activities and
elements that a project team should address in tailoring and implementing the practice for their specific
project. Each practice is uniquely numbered in the format PRx. Table 6 at the end of section 4 provides a
listing of the practices with the artifacts generated by each. Appendix B contains a separate listing of all
the practices.

Artifacts
An artifact is a deliverable or work product that is generated as a practice is exercised. Each listed artifact
is an example of an output created or modified by the given practice. All appropriate software product
artifacts identified by the project team are to be version controlled and change managed as described in
section 4.2.2 Configuration Management. Each artifact is uniquely numbered in the format ARx. Text in
parenthesis following the artifact name helps clarify or explain the artifact. Text in brackets following the
artifact name identifies elements included in the artifact. Table 6 at the end of section 4 provides a listing
of the practices with the artifacts generated by each. Appendix B contains a separate listing of all the
artifacts.

Example Inputs
The inputs suggested are examples of existing resources, information and/or artifacts external to a
practice that may be necessary to perform that practice. For example, in section 4.2.5 Risk Management a
suggested input, list of subject matter experts knowledgeable about potential risk events, is a resource
external to the practice; however, most of the suggested inputs in section 4.3.3 Customer Support are
artifacts from other practice areas. A suggested input that is a resource or information external to the
practice is identified by a bullet (�) and one that is an artifact from another practice area is identified by
that artifact’s number (ARx). Each suggested input is followed by a parenthetical expression indicating
the associated practice.

Example Metrics and Measurements
Metrics and measurements provide quantitative insight into the effective quality of the process and that of
the resulting product. In this document a metric is defined as a quantitative measure of the degree to
which a system, component, or process possesses a given attribute and a measurement is defined as the
dimension, capacity, quantity, or amount of something. Subject matter experts in the final product are
involved in specifying metrics designed to increase quality. Strong customer involvement is also
recommended. Suggested example process and product metrics are provided for each of the software
lifecycle development areas. These are not required but are intended to inspire software project teams to
define their own appropriate metrics. Collected process and product metrics form the basis for one of the
artifacts, AR4, identified in the Process Implementation and Improvement practice table.

In selecting metrics, teams should consider how the metrics will be analyzed (that is, appropriate
statistical methods). Metrics should be analyzed and monitored for undesirable “side effects” which are
known in the quality world as “unintended consequences.”

Note: The words metric, measure, and measurement have limited consensus usage in the software
community. The Glossary contains definitions for these terms as used in this document.

19

4.2 Project Management
Project Management is the systematic approach for balancing the project work to be done, resources
required, methods used, procedures to be followed, schedules to be met, and the way that the project is
organized. This section begins with the practice table Strategic Planning as a first step in addressing
project management followed by the Determination of Applicable Practices and Level of Formality
practice table for risk-based assessment. The specific activities identified in the GP&G are then addressed
in practice tables under Process Implementation and Improvement, Requirements Engineering, Risk
Management, and finally Project Planning, Tracking and Oversight.

4.2.1 Strategic Planning

PROJECT MANAGEMENT
Strategic Planning

Overview Description:
An organization defines a project and its mission; management responsibilities and authorities; users and
customers; and interelationships with other projects (organizational context). The project’s mission is one
basis for the selection of appropriate practices. For example, a research project may not need all practices
used by a team developing a production product. The organizational context presents an opportunity for
organizationally related projects to share common practices, procedures, processes, tools, training, and
documentation. Large projects and frameworks may form their own organizational context which allow
subteams to work at their own appropriate level of formality and with their own appropriate practices
within the project.
The defined mission of the project implies the intended use of products over which the project has
responsibility. A project mission may be exploratory, for example to develop knowledge or skills, and is
not intended to produce a deliverable product. The mission may be to support a pre-existing product
which is delivered to customers, for example a legacy code. A project’s mission may cover the full
lifecycle of a product from inception through delivery. A single project may have multiple missions. For
example, a software product may contain mature features (support mission), features under development
(development mission) and research features that are not yet intended for customers (research mission).
The organizational context of the project defines the functional roles and responsibilities, management
responsibilities and authority, users and customers, and interrelated projects. Management includes the
AQMC, Program Element Leads, and other line management as appropriate. An organization, a
cooperating group of projects, or a framework project may share documention for shared practices,
processes, and tools.
Practices:
PR1. Document and maintain a strategic plan.

The mission (or scope) of the project is clearly defined, documented, and updated when the mission
changes. Management responsibilities and authorities for the project are clearly defined, documented,
and updated. The initial identification of project stakeholders and customers may also be addressed in
the strategic plan. Commitments for changes to mission and organizational context are only
negotiated by authorized personnel with appropriate technical inputs. This practice includes
establishing authorities and beginning to identify sources of technical inputs.

Artifacts:
AR1 Strategic plan: [project’s mission, management, stakeholders] (PR1)
Example Inputs:
• Organization representatives (PR1)
Example Metrics/Measurements: AR4 Process and product metrics
� Percentage of projects within an organizational unit with defined mission and management (PR1)
� Number of changes in the strategic plan related to mission, management, or stakeholders over a

given period of time. (PR1)

20

4.2.2 Determination of Applicable Practices and Level of Formality

PROJECT MANAGEMENT
Determination of Applicable Practices and Level of Formality

Overview Description:
Each ASC software project applies a risk-based assessment to determine its level of formality (LOF) in
implementing applicable practices. This risk-based assessment considers factors such as project mission;
customers’ intended use; product or project complexity; project budget and schedule; stability of
requirements and stakeholder organizations; and team dynamics and communications; and is performed
with appropriate management and other stakeholder involvement. The appropriate ASC Program
Element lead reviews and approves applicable practices and the level of formality. This assessment
along with its review and approval is performed at the beginning of a project and the assessment is
periodically reviewed to either verify that the conditions of the assessment have not significantly
changed or to perform a reassessment when factors have changed significantly. A reassessment should
initiate corrective actions to bring the project’s LOF and applicable practices into compliance.
The only risks addressed in this practice are those that can be mitigated by LOF and selection of
software engineering practices. See section 4.2.5 for additional risk management practices.
Practices:
PR2. Perform a risk-based assessment, determine level of formality and applicable practices, and

obtain approvals.
Perform a risk-based assessment based upon the project’s consequence of failure and likelihood
of failure. Table 3 provides guidance in determining ‘consequence of failure’ once a project team
has established its mission and obtained stakeholders’ inputs. If different stakeholder inputs result in
different consequence levels, the higher level should be given greater consideration. If the mission
or stakeholder’s inputs change significantly, a reassessment is warranted. The project team also uses
Table 3 to guide its determination of its likelihood of failure to satisfactorily meet overall project
commitments. The project estimates this likelihood by considering multiple factors relating to the
software development team, the software product, and the environment. Likelihood of failure does
not imply a mathematical probability.
Decide on the applicable practices and level of formality that will mitigate the risk level. The
project team uses the mission defined in its strategic plan (practice PR1) to guide its determination
of which practices to implement. Depending upon its identified consequence level and its associated
likelihood of failure to meet its commitments, each ASC software project may then tailor its
implementation of the practices described in this Software Quality Plan as suggested by the
intersection of its consequence of failure and its likelihood of failure. This tailoring will include a
decision both on which practices are applicable and on the LOF to be applied in implementing these
selected practices.
An ASC program element lead reviews, approves, and tracks the project’s assessed LOF and
applicable practices for ASC projects in their domain. Table 4 presents the AQMC’s expectations
concerning applicable practices and appropriate level of implementation detail given a project’s
determined level of formality. A project may request a waiver from the AQMC’s expectations. Such
a waiver requires written approval from both the program element lead and the customer lead.
Table 5 provides ‘rules of thumb’ on LOF issues related to artifacts, reviews, training, and tool
usage.

Artifacts:
AR2 Approved level of formality and applicable practices (PR2)
Example Inputs:

• Customer and organization process requirements (PR2)
AR1 Strategic plan: [project’s mission, management, stakeholders] (PR2)
Example Metrics/Measurements: AR4 Process and product metrics

� Percentage of LOF determinations that have been approved by the appropriate program element
lead vs. total number of LOF determinations (PR2)

� Percentage of reevaluated and approved LOF determinations resulting from significant
requirements changes vs. total number of significant requirements changes (PR2)

21

Table 3. Risk-Based Assessment to Determine Level of Formality.

Critical
Potential for loss of human life,
grave environmental damage, grave
harm to the national or SNL’s
interest.
Examples:
• Weapon qualification decision,

no test alternatives
• Potential for Significant Finding

Investigation

High
Potential for serious injury, serious
environmental damage, serious
harm to the national or SNL’s
interest.
Examples:
• Weapon qualification support,

supplements tests
• Potential for Significant Finding

Investigation
• Safety related

Medium
Potential for minor injury, minor
environmental damage, minor harm
to the national or SNL’s interest,
failure to make major milestones, or
customer must go to great lengths to
accommodate budget impact.
Examples:
• Early parts of Life Extension

Projects provide a basis for
refining design decisions

• Design trade-off study

C
on

se
qu

en
ce

of
Fa

ilu
re

Low
No potential for injury, no
environmental damage, no harm to
the national or SNL’s interest,
failure to make minor milestones or
minor budget impact.
Examples:
• Exploratory scoping (what is

happening with this problem?)

• Small and simple project
• Requirements well-known & stable
• Small team and good

communication
• Organization is stable

• Large and complex project
• Requirements ill-defined or unstable
• Large team and complex

communication
• Organization is unstable

Likelihood of Failure

Medium Level of Formality

High Level of Formality

Low Level of Formality

22

AQMC Implementation Expectations Based Upon Determined Level of Formality
AQMC expectations on which practices should be implemented and at what level of implementation
detail are presented in Table 4. ASC program element leads will likely furnish projects that fall under
their domain further guidance for determining the appropriate level of formality at which they expect their
projects to operate. A program element lead may decide to direct all projects in his/her purview to
operate at a high level of formality; in which case, each project team would follow the expectations
established in the (1) High Level of Formality column of the table. In some cases, the program element
lead may request an individual project follow the steps outlined in practice PR2 to determine its level of
formality and then use this table to determine which practices it needs to follow and at what level of
implementation detail. As explained in PR2, an approved waiver signed by the project’s program element
lead and customer element lead, if applicable, must accompany any exceptions to the expectations
provided in Table 4.

Table 4. AQMC Implementation Expectations Based upon Determined Level of Formality.
Implementation Detail Symbols
● = high level of detail � = medium level of detail
○ = low level of detail

Practice (1)High
Level of

Formality

(2)Medium
Level of

Formality

(3)Low
Level of

Formality
Project Management (12)

1. Strategic Planning
PR1. Document and maintain a strategic plan. � � �
2. Determination of Applicable Practices and Level of Formality
PR2. Perform a risk-based assessment, determine level of formality

and applicable practices, and obtain approvals. � � �
3. Process Implementation and Improvement
PR3. Document lifecycle processes and their interdependencies,

and obtain approvals. � � ○
PR4. Define, collect, and monitor appropriate process metrics. � � ○
PR5. Periodically evaluate quality problems and implement process

improvements. � � ○
4. Requirements Engineering
PR6. Identify stakeholders and other requirements sources. � � �
PR7. Gather and manage stakeholders’ expectations and

requirements. � � ○
PR8. Derive, negotiate, manage, and trace requirements. � � ○
5. Risk Management
PR9. Identify and analyze risk events. � � ○
PR10. Define, monitor, and implement the risk response. � � ○
6. Project Planning, Tracking, and Oversight
PR11. Create and manage the project plan. � � ○
PR12. Track project performance versus project plan and

implement needed (corrective) actions.

� � ○

23

Implementation Detail Symbols
● = high level of detail � = medium level of detail
○ = low level of detail

Practice (1)High
Level of

Formality

(2)Medium
Level of

Formality

(3)Low
Level of

Formality
Software Engineering (13)

7. Software Development
PR13. Communicate and review design. � � ○
PR14. Create required software and product documentation. � � ○
8. Integration of Third Party or Other Software
PR15. Identify and track third party software products and follow

applicable agreements. � � �
PR16. Identify, accept ownership, and manage assimilation of other

software products. � � ○
9. Configuration Management
PR17. Perform version control of identified software product

artifacts. � � �
PR18. Record and track issues associated with the software product. � � ○
PR19. Ensure backup and disaster recovery of software product

artifacts. � � �
10. Release and Distribution Management
PR20. Plan and generate the release package. � � ○
PR21. Certify that the software product (code and its related

artifacts) is ready for release and distribution. � � �
PR22. Distribute release to customers. � � ○
11. Customer Support
PR23. Define and implement a customer support plan. � � ○
PR24. Implement the training identified in the customer support

plan. � � ○
PR25. Evaluate customer feedback to determine customer

satisfaction. � � ○
Software Verification (3)

12. Software Verification
PR26. Develop and maintain a software verification plan. � � ○
PR27. Conduct tests to demonstrate that acceptance criteria are met

and to ensure that previously tested capabilities continue to
perform as expected.

� � ○

PR28. Conduct independent technical reviews to evaluate adequacy
with respect to requirements. � � ○

Training (2)
13. Training
PR29. Determine project team training needed to fulfill assigned

roles and responsibilities. � � ○
PR30. Track training undertaken by project team. � � ○

24

Table 5. Rules of Thumb for Level of Formality.

Low Formality Medium Formality High Formality

Artifacts Artifacts contain key details and
may take the form of notes in an
engineering notebook, hardcopy
of drawing notes on a
whiteboard, meeting notes,
presentation materials, and
email. Artifacts are available to
at least the artifact owner and PI.

Artifacts contain significant
detail, including key concepts
and are likely in draft form.
Artifacts are identified in the
project plan and are stored in a
repository available to all
project team members.

Artifacts are complete and in
final form.
Artifacts are identified in the
project plan. Format of the
artifacts may include formal
project, product, or process
reports, or memos stored in a
repository available to all
project stakeholders.

Reviews Takes the form of meeting notes,
emails, and paired programming
practices. Reviews are
witnessed/approved as needed.
Reviews consist of at least one
reviewer who is knowledgeable
and independent of artifact
construction.
Review records become
artifacts.

Low formality plus PI and
appropriate management are
involved in reviews.
Customers are informed of
status of reviews. Key
concepts of artifacts are
reviewed and approved by
team members and appropriate
management. Review records
become artifacts.

Reviews are scheduled in the
project plan. Attendees may
include management, PI,
project team, subject matter
experts and/or key
stakeholders. Review results
require approvals by
appropriate management and
stakeholders. Findings and
issues are maintained in a
formal report or issue tracking
system. Review records
become artifacts.

Training Takes the form of mentoring and
self-paced training, including
reading books, journals,
seminars, and self-study training
material. Training records may
include e-mail acknowledgement
to team lead or PI. Team
maintains a record of skills and
training required to develop the
skill set. Training records
become artifacts.

Low formality plus
identification of critical skills
redundancy (where cross-
training results in several team
members who are
knowledgeable of key areas).
Feedback on effectiveness of
training experiences is
collected. Training records
become artifacts.

Medium formality plus
gathering of metrics for
gauging effectiveness of
training are identified,
collected and applied.
Training format may be
extended to university and
college degree programs,
professional certifications, on
and off-site classroom
training, and computer-based
training. Training records
become artifacts.

Tools Generic tools such as manual
notebooks, calculators or
common desktop tools such as
office automation (word
processing, spreadsheet,
presentation, e-mail, project
management). Key project
members have access to these
tools.

Low formality plus tools of a
more specialized nature to
address specific tasks (for
example, DOORS for
requirements management,
SourceForge for collaborative
environments). Tools are
available to appropriate project
members and appropriate
management and stakeholders.

Medium formality plus all
appropriate management and
stakeholders have access.
Ideally, selected tools are a
program or corporate
resource.

25

4.2.3 Process Implementation and Improvement

PROJECT MANAGEMENT
Process Implementation and Improvement

Overview Description:
Process implementation typically includes the activities required to plan, define, implement, monitor,
measure, and improve all aspects of a product lifecycle from concept to retirement. Examples of
lifecycles include waterfall, iterative or spiral, and concurrent. Various methodologies can be employed
to support software lifecycles. Practices are implemented through lifecycle processes which define the
activities, interfaces, roles, and responsibilities. (See the Glossary for a definition of process.)
Process improvement is the continual activity to increase the ability of a process to meet its objectives.
Lifecycle processes are evaluated by monitoring, measuring, and analyzing their effectiveness and
efficiency with respect to their objectives. This evaluation is used to investigate alternative improvement
solutions and select cost-effective improvements to the processes. An objective for process evaluation
and improvement is to anticipate and prevent errors and nonconformance. Problems, errors, or
nonconformance are analyzed to determine if corrective actions are required to improve the processes and
prevent recurrence of similar problems. Process improvement changes are reviewed, managed, and
documented.
These process implementation and improvement practices are treated separately from project planning,
tracking, and oversight practices (section 4.2.5) to allow organizations to define common lifecycle
processes that will be shared and followed by multiple projects. Otherwise, a project team may combine
the implementation of these two practice areas.
For suggested effective metric and non-metric based process improvement techniques see Appendix F.
Practices:
PR3. Document lifecycle processes and their interdependencies, and obtain approvals.

The project team defines and documents its applicable lifecycle processes by taking into
consideration the level of formality, intended use, project objectives, cost, resource constraints, and
compatibility with customers and other projects’ activities. Defined lifecycle processes may include
activities, interfaces, roles, and responsibilities. The appropriate stakeholders review and the
appropriate management approves the documented lifecycle processes.

PR4. Define, collect, and monitor appropriate process metrics.
The project team defines metrics to aid in the evaluation of process effectiveness and efficiency.
Typically a new team identifies only selected metrics that will add immediate value in improving
their processes or the way they approach their lifecycle activities. As the project evolves the number
of metrics collected typically increases to address additional areas where improvements are needed.

PR5. Periodically evaluate quality problems and implement process improvements.
Ideally the project team monitors conditions in order to investigate and prioritize alternative quality
problem solutions. The team is responsible for documenting and implementing improvement
solutions. Typically the project team analyzes metrics to aid in this evaluation.

Artifacts:
AR3 Approved project processes (PR3)
AR4 Process and product metrics (PR4)
AR5 Project process improvement actions (PR5)
Example Inputs:
• Customer and organization process requirements (PR3)
• Information on available and planned resources (PR3)
AR1 Strategic plan: [project’s mission, management, stakeholders] (PR3)
AR2 Approved level of formality and applicable practices (PR3)
Example Metrics/Measurements: AR4 Process and product metrics
� Percentage of processes that are documented vs. processes identified to be documented (PR3)
� Also see also Software Verification; Project Planning, Tracking and Oversight; and Training

26

4.2.4 Requirements Engineering

PROJECT MANAGEMENT
Requirements Engineering

Overview Description:
The purpose of requirements engineering practices is to capture, develop, validate, track, and control the
product requirements. Product requirements typically span hardware, software, operations, support,
documentation, product training, and other aspects. Requirements are based upon project mission,
stakeholders’ stated and implied needs, and organizational commitments. Although needs are not
requirements they are considered along with requirements in order to improve quality. Changes to
requirements must be managed throughout the lifetime of the project.
Requirements are inputs to other practice areas. Risk management activities analyze and try to control
events that affect the ability to satisfy requirements. Project planning determines whether and when
requirements will be implemented. A product release identifies requirements that are newly satisfied in
that release. Software verification reviews evaluate whether the product has met the requirements
according to specified acceptance criteria. Requirements should be reviewed and approved by appropriate
stakeholders.
Practices:
PR6. Identify stakeholders and other requirements sources.

Sources of requirements potentially include stakeholders as well as regulatory, historical,
organizational, and computational commitments. The project team communicates with the customers
and other stakeholders regarding areas needing support. Stakeholders may also include suppliers of
products that are to be integrated with the project product.

PR7. Gather and manage stakeholders’ expectations and requirements.
Product expectations and requirements are gathered from identified stakeholders, additional
commitments, and submitted issues. The gathering activity may include identifying the source,
criticality, priority, and acceptance criteria of the needs. There may be needs that are not clear. In
these cases the originator should be contacted for further clarification. These sources may start out as
a stockpile driver, expectations of fitness for intended use, a programmatic requirement, a physical or
functional requirement, a modeling or simulation requirement, or an issue submitted against a
previous version of derived software requirements.

PR8. Derive, negotiate, manage, and trace requirements.
The software project team derives and negotiates software requirements based upon the gathered
needs, and analysis of technical feasibility and resource availability. Negotiation optimally includes
project team and stakeholder approvals of derived requirements and subsequent delivery
commitments. The requirements are traced to product components that satisfy (forward tracing) or to
verify that the requirement has been met (backward tracing). Changes to derived requirements and
their associated status are managed and tracked. Ideally, requirements traceability supports analyzing
the impact of the change.

Artifacts:
AR6 Product expectations and requirements (PR6, PR8)
AR7 Software requirements and attributes (PR7, PR8)
AR8 List of stakeholders and organizational commitments (PR6, PR8)
Example Inputs:
• Stakeholder expectations and requirements (PR7)
• Organizational requirements (PR7)
• Platform requirements and characteristics (PR7)
AR1 Strategic plan: [project’s mission, management, stakeholders] (PR7)
AR16 Managed issues: [enhancements, defects, questions, inquiries] (PR7, PR8)
AR19 Customer support plan including training (PR7)
Example Metrics/Measurements: AR4 Process and product metrics
� Cost of collecting, deriving, and managing requirements (PR6, PR7, PR8)
� Percentage of requirements added/changed in a time period vs. total number of requirements

(requirements stability) (PR7, PR8)
� Percentage of requirements implemented in a time period with respect to number of requirements

planned in a time period (PR8)

27

4.2.5 Risk Management

PROJECT MANAGEMENT
Risk Management

Overview Description:
Risk management is the activity of identifying, addressing, and mitigating sources of risk before they
become threats to successful completion of a project. A risk is a combination of the consequence and
likelihood of an event. Risk management spans the lifetime of the project. The number of risks and risk
factors is unbounded. Therefore, this practice area seeks to identify only primary and reasonably likely
risks in the following areas: organizational, regulatory, technical, and project management. Risk
management is intended to mitigate consequences and/or likelihood of these identified risk events.
Monitoring risk events may be done in conjunction with the Project Planning, Tracking, and Oversight
practices (see section 4.2.6).
Practices:
PR9. Identify and analyze risk events.

Significant risk events must be identified and clearly described before they can be analyzed and
managed. As conditions change, identified risks should be reviewed and updated in a risk plan. An
ideal risk analysis process identifies key attributes of each risk event such as the impact, likelihood,
group(s) impacted by the risk event, and the organization (risk owner) responsible for any action
associated with the risk event. Typically risk events are prioritized based on impact, likelihood, and
potentially other factors.

PR10. Define, monitor, and implement the risk response.
A risk response is typically comprised of the risk disposition and corrective action(s) for events to be
mitigated. Given a prioritized set of risk events, the project then determines the risk disposition of the
highest priority events. Possible dispositions include mitigate, transfer, accept, and avoid. Teams
may plan a response for unanticipated events that threaten the successful completion of the project.
Projects monitor risk by collecting relevant information. The monitoring approach is documented in a
risk plan and includes who does monitoring, how often, how information is collected, tools to assist
monitoring, etc. If a risk event occurs, the planned corrective actions are implemented including
notification of impacted stakeholders.

Artifacts:
AR9 Project plan [risks events, risk plan] (PR9)
AR10 Project reviews and needed (corrective) actions: [risk responses] (PR10)
Example Inputs:
• List of subject matter experts knowledgeable about potential risk events (PR9)
AR6 Product expectations and requirements (PR9)
AR7 Software requirements and attributes (PR9)
AR8 List of stakeholders and organizational commitments(PR9)
AR9 Project plan (PR9, PR10)
AR10 Project reviews and needed (corrective) actions [tracking and oversight responses] (PR9)
AR24 Technical reviews (PR9)
Example Metrics/Measurements: AR4 Process and product metrics
� Total number of identified risk events (provides some indication of the complexity of the software

development project) (PR9)
� Percentage of prioritized risk events that can be mitigated with defined corrective actions vs. total

number of prioritized risk events that can be mitigated (PR10)
� Number of risk events that were not anticipated but occurred (effectiveness of risk management

planning) (PR9, PR10)
� Cost of implemented corrective actions during the monitoring cycle (PR10)

28

4.2.6 Project Planning, Tracking and Oversight

PROJECT MANAGEMENT
Project Planning, Tracking, and Oversight

Overview Description:
The purpose of project planning, tracking, and oversight is to guide project implementation while
balancing, monitoring, and analyzing project quality, cost (including cost of quality), schedule, and
performance. Project planning includes preparing a plan that describes how the project will be performed
and managed. The plan typically includes at least a statement of work, project constraints and goals,
project deliverables, a project timeline, an assessment of required resources, and the availability of the
resources. Many aspects of the project plan may already be captured by the ASC funding process.
Various stakeholder organizations also use the project plan to fund, plan, and provide a basis for tracking
and oversight. Updates to the project plan occur throughout the lifetime of the project.
Tracking and oversight includes taking corrective actions as necessary. Corrective actions bring projected
accomplishments and results back into compliance. Corrective actions could include adding resources to
meet schedules, modifying the schedule, adding project budget, modifying cost criteria, and re-
negotiating requirements or acceptance criteria.
Practices:
PR11. Create and manage the project plan.

Project plans typically contain a project overview, project tasks, resource information, planning
assumptions and constraints, dependencies, budget, schedule, and roles and responsibilities. This
practice may include identifying tasks and evaluating feasibility, cost, resource requirements, and
both internal and external dependencies of the tasks. See Appendix F for suggested tools to assist in
project planning activities.

PR12. Track project performance versus project plan and implement needed (corrective) actions.
The project team determines what project metrics are of interest, then monitors and analyzes these
metrics. This monitoring may be performed via automated tools or manually and should take place
frequently enough to allow time to analyze any significant variances prior to significant project
impact. Once significant variances are identified, they are analyzed to determine their significance.
For significant variances the root cause and potential corrective actions are determined. This activity
may require discussion with stakeholders and management concerning the severity and impact of the
identified variances.

Artifacts:
AR9 Project plan: [risk events, risk plan, overview, milestones, task list, resource information, roles and

responsibility assignments, assumptions, constraints, dependencies, budget, schedule, SCM plan,
etc.] (PR11)

AR10 Project reviews and needed (corrective) actions: [risk responses, tracking and oversight responses]
(PR12)

Example Inputs:
• Information on available resources (PR11)
AR1 Strategic plan: [project’s mission, management, stakeholders] (PR11)
AR3 Approved project processes (PR12)
AR4 Process and product metrics (PR12)
AR6 Product expectations and requirements (PR11)
AR7 Software requirements and attributes (PR11)
AR8 List of stakeholders and organizational commitments (PR12)
AR9 Project plan: [risk plan, risk events](PR12)
AR19 Customer support plan including training (PR11)
Example Metrics/Measurements: AR4 Process and product metrics
� Percentage of tasks directly tied to one or more requirement vs. total number of tasks (PR11)
� Percentage of actual vs. planned budget, schedule, performance (PR12)
� Number of corrective actions taken in a specified time frame (PR12)

29

4.3 Software Engineering
Software engineering is a systematic approach to the specification, design, development, test, operation,
support, and retirement of software. The software engineering activities identified in this section are
Software Development, Configuration Management, Release and Distribution Management, and
Customer Support.

30

4.3.1 Software Development

SOFTWARE ENGINEERING
Software Development

Overview Description:
The purpose of the software development processes is to generate a correctly working product for the
customer; this product is often, but not always, software. Generally, software development processes
include design, implementation, and testing of the software products or reuse of existing
implementations. Other practices related to software development are covered elsewhere: Requirements
Engineering activities in section 4.2.4, Configuration Management activities including version control
and issue tracking in section 4.3.3, and Software Verification activities for reviews and testing in section
4.4. The lifecycle processes are documented in section 4.2.3 Process Implementation and Improvement.
The Software Quality Plan prescribes no specific lifecycle or any particular software development
methodology.
Practices:
PR13. Communicate and review design.

Design is the process of defining architecture, components, interfaces, and other characteristics of a
system or components. Design activities transform requirements into artifacts that are used for the
development of software. Design artifacts capture information and process specifications that
document dependencies, information flows, algorithms, the interfaces, and all the components. These
help ensure requirements are implemented and team members have a common understanding of the
design. The impact of implementation choices on design is continuously incorporated. Relevant
stakeholders are informed of issues and included in decisions. Documentation of a design supports
development, product maintenance, tracing of requirements, verification, and end users. Design
reviews are an important aspect of software development. Depending upon the software methodology
being used by a project team, design artifacts may not be simultaneously available for formal reviews
so informal design reviews and design artifacts may provide the quality necessary for this practice.
See Table 5 for suggestions on carrying out level of formality for artifacts and reviews.

PR14. Create required software and product documentation.
The project team creates the required product artifacts (such as code, user documentation,
developer’s guide, and installation guide) using the documented project processes. Note that testing
of these products is part of software verification. These artifacts implement the requirements and are
updated to reflect the “as built” product.

Artifacts:
AR11 Design artifacts: [documentation and/or reviews] (PR13)
AR12 Implementation artifacts: [software code, assimilated other software, design documents, user

documentation, developer’s guide, installation guide, theory manual, interface manual, etc.] (PR14)
Example Inputs:
• External knowledge (subject matter experts, algorithms, technical reports) (PR13, PR14)
• Assimilated software (from a source outside the project) (PR14)
AR3 Approved project processes (PR13, PR14)
AR6 Product expectations and requirements (PR13, PR14)
AR7 Software requirements and attributes (PR13, PR14)
AR8 List of stakeholders and organizational commitments (PR13)
AR9 Project plan (PR13, PR14)
AR13 Identification and acquisition records (PR13, PR14)
AR16 Managed issues: [enhancements, defects, questions, inquiries] (PR13, PR14)
AR17 Release specification (PR14)
Example Metrics/Measurements: AR4 Process and product metrics
� Percentage of requirements implemented versus total number of requirements planned for release

(PR13, PR14)
� Percent of test cases successfully executed versus all test cases (PR27)
� Number of defects resolved versus all defects discovered (PR27)

31

4.3.2 Integration of Third Party or Other Software

SOFTWARE ENGINEERING
Integration of Third Party or Other Software

Overview Description:
Projects use or incorporate third party or other existing software products in order to satisfy needed
capabilities without incurring the cost of redeveloping those capabilities. Such software may be a simple
library, an integrated set of libraries, compilers and linkers, or even an operating system. Sources of such
software may be commercial, open source, other ASC or SNL projects, or research efforts. This practice
area focuses on integration activities such as identifying, tracking, establishing trust in, assimilating, or
honoring agreements (for example, protecting intellectual propery) for third party or other existing
software products. Note that requirements traceability (practice PR8) should include tracing requirements
satisfied through the integrated third party or other existing software.
Practices:
PR15. Identify and track third party software products and follow applicable agreements.

A project typically uses third party software products without modification. However, if the project
does modify the third party software those modifications must be tracked until the supplier
incorporates those modifications into the third party software. A project may acquire and
configuration manage software (for example, public domain software) or may use software as-is in
the computational environment (for example, a compiler). A third party software product, its source,
and the project’s basis for trust in that product should be identified. A basis for trust could be simply
noting the supplier’s long-standing reputation or confirming that another trusted project has already
established trust in the third party software, or could involve more complex verification efforts.
Applicable agreements with a third party software product supplier could include licenses, protection
of intellectual property, or customer support.

PR16. Identify, accept ownership, and manage assimilation of other software products.
Existing software may be assimilated into a project such that the project team accepts responsibility
for maintaining, supporting, and potentially continuing development of the software. Assimilation
should consider the effort needed to ensure that the software meets the project’s verification and other
software quality practices and standards. Assimilation should also consider the potential impact to the
project’s mission, applicable practices, and level of formality.

Artifacts:
AR12 Implementation artifacts: [assimilated other software] (PR16)
AR13 Identification and acquisition records (PR15, PR16)
Example Inputs:
• Third party software (PR15)
• Other software (PR16)
AR22 Software verification plan (PR15, PR16)
Example Metrics and Measurements: AR4 Process and product metrics
� Time and effort spent integrating other software products into environment (PR15, PR16)

32

4.3.3 Configuration Management

SOFTWARE ENGINEERING
Configuration Management

Overview Description:
The purpose of configuration management (CM) is to provide a controlled environment for development,
production, and support activities. CM includes identifying which software product artifacts are to be
managed; maintaining version controlled baselines of these artifacts; providing an issue tracking system
for recording associated issues or change requests related to product artifacts; and tracking the status of
these issues throughout the project’s lifetime. Configuration management must ensure retrieval of any
baselined artifact over the project’s lifetime. Note: some specific artifacts (records) and their retention
schedule may be subject to SNL’s Record Management Policies.
Practices:
PR17. Perform version control of identified software product artifacts.

As part of version control project teams typically identify project artifacts that will be kept in a
repository, access and version control those artifacts, create and recover product baselines, and
manage changes to these baselines.

PR18. Record and track issues associated with the software product.
This practice typically includes a process (change management) of recording and tracking all
appropriate changes that occur to identified software product artifacts, including requirements,
throughout their lifetime. Issue tracking typically includes an issue classification scheme and allows
for the submittal of enhancement requests, problem and defect reports, and inquiries. Customers are a
source of submitted issues. Section 4.3.5 Customer Support addresses customer issue submission and
response.

PR19. Ensure backup and disaster recovery of software product artifacts.
This practice ensures backup is performed and disaster recovery of software product artifacts and
associated baselines is possible should the repository become unavailable or destroyed. Backup and
recovery capability includes the identification of where product artifacts are stored, a defined
schedule for when backups are made, and a method of recovering or restoring backups should a
disaster occur. The disaster recovery capability should be periodically tested to ensure that artifacts
can be recovered and restored with minimal disruption to other project activities. This practice may
be satisfied through confirmation that system administration is performing backups, ensuring safe
storage, and testing recovery.

Artifacts:
AR14 Version controlled records, including baselines and associated configurations (PR17)
AR15 Backup records and recovery test results (PR19)
AR16 Managed issues: [product quality results (for example, non-conformances), enhancements, defects,

questions, inquiries] (PR18)
Example Inputs:
• Customer issues (PR18)
AR1-AR26 Appropriate product artifacts (PR17, PR18)
Example Metrics and Measurements: AR4 Process and product metrics
� Percentage of software product artifacts stored under version control vs. total number of software

product artifacts identified for versioning (PR17)
� Success rate of disaster recovery vs. total disaster recoveries attempted (PR19)
� Number of issues closed, deferred, or left open compared to total number submitted in a given

period of time (PR18)

33

4.3.4 Release and Distribution Management

SOFTWARE ENGINEERING
Release and Distribution Management

Overview Description:
The purpose of the release and distribution practices is to manage versions of the software product that
are distributed to customers. Release management includes handling the requests for a release as well as
preparation of the release. A release may include all elements of the product or a defined subset of the
product. When the project team has completed all artifacts necessary for a release the team creates a
baseline in preparation for distribution. The baselined product undergoes release certification before
being distributed and supported. Release certification ensures that all release criteria are satisfied, that
identified release artifacts are adequately reviewed, and that all planned testing is completed and
satisfactory.
Practices:
PR20. Plan and generate the release package.

This practice includes determination of the release criteria such as: the release contents,
dependencies on external products, targeted distribution date, required resources, and internal
activities for completion of the release. Release contents may include code, user guides, training
material, theory manuals, installation notes, and test cases that the customer can run to check
installation. Internal activities may include reviews, installation testing, and generation of release
notes. Release notes may include a running history of other releases associated with the project.

PR21. Certify that the software product (code and its related artifacts) is ready for release and
distribution.

Release certification ensures that all release criteria are satisfied. Certification may be a multi-step
process to ensure that the release has been sufficiently verified to be distributed. A final review
should verify that all required artifacts exist and are associated with the correct version number.

PR22. Distribute release to customers.
In distributing the release to customers the project team may consider whether any license
agreements need to be updated, whether the product falls under export control restriction, and
whether certain types of customers (for example, those providing funding) need special instructions
or support. The project team may also decide to notify appropriate customers that a previous version
of the product is being retired.

Artifacts:
AR17 Release specification (PR20)
AR18 Product release package (bill of materials, release notes, certification, software, etc.) (PR20, PR21,

PR22)
Example Inputs:
• Internal/external request for a release (PR20)
• Identified customers for whom release is intended (PR22)
• List of target platforms for the release (PR22)
• Information for release notes (PR20, PR22)
• Product artifacts that will be included in the release (PR20, PR22)
AR23 Test artifacts: [test cases, test results] (PR21)
AR24 Technical reviews (PR21)
Example Metrics/Measurements: AR4 Process and product metrics
� Percentage of releases completed by their planned release date vs. number of releases planned

(PR20)
� Time and effort required to certify a release on a particular platform (PR21)
� Number of issues, by severity, reported with each identified release (PR22)

34

4.3.5 Customer Support

SOFTWARE ENGINEERING
Customer Support

Overview Description:
The purpose of this area is to assist and train customers in the installation, operation, and ongoing use of
the product. Customer support also includes those activities required to manage feedback concerning
the product. Each project team defines and implements a customer support plan to address the needs
and expectations of appropriate customers, for example, those customers with organizational
commitments. The customer support plan may be a single shared agreement intended to address the
needs of multiple customers. Resources for implementing this plan should factor into project planning.
Practices:
PR23. Define and implement a customer support plan.

A customer support plan may specify the period of support, responsibilities, point of contact for
questions on any aspect of the product release, commitment to deliver documentation and training,
and other support deemed necessary. A support plan typically includes a feedback process for the
submittal, prioritization, and timely resolution of issues associated with the product. The feedback
process may utilize the issue tracking process defined in configuration management. The customer
support plan may also include information related to product installation, supported platforms,
consistent product interfaces, and frequency of product installations. Customers who intend to
provide funding for support activities are likely to be included in negotiations as to what will be
included in the plan.

PR24. Implement the training identified in the customer support plan.
During requirements gathering the project team typically determines the details of the product
training plan that includes requisite documentation. Training may be developed as a formal class or
self-study material. Topics covered by training may include installation, use, theory manuals,
tutorials, and tests. Ideally project teams maintain records (such as class, attendees, and dates) for
training they deliver.

PR25. Evaluate customer feedback to determine customer satisfaction.
The ultimate measure of quality is customer satisfaction. At the appropriate point in the product’s
lifecycle, the project team may decide to solicit customer feedback regarding the level of
satisfaction with the product and the support the team provides. This information is used to support
identification of systemic quality problems and opportunities for process improvement.

Artifacts:
AR16 Managed issues (PR23, PR24, PR25)
AR19 Customer support plan including training (PR23)
AR20 Customer training records (PR24)
AR21 Customer satisfaction evaluation (PR25)
Example Inputs:
AR6 Product expectations and requirements (PR23, PR24)
AR8 List of stakeholders and organizational commitments (PR23, PR24, PR25)
Example Metrics/Measurements: AR4 Process and product metrics
� Average time spent resolving customer support issues (PR23, PR24)
� Degree of customer satisfaction with requirements that have been implemented (demonstrates

effectiveness of the process for capturing expectations and requirements) (PR25)

35

4.4 Software Verification
Some ASC code teams have participated in the development of a verification and validation (V&V) plan
and perhaps have performed some of the activities outlined in this plan. Information from an existing
V&V plan can potentially be leveraged for the software verification practices. V&V plans include the test
planning related to a verification test suite and technical reviews. If a code team has a test plan but no
software verification plan, the test plan can be enhanced with planning information for technical reviews.

SOFTWARE VERIFICATION
Overview Description:
The purpose of software verification is to ensure (1) that specifications are adequate with respect to
intended use and (2) that specifications are accurately, correctly, and completely implemented. Software
verification also attempts to ensure product characteristics necessary for safe and proper use are
addressed. Software verification occurs throughout the entire product lifecycle.
Software verification activities are an integral part of software development, operation, and support
practices. In this context, the goal is to detect potential problems as early as possible. Software artifacts to
be verified typically include specifications, requirements, design, code, third party libraries, software
verification plan, test cases, product documentation, and training package. If these artifacts are changed,
retesting and reevaluation of the changes will need to occur.
In addition to software verification, both QC-1 and ISO 9000 refer to “validation” activities. Generally,
these standards define validation activities as helping to assure that “you built the right thing”. Validating
a complex software product (such as a modeling and simulation code) requires a broad set of tasks and
participation from a number of different communities: experimental, analysis, code development, and
customer. For some ASC program elements, this wide-ranging scope of activities is the responsibility of
the Verification and Validation (V&V) program element. One of the project teams’ contributions to
validation activities includes software verification. Validation activities referenced in QC-1 and ISO 9000
include (a) evaluating whether the negotiated requirements, when implemented, adequately support the
customer’s mission and (b) testing to the negotiated requirements.
Practices:
PR26. Develop and maintain a software verification plan.

This practice typically involves identifying the list of artifacts to be reviewed, a list of knowledgeable
reviewers, test and technical review approach, tools, associated verification test cases. Other
information, which may appear instead in a project plan, includes schedules for tests and technical
reviews, resources, and responsibilities. The software verification plan includes tests and reviews that
demonstrate that requirements are being met and acceptance criteria that are used in the review of test
results. Optimally the software verification plan addresses (1) the types of tests (see Appendix E); (2)
when test results are reviewed; (3) the technical reviews to be performed and their objectives; and (4)
the technical review schedule.

PR27. Conduct tests to demonstrate that acceptance criteria are met and to ensure that previously
tested capabilities continue to perform as expected.

Testing occurs throughout the product lifecycle. Ideally, results from performing tests found in the
software verification plans or in separate test cases may be reviewed with respect to each test’s
associated acceptance criteria. Test results form the basis for later reviews or concerns that may arise
regarding verification of the software product. See Appendix E for a discussion of test terms and test
categories.

PR28. Conduct independent technical reviews to evaluate adequacy with respect to requirements.
These reviews may also include evaluation of adequacy with respect to intended use and acceptance
criteria. Acceptance criteria could include comparison tests with analytic solutions or other pedigreed
codes, traceability analysis to determine support of the requirements for each critical artifact,

36

SOFTWARE VERIFICATION
interface analysis to check consistency and completeness of the user interface, data flow such as unit
conversion, and control flow between components represented by the artifact.
Independent technical reviews include some participants that are independent of the creation of the
item or activity being reviewed and knowledgeable in relevant subject areas.

Artifacts:
AR16 Managed issues [product quality results (for example, non-conformance), enhancements, defects,
questions, inquiries] (PR27, PR28)
AR22 Software verification plan (PR26)
AR23 Test artifacts [test cases, test results] (PR27)
AR24 Technical reviews (evidence that review occurred and review results) (PR28)
Example Inputs:
AR1 Strategic plan: [project’s mission, management, stakeholders] (PR26)
AR6 Product expectations and requirements (PR26, PR27, PR28)
AR7 Software requirements and attributes (PR26, PR27, PR28)
AR8 List of stakeholders and organizational commitments (PR26, PR27, PR28)
AR11 Design artifacts (PR27, PR28)
AR12 Implementation artifacts: [including assimilated other software] (PR27, PR28)
Example Metrics/Measurements: AR4 Process and product metrics
� Percentage of requirements tested vs. total number of requirements (PR27)
� Number of defects in the released product not caught by software verification activities prior to

the release (PR26, PR27, PR28)

37

4.5 Training
Training spans all three SQE areas outlined in the GP&G (see Figure 2) and addresses the importance of
the “human asset” in ASC software development.

TRAINING
Overview Description:
The goal of training is to enhance the skills and motivation of a staff that is already highly trained and
educated in the areas of scientific software development, algorithms, and/or computer science. This
practice addresses training needs of the project teams especially for, but not limited to, following the
project teams’ process implementation. The purpose of training is to develop the skills and knowledge of
individuals and teams so they can fulfill their process and technical roles and responsibilities. Project
teams need to ensure that the training needs of the project are satisfied in accordance with their project
plan. Customer training is addressed in Customer Support section, 4.3.5.
Implementing these two training practices typically includes preparing a list of required and desired
training to be taken, when the training is needed, the acceptable methods of receiving the training (for
example, mentoring, classroom setting, online course, etc.), when the training is actually taken, and
metrics for gauging the effectiveness of the training.
Practices:
PR29. Determine project team training needed to fulfill assigned roles and responsibilities.

Training needs may be determined by comparing the actual skills and knowledge of the team
members to the skills and knowledge necessary to complete their roles and responsibilities. Training
needs may also result from organizational training requirements.

PR30. Track training undertaken by project team.
Project team members undertake their planned training. The project team may maintain training
records indicating training that the project team members participated in, when the training occurred,
and the measurements and/or metrics associated with the training.

Artifacts:
AR25 Project team training needs (PR29)
AR26 Project team training records (PR30)
Example Inputs:
• Organization training requirements and opportunities (PR29)
AR3 Approved project processes (PR29)
AR9 Project plan: [task list, resource information, roles and responsibility assignments] (PR29)
Example Metrics/Measurements: AR4 Process and product metrics
� Percentage of identified training needs satisfied versus total training needs (PR30)
� Cost of training (time, materials, and travel) (PR30)
� Objective ratings to measure training effectiveness (PR29, PR30)

38

4.6 Summary of Practices and Artifacts
Table 6 provides a list of the practices with the artifacts generated by those practices.

Table 6. Practices and Generated Artifacts.

Practice Description Practice
Number

Artifact
Number

Artifact Description

Document and maintain a strategic plan. PR1
AR1 Strategic plan: [project’s mission, management, stakeholders]
Perform a risk based assessment, determine level of formality and applicable practices, and
obtain approvals.

PR2

AR2 Approved level of formality and applicable practices
Document lifecycle processes and their interdependences, and obtain approvals. PR3
AR3 Approved project processes
Define, collect, and monitor appropriate process metrics. PR4
AR4 Process and product metrics
Periodically evaluate quality problems and implement process improvements. PR5
AR5 Project process improvement actions
Identify stakeholders and other requirements sources.
AR6 Product expectations and requirements

PR6

AR8 List of stakeholders and organizational commitments
Gather and manage stakeholders’ expectations and requirements. PR7
AR7 Software requirements and attributes
Derive, negotiate, manage, and trace requirements.
AR6 Product expectations and requirements
AR7 Software requirements and attributes

PR8

AR8 List of stakeholders and organizational commitments
Identify and analyze risk events. PR9
AR9 Project plan: [risk events, risk plan]
Define, monitor, and implement the risk response. PR10
AR10 Project reviews and needed (corrective) actions: [risk responses]
Create and manage the project plan. PR11
AR9 Project plan: [risk events, risk plan, overview, milestones, task list, resource information,

roles and responsibility assignments, assumptions, constraints, dependencies, budget,
schedule, SCM plan, etc.]

Track project performance versus project plan and implement needed (corrective) actions. PR12
AR10 Project reviews and needed (corrective) actions: [risk responses, tracking and oversight

responses]
Communicate and review design. PR13
AR11 Design artifacts: [documentation and/or reviews]
Create required software and product documentation. PR14
AR12 Implementation artifacts: [software code, assimilated other software, design documents,

user documentation, developer’s guide, installation guide, theory manual, interface manual
etc.]

Identify and track third party software products and follow applicable agreements. PR15
AR13 Identification and acquisition records
Identify, accept ownership, and manage assimilation of other software products.
AR12 Implementation artifacts: [assimilated other software.]

PR16

AR13 Identification and acquisition records
Perform version control of identified software product artifacts. PR17
AR14 Version controlled records, including baselines and associated configurations

39

Practice Description Practice
Number

Artifact
Number

Artifact Description

Record and track issues associated with the software product. PR18
AR16 Managed issues: [product quality results (for example, non-conformance), enhancements,

defects, questions, inquiries]
Ensure backup and disaster recovery of software product artifacts. PR19
AR15 Backup records and recovery test results
Plan and generate the release package.
AR17 Release specification

PR20

AR18 Product release package (bill of materials, release notes, certification, software, etc.)
Certify that the software product (code and its related artifacts) is ready for release and
distribution.

PR21

AR18 Product release package (bill of materials, release notes, certification, software, etc.)
Distribute release to customers. PR22
AR18 Product release package (bill of materials, release notes, certification, software, etc.)
Define and implement a customer support plan.
AR16 Managed issues: [product quality results (for example, non-conformance), enhancements,

defects, questions, inquiries]

PR23

AR19 Customer support plan including training
Implement the training identified in the customer support plan.
AR16 Managed issues: [product quality results (for example, non-conformance), enhancements,

defects, questions, inquiries]

PR24

AR20 Customer training records
Evaluate customer feedback to determine customer satisfaction.
AR16 Managed issues: [product quality results (for example, non-conformance), enhancements,

defects, questions, inquiries]

PR25

AR21 Customer satisfaction evaluation
Develop and maintain software a verification plan. PR26
AR22 Software verification plan
Conduct tests to demonstrate that acceptance criteria are met and to ensure that previously
tested capabilities continue to perform as expected.
AR16 Managed issues: [product quality results (for example, non-conformance), enhancements,

defects, questions, inquiries]

PR27

AR23 Test artifacts: [test cases, test results]
Conduct independent technical reviews to evaluate adequacy with respect to requirements.
AR16 Managed issues: [product quality results (for example, non-conformance), enhancements,

defects, questions, inquiries]

PR28

AR24 Technical reviews (evidence that review occurred and review results)
Determine project team training needs to fulfill assigned roles and responsibilities. PR29
AR25 Project team training needs
Track training undertaken by project team. PR30
AR26 Project team training records.

40

5 Assessment Strategy for Conformance to ASC Practices
Assessments of project teams’ process implementation and of their compliance with the practices
identified in this Software Quality Plan will be performed with the following strategy:
• ASC program element leads sponsor assessments and decide on the overall goals and objectives for

each assessment.
• The assessment sponsor assembles an independent team to develop an appropriate approach and

assessment tool to achieve the stated assessment goals and objectives. The independent assessment
team must be technically qualified and knowledgeable according to education, training, and
experience.

• Project teams perform a self-assessment which establishes implementation priorities for the individual
teams.

• The assessment sponsor authorizes an independent team to perform assessments.
• Results of the self-assessment and independent assessment are published and presented to the

assessment sponsor.
• The assessment sponsor communicates best practices identified from the assessments to the project

teams.

For the purpose of this software quality plan, assessments fall into two categories: large-scale and small-
scale. Large-scale assessments include independent program-level assessments conducted across all
required elements and practices. Small-scale assessments evaluate a limited number of project teams
and/or practices. The type, frequency, and scheduling of assessments is determined by ASC management.
Assessment artifacts include the assessment procedure as well as an assessment report.

ASC management will direct project teams to periodically perform internal self-assessments to compare
their current practice implementations to management defined goals and associated criteria. This
approach will help the teams to determine those areas in which they are making good progress or,
alternatively, in which they may need to focus improvement efforts. In addition to identifying areas that
are appropriate for increased improvement efforts, the software project teams can observe how they are
improving over time by comparing previous assessments to current assessments.

Project teams involved in independent assessments will want to focus on ensuring that documented
processes for the various practices are accessible and being followed. The teams will also need to be able
to furnish project artifacts that demonstrate that they are following their defined processes. In addition,
team members involved in assessment interviews will be asked to explain how their project operates,
whether processes are in place, and how consistently they are following these processes.

A checklist that can be used as an assessment tool is included in Appendix D. This checklist is applicable
for both self and independent assessments practice implementation.

41

References
Required. The following are upper-tier documents that specify quality requirements for this site-specific
practices document:
1. Corporate Process Requirement No. CPR001.3.2, Corporate Quality Assurance Program, Sandia
National Laboratories, August 2003.
2. Corporate Process Requirement No. CPR001.3.6, Corporate Software Quality Assurance, Sandia
National Laboratories, December 2001.
3. Department of Energy, DOE/AL Quality Criteria (QC-1), Revision 9, February 5, 1998. Available at
http://prp.lanl.gov:8686/.
4. Hodges, A., G. Froelich, D. Peercy, M. Pilch, J. Meza, M. Peterson, J. LaGrange, L. Cox, K. Koch,
N. Storch, C. Nitta, and E. Dube, Department of Energy, ASCI Program Software Quality Engineering:
Goals, Principles, and Guidelines, DOE/DP/ASC-SQE-2000PFDRFT-VERS2, Albuquerque, NM,
February 2001.
Guidance. The following are documents that provide additional information that is useful in developing
and implementing Sandia ASC SQE policies and practices:
5. Berg, R. and A. Hodges, ASCI Simulation and Computer Science (S&CS) and Ongoing Computing
Software Quality Plan, Version 2, March 2003.
6. The Capability Maturity Model Guidelines for Improving the Software Process, Software
Engineering Institute, 1995.
7. CMMI-SE/SW/IPP/SS v1.1, Software Engineering Institute, March 2002.
8. Ellis, M., C. M. Williamson, J. Schofield, and L. Bonano, 2003 SNL ASCI Applications Software
Engineering Assessment Report, SAND2004-0075, Sandia National Laboratories, February 2004.
9. Hodges, A. L., G. K. Froehlich, M. Pilch, and D. E. Peercy, Risk Management Plan – Sandia
National Laboratories ASCI V&V Program, SAND2002-1048, April 2002.
10. IEEE Std.610.12-1990, IEEE Standard Glossary of Software Engineering Terminology, Standards
Coordinating Committee of the IEEE Computer Society, USA, December 2000.
11. ISO 9000:2000 Quality Management Systems – Fundamentals and Vocabulary and ISO 9001:2000
Quality Management Systems – Requirements, International Standards Organization, December 2000.
12. Pilch, M., T. Trucano, J. Moya, G. Froehlich, A. Hodges, and D. Peercy. Guidelines for Sandia ASCI
Verification and Validation Plans - Content and Format: Version 2.0, SAND2000-3101. Albuquerque:
Sandia National Laboratories, January 2001.
13. Program Management Institute (PMI) Standard: A Guide to the Project Management Book of
Knowledge (PMBOK Guide) 2000 Edition, Project Management Institute, Newtown Square,
Pennsylvania.
14. Software Information Life Cycle, Center 9500, http://www-irn.sandia.gov/silc, Sandia National
Laboratories, September 2003.
15. Zepper, J., K. Aragon, M. Ellis, D. Eaton, and K. Byle, Kathleen, ASCI Applications Software Quality
Engineering Practices, Version 2, SAND2003-0962, Sandia National Laboratories, April 2003.

http://www-irn.sandia.gov/silc
http://prp.lanl.gov:8686/

42

Appendix A. Glossary and Acronyms
Glossary
acceptance criteria The criteria that a system or component must satisfy in order to be accepted by a
user, customer, or other authorized entity.
artifact A documented process, deliverable or work product. A configuration-controlled artifact is
stored in a corporate repository (library) and changes to it are controlled via reported issues.
assessment An appraisal by a trained team of software professionals to determine the state of an
organization’s current software process, to determine the high-priority software process-related issues
facing that organization, and to obtain the organizational support for software process improvement.
baseline A set of specifications or artifacts that has been formally reviewed and agreed upon, that
thereafter serves as the basis for further development, and that can be changed only through change
control procedures.
benchmarking A quality tool used to periodically and continually measure and compare an
organization’s work processes with those in competing or similar organizations. The goal of
benchmarking is to increase the organization’s performance by adopting the best practices of industry
leaders.
best practices Those activities that have proven to be of high value, have improved quality, have
improved productivity, or have enhanced customer satisfaction. Typically, these practices are measured
activities or have metrics to show their value and are leveraged across an organization.
critical path method A network analysis technique used to predict project duration by analyzing which
sequence of activities (which path) has the least amount of scheduling flexibility.
customer A collective term that may include the end user of the proposed system, the funding agency,
the acceptor who will sign-off delivery, and the managers who will be responsible for overseeing the
implementation, operation, and maintenance of the system.
customer support The assistance, training, and documentation a project provides to ensure that the
customer is satisfied and able to use the product as intended. Typically, a support plan is drawn up to
specify what will, and what will not, be provided by the project team and for what period of time.
defect (1) A flaw in a system or system component that causes the system or component to fail to
perform its required function. (2) Non-fulfillment of a requirement related to an intended or specified use.
design of experiments An investigation carried out in a planned manner and which relies on a
statistical assessment of results to reach conclusions at a stated level of confidence. DOE is particularly
useful for investigating complex systems whose outcome may be influenced by a potentially large number
of factors.
error-proofing Also known as fool-proofing, mistake-proofing and Poka-Yoke (Japanese quality term)
An example of error-proofing for software development is a process checklist. The checklist prevents
errors from missing an activity or performing the activity in the wrong sequence.
gantt a graphic display of schedule-related information (sometimes called a bar chart).
interface analysis The evaluation of presentation and flow (control and data) between components
represented by the artifact.
issue A point of concern, a problem, or a comment that is raised in regard to a practice of a software
lifecycle area. The issue is a form of feedback and will usually be specific to an artifact suggesting
rework, improvement, or enhancement.
level of formality The degree of detail, form, and frequency to which a project defines and carries out
its process for implementing a practice.

43

lifecycle The period of time that begins when a software product is conceived and ends when the
software is no longer available for use. Typically a lifecycle includes concept, requirements, design,
implementation, test, installation, and operation and maintenance phases. These phases may overlap or be
performed iteratively.
lifecycle model An approach to the lifecycle that provides adequate detail of the order and phases. Some
examples include spiral, evolutionary, sequential, and iterative.
measure A unit of measurement (such as source lines of code or document pages of design).
measurement The dimension, capacity, quantity, or amount of something (for example, 300 source
lines of code or 7 document pages of design).
metric A quantitative measure of the degree to which a system, component, or process possesses a given
attribute.
mitigate Reduce the probability and/or impact of a risk to below an acceptable threshold.
policy An accepted principle, established by decision makers, to direct and influence the activities of
those to whom the policy pertains.
practice A set of activities identified for accomplishing some portion of the required areas identified in
the ASC Software Quality Plan.
process A set of steps performed for a given purpose (for example, implementation of a practice). A
well-documented process contains inputs, outputs, roles and responsibilities, sequences and dependencies,
reviews and approvals, and entry and exit criteria. A process should have many but not necessarily all
these attributes. It may be textual or graphical but should not be merely imaginary or virtual.
process metric This type of metric measures the characteristics of the overall development process, such
as the number of defects found throughout the process during different kinds of reviews.
product metric This type of metric is a measurement of an intermediate or final product of software
development and, therefore, addresses the output of a software development activity. Examples of such
metrics are a size metric for the number of requirements and a complexity metric for software.
production software This type of software is implemented in a production environment, characterized
as stable (meaning changes are recorded and analyzed), and fully supported by the project development
team.
program evaluation and review technique An event-oriented network analysis technique used to
estimate program duration when there is uncertainty in the individual activity duration estimates.
quality (1) Conformance to customer requirements and expectations. (2) The degree to which a system,
component, or process meets specified requirements. (3) The degree to which a system, component, or
process meets customer or user needs or expectations.
records management SNL has a formal records management program that can be accessed at:
http://www-irn.sandia.gov/recordsmgmt/rmm/rmmframe.html. SNL records are defined to “include any
recorded information or documentation (including books, papers, maps, photographs, microfilm, or
electronic media) created or received and used in the technical and administrative work. This website
gives information on determining what is, and what isn’t a ‘record’ as well as information on the
responsibilities of employees to protect and manage such records.” (Sandia Records Management)
regression test Selective retesting of a system or component to verify that modifications have not
caused unintended effects and that the system or component still complies with its specified requirements.
release A snapshot in time of a software product available for distribution. Typically includes software
as source or executable.
release plan A plan prepared and followed by the project team specifying what needs to be
accomplished for releasing the next version of a software product. The release plan typically specifies
what the release will contain; what the release depends on externally such as compilers, version of
required utility, etc.; when the release will be ready for distribution; what resources will be needed to

http://www-irn.sandia.gov/recordsmgmt/rmm/rmmframe.html

44

prepare the release; and other dependencies for completing the release (for example, installation testing,
user documentation, reviews, training, and release notes).
requirement A need or expectation that is stated, generally implied, or obligatory.
review A quality assurance activity that establishes confidence in codes and supports software
verification. Types of reviews are as follows:

• management - An evaluation performed to verify that commitments for the specified activities
have been satisfied.

• quality - An evaluation performed to verify compliance with process and artifact requirements.
• technical - An evaluation to determine if the content of the item submitted for review conforms

to the requirements.
reviewer An independent person qualified to perform a review.
risk A combination of the likelihood of an event’s occurrence and its impact.
risk mitigation Reduce the probability and/or impact of a risk to below an acceptable threshold and/or
increasing the positive consequence.
risk plan This document details all identified risks including description, cause, probability of
occurring, impact(s) on objectives, proposed responses, owners, and current status. The plan also
addresses procedures and techniques to enhance opportunities and to reduce threats to the projects’
objectives.
role A set of defined responsibilities that may be assumed by one or more individuals.
software engineering The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software.
software product Any software project deliverable given to the customer. One software product is
typically the code (executable and/or source).
software quality assurance (1) A set of activities designed to evaluate the process by which products
are developed. (2) Planned and systematic actions necessary to provide adequate confidence that the
software product conforms to established requirements.
software quality engineering The practices a software team follows to ensure that quality standards are
incorporated into its software product.
software verification (1) Ensures that requirements are accurately, correctly, and completely (with
respect to the delivery commitments) implemented throughout the entire product lifecycle, and that
requirements are adequate from the intended uses of the software. (2) The process of determining whether
or not the mathematical formulation is solved correctly, that is, whether the computer simulation correctly
represents the conceptual model and its solution.
stakeholder Individuals and organizations (internal and external) that are actively involved in a project
or whose interests could impact or may be affected as a result of project execution or project completion.
Customers, users, and project team members are stakeholders.
subject matter expert An individual who is responsible for providing guidance and information to the
software project team in areas or topics outside the scope of the team’s expertise.
supplier An organization that supplies materials, goods or services directly or indirectly for a customer.
system requirements The conditions or capabilities that must be met or possessed by a system or
system component to satisfy a condition or capability needed by a user to solve a problem.
test case Each test must have a specification that contains information to identify the test, test
environment, test procedure, and expected test results with acceptance criteria. An automated test will
typically capture this information in the script.

45

test plan A description of the technical and management approach to be followed for testing a system or
component. Typical contents identify the items to be tested, features to be tested, any risks requiring
mitigation, tasks to be performed, responsibilities, schedules, required resources for the testing activity,
and reference to test cases. The plan must identify the types of tests that will be conducted as well as any
additional tests that are needed to provide confidence that the software product does not contain any
defects and to demonstrate that requirements are met.
test results Output generated as a consequence of executing test cases. Examples of test results include
logs generated manually or by automated scripts, issues identified during test and evaluation activities,
test and evaluation summary report describing if/how activities deviated from the plan, summarizing
results, and providing recommendations. An important element of test results is that each test case maps
to its corresponding test output and that the date and time are recorded.
third party product A third party product is an application or library used or required by a SNL ASC
code application; however, ASC project teams do not normally maintain this particular software. Many of
these third party product sets are developed at Sandia while other sets are developed by other government
labs, commercial vendors, and university partners.
traceability (1) The degree to which a relationship can be established between two or more artifacts of
the product lifecycle, especially artifacts having a predecessor (successor or master) subordinate
relationship to each other. (2) Ability to trace history, application, or location of that which is under
consideration.
traceability analysis Evaluation to determine support of the requirements for each critical artifact.
training Activities that include specialized instruction and practice with the identified purpose of
making one proficient in a skill or discipline.
trigger Indicator that a risk has occurred or is about to occur.
unintended consequences A principle acknowledging that human actions have at least one unforeseen
outcome. This principle applies to policies, processes, work instructions, and metrics. For example,
software metrics reporting too closely on individual performance (such as lines of code per unit time for
each developer or number of errors in each developer's modules) frequently result in some developers
"tricking" the system to achieve satisfactory performance results. These tricks may create serious quality
problems and skew the results of the metrics.
user The person or persons who operate or interact directly with the product. The user(s) and the
customer(s) are often not the same person(s).
user support The assistance, training, and documentation a project provides to users of its software
products in ensuring that the user is satisfied and able to use the product as intended. Typically, a support
plan is drawn up to specify what will be, and what will not be, provided by the project team and for what
period of time.
validation (1) Demonstrates that the product, as provided, fulfills its intended use. Validation assures
“you built the right thing”. (2) The process of evaluating the mathematical formulation to ensure that it
adequately describes the problem of interest, that is, that the computer simulation adequately represents
the real world.
verification Addresses whether the work product properly reflects the specified requirements.
Verification assures “you built it right”.

46

Acronyms
AL Albuquerque Office (of DOE)
AQMC ASC Quality Management Council
ASCI Accelerated Strategic Computing Initiative
ASC Advanced Simulation and Computing
ASQE ASC Software Quality Engineering
CCB configuration change (or control) board
CM configuration management
CMM Capability Maturity Model
CMMI Capability Maturity Model Integration
CPM Critical Path Method
CPR Corporate Process Requirement
DMAIC Define, Measure, Analyze, Improve, Control
DOE Department of Energy
DP Defense Programs
LOF level of formality
GP&G ASCI Software Quality Engineering: Goals, Principles, and Guidelines
IDEAL Initiate, Diagnose, Establish, Act, Learn
ISO International Organization for Standardization
MS Microsoft
NNSA National Nuclear Security Agency
QC-1 DOE/AL Quality Criteria (QC-1)
PDCA Plan, Do, Check, Act
PERT Program Evaluation and Review Technique
PI principal investigator
QFD quality function deployment
R&D research and development
SNL Sandia National Laboratories
SCM software configuration management
SEPR Simulation Enabled Product Realization
SQA software quality assurance
SQE software quality engineering
SSP Stockpile Stewardship Program
SW software
UML Unified Modeling Language
V&V Verification and Validation
WBS work breakdown structure

47

Appendix B. Summary of Practices and Artifacts
The following two tables provide lists of the practices (Table 7) and artifacts (Table 8) without the
descriptive details given in the practice tables.

Table 7. Software Quality Plan Practices.

Practice
Number

Description of Practice

PR1 Document and maintain a strategic plan.
PR2 Perform a risk-based assessment, determine level of formality and applicable practices, and

obtain approvals.
PR3 Document lifecycle processes and their interdependences, and obtain approvals.
PR4 Define, collect, and monitor appropriate process metrics.
PR5 Periodically evaluate quality problems and implement process improvements.
PR6 Identify stakeholders and other requirements sources.
PR7 Gather and manage stakeholders’ expectations and requirements.
PR8 Derive, negotiate, manage, and trace requirements.
PR9 Identify and analyze risk events.

PR10 Define, monitor, and implement the risk response.
PR11 Create and manage the project plan.
PR12 Track project performance versus project plan and implement needed (corrective) actions.
PR13 Communicate and review design.
PR14 Create required software and product documentation.
PR15 Identify and track third party software products and follow applicable agreements.
PR16 Identify, accept ownership, and manage assimilation of other software products.
PR17 Perform version control of identified software product artifacts.
PR18 Record and track issues associated with the software product.
PR19 Ensure backup and disaster recovery of software product artifacts.
PR20 Plan and generate the release package.
PR21 Certify that the software product (code and its related artifacts) is ready for release and

distribution.
PR22 Distribute release to customers.
PR23 Define and implement a customer support plan.
PR24 Implement the training identified in the customer support plan.
PR25 Evaluate customer feedback to determine customer satisfaction.
PR26 Develop and maintain a software verification plan.
PR27 Conduct tests to demonstrate that acceptance criteria are met and to ensure that previously

tested capabilities continue to perform as expected.
PR28 Conduct independent technical reviews to evaluate adequacy with respect to requirements.
PR29 Determine project team training needs to fulfill assigned roles and responsibilities.
PR30 Track training undertaken by project team.

48

Table 8. Software Quality Plan Artifacts.

Artifact
Number Description of Artifact

AR1 Strategic plan: [project’s mission, management, stakeholders]
AR2 Approved level of formality and applicable practices
AR3 Approved project processes
AR4 Process and product metrics
AR5 Project process improvement actions
AR6 Product expectations and requirements
AR7 Software requirements and attributes
AR8 List of stakeholders and organizational commitments
AR9

Project plan: [risks events, risk plan, overview, milestones, task list, resource information,
roles and responsibility assignments, assumptions, constraints, dependencies, budget,
schedule, SCM plan, etc.]

AR10 Project reviews and needed (corrective) actions: [risk responses, tracking and oversight
responses]

AR11 Design artifacts: [documentation and/or reviews]
AR12 Implementation artifacts: [software code, assimilated other software, design documents, user

documentation, developer’s guide, installation guide, theory manual, interface manual, etc.]
AR13 Identification and acquisition records
AR14 Version controlled records, including baselines and associated configurations
AR15 Backup records and recovery test results
AR16 Managed issues: [product quality results (for example, non-conformances), enhancements,

defects, questions, inquiries]
AR17 Release specification
AR18 Product release package (bill of materials, release notes, certification, software, etc.)
AR19 Customer support plan including training
AR20 Customer training records
AR21 Customer satisfaction evaluation
AR22 Software verification plan
AR23 Test artifacts: [test cases, test results]
AR24 Technical reviews (evidence that review occurred and review results)
AR25 Project team training needs
AR26 Project team training records

49

Appendix C Mappings from Software Quality Plan to Original ASCI
Applications and S&CS Practices

Original ASCI Applications

and S&CS Practices
ASC Software Quality Engineering

Practices
Software Engineering

1. Requirements Phase

1a. Gather user requirements. PR7. Gather and manage stakeholders’ expectations and
requirements.

1b. Derive software requirements. PR8. Derive, negotiate, manage, and trace requirements.
1c. Document software requirements. PR7. Gather and manage stakeholders’ expectations and

requirements.
PR8. Derive, negotiate, manage, and trace requirements.

1d. Assess feasibility, if applicable, and
generate estimates for budget,
resources, etc.

PR8. Derive, negotiate, manage, and trace requirements.

1e. Establish acceptance criteria based on
requirements.

PR7. Gather and manage stakeholders’ expectations and
requirements.

1f. Determine necessary links to other
layers of requirements, code, and tests.

PR8. Derive, negotiate, manage, and trace requirements.

1g. Ensure requirements traceability to
other product artifacts throughout
subsequent software phases.

PR8. Derive, negotiate, manage, and trace requirements.

1h. Review and approve requirements
artifacts.

PR8. Derive, negotiate, manage, and trace requirements.
PR28. Conduct independent technical reviews to evaluate adequacy

with respect to requirements.
2. Development: Design Subphase
2a. Derive the design. PR13. Communicate and review design.
2b. Communicate the design to the team. PR13. Communicate and review design.
2c. Document the design. PR13. Communicate and review design.
2d. Evaluate impact to requirements. PR13. Communicate and review design.

PR8. Derive, negotiate, manage, and trace requirements.
2e. Plan for testing: initiate development

of test plan.
PR13. Communicate and review design.
PR26. Develop and maintain a software verification plan.

2f. Review and approve design artifacts. PR13. Communicate and review design
PR28. Conduct independent technical reviews to evaluate adequacy

with respect to requirements.
3. Development: Implementation Subphase
3a. Evaluate impact of implementation to

design and requirements.
PR13. Communicate and review design.
PR14. Create required software and product documentation.
PR28. Conduct independent technical reviews to evaluate adequacy

with respect to requirements.
3b. Translate design into code and other

software product artifacts.
PR13. Communicate and review design.
PR14. Create required software and documentation.

3c. Communicate issues with
requirements/design team and
developers.

PR13. Communicate and review design.
PR14. Create required software and documentation.

3d. Review and approve implementation
artifacts.

PR28. Conduct independent technical reviews to evaluate adequacy
with respect to requirements.

50

Original ASCI Applications
and S&CS Practices

ASC Software Quality Engineering
Practices

4. Development: Test Subphase
4a. Finalize test plan. PR26. Develop and maintain a software verification plan.

4b. Execute test cases found in test plan. PR27. Conduct tests to demonstrate that acceptance criteria are met
and to ensure that previously tested capabilities continue to
perform as expected.

4c. Review test case output using
acceptance criteria defined in test plan.

PR28. Conduct independent technical reviews to evaluate adequacy
with respect to requirements.

4d. Document test case results. PR27. Conduct tests to demonstrate that acceptance criteria are met
and to ensure that previously tested capabilities continue to
perform as expected.

4e. Retest updated software if acceptance
criteria are not satisfied.

PR27. Conduct tests to demonstrate that acceptance criteria are met
and to ensure that previously tested capabilities continue to
perform as expected.

4f. Review and approve Test Subphase
outputs.

PR28. Conduct independent technical reviews to evaluate adequacy
with respect to requirements.

5. Release Phase
5a. Receive and evaluate release request. PR20. Plan and generate the release package.
5b. Plan and develop release. PR20. Plan and generate the release package.
5c. Review and approve release. PR21. Certify that the software product (code and its related artifacts)

is ready for release and distribution.
PR28. Conduct independent technical reviews to evaluate adequacy

with respect to requirements.
5d. Create and distribute release. PR20. Plan and generate the release package.

PR21. Certify that the software product (code and its related artifacts)
is ready for release and distribution.

PR22. Distribute release to customers.
5e. Support release, as agreed with

customer.
PR23. Define and implement a customer support plan.
PR24. Implement the training identified in the customer support plan.
PR25. Evaluate customer feedback to determine customer

satisfaction.
Project Management

6. Project Planning
6a. Submit IP addressing project tasks

annually.
PR11. Create and manage the project plan.

7. Tracking and Oversight
7a. Review milestone status quarterly. PR12. Track project performance versus project plan and implement

needed (corrective) actions.
7b. Issue Baseline Change Proposals

(BCPs), if needed.
PR12. Track project performance versus project plan and implement

needed (corrective) actions.
7c. Prepare performance reports on a

quarterly basis.
PR12. Track project performance versus project plan and implement

needed (corrective) actions.
8. Risk Management
8a. Incorporate risk identification and risk

mitigation into project execution using
the BCP.

PR9. Identify and analyze risk events.
PR10. Define, monitor, and implement the risk response.

Support Elements
9. Requirements Management
9a. Conduct requirements tracing. PR8. Derive, negotiate, manage, and trace requirements.
9b. Determine requirements ownership

and status tracking.

PR8. Derive, negotiate, manage, and trace requirements.

51

Original ASCI Applications
and S&CS Practices

ASC Software Quality Engineering
Practices

10. Configuration Management
10a. Conduct issue tracking of software

product artifacts, including
requirements.

PR18. Record and track issues associated with the software product.

10b. Perform version control of software
product artifacts, including
requirements.

PR17. Perform version control of identified software product
artifacts.

10c. Perform release and distribution

management.
PR20. Plan and generate the release package.
PR21. Certify that the software product (code and its related artifacts)

is ready for release and distribution.
PR22. Distribute release to customers.

10d. Engage in ASCI records management.
11. Third Party Software
11a. Accept third party software and

libraries into the application code
domain.

PR15. Identify and track third party software products and follow
applicable agreements.

PR16. Identify, accept ownership, and manage assimilation of other
software products.

11b. Install, integrate, & control the
accepted third party software.

PR15. Identify and track third party software products and follow
applicable agreements.

PR16. Identify, accept ownership, and manage assimilation of other
software products.

12. Training
12a. Train appropriate project members in

use of project management and project
tracking and oversight processes.

PR29. Determine project team training needs to fulfill assigned roles
and responsibilities.

PR30. Track training undertaken by project team.
12b. Train staff on activities necessary for

producing software artifacts.
PR29. Determine project team training needs to fulfill assigned roles

and responsibilities.
PR30. Track training undertaken by project team.

12c. Train staff on use of software tools. PR29. Determine project team training needs to fulfill assigned roles
and responsibilities.

PR30. Track training undertaken by project team.
12d. Train staff on software processes and

their implementation.
PR29. Determine project team training needs to fulfill assigned roles

and responsibilities.
PR30. Track training undertaken by project team.

12e. Train staff on software verification
process and techniques.

PR29. Determine project team training needs to fulfill assigned roles
and responsibilities.

PR30. Track training undertaken by project team.

52

 Appendix D. Template for an Assessment Checklist
This appendix includes an assessment checklist based on the practices and suggested artifacts of this
document. Periodically, ASC management will review this checklist and modify it as necessary. Different
ASC program elements may choose to tailor the checklist to best suit the needs and goals of that program
element. One program element may decide to evaluate the overall effectiveness of each practice as a
single score. Another program element may determine that providing two scores, one for approach and
another for results, provides better assessment information and feedback. An assessment checklist
identifies practices and may indicate assessment goals; the checklist can be used by an independent
assessment team or by a project team for self-assessment. The assessment criteria used by an independent
team will be communicated to software projects scheduled for assessment prior to the start of the actual
assessment.

See section 5 for a discussion of the assessment strategy of this Software Quality Plan.

D.1 Instructions for Completing Assessment Checklist
The details of the activities that comprise each practice are not listed separately in the Assessment
Checklist that is in section D.2. Listing all of the required test types that should be included in the test
plan and then subsequently executed would result in a checklist that is unwieldy. The Project Team
Evaluation below provides a set of guidelines for assessment of practice implementation.

Definitions of the columns in the Assessment Checklist are provided below.

(1) Project Team Name/Assessment Date

This column includes the name of the ASC software project and the date of the assessment.

(2) Project Team Evaluation
This is the column the software project team fills in to determine where they are in terms of
performing or implementing all recommended practices. A code team will select a value between 0-5
or “NA” based on the criteria specified below. The assessment values discussed in this section are
suggestions only. In previous ASC program level assessments a scale of 1 to 3 has also been used.
At the beginning of an assessment period the assessment sponsor working with the independent
assessment team will establish the appropriate assessment values that will be consistent in
accomplishing the assessment goals and objectives.

5 Outstanding – the software project team has fully implemented this practice. This is the most
difficult value to achieve. This value indicates that the practice is at the maintenance stage.
Evidence exists that the practice is integrated into the project team’s development process.
Concurrence by the assessment team is needed for the practice to be officially recognized as
fully implemented. To be at the fully implemented level, a documented process for the practice
needs to exist, all team members are fully trained on the process, work products have been
produced and deemed by the assessment team to be reproducible, and practice plans and results
have been shared with all appropriate stakeholders. The project is ‘outstanding’ in its
implementation of this practice.

4 Complete – the software project team has implemented a final (not draft) process and work
products are in place supporting this practice. Most project team members have been trained in
the process implementation. Practice results have been shared with some stakeholders.
Everything is in place for this practice to become rated at a ‘5’ but there are still a few activities
that need to be addressed (for example, training, reproducing work products, or sharing results
with stakeholders). The project is ‘complete’ in this area but not yet ‘outstanding’.

53

3 Good – the software project team has partially implemented this practice. Some evidence exists
that the practice has started. Resources for the fulfillment of this practice have been identified,
but the implementation is not complete. For example, a draft of the process for conducting the
practice exists or a completed documented process exists with most of the team (but not all)
complying with the process. There is evidence of significant progress on rolling out an
implementation for the process. Evidence also exists of draft work products that contain
significant content. Additional resources most likely will be needed to raise this practice to
‘complete’ or ‘outstanding.’

2 Fair – the software project team has preliminary evidence for implementing this practice. There
may be a preliminary plan for how they will proceed with a process and its implementation and
preliminary work products may exist. Much work is needed to move toward a ‘complete’ or
‘outstanding’ rating on this practice.

1 Limited –the software project team has proposed an implementation of this practice. At this
level, it is typical that resources have not yet been identified and allocated for fulfillment of the
practice. Activities and resources for the practice are in the planning stages but some evidence
exists that the project is committed to implementing this practice.

0 Absent – the software project team has not yet addressed the implementation of this practice.
NA The software project team determines this practice is not applicable to its code development

environment. A value of NA must be accompanied by an explanation from the team describing
why the practice will not be followed.

Note: Specific guidelines for selecting assessment values will be provided by ASC management for each
entry in the Assessment Checklist. If the ASC management recommendation for a particular practice,
such as practice PR8: “Derive, negotiate, manage and trace requirements,” is five then the expectation is
that all activities addressed in the description of that practice will be carried out in order for a code team
to achieve a value of ‘5’ in its self-assessment.

(3) Assessment Team Evaluation
As needed, ASC management will appoint an independent assessment team to review the current
state of practices performed by each team. The independent assessment team will use the same scale
as the project team [see (2) above].

(4) Comments for Project Team or Assessment Team
This column is intended to record comments about a project team’s particular implementation of a
given practice or why that practice is not applicable. The column will also be used to record evidence
of implementation of that practice, especially to show ‘outstanding’, ‘complete’, or ‘good’
implementation. Either the software project team or the assessment team may enter information in
this column. The author of the comment should be clearly identifiable.

(5) Completed By
This line indicates the person (project team, assessment team) who completed the assessment
checklist. The person who signs this section should print their name, date the checklist, and add their
signature.

Software project teams should use a tool as directed by ASC management to determine how closely they
are adhering to the ASC Software Quality Plan. In addition to highlighting areas that are appropriate for
increased improvement efforts, the software project teams can observe how they are improving by
comparing the scores of various practices from one assessment period to the next.

54

D.2 Assessment Checklist for ASC Software Areas
(1)
Project Team Name:

Assessment Date:

(2)
Project Team
Evaluation

(3)
Assessment
Team
Evaluation

(4)
Comments for
Project Team or
Assessment Team

Practice
5 = Outstanding
4 = Complete
3 = Good
2 = Fair
1 = Limited
0 = Not addressed
NA – not applicable

5 = Outstanding
4 = Complete
3 = Good
2 = Fair
1 = Limited
0 = Not addressed
NA – not applicable

Use this area to explain why NA
is selected as a response to
columns (2) or (3) and to
demonstrate evidence for other
responses as needed.

Project Management (12)

1. Strategic Planning
PR1. Document and maintain a strategic plan.
2. Determination of Applicable Practices and Level of Formality
PR2. Perform a risk-based assessment,
determine level of formality and applicable
practices, and obtain approvals.
3. Process Implementation and Improvement
PR3. Document lifecycle processes and their
interdependencies, and obtain approvals.

PR4. Define, collect, and monitor appropriate
process metrics.
PR5. Periodically evaluate quality problems
and implement process improvements.

4. Requirements Engineering
PR6. Identify stakeholders and other
requirements sources.
PR7. Gather and manage stakeholders’
expectations and requirements.

PR8. Derive, negotiate, manage, and trace
requirements.

5. Risk Management
PR9. Identify and analyze risk events.
PR10. Define, monitor, and implement the risk
response.

6. Project Planning, Tracking, and Oversight
PR11. Create and manage the project plan.
PR12. Track project performance versus project
plan and implement needed (corrective)
actions.

Software Engineering (13)
7. Software Development
PR13. Communicate and review design.
PR14. Create required software and product
documentation.

8. Integration of Third Party or Other Software
PR15. Identify and track third party software
products and follow applicable agreements.

PR16. Identify, accept ownership, and manage
assimilation of other software products.

55

(1)
Project Team Name:

Assessment Date:

(2)
Project Team
Evaluation

(3)
Assessment
Team
Evaluation

(4)
Comments for
Project Team or
Assessment Team

9. Configuration Management
PR17. Perform version control of identified
software product artifacts.

PR18. Record and track issues associated with
the software product.

PR19. Ensure backup and disaster recovery of
software product artifacts.

10. Release and Distribution Management
PR20. Plan and generate the release.
PR21. Certify that the software product (code
and its related artifacts) is ready for release and
distribution.

PR22. Distribute release to customers.

11. Customer Support
PR23. Define and implement a customer
support plan.

PR24. Implement the training identified in the
customer support plan.

PR25. Evaluate customer feedback to determine
customer satisfaction.

Software Verification (3)
12. Software Verification
PR26. Develop and maintain a software
verification plan.

PR27. Conduct tests to demonstrate that
acceptance criteria are met and to ensure that
previously tested capabilities continue to
perform as expected.

PR28. Conduct independent technical reviews
to evaluate adequacy with respect to
requirements.

Training (2)
13. Training
PR29. Determine project team training needed
to fulfill assigned roles and responsibilities.

PR30. Track training undertaken by project
team.

Total Number of Areas 13
Total Number of Practices 30
(5) Completed By:
(print name and date)
(signature)

56

Appendix E. Test Categories

The following definitions for test case, test plan, and test results are included to provide context for the
project teams as they develop and maintain their software verification plan and conduct necessary testing
throughout the product lifecycle.
Test case Each test must have a specification that contains information to identify the test, test
environment, test procedure, and expected test results with acceptance criteria. An automated test will
typically capture this information in the script.
Test plan A description of the technical and management approach to be followed for testing a system
or component. Typical contents identify the items to be tested, features to be tested, any risks requiring
mitigation, tasks to be performed, responsibilities, schedules, required resources for the testing activity,
and reference to test cases. The plan must identify the types of tests that will be conducted, as well as any
additional tests that are needed to provide confidence that the software product does not contain any
defects and to demonstrate that requirements are met.
Test results Output generated as a consequence of executing test cases. Examples of test results include
logs generated manually or by automated scripts, issues identified during test and evaluation activities,
test and evaluation summary report describing if/how activities deviated from the plan, summarizing
results, and providing recommendations. An important element of test results is that each test case maps
to its corresponding test output and that the date and time are recorded.

The following kinds of tests should be tailored for appropriate coverage according to the level of
formality implied by the risk-based analysis. Test harnesses, scripting languages including languages such
as Expect, and automated test generation tools can help support the following kinds of tests.
(a) General testing covers tests that need to be conducted on all software products to meet specific
requirements: code coverage, memory testing, and static testing.

• Code statement coverage: Evidence must be provided demonstrating that the requisite percentage
of the software source statements related to essential requirements associated with the code’s
intended use has been executed through testing. The developer is key in determining which code
implements essential requirements. Applying an automated tool that uses a specified set of tests,
such as the regression tests, typically provides this evidence. An automated coverage analysis tool
is very useful in checking code coverage.

• Static Testing: Static testing includes the checking provided during compilation and other static
code analysis tools, such as lint and flint.

• Memory and Resource Leak Testing: This type of testing is a white-box testing methodology used
to determine that the program is properly using memory and not generating any other resource
leaks, such as file descriptors and scratch files. Memory testing is programming-language
dependent. Commercial memory and resource leak detection tools, such as Purify and Insure++,
support this type of testing.

(b) Unit tests are developed, maintained, and performed on code units with respect to their requirements,
specifications, and design during the development lifecycle. Typically conducted prior to integration
testing, unit testing is the process of testing the individual units or modules of a program before they are
integrated into the software product.
(c) Integration tests involve testing part or all of the system to evaluate the interactions among
components. For example, third party software capabilities that the software project relies on (or could
rely on) should be tested alongside the software components that use those capabilities.

57

(d) Regression tests are developed, maintained, and performed to check that code modifications have not
introduced unintended effects, the code works as expected for all computational platforms supported, and
that the code still meets its specified requirements.
(e) User acceptance tests are performed to determine that the software system to be delivered is adequate
for its intended use by the user community. This testing, if performed primarily by a code team rather
than customers, could also be termed user perspective testing.
(f) System software tests use a method or combination of methods to ensure that required functional
features satisfy specified requirements.
(g) Installation tests are required for released software on all required target platforms. This testing seeks
to confirm that the software installation on the target platform occurred correctly. Installation tests are
useful as installation routines are often the most heavily modified part of the product.

A subset of test cases previously developed can be used with additional tests designed specifically for the
process of installation. This type of testing typically occurs during the release activities. Typically,
installation tests are delivered with the software for the end user to execute and compare to expected
results. Installation tests must address:

• that the variety of options and combinations of options selected by the user were acceptable
• that the installation was performed on an approved hardware configuration
• that required interconnections to other programs were properly established.

58

Appendix F. Techniques and Tools

ASQE Area Techniques Tools
Process
Implementation

• PDCA (Plan, Do, Check, Act)
• IDEAL (Initiate, Diagnose, Establish, Act, Learn)
• DMAIC (Define, Measure, Analyze, Improve,

Control)
Lifecycle models:
• Iterative
• Spiral
• Sequential
Software development methodologies:
• Agile
• RUP (Rational Unified Process)
• Waterfall

• Rational Tool Suite

Process
Improvement

Metric-based techniques for process improvement
include:
• Collecting data
• Root cause analysis
• Statistical process control
• Design of experiments to improve robustness in

parameters, products, and processes
• PDCA (Plan, Do, Check, Act)
• IDEAL (Initiate, Diagnose, Establish, Act, Learn)
• DMAIC (Define, Measure, Analyze, Improve,

Control)
Non-metric techniques for process improvement
include:
• Error-proofing and preventive actions
• Improving process definitions and their associated

documentation
• Corrective actions
• Benchmarking
• Peer and management reviews
• Implementation of improvement suggestions
Metric-based techniques are generally more effective
than non-metric techniques in effecting process
improvement. However, the metric-based techniques
require an understanding of the appropriate statistical
analyses, process variation, and “unintended
consequences” of the metrics.

• Scatter diagrams
• Histograms
• Check sheets
• Pareto analysis
• Cause and effect diagrams
• Control charts

Requirements
Engineering

• Derivation techniques
Techniques to gather and analyze requirements
include:
• creating prototypes
• graphical models (context diagrams, use cases,

information models, state-transition diagrams)
• quality function deployment (QFD) that relates

product features and attributes to customer value.
• Requirements negotiations with users/stakeholder

• Requirements management
tools (for example,
DOORS and ReqPro, or
other less automated tools
like Excel and Word)

• Configuration control
board (CCB) for
reviewing, analyzing, and
determining the disposition
of proposed changes to
baselined requirements

59

ASQE Area Techniques Tools
Risk Management • Risk identification techniques (for example,

checklist, taxonomy, Delphi)
• Risk analysis techniques (for example, expert

judgment, simulation, decision management
approach, monitoring trees)

• Risk approach

• Risk management tool for
storing and tracking the
project risks (for example,
Risk Radar, Excel)

• Monitoring tool

Project Planning Project planning approach • Planning tools and
templates

• Task evaluation tools
• Work breakdown structure

(WBS)
• Gantt charts,
• PERT charts
• CPM charts

Tracking &
Oversight

• Performance based review approaches
• Negotiations with management and stakeholders

• Task management tools

Configuration
Management

• SCM plan specifying project standards, file naming
conventions, and SCM project responsibilities

• Version control tools (for
example, CVS, PVCS
VM, PVCS Dimensions,
ClearCase)

• Issue tracking tools (for
example, SourceForge,
PVCS Dimensions,
ClearQuest)

Release &
Distribution
Management

• Release and distribution approach or plan • Build tools

Customer Support • Training on topics such as negotiation strategies,
social styles, customer satisfaction, customer
service, etc.

• Customer support survey
• Service level agreement

Software
Verification

• Pair programming
• Peer reviews
• Prioritization of test and evaluation activities

• Coverage analysis tool
• Static code analysis tool
• Memory testing tool
• Test harness
• Automated test generation

tool
Training • Product tutorials

• Classroom training
• Web-based training

• Student evaluations of
training classes

• Training matrix
identifying roles,
responsibilities, and
necessary skills

Metrics • Goal/question/metric paradigm
• Cause and effect diagram

60

Appendix G. SNL Practices as an Implementation
of the GP&G SQE Guidelines

The following chart maps between the ASCI Software Quality Engineering: Goals, Principles and
Guidelines, a report developed collaboratively as high-level SQE guidelines for software developed in the
Tri-Laboratory ASCI Program, and the SNL site-specific practices described in this document.

GP&G SQE Guidelines SNL Practices
Software
Verification

Technical reviews
• Technical soundness
• Static analysis

PR26, PR28
PR26, PR28

Unit testing
• Traceable, repeatable

component tests
PR26, PR27, PR17, PR18

Regression testing
• Building the code
• Executing tests
• Feature-based test suite

for multiple platforms

PR17, PR18, PR19, PR20, PR21
PR27
PR26

Comparison techniques
• Analytic solutions
• Other codes’ results

PR26, PR27
PR26, PR27

User acceptance testing
• Applicability evaluation

• Usability evaluation
• Code confidence
• Results credibility

PR7, PR8, PR13, PR14, PR20, PR26, PR27, App. E,
Table 2, PR28, App. E
PR20, PR27, App. E
Goals of SQ Plan, PR20, PR27, App. E, App. F
Goals of SQ Plan, PR20, PR27, App. E, App. F

Training
• Verification methods

and techniques
PR29, PR30, Table 1

Software
Engineering

Lifecycle management
• Time-based work flow
• Requirements

 Design
Construction
Test
Support activities

PR3
PR6, PR7, PR8
PR13
PR14
PR23, PR24
PR8, PR15, PR16, PR17, PR18, PR19, PR22, PR23, PR24,
PR25

Configuration management
• Version management
• Issue tracking
• Release management

PR15, PR16, PR17
PR18
PR17, PR18, PR19

Measurements and metrics
• Software products
• Software processes

PR4, all practices suggest metrics
PR4, all practices suggest metrics

Reviews and assessments
• Management reviews
• Technical reviews

PR12, section 5, App. D
PR27, section 5, App. D

61

GP&G SQE Guidelines SNL Practices
Process improvement

• Engineering process
baseline

• Identified
improvements

• Improvement
implementation

PR3

PR5

PR5, PR18, PR21

Training
• Software practice

methods and techniques
PR29, PR30, Table 1

Project
Management

Risk management
• Risk assessment
• Risk control

PR9
PR10

Requirements management
• Gathering,

documenting, verifying,
managing change to
requirements

PR6, PR7, PR8

PR26, PR27, PR28
PR18

Project planning
• Statement of work
• Constraints and goals
• Implementation plan
• Resource assessment

PR11
PR11
PR11
PR11

Tracking and oversight
• Actual results vs.

planned results
• Corrective action

PR12

PR12
Process management

• Process documentation
and plans

• Technology
improvement

• Improvement leverage

Table 1, PR3

PR4, section 5, Table 1

PR4, section 5, Table 1

Training
• Project management

methods and techniques
PR29, PR30, Table 1

62

Distribution

External Distribution:
Department of Energy
1000 Independence Avenue SW
Washington, DC 20585
Attn: Jamileh Soudah, DP-51 (1)

Njema Frazier, DP-51 (1)
Dimitri Kusnezov, DP-51 (1)

Los Alamos National Laboratory
Mail Station 5000
P.O. Box 1663
Los Alamos, NM 87545
Attn: M. Peterson (1)

L. Cox (1)
K. Koch, MS F652 (1)
J. LaGrange, MS D445 (1)
James Peery (1)
Scott Doebling (1)
Jim Morel (1)

University of California
Lawrence Livermore National Laboratory
7000 East Avenue
P.O. Box 808
Livermore, CA 94550
Attn: E. Dube, MS L-095 (1)

Roger Logan, MS L-125 (1)
C. Nitta, MS L-096 (1)
N. Storch, MS L-303 (1)
Tom Adams (1)

SNL Distribution:

Copies Mail Stop Name, Organization Copies Mail Stop Name, Organization

2 MS0139 Ann Hodges, 9905 2 MS0376 Bob Kerr, 9226
 2 MS0376 Ted Blacker, 9226 2 MS0378 Richard Drake, 9231
 2 MS0382 Edward Boucheron, 9141 2 MS0382 H. Carter Edwards, 9143
 10 MS0660 Molly Ellis, 9515 10 MS0660 Christi Forsythe, 9515
 2 MS0660 Patricia Hackney, 9515 2 MS0661 Joseph Schofield, 9516
 2 MS0817 Sue Kelly, 9224 2 MS0822 Constantine Pavlakos, 9326
 2 MS0822 Judy Sturtevant, 9326 2 MS1111 Robert Heaphy, 9215
 10 MS1138 C. Michael Williamson, 6225

Housekeeping Distribution:
 1 MS9018 Central Technical Files, 8945-1
 2 MS0899 Technical Library, 9616

	Version 1.0
	Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan Part 1: ASC Software Quality Engineering Practices Version 1.0

