
SANDIA REPORT 
P- SAND2004-6577 

Ur~lirr~ited Release 1'' ' Printed December 2004 
w 

S R ~ / D ~ + - -  

REFERENCE COPY 

FDTD Simulation Tools for UWB 
Antenna Analysis 

Robert W. Brocato 

Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico 87185 and Livermore, California 94550 

Sandia is a multiprogram laboratory operated by Sandia Corporation, A Lockheed 
Martin Company, for the United States Department of Energy's National Nuclear 
Security Administration under Contract DE-AC04-94AL85000. 

Approved for public release; further dissemination unlimited. 

Sandia National Laboratories 

LIBRARY DOCUMENT 
DO MOT DESTROY 

R E T U R N  TO 
LIBRARY VAULT 

TOTAL PAGES: 53 
SCANNED copy 



Issued by Sandia National Laboratories, operated for the United States Department of Energy by 
Sandia Corporation. 

- -t 
NOTICE: This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of 
their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any 
agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not 
necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors or 
subcontractors. 

Printed in the United States of America. This report has been reproduced directly from the best available copy. 

Available to DOE and DOE contractors from 
U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN 3783 1 

Telephone: (865) 576-8401 
Facsimile: (865) 576-5728 
E-mail: reports(dadonis.osti.gov 
Online ordering: h t t p : l / w ~ . d o e . ~ o v / b s i d ~ e  

Available to the public from 
U.S. Department of Commerce 
National Technical Information Service 
5285 Port Royal Rd. 
Springfield, VA 22 16 1 

Telephone: (800) 553-6847 
Facsimile: (703) 605-6900 
E-Mail: orders@,ntis. fedworld.gov 
Online ordering: http:l/wwcv.ntis.goviorderin.htm 



(rtrl Sandia National laboratories 

SAND2004-6577 
Unlimited Release 

Printed December 2004 

FDTD Simulation Tools for UWB Antenna Analysis 

Robert W. Brocato 
Sandia National Laboratories 
Opt0 and RF Microsystems 

P.O. Box 5800 
Albuquerque, NM 87185 

Abstract: 
This paper describes the development of a set of software tools useful for 
analyzing ultra-wideband (UWB) antennas and structures. These tools are used to 
perform finite difference time domain (FDTD) simulation of a conical antenna 
with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed 
using spherical coordinate-based FDTD equations that are derived from first 
principles. The simulation results for CW excitation are compared to simulation 
and measured results from published sources; the results for UWB excitation are 
new. 
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Introduction 
In support of ongoing communication work in UWB at Sandia National Laboratories, efforts at 
building UWB antennas have been undertaken in the recent past with only a modicum of 
success. This was done because of a pressing need for an adequate UWB antenna, and because it 
is impossible to buy a high performance UWB antenna, as of this writing. The primary purpose 
of this work is to provide a thorough understanding of one high performance UWB antenna to 
aid in Sandia’s ongoing communication work. 

It was recently pointed out by Andrews that “there are almost no companies selling commercial 
UWB antennas” [ 11. He also mentions that “a very important but frequently overlooked concept 
about UWB antennas is that the commonly accepted principle of antenna transmit-receive 
reciprocity does not exactly hold true for their time domain performance.” As a result, the 
proper transmission and reception of UWB signals is difficult. To confront half of this problem, 
the conical antenna is recommended by NIST for transmission of UWB signals [2]. The 
apparent difficulties of transmitting and receiving UWB signals pose a simulation problem that is 
perhaps best solved by a time domain technique. Simulation results using the FDTD method for 
the conical antenna were found for CW excitation [3]. Simulation plots have not been published 
for the case of FCC-compatible UWB pulse excitation, though a large body of literature exists 
for this antenna. 

The second motivation for this work is to develop general-purpose software tools for analyzing 
antennas in the UWB operating regime. For the conical antenna, these tools require the 
development of propagation equations for solving problems with spherical symmetry in FDTD. 
A number of papers have been written on the problem of FDTD in spherical coordinates [4] [ 5 ] .  
The most comprehensive work on this was done by Holland [6]. However, in spite of a 
reasonable basis of work establishing the capabilities of FDTD in spherical coordinates, complex 
spherically symmetric propagation problems continue to be conducted in FDTD using 
rectangular coordinates. Hertel and Smith recently reported on the FDTD analysis of a complex 
conical spiral antenna using rectangular coordinates [7]. As a result, the antenna geometry was 
discretized with a jagged appearance. The antenna design lends itself to working in spherical 
coordinates, but the authors chose to work in rectangular coordinates. So, the second objective 
of this work is to develop a complete set of software tools for the spherical FDTD, perfectly 
matched layer (PML), and wave generation equations. This has been done by deriving these 
equations from first principles wherever possible, and by testing these equations and comparing 
the simulation results with published results. 

This work will describe the geometry of the conical antenna problem, will cover the derivation of 
the necessary 3-D and 2-D FDTD and PML equations and the UWB wave generation equations, 
and will test these equations using the conical antenna geometry. The conical antenna FDTD 
results for CW excitation will be compared to reported simulation results and related closed form 
solution results. The FDTD results for UWB pulse excitation will be compared to reported 
measurement results. 
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Conical Antenna Geometry and Simulation Parameters 
The conical antenna geometry is shown in figure 1. It consists of a conductor that extends from 
the origin radially out at an angle Bo for a distance of Ranfenna. The angle Bo and the length of the 
antenna affect both the antenna radiation pattern and the input impedance of the antenna. The 
top of the antenna consists of a conductor that follows the sweep of the 0 axis at a constant 
distance, R,&,, from the origin. The antenna sits on top of a perfectly conducting ground plane 
that extends 360' in all directions for a distance of Rmw Just before the maximum radial 
distance, R,,,, is reached, the problem space is terminated in a PML section of thickness Npml. 

\ 
t Rmax Perfectly conducting p u n d  plane 

Figure 1: Conical antenna geometry 

The FCC mandated band for UWB transmission is 3.1-10.6 GHz [8]. This means that the 
maximum frequency of operation of a UWB antenna must be 10.6 GHz. For choice of the 
minimum time and spatial steps and to enable convergence of the FDTD algorithm, 10.6 GHz is 
considered the frequency of operation. The minimum wavelength, L,,, is therefore given by 
L,, = c/fm,, = c/l0.6GHz = 28mm. The minimum radial step is taken to be about one tenth of 
this minimum wavelength, 6r = l,&lO = 3 mm, and 68 = 1' was also chosen. 

The nominal or center frequency of a UWB pulse is about 6.5 GHz; the nominal wavelength is 
then Lm = c/f,,, = c/6..5GHz E 45mm=156r. The antenna dimensions are taken from the 
nominal frequency. The antenna length for most calculations is taken to be about or about 
106r = 45 mm. The simulation space, defined radially by Rmax, is taken to be R,,,=lOL,= 4.5 
cm. Both antenna length and semi-angle, Bo, are varied in a series of simulations to enable 
analysis of input impedance for varying conditions. 
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The problem can be reduced to a two dimensional simulation and can be further cut in half 
(figure2). The reduction from three to two dimensions can be accomplished, since the antenna 
and its solution are symmetric in Q. The cutting in half of the two dimensional problem can be 
done by splitting the solution space along the z-axis. The solution space is terminated by a 
perfectly conducting ground plane on the bottom and by an absorbing PML layer starting at Rma, 

- Npml and extending to Rma,, The PML layer absorbs the outward traveling waves and provides 
a means of stopping them with a minimal amount of reflection. 

\ 

magnetic 
boundary 

wall 

Zoom view: antenna base 
coaxial feed dimensions 

Rantenna = 45mm=156r 

conducting ground plane 

coaxial input Figure 2: Conical Antenna Simulation Space 

A coaxial input signal line feeds the base of the antenna. The output of the coaxial line and the 
base of the antenna are taken to be the origin or the spherical solution space. The UWB signal is 
input to the antenna as a voltage across the coaxial line from the inner to the outer conductor. As 
will be elaborated on in another section, the coaxial input signal produces a spherical wavefront 
that propagates up the antenna and radiates out into space. The dimensions of the coaxial feed 
line are shown in an insert in figure 2. The inner (signal) conductor has a diameter ‘a’ and the 
outer (ground) conductor is at a distance ‘b’ from the inner conductor edge. These dimensions 
are close to values obtained from a standard SMA-type connector and were chosen so that a = 6r 
and b = 26r. This gives an initiating wave front represented by 90 points from the 60 steps. 
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Derivation of Spherical FDTD Equations 
To derive the field equations for E and H, one must start with two of Maxwell’s equations and 
the medium dependent equations as follows: 

1) V x E = -6B/6t - Jm 

2) V x H = 6D/6t + J, 

3) B = p H  

4) D = E E  

5 )  J , = o E  

Combining these, one obtains two vector versions of Maxwell’s equations: 

7) 
V x E = - o  * -  . H - p . -  SH 

st 
& V x H  =O.E+&.- 
st 

These two vector equations can be expanded using the spherical V operator: 

9) 

with r, 8, and @ being the spherical unit vectors. These are applied using the following forms: 

and 

r e 
- ( r e  a sin 6) -(sin a 6) 
ar ae 

r e 
-(r a . sin e) -(sin a 6) 
ar ae 
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These two cross products each produce a vector equation which is another way of writing 
equations 10 and 1 1 : 

12) -p 6H/6t = o*H + V x E or, expanding.. . 

13) -1.1 6H/6t = l/(r sine) ((&/SO (sine E,) - 6Ee/&)) r + (&E,/&$ - sine 6/6r (r E,)) 8 
+ (sine 6/6r (r EO) - 6/68 (sine E,)) @ ) + o*H 

14) E 6E/6t = -o E + V x E or, expanding.. . 

15) E 6E/6t = l/(r sine) ((6/6e (sine H,) - 6H&+) r + (6Hr/6$ - sine 6/6r (r H,)) 8 
+ (sine 6/6r (r He) - 6/68 (sine Hr)) @ ) - (r E 

The vector equations (1 3) and (1 5) produce six scalar Maxwell's equations from equating the r, 
8, and $ vector terms each into a separate scalar equation: 

16) 6HJ6t = 1/p (6Ee/(r sine 6$) - 1/ (sine) 6/(r 60) (sine E,)) + (c~*/p) Hr 

17) 6He/6t = l /p  (l/r 6/6r (r E,) - 6Er/(r sine 6$) + (o*/p) He 

18) 6Hd6t = Up (l/(sine) 6/(r 60) (sine E,) - l/r 6/6r (r Eo)) + (o*/p) H, 

19) 6EJ6t = 1 / ~  (l/(sine )6/(r 60) (sine H,) - 6Hd(r sine 6$)) - (o / E) E, 

20) 6E&t = 1 / ~  (6Hr/(r sine 6$) - l/r 6/6r (r Ho)) - (o / E) E8 

p. 

21) 6Ed6t = 1 / ~  (l/r 6/6r (r He) - l/(sine )6/(r 60) (sine H,)) - (o / E) E, 

These six scalar equations (16)-(21) must be converted into six FDTD equations to enable 
iterative time-stepping. The FDTD equations are found by referring to the unit cell diagram 
(fig.3) and using the following spherical, central finite difference equations: 

F" (i + % , j , k ) -  F" (i - %, j , k )  

dr 
dF " 23) - (i, j ,  k )  = 
dr 

+ O(dr2 ) . . . . for radial derivatives 
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. 

(r, 8, I)) = (i*r, j*8, k*@) 

, . .. for azimuthal derivatives 

(i+lj+l,Wl) 

3-D FDTD Lattice Unit Cell in Spherical Coordinates 4 

Figure 3 

General 3-D Spherical PDTD Equations 
Using the finite difference equations in the six scalar Maxwell's equations and referring to the 
unit cell diagram gives the following six finite difference equations in spherical coordinates: 

26) H, "+I12 (i, j+%, k+%) = [ 1 + 6t o*(i, j+%, k+%) /p(i, j+%, k+%)] H:-ln (i, j+%, k+%) 
+ 6t/p(i,j+%, k+%) * [{Ee"(i, j+%, k+l) - Ee"(i, j+%, k)}/(iSr &$sin((j+%)i%)) 
- {sin((j+l)i%)/sin(j68)E( (i,j+l, k+%) - E( (i, j, k+%)}/ (i6r &e)]. 
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27) (i+%, j, k+%) = [ 1 + 6t o*(i+%, j,  k+%) /p(i+%, j,  k+%)] He"-'/2 (i+%, j,  k+%) 
+ 6t/p(i+%, j,  k+%) * [ {(i+l) Eg"(i+l, j, k+%) - i Eg"(i, j ,  k+%)}/ i6r 
- {E," (i+%, j,  k+l) - E," (i+%, j,  k)}/((i+%)6r 6@in((j+%)68))]. 

28) 
+ 6t/p(i+%, j+%, k) * [ {sin((j+1)6O)/sin(j6O)E," (i+%, j+l,  k) - E," (i+%, j,  k)}/((i+%)&r 66) 

H,"+"2(i+%, j+%, k) = [ 1 + 6t o*(i+%, j+%, k) /p(i+%, j+%, k)] H,"-1/2(i+%, j+%, k) 

- {(i+l) Ee"(i+l, j+%, k) - i Ee"(i,j+%, k)}/ i6r]. 

29) E,"+' (i+%, j,  k) = [ 1 - 6t o(i+%, j, k) /&(i+%, j,  k)] E," (i+%, j, k) + 6t/&(i+%, j,  k) * 
[ {sin((j+%)6O>/sin((j-%)68) Hg"+'l2 (i+%, j+%, k) - Hg"+lR (i+%, j-%, k)}/((i+%)&r 60) 
- {He"+'" (i+%, j,  k+%) - (i+%, j,  k-%))/((i+%)&r 6$ sin(j68))I . 

30) Ee"+'(i, j+%, k) = [ 1 - 6t o(i, j+%, k) k(i, j+%, k)] Ee"(i, j+%, k) + 6t/&(i, j+%, k) * 
[ {H,"+ll2 (i, j+%, k+%) - H,"+112 (i, j+%, k-%) }/(i6r 6$sin((j+%)6O)) 

- {(i+%) H, n+1/2 (i+%, j+%, k) - (24)  H,"+'"(i-%, j+%, k)}/ (i-%)6r]. 

3 1) Eg"+'(i, j ,  k+%) = [ 1 - 6t o(i, j ,  k+%) k(i, j ,  k+%)] Eg"(i, j ,  k+%) + 6t/&(i, j ,  k+%) * 
[ {(i+%) 

- (sin((j+%)sO)/sin((j-%)6O) H,"+'12 (i, j+%, k+%) - H,""" (i, j-$4, k+%) }/  (i6r SO)]. 

n+1/2 (i+%, j, k+%) - (i-%) He (i-%, j,  k+%) }/  (i-%)6r 

f 
Equations (26)-(3 1) are in the traditional Yee form, using half steps for all time and spatial steps. 
In order to both use these equations in a simulation and compare the results to published 
equations, they need to be simplified and re-arranged. First, the equations can be simplified with 

a manner similar to that given in [9]: 
. the use of some replacement coefficients. The following, simplifying coefficients are applied in 

32) 1-- 3 3) st 0 st 
2 - E  
0 . st 1+- 
2 . E  

c, = E . si- 
0 . st 

l+ -  
2 . E  

c, = 

34) 
I 

D, = 2.P 
0* -a  
2.P 

l+- 

D, = P . S  
o* l+- 
2.P 

Applying the coefficients in (32)-(35) and converting the spatial half steps to whole steps for 
matrix indexing gives the following 3-D spherical FDTD equations. Half time steps and spatial 
steps that are not used for matrix indexing are kept since these can be implemented in the 
simulation. 

36) H,"+1/2 (i, j ,  k) = D, H:-'" (i, j ,  k) + Db [ {Ee"(i, j+l, k) - Een(i, j ,  k)}/(i6@sin((j+%)68)) 
- {sin((j+l)6O)/sin(j6O)E9" (i, j+l ,  k) - Eg" (i, j, k)}/ (iSO)]. 
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n+1/2 37) He (i, j ,  k) = Da Hen-112 (i, j ,  k) + Db [ {((i+ )/i) Et( i+l ,  j ,  k) - E;(i, j ,  k) 
- {E: (i, j ,  k+l) - E: (i, j ,  k)}/((i+%) 6@sin((j+%)68))]. 

38) Hc+'"(i, j ,  k) = Da H;-Ii2(i, j, k) + Db [ {sin(('j+l)68)/sin(j68)E," (i, j+l, k) 
- E," (i, j ,  k)}/((i+%) 60) - {(i+l)/i Ee"(i+l, j ,  k) - Ee"(i, j ,  k)}]. 

39) E,"+'(i, j ,  k) = Ca E," (i, j ,  k) 
+ c b  [{sin((i+%)se)/sin((i-%)se) H(+'" (i, j ,  k) - H;+'/~ (i, j-1, k)}/((i+%) se) 
- {Hen+''2 (i, j ,  k) - (i, j, k-l)}/((i+%) 6@ sin(j68))] . 

40) Ee"+'(i, j ,  k) = Ca Ee"(i, j ,  k) + Cb [ {H,"+'" (i, j ,  k) - H:+1/2 (i, j ,  k-1) }/(i 6@sin((j+%)68)) 
n+1/2 - {(i+%)/(i-%) H, (i, j, k) - H,"+In(i-l, j ,  k)}]. 

n+1/2 41) Et+'(i, j, k) = Ca E,"(i, j, k) + c b  [ {((i+%)/(i-%)) He (i, j, k) - Hen+112 (i-1, j, k) } 
- {sin((i+%)se)/sin((j-%)se) H:f"2 (i, j ,  k) - H:+112 (i, j-1, k) } /  (i Se)]. 

Equations (36)-(41) are the fill 3-D spherical FDTD equations and are very similar to the 6 
spherical FDTD equations given by Holland [6]. There are slight differences between the way 
Holland implements time and spatial stepping. He drops the half spatial steps throughout his 
equations. The equations implemented in (36)-(41) convert the half steps to whole steps only as 
necessitated for matrix indexing. The additional accuracy lost by Holland's conversion of these 
terms is slight but may be noticeable in features that are small relative to the spatial steps. 
Experimentation with these equations demonstrated that there are situations near boundaries and 
the origin where these small inaccuracies can be noticeable. Also, equations (36)-(41) differ in 
that the sin((i+%)se)/sin((-%)68) terms in the E$ and H, field equations are kept but do not 
appear in equations (6) or (9) of [6]. Experimentation with the FDTD simulations revealed that 
these terms provide only a small variation to the field values. In the simulation of the conical 
antenna, H, was found to change by less than 2% with the addition of the sin((j+%)60)/sin((j- 
%)SO) term. 

FDTD Equations for a Conical Antenna 
The conical antenna is rotationally symmetric, so it can be reduced to a two dimensional 
problem. Using the rotational symmetry, the S/S@ terms are zero, and the only field components 
that exist are E,, Ee, and H,. The six scalar Maxwell's equations then reduce to the following 
three simplified equations: 

- o . E r + - . - .  1 s 
st E sin8 re68 

43) 
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In (42)-(44), as in the 3-D versions, the magnetic and electric conductivities are kept to enable 
computation of a PML layer at the periphery of the problem space. These three scalar equations 
produce three FDTD equations in spherical coordinates. 

f 

. 

-2- 
-- 

2Rmax 

Conical Antenna in 3D Conical Antenna in 2D 
Figure 4: Conical Antenna Coordinates 

Applying the central difference equations (22)-(25) to the 2-D spherical Maxwell's equations in 
(42)-(44) gives the following equations, using the traditional half time step notations in all 
locations. Here the coordinates for 0, p, o*, and E are the same as for the field value on the left 
hand side of the equation: 

. E: (i + X, j + 1)- E: (i + A, j )  

((i + X>84 
- (F). E; (i + 1,j + X)+ E; (i' j + x) 

sin((j + 1). 80) i sin( j . se) 

15 



46) 

47) 

Applying the simplifying coefficients in (32)-(35)  to equations 45-47 and eliminating the half 
spatial steps in the matrix indexing gives the following, final 2-D FDTD equations: 

48) H ; + " ~  (i, j )  = D, . H ; - I ' ~  (i, j )  

+ D , .  

49) 

E;+' (i, j )  = C, . E: ( i ,  j ) +  C ,  . 

In (48)-(50) the coordinates for 0, p, o*, and E are the same as the coordinates of the field value ? 

on the left side of the equations. These are the equations used in the FDTD simulation of the 
conical antenna. They are almost identical to the 2-D FDTD equations used by Liu and Grimes 
[ 3 ] .  The equations in [ 3 ]  have at least one typographical error and appear to use values for I and 
J that start are incremented by 1. This is a standard Matlab requirement for matrix indexing, and 

. 
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it appears that the equations shown in [3] are intended to use 1 as the origin. The equations 
shown in (48)-(50) use 0 as the origin, and the Matlab implementation of these equations must be 
incremented by 1 for all I and J. 

Another small difference with the FDTD equations in [3] is the absence of the 
sin((i+’/2)68)/sin((i-’/2)68) term in the equation for H,. This produces a only small difference to 
the simulated field values. Its absence from the equations in [3] leads me to believe that its 
presence in (48) may be an error. I convinced myself that it belongs in the equation only after 
going through the derivation for the equation three times. 

Driving Signal 
The base of the antenna is driven by a voltage signal through a coaxial line. The coaxial line has 
an inner conductor diameter “a” and an outer conductor diameter “b”. The voltage on the 
coaxial line is a solution to the wave equation in cylindrical coordinates: 

= O  
I a av  1 a2v 
;dr(rdr)+id8’ 

Note that the 8 units of this equation are different from the 8 units of the spherical coordinates of 
the antenna. This equation is subject to the boundary conditions V(a, 8) = Vo and V(b, e) = 0. In 
actuality, VO will vary with time, but the time variation can be introduced once the static solution 
is found. Since the coaxial line is axially symmetric, the solution is independent of 8. The wave 
equation in cylindrical coordinates simplifies to: 

--aY i a  ( r  g) = 0 

This has the general solution: 

Applying the boundary conditions gives the final solution for the coaxial driving voltage: 

The electric field of the incoming wave is the gradient of this potential: 

5 5 )  E=-VV 

Applying the spherical gradient operator gives: 
T I  

56)  

With the E field being independent of 8. This is the electric field across the input to the base of 
the cone. Here the radial component of electric field from this TEM wave transforms from the 
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cylindrical coordinate system of the coaxial line into the Ee component driving the base of the 
antenna in the spherical coordinate system in which the antenna is to be simulated. This change 
is made by taking r = b sin0 in the source equation. Then the driving electric field at the base of 
the antenna is: 

5 7) 

In accordance with the example set by Liu and Grimes [3], to reduce nonphysical reflections, the 
voltage seen by the antenna must take into consideration any impedance mismatch between the 
input line and the antenna. This voltage seen by the antenna at its base is then given by: 

5 8 )  vin = y, (1 ) -  R,y . I jn  ( t )  

Here, V,(t) is the time varying input voltage from the voltage source, R, is the impedance of the 
voltage source (which is assumed to be matched to the coaxial line), and Iin(t) is the input current 
at the base of the antenna produced by the input voltage. The input current is given by Ramo, 
Whinnery, and Van Duzer [IO] as: 

The electric driving field, EO, resulting from the input voltage, Vin(t), is found by replacing the 
constant voltage, VO, from the static solution (57) with the time varying voltage, Vin(t). The 
driving electric field at the base of the antenna is then: 

This can be converted into an FDTD equation to drive the base of the symmetrically reduced 
structure. 

This field is a small, spherical source extending from the inner conductor of the coaxial line to 
the outer, grounded conductor, which forms part of the ground plane. Then, as the voltage, V,(t), 
steps forward in time it drives the base of the antenna with this spherical electric field. The 
antenna radiates the resulting wave in accordance with the FDTD equations given in (48)-(50). 

The input impedance of the antenna is given by the ratio of Vin(t) to Iin(t). The input voltage is 
found from the driving field given by (61) by using the integral equation version of (55) across 
the base of the antenna: 

62) V,,,= jb*E,t3B 
"/: 

00 
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. 
The current, Iin(t), is found by averaging the current from (59) across the input to the antenna at 
its base. The input impedance is then given by: 

63) 

This input impedance is calculated for each value of Ranten,,, and 80 during the simulation and is 
compared to theoretical and measured values in a later section. 

Perfectly Matched Layer (PML) Spherical Equations 
The artificially imposed boundary at the edge of the simulation space needs to terminate in an 
absorbing layer to prevent spurious reflections from interfering with the outgoing wave. Because 
the problem is in spherical coordinates, an absorbing boundary layer is spherically symmetric. 
That is, the PML layer only needs to vary with the radius, r. In order to form a PML, the 
following steps must be taken [ 1 11 [ 121: 
1) 
2) 
3) 
difference time advance [ 1 31. 
4) 

Resolve H, into the HQr and H,e components in the coupled Maxwell equations. 
Create FDTD equations from the revised Maxwell equations. 
Modify the C,, cb, Da, and Db (equations 32-35) time constants to include exponential 

Calculate conductivity values for the PML layers using the matching condition. 

Performing the first step involves splitting the magnetic field into one component due to r and 
one due to 8. Starting with the Maxwell equations given in (42)-(44), and using a PML with 
electric and magnetic conductivities for r and 8 respectively given by (9, Or*, 00, GO* ): 

These four Maxwell's equations can be converted into four FDTD equations using (22)-(25) in 
accordance with the second step given above. The results are as follows: 
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69) 

st 
sr * E 

71) Ei+I(i ,  j + x) = ( 1 - “‘& 6 t ) E ;  (i, j + x) + - 

1 r H i : ” 2 ( i - x ,  j+x )+  H i i ” 2 ( i - ) / : , j + x )  

These four equations can be simplified using the following definitions where x is replaced by ‘r’ 
or ‘e’, as appropriate: 

72) 73) 6t 
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. 74) 75) a 

These are similar to (32)-(35), except that the conductivities have been split into their respective 
r and 8 components. Using these simplifying coefficients, the PML iteration equations become: 

76) Hi;' ' * (i + x , j + x) = Doe . Hi;'' (i + x , j + x) + Db0 

77) 

L 

1 . [ - (TI. E; (i + 1, j + x)+ E; (i, j + x) 

L 

79) E;+' (i, j + X) = C,. E;  (i, j + x)+ Cbr 

. . .with H, = H,e + H,, in (78) and (79). Next, a step recommended in [ 131 is attempted. This 
involves converting to exponential time stepping in the PML region. This is done to 
accommodate the rapid decrease in wave amplitude in the PML region. Equations 71-74 still 
hold in the PML region, but new constants must be calculated that take the rapid time stepping 
into consideration. The new constants that arise from this approach are as follows: 
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In summary, equations (76)-(79) are used to compute the field components in the PML region 
with coefficients given by either equations (72)-(75) or (80)-(83). It was found that coefficients 
(72)-(75) gave good PML performance, whereas use of the exponential coefficients in (80)-(83) 
caused excessive reflections from the input edge of the PML region. 

Perfectly Matched Layer (PML) Parameters: 
In order to implement the PML iteration equations calculated in the previous section, it is 
necessary to calculate the conductivity profiles for each layer. In each layer, from free space to 
the last PML layer, the impedance matching condition given by Berenger must be kept [ 1 11: 

In this two dimensional problem, only or and or* are really needed, as the outgoing spherical 
wave is expected to be normally incident on the outer layer. The outer layer forms a boundary in 
r with 8 being represented from 0 to 90'. However, for completeness, the q and <TO* terms can 
be kept, since they contribute little to additional computational overhead in the PML region. 

The parameters that need to be calculated to compute the PML layer are the number of cells in 
the PML layer, N, the free space conductivities, 00 and o:, the final conductivities, ON and ON*, 

and the profile of conductivities for each layer, om and om*. The desired reflection for a 
normally incident wave is taken to be R(0). Berenger gives the reflection factor for a wave at 
arbitrary angle of incidence, 8, as [ 121: 

8 5 )  R(B) = R(0)CoSe 

The conductivity profile in the PML region can be linear, parabolic, or geometric. All three 
methods were experimented with in this work, although results from all the different cases can 
not be presented for lack of space. For a linear conductivity profile, n =1,  for a parabolic 
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Conductivity type 

maanetic 
electric 

conductivity profile, n =2, and for a geometric profile, g=2-4, are used. 
conductivity profile of thickness 6, the reflection factor R(0) is given by: 

For a desired 

layer 0 layer 1 layer 2 layer 10 layer 19 layer 20 
3.20E-05 0.0008 0.0069 0.0763 0.2756 0.3054 

4.52 109 434 10851 39171 43403 

Adapting the results of the manipulation of equation (86) from [ 121 into spherical coordinates, so 
that 6x is replaced by 6r, the free space conductivity for the three different cases is given by 

Linear or parabolic geometric 

E, . c . In(g). ln(R(0)) 0 =-  E, . c . ln(R(0)) 0 = -  
O 2"+2 . a r .  Nn+l 0 2.i+(gN -I) 

87) 

Using equation (87) to calculate the electrical conductivity of free space, the magnetic 
conductivity of free space can be calculated from equation (84). The final layer conductivity is 
calculated from 

Linear or parabolic geometric 

88) ON = 0, . (n + 1). 2"+l . N "  

The conductivity value for each layer, i, of the PML section of total thickness, 6, for i from 0 to 
N is then given by 

Linear or parabolic geometric 

89) Oi = O N  . ( ; ) n  

Table 1 : Conductivities for a 20 layer parabolic PML 

The correct profile is calculated automatically in the program for any desired reflection factor, 
number of layers, and for either a linear, parabolic, or geometric conductivity profile. Much 
lower reflection factors than 0.01 were typically used for parabolic or geometric profiles, as the 
lower reflection factor leads to a much higher final conductivity but only slightly higher free 
space conductivity. Thinner PML layers or linear layers with high reflection factors require 
higher free space conductivities to achieve the desired reflection factor. High free space 
conductivity leads to undesirable wave attenuation in the propagation region. To avoid this, 
PML regions with fairly large numbers of layers were used and with either parabolic or 
geometric conductivity profiles. 
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Some layer conductivities for a geometric conductivity profile with 20 layers and the same 
reflection factor are shown in table 2: 

Conductivity type 
electric 
magnetic 

layer 0 layer 1 layer 2 layer 10 layer 19 layer 20 
1.85E-12 1.10E-11 4.40E-11 2.90E-06 0.76 3.05 
2.63E-07 1.57E-06 6.30E-06 0.414 10851 434030 

Note the much lower free space and higher final layer conductivities for the geometric profile. 
The results from the PML simulation testing were very good. Either a parabolic or a geometric 
profile gave adequate performance to enable antenna evaluation. The performance of the PML 
to a narrowband CW signal was found to be better than to the wideband UWB signal. It is 
believed that this is due to a discretization effect that arises from the stepping of the layer 
conductivities. The results from both CW and Gaussian pulse excitation are shown in a separate 
section of the appendix entitled, FDTD Simulation Results: PML Effectiveness. 

Convergence Criteria 
There are three general convergence criteria that the FDTD algorithm must satisfy, as described 
in [ 141. The first is that the boundary of the computational space must be sufficiently far from 
the surface of a scatterer in accordance with the requirements of the particular radiation boundary 
condition used. In the case of the PML boundary, fairly close terminations are tolerable, so the 
 IO^,,, distance used for this problem is probably much more than is needed. The second 
criterion is that the cell sides must not be longer than 0. lkmin. As was described in the section on 
antenna geometry, the choice for 6r satisfies this criterion. The third criterion is that the time 
step must not exceed a certain minimum determined by the cell dimensions. The coordinate 
invariant stability condition for the time step in two dimensions is given by [ 141: 

90) 
cell - area 

cell - diagonal - length 
cat 5 min 

In the spherical coordinates used for this problem, the minimum cell dimensions occur at the 
spatial step closest to the origin. Since the coaxial line feeds a spherical wave at the r = 26r 
position (the origin is at the base of the antenna and is not part of the iteration), the minimum cell 
dimensions occur between r = 26r and r = 36r. For these cells, the minimum time step criterion 
is the most critical. Using (90) for these minimum cells one obtains: 

91) 

Using the already chosen 
additional check, the value 
given by: 

values for 6r and 68, one obtains, 6t(max) = 0.35 psec. As an 
for the minimum time step for the farthest cells in the simulation is 

92) 
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For the farthest cells where r =1506r, Gr(max) = 9.3 psec. The minimum time step for the 
smallest cell will be sufficient for all other cells, also. 

Results 
Closed Form Simulations 
A closed form solution exists for an infinite biconical antenna and is given in [lo]. This closed 
form solution is for steady state, rather than transient, voltage excitations, and it is for an infinite, 
rather than a finite, antenna. Nevertheless, the closed form solution can provide a benchmark 
against which to compare the FDTD results, for steady state excitation. The three closed form 
field components in free space are given as [lo]: 

93) 

94) 

95) 

E,. = 0. 

The equations for EO and Hg appear with two different propagating wave terms. The first term 
represents a wave that is traveling radially outward with the velocity of light, and the second 
term represents a wave that is traveling radially inward with the same velocity. There is no field 
component in the radial direction, as this is the direction of propagation of the wave. The 
antenna input impedance for an infinite cone antenna over a ground plane with semi-angle 8, is 
given as [ 11 [ 101 

A MATLAB simulation entitled, IdeaZCone.m, was run to display the real portion of the outward 
traveling wave component for both Ee and Hg. The code for the simulation is included in the 
software appendix. The parameters of the simulation such as 6r and 68 are the same as are used 
in the FDTD simulations. The antenna cone angle was chosen as 30'. The simulation results 
were converted from spherical to Cartesian coordinates and are plotted in figures 4 and 5 from 
two different angles. The printed plots appear somewhat choppy due to discretization that is not 
present in the images when seen on a computer monitor. The image is a 3-D projection of a 2-D 
cross section of the Ee field. Two different angular views are shown for clarity. The closed form 
Hg field component differs from the Eo field only in magnitude and is not shown. 
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Figure 5: E-field for infmite cone antenna, closed form solution. 
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Figure 6: 2-D view of E-field for infmite cone antenna, closed form solution 
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FDTD Simulation Results, CW Excitation 
The FDTD simulation was written in MATLAB and is called FDTD1.m. This simulation uses 
the equations and parameters generated in the previous sections. It is written as a MATLAB 
function that is callable fiom the command line with a number of time steps as an input 
parameter. To compare results with the closed form simulations, an FDTD simulation with a 
steady state voltage source was used for the results shown in figures 7 and 8. 

The closed form results in figures 5 and 6 compare well both qualitatively and quantitatively to 
the FDTD results in figures 7 and 8. The FDTD results terminate about lLOm before the outer 
edge of the simulation space due to the rapid attenuation of the PML layer used here. The scales 
in the two sets of figures are slightly different, but it can be seen that in both sets of figures the 
amplitude changes fiom about 0.2v/m about from the base of the antenna to about O.OSv/m 
about SL,,,,, fiom the base. Both sets of images exhibit some apparent variation in 0 that is a 
result of the conversion to Cartesian coordinates from spherical coordinates for plotting. These 
variations exist as visual artifacts in the images, but are not present in the spherical data. 

The FDTD simulation was performed with an 8.2L0,,, tall antenna with a 30' degree semi-angle. 
Overall, the CW-FDTD simulation results compare very well to the theoretical results for an 
infinite antenna. 

. 

F.. 8.- 

Figure 7: Ee-field for long cone antenna, FDTD solution. 
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Figure 8: Ee-field for long cone antenna, side view, FDTD solution. 
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Figure 9: Comparison of FDTD far field pattern (left) with published data (right) 

Figure 9 shows a comparison of the far field radiation pattern from the FDTD simulation with 
CW excitation (left side) against published far field data for a comparable antenna (right side) 
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[3]. The antenna was l h  tall with a 30" semi-angle over a ground plane that covered the entire 
simulation space. The simulation was run for 8000 steps with 0.2 psecktep. The comparison 
was generated from the EO field at a distance of 37 cm (8.2h) from the origin. This distance is 
shortly before the PML region begins to attenuate the outward traveling wave. The Ee field 
simulation data was collected as output from the FDTD1.m MATLAB routine. The polar plot 
comparing the published data to the simulated data was generated using the MATLAB routine 
Pp1ot.m. The simulated and measured data compare fairly well with the simulation, faithfidly 
reproducing the field everywhere with only slightly lower levels in the 30-60' region. 

Simulation Results: UWB Pulse Excitation 
The MATLAB simulation FDTD1.m can be run with a UWB pulse selected as the voltage drive 
signal V,(t) in equations (60) and (61). The UWB pulse is modeled as a Gaussian-shaped 
sinusoid of peak amplitude 0.7V0. It is described by 

97) 

where nstart determines the zero-phase point of the bipolar pulse, and LJ,, determines the l/e 
time constant of the pulse. The simulation results of a short MATLAB program Vsrc.m to 
simulate this pulse and a cosine variant of it are shown in figure 10. The cosine version is 
described by 

98) 
r /  \Zl 

Equation (97) describes a unipolar Gaussian-shaped UWB pulse and (98) describes a bipolar 
UWB pulse. Both the sine and cosine versions of the UWB pulses described by (97) and (98) 
were used as excitation sources for the antenna in figure 1. 

"I 0 .. 

Figure 10: Sine and cosine driven UWB pulses with fc=6.5GHz. 
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Figure 11: 3-D view of 2-D Ee Field from UWB pulse propagating out from the conical antenna 

The sine version of the UWB pulse was used to drive the antenna in figure 11. The Ee field 
component after 2.0 nsec (4000 time steps) is shown. The FDTD simulation shows detailed 
structure of the wavefront as it advances radially out from the antenna, although some of the 
finest variations in this image are artifacts arising from the conversion from spherical to 
Cartesian coordinates for plotting. The spiky appearance of the wave along the tops of the crests 
is due to the conversion artifacts. The distortion of the unipolar UWB input voltage pulse into a 
bipolar Ee field pulse compares well with results fkom [ 171. The ability to reproduce this kind of 
wave distortion using FDTD analysis is a valuable benefit of this analysis for difficult UWB 
design problems. In addition, some ringing from the impedance mismatch between the 74C2 
antenna and the 50C2 coaxial input line is visible in this image and in the images in the appendix. 

A separate section of time-lapsed images in included in the appendix providing detailed images 
of the propagation of a Gaussian-shaped pulse from the conical antenna. These plots give an 
effective visual review of the propagation of the wave, its far-field characteristics, and its final 
absorption in the PML region. The MATLAB function Film.m was created to generate a time- 
stepped movie of the UWB pulse as it propagates from the base of the antenna until it is 
absorbed in the PML layer. 

Impedance Simulation Results 
The FDTD simulation was also used to compute antenna input impedance data for variations in 

FDTD simulation using equations (59) and (62)-(63). The simulation-generated results are 
shown in table 3 in the fourth column, as compared with measured results in the fifth column, 
theoretical results for an infinite antenna in the sixth column, and calculated results using varying 
antenna parameters in the seventh column. 

t 

* 

I 

antenna semi-angle, Bo, and height, a. The impedance was computed during the CW-excitation i 

” 
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Table 3 : Antenna Impedance Simulation Results 

Measured impedance data is available from [3] which refers to [ 151 as the original source of the 
measurements. The measured data all exists for an antenna semi-angle of 30" and for varying 
antenna heights. The tallest antenna for which measurement data is available is only about 
1LOm. The simulated impedances correlate with the measured results very well, and only 
diverge significantly for very short antennas. This is probably due to discretization-induced 
errors, as the antenna dimensions approach the dimensions of the unit cell. 

The theoretical impedance values included in the table are for an infinite, conical antenna [ 101 
and [l]. The theoretical model is based on an infinite cone antenna over an infinite ground 
plane, and the impedance is calculated using equation (96). The comparable simulation data was 
obtained using an 8.2hnOm tall antenna with varying antenna angles. The antenna height of 
8.2LOm is long relative to a wavelength but is not infinite. The simulated impedances do 
correlate very well with the corresponding theoretical values, albeit for an infinite antenna. 

The calculated impedance values were obtained using a MathCAD worksheet, ConeAnZmcd, 
included in the appendix. The methodology and equations used in this worksheet are described 
in [16]. The formulae used to calculate the impedances give results that agree fairly well with 
both the measured and the FDTD simulated values. The greatest discrepancies between the 
simulated and the calculated values occur for very short antennas. Again, it may be possible to 
obtain better simulation accuracy using a smaller cell size for the smaller antennas. For angles of 
60' or more, the simulated impedances were found to be unpredictable and increasingly less 
reliable. This is probably due to phase differences between the simulated currents and voltages. 
Large variations in impedance for small changes in sample time were found at these large angles. 
Simulation results were most reliable for antenna heights of I/knOm or more and for antenna 
angles of 45" or less. 
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Three-dimensional plots of two-dimensional FDTD simulation results 

These plots are of FDTD simulation results for a 15mm tall conical antenna with a semi-angle of c 
30" in a spherical field with an outer radius of 15Omm. The excitation waveform is a Gaussian- 
shaped sinusoid centered around 6.5GHz. These plots are of the Ee field, converted back from 
the spherical simulation space into Cartesian coordinates for plotting. The coordinate conversion 
process and plotting process can introduce some small-scale visual artifacts; otherwise, the data 
is faithhlly reproduced. 

6 

1) Plot of simulation 
results after 1000 
time-steps (200 psec). 
The sine version of 
the Gaussian pulse 
used for excitation is 
starting to travel out 
from the base of the 
antenna. 

2) Plot of simulation 
results after 2000 
time-steps (400 psec). 
The conical cross- 
section of the antenna 
is clearly visible, 
surrounded by the 
wave excitation. 

32 



. 
t 

3) Plot of simulation results after 
4000 time-steps (800 psec). The 
wave is traveling away from the 
antenna and st&ing to assume 
the far-field pattern shape. 

4) Simulation results after 6000 
time-steps (1.2 nsec). The wave 
is still traveling spherically 
outwar4 as expected, with an 
amplitude distribution that has 
assumed the far-field pattern. 
The main Gaussian pulse is 
followed by some small ringing 
arising from the coaxial input 
line-antenna impedance 
mismatch. 

5 )  Simulation results after 9000 
time-steps (1.8 nsec). The 
Gaussian pulse has been entirely 
absorbed by the PML region. 
The small remaining waves are 
the residual ringing and are not 
reflected from the PML . These 
waves are also absorbed by the 
PML region within another 
0.2nsec, and the simulation space 
is left with no visible waves. 
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FDTD Simulation Results: PML Effectiveness 

To assess the effectiveness of the PML region, a series of snapshots of the simulation space for 
both CW and Gaussian pulse excitation are presented. These images demonstrate that the PML 
technique, as implemented, is adequately effective for absorbing both the narrowband CW signal 
and the UWB signal. The PML used here is a 20-layer thick region with parabolic conductivity 
profile; it is less effective against the wideband signal than the CW signal. 

CW Excitation 

1) FDTD simulation 
with CW excitation 
for 7000 time-steps 
(1.4nsec). The wave 
has reached the PML 
and is about to be 
absorbed. The PML 
used here was a 20- 
layer parabolic 
stepped conductivity 
region. 

2) FDTD simulation 
with CW excitation 
after the excitation 
source has been 
turned off, 12000 
time-steps (2.4nsec). 
The tail end of the 
wave is about to be 
absorbed in the PML 
The residual, small 
waves trailing the 
main waves are due to 
antenna/ input coaxial 
line mismatch 
induced ringing. 

. . ,. ..~... ........ .. .,... !... ......., .........I ,.......,...., , 

.ill- 

...................... ..,..,,..,.... 
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3) FDTD simulation with CW 
excitation after the excitation 
source has been turned off, and 
the wave has been absorbed by 
the PML region (16000 time- 
steps, 3.2nsec). A faint wave at 
the 6.5GH-z frequency is still 
visible and is likely due to a 
small reflection from the PML 
region. 

UWB Excitation 

1) FDTD simulation with UWB 
Gaussian shaped sinusoidal pulse 
excitation. This image is after 
4000 time-steps, as the wave is 
traveling outward and well 
before it has hit the PML region. 
Note the faint impression of the 
antenna in the center of the wave. 

2) FDTD simulation with UWB 
excitation after 9000 time-steps 
(1.8nsec). The wave has struck 
and been mostly absorbed by the 
20 layer thick PML region. The 
high frequency ringing is due to 
the coaxial input line mismatch, 
and the lower frequency signal is 
the UWB signal that has been 
reflected from the PML. 
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Conclusion 
Complete sets of spherical FDTD simulation equations were developed from first principles to 

used to simulate a conical antenna for CW excitation, Gaussian pulse excitation, and input 
impedance. The simulation results were found to compare well to other published data, both 
measured and simulated. 

govern electromagnetic wave generation, propagation, and absorption. These equations were t 
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Appendix 

Matlab Function: FDTD1.m (1 1/23/04) 

% Two dimensiontal, spherical FDTD Simulation of a conical UWB antenna. 
% This simulation uses 2-D versions of the 3-D spherical Maxwell’s 
% equations. The antenna radiation pattern is stepped forward in time, 
% and the electric and magnetic field components are calculated for the 
% propagation of the wave into space. Excitation waves can either be a CW 
% sine wave or a Gaussian-shaped pulse. 
% 
% R.W. Brocato 
% 
hnction [Et] = FDTD 1 (tmax) 

uo = 4*pi* 1 e-7; 
eo = 1 e-9/(36*pi); 
Z = 120*pi; 
c = 3e+8; 
% Define the antenna dimensions. It is 15dr (1 lambda-nom) long with an 
% apex angle of 30 degrees. Add one for Matlab matrix referencing. 
ant - length = 15; 
ant-angle = 3 1 ; 
% Define boundary edges. Rmax occurs at lO(1ambda-nominal) where lambda 
% nominal is the wavelength for a 6.5GHz wave. The expected bandwidth is 
YO 3.1-10.6 GHz, with 3.1 GHz being lambdamax and 10.6 GHz being lambda-min. 
% This range is defined by the FCC mask for UWB transmission, Theta 
YO extends from 0 to 90 degrees. Here, dr = 0.003 m (lambda-midlo), and 
% dtheta = 1 degree. Using dt = 0.2 psec will satisfy Courant’s limit for 
% all frequencies. 
dr = 0.003; 
dth = 1 .O*pi/l80; % cell angle in radians 
dt = 0.2e-12; 
Rmax = 15 1 ; % solution space radius 

b = 0.006; 

% Set up constants for the PML region: Npml = # of layers, RO = desired 
YO reflection coefficient at zero angle, sigma-space = conductance of free 

* % Initialize standard free space constants 

L 

% cell radius 

% time step 

* THmax = 91; % solution space angle 
YO coaxial input line outer radius 

* a = 0.003; YO coaxial input line inner radius 
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% space (0 layer), sigmaM-space = magnetic conductance of free space, L=l 
% for linear conductivity profile, L=2 for parabolic conductivity profile, 
% for a geometric conductivity, 3-4 lines must be commented and 
'YO uncommented. All equations used are from Berenger's IEEE Trans. on Ant. 
% and Prop., Jan. 1996 paper. 
RO = le-14; % select desired reflection 
Npml = 20; % select number of layers to use 
L = 2 ;  'YO select conductivity profile 
g = 2 ;  YO select geometric factor 

'YO calculate free space conductivity for a linear or parabolic profile 
sigma space = - eo*c* log(R0)/(2"( L+2)*dr *NpmlA( L+ 1 )); 

% calculate free space conductivity for a geometric profile 
% sigma-zero = - eo*c* log( g) * log(R0)/(2 *dr*( g"(Npm1)- 1)); 
% sigma-space = sigma-zero*(sqrt(g) - l)/log(g); 
sigmaM-space = uo*sigma-space/eo; 

s igmaPM L(Npm1) = sigma-spac e * (L+ 1 ) * 2 "( L+ 1 ) * Npml" L ; 

YO sigmaPML(Npm1) = sigmazero* (g- 1 )*(g"Npml)/( sqrt(g)* log( g)); 
sigmaMPML(Npm1) = uo* sigmaPML(Npml)/eo; 
for I = l:(Npml-1) 

% sigmaPML(1) = sigmaPML(Npml)*g"(I-Npml); % for geometric profile 

end 
% Initialize the PML region H sub-components 
for I = 1:Npml 

% impedance matching condition 
YO calculate final conductivity for a linear or parabolic profile 

% calculate final conductivity for a geometric profile 

sigmaPML(1) = sigmaPML(Npml)*(I/Npml)AL; 

sigmaMPML(1) = uo*sigmaPML(I)/eo; 

% for linear profile 

for J = 1 :THmax 
Hpr(1,J) = 0; 
Hpt(1,J) = 0; 

end 
end 
% Set up the conductin antenna surface. The antenn is made of copper 
YO with conductivity of .8e+7 mhos/m. Free space is given a small 
% electrical conductivity and a matching magnetic conductivity according 
% to the PML calculations done above. 
sigma cu = 5.8e+7; 
sigmak-cu = uo * sigma-cu/eo; 
for I = 1 :Rmax 

for J = 1 :THmax 
if (J == ant-angle) 

if (I <= ant-length) 
sigma(1,J) = sigma-cu; 
sigmaM(1,J) = sigmaM-cu; 

elseif (I < Rmax-Npml+l) 
sigma(1,J) = sigma - space; 
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sigmaM(1,J) = sigmaM-space; 

sigma(1,J) = sigmaPML(1 + Npml - Rmax); 
sigmaM(1,J) = sigmaMPML(1 + Npml - Rmax); 

else 

end 
elseif (I == ant - length) 

if (J <= ant - angle) 
sigma(1,J) = sigma-cu; 
sigmaM(1,J) = sigmaM-cu; 

sigma( 1,J) = sigma-space; 
sigmaM(1,J) = sigmaM-space; 

else 

end 

if (I < Rmax-Npml+l) 
else 

sigma(1,J) = sigma - space; 
sigmaM(1,J) = sigmaM - space; 

sigma(1,J) = sigmaPML(1 + Npml - Rmax); 
sigmaM(1,J) = sigmaMPML(1 + Npml - Rmax); 

else 

end 
end 

* 
end 

end 

for I = 1 :Rmax 
k % To initialize, zero the fields for all of the free nodes in the problem. 

for J = 1 :THmax 

Er(1,J) = 6; 
Et(1,J) = 0; 
Hp(1,J) = 0; 

if ((I >= ant length) I (J >= ant - angle)) 

end 
end 

end 
YO Establish the Gaussian driving pulse parameters. Its center is 
% 200ps out, it has a decay time of 50ps and a center 
% frequency of 6.5 GHz. 
tstart = 200e- 12; 
tdecay = 50e- 12; 
tsample = 183e-12; 
once = 0; 

vocw = 0.01 ; 
c fc = 6.5e+9; 

Vouwb = 0.06; 
Rs = 50; 
Zin = 0; 

. 
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% Set up some constants for the time iterations 
t = 0 ;  
gl  = dt/(2*uo); 
g2 = dt/(2*eo); 
g3 = dt/(dr*eo); 

YO gl = 7.6e-8 
% 82 = 0.01 13 
% g3 = 7.53 

g4 = dt/(dr*uo); 
sphere-factor = l/(b*log(2)); 
I factor = 2*pi*b; 
volt factor = (log(sin(ant_angle*pi/l80))-1og( 1 -cos(ant-angle*pi/l8O)))/log(2); 
% Begin the time iterations 
while (t < (tmax*dt)) 

% g4 = 5.3e-5 

% For the first half timestep, update the Hphi field everywhere. 
% Don't step the singularity at the origin, the ground plane points, 
% the line of symmetry, or the PML region. 
t = t + 0.5"dt; 
for I = 3 : (Rmax-Npml) 

for J = 2:(THmax-1) 
if ((I >= ant-length) 1 (J >= ant-angle)) 

g5 = sin( J*dth)/sin(( J- 1 )*dth); 
Da = ( 1 -sigmaM( I, J)*g 1 )/( 1 +sigmaM(I, J) *g 1); 
Db = g4/( l+sigmaM(I,J)*gl); 
ERl = (g5 *Er( I, J+ 1 )-Er(1, J))/((I- 1 /2)*dth); 

Hp(1,J) = Da*Hp(I,J) + Db*(ERl - ET1); 
ET1 = (I/(I-l))*Et(I+l,J) - Et(1,J); 

end 
end 

end 
% Compute the H field at the ground plane, outside the PML region 
J = THmax; 
for I = 3:(Rmax-Npml) 

Da = ( 1 -sigmaM(I, J) *g 1 )/( 1 +sigmaM( I, J)*g 1); 
Db = g4/( l+sigmaM(I,J)*gl); 

Hp(1,J) = Da*Hp(I,J) - Db*ETl; 
ET1 = (I/(I-l))*Et(I+l,J) - Et(1,J); 

end 
% Compute the H field at the along the line of symmetry. 
for I = ant length:(Rmax-Npml) 

end 
% Update the H field in the PML region, excluding the ground plane 
layer = 1 ; 
for I = (Rmax-Npml+l):Rmax 

HP(I, 1 ): Hp(L2); 

Dar = (1 -sigmaMPML(layer)*gl)/( 1 +sigmaMPML(layer)*gl); 
Dbr = g4/( 1 +sigmaMPML(layer)*gl); 
Dat = Dar; 
Dbt = Dbr; 
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for J = 2:(THmax-I) 
g5 = sin(J*dth)/sin((J- l)*dth); 
ER1 
if (I == Rmax) 

ET1 = O ;  
else 

end 
Hpr(layer,J) = Dar*Hpr(layer,J) - Dbr*ETl; 
Hpt(layer,J) = Dat*Hpt(layer,J) + Dbt*ERI; 
Hp(1,J) = Hpr(layer,J) + Hpt(layer,J); 

(g5 *Er(I,J+ 1 )-Er(1, J))/((I- 1 /2)*dth); 

ET1 = (I/(I-l))*Et(I+l,J) - Et(1,J); 

end 
layer = layer + 1; 

end 
% Update the H field in the PML region along the ground plane 
J = THmax; 
layer = 1 ; 
for 1 = (Rmax-Npml+l):Rmax 

Dar = (1 -sigmaMPML(layer)*gl)/( l+sigmaMPML(layer)*gl); 
Dbr = g4/( l+sigmaMPML(layer)*gl); 
Dat = Dar; 
if (I == Rmax) 

ET1 = 0; 
else 

ET1 = (I/(I-l))*Et(I+l,J) - Et(1,J); 
end 
Hpr(layer,J) = Dar*Hpr(layer,J) - Dbr*ETl; 
Hpt(layer,J) = Dat*Hpt(layer,J); 
Hp(1,J) = Hpr(layer,J) + Hpt(layer,J); 
layer = layer + 1 ; 

end 
% For the second half timestep, update the E fields everywhere. Again, 
YO don’t step the driver at the origin or the ground plane points. 
t = t + 0.5*dt; 
% Step the excitation source, either the Gaussian pulse, or the steady 
% state sinusoidal 6.5GHz driver. 

YO if (t < 1.0e-9) 
YO Vsrc = Vocw*cos(2*pi*fc*t); % CW source 
% else 
% Vsrc = 0; 
% end 
% Vsrc = Vouwb*exp(-((t-tstart)/tdecay)A2)*cos(2*pi*fc*(t-tstart)); 

Vsrc = -Vouwb*exp( -( (t-t~tart)/tdecay)~2)* sin( 2 *pi* fc*(t-tstart)); 
% Now update the E fields. First step the driving sphere ... 
Vin = 0; Iins = 0; 
for J = ant - ang1e:THmax 
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Iin = I factor* sin((J- 1 /2) *dth)*Hp( 3 ,J); 
Vdrv -Vsrc - Rs*Iin; 
if ((t >= tsample) & (J > ant-angle)) 

Vin = Vin + b*Et(3,J)*dth; 
Iins = Iins + Iin; 
if (J = (THmax - 1)) 

tsample = 1 e-6; 
Iins = Iins/(THmax - ant-angle - 1); 
exVin = Vin 
exIin = Iin 
Zin = abs(Vin/Iin) 

end 
end 
Et(3, J) = Vdrv* sphere-factor/sin(( J- 1 /2)*dth); 

end 
% Now step E fields for the free nodes 
for I = 4:(Rmax-Npml) 

for J = 2:(THmax-1) 
if ((I >= ant-length) I (J >= ant-angle)) 

g6 = sin((J- 1 /2)*dth)/sin((J-3/2)*dth); 
Ca = (1 - g2*sigma(I,J))/(l + g2*sigma(I,J)); 
Cb = g3/(1 + g2*sigma(I,J)); 
HPHI 1 = (g6* Hp(1, J) - Hp(1, J- 1 ))/((I- 1 /2)*dth); 
HPHI2 = Hp(1-1,J) - ((1-1/2)/(1-3/2))*Hp(I,J); 
Er(1,J) = Ca*Er(I,J) + Cb*HPHIl; 
Et(1,J) = Ca*Et(I,J) + Cb*HPHI2; 

end 
end 

end 
YO Compute the E fields at the ground plane 
J = THmax; 
for I 4:(Rmax-Npml) 

Ca = (1 - g2*sigma(I,J))/(l + g2*sigma(I,J)); 
Cb = g3/( 1 + g2*sigma(I,J)); 

Er(1,J) = 0; 
Et(1,J) = Ca*Et(I,J) + Cb*HPHI2; 

HPHI2 = Hp(1-1,J) - ((1-1/2)/(1-3/2))*Hp(I,J); 

end 
% Compute the E fields along the line of symmetry. 
for I ant-length:(Rmax-Npml) 

Ca= (1 - g2*sigma(I,1))/(1 + g2*sigma(I,l)); 
Cb = g3/(1 + g2*sigma(I,1)); 

Er(1,l) = Ca*Er(I,l) + Cb*HPHIl; 
Et(1,l) = 0; 

HPHIl = (Hp(I,2) - Hp(I,l))/((I-l/2)*dth); 

end 

1 - T  

4- 

t 

0 

c 

P 
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% Update the E fields in the PML region, except for the ground plane 
layer = 1; 
for I = (Rmax-Npml+l):Rmax 

for J = 2:(THmax-1) 
g6 = sin( (J- 1 /2)*dth)/sin( (J-3/2)*dth); 
Car = (1 - g2*sigmaPML(layer))/( 1 + g2*sigmaPML(layer)); 
Cbr = g3/( 1 + g2*sigmaPML(layer)); 
Cat = Car; 
Cbt = Cbr; 
HPHI 1 = (86 *Hp( I, J) - Hp(1, J- 1 ))/((I- 1 /2) *dth); 
HPHI2 = (Hp(1-1,J) - ((1-1/2)/(1-3/2))*Hp(I,J)); 
Er(1,J) = Cat*Er(I,J) + Cbt"HPHI1; 
Et(1,J) = Car*Et(I,J) + Cbr*HPHI2; 

end 
layer = layer + 1 ; 

end 
% Calculate the E field in the PML region at the ground plane 
layer = 1; 
J = THmax; 
for I = (Rmax-Npml+l):Rmax 

Car = (1 - g2*sigmaPML(layer))/( 1 + g2*sigmaPML(layer)); 
Cbr = g3/( 1 + g2*sigmaPML(layer)); 

Er(1,J) = 0; 
Et(1,J) = Car*Et(I,J) + Cbr*HPHI2; 
layer = layer + 1 ; 

HPHI2 = (Hp( I- 1, J) - ((I- 1 /2)/( 1-3/2))*Hp( I, J)); 

end 
end 
% Plot the results 
% Convert the polar coordinates to rectangular coordinates and mirror the 
% antenna simulation data to show both +x and -x views of the radiating 
% field. 
for I = 1 :Rmax 

for J = 1 :THmax- 1 
x = 151 + round((I*sin((J-l)*dth))); 

y = 1 + round((I*cos((J-l)*dth))); 
Ecart(x,y) = Et(1,J); 
Ecart(x2,y) = Et(1,J); 

~2 = 303 - X; 

end 
end 
% Load a new Cartesian matrix for interpolation of missing elements 
for I = 1:(2*Rmax-l) 

for J = 1 :Rmax 

end 

* EcartNew(1,J) = Ecart(1,J); 

t 

. 

43 



end 
% Interpolate the missing elements in the Cartesian matrix 
Imin = 2; Imax = 2*Rmax - 2; Jmin = 2; Jmax = Rmax - 1; 
for I = 1min:Imax 

for J = Jmin:Jmax 
if ((Ecart(1,J) == 0) & (Rmax*cos((I-Rmax)*dth*91/151) + 25 >= J)) 

ItempLo = I - 1 ; 
ItempHi = I + 1 ; 
while ((Ecart(ItempLo,J) == 0) & (ItempLo > 1)) 

end 
while ((Ecart(ItempHi,J) == 0) & (ItempHi < 2*Rmax -1)) 

end 
M = Ecart(ItempLo,J); 
N = Ecart(ItempHi,J); 
if (M == 0) 

temp1 = N; 
elseif (N == 0) 

temp1 = M; 
else 

temp 1 = sign(M+N)*sqrt(abs(M*N)); 
end 
JtempLo = J - 1; 
JtempHi = J + 1 ; 
while ((Ecart(1,JtempLo) == 0) & (JtempLo > 1)) 

end 
while ((Ecart(1,JtempHi) == 0) & (JtempHi < Rmax)) 

end 
M = Ecart(1,JtempLo); 
N = Ecart(1,JtempHi); 
if (M == 0) 

temp2 = N; 
elseif (N == 0) 

temp2 = M; 
else 

temp2 = sign(M+N) * sqrt(abs(M*N)); 
end 
if (temp1 0) 

elseif (temp2 == 0) 

else 

ItempLo = ItempLo - 1 ; 

ItempHi = ItempHi + 1 ; 

JtempLo = JtempLo - 1 ; 

JtempHi = JtempHi + 1 ; 

EcartNew(1,J) = temp2; 

EcartNew(1,J) = templ; 

EcartNew(1, J) = sign(temp 1 +temp2) * sqrt(abs(temp 1 * temp2)); 
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end 
end 

T end 
EcartNew( 1,15 1) = 1.2; 
EcartNew(2,15 1) = - 1 .O; 

% bogus points added to force scaling 
% in the final plot 

* end 
I =  1:301; 
J =  1:151; 
x(1) = I; 
y(J) = J; 
surfl(y(J), x(I), EcartNew( I, J)) 
xlabel('Y-axis cm'), ylabel('X-axis cm') 
zlabel('Etheta V/m') 
% title('FDTD of Cone Antenna at 6.5GHz: CW Driver') 
title('FDTD of Cone Antenna at 6.5GHz: UWB Driver') 
shading interp 
colorrnap pink 
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Matlab Function: Vsrc.rn (11/3/04) 

% This function models the UWB Gaussian-shaped voltage pulse to drive 
% a UWB antenna. 
% It accepts a max. timestep "Nmax" 
% It outputs an array of values. It should be called once, and its 
% matrix output results should be referenced. 
% 
% Robert Brocato 
Yo 1 1/3/04 
function [Vout] = Vsrc(Nmax, dt) 
% Set the time step at lpsec 
dt = le-12; 
% Take pulse center time (nstart) = 200psec 
nstart = 200; 
% The 1 /e time (ndecay) is taken as 1 Odt 
ndecay = 50; 
YO Pulse center frequency (fc) is 6.5GHz, center of FCC 3.1-10.6 GHz range 
fc = 6.5* 10A9; 
YO Pulse max. amplitude (Vo) is taken as 1 volt 
v o  = 1.0; 
for n = 1 :Nmax 

end 

% title('Gaussian-shaped pulse: -Vo*exp(-((n-200)/50)A2)*sin(2*pi*fc*(n-2OO)dt)') 
xlabel('Time (psec)'); 
title('Gaussian-shaped pulse: Vo*exp(-((n-200)/50)/'2)*cos(2*pi*fc*(n-200)dt)') 

Vout(n) = Vo*exp(-((n-nstart)/nde~ay)~2)*cos(2*pi*fc*(n-nstart)*dt); 

plot(V0ut) 

I .- d 

T 

* 

- \  

c 
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Matlab Function: Zdea1Cone.m (10/28/04) 

T % Closed form field solution for an infinite conical antenna 
% 

d 
% R.W. Brocato 
% 

1 

% The closed form solution for the infinite conical antenna is taken from 
% the book Fields and Waves by Ramo, Whinnery, and Van Duzer, pp. 462-465. 
% 
function [Et] = Idealcone() 
YO Use the same discretization parameters (dr, dth, dt, ranges, etc.) as are 
% used by the FDTD simulation. 
dr = 0.003; 
dth = 1; 
dt = 5e-12; 
z = 377; 
c = 3e+8; 
% Range extends to 15 median wavelengths in R and from 0-90 degrees in 
% theta. The angle of the infinite cone antenna is the same as for the one 
% used in the FDTD simulation. 
b a x =  151; 
THmax = 91; 
cone - angle = 3 1 ; 
theta = cone - angle; 
r = dr; 
% Initialize the wave parameters, frequency (fo), amplitude (Eo), 
% wavenumber (k), etc. 
Vo = 0.033; 
Eo = Vo/(2 * log(cot( (pi/ 1 80) * (cone-angle- 1)/2))); 
fo = 6.5e+9; % 6.5GHz 
k = 2*pi*fo/c; Yo 136.1 
t = 0; 
fori = 1:Rmax 

* 

theta = cone-angle; 
for j = l:(THmax-1) 

if (j >= cone-angle) 
wave = cos(2*pi*fo*t - k*r); 
Et($ = (l/((r)*sin((theta- 1 )*pi/l80)))*(Eo*wave); 

else 
Et(i,j) = 0.0; 

end 
Hp(i,j) = Et(i,j)/Z; 
theta = theta + dth; 

end 
r = r + dr; 

end 
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YO Plot the results 
% Convert the polar coordinates to rectangular coordinates and mirror the 
% antenna simulation data to show both +x and -x views of the radiating 
% field. 
% The solution space must be compressed by 5x to accomplish the polar to 
YO rectangular conversion. 
for i = 1 :Rmax 

for j = 1 :THmax- 1 
x = 32 + round((i*sin((j- l)*dth*pi/l80))/5); 

y = 1 + round((i*cos((j-l)*dth*pi/l80))/5); 
Ecart(x,y) = Et(i,j); 
Ecart(x2,y) = Et(i,j); 

~2 = 63 - X; 

end 
end 
i = 1:62; 
j = 1:31; 
x(i) = i* 1.5; 
y(j) =j*1.5; 
surfl(y(j), x(i), Ecart(i,j)) 
xlabel('Y-axis cm'), ylabel('X-axis cm') 
zlabel('Etheta V/m') 
title('1nfinite 30 Degree Cone Antenna at 6.5GHz: Closed Form Solution') 
shading interp 
colormap pink 
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Matlab Function: ConeGeom.m (10/10/04) 

f % This function plots the physical outline of a conical antenna. 
% 
% R.W. Brocato 
function [Z] = ConeGeom() 
ant angle = 3 1 ; 
R -15; 
Ha = cos((ant-angle - l)*pi/180); 
Zmax = R*Ha; 
N = 60; 
Zprev = 0; 
for i = l:N+l 

e 

forj = l:N+1 
if (Zprev < Zmax) 

Z(i,j) = Ha*R*(i- l)/N; 
term = R*(i-l)/N; 
Zprev = term; 

Z(i,j) = R*cos(pi/2*(2*(i-l)/N - 1)- pi/2); 
term = (l/Ha)*R*cos(pi/2*(2*(i-l)/N - 1)); 

else 

end 
arg = 2 *pi*(j- 1 )/N; 
Y(ij) = term*cos(arg + pi/2); 
X(ij) = term*cos(arg + pi); 

end 
end 
surf(X,Y,Z) 
hidden on 

S 
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Matlab Function: Pp2ot.m (11/11/04) 

% Create a polar plot to show antenna far field radiation pattern. 
% 
YO R.W. Brocato 
% 
% This function accepts the input matrix from a simulation run of FDTD 1 and 
% generates a 2-D polar plot. The run of FDTDl should be for 8000 
% timesteps at dt = 0.2psec. 
% 
function [I = Pplot(Ft) 
YO Define some constants: Jmax is the maximum angle to view up to, Rview is 
% the far field radius value at which to plot the field. 
Jmax = 91; 
Rview = 121; 
tstep = pi/l80; 
tmax = pi/2; 
t = tstep:tstep:tmax+tstep; 
% Manually enter the radiation field data from the Liu and Grimes paper. 
B(1:lO) = [0 0.02 0.03 0.04 0.06 0.07 0.08 0.09 0.10 0.1 11; 
B(11:21) = [0.12 0.13 0.15 0.16 0.18 0.19 0.2 0.21 0.23 0.24 0.251; 
B(22:33) = [0.26 0.27 0.29 0.3 0.31 0.32 0.33 0.35 0.36 0.37 0.38 0.41; 
B(34:45) = E0.41 0.42 0.44 0.45 0.46 0.48 0.49 0.5 0.52 0.53 0.55 0.591; 
B(46:57) = [0.60 0.62 0.63 0.65 0.66 0.67 0.69 0.7 0.71 0.73 0.74 0.751; 
B(58:69) = [0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.85 0.86 0.87 0.88 0.881; 
B(70:81) = [0.89 0.9 0.91 0.91 0.92 0.93 0.94 0.94 0.95 0.96 0.96 0.971; 
B(82:91) = [0.97 0.98 0.98 0.99 0.99 0.99 0.99 1 .OO 1.00 1 .OO]; 
YO Scale the data in amplitude 
B = B * 0.043; 
% Plot the simulation results vs. the paper results 
% polar(t, Ft(Rview, 1 : Jmax),'r') 
C( 1 : Jmax) = Ft(Rview, 1 : Jmax); 
C( Jmax+ 1 : 2 * Jmax) = B; 
t2( 1 : Jmax) = t; 
t2(Jmax+l:2*Jmax) = -t; 
polar(t2, C, 'r') 

- 
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Y -* 0 

Matlab Function: Fi1m.m (1 1/25/04) 

5 % Fi1m.m : Creates a movie of the conical antenna FDTD simulation by 
YO callinjg FDTDl repeatedly with different time intervals. Call this 
% routine by m = film; if it is desired to save the movie file, m, for 
YO replay later. 
% To execute the results of this function, open the Matlab data file 
% GaussianPulse. This loads the workspace with the struct array, m. Then 
% run movie(m, 10,3); in the command window. 
% 
% R.W. Brocato 
% 
function [m] = Film() 
tcount = 0; 
for I = 1:23 

if (I < 7) 

else 

end 
tcount = tcount + tinc; 
FDTD 1 (tcount); 
view(-90,60); 
axis([O 200 0 300 -1 21); 
m(1) = getframe; 

: 
e 

tinc = 250; 

tinc = 500; 

end 
cla 
movie(m, 10,3) 

3 
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MathCAD Worksheet for Calculation of 

Conical Antenna Driving Point Impedance [ I  61 

Prepare some general antenna parameters 

o0 := 3& 
180 

a := 45 

semi-angle of the antenna in radians 

height of the antenna in mm 

fc := 6.5.10 

3. lo1 ' 
fc 

center frequency of interest 

= 46.154 wavelength in mm h:=- 

2. n 
h 

k := - ka := k.a ka = 6.126 

Calculate the impedance of an infinite cone antenna 

zc :=,,In( cot( :)) Z, = 79.017 

Calculate the impedance of the finite cone antenna 

H2(n,ka) c(n, ka) := 
n 
ka 

H2(n - 1,ka) - --.H2(n,ka) 

n := 1.3.. 17 

2 ' n +  .(Leg(n,cos(O~)~).<(n,ka)l] S =-0.157+ 0.9641 
n.(n + 1) 

- i.2.ka (1 + is) .- P-a := e is - 1 

Zin = 84.063- 12.396i 

Z. = 84.972 I 1nl 

P-a = -0.037+ 0.073i 

Reference [16]: S.S. Sandler and R.W.P. King, "Compact Conical Antenna for Wide-Band Coverage", 
IEEE Trans. on Ant. and Prop., Vol. 42, No. 3, Mar. 1994, pp. 436-439. 
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