
SAND REPORT
SAND2004-6541
Unlimited Release
Printed January 2005

Supersedes SAND2002-2775
dated October 2002

ALEGRA: Version 4.6

S. K. Carroll, R. R. Drake, D. M. Hensinger,
C. B. Luchini, S. V. Petney, J. Robbins,
A. C. Robinson, R. M. Summers, T. E. Voth, M. K. Wong,
T. A. Brunner, C. J. Garasi, T. A. Haill and T. A. Mehlhorn

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of

Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of

the United States Government. Neither the United States Government, nor any agency

thereof, nor any of their employees, nor any of their contractors, subcontractors, or their

employees, make any warranty, express or implied, or assume any legal liability or re-

sponsibility for the accuracy, completeness, or usefulness of any information, appara-

tus, product, or process disclosed, or represent that its use would not infringe privately

owned rights. Reference herein to any specific commercial product, process, or service

by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute

or imply its endorsement, recommendation, or favoring by the United States Govern-

ment, any agency thereof, or any of their contractors or subcontractors. The views and

opinions expressed herein do not necessarily state or reflect those of the United States

Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from

the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

IT
ED

STATES OF AM

ER
IC

A

SAND2004-6541
Unlimited Release

Printed January 2005

Supersedes SAND2002-2775
dated October 2002

ALEGRA: Version 4.6

S. K. Carroll, R. R. Drake, D. M. Hensinger,

C. B. Luchini, S. V. Petney, J. Robbins,
A. C. Robinson, R. M. Summers, T. E. Voth, and M. K. Wong

Computational Physics Research & Development

T. A. Brunner, C. J. Garasi, T. A. Haill and T. A. Mehlhorn
HEDP Theory and ICF Target Design

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-0378

Abstract

ALEGRA is an arbitrary Lagrangian-Eulerian multi-material finite
element code used for modeling solid dynamics problems involving
large distortion and shock propagation. This document describes the
basic user input language and instructions for using the software.

3

Acknowledgment

Many individuals have contributed to alegra development over many years.
George Allshouse (deceased),who made important contributions to the early
planning of the alegra project and facilitated its beginning. Mike McGlaun
launched the code development effort and Keith Matzen and Tim Trucano
also contributed to early planning activities for the project.

Below we give major contributors to the alegra code and attempt to
list some specific areas of the current active code base to which they have
contributed. Many of these contributers will have made significant contri-
butions to the text of this manual. The authors of this document represent
current developers actively backing this release.

Ray Bell SMYRA Material Interface Tracker
Ed Boucheron Mesh adaptivity, Desktop tools
Rebecca Brannon Material models
Kevin Brown Contact algorithms (ACME), Architecture, Solid

Mechanics
Tom Brunner Advanced Physics
Kent Budge Architecture, Lagrangian physics, Advanced

physics, Penetration
Shawn Burns Verification, Applications
Dan Carroll ALE algorithms, Applications
Sue Carroll Configuration management, Regression testing,

Support tools
Mary Chen Verification & Validation
Mark Christon Structured Mesh Development
Kyle Cochrane Advanced Physics
Rich Drake nevada tools & code infrastructure
Archie Farnsworth Electromechanics modeling, Applications
Grant Farnsworth Solid kinematics
Chris Garasi Verification & Validation, Advanced Physics Ap-

plications
David Hensinger Structured Mesh, I/O
Thomas Haill Advanced physics
David Ketcheson Quaternion Solid kinematics
Will McLendon Advanced physics
James Peery Architecture, ALE algorithms, Parallelization

4

Sharon Petney Mesh material insertions, Material models, Infras-
tructure

Josh Robbins Electromechanical models, Applications
Allen Robinson Resistive MHD, Electromechanics, Parallelization
Randy Summers Contact algorithms, Platform Adaptation, Ad-

vanced Physics
Tim Trucano Verification & Validation, Applications
Thomas Voth Penetration mechanics, ACME Support
Randy Weatherby Mesh adaptivity, Desktop tools, Visualization
Mike Wong Mesh adaptivity, Material models

In addition to the above list, other colleagues at Sandia and elsewhere
have provided guidance and assistance with respect to alegra develop-
ment, including Steve Attaway, Pang Chen, Ben Cole, Dave Crawford, Doug
Drumheller, Jonathan Hu, Frank Mello, Steve Montgomery, Judy Sturtevant,
Bryan Oliver and Ray Tuminaro. Others have utilized portions of alegra

as a framework, now currently know as nevada, for developing special pur-
pose capabilities, including Mike Glass, Steve Kempka, Josh Robbins, Rob
Schmitt, Dave Turner, Mike Pasik, Dave Siedel, Bill Bohnhoff, Jennifer Pow-
ell. A number of users of the code have provided very valuable feedback to
the development team that helped improve the code enormously, including
John Aidun, Mark Boslough, Lalit Chhabildas, Paul Demmie, Jeff Lawrence,
Rich Jensen, Steve Schraml, Dan Mosher, Dan Kletzli, Scott Wunsch, Ray
Lemke, Bob Campbell. Many students have helped with various aspects
of the code and with the development of test suites including Mary Chen,
Rachel Bixler, Elena Agustin.

5

This page intentionally left blank.

6

Contents

Summary 24

Nomenclature 27

1 Introduction to ALEGRA 27

2 Overview 31

2.1 Basic ALEGRA Environment 31

2.1.1 Environment Variables 32

2.1.2 ACCESS Tools . 32

2.1.3 Sandia Users Only . 33

2.2 Running ALEGRA . 33

2.2.1 Preprocessing . 34

2.2.2 Problem Specification File 38

2.2.3 Executing alegra . 38

2.2.4 Post-processing . 45

2.3 Example Problem . 45

2.4 Problem Reporting . 53

2.5 New for Version 4.6 . 53

3 General Input 55

3.1 Format and Syntax . 61

3.1.1 Keywords . 61

3.1.2 Delimiters . 62

7

3.1.3 Keyword Groups . 63

3.1.4 Comments . 63

3.2 Common Parameter Constructs 63

3.2.1 block-id . 64

3.2.2 block-ids . 64

3.2.3 nodeset . 64

3.2.4 sideset . 65

3.2.5 function-set . 65

3.2.6 vector . 66

3.2.7 vector-function-set . 66

3.2.8 symtensor . 67

3.2.9 direction-function . 67

3.2.10 time-or-cycle-interval 68

3.2.11 time-range . 68

4 Execution Control 69

4.1 Job Initiation and Termination 69

4.1.1 Title . 69

4.1.2 Exit . 69

4.1.3 Units . 69

4.1.4 Read Restart . 70

4.1.5 Start Time . 72

4.1.6 Termination CPU . 72

4.1.7 Termination Cycle . 73

8

4.1.8 Termination Time . 73

4.2 I/O Control . 74

4.2.1 Copy Input . 74

4.2.2 CRT . 74

4.2.3 Debug Mode . 75

4.2.4 Double Precision Exodus 77

4.2.5 Exodus Version . 77

4.2.6 Emit Hisplt . 77

4.2.7 Emit Output . 78

4.2.8 Emit Plot . 78

4.2.9 Emit Restart . 79

4.2.10 Emit Screen . 80

4.2.11 Overwrite Files . 80

4.2.12 Plot Variables . 81

4.2.13 History Plot Variables 89

4.2.14 Restart Dumps . 91

5 General Physics Input 92

5.1 Mesh Choices . 92

5.2 Unstructured Mesh Physics Choices 93

5.2.1 Hydrodynamics . 93

5.2.2 Solid Dynamics . 94

5.3 Structured Mesh Physics Choices 94

5.3.1 Structured Hydrodynamics 94

9

5.3.2 Structured Solid Dynamics 94

5.4 Multi-Region Dynamics . 95

5.4.1 Region Activation and synchronization 96

5.4.2 Staged Activation of Regions 96

5.5 Geometry . 97

5.5.1 Cartesian . 97

5.5.2 Cylindrical . 97

5.5.3 Volumetric Scale Factor 97

5.6 Time Step Control . 98

5.6.1 Gradual Startup Factor 98

5.6.2 Maximum Initial Time Step 98

5.6.3 Maximum Time Step Limit 99

5.6.4 Maximum Time Step Ratio 99

5.6.5 Minimum Time Step 99

5.6.6 Time Step Scale . 99

5.6.7 Constant Time Step 100

5.7 General Initial Conditions . 100

5.7.1 Diatom . 100

5.7.2 User Defined Initial Conditions 111

5.8 General Boundary Conditions 112

5.8.1 Periodic Boundary Conditions 112

5.8.2 Translational periodicity 113

5.8.3 Rotational Periodicity 114

5.9 Block Input . 115

10

5.9.1 Material Specification 116

5.9.2 Mesh Type . 117

5.9.3 Remap Control . 118

5.9.4 Other Block Controls 125

5.10 Domain Input . 126

5.10.1 Boundary Remesh Control 126

5.10.2 Domain Advection Controls 130

5.10.3 Initial Refinement . 132

5.11 Cell Doctor . 135

5.11.1 Discard . 135

5.12 Tracer Points . 137

5.12.1 Eulerian Tracer . 138

5.12.2 Lagrangian Tracer . 139

5.12.3 ALE Tracer . 139

5.13 Functions . 139

6 Energetics Input 141

6.1 Energetics I/O Control . 141

6.1.1 Detailed Energy Tallies 141

6.2 Energy Sources . 142

6.2.1 Energy Deposition . 142

7 Mechanics Input 144

7.1 Boundary Conditions and Body Forces 144

7.1.1 Gravity . 145

11

7.1.2 No Displacement . 145

7.1.3 No Cylindrical Displacement 146

7.1.4 Prescribed Force . 146

7.1.5 Rigid Segment . 146

7.1.6 Rigid Surface . 147

7.1.7 Traction BC . 147

7.2 Mechanics Algorithm Control 147

7.2.1 Hourglass Control . 147

7.2.2 Moving Mesh . 148

7.2.3 Track . 149

8 (Hydro)Dynamics Input 150

8.1 Dynamics Initial Conditions 150

8.1.1 Initial Velocity . 150

8.1.2 Initial Angular Velocity 150

8.1.3 Initial Block Velocity 151

8.1.4 Random Block Velocity 152

8.1.5 Sinusoid Velocity . 153

8.2 Dynamics Initial Density and Surface Perturbations 153

8.2.1 Cylindrical Mode Density 153

8.2.2 Cylindrical Mode Surface 155

8.2.3 Degenerate Surface . 159

8.2.4 Random Density . 160

8.2.5 Random Surface . 161

12

8.2.6 Sinusoid Density . 161

8.2.7 Sinusoid Surface . 162

8.2.8 Twisted Mesh . 165

8.3 Dynamic Boundary Conditions 166

8.3.1 Degenerate BC . 166

8.3.2 Prescribed Acceleration 167

8.3.3 Prescribed Velocity . 167

8.3.4 Pressure BC . 168

8.3.5 Pressure Wave . 168

8.3.6 Global Contact (3D global algorithm) 169

8.3.7 Cavity Expansion . 173

8.4 Dynamics Algorithm Control 174

8.4.1 Bulk (Pronto) Artificial Viscosity 174

8.4.2 Hydrodynamics Cell Doctor 175

8.4.3 Maximum Volume Change Time Step Control 176

8.4.4 Minimum Element Side Time Step Control 176

8.4.5 Void Compression . 177

8.5 Dynamics Supplementary Models 177

8.5.1 Programmed Burn . 177

8.5.2 Inter-material Fracture 180

9 Solid Dynamics Input 181

9.1 Solid Dynamics Algorithm Control 181

9.1.1 Kinematic Error Catching 181

13

9.1.2 Kinematic Update Method 182

10 Adaptivity Input 183

10.1 Adaptivity Algorithm Control 184

10.1.1 Enable Adaptivity . 184

10.1.2 Jump Metric . 185

10.1.3 Element Budget . 186

10.1.4 Adaptivity Layering 188

10.1.5 Block Specific Control 188

10.1.6 Unrefinement Control 189

10.2 Dynamic Load Balancing . 190

11 Structured Mesh Input 192

11.1 Structured Mesh . 192

11.1.1 AMR . 193

11.1.2 SET ASSIGN . 193

11.2 Block . 193

11.3 Output . 194

11.4 Mesh Input . 195

12 Material and Material Model Input 197

12.1 Materials . 201

12.1.1 MODEL subkeyword . 202

12.1.2 variable name subkeyword 203

12.2 Material Models . 204

14

12.3 Equation of State Models . 208

12.3.1 Generic EOS . 209

12.3.2 Ideal Gas . 210

12.3.3 JWL . 212

12.3.4 KEOS Ideal Gas . 214

12.3.5 KEOS JWL . 216

12.3.6 KEOS MieGrüneisen 220

12.3.7 KEOS Sesame . 223

12.3.8 MG Power . 227

12.3.9 MG US UP . 230

12.4 Constitutive Models . 234

12.4.1 Elastic Plastic . 234

12.4.2 Linear Elastic . 236

12.4.3 Soil Crushable Foam 238

12.4.4 Isotropic Geomaterial 240

12.5 Yield Models . 245

12.5.1 Steinberg-Guinan-Lund 245

12.5.2 Johnson-Cook EP . 249

12.5.3 Zerilli-Armstrong . 250

12.5.4 Bammann-Chiesa-Johnson 252

12.5.5 Von Mises Yield . 256

12.6 Plasticity Models . 259

12.6.1 Simple Radial Return 259

12.6.2 EP Radial Return . 260

15

12.7 Combined Models . 260

12.7.1 CTH ELASTIC PLASTIC 260

12.7.2 BFK CONCRETE . 263

12.8 Fracture Models . 267

12.8.1 Pressure Dependent Fracture 267

12.9 KEOS Reactive Burn Models 270

12.9.1 KEOS ARB . 272

12.9.2 KEOS FFRB . 275

12.9.3 KEOS HVRB . 278

12.9.4 KEOS IGRB . 281

12.9.5 KEOS Ptran . 285

12.10Burn Models . 288

12.10.1Programmed Burn JWL 288

12.11Material Model Examples . 290

13 Diagnostics 291

13.1 Interactive Menu . 291

13.2 Global Diagnostic Variables 291

13.2.1 Time Step Tallies . 292

13.2.2 Mass Tallies . 293

13.2.3 Momentum Tallies . 294

13.2.4 Energy Tallies . 295

13.2.5 Additional Diagnostic Variables 298

13.3 Additional HISPLT Database Variables 298

16

14 Performance Measurement in ALEGRA 301

14.1 Tricks and Traps . 302

15 Frequently Asked Questions 304

References 313

17

List of Figures

1 File names for alegra. 35

2 File names for alegra mbs. 36

3 Taylor Anvil Simulation. 46

4 Point, Line and Block IDs for Taylor Anvil Problem. 48

5 A Coarsely Meshed Taylor Anvil Problem. 48

6 Three-dimensional Taylor Anvil Mesh. 50

7 Taylor Anvil Deformed Mesh at 200 Cycles. 52

8 Periodic mesh example. 113

9 Initial 3D Cartesian geometry. 157

10 Perturbed 3D Cartesian geometry. 157

11 Initial 2D Cartesian geometry. 158

12 Perturbed 2D Cartesian geometry. 158

13 Initial perturbations in 2D cylindrical geometry. 164

14 Final perturbations in 2D cylindrical geometry. 164

18

List of Tables

1 Terms and Acronyms . 27

2 Common ALEGRA ROOT Paths 33

3 alegra Input and Output Files. 39

4 Allowable Unit Designators 71

5 Plot Variables for General Region Quantities 85

6 Plot Variables for Dynamic/Hydrodynamic Quantities 86

7 Plot Variables for Hydrodynamic Quantities 87

8 Plot Variables for Material Properties 88

9 Keywords for the DIATOM package. 102

10 PACKAGE Subkeywords for DIATOM Input 103

11 shape Subkeywords for DIATOM Input 107

12 BLOCK MATERIAL Initialization Keywords. 117

13 BLOCK Mesh Specification Keywords. 118

14 BLOCK Remesh Methods Sub-Keywords. 120

15 BLOCK Remesh Trigger Sub-Keywords. 120

16 BLOCK Remesh Weight Sub-Keywords. 123

17 Advection Control Sub-Keywords. 125

18 Other BLOCK Sub-Keywords. 125

19 Node Rezone Control by Mesh Specification 127

20 Node Rezone Control by Sideset Specification 128

21 DOMAIN Keywords for Remesh Control 128

22 DOMAIN Keywords for Advection Control 130

19

23 DOMAIN Keywords for Initial Refinement. 133

24 INITIAL REFINEMENT Sub-Keywords 133

25 Subkeywords for analytic surfaces. 170

26 Subkeywords for friction models. 171

27 Adaptivity Keywords for JUMP METRIC. 186

28 Adaptivity Keywords for ELEMENT BUDGET. 187

29 Adaptivity Keywords for UNREFINEMENT CONTROL. 190

30 Keywords for AMR -- END. 194

31 Material Model Types and Model Names. 207

32 Input Parameters for GENERIC EOS. 210

33 Registered Plot Variables of GENERIC EOS. 210

34 Input Parameters for IDEAL GAS. 211

35 Registered Plot Variables of IDEAL GAS. 212

36 Input Parameters for JWL. 213

37 Registered Plot Variables of JWL. 214

38 Input Parameters for KEOS IDEAL GAS. 215

39 Registered Plot Variables of KEOS IDEAL GAS. 215

40 Input Parameters for KEOS JWL. 216

41 Registered Plot Variables of KEOS JWL. 218

42 Input Parameters for KEOS MieGruneisen. 222

43 Registered Plot Variables of KEOS MieGruneisen. 223

44 Input Parameters for KEOS SESAME. 225

45 Registered Plot Variables of KEOS SESAME. 226

46 Input Parameters for MG POWER. 230

20

47 Registered Plot Variables of MG POWER. 231

48 Input Parameters for MG US UP. 232

49 Registered Plot Variables of MG US UP. 232

50 Input Parameters for ELASTIC PLASTIC. 236

51 Registered Plot Variables of ELASTIC PLASTIC. 237

52 Input Parameters for LINEAR ELASTIC. 237

53 Registered Plot Variables of LINEAR ELASTIC. 238

54 Input Parameters for SOIL CRUSHABLE FOAM. 239

55 Registered Plot Variables of SOIL CRUSHABLE FOAM. 239

56 Input Parameters for ISOTROPIC GEOMATERIAL. 240

57 Registered Plot Variables for ISOTROPIC GEOMATERIAL. . . . 242

58 Input Parameters for STEINBERG GUINAN LUND. 247

59 Registered Plot Variables for STEINBERG GUINAN LUND 248

60 Input Parameters for JOHNSON COOK EP. 250

61 Registered Plot Variables for JOHNSON COOK EP. 251

62 Input Parameters for ZERILLI ARMSTRONG. 252

63 Registered Plot Variables for ZERILLI ARMSTRONG. 253

64 Input Parameters for BAMMANN CHIESA JOHNSON. 254

65 Registered Plot Variables for BAMMANN CHIESA JOHNSON. . . . 255

66 Input Parameters for VON MISES YIELD. 257

67 Registered Plot Variables for VON MISES YIELD. 257

68 Input Parameters for SIMPLE RADIAL RETURN. 259

69 Registered Plot Variables for SIMPLE RADIAL RETURN. 259

70 Input Parameters for EP RADIAL RETURN. 260

21

71 Registered Plot Variables for EP RADIAL RETURN. 261

72 Compatible Models for CTH ELASTIC PLASTIC. 262

73 Input Parameters for CTH ELASTIC PLASTIC. 262

74 Registered Plot Variables for CTH ELASTIC PLASTIC. 262

75 Input Parameters for BFK CONCRETE. 264

76 Registered Plot Variables for BFK CONCRETE. 268

77 Input Parameters for FRAC PRESDEP. 269

78 Registered Plot Variables for FRAC PRESDEP. 269

79 Extra hisplt Variables for KEOS Reactive Burn Models. . . 271

80 Registered Plot Variables of KEOS Reactive Burn Models. . . 272

81 Input Parameters for KEOS ARB. 273

82 Input Parameters for KEOS FFRB. 276

83 Input Parameters for KEOS HVRB. 279

84 Input Parameters for KEOS IGRB. 282

85 Input Parameters for KEOS Ptran. 285

86 Input Parameters for PROGRAMMED BURN JWL. 289

87 Registered Plot Variables of PROGRAMMED BURN JWL. 289

88 Timestep Tallies for Hydrodynamics. 292

89 Mass Tallies for Region (All Physics Options). 293

90 Momentum Tallies for Dynamics and All Derived Physics
Options. 294

91 Energy Tallies for Region (All Physics Options). 296

92 Energy Tallies for Dynamics (Hydrodynamics). 296

22

93 Global Variables In Addition to Energy/Mass/Momentum Tal-
lies. 298

94 Point History Variables. 299

95 Global History Variables Specific to hisplt. 300

23

Summary

In 1990 an effort was launched at Sandia National Laboratories to develop
a state-of-the-art code that combined the modeling features of modern Eu-
lerian shock codes, such as cth, with the improved numerical accuracy of
modern Lagrangian finite element codes. The resulting code, called alegra,
uses an arbitrary Lagrangian-Eulerian (ALE) formulation on an unstructured
finite element mesh. This formulation allows the user to designate whether
material should flow through a stationary mesh (pure Eulerian), whether the
mesh should move with the material (pure Lagrangian), or whether the mesh
should move independently from the material motion (arbitrary). The latter
capability permits a calculation to proceed in Lagrangian fashion until the
mesh becomes too distorted. At that time, mesh points in the most deformed
portion of the mesh are moved to reduce the distortion to acceptable levels.
The advantage is that numerical dissipation is avoided until large deforma-
tions occur and then is limited to only those regions where there are severe
mesh distortions and the mesh must be moved.

alegra is written predominantly in the C++ programming language
Object-oriented programming techniques can be used to manage the inherent
complexity of the physics being modeled. However, various Fortran-based
models and libraries are also incorporated if they are sufficiently mature and
robust. In many cases there is little advantage to rewriting such software.

alegra has been designed to run on distributed-memory parallel com-
puters. This was done because the enormous memories and processor speed
of massively parallel processor (MPP) computers are needed to analyze large,
three-dimensional problems. The memory requirements for alegra scales
inversely with the cube of the cell size. For example, if one halves the cell
size in each direction, then the memory requirement increases by a factor of
eight. alegra uses explicit time integration schemes so the time step scales
proportionally to the cell size. For example, if one halves the cell size, the
code cuts the time step in half. Therefore, the Floating Point OPerations
(FLOPs) scale inversely as the fourth power of the cell size.

The database of a large, three-dimensional problem is too large to fit on
any single compute node. Therefore, alegra was designed with the Single
Program Multiple Data (SPMD) paradigm, in which the mesh is decomposed
into sub-meshes so that each processor gets a single sub-mesh with approxi-
mately the same number of elements. Good mesh decomposition is important

24

to minimize the data passed between compute nodes. Whereas rectangular
meshes are relatively easy to decompose, subdividing the arbitrary connec-
tivity meshes used by alegra is much more difficult. Specialized software
such as the chaco package developed at Sandia is used to decompose these
meshes.

alegra uses one layer of ghost elements around the sub-mesh perimeter
for sub-domain boundary conditions. The database for the ghost elements
must be updated during the computational cycle by interprocessor communi-
cation. These additional ghost elements represent a parallel processing cost
that can be quite large for compute nodes with a small number of elements.
For example, a cube meshed in a 10 by 10 by 10 regular pattern, approx-
imately half the elements are boundary elements. For large, roughly cubic
meshes, the fraction of boundary elements goes as approximately 6/N 1/3,
where N is the number of elements, so a million-element mesh will include
only about 6% boundary elements. The trade-offs between computation,
communication and memory must be actively managed by the user.

alegra also provides a mesh refinement capability that in principle can
provide high precision simulations without the computational cost of using a
highly resolved mesh everywhere. This capability may be important for sim-
ulations over large spatial domains that require high precision in the presence
of certain localized features. This capability, however, comes at a high cost
in terms of memory layout and a corresponding impact on efficiency and this
cost also impacts non-adaptive calculations. Adaptive capability should not
be considered under active development with a high priority support status
during the release period which this manual represents.

The multi-block curvilinear structured (mbs) mesh option in alegra

combines the speed and footprint benefits available to a structured code with
the large feature set already available in alegra. A problem run with the
multi-block structured physics option of alegra runs in 1/2 the time and
uses 1/5 as much memory as an unstructured version of the same problem.
The multi-block structured mesh capability limits each block of mesh to
have a regular i,j,k ordering of elements and nodes. However, the connections
between blocks as well as the coordinates of nodes in blocks may be arbitrary.
This flexibility allows description of a large set of geometries within the
curvilinear multi-block limitations.

The approach used in developing the curvilinear multi-block capability
was to add the underlying data storage and access routines to alegra and

25

then enable as many of the existing alegra capabilities as possible. A large
portion of alegra capabilities were inherited by the structured physics op-
tion with minimal effort. These included material libraries and input parsing.
Another set of features required moderate effort to ’turn on’ for structured
physics: diatom input, programmed burn, artificial viscosity, input parsing,
hourglass control, remeshing, and remapping. A third set of capabilities do
not lend themselves to a transliteration style of implementation and require
a structured mesh specific approach. The following capabilities are not yet
available from the structured code: Adaptivity and Dynamic Load Balancing.
The parallel decomposition and communication strategies of the structured
mesh are significantly different from those of the unstructured mesh.

A significant difference apparent to a user of the structured mesh option
relates to input and output. The presence of a ’.gen’ file is not assumed and
the code does not automatically produce a ’.exo’ file. These files must be
explicitly called out within the input file. This is because structured physics
supports multiple input and output options.

Another significant difference is that for parallel runs the smallest unit
of operations is a block of structured mesh. When a multi-block problem
is run on more than one processor, the blocks are ’dealt out’ to all of the
available processors. If there are more processors than blocks, the calcula-
tion will progress but some processors will be essentially idle. Although a
simulation run in serial may have more than one structured block, the least
communications overhead is incurred if the problem consists of a single block.
For parallel simulations a single block per processor will also limit commu-
nications overhead, however more blocks per processor will allow flexibility
for upcoming dynamics load balancing capabilities.

26

Nomenclature

Table 1: Terms and Acronyms

Term Definition

ACME Algorithms for Contact in a Multiphysics Environment
ALE Arbitrary Lagrangian Eulerian
ALEGRA Arbitrary Lagrangian Eulerian General Research Application
NEVADA Tool & code infrastructure for the alegra family of applications
BC Boundary Condition
EOS Equation of State
IC Initial Condition
MIG Model Interface Guidelines
MMALE Multi-Material Arbitrary Lagrangian Eulerian
SMALE Single-Material Arbitrary Lagrangian Eulerian
MBS Multi-Block Structured curvilinear
MPP Massively Parallel Processor
SPMD Single Program Multiple Data

1 Introduction to ALEGRA

alegra [8, 37] is an ALE (Arbitrary Lagrangian-Eulerian) multi-material
finite element code that emphasizes large deformations and strong shock
physics. As an effort to combine the modeling features of modern Eulerian
shock codes with the improved numerical accuracy of modern Lagrangian
finite element codes, alegra is a descendant of the pronto transient dy-
namics code [38, 39] and contains elements of the cth family of shock wave
codes [25, 7]. This capability permits a calculation to proceed in Lagrangian
fashion until portions of the finite element mesh become too distorted, at
which time the nodal points in the most deformed portion of the mesh are
moved to reduce the distortion to acceptable levels. The advantage is that
numerical dissipation is avoided until large deformations occur and this is lim-
ited to only those regions where severe distortions require mesh movement.
In addition to mesh smoothing, the alegra remesh algorithm can also move
nodes to better resolve mesh regions with specific values of selected variables
or their gradients.

27

alegra is written predominantly in the C++ programming language [11],
though we limit our use of some features of C++ to avoid efficiency prob-
lems. This allows us to take advantage of object-oriented programming tech-
niques in managing the inherent complexity of the physics models being
implemented. However, we also recognize the utility of incorporating vari-
ous Fortran or C code and libraries if they best serve our modeling needs
and if they are sufficiently mature and robust. Recent efforts in alegra

have focused on transforming the code into a “framework” for new simula-
tion applications. To this end, most of the physics-specific treatments and
references have been removed from the generic code base. The physics inde-
pendent coding is known as nevada, to emphasize its complimentary nature
to the another framework at SNL, sierra.

alegra is designed to run on distributed-memory parallel computers us-
ing the Single Program Multiple Data (SPMD) paradigm, in which the mesh
is decomposed into sub-meshes (i.e., domain decomposition). This is done be-
cause we need the enormous memories and processor speed of massively paral-
lel processor (MPP) computers to analyze large, three-dimensional problems.

The unstructured mesh used by alegra is taken from a genesis

database which is the non-transient part of the exodus database [29]. The
packages fastq [3], gen3d [16], gjoin [33], and cubit [36] can be used for
preprocessing purposes to obtain an initial genesis mesh. The genesis file
produced with fastq will be single precision only. cubit can generate double
precision genesis files, but one can expect roundoff in the least significant
figure of the nodal coordinates. The cubit tool accepts several common solid
modeler output formats (e.g., ACIS and IGES) as input, and then produces
a finite element mesh in genesis format. In addition, there is an “exodus
preference” available for Patran. The nemesis utilities based on Sandia’s
chaco package [19] determine the decomposition of the mesh. Good mesh
decomposition is important to minimize the memory requirements, balance
the work on the compute nodes, and minimize the data passed between com-
pute nodes. Whereas rectangular meshes are relatively easy to decompose,
subdividing the arbitrary connectivity meshes used by alegra is much more
difficult. Recombination of the parallel result output files produced by ale-

gra can be done with the nemesis utility nem join or with the concat

utility.

The mesh used by the mbs component of alegra can be defined three
ways: specified within the input file, imported as a modified plot3d file, or
imported as a limited class of genesis files. The in-line mesh specification

28

allows definition of an i,j,k array of axis aligned blocks, each containing
l,m,n uniformly distributed axis aligned elements. The modified plot3d

file is generated by translation from a limited class of unstructured genesis

files. Direct import of these genesis files is also available but should be
limited to small problems (less than 100,000 elements). The element blocks
in the appropriate genesis files must each consist solely of elements that can
be re-ordered into an l,m,n array. There is no limitation on the ways that
blocks may be connected to each other by contiguous nodes. The sidesets
and nodesets are translated and imported along with the element block ids.

The plot output file from alegra is in exodus database format [29].
The plot file can contain as many or few variables as the user desires and can
include all the standard nodal and elemental variables, as well as material
state variables. The exodus format output files may be post-processed us-
ing the blot [15], mustafa (an internal Sandia visualization package), and
Ensight (a commercial visualization package from Computational Engineer-
ing International, Inc.) graphics packages. The exodus files are platform
independent.

In addition, alegra provides both Eulerian and Lagrangian tracer par-
ticles that record time history data for selected variables (e.g., pressure vs.
time at the tracer location) in the hisplt format, allowing post-processing
with the hisplt code [42]. The format of the history data file is binary and
therefore a problem arises when the production platform is not binary com-
patible with the platform on which one desires to run hisplt to examine the
history data. In order to view the file with hisplt in this case, the history
data must be converted to text format, the file transferred to the second
platform, and the data reconverted to binary format.

The restart output file from alegra is in a separate format and cannot
be used with any post-processing tools.

alegra accepts mnemonic, free-format input. Descriptions of the key-
words recognized by alegra and their syntax requirements are provided
later in this manual.

alegra 2-D and 3-D versions are built separately. The 2-D versions
handle both planar and axisymmetric geometries, permitting application to a
reasonably broad class of problems. The 3-D version is restricted to Cartesian
geometry.

alegra is supported on many platforms on a routine basis. It can be

29

supported on any multiple processor compute platform which supports MPI
message passing [17, 18] and has a relatively modern and robust compiler
suite. alegra does not utilize MPI-2 message passing features.

The alegra release version numbers are on listed on CDs that are made
available to select external users.

30

2 Overview

This chapter describes the use of the alegra program, including mesh gener-
ation, problem specification, and post-processing. This chapter is arranged
to take a user through the steps required to successfully run a simulation
with alegra. This section is not intended to describe in detail the physics
or algorithms in alegra. Several reference documents are available that
cover these areas. Nor will this document provide all the detail necessary
to perform the pre- and post-processing phases of an alegra simulation. If
you plan to use alegra, you will want to acquire up-to-date manuals for
the pre- and post-processing tools.

To successfully run a simulation with alegra, one must 1) create a
finite element mesh with tools like fastq, gen3d, and/or cubit, or create
a structured mesh using keywords inside the input deck in the next step. 2)
create an alegra problem specification input deck, 3) run alegra, and 4)
examine the results using analysis tools such as blot, mustafa, ensight,
and hisplt. In addition, for parallel runs, one must learn how to use the
alegrabal script and in some cases the Concat or combinemp scripts. This
chapter is divided into the following sections:

• Basic alegra Environment

• Running alegra

• Example Problem

• Problem Reporting

• New Features

2.1 Basic ALEGRA Environment

The alegra run time environment is based on:

• Environment variables

• Shell scripts

• Sandia’s access system of finite element support tools

31

Anyone wanting to use alegra needs to be acquainted with UNIX-based
operating systems.

2.1.1 Environment Variables

The alegra code relies on environment variables set within the user’s
.cshrc file. These environment variables are used within every context of
the alegra environment and allow code developers and users tremendous
freedom in maintaining several versions of the alegra code. At a minimum,
the following environment variables must be set in order to run alegra:

ALEGRA_ARCH

ALEGRA_EXE

ALEGRA_MIGDATA

ALEGRA ARCH refers to an operating system or computer vendor along with
a compiler description, if necessary. Acceptable values for ALEGRA ARCH are:
linux-gcc, sun7, aix-5.1, irix64-6.5, and xtflop. The ALEGRA ARCH

variable will be used to find a path within the Concat script, which is called
by the Alegra script.

ALEGRA EXE defines the path to the alegra executable used by the Alegra
script. Users will set this based on the version of alegra they want to run.

ALEGRA MIGDATA sets the path to the directory containing external files
containing material data used by many material models. Use of this variable
is described more fully in Chapter 12.

2.1.2 ACCESS Tools

Alegra assumes that some of the ACCESS tools are available in the user’s
path. [35]. The access system provides many pre- and post-processing tools
for finite element codes.

32

2.1.3 Sandia Users Only

Sandia users (ESHPC lan, tflop lan, tflop-s lan) should establish the
proper environment by sourcing the alegra.users script available in
$ALEGRA ROOT/etc on each machine. This script will define ALEGRA ROOT

on each platform according to the Table 2 and will define the appropriate
value of ALEGRA ARCH.

Table 2: Common ALEGRA ROOT Paths

Platform Path

ESHPC lan /pr/alegra

janus /Net/projects/alegra

edison /projects/alegra

janus-s /projects/alegra

pulsed power theory lan /apps/Alegra

The alegra.users script will also modify the users PATH environment
variable to include the appropriate directories.

2.2 Running ALEGRA

alegra uses a common prefix for all of the files either read or written. This
prefix is called the runid. The runid prefix can be any valid UNIX char-
acter string. The suffixes appended to runid determine the characteristics
of the file. Figure 1 displays the possible files that are used in an alegra

simulation.

To use alegra, a user must become proficient in the following proce-
dures:

• Preprocessing or mesh creation

• User problem specification creation

• alegra execution

• Post-processing or visualization

33

Throughout this process, users should consider where the natural bound-
aries among materials exist and how the materials should behave. In alegra

these boundaries define the boundaries of BLOCKs of elements. In the prepro-
cessing phase, the element BLOCKs are given unique identifiers that can be
tied to the problem specification input file. This coupling of identifiers allows
the user to control physical and algorithmic parameters associated with the
BLOCK. In addition, boundary conditions in the problem specification are tied
back to unique identifiers in mesh creation that represent collections of nodes
(NODESETs) and surfaces (SIDESETs). As users create a mesh, they will want
to uniquely identify nodes and surfaces upon which to apply boundary condi-
tions. Finally, some attention should be given to how BLOCKs and MATERIALs
will be used in the visualization process. For example, if a user wants to
differentiate between two areas of the same MATERIAL, separate BLOCKs can
be created and the MATERIAL duplicated in the problem specification.

2.2.1 Preprocessing

alegra uses an unstructured finite element discretization for solving the
governing partial differential equations. alegra can begin with a body fitted
mesh, a background mesh in which “shapes” are inserted, or a combination
of both. The shape insertion option is useful for very complex geometries
which can be accurately modeled in an Eulerian framework. This is the
model that all Eulerian hydrodynamic codes use. alegra accepts the same
“shape” input (see the “DIATOM” specification in Section 5.7.1 on page 100)
as the cth code [7, 25].

The preprocessing steps for alegra include:

1. Mesh Creation

2. Mesh Partitioning (Parallel Runs)

The creation of three-dimensional body-fitted meshes can be very time-
consuming. Many years of research have gone into automating the mesh-
ing of solid model geometry. Many three-dimensional meshes require the
user to decompose the geometry into simple parts that are essentially two-
dimensional. These parts are then translated, warped, or rotated to make
three-dimensional meshes. Great care must be taken to ensure that the

34

Legend

Required input file
Optional input file

Output file

runid.jou - cubit

runid.fsq�

runid.g23�

fastq
gen3d
gjoin

ex1ex2v2

? ?
?

runid.gen

?

runid.cmd - alegrabal - runid.spd

?

nem spread

?

runid.par.*�

	

runid.nem

R

R

runid.cfg

	

runid.inp - Alegra

9runid.ech
�

runid.out
j

runid.dpl
runid.dmp.*

z runid.his

?

?

runid.exo.*

?

Concat runid.hin - hisplt

?

runid.exo

? ? ?

blot ensight

runid.exodiff

runid.base exo

?

exodiff

Figure 1: File names for alegra.

35

Legend

Required input file
Optional input file

Output file

runid.jou - cubit

runid.fsq�

runid.g23�

fastq
gen3d
gjoin

ex1ex2v2

? ?
?

runid.gen

?

j

gentop3d

?

runid.p3d

?

runid.inp - Alegra

9runid.ech
�

runid.out
j

runid.dpl
runid.dmp.*

z runid.his

?

runid.exo.*
(if requested)

Figure 2: File names for alegra mbs.

36

simple three-dimensional pieces can be “glued” together to form a coherent
three-dimensional mesh.

There are two tools that are commonly used for mesh creation in alegra:
fastq/gen3d, and cubit. In addition, the products of both tools can be
combined with gjoin to create an aggregate mesh.

fastq [3] is a two-dimensional meshing tool. Using this tool, a user cre-
ates point data, connects points to make lines and then connects lines to
make blocks (regions) that can be meshed. The two-dimensional meshes can
be rotated, translated and warped by gen3d [16] to produce a three dimen-
sional mesh. Three-dimensional meshes can be combined with gjoin [33].
The majority of the time required to produce a complete three-dimensional
mesh goes into assuring that the nodes of the three-dimensional sub-meshes
match up at the connecting surfaces. Discontinuous mesh can be handled
with the contact library [5] used in alegra. The user must ensure that
where contact is to be used, there are separate, unique nodes belonging to
each side of the interface and that these nodes have not been merged in some
fashion. All fastq generated meshes must also be processed by the utility
ex1ex2v2 to transform the exodus I format to exodus II format. exodus

I format is not supported by Alegra.

cubit [36] is an active mesh generation project at Sandia. The ultimate
goal for cubit is to be able to take solid model geometry as input and pro-
vide a quality three-dimensional mesh based on user-defined tolerances. At
present, cubit provides the functionality of fastq, gen3d and gjoin in a
single package along with many enhancements and the ability to automati-
cally mesh simple solid model geometries.

The genesis [29] file produced with fastq will be single precision only.
cubit can generate double precision genesis files but one can expect round-
off in the least significant figure of the nodal coordinates.

For execution in parallel, the mesh created by the preprocessing tools
must be decomposed for the number of processors the run is to be executed
on. This decomposition is performed using the alegrabal script, which in
turn uses the nemesis [20] utilities. The minimum information required by
the alegrabal script is the number of processors on which the run will take
place and the runid of the problem. For example,

alegrabal -p 7 taylor

37

would break the taylor.gen mesh up for 7 processors for the default parallel
platform. Additional options can be reviewed by running alegrabal with
no parameter (or the -h parameter).

Figure 2 shows that for some structured grids computations it is possible
to bypass the .gen file as structured grid information may be given in the
.inp file.

2.2.2 Problem Specification File

alegra uses a free-formatted ASCII input file to control the execution of
the code. The units are assumed to be CGSK (cm-gm-sec-Kelvin). However,
this can be changed with the UNITS keyword. Note that output from TRACERS

to the hisplt [42] database is always in SI units.

There is a one-to-one correspondence between the problem specification
file and the mesh file. Integer identifiers used for BLOCKs, NODESETs, and
SIDESETs can be used in the problem specification to attach attributes. Chap-
ter 3 is devoted to this subject.

2.2.3 Executing alegra

alegra is invoked using the Alegra script:

Alegra runid

where runid is a character string chosen by the user to identify the problem.
This string is used to construct the names of the files that will be used for
the calculation. For example, the command

Alegra taylor

will cause alegra to look for a binary file named taylor.gen containing
the problem mesh and a text file named taylor.inp containing the problem
specification. Figures 1 and 2 depict the files alegra will use for input and
output. Table 3 describes the contents of each file. The files annotated with
“Parallel” are only used when the code is run in multiprocessor mode.

38

Table 3: alegra Input and Output Files.

File Name Description

runid.inp Problem specification. This file contains specifications on
how long to run the problem, how many output dumps to
make, what materials belong to the mesh blocks, how the
mesh blocks behave and what physics package to run. Most
of this document deals with the contents of this file. (Input)

runid.gen genesis database. This file contains the description of the
finite element mesh in EXODUS II format. A user can
generate this mesh using various tools (fastq, gen3d, cu-

bit, etc.). This file contains the number of mesh blocks,
the topology of the mesh, and the node and element sets
that boundary conditions can be applied to. The mesh
BLOCK, SIDESET, and NODESET IDs have a one-to-one cor-
respondence with those used in the problem specification.
(Input)

runid.nem nemesis file. Describes to the nemesis nem spread utility
how the finite element mesh is to be decomposed onto N
processors. This file is produced as a result of running the
alegrabal script. (Input, Parallel)

runid.spd Spread script. A script produced by the alegrabal script
and run by the Alegra script to send portions of the .gen
database to each of the N parallel processors, using the
nem spread utility. (Input, Parallel)

runid.cfg Configuration file. A text file produced by the alegrabal

script that is used by the nemesis utilities to both spread
the files before the run and to combine the output files after
the run. Its presence is a sign to the Alegra script that this
is a parallel run. (Input, Parallel)

runid.cmd Termination signal file. Using the Unix “touch” command
to create a file of this name in the running directory will
cause the code to terminate gracefully. (Input)

continued on next page

39

continued from previous page

runid.nqs Batch job file. As produced by alegrabal, this file is tar-
geted to the NQS system on the Tflop machine. The script
contains a commented batch system submission command
that can be stripped out and entered on a command line.
The command submits the script to the batch system, which
then runs the Alegra script for this problem file. The
runid.nqs file can be modified to be used on any batch
execution environment. (Input, Parallel)

runid.ech Problem specification echo. This file contains an echo of
the problem specification. If errors occur in processing the
problem specification, this file will point out the trouble
spots. (Output)

runid.out ASCII output file. This file contains a detailed list of the
options set by the user and options set by the code. In addi-
tion, this file provides initial mass, momentum and energy
associated with each mesh block. Finally, this file records
when output is written to other files. (Output)

runid.exo exodus database. This file contains both the genesis

database and all element and node transient data requested
by the user. By default, this file will contain nodal displace-
ments and element volume fractions. Additional data must
be requested in the problem specification file. (Output)

runid.his hisplt database. This file contains global, material and
tracer location transient data. The hisplt code can be used
to extract this data and produce plots. (Output)

runid.dpl List of restart files. This ASCII file is generated by ale-

gra and contains a list of all restart dumps that have been
written for the problem. Upon restarting the code, alegra

searches this list for the restart dump specified in the input
file, by dump number or time. (Output)

runid.dmp.* Restart database. A restart dump file, together with the
original genesis database and problem specification, con-
tains all the information required to restart alegra from
a given time. However, this file does not work with any
plotting packages. If an EMIT RESTART keyword is present,
alegra will by default retain only the last two restart dump
files written.

continued on next page

40

continued from previous page

For serial runs, the dump files are named runid.dmp.n
and runid.dmp.m, where m > n. runid.dmp.m will always
be at the later time. The user can specify how many restart
dump files to retain via the RESTART DUMPS keyword. These
files can be very large.

For parallel runs, the files are named runid.dmp.N .n.m,
where N is the total number of processors used in the run,
n is the the processor specific dump file (a number from 0
to N − 1), and m is the dump sequence number described
above. (Output) (Input, Restart)

runid.dbg Debug file. With the correct user commands, extensive de-
bugging information can be obtained and is written to this
file. This information can be very useful to code developers,
but is of little use to most users. (Output)

The Alegra script has the following options:

Alegra [-12] [-a] [-chBQ] [-C buffer_size] [-spF] [-b <batch queue>]

[-I pfs_mode] [-H hostfilename] [-x executable] [-u mask]

[-w warntime] [--migdata dirname] [-P procmode] runid

Options:

1 - Mode 1 (default). Diagnostics written to screen

2 - Mode 2. Diagnostics written to *.con.

a - Use aprepro to preprocess the input file before running

alegra

c - Turn off crt control (allows running in background

without hangup)

h - Print this options message

B - Beep to signal when calculation is complete

Q - Quick look at user input correctness and mesh quality

C buffer_size

- For some architectures this changes the default buffer

size

s - run in serial

p - run in parallel (appropriate files must exist)

41

F - Force rerun of nem_spread before running alegra

r num_raids - number of raid arrays to use

--raid-offset - the raid offset

--nprocs size

- run in parallel with ’size’ processors

- this implies a structured method

P - set processor mode for tflop

0 = default; 1 proc/node; 3 = 2 proc/node;

S sub_dir - the sub directory

R root_dir - the root directory

f num_files - the number of concurrent files

I pfs_mode - mode for using the pfs (TFLOPs specific)

x executable

- Use executable to perform the alegra calculation

u mask

- set file creation mask

w warntime

- have DPCS send SIGTERM to run warntime seconds before

job time limit

b batch queue

- batch queue to submit run to

H hostfilename

- list of machine names for use in parallel runs

(mpirun -machinefile hostfilename)

--migdata dirname

- override the ALEGRA_MIGDATA environment variable

Generally speaking, the p and s options are not needed. The Alegra

script along with the runid.cfg file created by the alegrabal script control
how the alegra executable is run.

Thus, the command line:

Alegra -2 -x /home/username/alegra.exe taylor

42

would use alegra.exe in /home/username and write the output to a file
named taylor.con.

The aprepro [32] utility is an algebraic preprocessor that reads a file
containing both general text and algebraic, string, or conditional expressions.
It interprets the expressions and outputs them to the output file along with
the general text. The utility is part of the seacas [35] suite of pre and post
processors. This capability allows the user great flexibility in writing input
files that contain expressions that may depend on a few parameters and saves
the effort manually changing values when performing parameter studies and
the like.

In the process of running alegra, many messages are printed to the
console (UNIX “standard out”). There are five types of messages:

• Information

• Warning

• Fatal

• Global Record

• I/O Generation

Generally speaking, the information and warning messages that appear
during the initialization of alegra may be ignored. However, in the process
of matching the problem specification deck to the mesh file a warning message
can be generated that later causes a fatal message. For example, the code
initially warns the user that a Sesame file could not be found if one does
not exist. If the user requests a Sesame equation of state and a Sesame
file could not be found, the code will reach a point of creating the Sesame
equation of state object and the warning becomes a fatal message. When a
fatal message is printed by alegra, you should look through the warning
messages to determine the cause.

Fatal messages cause the code to stop executing. There can be many
causes for this. The user may need to interact with a developer or Sandia
point of contact to determine the source of the error and if necessary submit
a detailed problem report.

The global record message contains the cycle, time, time step, the element
ID that limits the time step; the grind time (with I/O and without I/O); the

43

number of nodes remeshed since the last global record print; the total mass;
and the total, internal and kinetic energies. The record also shows a count
of the number of nodes, edges, faces, and elements in the problem, as well
as the refine and unrefine count. The latter two values are related to “h-
adaptivity”, a research area of the code. The mass in the problem, mass loss
and mass gain are also given. alegra prints an explanation of the global
record message at the start of each simulation. The frequency of printing
a global record message is controlled with the EMIT SCREEN keyword. An
example of this is shown below.

**

The following information will be dumped periodically to screen output

(cycle_number)

t=current_time

dt=time_step

(element_limiting_time_step)

[grind_time,no_io_grind_time]

{number_of_vertexes_moved}

mass = total mass

mgain = mass gain

mloss = mass loss

te = total energy

ie = internal energy

ke = kinetic energy

**

... lots of intervening output ...

(490) t=2.8422e-04 dt=5.9569e-07 (92) [3.6155e-05,1.7161e-05] {0}

mass=7.3840e-02 mgain=0.0000e+00 mloss=0.0000e+00

te=1.9143e+02 ie=1.3051e+02 ke=6.0919e+01

... lots more output ...

I/O generation messages inform the user of when the code sends infor-
mation to the disk drives.

44

2.2.4 Post-processing

alegra writes both exodus [29] and hisplt [42] databases. The user can
control the frequency at which the transient results are written to these files.
The user can also control which variables are written to the exodus database.
By default, mesh displacements and material volume fractions are written to
exodus. hisplt contains global, material and tracer particle information.
The user can specify the number, type and location of tracer particles. Tracer
points must be specified in the user input in order to have a valid hisplt

database. Variables included in the exodus and hisplt databases can now
be separately specified.

By default, alegra writes single precision exodus files. This can be
changed with the DOUBLE PRECISION EXODUS keyword described in Sec-
tion 4.2.4 on page 77. The default is single precision because of the larger
file sizes of double precision data. For parallel runs, use of the Concat tool
will result in single precision combined exodus files. If the user desires to
retain double precision files, then the nem join tool must be used to do the
concatenation step.

The exodus data base can be visualized by blot [15], mustafa, and
ensight. Most external users will use blot due to its portability. mustafa

is an SNL developed tool based on AVS Express and provides the most robust
visualization environment for alegra. ensight is a commercially available
tool that supports input of exodus formatted files. It is currently used for
alegra’s largest parallel simulations.

The hisplt database is post-processed with the hisplt code. Using the
runid.hin file (user created input file) hisplt creates a series of x-y plots
that can be viewed by a number of device drivers. hisplt and the device
drivers are part of the cth distribution.

2.3 Example Problem

This section presents an example of mesh construction, problem specification
and graphical output of an alegra run, the 3D Lagrangian Taylor Anvil
Impact Problem. Numerous other examples are contained in the alegra

benchmark directories. These problems will be documented in the alegra

Verification document which is currently under development.

45

6

-

Y

X

6

?

10 cm

�- 1 cm
Copper Bar

V = -5.e4 cm/s

?

Rigid Surface

Figure 3: Taylor Anvil Simulation.

3D Lagrangian Taylor Anvil Impact Problem

The Taylor Anvil impact problem is a validation benchmark for both solid
dynamics algorithms and constitutive models. In this problem, a solid cylin-
drical bar strikes a rigid target. Although this problem is two-dimensional
axisymmetric, a quarter cylinder, three-dimensional mesh can be used to
demonstrate the steps in using alegra for three-dimensional Lagrangian
calculations. The problem parameters are given in Figure 3.

The first step in running this problem requires building a mesh. For
a three-dimensional mesh, this is a two-step process: 1) create a two-
dimensional mesh and 2) rotate the two-dimensional mesh to create a three-
dimensional mesh. Using fastq for the two-dimensional mesh, one can inter-
actively input point data, create lines and regions, and then mesh the region.
fastq can also read this data from a text file. For this problem, only four
points are needed to create the two-dimensional mesh: (0, 0), (0,1), (1, 10),
and (0, 10). These four points are then connected to form four lines. The
four lines are connected to form a block. When creating the lines, the user
will input the number of intervals desired on a line. In general, parallel lines
will have the same number of intervals. In addition, the user will group lines
to form boundary sets. For this problem the fastq input file, taylor.fsq,
would look like:

POINT 1 0.00E+00 0.00E+00

POINT 2 1.00E+00 0.00E+00

46

POINT 3 1.00E+00 1.00E+01

POINT 4 0.00E+00 1.00E+01

LINE 1 STR 1 2 0 2 1.00

LINE 2 STR 2 3 0 20 1.00

LINE 3 STR 4 3 0 2 1.00

LINE 4 STR 1 4 0 20 1.00

REGION 1 1 -1 -2 -3 -4

SCHEME 0 M

BODY 1

ELEMBC 1 1 $ will become the Y = 0 plane

ELEMBC 2 2 $ will become the outer cylindrical surface

ELEMBC 3 3 $ will become the top surface

ELEMBC 4 4 $ will become the Y axis

NODEBC 1 1 $ will become the Y = 0 plane

NODEBC 2 2 $ will become the outer cylindrical surface

NODEBC 3 3 $ will become the top surface

NODEBC 4 4 $ will become the Y axis

EXIT

The fastq REGION corresponds to an alegra BLOCK, the fastq ELEMBC

corresponds to an alegra SIDESET, and the fastq NODEBC corresponds to
an alegra NODESET. Note that there is no difficulty in numbering SIDESETs
and NODESETs with the same ID as these are distinct entities. Graphically,
this file is depicted in Figure 4. The meshed block is shown in Figure 5.

The following command generates a two-dimensional mesh file from the
above taylor.fsq file:

fastq -m taylor.g2 taylor.fsq

The two-dimensional mesh is now stored in the file taylor.g2. The next
step requires using this mesh as input to gen3d. The following command
begins the process:

gen3d taylor.g2 taylor.gen

Using the commands below, gen3d generates a three-dimensional quarter
cylinder with boundary sets on xy and yz planes and saves the resulting mesh

47

1 2

34

1

2

3

4

1
Points
Lines
Region (Block)

Figure 4: Point, Line and Block IDs for Taylor Anvil Problem.

Figure 5: A Coarsely Meshed Taylor Anvil Problem.

48

in the file, taylor.gen.

rotate 4 90 $ rotate 90 degrees about the Y axis in 4 steps

ssets front 5 $ will become the Z = 0 plane

ssets back 6 $ will become the X = 0 plane

nsets front 5 $ will become the Z = 0 plane

nsets back 6 $ will become the X = 0 plane

exit

The fastq SIDESETs and NODESETs are rotated about the Y axis causing lines
to become surfaces. Note however that SIDESET 4 and NODESET 4 become
5 distinct lines that are all collinear and cannot be visually distinguished in
the genesis file. The gen3d SSETS corresponds to an alegra SIDESET,
and the gen3d NSETS corresponds to an alegra NODESET. Again note that
there is no difficulty in numbering SIDESETs and NODESETs with the same ID
as these are distinct entities. These commands may also be entered into a
data file, taylor.g3d, and used as input to gen3d. The above command
would then become:

gen3d taylor.g2 taylor.gen < taylor.g3d

The resulting mesh is shown in Figure 6.

With the mesh completed, the next step is to create the problem spec-
ification deck. Chapter 3 is devoted to describing the commands that can
be used in running alegra. In this problem, the user needs to describe the
boundary conditions and how the material should behave. At this point one
knows that:

1. The impacting material is copper. Therefore, it has strength and thus
SOLID DYNAMICS is the correct physics. For this problem, an elastic
plastic constitutive model and a Mie-Grüneisen Us-Up equation of state
will suffice.

2. XZ, XY, and YZ planes cannot displace (IDs 1, 5, and 6)

3. The Y axis cannot displace, although its nodes can slide along the axis
(ID 4)

4. Overlaying nodes along the Y axis should be constrained to remain
overlaying

49

Figure 6: Three-dimensional Taylor Anvil Mesh.

5. Block 1 has an initial velocity of (0, -5.e4, 0)

6. Deformation probably will not be large and thus a Lagrangian mesh
motion treatment will work. Selection of Lagrangian, ALE, or Eulerian
mesh motion becomes more apparent with experience.

alegra uses the concept of DOMAIN, BLOCKs, MATERIALs, and material
MODELs. The DOMAIN describes attributes that apply to all of the BLOCKs.
A BLOCK can have several MATERIALs and has attributes that describe how
the nodes that form the elements in the BLOCK will behave. Each MATERIAL

can have several MODELs. Boundary conditions and I/O control form other
areas of the problem specification deck. The following example depicts an
annotated problem specification deck for this problem.

title, "Taylor Impact"

termination cycle 200 $ Job Control

emit screen, cycle interval 10 $ I/O Control

emit plot, cycle interval 10

plot variables

50

velocity

density

temperature

pressure

end

solid dynamics $ Physics to be run

no displacement, sideset 1, y $ Rigid surface

no displacement, sideset 4, x $ Constrain the axis

no displacement, sideset 4, z

no displacement, sideset 5, z $ Symmetry boundary

no displacement, sideset 6, x $ Symmetry boundary

initial block velocity: block 1, y -5.0e4 $ Initial Condition

degenerate bc: nodeset 4, axis, $ Constrain nodes on the

x 0. y 0. z 0. $ Y axis to move at COM

x 0. y 1. z 0. $ velocity and acceleration

domain $ Default domain attributes

end

block 1 $ Block 1 will

lagrangian mesh $ behave Lagrangian

material 1 $ and has Material 1

end

end

material 1 "copper" $ Material 1 has initial density

density 8.932 $ gm/cm^3 $ and temperature. The stress

temperature 398. $ Kelvin $ tensor will be evaluated with

model 100 $ constitutive model 100.

model 2 $ Pressure, temperature, and sound

end $ speed will be evaluated with model 2.

model 100 elastic plastic $ This constitutive model

youngs modulus 1.076e+12 $ dyne/cm^2 $ is elastic plastic and

poissons ratio 0.355 $ populated with copper’s

yield stress 6.0e+9 $ dyne/cm^2 $ material parameters

hardening modulus 2.0e+9 $ dyne/cm^2

beta 0.5

end

51

Figure 7: Taylor Anvil Deformed Mesh at 200 Cycles.

model 2 keos miegruneisen $ This equation of state is

matlabel = ’COPPER’ $ that in the EOS_data

end $ file for the material

$ labeled ’COPPER’

exit

It is usually easiest to create a new problem specification by modify-
ing an existing problem. The Taylor Anvil problem is run for 200 cycles
using default parameters for time step control, artificial viscosity, and hour-
glass control. In the process of the simulation, plot dumps are added to
taylor.exo every 20 time steps (cycles), and global information records are
written to the screen every 10 cycles. In addition to the requested plot vari-
ables, the mesh displacements and material volume fractions are written to
taylor.exo. This data can be viewed with blot or mustafa. An image of
the deformed mesh from the last plot dump is given in Figure 7.

To run this example with a structured mesh physics option several changes
are required in the input deck. The SOLID DYNAMICS keyword changes to
STRUCTURED SOLID DYNAMICS. The no displacement boundary must be ap-
plied to the corresponding nodesets instead of sidesets. The DEGENERATE BC

must be commented out (not supported for structured). The genesis input

52

deck must be called out in the physics portion of the input deck as follows:

mesh, genesis

file = "taylor.gen"

end

If exodus output is desired (the default is no plot output from structured
physics options) then an output file name must be called out.

plot, exodus

file = "taylor.exo"

end

2.4 Problem Reporting

The alegra team uses standard web-based tool called SOURCEFORGETM

to track problems reported by users and as well as enhancement/feature re-
quests. This tool is available to users and developers working within the SNL
firewall. Generally users should work with a developer or other experienced
user to ensure that their issue is a real problem. A bug or issue report can
then be submitted along with attached files. A detailed description of the
problem, an input file, files to generate the mesh (fastq, gen3d, or cubit),
and any output that might help diagnose the problem, should be included.
The smaller the problem that is submitted illustrating the deficiency, the
more likely that a fix will be found. Users in other locations should coordi-
nate bug submission through their official Sandia contact.

2.5 New for Version 4.6

Version 4.5 was released in September 2003. Important new supported addi-
tions to the code include

1. Periodic wedges in unstructured meshes are supported provided at least
two elements are attached to the wedge centerline.

2. Random density perturbation coding has been moved to a space-filling
curve approach which is much more effective and gives the user some
control over granularity.

53

3. User defined initial conditions allow C-language functions to be used
to set initial values for physics variables using coordinates as input.

4. This release is the first to support the structured mesh capability.

54

3 General Input

alegra input is divided into four general categories:

• execution control,

• physics specification,

• adaptivity control, and

• material modeling.

This section provides an overview of the input organizational structure and
demonstrates the ways alegra input can be organized with several exam-
ples. The alegra input files should be organized into four sections for the
four different categories of input. Any category can come first in the input
file, but they can not be intermixed. A generic input file for an unstructured
problem will look like the example shown below. Note that the adaptivity
specification is an optional capability to control the H-adaptive feature of
alegra.

$ Execution Control Section

Title

A very general input file

Output Control Keywords

Other Control Keywords

$ Physics Specification Section

Physics Specification Keyword

$ Begin Physics specification subsections

Region

$ Region Keywords

End

Unstructured Region

$ Unstructured Region Keywords

End

55

Mechanics

$ Mechanics Keywords

End

Energetics

$ Energetics Keywords

End

Dynamics

$Dynamics Keywords

End

$ Other Physics subsections

$ End of Physics subsection specifications

End $ of the Physics Specification

$ Adaptivity Control Section

Adaptivity Specification

Enable Adaptivity

$ Adaptivity control parameters

End $ of the Adaptivity specification

$ Material Modeling Section

Material 1

Model 1

Model 2

$ Additional model specifications and variable

$ initializations for Material 1

End

Model 1

$ Model 1 Keywords

End

Model 2

$ Model 2 Keywords

End

$ Additional Material and Model specifications

exit

56

In this very general input file, the alegra keywords for each subsection
(i.e., level) of the physics specification are segregated into their own section.
As we shall see later, this division is not necessary. It is done here to help
explain the organization of this manual, which reflects the organization of the
alegra simulation object hierarchy. Sections 5.2 and 5.3 on pages 93 and 94
describe the legal physics specification keywords. Keywords available for the
control of specific physics options are given in Sections 6 through 11. The
order of entry of the various physics levels is of no importance. As described
in Section 3.1.4 on page 63, the “$” is the comment character in alegra

input files. A specific example of an input file is shown below.

TITLE

SOD PROBLEM

TERMINATION TIME 0.085

$ TERMINATION TIME = 0.5

EMIT PLOT, TIME = 0.005

EMIT HISPLT, TIME = 0.005

PLOT VARIABLES

no underscores

VELOCITY, as "VEL"

PRESSURE: AVG

DENSITY: AVG

$ the following added to test min/max variable plots

DENSITY : MAX, AS "DENSI_MX" $ material scalar

DENSITY : MIN, AS "DENSI_MN"

VOLUME $ element scalar

VOLUME : MAX, AS "VOLUM_MX"

VOLUME : MIN, AS "VOLUM_MN"

MASS $ vertex scalar

MASS : MAX

MASS : MIN

VELOCITY : MAX, AS "VEL_MX" $ vertex vector

VELOCITY : MIN, AS "VEL_MN"

END

SOLID DYNAMICS

57

MECHANICS

NO DISPLACEMENT, NODESET 1, Y

NO DISPLACEMENT, NODESET 2, X

END

DYNAMICS

PRONTO ARTIFICIAL VISCOSITY

LINEAR = 0.15

QUADRATIC = 1.2

END

END

TRACER POINTS

LAGRANGIAN TRACER 1 X= 0.795 Y= 0.1

LAGRANGIAN TRACER 2 X= 0.895 Y= 0.1

LAGRANGIAN TRACER 3 X= 0.995 Y= 0.1

LAGRANGIAN TRACER 4 X= 1.005 Y= 0.1

LAGRANGIAN TRACER 5 X= 1.105 Y= 0.1

LAGRANGIAN TRACER 6 X= 1.205 Y= 0.1

END

BLOCK 1

MATERIAL 1

END

BLOCK 2

MATERIAL 2

END

END

MATERIAL 1

MODEL 1

END

MODEL 1 IDEAL GAS

GAMMA 1.4

RHO REF 1.0

CV 2.066E7

TREF 1.21E-7

END

58

MATERIAL 2

MODEL 2

END

MODEL 2 IDEAL GAS

GAMMA 1.4

RHO REF 0.125

CV 2.066E7

TREF 9.68E-8

END

crt: off

EXIT

As a convenience to users, the segregation of physics specification con-
trol keywords into their subsections (ENERGETICS, DYNAMICS, etc.) is NOT
required in the alegra input file. The only physics keyword that must
be present is that which describes the most specific characterization of the
physics models, the options for which are found in Section 5 on page 92. An
example of this feature is shown below, where the previous input file has been
cast into this simpler format. Note that the NO DISPLACEMENT keywords
are not placed within a MECHANICS keyword group, and that the PRONTO

ARTIFICIAL VISCOSITY keyword group is not placed within a DYNAMICS

keyword group, since in both cases, they already appear within the SOLID

DYNAMICS keyword group.

TITLE

SOD PROBLEM

TERMINATION TIME 0.085

$ TERMINATION TIME = 0.5

EMIT PLOT, TIME = 0.005

EMIT HISPLT, TIME = 0.005

PLOT VARIABLES

no underscores

VELOCITY, as "VEL"

59

PRESSURE: AVG

DENSITY: AVG

$ the following added to test min/max variable plots

DENSITY : MAX, AS "DENSI_MX" $ material scalar

DENSITY : MIN, AS "DENSI_MN"

VOLUME $ element scalar

VOLUME : MAX, AS "VOLUM_MX"

VOLUME : MIN, AS "VOLUM_MN"

MASS $ vertex scalar

MASS : MAX

MASS : MIN

VELOCITY : MAX, AS "VEL_MX" $ vertex vector

VELOCITY : MIN, AS "VEL_MN"

END

SOLID DYNAMICS

NO DISPLACEMENT, NODESET 1, Y

NO DISPLACEMENT, NODESET 2, X

PRONTO ARTIFICIAL VISCOSITY

LINEAR = 0.15

QUADRATIC = 1.2

END

TRACER POINTS

LAGRANGIAN TRACER 1 X= 0.795 Y= 0.1

LAGRANGIAN TRACER 2 X= 0.895 Y= 0.1

LAGRANGIAN TRACER 3 X= 0.995 Y= 0.1

LAGRANGIAN TRACER 4 X= 1.005 Y= 0.1

LAGRANGIAN TRACER 5 X= 1.105 Y= 0.1

LAGRANGIAN TRACER 6 X= 1.205 Y= 0.1

END

BLOCK 1

MATERIAL 1

END

BLOCK 2

MATERIAL 2

60

END

END

MATERIAL 1

MODEL 1

END

MODEL 1 IDEAL GAS

GAMMA 1.4

RHO REF 1.0

CV 2.066E7

TREF 1.21E-7

END

MATERIAL 2

MODEL 2

END

MODEL 2 IDEAL GAS

GAMMA 1.4

RHO REF 0.125

CV 2.066E7

TREF 9.68E-8

END

crt: off

EXIT

3.1 Format and Syntax

alegra takes as input a text file containing free format lines built around
keywords or keyword groups. With few exceptions, the keywords or keyword
groups may be in any order the user finds convenient.

3.1.1 Keywords

A keyword is a short sequence of English words denoting some action or
quantity. For example,

61

TITLE

PISCES HOURGLASS CONTROL

VELOCITY VECTOR

are all examples of keywords.

The input routines are case insensitive and only enough characters of each
word of a keyword need be entered to uniquely identify it. The number of
words per keyword is significant and varies according to the specific keyword
or keyword group. In the input syntax descriptions that follow, all keywords
will be presented in UPPER CASE, while common grammatical constructs and
numerical parameters whose values are supplied by the user will be shown in
lower case. Optional keywords, constructs, or parameters will be enclosed
in [square brackets]. Alternative choices for a keyword may be enclosed {curly
braces} and separated by an OR symbol (|), as in {ABC | DEF}, meaning
ABC or DEF.

New users may wish to start their input files with the keyword

DEBUG MODE: PARSER

which causes alegra to print more extensive diagnostics of any errors it
detects in the input.

3.1.2 Delimiters

Keywords may or may not require a numeric field or other grammatical
construct to follow it (see for example Section 3.2 on page 63). Adjacent
keywords must be separated by a comma (,), colon (:), semicolon (;), equals
sign (=), or newline; a blank is sufficient ONLY to separate a keyword from
a numeric field, not one keyword from another. (These delimiters may not
always appear explicitly in the command descriptions that follow.) The user
may optionally separate keywords and numeric fields using blanks, commas,
colons, semicolons, equal signs, or newlines as seems appropriate. The num-
ber of characters on an input line is limited to 160. Placing more characters
on a line can lead to platform-dependent results.

62

3.1.3 Keyword Groups

A keyword group is a sequence of keywords and numeric values bounded by
a main keyword and the keyword END. All keywords within a keyword group
may be in any order. For example:

PLOT VARIABLES

PRESSURE, DENSITY, VONMISES

END

MODEL 4 LINEAR ELASTIC

YOUNGS MODULUS = 2.71E8

POISSONS RATIO = 0.25

END

3.1.4 Comments

Users may enter comments at any point by using a dollar sign ($) or aster-
isk (*). All text that follows a dollar sign on a line is ignored. Any line may
be continued and lines may be combined. For example:

$ MATERIAL MODEL SPECS

MODEL 1 ELASTIC PLASTIC $ ALUMINUM

3.2 Common Parameter Constructs

There are a number of common grammatical constructs that are used by
more than one keyword. These constructs are described here, and they will
be rendered in lower case in the descriptions of the keywords that use
them. Users should replace the construct with the keywords described here.
Remember that if a construct directly follows a keyword, an appropriate
delimiter, e.g., a comma (,) or equal sign (=), must separate them.

Other parameters that must be supplied by the user will also be presented
in lower case in the input descriptions and should be replaced by the ap-
propriate data type. Integer fields are specified by int, floating point fields
are specified by real, and character strings are specified by string or some

63

other descriptive name. Default values for these parameters may be shown in
parentheses following the descriptive name (e.g., real (2.5) indicates that
the default value of the real valued parameter is 2.5). All other options or
sub-keywords will be discussed in the keyword descriptions and summarized
in lists or tables.

3.2.1 block-id

BLOCK int

The genesis mesh file format used by alegra assigns material numbers
to subsets of the mesh. alegra uses these material numbers to identify
element blocks. The input specification file uses the block-id construct to
identify these block numbers in keywords that specify material properties or
initial conditions. For example:

INITIAL BLOCK VELOCITY, BLOCK 3, X = 20.0

The analyst must make sure that the proper block numbers are assigned
during mesh generation. A reference to a nonexistent block number will
cause alegra to reject the input.

3.2.2 block-ids

BLOCK int [int] [int] ...

This is similar to the block-id keyword, except that any number of
blocks may be specified.

3.2.3 nodeset

NODESET int

The nodeset construct specifies a nodeset from the genesis mesh file. It
is used in keywords that apply to a set of nodes, such as a nodal boundary
condition. For example:

64

NO DISPLACEMENT, NODESET 101, Y

The analyst must make sure that the proper nodesets are defined during
mesh generation. A reference to a nonexistent nodeset will cause alegra to
reject the input.

3.2.4 sideset

SIDESET int

The sideset construct specifies a sideset from the genesis mesh file.
This sideset can be used in keywords that must specify a set of edges (2D)
or faces (3D), such as a traction boundary condition. For example:

PRESSURE BC, SIDESET 23, 0.25003

Sidesets are best thought of in terms of an element and associated face
(3D) or edge (2D) so that an orientation for the sideset surface is implied.
Sidesets interior to the mesh can be either single or double sided and correct
usage depends on the particular application.

3.2.5 function-set

{ FUNCTION int [SCALE real] [SHIFT real] | real [SCALE real] }

The function-set construct specifies a user-defined FUNCTION table with
an optional SCALE factor and SHIFT. If a keyword requires a function-set

but only a constant value is needed, the function-set construct may take
the form of a single real value. The SCALE option may be applied to this
value.

alegra makes extensive use of user-defined functions that are specified
in the input specification file. (See the FUNCTION keyword in Section 5.13 on
page 139.) These can be referenced one or more times by other keywords
that require a functional specification of time or spatial dependencies. For
example:

65

PRESCRIBED FORCE, NODESET 4, X, FUNCTION 1 SCALE 0.0005

Some keywords that use function sets support the SHIFT option. This
option allows the user to specify the start time for the function data if it
is different from the START TIME of the simulation. That is, the function is
evaluated at time t − tSHIFT . For example:

FUNCTION 4 SHIFT 0.001

The function referenced by a keyword need not appear before the key-
word, but must appear somewhere in the input specification file.

3.2.6 vector

X real [Y real [Z real]] (Cartesian geometry)

R real [Z real] (Cylindrical geometry)

The vector construct specifies a 1-, 2- or 3-dimensional vector. The sec-
ond form of the vector construct applies only to 2D cylindrical simulations.
For example:

INITIAL VELOCITY, NODESET 10, X=0.300009 Y=0.033540 Z=0.699963

3.2.7 vector-function-set

X, function-set [Y, function-set [Z, function-set]]

The vector-function-set construct specifies a 1-, 2- or 3-dimensional
vector function. Each component of the vector function is a separate alegra

function-set specification. For example:

X, FUNCTION 1, Y, FUNCTION 2, Z, FUNCTION 3

66

3.2.8 symtensor

XX real XY real XZ real YY real YZ real ZZ real (3D)

XX real XY real YY real (2D)

The symtensor construct specifies a 2- or 3-dimensional symmetric ten-
sor. The first form should be used for 3D and the second form for 2D. For
example, in 3D:

TRACTION BC, SIDESET 3,

XX 0.0 XY 1.0 XZ 0.0

YY 0.0 YZ 0.0

ZZ 0.0

3.2.9 direction-function

{{ X | Y | Z | R }, function-set |

{ RADIAL | NORMAL | TANGENT }, function-set,

vector, [CENTER, vector] }

The direction-function construct combines a direction with a FUNCTION
that is to be applied. In the first form, a direction along one of the primary
axes is specified, namely X, Y or Z in Cartesian geometry or R or Z in 2D
cylindrical geometry. This is followed by a function-set. For example:

PRESCRIBED FORCE, NODESET 4, X, FUNCTION 1 SCALE 0.0005

In the second form a direction relative to a reference point is specified,
namely RADIAL, NORMAL or TANGENT. This is followed by a function-set

and a vector. Lastly comes the reference point as specified by the optional
CENTER keyword. It is assumed to be the origin if omitted. For example:

PRESCRIBED VELOCITY, RADIAL, FUNCTION 2, X 1.0 Y 1.0,

CENTER, X 0.0 Y 0.0

Note that the vector input must be provided with the RADIAL option even
though it will not be used. The CENTER option provides for user specification
of a center for the RADIAL computation other than the origin.

67

3.2.10 time-or-cycle-interval

{ [EXACT] TIME [INTERVAL] real | CYCLE [INTERVAL] int }

The time-or-cycle-interval construct specifies an interval of time or
interval of cycles used by the keyword. Note that time intervals are specified
as floating point values and cycle intervals are specified as integer values.

The extra word EXACT is optional for the TIME INTERVAL. If specified
alegra will modify the time step so that output is emitted at the exact
interval. Otherwise the default behavior of alegra is to emit output when
a time interval is matched or exceeded. The intent of the EXACT modifier
is to synchronize long running verification simulations on various computer
platforms. EXACT is available for the EMIT PLOT, EMIT HISPLT, and EMIT

RESTART commands.

The extra word INTERVAL is optional and may be included for readability.
For example:

EMIT PLOT, TIME INTERVAL 0.1

EMIT OUTPUT, CYCLE INTERVAL 25

3.2.11 time-range

FROM [TIME] real TO real

The time-range construct specifies a range of time values for which a
keyword will apply. The extra word TIME is optional and may be included
for readability. For example:

EMIT PLOT: CYCLE INTERVAL 1, FROM TIME 0.0 TO 0.3e-6

68

4 Execution Control

4.1 Job Initiation and Termination

4.1.1 Title

TITLE

string

The line of input text following a TITLE keyword is used as a title string
for the problem. Currently, only eighty characters are recorded. For example:

TITLE

CASE 4 WITH 40,000 ELEMENTS

4.1.2 Exit

EXIT

The EXIT keyword signals the end of processing for an input specification
file. alegra will ignore the remaining contents of the file. This allows an
extended explanation of the problem to be placed at the end of the input file
(a highly recommended practice).

4.1.3 Units

UNITS, {CGS | SI}

Default units for alegra are CGS units (cm, g, sec, K). However, the
UNITS keyword may be used to change the default units to SI (System In-
ternational, m, kg, sec, K). Default temperatures are always Kelvin. An
example:

UNITS, SI

69

Units for individual numerical (float) quantities can be entered in the
input immediately following the value. This functionality is applicable for
all keywords that accept a floating point argument except those in the DIATOM
input section (Section 5.7.1 on page 100). The units specified will be used to
convert the float value to the run units according to a set of basic fundamental
unit exponents (length, mass, time, and temperature). The units labels and
definitions that can currently be parsed by alegra are shown in Table 4.
The unit label designation of eV (temperature associated with electron volts)
are included for compatibility with cth input variables. Electron volts require
conversion to Kelvin for either the SI or CGS systems.

To be in a readable format, the units string must be entered with square
brackets []. The following operators are recognized: parentheses () for
multiplication, the forward slash (/) for division, and the carat (ˆ) for
exponentiation. Units are not required for any keyword in the input file, but
are merely intended as a user convenience. Acceptable unit designations are
listed in Table 4.

Examples:

R0 2730. [kg/m^3]

CV 1.4e11 [erg/((gm)(eV))]

cv 1.1e11 [erg/gm/ev]

4.1.4 Read Restart

{ READ RESTART TIME real | READ RESTART DUMP int }

This keyword specifies which restart file is read to obtain the initial values
for all variables at restart. The first form provides the time, a real value
that may be positive or negative. The second form specifies the number of
the actual RESTART DUMP to be read.

alegra generates restart files with names of the form runid.dmp.n at
time intervals specified by the EMIT RESTART keyword, where n is an integer,
starting with 0. The number of dumps that are retained can be controlled
through the RESTART DUMPS keyword. By default only the last two files gen-
erated will be retained. Earlier restart dumps are deleted as the calculation

70

Table 4: Allowable Unit Designators
Fundamental Unit

Unit System Allowable L = length
Full Name Association Designator M = mass

t = time
T = temperature

meter SI m L
kilogram SI kg M
gram CGS gm M
second SI, CGS s t
Kelvin SI, CGS K T
centimeter CGS cm L
Electron volt CGSEV eV T
erg CGS erg ML2/t2

dyne CGS dyn ML/t2

Newton SI N ML/t2

Joule SI J ML2/t2

Pascal SI Pa M/(t2 L)
Watt SI W ML2/t3

progresses to conserve disk space. For parallel runs, dump files are written
for each processor and are named runid.dmp.N.m.n. Here N is the total
number of processors, m is the number of an individual processor and n is the
dump number, as above.

A dump list file named runid.dpl is generated that contains a list of all
restart dumps that have been written for the problem. alegra searches this
list for the desired restart dump. The restart dump file to be read will be the
one whose time is closest to the specified time, if the restart dump number is
not specified directly. Thus one can specify a restart time that is close to the
time at which the restart dump was written and that dump will be selected.

If a restart time greater than that of the last restart dump is specified, the
last dump will be read. If a restart time less that the problem START TIME

is specified, the last dump will be read provided the dump list file exists and
contains a list. Otherwise, the calculation will begin as a new one starting
at the initial time.

No restart dump is used if this keyword does not appear. Instead, a new

71

calculation is started with all quantities set to initial values calculated from
the input specification file.

Examples:

READ RESTART TIME 26.5E-6

READ RESTART DUMP 12

Some output files (e.g., runid.out and runid.his) generated from a
restart will have an n appended to their name, where n is selected to be
unique in the directory in which the files are written, unless the OVERWRITE

FILES option is chosen.

The READ RESTART DUMP keyword allows a negative dump number. Spec-
ification of a negative dump number causes alegra to check for a *.dpl

restart file. If this file does not exist or is empty, then the simulation will be-
gin as a new simulation. Otherwise, the simulation will restart at the latest
available restart dump. This behavior is similar to specifying a restart time
prior to the simulation start time on the READ RESTART TIME command.

READ RESTART DUMP = -1

4.1.5 Start Time

START TIME real

This keyword specifies the starting time for the problem if it is different
from zero. The real value specified for the START TIME may be positive or
negative. This option is useful if the simulation is driven by experimental
data that may have a non-zero START TIME.

4.1.6 Termination CPU

TERMINATION CPU real

This keyword specifies the maximum cpu time, measured in seconds, at
which the problem calculation is to terminate. If any processor running a

72

parallel alegra calculation exceeds this limit then the whole calculation will
shut down gracefully. Generally this option is used when running in batch
mode. The TERMINATION CPU value should be set to a value smaller than the
batch request time limit in order to allow the problem to terminate before it
is killed by the system batch manager. The user must determine this value
for a given run depending on the number of files that will be written at the
end of the calculation and the expected cycle time since there is no cycle
time estimation capability in the code.

The TERMINATION CPU keyword must be used in conjunction with either
the TERMINATION TIME and/or a TERMINATION CYCLE keyword. TERMINATION
CPU by itself is not sufficient and the problem will not run. If more than one of
TERMINATION CPU, TERMINATION TIME, and TERMINATION CYCLE are speci-
fied, the problem will terminate when any of the criteria are satisfied. A
restart record will be written when this option ends the run if any type of
EMIT RESTART command has been issued. A history record and an exodus

dump will also be written if these have been specified with EMIT keywords.
The termination of the run due to cpu limit will be noted in the user’s ter-
minal window (i.e., the “standard output” device/file).

4.1.7 Termination Cycle

TERMINATION CYCLE int

This keyword specifies the cycle on which the problem calculation is to
terminate.

If more than one of TERMINATION CPU, TERMINATION TIME, and TERMINATION

CYCLE are specified, the problem will terminate when any of the criteria are
satisfied. This form of termination control can be used by itself. A restart
record will be written when this option terminates the run. A history record
and an exodus dump will also be written if these have been specified with
EMIT keywords. Termination due to cycle limit will not be reflected in the
user’s terminal window - the code will simply stop.

4.1.8 Termination Time

[EXACT] TERMINATION TIME real

73

This keyword specifies the problem time at which the problem calculation
is to terminate. By default, alegra may overshoot the TERMINATION TIME

by some fraction of a time step. If the optional prefix EXACT is added to
this command, then the time steps for the last ten cycles will be adjusted
as necessary to ensure that the calculation terminates at the exact time
specified.

If more than one of TERMINATION CPU, TERMINATION TIME, and TERMINATION

CYCLE are specified, the problem will terminate when any of the criteria are
satisfied. This form of termination control can be used by itself. A restart
record will be written when this option terminates the run. A history record
and an exodus dump will also be written if these have been specified with
EMIT keywords. Termination due to time limit will not be reflected in the
user’s terminal window (i.e., the “standard output” device/file) - the code
will simply stop.

4.2 I/O Control

4.2.1 Copy Input

COPY INPUT, { TRUE | FALSE | ON | OFF }

By default, alegra will copy the entire contents of the input file to
the information data records of the exodus [29] output file. For very large
input files, e.g., those having long FUNCTION definitions or large numbers of
DIATOM PACKAGEs, this can be slow and tedious and result in long initialization
times. The default behavior can be suppressed and initialization times can
be shortened by setting COPY INPUT to FALSE or OFF. This capability is only
enabled for unstructured grids.

4.2.2 CRT

CRT, { ON | OFF }

This keyword enables or disables the function which checks the keyboard
buffer for any keystrokes. This method allows for termination of the calcula-
tion at the end of the current cycle when the user enters the word STOP into

74

the keyboard buffer. Executive and query menus are also accessed by this
method when the user enters the word HELLO into the keyboard buffer. The
CRT is ON by default. This precludes straightforward background running of
a calculation, however, so to run a calculation in the background, the user
should turn the CRT function OFF, i.e., type a CRT, OFF line into the input
file.

4.2.3 Debug Mode

DEBUG MODE: { ADAPT (OR ADAPTIVITY) | COMM STATS | CONNECTIVITY |

SUMP PROCSET | EVATTR | EXODUS | FILE |

GENIIFILEOPEN | LOCATION | PARSER | PERIODIC BC |

PROCSET | PROFILETIME | PROFILEMEMORY |

PROFILEHARDWARE |REMAP | RESTART | STORAGE |

TIMESTEP | TRACKER }

This keyword enables debugging information output. These options are
generally used by developers for diagnostic purposes and are provided with
only limited user support. More than one flag may be turned on by repeating
the DEBUG MODE keyword.

• ADAPT activates h-adaptivity diagnostics.

• COMM STATS will display information about the number and types of
interprocessor communication. This display will take place at the end
of the run.

• CONNECTIVITY turns on comprehensive connectivity checking of the
topology database (vertex, edge, face, and element connectivity). If
an invalid database is found the calculation is terminated.

• DUMP PROCSET forces extensive output dumps of processor set related
information.

• EVATTR outputs information on element and vertex attributes.

• EXODUS turns on exodus ii [29] warnings. (This option will cause the
exodus library flag EX VERBOSE to be turned on, leading to messages
being printed from these exodus library routines.)

75

• FILE sends information to the runid.dbg output file on all processors
and is used in conjunction with other debugging flags. Also turns on
debug outputs associated with the opening of plot output files with the
adaptivity option active.

• GENIIFILEOPEN sends an informative message when each genesis II file
is opened. This is useful when trying to debug and track the load
process on large numbers of processors.

• LOCATION gives information on the current program step location.

• PARSER turns on verbose mode in the parser. This will result in more
information being delivered when errors occur in the parsing of the in-
put. For example, the entire sequence of valid keywords will be written
to the output following the error message, or suggestions about possible
causes of the error will be printed.

• PERIODIC BC prints diagnostic information about nodesets used in the
periodic boundary conditions

• PROCSET gives information on the processor sets.

• PROFILETIME, PROFILEMEMORY, PROFILEHARDWARE turns on a collec-
tion of performance information and outputs to the runid.out file.
PROFILETIME and PROFILEMEMORY are supported on all platforms and
give timing and memory usage. PROFILEHARDWARE is supported only on
some platforms and gives information such as floating point operation
rates. The collected data may be machine specific, and on platforms
that do not support the collection of hardware performance counters,
there is no output. Additional information on performance analysis
can be found in Section 14.

• REMAP gives information on the remap step.

• RESTART activates diagnostics for debugging restarts.

• STORAGE turns on memory usage information to output to the .out file

• TIMESTEP gives time step control information.

• TRACKER gives information on the interface tracker.

For example,

76

DEBUG MODE: LOCATION

DEBUG MODE: PARSER

DEBUG MODE: EXODUS

4.2.4 Double Precision Exodus

DOUBLE PRECISION EXODUS

This keyword indicates that the genesis [29] input file uses double pre-
cision for floating point numbers. The default is for the genesis file to
use single precision for floating point numbers. The genesis file produced
with fastq [3] will be single precision only (although the fastq mesh must
be converted to an EXODUS VERSION TWO file before it is used by alegra).
cubit [36] can generate double precision genesis files, but one can expect
roundoff in the least significant figure of the nodal coordinates. Both single
precision data and slightly noisy double precision data will affect results if
the simulation is sensitive to small perturbations in face orientation.

This keyword also indicates that the exodus [29] output file is to use
double precision for floating point numbers. The alegra default is to pro-
duce single precision files because of the larger file sizes of double precision
data. For parallel runs, use of the Concat tool will result in single precision
combined exodus files. If the user desires to retain double precision files,
then the nem join tool must be used to do the concatenation step.

4.2.5 Exodus Version

EXODUS VERSION TWO

EXODUS VERSION TWO indicates that the genesis input file and the exo-

dus output file are in exodus ii format [29]. This is a deprecated keyword
because only EXODUS VERSION TWO genesis files are currently read by ale-

gra. The keyword is ignored in the input stream.

4.2.6 Emit Hisplt

EMIT HISPLT, time-or-cycle-interval [time-range]

77

This keyword causes alegra to emit a hisplt [42] record to the
runid.his file at specified intervals over an optionally specified time range.
If no time range is specified, the records are emitted throughout the run at
the specified time or cycle interval. The user can have multiple entries of
this card, thereby creating a time table. The input specification can take
one of three forms, depending on the form of the time-or-cycle-interval

construct and whether the time-range construct is specified. For example:

EMIT HISPLT, TIME INTERVAL = 0.0001

EMIT HISPLT, TIME INTERVAL = 0.0003, FROM 0.001 TO 0.002

EMIT HISPLT, CYCLE INTERVAL = 20

For the second example above, information will be written starting at
time=0.001 and at times separated from 0.001 by 0.0003, but information will
not be written for time=0.002. Thus, this example would produce hisplt

dumps at 0.001, 0.0013, 0.0016, and 0.0019. Several specifications of the
second type can be used to setup a series of outputs at varying time intervals
throughout the problem run. For the first and third specifications, however,
only the first occurrence is used to set the interval of outputs for the entire
run.

hisplt has limitations of no more than 20 materials in a calculation and
no more than 1002 tracer points [42].

4.2.7 Emit Output

EMIT OUTPUT, time-or-cycle-interval [time-range]

This keyword causes alegra to emit various summary information to
the runid.out file.

4.2.8 Emit Plot

EMIT PLOT, time-or-cycle-interval [time-range]

This keyword causes alegra to emit an exodus [29] plot record at
specified intervals over an optionally specified time range. If no time range

78

is specified, the records are emitted throughout the run at the specified time
or cycle interval. As explained in the EMIT HISPLT keyword (Section 4.2.6
on page 77), the user can have multiple entries of this card, thereby creating
a time table. exodus plot records are written in one of two possible forms.

For an unchanging initial topology, such as topologies produced with no
adaptivity, or initial mesh refinement, a traditional exodus file is produced:
a genesis mesh database with subsequent time slice information appended
for each plot event. The single plot file has the name runid.exo.

For adaptive problems and conditions where the topology is not guar-
anteed to be constant, then individual exodus plot records are written to
separate files. The current genesis mesh database corresponding to the ex-

odus output is contained in each of these files. The multiple plot files have
the names runid.hat.n where n corresponds to the nth plot dump.

4.2.9 Emit Restart

EMIT RESTART, time-or-cycle-interval [time-range]

This keyword causes alegra to emit a restart dump at specified intervals
over an optionally specified time range. If no time range is specified, the
dumps are emitted throughout the run at the specified time or cycle interval.
The user can have multiple entries of this card, thereby creating a time table,
as explained in the EMIT HISPLT description (Section 4.2.6 on page 77).

Restart dumps permit a user to break a single calculation into several
runs. They also help to avoid losing everything if the computer crashes in
the middle of a run.

If EMIT RESTART is specified and the calculation terminates before the
specified time or cycle, a restart dump is written at the termination time or
cycle. (If an EMIT RESTART option is not specified, no restart dumps will be
written.)

The dump files will be named runid.dmp.n, where runid is the prefix of
the alegra input specification file, i.e., the file name used on the alegra

execute line, and n is a dump number. The dump number begins with 0 for
the first restart dump and is incremented by 1 each time a restart dump is
written. By default, only the two most recent restart dump files are retained;

79

earlier dump files are deleted as the calculation progresses to conserve disk
space. However, the number of files retained can be controlled with the
RESTART DUMPS keyword. A list of the times of all restart dumps is written
to the file runid.dpl, which is then read when restarting to determine the
proper dump file from the restart time specified.

For parallel runs, dump files are written for each processor and are named
runid.dmp.N.m.n. Here N is the total number of processors, m is the number
of an individual processor and n is the dump number, as above.

Restart dumps are operational with the INITIAL REFINEMENT option
specified in the DOMAIN keyword group (see Section 5.10.3 on page 132).

4.2.10 Emit Screen

EMIT SCREEN, time-or-cycle-interval [time-range]

This keyword causes alegra to emit a short summary of the state of the
calculation at specified intervals over an optionally specified time range to the
users terminal (i.e., the “standard output” device/file). If no time range is
specified, output is emitted throughout the run at the specified time or cycle
interval. The user can have multiple entries of this card, thereby creating
a time table, as explained in the EMIT HISPLT description (Section 4.2.6
on page 77). The default screen output frequency is every 10 cycles. An
example of the global record message produced by this keyword is shown in
Section 2.2.3 on page 44.

4.2.11 Overwrite Files

OVERWRITE FILES

This keyword causes output files from a preceding run to be overwritten
on a restart. The default action is to not overwrite the plot and history files,
instead appending an “ n” to an output file name upon a restart, where n is
an integer 0, 1, 2, ... selected to be unique in the directory in which files are
being written.

80

4.2.12 Plot Variables

PLOT VARIABLES

[NO DEFAULT OUTPUT]

[NO REGION VARIABLES | ALL REGION VARIABLES]

[NO MATERIAL GLOBALS | ALL MATERIAL GLOBALS]

[NO UNDERSCORES]

name [conversion]

name [conversion]

...

END

This keyword permits the user to specify the variables to be written to the
exodus [29] plot file. If a variable name is repeated in the PLOT VARIABLES

keyword group, then it will be written to the database more than once.
By default, VOLUME FRACTION and the node displacements, DISPLX, DISPLY,
and DISPLZ, are the only variables written to the database, along with all
global and material global variables. If no default output is desired, the
keyword NO DEFAULT OUTPUT should be entered. The variables listed after
this keyword will be the only variables listed to the file. The writing of all
global variables and/or all material global variables can be switched off or on
by entering the keywords NO REGION VARIABLES, ALL REGION VARIABLES,
NO MATERIAL GLOBALS, or ALL MATERIAL GLOBALS.

With the exception of global variables, the name of any registered variable
can be used as a value for name. Registration of variables is dependent upon
which physics and material models are requested by the user in the input
specification. The list of registered variables for any given problem can be
found in the runid.out file produced by a run of alegra. Global variables,
which can not be used as plot variable names, are listed as REGION VARs in
the runid.out file.

For convenience, some more common names are given in the following
tables. Those variables marked with an asterisk (*) are not normally stored
for the entire grid; inclusion of these in the data base causes alegra to
allocate additional dynamic memory for their storage. The MATERIAL vari-
ables available for plotting are very dependent upon the particular material
MODELs, so only the most generic are listed. The names of the variables avail-
able for plotting in each material model are given in the tables in Section 12
on page 197. The variable types are also given in the tables to aid in the

81

proper choice of conversions, if any.

In the output exodus files, the variable names will appear and be used
to specify what data is available for display by various post-processors. The
exodus variable names will be the same as the names included in the PLOT

VARIABLES keyword group, except that blanks within a name will be replaced
by underscores. An exception to this rule can be forced by the user (see NO

UNDERSCORES below). The actual names of variables that have been written
to the exodus file can be found by using the access [35] grope [34] utility
and the LIST NAMES command.

For vector variables, such as VELOCITY, each vector component will be
written to the exodus file with the name of the component direction ap-
pended. For example, the x component of velocity will be named VELOCITY X.

For material variables, the exodus name of the variable describing the
value of the quantity for a given material is indicated by appending a “ N”,
where N is the material id number assigned by the user in the input file
with the MATERIAL keyword. For example, the temperature of the material
that is labeled 101 by the user is written to the exodus file with the name
TEMPERATURE 101.

tensor quantities are labeled similarly, such as ARTIFICIAL VISCOSITY XY

for the xy component of the artificial viscosity tensor in an element. tensor
quantities that are specific to a material will be named with a “ N” ap-
pended to the variable name before the direction designation. For example,
STRESS 202 XX will be the name of the xx component of stress in material
202 in an element.

Valid values for the optional conversion keyword are: MAGNITUDE,
VOLUME AVERAGE (AVG), MASS AVERAGE, MAXIMUM, and MINIMUM.

The MAGNITUDE takes the absolute value of a scalar. The MAGNITUDE

keyword causes the magnitude of other quantities such vector, symtensor
or tensor variables to be dumped instead of the individual components.
The MAGNITUDE of the vector x is defined by the Euclidean vector norm
||x||E =

√

x2
i =

√

xTx). The MAGNITUDE of the tensor S is the Euclidean

matrix or Frobenius norm defined by ||S||E =
√

S2
ij =

√

tr(STS). If S is a

symmetric symtensor and n is the dimension, then ρ(S) ≤ ||S||E ≤ √
nρ(S)

where ρ(S) is the maximum magnitude eigenvalue of S.

82

PLOT VARIABLES

VELOCITY: MAGNITUDE

END

causes the magnitude of the velocity to be written, rather than each of the
vector components. The exodus variable will have a “ MAG” appended at
the end of the variable name, e.g., VELOCITY MAG.

For variables that vary by material, such as ENERGY, the default is
to dump the values for each material separately as described above. The
VOLUME AVERAGE conversion keyword causes the volume-weighted average to
be dumped instead. Thus

PLOT VARIABLES

STRESS: VOLUME AVERAGE

END

causes each stress component to be plotted as a single volume-averaged value,
rather than as separate values for each material. The AVG keyword is an
alias for VOLUME AVERAGE. Similarly, the MASS AVERAGE keyword produces
a value for a multi-material element that is the mass weighted average of
the quantity. Both VOLUME AVERAGE and MASS AVERAGE are applicable only
to variables associated with a material, e.g., PRESSURE or DENSITY. For
both options the exodus file variable name will not have the “ N” pattern
appended at the end of the name.

The MAXIMUM and MINIMUM keywords are entirely different conceptually.
For material variables, a volume-weighted average is computed before pro-
ceeding. A more descriptive name would be MAXIMUM UP TO THE CUR-
RENT TIME or MINIMUM UP TO THE CURRENT TIME. These maxi-
mum or minimum values may be positive or negative. In all other cases, such
as vector and tensor variables, the MAGNITUDE (see above) is calculated,
and then this scalar value is compared against the previous maximum or min-
imum value at that mesh location to obtain a new maximum or minimum
over all simulation time. Thus maximum and minimum values will always be
non-negative. These outputs will have “ MX” or “ MN” appended to the name.
Note in particular for a symmetric tensor that the MAXIMUM and MINI-
MUM values are NOT min and max eigenvalues. For example, “STRESS MX”
is the maximum value of the Frobenius norm of the stress tensor up to the
current simulation time at a given mesh point.

83

Thus

PLOT VARIABLES

VOLUME

VOLUME: MINIMUM

DENSITY: AVG

DENSITY: MINIMUM

DENSITY: MAXIMUM

VELOCITY

VELOCITY: MAXIMUM

END

causes the volume and its minimum to be dumped, as well as the material-
averaged density and its minimum and maximum, and the velocity and its
maximum magnitude.

Users can override the default plot names using the syntax:

PLOT VARIABLES

VELOCITY, AS, VEL

END

or if you find the second comma irritating,

PLOT VARIABLES

VELOCITY, AS "VEL"

END

If the user is comparing old and new exodus files and wants precisely
identical spellings of plot variables, the underscores that now separate the
material and component tags can be removed in the variable names in the
exodus plot file using the NO UNDERSCORES keyword. For example,

PLOT VARIABLES

NO UNDERSCORES

VELOCITY, AS "VEL"

END

84

which causes VELOCITY to be plotted as VELX, VELY, and VELZ, just as in
some old exodus plot files formerly generated by alegra.

Table 5: Plot Variables for General Region Quantities

Variable Name Type Explanation

COORDINATES vector nodal coordinates
MATCOOR vector original nodal coordinates
VOLUME scalar element volume
ASPECT RATIO scalar characteristic element length
MASS scalar nodal mass
EL MASS scalar element mass
PROC ID scalar for parallel runs, the processor id where the

element’s computations are done
VOID FRC scalar fraction of an element’s volume occupied by

void
VOLFRC n material fraction of an element’s volume occupied by

material n

85

Table 6: Plot Variables for Dynamic/Hydrodynamic Quantities

Variable Name Type Explanation

VELOCITY vector nodal velocity
FLUX scalar volume fluxes through element faces for

REMAP
VAR VOLUME scalar variational volume, i.e., element area, for

2D meshes.
VARIATIONAL FLUX scalar variational volume fluxes through element

faces for REMAP on 2D meshes
REACTION* vector if REACTION enabled
REMESH* vector if REMESH enabled
Variables marked with an asterisk (*) cause alegra to allocate additional
dynamic memory for their storage.

86

Table 7: Plot Variables for Hydrodynamic Quantities

Variable Name Type Explanation

MIDCOOR vector available only in unstructured
mesh physics options

ACCELERATION vector nodal acceleration
DEFORMATION RATE symtensor symmetric part of velocity gradi-

ent
ARTIFICIAL VISCOSITY tensor The artificial viscosity term that

is used to damp oscillations in the
presence of shocks. The value is
negative, i.e., the forces will per-
form work on the material as op-
posed to the pressure which does
work on the surrounding environ-
ment. It has dimensions of pres-
sure.

HOURGLASS RESISTANCE vector viscous term controlling hourglass
modes

HOURGLASS STIFFNESS vector stiffness term controlling hour-
glass modes

EXTERNAL ENERGY scalar energy from external sources
DETONATION TIME* scalar if PROGRAMMED BURN enabled
HE ENERGY ADDED* scalar if PROGRAMMED BURN enabled
HE TOTAL ENERGY* scalar if PROGRAMMED BURN enabled
Variables marked with an asterisk (*) cause alegra to allocate additional
dynamic memory for their storage.

87

Table 8: Plot Variables for Material Properties

Variable Name Type Explanation

DENSITY material mass density
TEMPERATURE material material temperature
PRESSURE material material pressure
ENERGY material specific internal energy
ENERGY CHANGE material change in the specific internal energy

during the last cycle
EQPS material equivalent plastic strain
SOUND SPEED material

SPECIFIC HEAT VOL material specific heat at constant volume
STRESS symtensor Cauchy stress tensor
STRETCH symtensor left stretch tensor
YIELD STRESS material yield stress in tension

88

4.2.13 History Plot Variables

HISTORY PLOT VARIABLES

[NO MATERIAL GLOBALS]

[NO UNDERSCORES]

name [conversion]

name [conversion]

...

END

This keyword permits the user to specify the node and element variables
that will be associated with the tracers listed in the TRACER POINTS input
(see Section 5.12 on page 137); data for these variables are ultimately written
to the hisplt plot database file [42]. By default (i.e., the absence of a
HISTORY PLOT VARIABLES section in the input file) all registered element
and node variables for each tracer are written to the database, along with
all global variables. If no TRACER POINTS are included in the input file, then
only the global data will be written to the hisplt plot file.

The guidelines for using the HISTORY PLOT VARIABLES input are the same
as the PLOT VARIABLES, Section 4.2.12 on page 81, with the following excep-
tions.

In the output hisplt files, the variable names will appear as requested,
but will have minor differences because of the limitations of hisplt. The
“outhis” file produced by hisplt, available after the first hisplt test run,
will list the exact variable names within the database that are available for
display. These hisplt variable names will be the same as the names in-
cluded in the HISTORY PLOT VARIABLES keyword group, except that under-
scores within a name will be replaced by hyphens (or will be omitted if NO

UNDERSCORES is designated in the keyword list), and the root name will be
truncated to limit the string to 16 characters. The only global variable op-
tion available for history variables is to eliminate the plotting of the material
global variables with the NO MATERIAL GLOBALS keyword.

For vector variables, such as VELOCITY, each vector component will
be written to the hisplt file with the name of the component direc-
tion appended. For example, the x component of velocity will be named
VELOCITY-X.

For material tracer variables, the hisplt name of the variable describ-

89

ing the quantity is indicated by appending the material id number to the
material variable name. This is the number assigned by the user in the
input file with the MATERIAL keyword. For example, the temperature of the
material that is labeled 101 by the user is written to the hisplt file with the
name TEMPERATURE-101.

For material global variables, the hisplt name of the variable describing
the value of the quantity for a given material has nothing appended until the
variable is requested in the hisplt input, at which time the user appends
the material number [42].

tensor quantities are labeled similarly, as for example STRESS-XY, for
the xy component of the stress tensor in an element. tensor quantities that
are specific to a material will have the material id appended to the variable
name before the component designation. For example, STRESS-202-XX will
be the name of the xx component of stress in material 202 in an element.

Valid values for the optional conversion keyword are:

{MAGNITUDE | VOLUME AVERAGE (AVG)}

If the MAGNITUDE of the vector or tensor quantity is requested, the
component designators will be omitted. For names longer than 16 charac-
ters, including the material number and/or the component designation, it is
recommended that the user override the default name to be consistent with
the hisplt database name length limitations.

If a material VOLUME AVERAGE (or AVG) quantity is requested, the material
id will be omitted. In order for the hisplt code to be able to distinguish the
averaged variable name, e.g., TEMPERATURE, from the name for the temper-
ature for a specific material, e.g., TEMPERATURE-101, it is important for the
user to specify the average quantity before the material specific quantity in
the list of history plot variables. For this temperature example, one should
specify:

HISTORY PLOT VARIABLES

...

TEMPERATURE: AVG $ place the average request first

TEMPERATURE $ place the material specific request second

...

END

90

For all element variables, the value of the variable at the element cen-
ter will be written to the database (i.e., interpolation to the tracer location
within the element is not performed for element variables). For nodal vari-
ables, interpolation to the tracer location is performed by default. If no
interpolation is desired, this should be designated in the TRACER POINTS

input section for each individual tracer (see Section 5.12 on page 137).

4.2.14 Restart Dumps

RESTART DUMPS int (2)

This keyword specifies the maximum number of restart dump files
that an alegra calculation can retain, nmax. These files will be named
runid.dmp.n, where runid is the prefix of the alegra input specification
file, i.e., the name used on the alegra script execute line, and n is a file
number. The value of n will start at 0 and increment by 1 each time a restart
dump is written. When nmax files have been written, successive restart dumps
will be matched by deletion of the earliest restart dump to keep the total num-
ber of restart dump files at nmax. By default, if no RESTART DUMPS keyword
is used, nmax is 2 and only two restart dump files will be retained.

91

5 General Physics Input

A number of controls are available for setting up a problem, choosing the
mesh, controlling the time step, setting various generic initial and boundary
conditions, specifying how the mesh is to behave, and diagnosing material
properties as the simulation proceeds. Section 5 describes some of the general
features of alegra that are applicable to nearly all types of physics.

Basic physics input includes:

• mesh choice (Section 5.1),

• physics specification (Sections 5.2 and 5.3),

• geometry specification (Section 5.5),

• time step control (Section 5.6),

• general initial conditions (Section 5.7),

• general boundary conditions (Section 5.8),

• block input (Section 5.9),

• domain input (Section 5.10),

• cell doctor input (Section 5.11),

• tracer points (Section 5.12), and

• function definition (Section 5.13).

5.1 Mesh Choices

It is important to understand some basic concepts about an alegra mesh.
An alegra mesh is composed of a set of mesh BLOCKs which are all composed
of the same type of elements. Currently only quadrilateral and hexahedral
meshes have extensive support and testing in alegra. This means that
generally a mesh block simply refers to a separately numbered portion of the
mesh. The mesh block is used to specify a focus region for initial conditions
and Arbitrary Lagrangian-Eulerian (ALE) algorithm controls.

92

There are two types of mesh that can be used in alegra. The choice
of which mesh type is used is made by specifying a particular physics key-
word. The two mesh types are unstructured and structured. The traditional
mesh that alegra has used is an unstructured, arbitrary connectivity mesh
suitable for finite element methods. alegra now also supports a structured
mesh capability. A structured mesh is one in which the elements are arranged
in a logically organized manner, similar to a two or three dimensional array.
The mesh is still organized into blocks. Both rectilinear and curvilinear
structured mesh is supported.

For the most part, the input for a structured mesh run is the same as for an
unstructured mesh problem. Rather than have a separate manual section for
a complete description of the structured mesh capability, and thus duplicate
much of the information for unstructured, the differences from unstructured
are described in Section 11 on page 192. In the rest of this manual, a section
which contains a difference for structured mesh will be noted by a reference
to Section 192.

5.2 Unstructured Mesh Physics Choices

Keywords specify the physics type(s) to use for a calculation. The options
are listed in the following subsections.

5.2.1 Hydrodynamics

HYDRODYNAMICS

...

[hydrodynamics keywords]

...

END

The choice of HYDRODYNAMICS as the physics specification will produce
a simulation that results in deformation of the elements with zero stress
deviators. Only the equations of state in the material model section can be
used in these calculations.

93

5.2.2 Solid Dynamics

SOLID DYNAMICS

...

[solid dynamics keywords]

...

END

The choice of SOLID DYNAMICS as the physics specification will produce
a simulation that results in deformation of the elements with nonzero stress
deviators. All of the available material models can be used in such a simula-
tion.

5.3 Structured Mesh Physics Choices

These keywords specify the physics type(s) to use for a structured mesh
calculation. The options are listed in the following subsections.

5.3.1 Structured Hydrodynamics

STRUCTURED HYDRODYNAMICS

...

[structured hydrodynamics keywords]

...

END

The choice of STRUCTURED HYDRODYNAMICS as the physics specification
will produce a simulation that results in deformation of the elements with
zero stress deviators. Only the equations of state in the material model
section can be used in these calculations.

5.3.2 Structured Solid Dynamics

STRUCTURED SOLID DYNAMICS

...

94

[structured solid dynamics keywords]

...

END

The choice of STRUCTURED SOLID DYNAMICS as the physics specification
will produce a simulation that results in deformation of the elements with
nonzero stress deviators. All of the available material models can be used in
such a simulation.

5.4 Multi-Region Dynamics

MRDYNAMICS

SYNCHRONOUS

ASYNCHRONOUS

ACTIVATION SCHEDULE

REGION int , [TIME real] | [CYCLE int]

REGION int , [[TIME real] | [CYCLE int]] [SOURCE int]

...

REGION int, [[TIME real] | [CYCLE int]] [SOURCE int]

Region input sections

...

END

The choice of MRDYNAMICS as the physics specification allows multiple
HYDRODYNAMICS and SOLID DYNAMICS physics to be analyzed in the same
calculation, using both structured and unstructured meshes. The primary
purpose of MRDYNAMICS is to provide a prototype for multiple region simula-
tions. There is no coupling between regions or physics while the regions are
running. Multiple separate problems may be run in separate regions. Each
individual region uses the same keyword sequences as used for a standard
single region problem. Each region will write plot output to its own output
plot file, as determined by the PLOT keyword in the region input. For un-
structured child regions, each region will use a genesis file specified by the
MESH keyword in each region input section. There is no prohibition against
mixing structured mesh and unstructured mesh regions within a multiregion
dynamics problem.

95

5.4.1 Region Activation and synchronization

The SYNCHRONOUS keyword forces all regions to run at the same timestep.
This will be the minimum timestep of all the regions currently active in the
problem. Likewise, the ASYNCHRONOUS keyword allows all running regions
to proceed in time independently with their own internally computed time
steps. Using the ACTIVATION SCHEDULE keyword, it is possible to control the
time or cycle at which a “child” region in the problem will start. The regions
will terminate activity when the TERMINATION TIME or TERMINATION CYCLE

keywords for each region has been exceeded.

5.4.2 Staged Activation of Regions

For unstructured mesh regions ONLY, it is also possible with the SOURCE

keyword to specify the transfer of mesh data from one such region to another
when the second region is activated. This process, called “staged region
activation,” allows the user to start a problem in a small spatial region, let
it grow close to the boundary of that region and then transfer the results of
the first region’s calculations to a second region that models a larger spatial
domain. The mesh of the second region must logically match the mesh of the
first region. Also, the physics modeled in the two regions must be identical
so that both regions have the same amount of data for an element and a
node.

In problems that start in a very small region of space and then expand
into the surrounding space, the user can take advantage of initial refinement
in the first region to obtain a very highly resolved simulation. The first region
can be initially refined to result in very small elements, thus improving the
fidelity of the simulation in this very small space. Then, the REDUCE MAX

REFINEMENT timed unrefinement capability (see Section 10.1.6 on page 189)
can be used to reduce mesh refinement until the logical structure of the
source mesh matches the level of refinement in the second “target” region.
Data can then be transferred between the source and target meshes and the
computation continued on the larger mesh.

This process can be continued indefinitely, allowing the calculation to
expand to fill larger and larger regions of space with coarser and coarser mesh.
However, there are certain practical limitations. In order to accomplish the
transfer, both the target and source mesh and their data will reside in the

96

computer’s memory at one time. Thus, for very large problems, there may
not be sufficient memory available to perform the transfer.

5.5 Geometry

5.5.1 Cartesian

CARTESIAN [int D]

This keyword specifies that CARTESIAN geometry is to be used. It option-
ally specifies the dimensionality, which will be checked against the dimen-
sionality of the executable used.

5.5.2 Cylindrical

CYLINDRICAL [int D] (2D only)

This keyword specifies that axisymmetric CYLINDRICAL geometry should
be used. It optionally specifies the dimensionality, which will be checked
against the dimensionality of the executable used. Cylindrical geometry as-
sumes an r-z coordinate system with the radial direction plotted along the
abscissa and the axial direction plotted along the ordinate. Note that cylin-
drical geometry is not supported by the 3D executable.

5.5.3 Volumetric Scale Factor

VOLUMETRIC SCALE FACTOR real (1.) [SCALE LENGTH real (1.)]

The VOLUMETRIC SCALE FACTOR keyword specifies a multiplier for global
tallies such as mass and energy. This multiplier is a simple volumetric-based
scaling factor. It may be useful for problems involving periodic boundary
conditions to scale quantities by the degree of symmetry. It also may be
useful for 2D Cartesian simulations to scale global quantities by the actual
length of an object as opposed to assumed unit lengths of 1 m in SI units or
1 cm in CGS units (see the UNITS keyword in Section 4.1.3 on page 69). The

97

user is cautioned that this single factor may not correctly scale all surface
tallies if there are multiple symmetries present (e.g., translational, rotational,
and mirror).

The SCALE LENGTH keyword is an optional additional multiplier. Internal
to the code there is only one number. By use of this additional factor the
user has more flexibility in exposing how the total multiplier is obtained.

This keyword was formerly known as the SYMMETRY FACTOR keyword.

For example,

volumetric scale factor 4. scale length .5

gives a total scale factor of 2. but the input syntax will emphasize that there
is a four fold symmetry and an additional scale length factor of 0.5.

5.6 Time Step Control

5.6.1 Gradual Startup Factor

GRADUAL STARTUP FACTOR real (0.01)

This keyword specifies the factor by which the initial physics-based time
step should be multiplied. This has the effect of gradually marching into
an abrupt transient. This value should always be greater than zero and less
than or equal to 1.0. See also the MAXIMUM INITIAL TIME STEP keyword.

5.6.2 Maximum Initial Time Step

MAXIMUM INITIAL TIME STEP real

This keyword permits the user to specify a maximum time step, otherwise
alegra computes an initial time step based upon the initial conditions. It
is useful where unusual mechanical transients would otherwise result in an
instability in the starting time step. For example, a small starting time step
should be specified to permit the material a few cycles to begin responding

98

to energy deposition. Likewise, a large initial velocity on part of a mesh may
require a small initial time step (∆ti <= maximum initial time step). See
also the GRADUAL STARTUP FACTOR keyword.

5.6.3 Maximum Time Step Limit

MAXIMUM TIME STEP LIMIT real

This keyword permits the user to specify a maximum time step value
that the simulation will never exceed. Otherwise, the maximum time step is
virtually unlimited (∆t <= maximum time step limit).

5.6.4 Maximum Time Step Ratio

MAXIMUM TIME STEP RATIO real (1.2)

This keyword sets the maximum ratio by which the time step may grow
from one cycle to the next (∆tn+1 <= ∆tn × maximum time step ratio).

5.6.5 Minimum Time Step

MINIMUM TIME STEP real (1.0e-20)

This keyword specifies the minimum time step permitted. If the sta-
ble time step is computed to be less than this value, the calculation will
cease and write the final output records for a normal completion (∆t >=
minimum time step).

5.6.6 Time Step Scale

TIME STEP SCALE real (0.67 in 2D, 0.9 otherwise)

The internal calculation of the maximum stable time step occasionally
overestimates this quantity. The factors specified by this keyword allows

99

a smaller time step to be used. This option is particularly useful when
instabilities appear; by setting these factors to small values, one may be able
to distinguish physical from numerical instability.

This keyword causes the multiplication of the calculated time step by the
specified real factor. The calculated time step is the minimum time step that
has been selected from all other physics-based time-step constraints. Values
less than 1 will shorten the time step, while values greater than 1 will increase
the time step. Increasing the time step is not recommended since a loss of
numerical accuracy may occur even though the numerical algorithms may be
implicitly stable.

The following example input will cause the time step used in a calculation
to be one half of the value alegra would normally use.

time step scale 0.5

5.6.7 Constant Time Step

CONSTANT TIME STEP real

This keyword specifies that the simulation will be run with a constant
time step value equal to the value specified here, otherwise alegra deter-
mines a new time step each cycle. For example,

constant time step 1.0e-8

5.7 General Initial Conditions

5.7.1 Diatom

DIATOM

PACKAGE name

MATERIAL int

INSERT shape

insert subkeywords

ENDI

100

...

[additional package subkeywords]

...

ENDP

...

[additional diatom packages]

...

ENDDIATOM

The DIATOM capability is a method of inserting material into a mesh. The
capability originates with the cth [7, 25] Eulerian Solid Dynamics simulation
code. The DIATOM capability is intended for use only with rectilinear, orthog-
onal meshes aligned with coordinate axes. The user is not prevented from
using DIATOM with other meshes, but it must be recognized that sometimes
very large inaccuracies will result from the approximation made for the cell
volume. The DIATOM package assumes that the cell volume is a rectangle (or
rectangular solid) defined by the minimum and maximum cell coordinates
and aligned with the coordinate axes. For the cth code, this would uniquely
span the cell volume.

The input format for DIATOM in alegra follows the DIATOM usage in cth

for the virtual objects package, which itself is modeled after the cthgen [1]
input format for material insertion. The parsing of DIATOM keywords is done
by the cth diatom library, and therefore follows parsing rules for cth. As
a consequence, alegra unit conversions (Section 4.1.3 on page 69) are NOT
allowed in the DIATOM input section. Some functionality that exists in cth

is not currently available in alegra. For example, the cth virtual objects
package allow objects to be inserted into the spatial mesh at times other than
initialization. The functionality available in alegra is listed in the tables
below. Acceptable abbreviation limits are denoted by an asterisk (*) in the
keyword.

There are two main types of keywords in the DIATOMs. The first set is
entered after the initial DIATOM keyword, but outside of the PACKAGE ...

ENDP keyword group. These properties will apply to all PACKAGEs in the set
that precede the PACKAGE keyword. The DIATOM keyword set is ended by the
ENDDIATOM keyword.

101

Table 9: Keywords for the DIATOM package.

Keyword Argument Meaning

XROT*ATE

package(s)

ENDX

real Rotate all shapes about the x axis by
this real value in degrees. The center of
rotation is the mesh origin. The rota-
tion affects all shapes listed between the
keywords XROTATE and ENDX*ROTATE.

YROT*ATE

package(s)

ENDY

real Rotate all shapes about the y axis by
this real value in degrees. The center of
rotation is the mesh origin. The rota-
tion affects all shapes listed between the
keywords YROTATE and ENDY*ROTATE.

ZROT*ATE

package(s)

ENDZ

real Rotate all shapes about the z axis by
this real value in degrees. The center of
rotation is the mesh origin. The rota-
tion affects all shapes listed between the
keywords ZROTATE and ENDZ*ROTATE.

SCAL*E

package(s)

ENDS

real Scale all shapes until the ENDS keyword
by this real value.

TRA*NSLATE

package(s)

ENDT*RANSLATE

x, y, z Translate shapes until the ENDT keyword
by x, y, z.

PA*CKAGE

...
ENDP*ACKAGE

string Package name.
This keyword begins a set of data that
applies to all shapes specified within
the PACKAGE/ENDP keyword group. The
package name must be enclosed in sin-
gle quotes if the following delimiters
are within the package name: blank,
comma (,), parentheses (), equal sign
(=), or asterisk(*). A keyword iden-
tified in the table as “package subkey-
word” must be within the PACKAGE
input set to be recognized by the input
parser. (Required keyword).

continued on next page

102

continued from previous page

ENDDIA*TOM The ENDDIA*TOM keyword is required to
end material insertion input.

Most DIATOM inputs are grouped into PACKAGEs. All PACKAGEs are brack-
eted by a PACKAGE ... ENDP keyword group as indicated in Table 9. Mul-
tiple PACKAGEs are allowed and at least one PACKAGE is required.

There are a multitude of keywords that can be used to define the inser-
tion of objects. Most of these keywords are optional. The minimum key-
words required to define the insertion of an object are PACKAGE, MATERIAL,
and INSERT. Note that only the blocks that specify ADD DIATOM INPUT will
have the inserted object (see BLOCK main keyword). A complete set of the
package keywords are provided in alphabetical order in Table 10 (ignoring
any directional prefix).

PACKAGE subkeywords may be placed in one of two places. The keywords
placed within a PACKAGE ... ENDP keyword group apply to all INSERTs
until the corresponding ENDP keyword is reached.

The PACKAGE subkeywords determine:

• geometry (e.g., INSERT or DELETE);

• the initial conditions of the material in the objects, (e.g., MATERIAL id
with DENSITY or XVELOCITY);

• the gradients of the initial conditions, (e.g., AGRADED or CGRADED); and

• the initial resolution of the shape in the given mesh (e.g., ITERATIONS
or NUMSUB).

Examples are provided following the tables.

Table 10: PACKAGE Subkeywords for DIATOM Input

Subkeyword Argument Meaning
continued on next page

103

continued from previous page

AGR*ADED

P1=x,y[,z]

P2=x,y[,z]

x, y, z
x, y, z

Material properties in the package are
graded axially away from P1 in the
direction P2. The relevant material
property must specify a table number;
properties in the table should be de-
fined as functions of the projection of
(x − x1, y − y1, z − z1) from the vector
(x2 − x1, y2 − y1, z2 − z1). This feature
can not be used in combination with
CGRADED.

CGR*ADED

P1=x,y[,z]

P2=x,y[,z]

x, y, z
x, y, z

Material properties in the package
graded radially away from the axis de-
fined by P1 and P2. The relevant mate-
rial property must specify a table num-
ber; properties in the table should be
defined as functions of the distance of
(x − x1, y − y1, z − z1) from the vector
(x2 − x1, y2 − y1, z2 − z1). This feature
can not be used in combination with
AGRADED.

DEL*ETE

shape

ENDD*ELETE

string Shape to be deleted (see allowable
shapes and associated shape subkey-
words in Table 11). After each shape,
enter the required shape subkeywords.
End each DELETE set with an ENDD key-
word. The DELETE operations within a
package are only effective on the shapes
INSERT-ed within the same package.

DEN*SITY real or
T int

Initial density of the material in the in-
sertion set and all subsequent insertions
sets. The user must reset the density
of subsequent sets to desired value or
zero to obtain the proper initial alegra

values. A table number can also be in-
put to specify density as a time varying
function or for use with a graded option.

continued on next page

104

continued from previous page

INS*ERT

shape

ENDI*NSERT

string Shape to be inserted (see allowable
shapes and associated shape subkey-
words in Table 11). After each shape,
enter the required shape subkeywords.
If the entire mesh is to be filled, a shape
should extend beyond the mesh. End
each INSERT set with an ENDI*NSERT

keyword. Note that only the blocks that
specify ADD DIATOM INPUT will have the
inserted object (see BLOCK main key-
word). The DELETE operations within
a package are only effective on the ma-
terial shapes INSERT-ed within the same
package (required).

IT*ERATION int Number of iterations to recursively
subdivide cell in each direction for
insertion. Relates to cth NUMSUB as
follows:

ITER =
nint(ln(NUMSUB)/ln(2.)),
where nint is the nearest integer func-
tion.
Recommend ITER = 3, 4, or 5.

M*ATERIAL int Material Id of the next INSERT, DELETE,
or REPLACE keyword to be inserted
within this package. An individual
package can have more than one mate-
rial keyword if the user decides to op-
erate on another material within the
same package; however, most packages
will logically contain only one mate-
rial, which must be specified before the
INSERT, DELETE, or REPLACE operation
is specified (required).

continued on next page

105

continued from previous page

MV*ELOCITY x, y, z Material velocity vector for the object
inserted. This velocity will apply to
all subsequent insertions sets within the
package unless replaced by another MV
or RMV command.

N*UMSUB int In cth, this is number of subdivisions
per cell in each direction. In ale-

gra, the value given for NUMSUB will be
used to calculate the ITERATION level as
above.

RGR*ADED

P1=x,y[,z]

x, y, z Material properties in the package
are graded radially about point P1.
The relevant material property (den-
sity or temperature) must reference
a table. Tabular properties should
be defined as functions of r =
√

(x − x1)2 + (y − y1)2 + (z − z1)2.
RMV*ELOCITY x or

T int

Radial material velocity for the object
inserted. The direction of the velocity
will be outward (positive x) or inward
(negative x) from the point defined by
the RGRADED command. Directionality
is determined from the cell center and
is transferred to the nodes; some inac-
curacy is incurred in this so a relatively
coarse mesh is not recommended.

STA*RT ANYWHERE none This keyword is required if the problem
start time is nonzero and an initial ve-
locity is specified. Note that the under-
score is required between the two words,
or the keyword can be abbreviated to as
few as three letters.

continued on next page

106

continued from previous page

T*EMPERATURE real or
T int

Initial temperature of the material in
the insertion set and all subsequent in-
sertions sets. Must reset temperature of
subsequent sets to desired value or zero
to obtain the initial alegra values. A
table number can also be input to spec-
ify temperature as a time varying func-
tion or for use with a graded option.

XV*ELOCITY

[YV*ELOCITY]

[ZV*ELOCITY]

real Initial Lagrangian velocity of the mate-
rial in the insertion set and all subse-
quent insertions sets. The user must set
velocity of subsequent sets to zero if no
initial velocity desired. This velocity is
superimposed on the material velocity
vector (MVELOCITY or RMVELOCITY com-
mand).

A variety of shape options for the INSERT and DELETE keywords are
provided. More shapes may be added as the need arises. The allowed shape

options are listed in the Table 11. The shape options are a subset of those
available in the cth code.

Table 11: shape Subkeywords for DIATOM Input

Shape
Keyword

Keyword or
Numeric Input

Meaning

BOX 2D: P1 = x, y

P2 = x, y

3D: P1 = x, y, z

P2 = x, y, z

2D or 3D.
The points P1 and P2 are the
minimum and maximum coordi-
nates of the box, aligned with the
coordinate system.

CI*RCLE CE*NTER = x, y

R*ADIUS = r

RI*NNER = r (0.)

2D only.
The circle is defined by the
CENTER and the RADIUS. An in-
ner radius, RINNER, is optional.

continued on next page

107

continued from previous page

UDS P1 = x, y

P2 = x, y

P3 = x, y

...

Pn = x, y

User Defined Shape – 2D only.
This is an arbitrary shape de-
fined by the points given. The
first and last points will be con-
nected by the diatom package to
complete the shape. (Limited to
3000 coordinate points.)

CY*LINDER CE1 = x, y, z

CE2 = x, y, z

R*ADIUS = r

RI*NNER = r (0.)

3D only.
The points CE1 and CE2 define
the end points of the axis of
the cylinder. The outer radius
is given by RADIUS and the in-
ner radius (optional) defined by
RINNER.

OGIVE CE1 = x, y, z

CE2 = x, y, z

OC*ENTER = uc,

vc

ORAD*IUS = r

ORAN*GE = v1, v2

3D only.
The points CE1 and CE2 define
the end points of the axis of rota-
tion. The OGIVE shape is defined
in two-dimensional u-v coordi-
nate space, where u = 0, v = 0
maps to CE1, and u = 0, v > 0
maps to CE2. OCENTER is the
center of the OGIVE shape cir-
cle (uc < 0 for a proper OGIVE

shape). ORADIUS is the radius of
the OGIVE shape circle (r > -uc
for proper OGIVE shape). ORANGE
specifies the subset of the OGIVE

shape to be inserted, given in
points along the axis of rotation.

R2DP CE1 = x, y, z

CE2 = x, y, z

P1 = u, v

P2 = u, v

...

Pn = u, v

Rotated 2D Polygon – 3D only.
The points CE1 and CE2 define
the end points of the axis of ro-
tation. The points Pn define the
shape along the axis, with v =
distance along the axis, starting
at CE1, and u = distance from
the axis.

continued on next page

108

continued from previous page

S*PHERE CE*NTER = x, y,

z

R*ADIUS = r

RI*NNER = r = 0

3D only.
The sphere is defined by the
CENTER and the RADIUS. An in-
ner radius, RINNER, is optional.

TET*RAHEDRON P1 = x, y, z

P2 = x, y, z

P3 = x, y, z

P4 = x, y, z

3D only.
The points define the vertices of
the tetrahedron.

TO*ROUS CE*NTER = x, y,

z

R*ADIUS = r

P1 = x, y, z

P2 = x, y, z

3D only.
P1 and P2 define the axis of rota-
tion for the circle of size RADIUS

located at the CENTER given.

FNF FILE =

’filename’

MAT = n

Pro/Engineer tetrahedral mesh –
3D only.
The insertions are to be read
from an external file in the FNF

format output from ProMesh.
The filename must be enclosed
in quotes, along with the mate-
rial number to be extracted from
the FNF file.

The following example illustrates the use of the DIATOM option.

block 1

eulerian mesh

add diatom input

end

diatom

package cylinder_one

material=34

insert cylinder

ce1 0. 10. 10.

ce2 0. 10. 0.

radius 5.0

rinner 2.0

endinsert

109

endpackage

translate 1. 1. 3.

scale 0.5

package ring

material 34

iteration 4

yvelocity 1.e4

insert torus

center 4. 10. 10.

radius 2.0

p1 7. 0. 10.

p2 7. 10. 10.

endinsert

endpackage

package plate

mat 2

iteration 4

insert r2dp

ce1 0. 0. 10.

ce2 13. 0. 10.

p1 0. 0.

p2 4. 3.

p3 4. 10.

p4 0. 13.

endinsert

endpackage

ends

endt

package plate

material 34

insert fnf

file=’track.fnf’ mat=2

endi

endp

$GRADED TEMPERATURE

110

package ’part 1’

temperature = t1

rgraded p1 = 20., 10., 10.

insert sphere

ce = 20., 10., 10.

r=11.

endi

endp

enddiatom

function 1

0. 596.

11. 1500.

end

5.7.2 User Defined Initial Conditions

USER DEFINED INITIAL CONDITION, variable

[, BLOCK int int ...]

[, MATERIAL int int ...]

"

double v; double x = coord[0]; double y = coord[1];

if (fabs(x) < 1.e6 && fabs(y) < 1.e6) {

v = 0.0;

} else {

v = sqrt(x * x + y * y);

}

field[0] = v;

"

END

This provides a general method for initializing known field variables on
the mesh. The variable is a name, such as “density” or “velocity” which
should not be quoted and is case insensitive.

As a C-language function, the quoted body has available one input array
of coordinates, coord, and one output array of field values, field. The
function is expected to use the coordinates in some way to set the return
value. The coordinates is an array of length two for 2D and three for 3D, while

111

the return value is an array whose length depends on the type of variable.
A scalar variable has length one, a vector has length 2 for 2D and 3 for 3D,
etc.

The optional BLOCK keyword can be used to trigger the initial condition
function only for certain element blocks, specified by their ids. This applies
to nodal variables as well as element variables with one exception: there is no
support for nodal variables on a block structured mesh on a per-block basis.
Nodal variables that apply to all blocks is supported on both structured and
unstructured meshes.

The optional MATERIAL keyword can be used to apply the initial condition
function to only those elements which have the given material(s) present.
Even nodal variables will not be set unless they touch an element with the
material(s) present. The integers must specify a material id as specified in
the input deck. The above mentioned exception applies here too: there is
no support for nodal variables on a block structured mesh on a per-material
basis. Nodal variables that apply to all elements regardless of material is
supported on both structured and unstructured meshes.

Note that the C-language function has limited functions available to it
and certain ANSI C syntax is not supported. Keep it simple and it should
work. One special function that is provided is the print() function, which
takes a variable name as its argument and prints to standard out the value
of the variable.

5.8 General Boundary Conditions

5.8.1 Periodic Boundary Conditions

The alegra user must supply an initial mesh which supports any peri-
odic boundary conditions requested. This means that matching nodesets are
required for each set of periodic boundaries. The nodes in the matching
nodesets on the mesh boundary must be consistent with a periodic mesh.
A necessary condition for the mesh to be allowable is that the number of
nodes in the matching nodesets must be the same. Each node in one nodeset
corresponds one-to-one to a node in the matching nodeset. The user may
pick either a translation or a rotation for each periodic boundary condition.
Details of the current implementation of periodic boundary conditions in

112

6

?

-�

1.0 13 11

10.0

14

12 101102

103 104

Figure 8: Periodic mesh example.

alegra can be found in Reference [28]. Structured mesh periodic boundary
conditions are described in Section 11 on page 192.

5.8.2 Translational periodicity

PERIODIC BC, nodeset1, TRANSLATE vector, nodeset2

[TOLERANCE real (1.e-5)]

where nodeset1 and nodeset2 are the first and second nodesets, vector is
the translation vector ~u which maps the nodes in nodeset1 to nodeset2.
That is,

~x2 = ~x1 + ~u (5.1)

Example:

periodic bc, nodeset 3, translate, x 1. y 0., nodeset 1

A 2D Cartesian mesh may be made doubly periodic by associating the two
pairs of opposite nodesets and the two pairs of diagonally opposite corners.
For example, suppose the opposite sides are labeled by nodesets 11 to 14,
and the four corner vertices are labeled by nodesets 101 to 104 (each of these
latter nodesets containing only one node), and the mesh is 10 units by 1 unit,
as shown in Figure 8.

The input to make this mesh doubly periodic in X and Y are:

periodic bc, nodeset 13, translate, x 10. y 0., nodeset 11

periodic bc, nodeset 14, translate, x 0. y 1., nodeset 12

113

periodic bc, nodeset 103, translate, x 10. y 1., nodeset 101

periodic bc, nodeset 102, translate, x 10. y -1., nodeset 104

A similar method may be used to make a 3D Cartesian mesh triply pe-
riodic. In this case one must associate the three pairs of opposite faces, the
six pairs of diagonally opposite (and parallel) edges, and the four pairs of
diagonally opposite corners. All associations pass through the center of the
rectangular parallelepiped.

5.8.3 Rotational Periodicity

PERIODIC BC, nodeset1, ROTATE real, POINT vector1,

AXIS vector2, nodeset2

[TOLERANCE real (1.e-5)] (3D)

PERIODIC BC, nodeset1, ROTATE real, POINT vector1,

nodeset2

[TOLERANCE real (1.e-5)] (2D)

vector2 is the rotation axis passing through the point vector1 which rotates
the nodes in nodeset1 through an angle given in degrees to coincide with
the nodes in nodeset2. In 2D, this boundary condition only makes sense for
Cartesian geometry where the axis of rotation is orthogonal to the mesh.

3D example:

periodic bc, nodeset 3,

rotate 45.,

point, x 0. y 0. z 0.,

axis, x 0. y 0. z 1.,

nodeset 4

2D example:

periodic bc, nodeset 3, rotate 45., point, x 0. y 0., nodeset 4

114

5.9 Block Input

BLOCK int

[subkeyword-list]

END

The BLOCK keyword group allows the user to specify the materials that
are contained in a block and the type of mesh movement desired in the
block. The default is for a block to be a voided Lagrangian block (i.e., if
all subkeywords are omitted). The BLOCK subkeywords are described in the
tables below.

It is important to understand some basic concepts about an alegra

mesh. An alegra mesh is composed of a set of mesh BLOCKs which are
all composed of the same type of elements. Currently only quadrilateral
and hexahedral meshes have extensive support and testing in alegra. This
means that generally a mesh block simply refers to a separately numbered
portion of the mesh. The mesh block is used to specify a focus region for ini-
tial conditions and Arbitrary Lagrangian-Eulerian (ALE) algorithm controls.

SMALE (Single Material ALE) refers to ALE remeshing within a single block
in the sense that no MATERIAL is allowed to flow across the Lagrangian block
boundaries. In alegra, SMALE does not imply that only a single material
is present within the block since alegra can be always be initialized with
multiple materials in each element. The single material part of the SMALE

name has its roots in the early technique or concept of block material initial-
ization in which a block was initialized to a single material. A better name
today would be Single Block ALE, but the SMALE name is till in use.

An MMALE (Multi-Material ALE) designation allows two adjoining mesh
blocks to be treated as a single large ALE block. Thus MMALE blocks do not
necessarily have Lagrangian boundaries. The name Multi-Block ALE is more
precise, but the MMALE name is currently used. Two adjoining MMALE blocks
are treated as a single ALE region and MATERIAL is allowed to flow between
these two blocks.

Additional ALE designators can be given on sidesets and nodesets to
precisely define the ALE algorithms intended on BLOCK boundaries.

A special BLOCK keyword is available for structured mesh physics options

115

as described in Section 11 on page 192.

5.9.1 Material Specification

A principal use of the BLOCK is to insert materials into the mesh. This is
performed on a block by block basis. alegra will process DIATOM first and
the MATERIAL input last.

If multiple DIATOM packages affect the same block, they will be processed
in the order they appear in the input deck. If two or more DIATOM shapes
associated with the packages overlap in the same mesh cell, alegra will
compute a volume fraction for the material associated with the first PACKAGE
and the remainder of the cell volume will be temporarily assigned to void.
The volume fraction is determined from the intersection of the shape with
the volume of the cell. Next alegra will compute a volume fraction for the
material associated with the second PACKAGE and use the minimum of this
volume fraction and the void fraction as the available volume fraction for the
second material. The volume fraction for the second PACKAGE is computed
as if there is no knowledge of the first PACKAGE. It is only the available void
fraction that provides one PACKAGE with a knowledge of a previous PACKAGE.
The process continues until all DIATOM are exhausted. Overlaps can be used
to the user’s benefit to prevent minuscule amounts of void or stray material
from creeping into cells due to round off error in computing volume fractions
on irregular meshes. The user is cautioned, however, that the results may be
order dependent and the results of multiple DIATOM inserts should be carefully
checked.

If both the ADD DIATOM INPUT and the MATERIAL keywords are present
in the same block, all of the DIATOM will be processed first. Any remaining
void fraction will be replaced with the material specified on the MATERIAL

keyword.

If multiple MATERIAL keywords are present in given block, then the avail-
able volume fraction is equally divided among the materials specified.

Example:

block 1

add diatom input $ diatoms are processed first

material 1 $ mat 1 fills remainder of block

116

Table 12: BLOCK MATERIAL Initialization Keywords.

Sub-Keyword Input Meaning

MATERIAL int Value corresponds to an id specified by a
valid MATERIAL keyword. There can be mul-
tiple material entries.

ADD DIATOM INPUT Indicates that volume fractions will be cal-
culated in this BLOCK from the information
given in the DIATOM keyword group. The
materials are identified in the DIATOM key-
word group input.

lagrangian mesh

end

5.9.2 Mesh Type

A second principal use of the BLOCK input is specification of the type of mesh.
Valid mesh types are listed in Table 13. The specification of LAGRANGIAN

MESH, SMALE MESH, MMALE MESH, or EULERIAN MESH initially sets the mesh
movement for the block to these types. A question arises regarding how to
treat the mesh nodes on the boundary between blocks of two different mesh
types. By default, alegra assumes a certain hierarchy of mesh types.

EULERIAN < MMALE < SMALE < LAGRANGIAN

alegra assigns the greater type from this hierarchy to the nodes on
a common boundary. However, particular nodes within the mesh may be
changed to a different type depending on nodeset/sideset definitions and
on the blocks that neighbor this particular block. See the DOMAIN keyword for
more information on how to use the nodeset/sideset keywords for specific
REMESH control.

Example:

block 1

material 10

117

Table 13: BLOCK Mesh Specification Keywords.

Sub-Keyword Meaning

LAGRANGIAN MESH In the Lagrangian formulation the nodes
move at the material velocity. This is the
default mesh type.

SMALE MESH In a single-material (single block) ALE for-
mulation, the mesh moves with the material
until the distortion becomes large enough to
trigger the remeshing of the nodes and a cor-
responding remapping of material quantities.
Material cannot flow out of the mesh BLOCK.

MMALE MESH In a multi-material (multi-block) ALE formu-
lation, the mesh moves with the material un-
til the distortion becomes large enough to
trigger the remeshing of the nodes and a cor-
responding remapping of material quantities.
Material may flow out of the mesh BLOCK.

EULERIAN MESH In an Eulerian formulation, the nodes remain
fixed.

SMOOTHED EULERIAN MESH In this formulation, the nodes are repo-
sitioned to their original coordinates (as
for EULERIAN MESH), but the mesh is then
smoothed.

smale mesh

end

block 2

material 20

lagrangian mesh

end

5.9.3 Remap Control

Another important function of the BLOCK input is to control the remap or
advection. BLOCK keywords are used in conjunction with various DOMAIN

118

keywords to produce the desired level of control over mesh behavior. An
alegra simulation cycle consists of a Lagrangian step where the material
and the mesh move together. If the mesh type is not Lagrangian, then the
mesh nodes are moved back to their former positions if the mesh is Eulerian,
or perhaps to some other position if the mesh is ALE. This movement of nodes
is termed the remesh phase of a remap. When the mesh nodes are moved, the
material position must remain fixed. Thus, a certain fraction of the material
in a remeshed cell must be transferred to adjacent cells depending on the
amount of volume that fluxes or passes through each element face. This
fluxing of material is known as advection. In alegra, “remapping” means
mesh movement or “remeshing” followed by advection.

Several remesh methods are available and are listed in Table 14. These
remesh methods move nodes interior to the mesh. The boundary nodes
remain fixed. Therefore, there must be interior mesh nodes for remeshing to
occur. A consequence of this is that in simple 1D-like problems, where there
is only one row of mesh cells, nodes cannot be remapped. (1D-like problems
may be used for simple scoping studies.) The frequency of remaps is also
controlled by the REMESH FREQUENCY keyword in Table 14.

The AVERAGE REMESH METHOD moves a node to the average of the element
centers to which the node is connected, although it produces instabilities in
some test cases. The BUDGE REMESH METHOD attempts to produce an orthog-
onal mesh.

The TIPTON REMESH METHOD solves the inverted Laplace equation through
a variational approach. The resulting set of equations are solved using Ja-
cobi iteration. It is unnecessary to find the exact solution to these equations.
Excessive node movement may over empty a cell. (See REMESH MOVEMENT

controls.) This algorithm without weights attempts to equalize the volumes
of the elements about a node. With weights, one can move nodes toward
regions of interest. The WINSLOW REMESH METHOD is the TIPTON REMESH

METHOD without weights.

Remeshing is a multi-step process. The first step is to determine which
nodes in the mesh are eligible to be remeshed. Lagrangian nodes are not
remeshed. Eulerian nodes are remeshed to their former positions, prior to
the Lagrangian step. ALE nodes are conditionally remeshed depending on
whether some threshold condition is met. If the condition is not met then
the node is not remeshed and the mesh behaves in a Lagrangian manner. If
the condition is met, then the node is remeshed and the mesh behaves in

119

Table 14: BLOCK Remesh Methods Sub-Keywords.

Sub-Keyword Input Meaning

AVERAGE REMESH METHOD

BUDGE REMESH METHOD

TIPTON REMESH METHOD

WINSLOW REMESH METHOD

Default = TIPTON.
Turns on the indicated in-
terior remesh method.

REMESH FREQUENCY int (1) Number of time steps be-
tween a remap step.

EULERIAN MOVEMENT {X | Y | Z} Specifying X, Y, or Z cause
the mesh to remain fixed
relative to material mo-
tion in that direction.

RADIAL CONSTRAINT Constrains remesh move-
ments to the radial direc-
tion. (Assumed center at
(0,0,0) for now.

an ALE manner. SMOOTHED EULERIAN nodes are treated as Eulerian unless a
remesh condition is met. When the remesh conditions are satisfied they are
remeshed just as an ALE node would be. While ALE nodes will behave in a
Lagrangian manner unless the remesh conditions are triggered, the SMOOTHED
EULERIAN nodes will behave in an Eulerian manner unless the conditions for
remesh are met. The threshold conditions are known as triggers.

Triggers may be based on geometric or physical considerations as de-
scribed in the Table 15.

Table 15: BLOCK Remesh Trigger Sub-Keywords.

Sub-Keyword Input Meaning

ANGLE

TRIGGER

real Minimum node angle on which to trigger a nodal
remesh. This value is entered as the absolute value
of the cosine of the minimum angle. An ideal angle
is 90o or a value of zero for the cosine of the angle.
A value of zero will guarantee that every node is
remeshed. Note that this trigger is NO LONGER
ON BY DEFAULT.

continued on next page

120

continued from previous page

SOLID ANGLE

TRIGGER

real Trigger a nodal remesh based on the minimum
solid angle at a node. This value is entered as a
ratio, which should not be exceeded, of an ideal
solid angle to the minimum solid angle. The ideal
solid angle is the total interior solid angle (4π for
an interior node) divided by the number of ele-
ments connected to the node. A value of 1.0 will
guarantee that every node is remeshed.

VOLUME

TRIGGER

real Minimum adjacent element volume on which to
trigger nodal remesh. A value of 1.0 will guaran-
tee that every node is remeshed. Note that this
trigger is NO LONGER ON BY DEFAULT.

VARVOL

TRIGGER

real Analogous to the volume trigger, but uses the
“variational volume” which in 2D cylindrical ge-
ometry is the area of the element.

DENSITY

TRIGGER

real This trigger will flag nodes for remeshing when
the average density in its associated elements is
greater than or equal to the input threshold value.
The average is a simple unweighted numerical av-
erage of the density values.

TEMPERATURE

TRIGGER

real This trigger will flag nodes for remeshing when the
average temperature in its associated elements is
greater than or equal to the input threshold value.
The average is a simple unweighted numerical av-
erage of the temperature values.

PRESSURE

TRIGGER

real This trigger will flag nodes for remeshing when
the average pressure in its associated elements is
greater than or equal to the input threshold value.
The average is a simple unweighted numerical av-
erage of the pressure values.

INVERSE

DENSITY

TRIGGER

real This trigger will flag nodes for remeshing when the
average density in its associated elements is less
than or equal to the input threshold value. The
average is a simple unweighted numerical average
of the density values.

continued on next page

121

continued from previous page

INVERSE

TEMPERATURE

TRIGGER

real This trigger will flag nodes for remeshing when the
average temperature in its associated elements is
less than or equal to the input threshold value.
The average is a simple unweighted numerical av-
erage of the temperature values.

INVERSE

PRESSURE

TRIGGER

real This trigger will flag nodes for remeshing when the
average pressure in its associated elements is less
than or equal to the input threshold value. The
average is a simple unweighted numerical average
of the pressure values.

COMBINE

TRIGGERS

This option causes triggers to be applied in con-
junction, i.e., logically and-ed together. The nor-
mal default is for the triggers to operate sepa-
rately, i.e., logically or-ed together.

As described above, the TIPTON method solves the inverted Laplace equa-
tion through a variational approach. Using this method with weights, one
can move nodes toward regions of interest. Weight can be based on geomet-
ric or physical considerations. Various weights are described in the following
table. The weight used in the TIPTON method is the maximum of the com-
puted value or the threshold value. Node movement is biased toward regions
of the mesh where the computed weight exceeds the threshold. Regions of
the mesh where the weight value is below the threshold are equally weighted.
The TIPTON scheme must be used in all blocks that share a remeshed node.
If this is not done, the remeshed node on the block boundary will migrate
rapidly toward the interior of the block.

Once the weights associated with a given method are computed, these
weights are then scaled to the range 1.0 to NORMALIZATION FACTOR. This
prevents excessive node movement. Each weighting method is individually
normalized. The normalization may be linear or logarithmic and is specified
after the weight keyword. For example, in some explosive or ablative simu-
lations the density may vary over several orders of magnitude. In this case
it may be wise to use a logarithmic normalization to capture the wide range
of densities.

Normalizing each weight also puts each weight on an equal basis should
multiple weights be specified in a single BLOCK. Multiple weights are linearly
summed after each is individually scaled. The resultant sum is then linearly

122

rescaled to the range 1.0 to NORMALIZATION FACTOR. The relative importance
of multiple weights can be controlled through judicious choice of the various
thresholds.

Table 16: BLOCK Remesh Weight Sub-Keywords.

Sub-Keyword Input Meaning

DENSITY WEIGHT

DENSITY GRADIENT WEIGHT

TEMPERATURE WEIGHT

TEMPERATURE GRADIENT

WEIGHT

PRESSURE WEIGHT

PRESSURE GRADIENT WEIGHT

INVERSE VOLUME WEIGHT

INVERSE RADIUS WEIGHT

INVERSE XYRADIUS WEIGHT

INVERSE YZRADIUS WEIGHT

INVERSE XZRADIUS WEIGHT

real Any combination of these
keywords can be entered.
Their entry turns the specific
type of weighting on for
BLOCKs specified with Tipton
smoothing.

The numeric input (real
≥ 0.) serves as a threshold
to control application of the
weight. The weight is applied
when the element quantity
exceeds the threshold.

INVERSE DENSITY WEIGHT

INVERSE TEMPERATURE WEIGHT

INVERSE PRESSURE WEIGHT

real Any combination of these key-
words can be entered. Their
entry turns the specific type
of weighting on for elements
specified with Tipton smooth-
ing. The numeric input (real
≥ 0.) serves as a threshold
to control application of the
weight. The weight is applied
when the inverse of the ele-
ment quantity exceeds the in-
verse of the threshold.

continued on next page

123

continued from previous page

choice of weight real

{LINEAR NORMALIZATION |

LOG NORMALIZATION}

Default = LINEAR.
These two keywords modify
the above weights and de-
termine the method used to
normalize weights for Tip-
ton smoothing. Weights
are normalized between 1.0
and the value given by the
NORMALIZATION FACTOR key-
word.

NORMALIZATION FACTOR real

(4.0)
Maximum weight value (real
> 1).
Larger values may cause ex-
treme mesh movement and
over-fluxing of an element. If
real = 1.0, weighting is inef-
fective.

Example:

block 1

material 7

smale mesh

tipton remesh method

density trigger = 30.0

density weight = 50.0 $ defaults to linear scaling

temperature trigger = 3000.

temperature weight = 5000. linear norm

inverse density trigger = 0.01

inverse density weight = 0.005 log norm

norm factor 7.0 $ allow greater node movement

end

This example would trigger remeshing in regions of the mesh where there
are high densities and temperatures or low densities, leaving regions of the

124

mesh with intermediate values alone. The inverse density weight uses a
logarithmic normalization.

The user can also control the method used to advect material variables
between elements and momenta between nodes. The keyword is given in
Table 17. Note that these keywords are operative for structured mesh physics
options since the Eulerian capability is supported.

Table 17: Advection Control Sub-Keywords.

Sub-Keyword Input Meaning

DONOR ADVECTION

SUPERB ADVECTION

VANLEER ADVECTION

Default = VANLEER. Turns on the
indicated advection method.

5.9.4 Other Block Controls

Other parameters and behaviors can be controlled within the BLOCK keyword,
including artificial viscosity, hourglass control, and mesh modifications. See
Table 18.

Table 18: Other BLOCK Sub-Keywords.

Sub-Keyword Input Meaning

ARTIFICIAL VISCOSITY int Specifies the artificial viscosity
model to be used for this block
(see ARTIFICIAL VISCOSITY key-
word input).

PRESCRIBED {X | Y | Z}
VELOCITY

real Apply a fixed non-zero velocity to
the nodes in this block. Valid
for EULERIAN MESH and SMOOTHED

EULERIAN MESH blocks.
HOURGLASS CONTROL int Specifies the hourglass control

model to be used for this block
(see HOURGLASS CONTROL keyword
input).

continued on next page

125

continued from previous page

DELETION CYCLE int Specifies the cycle at which the ele-
ment block is deleted from the prob-
lem.

DELETION TIME real Specifies the time at which the ele-
ment block is deleted from the prob-
lem. Time must be greater than or
equal to DELETION TIME to trigger
deletion.

DELETE DATA Delete element block by deleting all
vertex, edge, face, and element data
associated with the block. Note
that coordinates are reset to orig-
inal value and entire block is filled
with void.

DELETE TOPOLOGY Delete element block by deactivat-
ing all vertices, edges, faces and el-
ements associated with the block.

5.10 Domain Input

DOMAIN

[subkeyword-list]

END

The DOMAIN keyword group allows the user to specify how an entire do-
main is to behave, i.e., global behavior that cannot be broken down to the
block level. The following tables describe the allowed subkeywords that can
be specified for a domain.

5.10.1 Boundary Remesh Control

In order to properly use the sideset and nodeset specifications available in
the DOMAIN input, a few key points must be understood about the functional
characteristics of the alegra rezone method. By using the word “rezone”,
this discussion is limited to the methods alegra uses to reposition nodes
for the ALE method.

126

The first basic understanding needed is that, unless told differently by
the user, alegra will only rezone interior nodes in a mesh block. The user
must tell the code that rezoning is desired on the sides of these blocks, using
the sideset and nodeset keyword commands available in DOMAIN. The sideset
rezone methods will compute new locations for nodes in the sideset that are
interior to the side, i.e., not located on the edges outlining the side. To
control rezone of the nodes on the edges, the user must employ the nodeset
keyword commands available in DOMAIN.

The next point that must be understood is the method alegra uses
to resolve overlapping specifications for nodes on sides and edges. A node is
considered to belong to up to four entities: a block, a sideset, a nodeset and a
pointset (a nodeset with only a single node included). The node can also have
one of four rezone characteristics: LAGRANGIAN, ALE, SMOOTHED EULERIAN or
EULERIAN. These characteristics are set by the keyword commands available
in the BLOCK and DOMAIN inputs.

The BLOCK mesh specification (e.g., EULERIAN MESH) will label the nodes
in the mesh block in a manner that depends upon the type of block and the
whether the node is in the interior of the block or not. Table 19 explains this
labeling.

Table 19: Node Rezone Control by Mesh Specification

Block Type Interior Nodes Non-Interior Nodes

LAGRANGIAN LAGRANGIAN LAGRANGIAN

SMALE ALE LAGRANGIAN

MMALE ALE ALE

SMOOTHED EULERIAN SMOOTHED EULERIAN SMOOTHED EULERIAN

EULERIAN EULERIAN EULERIAN

When conflicts between block labels occur, as when nodes are common
to two or more blocks, a precedence of node labels is enforced. The node
attributes are enforced in the following manner:

LAGRANGIAN > ALE > SMOOTHED EULERIAN > EULERIAN.

The “>” symbol means “overrides”. Thus a node will have the most
restrictive setting applied to it by multiple overlapping specifications.

127

The next specification, allowed in 3D problems only, is a sideset specifica-
tion. For a sideset, the distinction between types of nodes are those that are
on a material interface and those that are not on such an interface. In this
context the nodes on each sideset are labeled according to the rules explained
in Table 20.

Table 20: Node Rezone Control by Sideset Specification

Sideset Type Non-Interface Nodes Interface Nodes

LAGRANGIAN LAGRANGIAN LAGRANGIAN

SMALE ALE LAGRANGIAN

MMALE ALE ALE

SMOOTHED EULERIAN SMOOTHED EULERIAN SMOOTHED EULERIAN

EULERIAN EULERIAN EULERIAN

Once again the node label precedence is enforced for nodes that share one
or more sidesets.

The nodesets are processed and labeled in a manner that is exactly the
same as the sidesets, with the distinction of node type being the presence
of the node on a line where a material interface intersects a mesh boundary.
Finally, the point sets are processed, these being the one-entry nodesets.

Once all of the above has been done, the code has a block label, a sideset
label (if 3D), a nodeset label and a point label for each node in each block.
Note that the latter three labels will only be present if the user specified the
node by means of node or sidesets. Each node will however have a label from
the block specification. The final step in labeling the nodes to allow remesh
motion is to allow the following node movement enforcement.

Point type > Nodeset type > Sideset type (if 3D) > Block type.

Here, the “>” symbol indicates “overrides”. With these controls, the user
can determine how the alegra rezone package will operate within the mesh.

Table 21: DOMAIN Keywords for Remesh Control

Sub-Keyword Input Meaning

continued on next page

128

continued from previous page

LAGRANGIAN NODESET

EULERIAN NODESET

SMALE NODESET

SMALE XLINE NODESET

SMALE YLINE NODESET

SMALE ZLINE NODESET

MMALE NODESET

MMALE XLINE NODESET

MMALE YLINE NODESET

MMALE ZLINE NODESET

SMOOTHED EULERIAN NODESET

SMOOTHED EULERIAN XLINE

NODESET

SMOOTHED EULERIAN YLINE

NODESET

SMOOTHED EULERIAN ZLINE

NODESET

int Value corresponds to a nodeset

id and indicates how the nodes of
the set should behave relative to
the material motion. The DOMAIN
keyword can have multiple en-
tries of this type.

Note: The SMALE, MMALE, and
and SMOOTHED EULERIAN features
produce slightly different results
in parallel runs than serial runs.
The LAGRANGIAN, EULERIAN,
SMALE, MMALE, and SMOOTHED

EULERIAN NODESET commands
control the setting of nodal flags
on the nodes of the nodeset.

LAGRANGIAN SIDESET

EULERIAN SIDESET

SMALE SIDESET

SMALE XYFACE SIDESET

SMALE YZFACE SIDESET

SMALE XZFACE SIDESET

MMALE SIDESET

MMALE XYFACE SIDESET

MMALE YZFACE SIDESET

MMALE XZFACE SIDESET

SMOOTHED EULERIAN SIDESET

SMOOTHED EULERIAN XYFACE

SIDESET

SMOOTHED EULERIAN YZFACE

SIDESET

SMOOTHED EULERIAN XZFACE

SIDESET

int Value corresponds to a sideset id
and indicates how the nodes of
the set should behave relative to
the material motion. The DOMAIN
keyword can have multiple en-
tries of this type.

The LAGRANGIAN, EULERIAN,
SMALE, MMALE, and SMOOTHED

EULERIAN SIDESET commands
control the setting of nodal flags
on the nodes of the sideset.

Note: The XYFACE, YZFACE,
XZFACE commands must be used
in order to remesh the nodes in
the sideset.

REMAP ITERATIONS int (1) Number of remaps to perform at
the end of a Lagrangian step.

REMESH ITERATIONS int (10) Number of remesh smoothing it-
erations per remap.

continued on next page

129

continued from previous page

INITIAL REMESH MOVEMENT

LIMITER

real(1.0) Fraction of calculated smoothing
movement to allow at problem
startup.

0 ≤ real ≤ 1.
Use this to avoid large mesh
movements at problem startup
which can cause overfluxing in the
advection phase of the remap.

REMESH MOVEMENT RATIO real(1.0) Change remesh movement limiter
by this factor each time through
a remesh smoothing iteration.

real ≥ 1.

REMESH MOVEMENT LIMITER real(1.0) Maximum fraction of calculated
remesh movement to allow.

0 ≤ real ≤ 1.

5.10.2 Domain Advection Controls

The DOMAIN keyword group also holds controls for the advection methods
used by alegra. These are given in Table 22.

Table 22: DOMAIN Keywords for Advection Control

Sub-Keyword Input Meaning

SALE ADVECTION

MSALE ADVECTION

SHALE ADVECTION

MSHALE ADVECTION

HIS ADVECTION

MHIS ADVECTION

Default = HIS ADVECTION.
Turns on the indicated nodal advec-
tion method. These are documented
in detail elsewhere [26].

SLIC INTERFACE TRACKER

SMYRA INTERFACE TRACKER

NEW SMYRA INTERFACE TRACKER

Default = SMYRA INTERFACE

TRACKER.
Turns on the indicated material inter-
face tracker. SLIC is present only for
testing purposes and is not supported
for structured mesh physics options.
NEW SMYRA is a recent modification of
the algorithm by R. Bell.

continued on next page

130

continued from previous page

TOTAL ENERGY ADVECTION Total energy is advected and con-
served during advection. The default
capability is to advect and conserve in-
ternal energy during advection.

VOIDED SIDESET int Value corresponds to a valid sideset
id and indicates that void exists
on the other side of this Eulerian
mesh boundary. By default, all Eu-
lerian, Ale and Smoothed Eulerian
mesh boundaries are assumed to re-
flect their conditions on the exterior of
a problem. By default, all Lagrangian
boundaries are free surfaces.

The VOIDED SIDESET command controls the inflow/outflow of material
from the mesh. By default, the material state outside the mesh will be
the same as the material state just inside the mesh boundary. By using
VOIDED SIDESET, the user can tell alegra that there is void outside the
mesh and material can leave the mesh or void can enter the mesh. In using
this capability, the Lagrangian boundary conditions control the motion of the
material. So, if there is a NO DISPLACEMENT boundary condition on the mesh
boundary that inhibits motion normal to the boundary, then the VOIDED

SIDESET command will have no effect on advection.

The nodal advection method concerns the advection of momentum be-
tween nodes of the mesh. All other advection concerns element centered
quantities, and advection is a matter of finding a value for the quantity on
an element face and then moving a volume of the quantity between elements
in a conservative manner. For momentum however, the alegra velocities
are centered on nodes and there is no convenient “face” to advect momentum
through. Thus some method must be used to find the momentum associated
with a node, advect this value and then redistribute to the nodes.

The interface tracker determines the location of the material interfaces
within an element so advection can move the appropriate material into or
out of a face. There is actually only one choice here. The SLIC INTERFACE

TRACKER leads to spurious “streaming” effects in regular mesh. It is present
in the code only for testing purposes.

Advecting total energy is an option available to the user. The need for

131

this option arises because it is not possible to simultaneously conserve mass,
momentum, internal energy and kinetic energy during advection. alegra is
designed to always conserve mass and momentum. The momentum conserva-
tion determines the post-advection nodal velocities and these will produce a
kinetic energy that when added to the conserved post-advection internal en-
ergy, will result in a total energy that will not exactly equal the pre-advection
value. This effect is aggravated by advection errors caused by steep gradients
and/or coarse zoning.

Since some problems require exact total energy conservation, an option
is available that results in conservation of total energy rather than internal
energy. By selecting this feature, the specific kinetic energy is added to the
specific internal energy of each material in an element prior to advection.
This quantity is conservatively advected, and after remap the specific kinetic
energy is subtracted from the result. The specific kinetic energy is the average
over the nodes of an element of the quantity 1

2
v2.

Use of the total energy advection option can have bad consequences. Neg-
ative internal energies or spuriously large internal energies (artificial heating)
can result from this option. These effects will occur when the momentum
advection across an element side implies a kinetic energy flux that does not
match the internal energy flux across the element side. The final accounting
will place any deficit or surplus in the element’s internal energy.

5.10.3 Initial Refinement

INITIAL REFINEMENT

[subkeyword-list]

END

The DOMAIN keyword group also contains controls for the initial refine-
ment capability of alegra. Using this feature, a user can specify that a
quadrilateral or hexahedral initial mesh can be refined prior to the problem
starting. Each level of refinement multiplies the number of elements by a
factor of 4 in 2D and 8 in 3D. alegra has the capability of running with
“1-irregular” mesh, meaning that an element may neighbor another element
that has been refined to one higher or lower level. Since this is restricted to
a difference of only one level of refinement, neighboring blocks with different
levels of initial refinement will have their borders refined such that the 1 level

132

difference is enforced.

Note: INITIAL REFINEMENT is not available for structured mesh
physics options.

DOMAIN keywords controlling initial refinement are given in Table 23.

Table 23: DOMAIN Keywords for Initial Refinement.

Sub-Keyword Input Meaning

MAXIMUM LEVELS int Specifies the maximum number of
INITIAL REFINEMENT levels.

INITIAL REFINEMENT see Section 5.10.3 on page 132

This input is contained as a subset within the DOMAIN input. Valid input
identifies any combination of sidesets, element blocks, or detonation objects
for initial refinement. During initialization all elements on a sideset, in an
element block, or adjacent to a detonation object are refined to the maximum
level of refinement. This capability is particularly useful for increasing the
resolution of a given mesh using the original GENESIS file. Including all
element blocks in the list of initial refinement objects, increases the mesh
resolution by a factor of four in 2D and eight in 3D.

Table 24: INITIAL REFINEMENT Sub-Keywords

Sub-Keyword Meaning

ALL BLOCK Specifies that all element blocks will be re-
fined to the highest refinement level.

BLOCK BOUNDARY Specifies that elements on the boundaries of
all element blocks will be refined to the high-
est refinement level.

BLOCK BOUNDARY, PATRIARCH Same as block boundary, but refines ele-
ments whose patriarch element has a face
on the block boundary.

SIDESET int Refine the sideset to the highest refinement
level.

SIDESET int PATRIARCH Same as above but refines elements whose
patriarch element has a face on the sideset.

continued on next page

133

continued from previous page

SIDESET int

SPHERE real vector

Refine the sideset to the highest refine-
ment level while mapping surface nodes to a
sphere of radius r centered at position p. In
2D CIRCLE is an alternate keyword here.

SIDESET int

CYLINDER real vector

vector

Refine the sideset to the highest refinement
level while mapping surface nodes to a cylin-
der of radius r with points p1 and p2 lying
on the axis of the cylinder. Primarily appli-
cable in 3D.

SIDESET int RECONSTRUCT Reconstructs a local smooth surface through
the sideset nodes using approximate surface
normals at these nodes.

BLOCK int Refine the element block to the highest re-
finement level.

BLOCK int, LEVEL int The element block specified will be refined
to the refinement level specified. The spec-
ified refinement level must be less than the
maximum level set by the MAXIMUM LEVELS

keyword.
DETONATION POINT int Refine the detonation point to the highest

refinement level.

Example:

domain

maximum levels = 2

initial refinement

sideset 1

block 5

detonation point 7

block 3, level 1

block 4, level 2

end

end

Limitations:

1. Currently, the only detonation object supported for INITIAL REFINEMENT

is the detonation point (see Section 8.5.1 on page 177).

134

2. Nodeset specified boundary conditions cannot be used with initial re-
finement. Sidesets must be used to specify both Neumann (e.g., pres-
sure) and Dirichlet (e.g., kinematic) boundary conditions. (see Sec-
tion 7.1 on page 144) Thus, for a 2D cylindrical geometry, the axial
NO DISPLACEMENT condition must be specified with a sideset, not a
nodeset. The data layout of a nodeset inhibits correct refinement.

5.11 Cell Doctor

CELL DOCTOR

[DISCARD int

[FREQUENCY int]

[MINIMUM POSITION, vector]

[MAXIMUM POSITION, vector]

[TIME RANGE MIN real MAX real]

[TRIGGER, variable_name, MINIMUM real MAXIMUM real END]

...

END

The CELL DOCTOR keyword provides facilities for modifying the material
content of a cell in an ad hoc manner during a simulation. This section
describes its most general form, usable from any physics package. A more
specialized version of CELL DOCTOR, available under HYDRODYNAMICS, is de-
scribed in Section 8.4.2 on page 175.

5.11.1 Discard

The CELL DOCTOR keyword provides one subkeyword, DISCARD. This keyword
has the syntax

DISCARD int

[VERBOSE]

[FREQUENCY int]

[MINIMUM POSITION, vector]

[MAXIMUM POSITION, vector]

[TIME RANGE MIN real MAX real]

[TRIGGER, variable name, MINIMUM real MAXIMUM real]

135

END

The DISCARD subkeyword provides the user with the capability to remove
a selected material within a specified geometrical box within a specific time
range when its trigger variable falls within the specified range.

The integer field after the DISCARD keyword can be any material id. The
FREQUENCY keyword specifies the frequency at which the discard is performed
in computational cycles. Thus a FREQUENCY value of 3 means the discard is
done every third computational cycle. The MINIMUM POSITION and MAXIMUM

POSITION values specify a spatial window within which elements will be
checked for satisfying the discard criteria. Note that the location of the
center of the element is tested against this criteria. The TIME RANGE gives a
temporal window within which the discard criteria are tested. The VERBOSE

keyword causes output to be sent to standard out for every test of the criteria
and discard. This feature should only be used for debugging purposes. As a
default, the MINIMUM POSITION and MAXIMUM POSITION values are both set
to zero, so the user MUST set these values to encompass the region of the
problem in which the discard is to take place. The TIME RANGE values are
defaulted to zero for the minimum and a very large number for the maxi-
mum, so the user can neglect setting these values if the discard is desired at
all times. This assumes the problem starts at time=0. or some positive time.

The trigger variable may be any scalar variable of the specified mate-
rial. A listing of all variables for each material can be found in the .out
file produced by an alegra run. Examples of permissible trigger variables
that are defined for many materials are DENSITY, PRESSURE, or TEMPERATURE.
For example, one could simulate the effects of melting in a solid dynamics
simulation with the input:

cell doctor

discard 1 $ material 1 discard specification

minimum position, x = -55., y = -30., x = -110.

maximum position, x = 55., y = 50., x = 0.

trigger, temperature, minimum 1600. maximum 1.0e10

end

end

This specifies that material 1 is discarded when it reaches its melting
temperature of 1600 K. The material will be checked every cycle for all ele-

136

ments with centers in the specified box throughout the simulation, since the
FREQUENCY and TIME RANGE keywords have not been specified.

The user can enter as many DISCARD keyword blocks as desired. Over-
lapping discard specifications are or-ed together to determine if a material
should be discarded.

Void is used to replace any material that is deleted. The mass and volume
of material that is deleted is tracked and is available for output.

5.12 Tracer Points

TRACER POINTS

LAGRANGIAN TRACER int, vector [NO INTERP] [ROTATE vector]

EULERIAN TRACER int, vector [NO INTERP] [ROTATE vector]

ALE TRACER int, vector [NO INTERP] [ROTATE vector]

END

The TRACER POINTS keyword group begins a list of tracer points, which
are used to track material or mesh motion in a calculation. As many tracers
of any type may be included.

An EULERIAN TRACER never changes its spatial position.

A LAGRANGIAN TRACER is moved with the interpolated velocity at its local
position. It thus moves with the local material velocity. The natural mesh
coordinates should not change for a LAGRANGIAN TRACER in a Lagrangian
mesh.

An ALE TRACER stays with the original natural coordinates of the mesh
and is thus a “mesh tracer.” An ALE TRACER will be an EULERIAN TRACER

in an Eulerian mesh and a LAGRANGIAN TRACER in a Lagrangian mesh and a
mesh tracer in an ALE mesh. The ALE TRACER is the most efficient tracer
to use. LAGRANGIAN TRACERs in Eulerian meshes and EULERIAN TRACERs in
Lagrangian meshes are the most expensive.

An example tracer specification is:

tracer points

lagrangian tracer 1 x -0.009 y 198.345 z 3.3

137

eulerian tracer 2 x 3.45 y 2.65 z 2.0

ale tracer 3 x -0.009 y 198.345 z 3.3

eulerian tracer 30 x -0.009 y 198.345 Z 3.3

no interp

lagrangian tracer 300 x 4.0 y 0.0 z 0.0

rotate x 0., y=0., z=45.

end

The location of the tracer can be modified using the ROTATE keyword,
which rotates the tracer about the x, y, and z coordinate axes (and in that
order). Rotation values about each coordinate axis are interpreted as degrees.

Tracer locations are written to the hisplt post-processing database [42].
History variables providing tracer locations in the local coordinate system
(PSX-X, PSY-Y, and PSY-Z) are described in Section 13.3 on page 298. Cur-
rently hisplt will not recognize an ALE TRACER, listing the type of the tracer
as UNKNOWN in the catalog, but LAGRANGIAN on the plot header.

By default, interpolation of the data to the tracer location in the element
is performed for nodal variables. If no interpolation is desired, the keyword
NO INTERPOLATION can be appended after the tracer coordinates for each
tracer point. In that case, the value at the nearest node is written to the
database although the actual position of the tracer behaves as lagrangian,
eulerian, or ale. Interpolation is not yet available for element variables, so
the value of an element variable written to the database is simply the value
at the element center.

For the structured mesh option, tracers are fully functional, but the ele-
ment id that is returned is not easily interpreted since it is an actual index
into the block element array. The nearest node function for the NO INTERP

option is not functioning for structured mesh physics options.

5.12.1 Eulerian Tracer

[EULERIAN TRACER int vector [NO INTERP] [ROTATE, vector]]

In two dimensions, use [ROTATE, Z real]. In three dimensions, specify
the angle of rotation in degrees about each axis, such as

ROTATE, X 30. Y -10. Z 45.

138

5.12.2 Lagrangian Tracer

[LAGRANGIAN TRACER int vector [NO INTERP] [ROTATE, vector]]

In two dimensions, use [ROTATE, Z real]. In three dimensions, specify
the angle of rotation in degrees about each axis.

5.12.3 ALE Tracer

[ALE TRACER int vector [NO INTERP] [ROTATE, vector]]

In two dimensions, use [ROTATE, Z real]. In three dimensions, specify
the angle of rotation in degrees about each axis.

5.13 Functions

FUNCTION int

real real

real real

... ...

END

The FUNCTION keyword group defines a function in terms of a table of
real ordered pairs. A function is identified by the int integer field after the
FUNCTION keyword. The integer field lets the FUNCTION be referenced by a
function-set as part of other keywords that define the problem, and so may
be used to specify such things as boundary conditions as functions of time
or space. Linear interpolation is used between table points. To approximate
steps in a function, the user should use x-values that are close together. For
example:

FUNCTION 11

0.0 0.0

1.0 0.0

1.0001 1.0

2.0 1.0

END

139

alegra provides a predefined constant function with id 0, equivalent to

FUNCTION 0

-REAL_MAX/2. 1.

REAL_MAX/2. 1.

END

that allows a constant function to be referenced conveniently in the code
input. Here “REAL MAX” is the largest floating point number available to the
code. Since FUNCTION 0 has been predefined, the user cannot use 0 as a
function identifier when defining additional functions.

If automatic UNITS conversion is desired (as described in Section 4.1.3 on
page 69), the unit conversion string must be entered after each applicable real
value in the function.

140

6 Energetics Input

{physics choice keyword}

...

[ENERGETICS]

...

[energetics keywords]

...

[END]

...

END

The physics choice keyword is one of the options described in Sec-
tion 5.2 or 5.3 on pages 93 and 94. The ENERGETICS keyword and its corre-
sponding END keyword are optional and may be included in the input file for
clarity.

6.1 Energetics I/O Control

6.1.1 Detailed Energy Tallies

DETAILED ENERGY TALLIES

In many problems of interest it is often desirable to know the energy
budget. How much energy is related to a given physical process? What is
the value of the kinetic and internal energies? How much energy is supplied
by a given source or is lost to a given sink? How fast does energy change
from one form to another?

alegra provides the user with a detailed set of energy and power tal-
lies to answer such questions. The tallies are written to both the hisplt

and exodus output files. Typically the hisplt file will contain tallies at
more frequent intervals compared to the exodus file (depending on the user
specification – see the EMIT HISPLT and EMIT PLOT commands) because it
is smaller and does not contain mesh information or plot variables.

The Tables 91 and 92 in Chapter 13 summarize the various energy and
power tallies that are available. The tallies are grouped by choice of the

141

physics specification keyword, described in Sections 5.2 and 5.3. Extra global
power tallies marked with an asterisk (*) are omitted from the output files
unless the DETAILED ENERGY TALLIES keyword is specified. The DETAILED

ENERGY TALLIES keyword causes extra global power tallies to be included in
the history and plot dump files.

6.2 Energy Sources

6.2.1 Energy Deposition

{EULERIAN | LAGRANGIAN} ENERGY DEPOSITION, block-id

TIME function-set

[MATERIAL material-id]

[RADIAL function-set]

[CYLINDRICAL]

[MASS WEIGHT]

[VOLUME WEIGHT]

END

This keyword group causes energy to be deposited in the specified block
over time. The energy can be optionally restricted to one material in this
block by the use of MATERIAL keyword. Use the EULERIAN prefix for Eulerian-
mesh blocks and the LAGRANGIAN prefix for Lagrangian-mesh blocks.

The power distribution is given as a separable function of radius from
the origin and time, and it should be in dimensions of energy per second.
If the CYLINDRICAL keyword is included, the RADIAL value is interpreted to
be the cylindrical radius, otherwise it is interpreted as the spherical radius.
The keywords MASS WEIGHT and VOLUME WEIGHT control how the energy is
apportioned among the materials in a multi-material block.

The function-sets used here support the SHIFT parameter described in
3.2.5, which allows the user to choose the zero time.

The user specifies an energy deposition rate as a function of time and
space. At every cycle within the time range of this table, alegra will
compute the total mass or volume of the elements targeted within the block.
The radial weight function specified by the RADIAL keyword will be included
also. The choice of mass or volume is controlled by the MASS WEIGHT or

142

VOLUME WEIGHT keywords. If the MATERIAL keyword is specified, then the
mass or volume of only that material within the elements of the block will
be taken into account. This quantity is then used to normalize the user
specified rate term so that an energy/mass/time or energy/volume/time

rate is obtained. This specific rate is then applied to the element or the
specified material within the element. In this way, movement of material
into or out of the block will not affect the total energy deposited into the
block over the time span of the table.

The user should restrict the TIME span of the table to only the time that
the energy source term is desired. Putting a larger time span in with zero
rate values causes the code to compute normalization factors needlessly.

143

7 Mechanics Input

{physics choice keyword}

...

[MECHANICS]

...

[mechanics keywords]

...

[END]

...

END

Mechanics algorithms deal with motion of material in space. The only re-
leased model for this type of algorithm is a dynamically evolving distribution
of matter, modeled with explicit advancement of the variables at every step
in time. Another class of Mechanics algorithms being developed for alegra

are statics models, where an implicit scheme is used to determine the final
state of some material distribution subject to a set of internal and external
forces.

The physics choice keyword is one of the options described in Sec-
tion 5.2 or 5.3. The MECHANICS keyword and its corresponding END keyword
are optional and may be included in the input file for clarity.

7.1 Boundary Conditions and Body Forces

In the following boundary condition descriptions, the mesh portion to which
the constraint is applied is often described as either a nodeset or a sideset,
i.e., {nodeset | sideset}. However, when adaptivity is being used, only
sidesets should be used to specify constraints in the region of the mesh in
which adaptivity may be changing element connectivity and adding elements.
This is because alegra currently does NOT support refined nodesets and
thus a constraint specified on a nodeset will NOT be applied to the newly
added nodes on that mesh boundary. If the boundary section is not in a
region of mesh where adaptivity may be changing the mesh, nodesets can
still be used to specify constraints.

144

7.1.1 Gravity

GRAVITY vector

This keyword specifies that the force of gravity will be applied in a calcu-
lation in the direction specified. The gravitational potential energy is output
as an energy diagnostic. Normally gravity is not included.

7.1.2 No Displacement

NO DISPLACEMENT, {nodeset | sideset}

{ X | Y | Z | R | RADIAL | NORMAL | TANGENT} [vector] }

This keyword allows the user to hold one or more coordinates of a set of
nodes fixed. If X, Y, Z, or R are specified, then vector should not be entered.
Multiple NO DISPLACEMENT {X | Y | Z | R} boundary conditions may be
specified for the same set of nodes to constrain motion in more than one
direction. Note that in 3D or 2D Cartesian geometry, X, Y and Z refer to
their standard components. In 2D cylindrical geometry, R and Z refer to the
radial and axial components, respectively.

If RADIAL is specified, then vector must be entered. It is assumed that
vector specifies the center through which the constraining force acts. Nodes
are constrained to not move along the line connecting the node with vector.

If NORMAL or TANGENT is specified, then vector must be entered. It is
assumed that the nodes are coplanar (collinear in 2D) and that vector spec-
ifies the outward boundary normal. Nodes are then constrained to not move
in either the normal or tangential direction.

Note that if a node is constrained by both a {NORMAL | TANGENT} bound-
ary condition and an {X | Y | Z | R} boundary condition and the bound-
ary normals are not orthogonal, then application of the {NORMAL | TANGENT}
constraint will add an acceleration component along {X | Y | Z | R}. In
this case, the common node should be placed in its own nodeset and multiple
{X | Y | Z | R} constraints should be specified. A related problem exists
for the shared nodes along the common edge between two non-orthogonal no
displacement surfaces. A complete description is provided on page 308.

145

All nodes from the mesh database which are part of the specified nodeset

or sideset will be subject to the boundary condition.

Structured mesh physics options support only nodesets for the application
of NO DISPLACEMENT boundary conditions.

7.1.3 No Cylindrical Displacement

NO CYLINDRICAL DISPLACEMENT, {nodeset | sideset}

{ RADIAL | CIRCUMFERENTIAL | AXIAL }

This keyword allows the user to hold one or more coordinates of a set of
nodes fixed in the RADIAL, CIRCUMFERENTIAL, or AXIAL directions. Multiple
NO CYLINDRICAL DISPLACEMENT boundary conditions may be specified for
the same set of nodes to constrain motion in more than one direction.

Structured mesh physics options support only nodesets for the application
of NO CYLINDRICAL DISPLACEMENT boundary conditions.

7.1.4 Prescribed Force

PRESCRIBED FORCE, nodeset, direction-function

This keyword allows the user to prescribe a force acting on a nodeset
as a function of time in the direction specified by the direction-function

construct as described in Section 3.2.9 on page 67.

7.1.5 Rigid Segment

RIGID SEGMENT, nodeset

ENDPOINT1, vector

ENDPOINT2, vector

END

This keyword group allows the user to specify a rigid segment in two
dimensions or, in three dimensions, a rigid plane that extends infinitely in

146

the z direction parallel to the segment that cannot be penetrated by the
nodes of the nodeset. In two dimensions, a series of rigid segments allows for
the creation of a rigid body.

7.1.6 Rigid Surface

RIGID SURFACE, {nodeset | sideset}

CENTER, vector

NORMAL, vector

STATIC COEF real

VELOCITY COEF real

DECAY COEF real

END

In three dimensions, this keyword group allows the user to specify a rigid,
plane surface (not part of the database mesh) that cannot be penetrated by
the (slave) surface specified by the nodeset or sideset.

7.1.7 Traction BC

TRACTION BC, sideset symtensor function-set

This keyword allows the user to specify a stress given by symtensor that
acts on a surface. The stress is “dotted” with the unit normal of the element’s
surface to give a force that is proportioned and applied to the nodes that lie
on the surface.

7.2 Mechanics Algorithm Control

7.2.1 Hourglass Control

{PISCES | PRONTO} HOURGLASS CONTROL [int]

[parameter real]

END

147

Hourglass stiffening is added to a problem to couple the element hourglass
modes to the element internal energy. This prevents runaway distortion from
uncoupled, uncontrolled hourglass modes.

Two models for hourglass control are available: PISCES, and PRONTO, as
described in the following subsections. The optional integer identifier after
the HOURGLASS CONTROL keyword identifies an instance of the model that
can be applied selectively to different blocks in the problem (see the BLOCK

keyword).

Each model uses various parameter keywords to specify viscosity and/or
stiffness values appropriate to the model.

Pisces Hourglass Control

PISCES HOURGLASS CONTROL [int]

[VISCOSITY real (0.05)]

END

The bulk viscosity defined by the VISCOSITY keyword must be less than
0.25 to assure stability.

Pronto Hourglass Control

PRONTO HOURGLASS CONTROL [int]

[VISCOSITY real (cartesian: 0.00) (cylindrical: 0.03)]

[STIFFNESS real (cartesian: 0.05) (cylindrical: 0.01)]

END

The stiffness coefficient is the most effective since it is adds a perma-
nent restoring force rather than a viscous correction. What this does to
the accuracy of the calculation is unclear. The PRONTO name is a misnomer
since the coding attempts to follow Reference [12] rather than what might
be implemented in pronto [38, 39].

7.2.2 Moving Mesh

MOVING MESH vector

148

This keyword causes all Eulerian or smoothed Eulerian regions of the
computational mesh to move through space at a prescribed velocity. The ve-
locity of the material contained in the mesh is not prescribed. This keyword
can be used to keep the mesh centered on the region of interest when the ve-
locity of the region of interest is known a priori. The BLOCK input subkeyword
SMOOTHED EULERIAN MESH may be helpful to smooth mesh irregularities with
this option.

7.2.3 Track

TRACK, block-id

When this keyword is in effect, alegra performs the calculation in a
reference frame that is at rest with respect to the specified block. The mean
velocity of the block is computed at the end of each time step, and this ve-
locity is subtracted from the velocity of all nodes in the simulation. alegra

keeps track of the cumulative effects of each change in reference frame and
corrects its plot output to be in the original reference frame; hence, this op-
tion is transparent to post-processing tools. The main effect of the TRACK

option is to cause the computation mesh in Eulerian and smoothed Eulerian
regions to move at roughly the same velocity as the tracked block, so as to
follow the block. The TRACK feature is not supported for structured mesh
physics options.

149

8 (Hydro)Dynamics Input

HYDRODYNAMICS

...

[hydrodynamics keywords]

...

[DYNAMICS]

...

[dynamics keywords]

...

[END]

...

END

HYDRODYNAMICS is one of the options described in Sections 5.2 and 5.3.
The DYNAMICS sub-keyword and its corresponding END keyword are optional
and may be included in the input file for clarity.

8.1 Dynamics Initial Conditions

8.1.1 Initial Velocity

INITIAL VELOCITY, nodeset, vector

This keyword allows the user to specify an initial velocity for each node
in a nodeset. This input will take precedence over any values set by INITIAL

BLOCK VELOCITY or INITIAL ANGULAR VELOCITY input. If the same node is
in multiple nodesets then the last specified value will be used.

8.1.2 Initial Angular Velocity

INITIAL ANGULAR VELOCITY, {block-id | nodeset},

CENTER, vector, VALUE, {real | vector}

This keyword allows the user to specify an initial angular velocity (ra-
dians/second) for each node of a block or a nodeset. The CENTER keyword

150

specifies a point on the axis of rotation. The VALUE keyword specifies the an-
gular velocity. In 2D Cartesian geometry, the real magnitude of the angular
velocity is specified, as the axis of rotation is assumed to be orthogonal to
the mesh, i.e., along the positive z axis. In 3D the full angular velocity vector
is specified, i.e., the direction of the vector specifies the axis of rotation and
the magnitude of the vector specifies the rate of rotation. The initial velocity
of a node is the cross product of the angular velocity with the distance of the
node from the center point.

For example,

INITIAL ANGULAR VELOCITY, NODESET 1

CENTER, X 0.0 Y 0.0 Z 0.0

VALUE, X 0.0 Y 0.0 Z 6.283185E2

specifies 100 revolutions per second about the z axis.

The initial angular velocity keyword is not supported for 2D axisymmetric
geometry.

8.1.3 Initial Block Velocity

{INITIAL BLOCK VELOCITY, block-id,

{ {X | Y | Z | R} real |

VECTOR, vector |

{RADIAL | NORMAL | TANGENT}, vector real }

This keyword allows the user to specify an initial velocity for each node of
a block. Three different forms of this keyword are available, as shown above.

In the first form, a principal direction (X, Y, or Z in Cartesian geometry
or R or Z in 2D cylindrical geometry) is specified, followed by the magnitude
of the velocity in that direction. For example,

initial block velocity, block 3, x 1.0e4

will set the x-component of the velocity for each node in block 3 to 1.0e4.

151

In the second form, a velocity vector is specified after the VECTOR key-
word. For example,

initial block velocity, block 3, vector,

x 1.0e4 y 2.0e4, z 1.0e4

will set the velocity of each node in block 3 to (1.0e4, 2.0e4, 1.0e4).

In the third form, the RADIAL keyword specifies that the velocity vector
lies along the line from the point given by vector to each node in the block.
The TANGENT keyword (2D only), on the other hand, specifies that the ve-
locity vector is tangent to the vector from each node to the point given by
vector. In either case, the velocity vector is normalized and multiplied by a
velocity magnitude given by real. For example,

initial block velocity, block 3, radial, x 0. y 0. z 0., -1.0e8

will initialize each node in block 3 to a velocity of magnitude 1.0e8 moving
toward the origin.

Finally, the NORMAL keyword specifies a vector from the origin to the point
given by vector. This vector is NOT normalized, and it is multiplied by the
factor given by real and applied to each node in the block. For example,

initial block velocity, block 3, normal,

x 1.0 y 2.0 z 1.0, 1.0e4

is equivalent to the previous example using the VECTOR keyword.

If the same block is specified more than once or if a node is in multiple
block-ids then the last specified value will be used.

8.1.4 Random Block Velocity

RANDOM BLOCK VELOCITY, block-id, VECTOR, vector

A random velocity will be generated for each non-zero vector component
with a magnitude ranging between +/- of the specified vector component.

152

RANDOM BLOCK VELOCITY, BLOCK 1, VECTOR, X 2.0 Y 0.0 Z 0.0

will generate x-velocities ranging from -2 to 2.

8.1.5 Sinusoid Velocity

SINUSOID VELOCITY, nodeset, SCALE vector, LAMBDA real,

{X | Y | Z | R} real

This keyword allows the user to specify an initial sinusoidal velocity per-
turbation for a given nodeset. SCALE (~v0) specifies the absolute amplitude
and direction of the perturbation, LAMBDA (λ) specifies the wavelength, and X,
Y, Z, or R (x0) specifies both the direction and the phase. R is restricted to the
radial coordinate in 2D cylindrical simulations. Perturbations are calculated
according to the formula:

~v = ~v0 · cos

(

2π

λ
(x − x0)

)

(8.2)

Example:

sinusoid velocity, nodeset 4, scale, x 0.001 y 0. lambda 1. y 0.

8.2 Dynamics Initial Density and Surface Perturba-
tions

8.2.1 Cylindrical Mode Density

CYLINDRICAL MODE DENSITY, block-id, RANGE real,

[ANGULAR WAVENUMBER int,] [THETA real,]

[WAVELENGTH real,] [RADIAL WAVELENGTH real,] [RADIAL PHASE real,]

{X | Y | Z} real

This keyword allows the user to specify an initial CYLINDRICAL MODE

DENSITY perturbation for a given block. This keyword does not apply to 2D
cylindrical geometry.

153

All parameters default to the value 0.0 if omitted. Except for the
block-id, they may be listed in any order. Axial coordinates are speci-
fied in the native problem units (e.g., m or cm), while angles are specified
in degrees. The block should be cylindrical in shape and centered on one of
the principal coordinate axes. RANGE specifies the relative amplitude ε of the
perturbation.

The ANGULAR WAVENUMBER, N , specifies the number of azimuthal periods
the perturbation has about the axis and THETA specifies the angular phase
θ0. If the wavenumber is zero, the perturbation will be rotationally uniform.

The WAVELENGTH specifies the axial wavelength λ. If the wavelength is
zero, the perturbation will be axially uniform. If the wavelength and the
wavenumber are both nonzero, the perturbation will be helical. The direction
of rotation of the helix can be controlled by the sign of the wavelength.

The RADIAL WAVELENGTH specifies the radial wavelength λr. The RADIAL

PHASE specifies the radial phase r0. If the radial wavelength is zero, the
perturbation will be radially uniform. The radius is computed relative to the
cylindrical axis.

One of X, Y, or Z specifies both the coordinate axis that coincides with
the cylinder axis and the axial phase z0. (Z is permissible in 2D Cartesian
geometry.) Perturbations are calculated according to the formula:

ρ = ρ0 ·
(

1 + ε · cos

(

2π

λ
(z − z0) +

2π

λr

(r − r0) + N(θ − θ0)

))

(8.3)

3D Cartesian example:

cylindrical mode density, block 1,

range = 0.5

ang wavenum = 3

theta = 0. $ any multiple of 120. produces the same

wavelength = -1.

z = 0.

2D Cartesian example:

cylindrical mode density, block 1,

154

range = 1.

rad wave = 1.

rad phase = 0.5

z = 0. $ direction of axis

8.2.2 Cylindrical Mode Surface

CYLINDRICAL MODE SURFACE, nodeset, RANGE real,

ANGULAR WAVENUMBER int, [THETA real,]

[WAVELENGTH real,] [RADIAL WAVELENGTH real,] [RADIAL PHASE real,]

{X | Y | Z} real

This keyword allows the user to specify an initial cylindrical mode sur-
face perturbation for a given nodeset. This keyword does not apply to 2D
cylindrical geometry.

All parameters default to the value 0.0 if omitted. Except for the nodeset,
they may be listed in any order. Radial and axial coordinates are specified
in the native problem units (e.g., m or cm), while angles are specified in
degrees.

The original nodeset should be cylindrical in shape and centered on one
of the principal coordinate axes. RANGE specifies the absolute amplitude ε
of the perturbation. The direction of the perturbation is orthogonal to the
cylinder’s axis. The amplitude should be less than the width of a mesh ele-
ment that abuts the surface, otherwise inverted elements may be generated.

The ANGULAR WAVENUMBER specifies the number of azimuthal periods N
the perturbation has about the axis and THETA specifies the angular phase
θ0. If the wavenumber is zero, the perturbation will be rotationally uniform.

The WAVELENGTH specifies the axial wavelength λ. If the wavelength is
zero, the perturbation will be axially uniform. If the wavelength and the
wavenumber are both nonzero, the perturbation will be helical. The direction
of rotation of the helix can be controlled by the sign of the wavelength.

The RADIAL WAVELENGTH specifies the radial wavelength λr. The RADIAL

PHASE specifies the radial phase r0. If the radial wavelength is zero, the
perturbation will be radially uniform. The radius is computed relative to the
cylindrical axis.

155

One of X, Y, or Z specifies both the coordinate axis that coincides with
the cylinder axis and the axial phase z0. (Z is permissible in 2D Cartesian
geometry.) Perturbations are calculated according to the formula of the form:

~x = ~x0 ·
(

1 +
ε

|~x0|
· cos

(

2π

λ
(z − z0) +

2π

λr
(r − r0) + N(θ − θ0)

))

(8.4)

3D Cartesian example shown in Figure 10:

cylindrical mode surface, nodeset 1,

range = 0.1

ang wavenum = 4

theta = 0. $ any multiple of 90. produces the same

length = 1.

z = 0.

2D Cartesian example shown in Figure 12:

cylindrical mode surface, nodeset 1,

ang wavenum = 12

theta = 0. $ any multiple of 30. produces the same

range = 0.02

z = 0.

156

Figure 9: Initial 3D Cartesian geometry.

Figure 10: Perturbed 3D Cartesian geometry. A CYLINDRICAL MODE

SURFACE perturbation is applied to the lateral surface of the central cylinder,
while a SINUSOID SURFACE perturbation is applied to its top surface. The
outer ring of cylinders shows the effect of a TWISTED MESH perturbation.

157

Figure 11: Initial 2D Cartesian geometry.

Figure 12: Perturbed 2D Cartesian geometry. A CYLINDRICAL MODE

SURFACE perturbation is applied to the outer boundary of the circular mesh,
while the central portion shows the effect of a TWISTED MESH perturbation.

158

8.2.3 Degenerate Surface

DEGENERATE SURFACE, nodeset, POINT, vector (2D or 3D)

DEGENERATE SURFACE, nodeset, AXIS, vector1 vector2,

TOLERANCE real (1e-12) (3D only)

This keyword allows the user to specify a degenerate surface for a given
nodeset. A degenerate surface collapses all nodes down to a single point or
a set of points along a line. The primary intent for this mesh modification is
to remove “holes” in cylindrically or spherically symmetric meshes, therefore
the user should construct a mesh that is a close approximation to the desired
geometry. Even though many nodes appear to be one point, all points in the
original nodeset are retained.

The POINT subkeyword collapses all nodes in the nodeset to the point
specified by vector. This option is available in both 2D and 3D.

The AXIS subkeyword collapses all nodes in the nodeset to the line de-
fined by vector1 and vector2. vector1 specifies a point on the line and
vector2 specifies the direction of the line and need not be normalized. The
algorithm computes the perpendicular projection of a node to the axis. The
TOLERANCE keyword is a matching criteria for grouping points along the axis
into sets of degenerate points. Points that are separated by a distance less
than the tolerance are treated as a single degenerate point. Points that are
separated by a distance greater than the tolerance belong to different degen-
erate points. This option is available only in 3D since it makes no sense for
2D.

DEGENERATE SURFACE may be used in conjunction with other bound-
ary conditions such as DEGENERATE BC, NO DISPLACEMENT, or PRESCRIBED

VELOCITY to produce a variety of desired results.

3D example projecting a spherical cutout around the origin to the origin:

degenerate surface, nodeset 1, point, x 0. y 0. z 0.

3D example projecting a cylindrical cutout along the z-axis to that axis:

degenerate surface, nodeset 1, axis, x 0. y 0. z 0.,

159

x 0. y 0. z 1., tol 1.e-9

2D cylindrical example projecting a circular cutout around the origin to the
origin:

degenerate surface, nodeset 1, point, r 0. z 0.

8.2.4 Random Density

RANDOM DENSITY, block-id, RANGE real, [SEED integer(1)],

[AGGREGATE SIZE real]

This keyword allows the user to specify an initial random density pertur-
bation for a given block. RANGE specifies the relative amplitude ε of the
perturbation. Perturbations are calculated according to the formula:

ρ = ρ0 · (1 + ε(2 · random() − 1)) (8.5)

where the random number is between zero and 1.

Example:

random density, block 8, range 0.01, seed 2342345,

aggregate size .001

specifies a 1% random density perturbation with a seed and an aggregate
size of .001. The random number generator SEED can be given as an integer
and default to 1. The AGGREGATE SIZE specifies the approximate size of
aggregates computed using a Hilbert space filling curve based algorithm. If
no aggregate size is given then the block is fit inside a square box with an
estimated 100 aggregates in each direction. Generally the user will want to
request an aggregate size. Requesting very small aggregate sizes may result in
a noticeable extended setup time but will in general be noticeable for normal
meshes with aggregate sizes on the order of or greater than then smallest
element dimension. The aggregate sizes will be roughly independent of the
number of elements or the mesh stretching. If the aggregate size chosen is
much smaller than the dimension of the smallest element, each element will

160

have an density uncorrelated with its element neighbors. This algorithm is
independent of the number of processors utilized.

8.2.5 Random Surface

RANDOM SURFACE, nodeset, RANGE vector

This keyword allows the user to specify an initial random surface per-
turbation for a given nodeset. RANGE specifies the absolute amplitude of
the perturbation components. Each coordinate for each node of the node-
set is randomly perturbed according to its respective amplitude component
according to the formula:

~x = ~x0 + ~xrange · (2 · random() − 1)) (8.6)

and the random number is between zero and one.

3D Cartesian example:

random surface, nodeset 29, range, x 0.1 y 0.02 z 0.005

8.2.6 Sinusoid Density

SINUSOID DENSITY, block-id, RANGE real, WAVELENGTH real,

{X | Y | Z | R} real

This keyword allows the user to specify an initial sinusoidal density per-
turbation for a given block. RANGE specifies the relative amplitude ε of the
perturbation, WAVELENGTH specifies the wavelength λ, and X, Y, Z, or R spec-
ifies both the coordinate direction and the phase x0. R is restricted to the
radial coordinate in 2D cylindrical simulations. Perturbations are calculated
according to the formula:

ρ = ρ0 ·
(

1 + ε · cos

(

2π

λ
(x − x0)

))

(8.7)

161

Perturbations in multiple directions are defined by repeated use of this
keyword.

Example:

sinusoid density, block 8, range .01, wavelength 1., z 0.

Special capability for structured grids ONLY: The keyword MEAN after
SINUSOID DENSITY requests that the average density be applied in each cell
rather than the midpoint value. This is useful if mean initial values are
required rather than point values.

Example:

sinusoid density, mean, block 8, range .01, wavelength 1., z 0.

8.2.7 Sinusoid Surface

SINUSOID SURFACE, nodeset, RANGE vector, WAVELENGTH real,

{X | Y | Z | R} real

This keyword allows the user to specify an initial sinusoidal surface per-
turbation for a given nodeset. RANGE specifies the absolute amplitude ~xrange

of the perturbation, WAVELENGTH specifies the wavelength λ, and X, Y, Z, or R
specifies both the coordinate direction and the phase x0. R is restricted to the
radial coordinate in 2D cylindrical simulations. Perturbations are calculated
according to the formula:

~x = ~x0 + ~xrange · cos

(

2π

λ
(x − x0)

)

(8.8)

Perturbations in multiple directions are defined by repeated use of this
keyword.

3D Cartesian example shown in Figure 10:

sinusoid surface, nodeset 1,

162

range, x 0.0 y 0.0 z 0.02,

wavelength, 1.,

x 0.

2D Cartesian example:

sinusoid surface, nodeset 5,

range = x 0.1,

length = 1.0,

y = 0.

2D cylindrical example:

sinusoid surface, nodeset 5,

range = x 0.05 y 0.,

length = 1.0,

z = -0.25

163

Figure 13: Initial perturbations in 2D cylindrical geometry.

Figure 14: Final perturbations in 2D cylindrical geometry. A SINUSOID

SURFACE perturbation is applied to the outer radius of the mesh, while the
interior hyperbolic curves show the effect of a TWISTED MESH perturbation.

164

8.2.8 Twisted Mesh

TWISTED MESH, [THETA0 real], [THETA1 real], [Z0 real],

[Z1 real], [R0 real], [R1 real], [R2 real], [R3 real]

This keyword allows the user to twist the mesh around the z axis in 2D or
3D. All parameters default to the value 0.0 if omitted. They may be listed in
any order. Radial and axial coordinates are specified in the native problem
units (m or cm), while angles are specified in degrees.

The mesh is rotated by the angle θ0 when z ≤ Z0 and by the angle θ1

when Z1 ≤z . When Z0 ≤ z ≤ Z1, the point is projected to the z = Z0 and
z = Z1 planes, the projected points are rotated, and the new coordinates are
found by linear interpolation. Thus lines in the unmodified mesh transform
to lines in the twisted mesh (perhaps with kinks at Z0 and Z1).

If only a radial annulus of the mesh between R1 ≤ r ≤ R2 is to be twisted,
then the angles of rotation are adjusted to rise linearly from zero between
R0 and R1, and then return linearly to zero between R2 and R3, providing
smooth transition regions.

It is possible to divide the total angular twist equally between a counter
rotation at Z0 and a rotation at Z1, i.e., let θ0 = −θ/2 and θ1 = θ/2. The
following two examples actually produce similar results:

3D Cartesian examples shown in Figure 10:

twisted mesh, theta 15.0,

r0 2., r1 2.5, r2 3.5, r3 4.0

z0 -2., z1 2.

twisted mesh, theta0 -7.5,

theta1 7.5,

r0 2., r1 2.5, r2 3.5, r3 4.0

z0 -2., z1 2.

For 2D Cartesian meshes, θ0, Z0 and Z1 are ignored, and all rotations are
based upon the angle θ1 (in this case the parameter name THETA will match
THETA1). Radial parameters still apply.

2D Cartesian example:

165

twisted mesh, theta 10.0

r0 0.3, r1 0.5, r2 0.7, r3 0.9

For 2D cylindrical meshes, this command will transform straight lines
parallel to the z axis into hyperbola of one sheet (and other curves accord-
ingly), because the rotations are computed in 3D and then converted back to
the RZ plane. The following two examples actually produce the same results:

2D RZ examples:

twisted mesh, theta0 -5.0, theta1 5.0

r0 0.2, r1 0.4, r2 0.6, r3 0.8

z0 0.0, z1 1.0

twisted mesh, theta 10.0,

r0 0.2, r1 0.4, r2 0.6, r3 0.8

z0 0.0, z1 1.0

8.3 Dynamic Boundary Conditions

8.3.1 Degenerate BC

DEGENERATE BC, nodeset, POINT, vector (2D or 3D)

DEGENERATE BC, nodeset, AXIS, vector1 vector2,

TOLERANCE real (1e-12) (3D only)

This keyword allows the user to specify a degenerate boundary condition
for a given nodeset. A degenerate boundary condition constrains all nodes
belonging to a degenerate point to move at the same center-of-mass velocity.
DEGENERATE BC is intended to be used in conjunction with the DEGENERATE

SURFACE surface perturbation to keep degenerate nodes together.

The POINT and AXIS subkeywords are for compatibility with the DEGENERATE
SURFACE keyword and are not used. The TOLERANCE keyword is a matching
criteria for grouping points along the axis into sets of degenerate points.
Points that are separated by a distance less than the tolerance are treated

166

as a single degenerate point. Points that are separated by a distance greater
than the tolerance belong to different degenerate points.

DEGENERATE BC may be used in conjunction with other boundary con-
ditions such as NO DISPLACEMENT or PRESCRIBED VELOCITY to produce a
variety of desired results.

3D example projecting a spherical cutout around the origin to the origin:

degenerate bc, nodeset 1, point, x 0. y 0. z 0.

3D example projecting a cylindrical cutout along the z-axis to that axis:

degenerate bc, nodeset 1, axis, x 0. y 0. z 0.,

x 0. y 0. z 1.,

tol 1.e-9

2D cylindrical example projecting a circular cutout around the origin to the
origin:

degenerate bc, nodeset 1, point, r 0. z 0.

8.3.2 Prescribed Acceleration

PRESCRIBED ACCELERATION, nodeset, {X | Y | Z}, function-set

This keyword allows the user to prescribe an acceleration for a nodeset

in the direction indicated as a function of time.

8.3.3 Prescribed Velocity

PRESCRIBED VELOCITY, {nodeset | sideset}, direction-function

This keyword allows the user to prescribe the velocity of a nodeset or
sideset as a function of time as specified by the direction-function key-
word.

Example:

167

prescribed velocity, nodeset 1, y, function 1

function 1

0.0 1000.0E5

1.0 1000.0E5

end

8.3.4 Pressure BC

PRESSURE BC, {sideset function-set |

sideset [MOMENT int function-set]

[MOMENT int function-set] ... }

END

This keyword allows the user to specify a spatially constant pressure that
acts on a surface as a function of time. Alternatively, a keyword group may
be used to specify the pressure over the surface as a set of spherical harmonic
moments.

8.3.5 Pressure Wave

PRESSURE WAVE, sideset, vector, PEAK, function-set, RISE,

function-set, PROPAGATION SPEED real,

ARRIVAL TIME real

This keyword allows the user to simulate a shock wave resulting from
a disturbance at a single point given by the vector keyword. The two
function-sets describe the values of the PEAK and RISE as a function of the
distance from the origin point. In the absence of an ARRIVAL TIME the time
to arrive at a node in the sideset is equal to distance from the origin point
to the node divided by the PROPAGATION SPEED. Otherwise, the time until
the wave influences a node is the sum of the ARRIVAL TIME and the distance
divided by the PROPAGATION SPEED. The pressure imposed on the surface is
described by the following equation in which ∆t is the time since the arrival
of the shock at the node and d is the distance from the node to the origin

168

point:

P =
scale · peak(d) · ∆t

rise(d)
· exp

(

1 − ∆t

rise(d)

)

(8.9)

8.3.6 Global Contact (3D global algorithm)

alegra uses the acme library [5] for the 3D contact algorithms (2D contact
is not available). Contact is not currently supported with adaptivity or
dynamic load balance. The “contact surface” for acme is made up of a
collection of sidesets, element block exteriors and analytic surfaces. The
contact behavior between these entities can be specified pair by pair or at
once through default data. The frictional behavior of the contact is specified
using friction models (analogous to material models for elements). Data must
be specified for every pair of sidesets, element blocks and analytic surfaces
in the problem. Suitable defaults do not exist that will work for all problems
so the user is required to input at least default data.

GLOBAL CONTACT (3D only)

[SIDESET | BLOCK] id

:

[additional SIDESET or BLOCK keywords]

:

[ANALYTIC SURFACE]

TYPE = [PLANE | CYLINDER INSIDE | CYLINDER OUTSIDE | SPHERE]

[Type Specific Subkeywords (see the following Tables)]

[END]

:

[additional analytic surface keywords]

:

[ENFORCEMENT ITERATIONS int]

[TRIVIAL MASS real]

[DEFAULT DATA]

[SEARCH NORMAL TOLERANCE real]

[SEARCH TANGENTIAL TOLERANCE real]

[KINEMATIC PARTITION [AUTO | real]]

[FRICTION MODEL ID int]

[END]

:

169

[DATA [SIDESET|BLOCK|ANALYTIC SURFACE] int,

[SIDESET|BLOCK|ANALYTIC SURFACE] int]

[SEARCH NORMAL TOLERANCE real]

[SEARCH TANGENTIAL TOLERANCE real]

[KINEMATIC PARTITION [AUTO | real]]

[FRICTION MODEL ID int]

[END]

:

[additional data blocks]

:

[FRICTION MODEL ID int]

[FRICTIONLESS | CONSTANT | TIED | SPOT WELD |

PRESSURE DEPENDENT | VELOCITY DEPENDENT]

[Type Specific Keywords (see the following Tables)]

[END]

:

[additional friction model keyword blocks]

:

END

This keyword group identifies the surfaces that may come into contact
with other similarly specified surfaces (or itself) during the calculation. Con-
tact of a surface with itself is allowed and the surface must be specified if
this is anticipated. By using this keyword block, the user ensures that the
specified surfaces will not interpenetrate, but instead will exert a force to
prevent penetration. For convenience, a block-id may be specified instead
of a sideset so that all exterior surfaces of that block will be treated as a
contact surface. However, if parts of the block will never come into contact
with other surfaces, this can result in significant inefficiencies and slow down
a calculation unnecessarily.

Table 25: Subkeywords for analytic surfaces.

Type Sub-
keywords

Argument Description

PLANE POINT X realY realZ real The x, y, z locations of a point
in the plane.

NORMAL X realY realZ real The x, y, z components of a
vector normal to the plane.

continued on next page

170

continued from previous page

CYLINDER

{INSIDE |

OUTSIDE}

CENTER X realY realZ real The x, y, z locations of the cen-
ter of the cylinder.

AXIS X realY realZ real The x, y, z components of a
vector defining the axis of the
cylinder.

RADIUS real The radius of the cylinder.

LENGTH real The length of the cylinder.

SPHERE CENTER X realY realZ real The center of the sphere.

RADIUS real The radius of the sphere.

Table 26: Subkeywords for friction models.

Type Subkeywords Argument Description

FRICTIONLESS There are no subkeywords.

CONSTANT FRICTION

COEFFICIENT

real The coefficient of friction.

TIED There are no subkeywords.

SPOT WELD NORMAL

CAPACITY

real The normal force capacity of the
spot weld.

TANGENTIAL

CAPACITY

real The tangential force capacity of the
spot weld.

FAILURE

STEPS

int The number of time steps over
which the failure will occur.

FAILED

MODEL ID

int The ID of the friction model to be
used once failure has occurred.

PRESSURE

DEPENDENT

FRICTION

COEFFICIENT

real The coefficient of friction.

REFERENCE

PRESSURE

real The reference pressure for the pres-
sure dependence.

PRESSURE

EXPONENT

real The exponent to be used in the
pressure dependence.

VELOCITY

DEPENDENT

STATIC

COEFFICIENT

real The coefficient of friction if the two
surfaces are “sticking”.

DYNAMIC

COEFFICIENT

real The coefficient of friction if the two
surfaces are “sliding”.

VELOCITY

DECAY

real The decay exponent to transition
between the static and dynamic co-
efficients of friction.

171

An arbitrary number of “surfaces” may be specified along with a mixed
set of sidesets, blocks, and analytic surfaces. For example, to specify the
surfaces given by sidesets 11 and 12 plus the exterior surfaces of block 3 with
frictionless contact, the minimum input would appear as the following:

global contact

sideset 11

sideset 12

block 3

default data

friction model id = 1

end

friction model id 1 frictionless

$ no subkeywords

end

end

To specify parameters (e.g., friction coefficients) that govern how a pair of
surfaces will interact, the DATA (or DEFAULT DATA) keyword subgroup should
be used. The KINEMATIC PARTITION factor determines the master/slave re-
lationship. The default behavior is to use the automatic (AUTO), dynamic
determination built into acme. This can be overridden with a specific value
but should be avoided unless the user is very familiar with the acme al-
gorithms. A poor choice of KINEMATIC PARTITION value by the user can
cause energy generation, and in extreme cases element inversion. A value of
0 makes the first surface the complete master and the second the complete
slave. The opposite is true for a value of 1.

The explicit transient dynamic enforcement provided by acme includes
an iterative capability to increase the accuracy of the contact forces. By
default, the number of ENFORCEMENT ITERATIONS is set to 5. This has been
found to be a good trade-off between speed and accuracy. The acme enforce-
ment has an implicit assumption of Lagrangian meshes. The implication is
that every node MUST have a non-zero mass. For ALE problems, it is possi-
ble to have zero mass nodes (i.e., void filled elements). To account for this,
alegra assigns a TRIVIAL MASS to all zero mass nodes to prevent division
by zero. The default (dimensional) value is 1.0e-12 but can be reset with the
TRIVIAL MASS subkeyword.

172

8.3.7 Cavity Expansion

CAVITY EXPANSION, sideset

RADIUS TYPE = [SPHERICAL | CYLINDRICAL]

BODY AXIS, modeset , nodeset

TIP RADIUS = real

BEGIN LAYER

TOP = real

BOTTOM = real

PRESSURE COEFFICIENTS, real, real, real

SURFACE EFFECT MODEL ID, int

END LAYER

SURFACE EFFECT MODEL, int , [SIMPLE ON OFF]

$ the following are input for the SIMPLE ON OFF model

FREE SURFACE TOP = real

FREE SURFACE BOTTOM = real

TOP SURFACE COEFFICIENT = real

BOTTOM SURFACE COEFFICIENT = real

END

END

This model is described in a report, “CavityExpansion: A Library for
Cavity Expansion Algorithms, Version 1.0” [6]. This document describes the
model and the validation done for the model. The user interface to the model
is described here. Cavity expansion is a method for modeling the penetration
of an axisymmetric or wedge-shaped solid body - a penetrator - into a target
by using analytic expressions to capture effects of the target on the body.
The target material is not actually modeled.

There is an assumption that the user must setup the problem such that
the normal to the target is in the +z direction. Multiple CavityExpansion
Boundary Conditions are allowed in a problem. The user can specify as
many layers in the target as desired and also as many surface effect models as
desired. However, the only surface effect model that is currently implemented
is the “SIMPLE ON OFF” model. The body axis nodesets are single node
nodesets that are used to define the axis of the penetrator.

173

8.4 Dynamics Algorithm Control

8.4.1 Bulk (Pronto) Artificial Viscosity

PRONTO ARTIFICIAL VISCOSITY [int]

[LINEAR real (0.15)]

[QUADRATIC real (1.2)]

[TENSION LINEAR={OFF|ON} (OFF)] (unstructured option only)

[TENSION QUADRATIC={OFF|ON} (OFF)] (unstructured option only)

END

Artificial viscosity is added to shock problems to “smear” the shock front
across several elements and prevent numerical oscillation behind the shock.
The optional integer field identifies an instance of the model that can be ac-
cessed selectively by different blocks in the problem (see the BLOCK keyword).

The TENSION LINEAR keyword causes the linear component of the artifi-
cial viscous pressure to be set when the material is in tension. The TENSION

QUADRATIC keyword causes the quadratic component of the artificial viscous
pressure to be set when the material is in tension (i.e to have a non-zero
value in elements in tension).

It is generally not appropriate to leave the quadratic or linear artificial
viscous pressure on in tension. However, it has been recommended [2] that
the linear artificial viscosity be left on for elastic materials and turned off for
ideal gases in tension. These options are only available in the unstructured
code for testing purposes and are inactive in the structured code.

Tim Trucano has provided some further guidance on the use of linear
viscosity in shock problems. Artificial viscosity was originally introduced
specifically for the purposes of “shock capturing,” in other words, for turning
the mathematical discontinuities presented by shock waves as solutions to the
Euler equations into finite width viscous waves that obeyed the same “jump
conditions” and entropy production as the original discontinuities. Any use of
artificial viscosity in a shock fitting code such as alegra that is not directed
at shock smearing is problematic at best. Shock waves exist in normal fluids
only in compression. Thus, a dissipation intended to only smear shock waves
makes no logical sense if applied in tension. If users choose the artificial
viscosity to be on in tension they should beware of the results. There are
certain materials which manifest so-called rarefaction shock waves. These

174

are true mathematical discontinuities (at least to the limit of experimental
observation) that exist in tension. These very special waves are a result
of phase transitions, such as solid-solid phase transitions in certain geologic
materials.

One might suppose that to capture rarefaction shocks, an artificial vis-
cosity might need to be deployed in tension. However, we make no claim
relative to the mathematics and numerics of this idea for the purposes of this
manual and consider that this topic remains open for further study.

8.4.2 Hydrodynamics Cell Doctor

HYDRO CELL DOCTOR

[TIME STEP RATIO real]

[SOUND SPEED RATIO real]

[VOLUME FRACTION CUTOFF real]

[all CELL DOCTOR options]

END

HYDRO CELL DOCTOR is a specialization of the CELL DOCTOR keyword (Sec-
tion 5.11 on page 135) applicable to HYDRODYNAMICS and its children. In
addition to the facilities provided by CELL DOCTOR, the HYDRO CELL DOCTOR

keyword provides facilities with which the user can attempt to alleviate the
problem of a small fragment with a completely unrealistic thermodynamic
state controlling the time step of the entire problem. The idea is that a very
small fragment with a completely unrealistic sound speed should be removed
from the problem. Logic has been added to the code to allow the user to
eliminate such small fragments from the calculation.

Note: HYDRO CELL DOCTOR is not available for structured mesh
physics options.

One does not have to enter all the data above; however, it is unlikely that
the default values will allow any material to be removed. Each of the time
step, sound speed, and volume fraction conditions must be met to result in
the removal of material. Once the fragment is removed, its volume fraction
is proportioned out to the other materials in the cell, including void.

The TIME STEP RATIO subkeyword specifies the ratio of the two smallest
cell time steps. For example, if cell A has a limiting time step of 1.0e-6 and

175

cell B has the next smallest time step of 1.0e-5 then the ratio would be 0.1.
Therefore the value specified should be between 0 and 1, where the smaller
the value, the more unlikely that a fragment will be removed.

The SOUND SPEED RATIO subkeyword specifies the ratio of the two largest
material sound speeds in the limiting cell. The value specified should be
greater than 1, where the larger the value, the more unlikely that a fragment
will be removed.

The VOLUME FRACTION CUTOFF subkeyword specifies the maximum frag-
ment size that can be removed. The value specified should be between 0 and
1, where the smaller the value, the more unlikely that a fragment will be
removed.

From the user input above, it is obvious that a user could easily empty
the time step limiting cell every time step and eventually totally destroy
the simulation. Therefore, extreme care must be used when this option is
employed in order to maintain a credible calculation.

8.4.3 Maximum Volume Change Time Step Control

MAXIMUM VOLUME CHANGE real(0.2)

This keyword specifies the maximum volume change permitted for an
element in a single cycle, as a fraction of the original element volume. The
time step will be limited to ensure that this volume change limit will be
observed.

8.4.4 Minimum Element Side Time Step Control

MINIMUM ELEMENT SIDE TIMESTEP CONTROL

The internal calculation of the time step also may underestimate the max-
imum stable time step because of a conservative calculation of the character-
istic element length. A typical use of the MINIMUM ELEMENT SIDE TIMESTEP

CONTROL keyword would be in Eulerian calculations, where the analyst may
designate that the minimum element side be used in the calculation of the
maximum stable time step, which will typically result in time steps similar

176

to what the cth algorithm would produce. For Lagrangian or ALE calcula-
tions, however, use of this option may not give stable behavior if the mesh
becomes too distorted by shear.

The following example will cause the time step used in a calculation to be
one half of the value alegra would normally use and will use the minimum
side length for the characteristic dimension of an element.

time step scale = 0.5

minimum element side time step control

8.4.5 Void Compression

VOID COMPRESSION, [ON|OFF]

In an element subject to compression and containing void and material,
the material will not be subject to compression until the volume change
produced by the compression equals or exceeds the volume of the void. When
active, this algorithm avoids premature or nonphysical loading of material
that is on the boundary of a body.

This option is OFF by default because there are cases where it can in-
duce nonphysical behavior. In particular, cases where no compression exists,
such as in the ballistics of jets of material (shaped charge jets), slight per-
turbations can induce the void compression algorithm to generate erroneous
response that can lead to nonphysical behavior. Thus, in cases where a body
is primarily stress-free, this algorithm should remain off.

This option should be turned ON in cases where significant compression of
elements containing void are expected (such as contained detonations). Turn-
ing on this option prevents material in largely empty cells from experiencing
nonphysical stress states that can lead to element inversion.

8.5 Dynamics Supplementary Models

8.5.1 Programmed Burn

PROGRAMMED BURN

177

[NONBURNING ELEMENTS ALLOWED]

MATERIAL int

DETONATION {POINT, vector, |

LINE, vector1, vector2, |

PLANE, vector1, vector2, vector3 }

AT TIME real, BURN RADIUS real

[BURN TRANSITION RATIO real]

[BURN FRONT THICKNESS real]

:

[additional materials and detonation models]

:

END

The programmed burn option allows simulation of a detonation by con-
sidering the DETONATION {POINT | LINE | PLANE} to be an energy source.
Detonation times are calculated from information provided with the deto-
nation object to determine the detonation velocities throughout the burn
material. If a burn due to pressure loading or shock is desired, then one of
the KEOS SESAME two-state burn models is recommended (see Section 12.9
on page 270).

If some of the burn material is discontinuous from the rest, burn times will
not be calculated and detonation would not be simulated in the discontinuous
section. The default behavior is to stop the calculation from proceeding. The
NONBURNING ELEMENTS ALLOWED keyword is an optional flag that allows the
calculation to proceed if detonation times cannot be calculated for some of
the PROGRAMMED BURN MATERIAL. If this keyword is used, it must be the
first keyword in the PROGRAMMED BURN input section; it will apply to all
PROGRAMMED BURN MATERIALs.

The MATERIAL number must be a valid material id that incorporates the
the KEOS JWL burn model with BRN = 1 (this is the preferred method), or
the PROGRAMMED BURN JWL model (soon to be deprecated). Multiple burn
MATERIALs are allowed; the input for each MATERIAL is considered complete
when the subsequent MATERIAL keyword is read, or when the END keyword is
read.

At least one detonation object (POINT, LINE, or PLANE) must follow
the MATERIAL input. The DETONATION {POINT | LINE | PLANE} command
specifies the location of the primer for a high explosive, the time (AT TIME)
of detonation, and the BURN RADIUS within which no obstacles or corners

178

will be circumvented. Within the BURN RADIUS, the radial distance between
each cell and the detonation point is used to calculate the detonation time.
(Thus, any intervening non-explosive materials are completely ignored within
the BURN RADIUS). The BURN RADIUS must encompass at least one vertex of
an element in the material for which the detonation object is defined. If no
cells are found to be within the region defined by the detonation object plus
BURN RADIUS, the default behavior is to force a fatal code error.

Detonation points may be specified for use in one, two or three dimen-
sional geometries. DETONATION LINEs are specified by the two end points of
the line. Lines may be specified for use in two or three dimensional geome-
tries. DETONATION PLANEs are specified by any three points in the plane; the
plane is assumed to be of infinite extent. DETONATION PLANEs may only be
specified for use in three dimensional geometries.

The BURN TRANSITION RATIO (default=2.) is the ratio applied to the
amount of energy added in a cycle (less than one decreases the time for burn,
greater than 1 increases the time). The BURN FRONT THICKNESS (default=2.)
is the factor used to multiply the largest element side. The result is applied
to the amount of energy added in a cycle (less than 1 decreases the time for
burn, greater than 1 increases the time). If the aspect ratio of the elements
within the burn region is high, this parameter can be used to adjust the burn
front to the width of two elements in the burn direction.

Note that alegra provides for the detonation front to “turn a corner”
so that the minimum route along cell centers is calculated within the burn
material region, outside the BURN RADIUS. This is not the minimum radial
distance but provides satisfactory burn contours for many problems of inter-
est. If the burn material is not continuous, an additional detonation point
with the appropriately modified detonation time will be required in each
discontinuous region if detonation is to be simulated in that region. The
detonation velocity and other burn material parameters are input with the
PROGRAMMED BURN JWL model or the KEOS JWL input set.

Note that, if the explosive can be detonated by the shock wave alone
(reactive burn model) and the shock propagates through the material sur-
rounding the explosive at a speed comparable to the detonation front, the
reactive burn configuration may be a better representation of the problem.

179

8.5.2 Inter-material Fracture

FRACTURE

VOID, real

MIXED, real

END

The inter-material fracture option allows material in multi-material ele-
ments to separate. Normally, in a multi-material element, materials behave
as in a welded fashion. Thus, if two materials are moving apart from each
other in an ALE or Eulerian mesh, tension will form in the elements con-
taining the material interfaces and work to restrain the motion. By allowing
INTERMATERIAL FRACTURE, tension at the material interfaces is limited by
allowing the materials to fracture in that element, effectively allowing the
materials to separate. The VOID and MIXED inputs specify the pressure re-
sponse in mixed elements containing void and material or multiple materials,
respectively.

This algorithm also looks at adjacent elements connected through a face.
If the element is adjacent to an element of a different material, the tensile
pressure limits are also applied. This allows for inter-material fracture be-
tween an ALE or Eulerian element and a single material Lagrangian element
where the multi-material condition would never be met, but separation of
different materials is allowed.

The values of the fracture pressures are negative, indicating tensile pres-
sure. Also, fracture material models must be defined for all materials.

180

9 Solid Dynamics Input

SOLID DYNAMICS

...

[solid dynamics keywords]

...

[HYDRODYNAMICS]

...

[hydrodynamics keywords]

...

[END]

[DYNAMICS]

...

[dynamics keywords]

...

[END]

...

END

SOLID DYNAMICS is one of the options described in mesh physics choice
Sections 5.2 and 5.3. The HYDRODYNAMICS and DYNAMICS sub-keywords and
their corresponding END keywords are optional and may be included in the
input file for clarity. Otherwise, all HYDRODYNAMICS/DYNAMICS keywords from
Section 8 on page 150 and following may be included directly into the SOLID

DYNAMICS keyword block.

9.1 Solid Dynamics Algorithm Control

9.1.1 Kinematic Error Catching

IGNORE KINEMATIC ERRORS, [RESET TO IDENTITY |

LIMIT SMALLEST EIGENVALUE [,real]]

[,SILENT]

This input allows the code to continue after a negative eigenvalue in the
stretch tensor is detected. This error is indicative of a breakdown in modeling
the solid kinematics. This option is purely for user convenience in pushing

181

calculations to completion. Upon detection of such a tensor, or optionally a
tensor which has an eigenvalue below a specified floor, the code implements
the desired fix and generates a warning.

If RESET TO IDENTITY is specified, the code sets the stretch tensor to the
unit tensor in each element whose stretch is not positive definite. This option
is computationally cheap but may induce large errors. This is the default
behavior. Specifying a floor will have no effect.

If LIMIT SMALLEST EIGENVALUE is specified, the code checks the eigen-
values of each stretch tensor and implements the given real floor, or 1.0e-6
if none is specified.

SILENT suppresses warnings. This option limits the amount of error mes-
sages sent to standard out and is quite important if the LIMIT SMALLEST

EIGENVALUE option is chosen, since this may result in the element generating
an error message each time it is computed.

9.1.2 Kinematic Update Method

VR UPDATE METHOD, { FIRST | SECOND } ORDER

This input allows the user to choose whether to use a first or second order
accurate method for updating the stretch and rotation tensor. The second
order method entails an extra tensor inversion and a couple of floating point
operations per element per time step. By default the first order method is
used, but preliminary data indicates that the cost/benefit ratio of the second
order is good, so it may become the default method in the future.

182

10 Adaptivity Input

ADAPTIVITY SPECIFICATION

ENABLE ADAPTIVITY

JUMP METRIC

[subkeywords]

END

ELEMENT BUDGET

[subkeywords]

END

LAYERING

[subkeywords]

END

BLOCK ADAPT LEVELS

...

END

UNREFINEMENT CONTROL

[subkeywords]

END

END

alegra provides the capability of dynamically refining the mesh dur-
ing a simulation. This refinement, which divides elements into uniformly
smaller subunits, is called H-adaptivity. Currently, this feature is provided
only for 2D quadrilateral meshes and 3D hexahedral meshes. In two dimen-
sional calculations, a quadrilateral element will be divided into four smaller
quadrilaterals and, in three dimensions, a hexahedron will be divided into 8
uniformly smaller hexahedral elements.

This capability can be specified to take place at simulation initiation, via
the INITIAL REFINEMENT keyword in the DOMAIN specification (Section 5.10.3
on page 132).

Refinement can also take place dynamically as the simulation is run. In
the latter case the adaptivity option is controlled by user selections in the
ADAPTIVITY SPECIFICATION input section, which is placed outside of the
overall physics input specification.

The dynamic refinement is driven by error metrics that are computed in
each element in specified regions. Those elements exceeding some limit for

183

the error metric value will be refined, subject to limitations on the number
of levels of refinement desired by the user. Similarly, refined elements where
the error metric falls below a threshold value will be removed and combined
into the element one level higher in the refinement hierarchy.

Adaptivity is not available for structured mesh physics options.

In this section of input, the controls on the dynamic refinement are spec-
ified. alegra currently supports only one error metric to control mesh
refinement. This is the traction jump error metric. The traction is defined
at an element face and is the dot product of the element stress tensor and
the outward normal to the face. The traction jump at a face is then the
difference in traction computed using the stress tensors in the two elements
sharing a face. The error metric for an element is the average face traction
jump. (Note that specialized versions of alegra have included other er-
ror metric controls specific to the additional physics being modeled by those
special versions.)

The user of adaptivity should note that when adaptivity is being used,
only sidesets should be used to specify constraints in the region of the
mesh in which adaptivity may be changing element connectivity and adding
elements. This is because alegra currently does NOT support refined
nodesets and thus a constraint specified on a nodeset will NOT be ap-
plied to the newly added nodes on that mesh boundary. If the boundary
section is not in a region of mesh where adaptivity may be changing the
mesh, nodesets can still be used to specify constraints (see Section 7.1 on
page 144).

10.1 Adaptivity Algorithm Control

10.1.1 Enable Adaptivity

The ENABLE ADAPTIVITY keyword indicates to alegra that the adaptivity
features will be active for the simulation. The presence of this keyword in the
ADAPTIVITY SPECIFICATION input section is a requirement for adaptivity to
operate in a simulation.

184

10.1.2 Jump Metric

ADAPTIVITY SPECIFICATION

JUMP METRIC

[JUMP REFINE THRESHOLD real]

[JUMP UNREFINE THRESHOLD real]

[JUMP NORMALIZER real]

[JUMP TRACTION SCALING]

[JUMP TRACTION FLOOR real]

END

END

The JUMP METRIC measures the traction difference across a surface of an
element. The magnitude of this difference is maximized across all surfaces of
the element to obtain a value on the element. The resulting value can be used
to indicate error on the element. To use this value to drive the adaptivity,
refinement and unrefinement thresholds must be defined. There are two ways
to do this: set the JUMP REFINE THRESHOLD and JUMP UNREFINE THRESHOLD

to traction values that the problem is known to exhibit (if given, the JUMP

NORMALIZER will divide all values before applying the thresholds), or indicate
JUMP TRACTION SCALING which will pick a normalizer based on the average
value of the tractions across the whole mesh.

An example input is:

adaptivity specification

jump metric

jump refine threshold 0.75

jump unrefine threshold 0.50

jump traction scaling

jump traction floor 10.0

end

end

which would automatically scale the traction values to the average over the
whole mesh and ignore values that are less than 10.0 (which can be used to
prevent the adaptivity from refining on “noise”). If the magnitude of the
pressures or the tractions is approximately known in the problem, one can
use input like this:

185

Table 27: Adaptivity Keywords for JUMP METRIC.

Sub-Keyword Input Description

JUMP REFINE THRESHOLD real Value of traction jump error value
above which to refine an element

JUMP UNREFINE THRESHOLD real Value of traction jump error value
below which to unrefine a previously
refined element

JUMP NORMALIZER real Value by which to divide the trac-
tion jump error values to obtain a
value to compare to refine/unrefine
thresholds

JUMP TRACTION SCALING Flag keyword to indicate that the
jump error values are to be scaled
by the average value found among
all faces

JUMP TRACTION FLOOR real Minimum value of the jump error
metric above which comparisons to
the refine/unrefine thresholds will
occur.

adaptivity specification

jump metric

jump refine threshold 0.75

jump unrefine threshold 0.50

jump normalizer 1.e8

end

end

which will divide all element traction values by 1.e8 before applying the
thresholds.

10.1.3 Element Budget

ADAPTIVITY SPECIFICATION

ELEMENT BUDGET

[MAXIMUM ELEMENTS int]

[MAXIMUM LOCAL ELEMENTS int]

186

[NUMBER OF ERROR BINS int]

[APPLY TO JUMP ERROR]

[JUMP WEIGHT FACTOR real]

[JUMP ERROR VALUE FLOOR real]

END

END

The ELEMENT BUDGET method is not an error indicator but instead limits
the number of elements that can exist during the simulation. If the element
budget is reached, the elements with the higher error values are refined before
the elements with a lower error value. At this point, the element budget
control can be used in conjunction with the traction jump error indicator.

Table 28: Adaptivity Keywords for ELEMENT BUDGET.

Sub-Keyword Input Description

MAXIMUM ELEMENTS int The maximum number of elements to
ever be used in the simulation

MAXIMUM LOCAL ELEMENTS int The maximum number of elements
to be used on any one processor in
a parallel simulation

NUMBER OF ERROR BINS int Level of granularity of the error
value sorting algorithm (higher val-
ues modestly increase the amount of
parallel communication)

APPLY TO JUMP ERROR Flag keyword to indicate that the re-
finement prioritization will be based
on the traction jump error

JUMP WEIGHT FACTOR real (Not applicable with only one error
indicator)

JUMP ERROR VALUE FLOOR real A cutoff below which elements are
never refined

An example input is:

adaptivity specification

element budget

maximum elements 10000

apply to jump error

187

jump error value floor 1.e2

end

end

which indicates that there should not be more than 10,000 elements, apply it
to the jump error indicator for prioritization, and even if there are less than
10,000 elements, do not refine elements if the jump error value is less than
100.

10.1.4 Adaptivity Layering

ADAPTIVITY SPECIFICATION

LAYERING

HYDRO JUMP WIDTH int

END

END

LAYERING spreads the adaptation of elements out over a user selected
width of elements, leading to a more gradual onset of higher resolution.
The number input after the keyword HYDRO JUMP WIDTH is the number of
elements over which to spread out the refinement.

10.1.5 Block Specific Control

ADAPTIVITY SPECIFICATION

BLOCK ADAPT LEVELS

int int, [int int,] ... [int int]

END

END

The BLOCK ADAPT LEVELS keyword is followed by one or more pairs of
integers. In each pair of integers, the first number refers to a mesh block
while the second refers to the maximum adaptivity level that will be allowed
in the block. This is a method of overriding the maximum levels of adaptivity
that is set for the whole mesh in the DOMAIN keyword section.

188

10.1.6 Unrefinement Control

ADAPTIVITY SPECIFICATION

UNREFINEMENT CONTROL

[CYCLE LAG int]

[TIME LAG real]

[LOCK INITIAL REFINEMENT,

[UNTIL CYCLE int | UNTIL TIME real | NEVER UNREFINE]]

[REDUCE MAX REFINEMENT]

[AT TIME real | AT CYCLE int]

END

END

The adaptivity options in the UNREFINEMENT CONTROL input allow the
user to control when unrefinement takes place. The first two controls are
CYCLE LAG and TIME LAG. These two values control a delay between the
indication of unrefinement by the error metric and the actual unrefining of
the element. CYCLE LAG introduces a specific number of computational cycles
between the unrefine indication and the actual unrefinement of an element,
while TIME LAG introduces a delay of a set amount of problem time between
the indication and the action. Both features are present to reduce noise in
the unrefinement of elements.

The LOCK INITIAL REFINEMENT flag is tied to the next three options:
UNTIL CYCLE, UNTIL TIME and NEVER UNREFINE. These options allow the
user to control the unrefinement of the refined mesh introduced during
an INITIAL REFINEMENT step. (INITIAL REFINEMENT is controlled by the
DOMAIN section of the alegra input (Section 5.10.3 on page 132). The LOCK

INITIAL REFINEMENT input forces the initially refined mesh to remain at
its level of refinement until a certain computational cycle is reached (UNTIL
CYCLE) or until a given problem time is reached (UNTIL TIME). The NEVER

UNREFINE keyword forces the initial refinement to persist indefinitely.

The REDUCE MAX REFINEMENT keyword provides the user with the ca-
pability to manually force an unrefinement of one level everywhere in the
mesh at a particular time or cycle. When used with the block-specific
INITIAL REFINEMENT keyword driven capability in the DOMAIN section (see
Section 5.10.3 on page 132), the user can force the problem mesh to logically
match the mesh in a target region that is used in the staged activation of
regions process (see Section 5.4.2 on page 96).

189

Table 29: Adaptivity Keywords for UNREFINEMENT CONTROL.

Sub-Keyword Input Description

CYCLE LAG int number of cycles between an unre-
finement indication from the error
metric and the actual element un-
refinement

TIME LAG real amount of problem time between
an unrefinement indication from
the error metric and the actual el-
ement unrefinement

LOCK INITIAL REFINEMENT, Flag keyword
UNTIL CYCLE int computational cycle at which an

initially refined mesh can unrefine
UNTIL TIME real computational time at which an

initially refined mesh can unrefine
NEVER UNREFINE Flag keyword

REDUCE MAX REFINEMENT, Flag keyword
AT CYCLE int computational cycle at which an

initially refined mesh will unrefine
by one level everywhere

AT TIME real computational time at which an
initially refined mesh will unrefine
by one level everywhere

10.2 Dynamic Load Balancing

To keep the load balanced over many processors during adaptivity, a load
balancer can be invoked. This will produce a mesh restructuring. In the cur-
rent release, load balancing is either on or off and is called for each time step
although it may decide that no mesh movement is required. Load balancing
is turned on with the following syntax:

HYDRODYNAMICS

...

LOAD BALANCE

END

END

190

That is, it resides in the physics specification block.

Note: LOAD BALANCE is not available for structured mesh physics
options.

191

11 Structured Mesh Input

11.1 Structured Mesh

STRUCTURED MESH

[subkeyword-list]

END

The STRUCTURED MESH block is one method of specifying a computational
domain for a mbs problem.

The STRUCTURED MESH specification consists of one of the following
keyword -- end pairs and the associated keywords and values. The AMR

-- END keyword pair permits the specification of simple Cartesian mesh that
is generated inline. The AMR keyword requires one argument that specifies
the geometry as 2D, 3D and the geometry as either cylindrical or rectangular.
The SET ASSIGN -- END keyword pair allows specification of nodesets and
sidesets on the exterior of a STRUCTURED MESH specified domain.

An example of the STRUCTURED MESH -- END syntax is:

structured mesh

amr 3dr

periodic, x

nx = 10

ny = 10

nz = 10

bx = 40

by = 7

bz = 5

gmin = 1.0 1.0 1.0

gmax = 40.0 7.0 5.0

end

set assign

nodeset,ihi,2

nodeset,jhi,1

end

end

192

11.1.1 AMR

AMR {2DR | 2DC | 3DR}

[subkeyword-list]

END

The AMR -- END block pair surrounds the description of the geometry of
an inline specified rectilinear mesh. The extent of the domain is given by a
pair of vectors. The number of blocks in each coordinate direction and the
number of elements in each block are given by additional keywords. The total
number of elements specified in an inline specified mesh is the product of the
total number of blocks BX x BY x BZ and the total number of elements per
block NX x NY x NZ. For a 2D mesh nz, and bz must be omitted.

2DR - 2D Rectilinear

2DC - 2D Cylindrical

3DR - 3D Rectilinear

11.1.2 SET ASSIGN

SET ASSIGN

[{NODESET | SIDESET} ,{ IHI | JHI | KHI | ILO | JLO | KLO }, int]

END

The SET ASSIGN -- END keyword pair allows the specification of simple
nodesets and sidesets on the exterior of inline meshes.

11.2 Block

BLOCK start TO end

[subkeyword-list]

END

The BLOCK keyword group allows the user to specify the materials that
are contained in a block and the type of mesh movement desired in the

193

Table 30: Keywords for AMR -- END.

Sub-Keyword Input Description

DEBUG Activates the output of debugging
messages associated with the AMR
grid.

PERIODIC,{X | Y | Z} int Specification of a periodic domain.
NX int Number of cells in x-direction.
NY int Number of cells in y-direction.
NZ int Number of cells in z-direction.
BX int Number of blocks for the unrefined

grid in x-direction.
BY int Number of blocks for the unrefined

grid in y-direction.
BZ int Number of blocks for the unrefined

grid in z-direction.
GMIN vector Minimum coordinates (x,y,z) for the

domain.
GMAX vector Maximum coordinates (x,y,z) for the

domain.

block. The default is for a block to be a voided Lagrangian block (i.e., if
all subkeywords are omitted). The BLOCK subkeywords are identical to the
UNSTRUCTURED REGION BLOCK subkeywords.

For multi-block structured regions, the “start TO end” syntax identi-
fies which subset of blocks for which the user is specifying block attributes.
The “start TO end” BLOCK syntax may be used in conjunction with the
“standard” block syntax to override the attributes of individual blocks.

11.3 Output

PLOT, {OUTPUT FORMAT}

{FILE = ‘‘file_name’’}

END

There is no default mesh output produced from a mbs physics option
problem. There are currently three OUTPUT FORMAT options: exodus, en-

194

sight ascii, and ensight binary. The FILE = directive specifies the
entire output file name for serial exodus output and provides a root name
for parallel genesis and all ensight ascii and ensight binary output.

The exodus files produced by parallel execution of structured mesh
physics in alegra do not contain the meta-data required for concatena-
tion of the results into a single cohesive mesh. Alternatives for viewing the
resulting exodus files include: importing multiple files into ensight, run-
ning ensight in “server of servers” mode over multiple files, and using a
utility called exjoin that produces a combined file without equivalencing
nodes. The exjoin utility is available from alegra developers.

ensight output produced from a mbs run are in the ensight gold

case file format. From parallel runs alegra produces a file for each variable
from each process as well as a geometry file from each processor and a single
case file. These variable and geometry files from the individual processors
can be joined together using a utility called ensightjoin. This operation
is very efficient because it is essentially the organized concatenation of the
component files plus the appending of an index to each file. The meaning of
ensight binary and ensight ascii is self explanatory.

11.4 Mesh Input

MESH, {INPUT FORMAT}

{FILE = ‘‘file_name’’}

END

There are two alternatives to inline mesh specification available to users
of mbs physics. They are genesis and plot3d. The genesis input option
is a degenerate form of the plot3d option since any genesis file appropriate
for import into alegra is suitable for translation into a plot3d file. When
a genesis file is provided alegra calls a library version of the gentop3d

translator. This translation is carried out in serial and may require more
memory resources than are available. For this reason large meshes should be
translated into plot3d fies. It should be viewed as a convenience and may
not be appropriate for large problems.

The plot3d file format is an extension of the plot3d geometry file
format commonly used in other applications. As created by the gentop3d

195

utility for use in mbs alegra it has appended to it additional information
describing: the original block id’s, the sideset and nodeset information, and
block to block connection information. These enhanced plot3d files remain
readable by ensight using the plot3d option.

The gentop3d translator is distributed along with the third party li-
braries required for compiling and linking alegra.

Two and three-D genesis files that satisfy the following restriction are
suitable for translation into plot3d files for import into mbs alegra: Each
block of mesh in the genesis file must consist of a collection of elements that
topologically resemble an array. In two dimensions this is a checkerboard pat-
tern. In three dimensions a Rubik’s Cube patter. The nodes between the
blocks must be equivalenced for the solution to combine the blocks appro-
priately.

There are no restrictions on how these blocks may be connected to each
other.

196

12 Material and Material Model Input

Specification of the materials and material models used for an alegra cal-
culation is expressed in rather general terms. A material, for purposes of an
alegra calculation, is defined by a set of material models and initial values
of critical independent variables that may differ from the default reference
values. Thus, alegra input for material specification consists of a MATERIAL

keyword group and corresponding sets of material MODEL subkeyword groups.
The remainder of this section provides an overview of the material and mate-
rial model input via examples. More detailed descriptions and syntax follow
in the subsequent subsections. The final subsection contains complete exam-
ples of material and model input for all the material models.

As a simple example, the material and material model input that might be
used to describe air for hydrodynamics calculations is shown below. For this
simple material, only one material model is needed to describe the material
response of interest. The initial density in this example was desired to be
lower than the default, which would be equal to ”rho ref”.

material 200 air

model 201

density = 0.001 $ g/cm^3, initial density less than rho ref

end

model 201 ideal gas

rho ref = 0.0011756624 $ g/cm^3

temperature = 298. $ K

gamma = 1.4

cv = 0.7165e+07 $ erg/g/K

end

Generally, the material and material model identification numbers are
arbitrary and for the convenience of the user. However, the model number
specified in the MATERIAL keyword group must correspond to the model id
of the material MODEL keyword group.

The string following the MATERIAL keyword and id is optional and is for
the convenience of the user. All text up to a comment or end-of-line will be
read as the optional string.

197

The optional string must not match any main or reserved keywords and
must not be an integer or real value. It will be parsed as such and an error
will result. To avoid this, the string may be placed within double quotes
(see the string following material 200 in the example below, “6061” would
be parsed as an integer if not quoted).

The comments denoting units which follow a number of the parameter
lines are for the convenience of the user.

The initial values of independent variables (e.g., temperature and density)
do not need to be specified unless the initial state of the material and the
reference state of the model are different.

A more complex example of material and material model input for a
solid dynamics calculation is shown below. The units in square brackets
placed after the density are simply a demonstration of the code’s capability
of handling unit conversions of the input (see Section 4.1.3 on page 69).

material 100 tungsten penetrator

model 101 $ elastic plastic

model 102 $ mie-gruniesen us-up

model 103 $ pressure-dependent fracture

density 1850. [kg/m^3] $ demonstration of unit, not required

end

model 101 elastic plastic

youngs modulus 3.42e12 $ dyne/cm^2

poissons ratio 0.29

yield stress 1.5e+10 $ dyne/cm^2

hardening modulus 0.0 $ dyne/cm^2

beta 1.0

end

model 102 mg us up

c0 = 3.998e5 $ cm/s

sl = 1.237

gamma0 = 1.54

rho ref = 18.5 $ g/cm^3

cv = 2.5e10 $ erg/g/K

pref = 0.0

tref = 298.0

198

e shift = 1.0e+10

end

model 103 frac presdep

init frac pres = -5.e10

density tolerance = 1.e-6

pressure tolerance = 1.e+2

end

material 200 "6061-t6 aluminum target plate"

model 201 $ elastic plastic

model 202 $ keos mie-gruniesen

model 203 $ pressure-dependent fracture

density = 2.66 $ not needed if same as r0, g/cm^3

temperature = 298. $ not needed if same as t0, K

end

model 201 elastic plastic

youngs modulus = 73.00e+10 $ dyne/cm^2

poissons ratio = 0.3225

yield stress = 2.76e+09 $ dyne/cm^2

hardening modulus = 1.24e+09 $ dyne/cm^2

beta = 1.

end

model 202 keos miegrun $ Newer version of mg us up

cs = 5.328e5 $ cm/s

sl = 1.338

g0 = 2.18

r0 = 2.66 $ g/cm^3

cv = 1.034e07 $ erg/g/K

t0 = 298.0 $ K

end

model 203 frac presdep

init frac pres = -1.e9 $ dyne/cm^2

density tolerance = 1.e-6

pressure tolerance = 1.e+2

end

199

Note that each material is described by a set of material models. Gener-
ally, any set of material models may be specified for a material as appropriate
for the physics performed in the alegra calculation (see Sections 5.2 and 5.3
on pages 93 and 94). This generality provides substantial flexibility for the
user to describe very complex material behavior. However, it also is rel-
atively easy to specify inconsistent material models which produce invalid
results. Limited consistency checking exists, but the user is encouraged to
refer to the subsequent sections on the MATERIAL and MODEL keywords for
more information on constructing consistent input.

All materials described by a MATERIAL keyword block may occupy any
element in the mesh. Thus, all elements provide for the possibility of all
materials being present. This capability is, in general terms, achieved by
providing an array of MATERIAL DATA objects, one for each material defined
in the user input file. These MATERIAL DATA objects contain the variables for
each material in that particular element. The material models defined for
the material operate on this data. Thus, knowledge of the variables operated
on by the models comprising a particular material can provide useful insight
into the nature and type of response of the models. These variables are listed
in the tables of registered plot variables for each material model discussed in
the following sections (see Table 31 in Section 12.2 on page 207).

In general, the element maintains an array of material volume fractions of
all materials present within that element. Thus, the sum of all of the material
volume fractions for an element must equal one. Furthermore, individual
values of material volume fraction range from zero to one. In some cases an
element has material volume fractions which sum to a value less than one.
In such a case, a portion of the element is considered empty. A fictitious
material called Void occupies the remaining empty volume of the element.
Void is a material with no material models defined. Thus, it generally has
no properties and variables. Void is essentially vacuum.

The users should be aware that there are a number of ways in which
a material is deposited in an element (see Section 5.9.1 on page 116). At
initialization, material may be assigned to all elements of an element block
through the MATERIAL keyword in the BLOCK input. Note that multiple ma-
terial keywords in the BLOCK input produce equal material fractions for each
material. Alternatively, the DIATOM input also allows material to be inserted
into elements meeting a spatial criteria (see Section 5.7.1 on page 100). Dur-
ing a calculation, material may enter or exit an element due to advection. In
all of these cases, multi-material elements may occur, and void may also be

200

present.

12.1 Materials

MATERIAL int [string]

MODEL int

[MODEL int]

...

[variable_name real]

[variable_name real]

...

END

The MATERIAL keyword begins a block of user input specifying the models
and initial state of a material to be used in the calculation. The MATERIAL

keyword is followed by an identifying integer which refers to the particular
material throughout the input specification file. For example, the MATERIAL

which fills an element BLOCK must refer to a valid material id.

physics specification

block 1

material 201 $ see BLOCK input for this item

end

end

material 201 "6061-T6 Aluminum"

...

end

In this example, the BLOCK input specification that material 201 fills
the element block 1 corresponds to the MATERIAL keyword with int id 201.

The identifying material number is followed by an optional string which
may be used to describe the material. This string is parsed to the end of line
or next valid keyword. Supplying the optional descriptive string improves
readability of the input file. The string is printed to the output file of
the calculation, also improving its readability, as well as used in various

201

error messages. In the above example, the descriptive string is 6061-T6

Aluminum.

The string may or may not be enclosed in quotes. Recognition of the
string as a material description assumes the string does not match any valid
material keyword. For example, the string Be (short for beryllium) matches
the material keyword BETA and an input error occurs. The ambiguity is
removed by expanding Be to Beryllium or by surrounding “Be” with quotes.

12.1.1 MODEL subkeyword

MODEL int

In alegra, a material model is a module which computes the values of
a set of dependent material variables given a set of independent material
variables and other appropriate data. For complex materials, a number of
models may need to be sequenced for a material so that all variables of inter-
est are computed. This can be very customized and useful for prototyping,
carefully specifying parameters to capture the behavior of interest. Because
it can also be error prone, in some cases a collection of models eventually
evolved into a single model with a simpler user interface.

The MODEL subkeyword is used to specify a single model or construct a
list of material models which will be used to describe the response of the ma-
terial. Any number of models, as appropriate for the material and physics
of the problem, may be specified. It is important to note that THE ORDER
OF THE MODELS SPECIFIED FOR A MATERIAL IS THE ORDER IN
WHICH THE MODELS WILL BE APPLIED in the calculation. For exam-
ple, the input fragment:

material 10 Administratium

model 11

model 25

model 8

end

applies models 11, 25, and 8, in that order, when computing the state of
material 10. This ordering has implications for properly computing the state

202

of the material. The variables of some models may depend on variables
computed in other models. This implies that models with such dependent
variables be specified AFTER the models which compute those variables.

For example, if MODEL 25 requires temperature as a known input value,
MODEL 11 must calculate temperature. Otherwise, the temperature used in
MODEL 25 will be the temperature from the preceding cycle (to make mat-
ters more complicated, in some cases this may be exactly what the model
requires!).

To address the difficulty in specifying the correct order of material mod-
els in a material, all material model implementations specify all variables,
identifying each as either input, input/output, or output. Thus, to properly
use each model, all input variables of the model are provided to the material
(via element data) or computed by a preceding material model. The tables
in the material model subsections list all the variables and the corresponding
input/output type.

12.1.2 variable name subkeyword

variable_name real

The variable name input specification is used to define a non-zero initial
value for an independent variable of the material. The most common (and
currently the only use of this facility) is to specify initial density and tem-
perature of a material for equation of state material models. Currently, it is
possible to initialize any scalar variable which can be written to the plotting
database.

This facility is provided as a general capability for models which require
non-zero initial values for certain scalar variables. The generality should
make this capability usable for the most complicated material models. Using
this facility is highly dependent on the particular material model and gener-
ally requires detailed knowledge of the implementation of the model. Thus,
it is recommended that this capability not be used indiscriminately.

203

12.2 Material Models

MODEL int model_name

parameter [{int | real}]

parameter [{int | real}]

...

END

The MODEL keyword begins a block of input which specifies a particular
material model and provides for input of the appropriate material model
parameters. The MODEL keyword is followed by an integer identifier selected
by the user, followed by the name of the material model to be used. The
integer id is used to cross-reference the material model with the material
model list contained in a MATERIAL keyword group.

The body of the material MODEL keyword group consists of parameter

value input. The parameters are set by the name of the parameter followed
by the int or real value, as appropriate. The parameter names and input
value types are listed in the material model catalog in the subsequent sub-
sections. The value following a parameter keyword is parsed as either int

or real. Thus, an int cannot be coerced to a real value (e.g., 298 is an int

and 298. is a real). Instead, a parsing error with an appropriate diagnostic
will occur.

Examples:

material 1 elastic copper

model 2

model 1

temper = 500. $ K, can change initial temp from ref value

end

material 2 elastic plastic copper

model 3

model 1

end

model 1 mg us up

...

end

204

model 2 linear elastic

...

end

model 3 elastic plastic

...

end

The MODEL name must be a valid name for an available model. Note that
a particular MODEL may be used in more than one MATERIAL specification.
Furthermore, models may also be included in the user input that are not used
by any material. Such models are not used (although the input is parsed).
This may be convenient when running problems from the same input deck
but desiring to vary material models used by certain materials.

A list of the currently available models is provided in Table 31. The
models are approximately categorized into general model types although in
some cases, a model may contain more or less capability than is typically
assumed for such models.

The following subsections provide individual descriptions of the material
models available in alegra. The models are described in the order in which
they appear in Table 31. Each model will have two tables, one listing model
input parameters and another listing the registered model variables.

In the model input parameter tables, the full parameter name for pars-
ing is listed, followed by the parameter type, either real for floating point
number or int for integer. A description of the parameter is also provided.
Note that the initial value of any unspecified parameter defaults to zero,
unless indicated otherwise in the parameter description. In the registered
model variable tables, the variable name is followed by the variable type (int,
real, vector, symtensor, tensor, or antitensor), variable mode (INPUT,
IOPUT, or OUTPUT), and a description. In general, all variables in the model
variable tables may be plotted by listing the variable name (without under-
scores) within the PLOT VARIABLES keyword construct (see Section 4.2.12 on
page 81). Extra variables for each model that may be plotted by the hisplt

program are listed in an additional table where applicable. hisplt variables
that are not model-dependent for the various alegra physics options are
listed in Section 13.3 on page 298.

205

The variable mode INPUT, indicates that a particular variable is used
as input to the model, implying that the value is current when the model
is applied. The IOPUT mode indicates that a variable contains a current
value upon entry to the model and is updated in the course of the model.
The OUTPUT mode indicates that the variable is computed by the model.
Generally, a consistent set and sequence of material models for a material
will have all INPUT variables provided by the element or computed as IOPUT
or OUTPUT variables in preceding models.

The directory and files containing source code for the model are also
listed, relative to the $ALEGRA DEVEL path. Many of the models are special-
ized and are only applicable to particular versions of the code or particular
physics selections. Where possible, these requirements are noted, although
this information may be incomplete.

206

Table 31: Material Model Types and Model Names.

General Material Model Type Model Name

Equation of State GENERIC EOS

IDEAL GAS

JWL

KEOS Ideal Gas

KEOS JWL

KEOS MieGruneisen

KEOS Sesame

MG POWER

MG US UP

Constitutive ELASTIC PLASTIC

LINEAR ELASTIC

SOIL CRUSHABLE FOAM

ISOTROPIC GEOMATERIAL

Yield STEINBERG GUINAN LUND

JOHNSON COOK EP

ZERILLI ARMSTRONG

BAMMANN CHIESA JOHNSON

VON MISES YIELD

Plasticity SIMPLE RADIAL RETURN

EP RADIAL RETURN

Combined Models CTH ELASTIC PLASTIC

BFK CONCRETE

Fracture FRAC PRESDEP

Reactive Burn KEOS Arb

KEOS Ffrb

KEOS Hvrb

KEOS Igrb

KEOS Ptran

Burn PROGRAMMED BURN JWL

207

12.3 Equation of State Models

Equation of state models relate the internal energy to other state variables
(such as density and pressure). The equation of state models in alegra

range from simple models that exist only to provide required thermody-
namic quantities (such as the GENERIC EOS) to complex models that extend
the basic concepts of equilibrium thermodynamics to include the effects of
microstructure and time-dependent behavior (such as the reactive burn mod-
els).

To simplify input for several of the equation of state models, a specially
formatted ascii file named EOS data is distributed with alegra that pro-
vides input parameters for many predefined materials. Incorporation of any
particular data set into the EOS data file does not imply correctness or vali-
dation of the data set, but it is intended as a starting point for materials of
interest in the absence of experimental data for the particular application.
Parameters in the EOS data file are given in cgseV units, which are standard
cth units (the EOS data file is also distributed with cth). The data are
read and automatically converted to problem units during alegra’s set up
phase. The default location of the EOS data file is set by the environment
variable $ALEGRA MIGDATA. All models in the EOS data file are not necessar-
ily accessible by the alegra code, and conversely, all models in the alegra

code do not have data provided in the EOS data file. For applicability to a
specific constitutive model, look in the input data below for the MATLABEL

input.

Models that are shared with cth use the MIG (Material Interface Guide-
lines) [4]. These models have an associated data file that lists the required
Fortran routines and other information specified in the guidelines. If this file
is available with the alegra source code, it is listed in these sections with
the description of the material model. The actual source code that is shared
with cth is in an external library that is distributed with the alegra code.
Many of the equation of state models that are shared by cth and alegra

are named with the prefix “KEOS.” These are the recommended models for
MieGruneisen and JWL although older versions of many of these models
remain for backward compatibility.

Several of the equation of state models include an optional parameter
called ESHIFT. This parameter is used to temporarily shift the zero energy
condition or reference energy, Eref, up to a range where a solution algo-
rithm is not likely to return negative energies and temperatures, which are

208

problematic for some codes. The KEOS models calculate a reasonable value
of ESHIFT internally as an aid to the user, although it can be overridden by
user input.

12.3.1 Generic EOS

MODEL model_id_number GENERIC EOS

[parameter = value]

...

END

The generic equation of state is used for materials which have a me-
chanical stress tensor model but would otherwise have no computation of
temperature or sound speed. Note that sound speed is required of all ma-
terials in the DYNAMICS hierarchy (e.g., HYDRODYNAMICS, SOLID DYNAMICS).
Thus, in the absence of any other model that computes sound speed for the
material, this model should be specified. The specific heat, Cv, is taken to
be a constant. A reference sound speed, Cs0, must be specified. This may be
derived from elastic moduli specified in other models describing the material.
Pertinent equations are shown below.

T = Tref +
E − Eref

Cv
(12.10)

Cs0 =

√

K0 + 4

3
G0

ρ0

(12.11)

Cs =

√

ρ0 + C2
s0

ρ
(12.12)

• Modules: material libs/standard models

– matmod generic eos.h

– matmod generic eos.C

• Physics: solid dynamics

209

Table 32: Input Parameters for GENERIC EOS.

Parameter Name Type Description

RHO REF real Density at the reference state, ρ0

TREF real Absolute temperature at the reference state,
Tref

CV real Specific heat at constant volume, Cv

EREF real Specific internal energy at the reference state,
Eref

REF SOUND SPEED real Sound speed at the reference state, Cs0

E SHIFT real Arbitrary shift of reference energy (optional)

Table 33: Registered Plot Variables of GENERIC EOS.

Variable Name Type Mode Description

DENSITY real INPUT Material density, ρ
ENERGY real INPUT Specific internal energy, E
TEMPERATURE real OUTPUT Absolute temperature, T
SOUND SPEED real OUTPUT Sound speed, Cs

$ Sample input the generic eos model

$ A material with this eos would probably also specify some

$ strength model, such as elastic plastic.

model 32 generic eos $ cgsK units

rho ref = 8.932 $ gm/cm^3

tref = 298. $ K

cv = 3.924e+06 $ erg/gm/K

ref sound speed = 4.4468e+05 $ cm/s

end

12.3.2 Ideal Gas

MODEL model_id_number IDEAL GAS

[parameter = value]

...

END

210

The ideal gas model [21] computes the pressure, P , the temperature,
T , and the sound speed, Cs, for the material using the standard ideal gas
equations.

P = ρ(γ − 1)(E − Eref) (12.13)

T =
E − Eref

Cv(1 + Z̄)
(12.14)

Cs =

√

γP

ρ
(12.15)

For plasmas, there can be electron contributions to the gas energy and
pressure. To account for any electron effects, the FIXED ZBAR parameter is
provided. Set FIXED ZBAR = 1.0 for single ionization, FIXED ZBAR = 2.0 for
double ionization, etc. This parameter defaults to zero.

• Modules: material libs/standard models

– matmod idlgas.h

– matmod idlgas.C

• Physics: hydrodynamics

Table 34: Input Parameters for IDEAL GAS.

Parameter Name Type Description

RHO REF real Density at the reference state, ρ0

TREF real Absolute temperature at the reference state,
Tref

CV real Specific heat at constant volume, Cv

GAMMA real Ratio of specific heats, γ = Cp/Cv

FIXED ZBAR real Fixed ionization state (to account for electrons)
E Shift real Arbitrary shift of reference energy (optional)

211

Table 35: Registered Plot Variables of IDEAL GAS.

Variable Name Type Mode Description

SPECIFIC HEAT VOL real INITIALIZE Initialized from Cv parame-
ter

DENSITY real INPUT Material density
ENERGY real INPUT Specific internal energy
PRESSURE real OUTPUT Pressure
TEMPERATURE real OUTPUT Absolute temperature
SOUND SPEED real OUTPUT Sound speed

$ Sample input for ideal gas model

model 11 ideal gas $ cgsK units

gamma = 1.667

rho ref = 1.624e-4 $ g/cm^3

tref = 300. $ K

cv = 3.116324e+07 $ erg/g/K

end

12.3.3 JWL

MODEL model_id_number JWL

[parameter = value]

...

END

This is the Jones-Wilkins-Lee equation of state for high explosives. The
equations are described fully by Reference [21]. This model describes the
equation of state of high explosive materials in a fully detonated state. The
parameters are unique for a given undetonated density and temperature.

Input parameters must be in consistent (CGS or SI) units, which is not
usually the way JWL parameters are published [10]. The JWL constants
are often cited in the following system of units: A, C and PCJ are given in
Mbar = 1012 GPa, density in gm/cm3, DCJ in cm/µsec, and E0 in Mbar-
cm3/cm3.

• Modules: material libs/standard models

212

– matmod jwl.h

– matmod jwl.C

• Physics: hydrodynamics

$ Sample input for JWL model

model 21 jwl $ cgsK units

a = 4.63e+12 $ dyne/cm^2

b = 8.873e+10 $ dyne/cm^2

c = 1.349e+10 $ dyne/cm^2

omega = 0.35

r1 = 4.55

r2 = 1.35

rho ref = 1.65 $ g/cm^3

e shift = 1.e+10 $ erg/gm

pcj = 2.15E+11 $ dyne/cm^2

dcj = 7.03e+05 $ cm/s

tcj = 4062.0 $ K

tref = 298.0 $ K

end

Table 36: Input Parameters for JWL.

Parameter Name Type Description

RHO REF real Density in unreacted reference state
TREF real Temperature in unreacted reference state
E SHIFT real Arbitrary shift of reference energy (optional)
A real JWL parameter in units of problem
B real JWL parameter in units of problem
C real JWL parameter in units of problem
OMEGA real dimensionless JWL parameter
R1 real dimensionless JWL parameter
R2 real dimensionless JWL parameter
E0 real JWL parameter in units of problem
PCJ real Chapman-Jouget pressure
DCJ real Chapman-Jouget detonation front velocity
TCJ real Chapman-Jouget temperature

213

Table 37: Registered Plot Variables of JWL.

Variable Name Type Mode Description

SPECIFIC HEAT VOL real INITIALIZE Initialized from Cv parameter
DENSITY real INPUT Material density
ENERGY real INPUT Specific internal energy per unit

mass
PRESSURE real OUTPUT Pressure
TEMPERATURE real OUTPUT Absolute temperature
SOUND SPEED real OUTPUT Bulk sound speed
DPDRHO real OUTPUT Derivative of pressure with re-

spect to density

12.3.4 KEOS Ideal Gas

MODEL model_id_number KEOS IDEAL GAS

[parameter = value]

...

END

The Kerley EOS model for ideal gas [22] computes the equation of state
for the material using the standard ideal gas equations.

P (ρ, E) =
(γ − 1)ρE

1 − ρBv

(12.16)

E(ρ, T) = CvT (12.17)

where γ is the ratio of constant pressure and constant volume specific heats,
Cv is the specific heat, and Bv is the co-volume, representing the volume ex-
cluded by molecules of finite size. Bv can be used to make a crude correction
for nonideality.

If the material input does not specify the independent variables, the ref-
erence conditions in the model input will be used.

• Modules: material libs/kerley eos

214

– ideal gas mig.h

– ideal gas mig.C

– idgas.doc is the ascii data file that lists associated Fortran rou-
tines.

• Physics: hydrodynamics

Table 38: Input Parameters for KEOS IDEAL GAS.

Parameter Name Type Description

GM1 real (2/3) γ − 1. Default is monatomic gas value
CV real Specific heat
BV real (0.) Co-volume
R0 (or RO) real Initial density
T0 (or TO) real Initial temperature
E0 (or EO) real Energy at zero pressure and temperature
TYP real Model type (default value set by EOS

package). Intended primarily for internal
use in EOS package.

Table 39: Registered Plot Variables of KEOS IDEAL GAS.

Variable Name Type Mode Description

DENSITY real INPUT Material density
ENERGY real INPUT Specific internal energy
PRESSURE real OUTPUT Pressure
TEMPERATURE real OUTPUT Absolute temperature
SOUND SPEED real OUTPUT Bulk sound speed
DPDRHO real OUTPUT Derivative of pressure with respect to

density

$ Sample input for keos ideal gas model.

model 141 keos ideal gas

gm1 = 0.667

r0 = 1.6245e-04 $ g/cm^3

t0 = 298. $ K

cv = 3.116324e+07 $ erg/g/K

end

215

12.3.5 KEOS JWL

MODEL model_id_number KEOS JWL

[parameter = value]

...

END

This is the Kerley EOS version of the Jones-Wilkins-Lee equation of state
for high explosives [22]. This model is useful for computing the equation of
state of high explosive materials in a fully detonated state. The parameters
are unique for a given undetonated density and temperature. Input parame-
ters for this model must be in consistent (CGS or SI) units, even though JWL
parameters are normally published [10] in the following system of units: A, B
and PCJ are given in Mbar = 1012 GPa, density in gm/cm3, DCJ in cm/µsec,
and E0 in Mbar-cm3/cm3.

The setup for this model will fail unless R0, WG, and either CV or TCJ are
given.

This model can also be used with the PROGRAMMED BURN option (Sec-
tion 8.5.1 on page 177) in alegra. Many of the JWL predefined materials
in the EOS data file are assumed to be operating with the PROGRAMMED BURN

option. To turn off that option, set BRN = 0.0.

• Modules: material libs/kerley eos

– jwl mig.h

– jwl mig.C

– jwl.doc is the ascii data file that lists associated Fortran routines.

• Physics: hydrodynamics

Table 40: Input Parameters for KEOS JWL.

Parameter Name Type Description
continued on next page

216

continued from previous page

MATLABEL char Material label in the EOS data file. If this
parameter is provided, no other parame-
ters are required. Enclose the string in sin-
gle quotes.

DATAFILE char Name and location of the specially for-
matted EOS data file if different from the
default $ALEGRA MIGDATA/EOS data. En-
close the string in single quotes.

R0 (or RO) real Density in unreacted reference state (re-
quired)

T0 (or TO) real Temperature in unreacted reference state
(default is 298 K)

AG real Constant A in JWL formula in units of
problem (required)

BG real Constant B in JWL formula in units of
problem (required)

R1 real Dimensionless constant R1 in JWL formula
in units of problem (required)

R2 real Dimensionless constant R2 in JWL formula
in units of problem (required)

WG real Grüneisen parameter in JWL formula (re-
quired)

E0 (or EO) real Detonation energy parameter E0 (required
for reactive burn). May also be needed to
compute specific heat.
(If E0 > 0.0, PCJ and DCJ will be recom-
puted. Otherwise, E0 is computed from
DCJ and PCJ if CV = 0.0).

CV real Specific heat (if zero, computed from E0
and TCJ)

BRN real Set to 0.0 for no heburn with this model.
If BRN = 1.0, then the PROGRAMMED BURN

input is required.
PCJ real Chapman-Jouget pressure. Used only if

CV = 0.0 and E0 = 0.0
DCJ real Chapman-Jouget detonation front veloc-

ity. Used only if CV = 0.0 and E0 = 0.0
continued on next page

217

continued from previous page

TCJ real Chapman-Jouget temperature. If
TCJ = 0.0, TCJ is reset to 0.35 eV or
4061.6 K (used only if CV = 0.0).

TDQ real (0.) Delayed heat release (default 0.0 for no
time dependent reaction)

TDA real (0.) Rate prefactor for time dependent rxn (de-
fault 0.0 for no time dependent reaction)

TDM real (0.) Exponent for (1.0 - LAMB) (default 0.0 for
no time dependent reaction)

TDN real (0.) Exponent for P (default 0.0 for no time de-
pendent reaction)

Table 41: Registered Plot Variables of KEOS JWL.

Variable Name Type Mode Description

DENSITY real INPUT Material density
ENERGY real INPUT Specific internal energy
PRESSURE real OUTPUT Pressure
TEMPERATURE real OUTPUT Absolute temperature
SOUND SPEED real OUTPUT Bulk sound speed
DPDRHO real OUTPUT Derivative of pressure with respect to

density

Two sample inputs for KEOS JWL model follow.

$ This example uses user specified parameters,

$ no programmed burn.

model 151 keos jwl

r0 = 1.65 $ g/cm^3

t0 = 298.0 $ K

ag = 4.6310e+12 $ dyne/cm^2

bg = 8.8730e+10 $ dyne/cm^2

r1 = 4.550

r2 = 1.350

wg = 0.35

cv = 0. $ calculated internally 9.651e6

218

tcj = 4061.575 $ K

e0 = 0. $.0745e12

esft = 0. $ 1.e10

dcj = 7.03e+05 $ cm/s

pcj = 2.15E+11 $ dyne/cm^2

brn = 0. $ no heburn

end

$ This example uses the EOS_data file, which assigns

$ BRN = 1 for HMX, so that programmed burn is expected. A

$ separate programmed burn input section is required to

$ define detonation objects, time, and other programmed burn

$ properties.

model 150

matlabel=’HMX’

end

219

12.3.6 KEOS MieGrüneisen

MODEL model_id_number KEOS MIEGRUNEISEN

[parameter = value]

...

END

The Kerley EOS version of the Mie-Grüneisen equation of state is the
most recent version of the MG US UP model in alegra. It is based on
the Mie-Grüneisen approximation, with the Hugoniot as the reference curve,
together with the expression Γ = Γ0ρ0/ρ for the Grüneisen function. The
pressure P and energy E are given by

P (ρ, E) = PH + Γ0ρ0[E − EH(ρ)] (12.18)

E(ρ, T) = EH + Cv[E − TH(ρ)] (12.19)

where PH , EH , and TH are the Hugoniot pressure, energy, and temperature.
The Grüneisen parameter Γ0 and specific heat Cv are taken to be constants.
There are two options for representing the Hugoniot. The first is a quadratic
relation between shock velocity Us and particle velocity Up,

Us = Cs + S1Up +

(

S2

Cs

)

U2

p (12.20)

where Cs, S1, and S2 are constants. The second option uses a modified form
for nonlinear behavior at low pressures.

Us = 2Cs

[

1 − S1µ +
√

(1 − S1µ)2 − 4S2µ2

]

−1

−B exp
[

−(µ/µ∗)N
]

(12.21)

This model reduces to the first option if B = 0. Both of these options are
described in detail by Reference [22].

The KEOS MieGruneisen model allows incorporation of the p-alpha
porosity model if the appropriate parameters are provided. The p-alpha

220

model includes a distention parameter, α, which relates the macroscopic ma-
terial density to the density ρM of the solid, void-free material.

α = ρM/ρ (12.22)

The response includes a reversible elastic region and an irreversible com-
paction region. The maximum distention at a given value of pressure is given
by

αmax = 1 + (α − 1)

(

PS − P

PS − PE

)2

(12.23)

The parameter PS is the maximum pressure for complete compaction. All
voids are crushed out and α = 1 for P greater than or equal to PS. PE is the
upper pressure limit of the elastic crush region.

The distention parameter, α, is advanced in time using an integration
scheme, dividing the global computational time step into several subintervals.
The number of subintervals can be adjusted by the user with the NSUB
parameter.

The p-alpha model is intended for modeling materials with low porosity
(less than 20 percent). It can be used as a submodel with the composite (two-
state KEOS models), and is also an option in the KEOS SESAME equation of
state. For materials with relatively higher porosities, the KEOS SESAME model
is the recommended choice for the p-alpha option.

• Modules: material libs/kerley eos

– mgrun mig.h

– mgrun mig.C

– mgrun.doc is the ascii data file that lists associated Fortran rou-
tines.

• Physics: hydrodynamics

221

Table 42: Input Parameters for KEOS MieGruneisen.

Parameter Name Type Description

MATLABEL char Material label in the EOS data file. If
this parameter is provided, no other
parameters are required. Enclose the
string in single quotes.

DATAFILE char Name and location of the specially for-
matted ascii file which contains the
properties for this model. The default
is $ALEGRA MIGDATA/EOS data. Enclose
the string in single quotes.

R0 (or RO) real Hugoniot reference density (required).
CS real Sound speed in Hugoniot (required).
CV real Specific heat (required).
T0 (or TO) real (298.) Initial temperature.
S1 real (0.) Linear coefficient in Hugoniot fit (re-

quired).
G0 (or GO) real (0.) Grüneisen parameter (required).
S2 real (0.) Quadratic coefficient in Hugoniot fit.
B real (0.) Low-pressure Hugoniot parameter B

(default=0 for no low pressure model)
XB real Low pressure Hugoniot parameter, re-

quired for the low pressure option.
NB real Low-pressure Hugoniot parameter N ,

required for the low pressure option.
RP real (=R0) For the p-alpha porosity modela, initial

density of porous material.
PS real (1.e9) For the p-alpha porosity modela, pres-

sure for complete compaction.
PE real (0.) For the p-alpha porosity modela, maxi-

mum elastic pressure.
CE real For the p-alpha porosity modela, sound

speed in elastic compaction region (de-
fault for CE is sound speed of solid ma-
trix).

NSUB int (10) For the p-alpha porosity modela, num-
ber of subcycles within time step.

continued on next page

222

continued from previous page

ESFT real Shift in energy zero (optional).
TYP real Model type (default value set by EOS

package). Intended primarily for inter-
nal use in EOS package (optional).

aProviding the parameter RP not equal to R0 designates the use for the p-alpha
porosity model. Optional input for the porosity model are the parameters PS,
PE, CE, and NSUB.

Table 43: Registered Plot Variables of KEOS MieGruneisen.

Variable Name Type Mode Description

DENSITY real INPUT Material density
ENERGY real INPUT Specific internal energy per unit mass
PRESSURE real OUTPUT Pressure
TEMPERATURE real OUTPUT Absolute temperature
SOUND SPEED real OUTPUT Bulk sound speed
DPDRHO real OUTPUT Derivative of pressure with respect to

density
ALPHA real OUTPUT The porosity parameter if the model

parameters describe a porosity model.
This parameter represents the ratio
solid density/porous density.

$ Simplest sample input for \texttt{KEOS MieGruneisen} model.

$ This model uses the p-alpha option since RP and PS are

$ defined in EOS_data, but the value of RP has been adjusted

$ to the solid density (R0 in the EOS_data file) by the user

$ so that the porosity option is not used.

model 131 keos miegruneisen

matlabel = ’BTF’

rp = 1.901 $ turn off p-alpha model.

end

12.3.7 KEOS Sesame

MODEL model_id_number KEOS SESAME

223

[parameter = value]

...

END

The KEOS Sesame model is the most up-to-date implementation of the
Sesame equation of state in alegra [22]. It uses the most complete and most
recent tables, which are identical to the tables used in cth. For alegra

these tables - aneos and sesame - are located in the directory set by the
$ALEGRA MIGDATA environment variable. Like most KEOS models, predefined
materials are cataloged in the EOS data file. This model allows simplified
input in the form of either the MATLABEL keyword (followed by a predefined
material label listed in the EOS data file) or the NEOS keyword (followed
by the table number). Other parameters specified in the model input will
overwrite those in the standard model.

This model also allows incorporation of the p-alpha porosity model, which
was described in the KEOS MieGruneisen model (Section 12.3.6 on page 220).
The Sesame tabular equation of state provides a more robust equation of state
during the compaction of a very porous material and is thus more suitable
than the KEOS MieGruneisen model for many materials. The user should
note that a somewhat smaller time step may be required for very porous
materials to facilitate the solution during sudden compaction. The p-alpha
model is discussed in greater detail in the reference listed below.

If the EOS data file is used for a predefined material, the user should ex-
amine parameters in the EOS data file to see if the porosity model is included
(i.e., if RP>0). If the porosity model is not desired, set RP = R0 in the model
input.

• Modules: material libs/standard models

– sesame mig.h

– sesame mig.C

– sesame.doc is the ascii data file that lists associated Fortran rou-
tines.

• Physics: hydrodynamics

224

Table 44: Input Parameters for KEOS SESAME.

Parameter Name Type Description

MATLABEL char Material label in the EOS data file. If
this parameter is provided, no other
parameters are required. Enclose the
string in single quotes.

DATAFILE char Name and location of the specially for-
matted ascii file which contains the
properties for this model. The default
is $ALEGRA MIGDATA/EOS data. Enclose
the string in single quotes.

R0 (or RO) real Hugoniot reference density.
T0 (or TO) real Hugoniot reference temperature.
SR real (1.0) Factor for scaling density and energy.

Ratio of molecular weight for table to
molecular weight of actual material,
SR = MW(table) / MW(material).

FEOS real Name of file containing table (required).
If the name is given with embedded “/”
characters, the name is taken literally.
Otherwise, the path $ALEGRA MIGDATA

is prepended to the name.
NEOS real Number of table for material. Refer

to on-line documentation to find mate-
rial numbers for specific materials (re-
quired).

RP real (=R0) For the p-alpha porosity modela, initial
density of porous material.

PS real (1.e9) For the p-alpha porosity modela, pres-
sure for complete compaction.

PE real (0.) For the p-alpha porosity model, maxi-
mum elastic pressure.

CE real For the p-alpha porosity modela, sound
speed in elastic compaction region (de-
fault for CE is sound speed of solid ma-
trix).

continued on next page

225

continued from previous page

NSUB int (10) For the p-alpha porosity modela, num-
ber of subcycles within time step.

CLIP int If nonzero, the temperature is con-
strained to lie within the bounds of
the underlying table, and the pres-
sure is calculated from this constrained
(“clipped”) temperature. If zero, no
clipping of the temperature is done, and
the pressure is extrapolated off the ta-
ble.

aProviding the parameter RP not equal to R0 designates the use for the p-alpha
porosity model. Optional input for the porosity model are the parameters PS,
PE, CE, and NSUB.

Table 45: Registered Plot Variables of KEOS SESAME.

Variable Name Type Mode Description

DENSITY real INPUT Material density.
ENERGY real INPUT Specific internal energy per unit mass.
PRESSURE real OUTPUT Pressure.
TEMPERATURE real OUTPUT Absolute temperature.
SOUND SPEED real OUTPUT Bulk sound speed.
DPDRHO real OUTPUT Derivative of pressure with respect to

density.
ALPHA real OUTPUT Porosity parameter if p-alpha model

used.

$ Sample input for keos sesame with p-alpha model

$ included. Table 4020 is in the table names ’aneos’, which is

$ located in the $ALEGRA_MIGDATA directory.

model 191 keos sesame

neos = 4020

feos = ’aneos’

r0 = 2.785

rp = 2.15

pe = 4.5e8

end

226

12.3.8 MG Power

MODEL model_id_number MG POWER

[parameter = value]

...

END

This a general Mie-Grüneisen power law equation of state form generally
applicable to solid equations of state but with a fair amount of flexibility on
the actual shape of the reference curves. It is assumed that the pressure is
related to the density and specific energy through

P (ρ, E) = PR(ρ) + Γρ [E − ER(ρ)] (12.24)

and

E(ρ, T) = ER(ρ) + Cv [T − TR(ρ)] (12.25)

where

Γρ = Γ0ρ0 (12.26)

and Cv are constants. The subscript R refers to a reference state curve which
can be an isentrope or Hugoniot for example. This particular model utilizes
three regions: a compressive region, a tension region, and a “fracture” region
as described below. We define the volumetric strain η as

η = 1 − ρ0

ρ
= 1 − ν

ν0

(12.27)

For η > 0 we define:

PR = PH = K0η
(

1 + K1η + K2η
2 + K3η

3 + K4η
4 + K5η

5
)

(12.28)

227

where

K0 = ρ0C
2

0 (12.29)

defines the bulk modulus.

ER = EH =
PHη

2ρ0

+ E0 (12.30)

Using the method of Walsh and Christian [43] it can be shown that the
temperature on the Hugoniot curve is given by

TH = T0e
Γ0η +

Γ0η

2Cvρ0

∫ η

0

e−Γ0zz2 d

dz

(

PH

z

)

dz (12.31)

which leads to

TH = T0e
Γ0η +

Γ0η

2Cvρ0

K0 (K1I2 + 2K2I3 + 3K3I4 + 4K4I5 + 5K5I6) (12.32)

where

In =

∫ η

0

e−Γ0zzndz (12.33)

The associated incomplete gamma function is evaluated as a recursion for
Γ0η ≥ 1 and as a series otherwise for accuracy purposes.

For η < 0 we define the reference curve by an isentrope:

PR = PISEN = K0η (12.34)

ER = EISEN =
K0η

2

2ρ0

+ E0 (12.35)

228

TR = TISEN = T0e
Γ0η (12.36)

For η < ηmin = Pmin

K0

we have:

PR = PISEN = Pmin (12.37)

ER = EISEN =
K0η

2
min

2ρ0

+ E0 +
Pmin

ρ0

(η − ηmin) (12.38)

TR = TISEN = T0e
Γ0η (12.39)

In all cases the sound speed is given by:

C2
s = ν2 [ρ0P

′

R(η) − ρ0Γ0 (−P + ρ0E
′

R(η))] (12.40)

• Modules: material libs/standard models

– mgpower.h

– mgpower.C

• Physics: hydrodynamics

Example:

model 61 mg power

rho ref = 2.37 $ g/cm^3

tref = 273. $ K

gamma0 = 1.

cv = 1.5e7 $ erg/g/K

k0 = 1.96e11 $ dyne/cm^2

k1 = -4.9

k2 = 31.0

end

229

Table 46: Input Parameters for MG POWER.

Parameter Name Type Description

RHO REF real Material density at the reference state (re-
quired).

TREF real Absolute temperature at the reference state
(T0).

CV real Specific heat at constant volume (Cv).
E SHIFT real Arbitrary energy shift (E0) (optional).
GAMMA0 real Grüneisen parameter (Γ0).
C0 real Reference bulk wave speed (C0). If C0 = 0,

the bulk modulus will be used to calculate the
wave speed: C0 = sqrt(K0/RHO REF). Either
C0 or K0 must be greater than 0; the other
must be zero.

K0 real Bulk modulus (K0). If K0 = 0 and C0 > 0,
the wave speed will be used to calculate the
bulk modulus: K0=RHO REF*C0*C0. Either C0
or K0 must be greater than 0; the other must
be zero.

K1 real Hugoniot coefficient (K1).
K2 real Hugoniot coefficient (K2).
K3 real Hugoniot coefficient (K3).
K4 real Hugoniot coefficient (K4).
K5 real Hugoniot coefficient (K5).
PRESSURE CUTOFF real

12.3.9 MG US UP

MODEL model_id_number MG US UP

[parameter = value]

...

END

Mie-Grüneisen Us-Up equation of state is applicable to high compression
of metal solids [27]. It provides a convenient way to define an equation of state
from shock Hugoniot data. This equation of state model assumes a linear

230

Table 47: Registered Plot Variables of MG POWER.

Variable Name Type Mode Description

SPECIFIC HEAT VOL real INITIALIZE Initialized to CV parameter.
DENSITY real INPUT Material density.
ENERGY real INPUT Specific internal energy per

unit mass.
PRESSURE real OUTPUT Pressure.
TEMPERATURE real OUTPUT Absolute temperature.
SOUND SPEED real OUTPUT Bulk sound speed.

relation between shock velocity, Us, and particle velocity, Up, according to:

Us = c0 + sUp (12.41)

The Grüneisen parameter Γ is a function of density according to:

Γ(ρ) = Γ0

ρ0

ρ
(12.42)

and the material pressure, internal energy and temperature are related to
the reference state by:

P (ρ, E) = PR + Γ0ρ0[E − ER(ρ)] (12.43)

E(ρ, T) = ER + Cv[E − TR(ρ)] (12.44)

where PR, ER, and TR are analytic functions of the density. The above
formulation can give misleading results when ρ < ρ0, thus the model has
been modified to use an “expansion equation of state” when the material
goes into tension. This model was implemented into an early version of
cth[21] where the particular forms of the reference curves used in this model
are documented.

• Modules: material libs/standard models

231

– matmod mgusup.h

– matmod mgusup.C

• Physics: hydrodynamics

Table 48: Input Parameters for MG US UP.

Parameter Name Type Description

SL real Linear constant s in Us-Up equation
C0 real Constant c0 in Us-Up equation
GAMMA0 real Grüneisen parameter, Γ0

RHO REF real Material density at reference state, ρ0

EREF real Internal energy at reference state, ER

PREF real Pressure at reference state, PR

TREF real Absolute temperature at reference state, TR

CV real Specific heat at constant volume
E SHIFT real Arbitrary energy shift (optional)
PRESSURE CUTOFF real Minimum pressure allowed

Table 49: Registered Plot Variables of MG US UP.

Variable Name Type Mode Description

SPECIFIC HEAT VOL real INITIALIZE Initialized from CV parame-
ter

DENSITY real INPUT Material density
ENERGY real INPUT Specific internal energy per

unit mass
PRESSURE real OUTPUT Pressure
TEMPERATURE real OUTPUT Absolute temperature
SOUND SPEED real OUTPUT Bulk sound speed
DPDRHO real OUTPUT Derivative of pressure with

respect to density

$ Sample input for mg us up.

$ KEOS MieGruneisen will eventually supersede this model.

model 112 mg us up

232

c0 = 3.94e5 $ cm/s

sl = 1.489

gamma0 = 1.99

rho ref = 8.93 $ g/cm^3

cv = 3.929e06 $ erg/g/K

pref = 0.0

tref = 298. $ K

end

233

12.4 Constitutive Models

The constitutive models define the equations for the stress and deformation
relationships in a material. This section focuses on the basic constitutive
models in alegra. A later section provides descriptions of models that may
include the constitutive relations with more complex yield behavior.

Let us begin with one comment regarding the use of Young’s modulus
in the following models. Young’s modulus is generally an unfamiliar elastic
constant for people used to working with shock waves. Rather, they are
used to working with the bulk modulus. Below, we indicate the relationship
between these two moduli, given the Poisson ratio .

The bulk modulus is defined by:

B0 = ρ0C
2

0 (12.45)

where the subscript “0” refers to reference conditions, B0 is the bulk mod-
ulus, ρ0 is the density, and C0 is the sound speed. The bulk modulus is
easily computed for most materials from this formula since sound speed and
density are almost always known at reference conditions for the shock wave
applications we are interested in. If E is the Young’s modulus, then it can
be found from the bulk modulus by the following formula:

E0 = 3(1 − 2ν)B0 = 3(1 − 2ν)ρ0C
2

0 (12.46)

12.4.1 Elastic Plastic

MODEL model_id_number ELASTIC PLASTIC

[parameter = value]

...

END

This is a classical elastic plastic constitutive model using a generalized
Hooke’s Law for elastic stress-strain response, von Mises yield criteria, com-
bined isotropic and kinematic hardening, and simple radial return [9, 38]. The
alegra implementation has been adapted from the elastic plastic model im-
plemented in pronto3d [39]. The hardening mode is weighted by the input
parameter, BETA, where 0 is fully kinematic, and 1 is fully isotropic hardening.

234

This model also has a pressure-dependent yield strength extension. This
extension follows the development of the GEO strength model in cth. The
radius of the yield surface is calculated as a von Mises yield criteria. If
pressure-dependence is indicated, the yield strength is modified by:

Y =

[

Ymax

Y0

−
(

Ymax

Y0

− 1

)

exp

(

PYs

Ymax − Y0

)]

Ynp (12.47)

where Ynp is the pressure-independent yield strength, Ymax and Y0 are the
asymptotic and zero-pressure values of the yield stress in uniaxial tension,
respectively. The parameter Ys is the slope of the yield stress at zero pressure.
If Y0 ≥ Ymax, then the pressure dependence factor calculation is skipped.

Due to input parsing issues, this model is often inadvertently used instead
of the LINEAR ELASTIC model. For example, a user, intending to apply the
LINEAR ELASTIC material model to a material might provide the following
input:

model 121 elastic

youngs modulus = 1.e12

poissons ratio = 0.3

end

In this case, the model assumes that a linear elastic material has been spec-
ified and sets the initial yield stress to a large number to ensure no yield
occurs.

• Modules: material libs/standard models

– matmod ep.h

– matmod ep.C

• Physics: solid dynamics

$ Sample input for elastic plastic model

model 31 elastic plastic

235

Table 50: Input Parameters for ELASTIC PLASTIC.

Parameter Name Type Description

YOUNGS MODULUS real Young’s Modulus of the material
POISSONS RATIO real Poisson’s ratio of the material
YIELD STRESS real Initial yield stress in uniaxial tension
HARDENING MODULUS real Hardening modulus for yield stress
BETA real Weight for kinematic/isotropic hardening

0 = fully kinematic,
1 = fully isotropic).

YIELD MAX real Asymptotic yield stress for pressure depen-
dence

YIELD SLOPE real Slope of yield stress at zero pressure

youngs modulus = 1.076e+12 $ dyne/cm^2

poissons ratio = 0.355

yield stress = 6.0e+09 $ dyne/cm^2

hardening modulus = 2.0e+09 $ dyne/cm^2

beta = 1.0

end

12.4.2 Linear Elastic

MODEL model_id_number LINEAR ELASTIC

[parameter = value]

...

END

This model [38] computes the stress tensor using an incremental, gener-
alized Hooke’s Law.

dσij = λdεkkδij + 2µdεij (12.48)

where σ and ε are the stress and strain, respectively, and λ and µ are Lame
constants. The incremental strain is obtained by integrating the deformation
rate over the time interval of the step.

236

Table 51: Registered Plot Variables of ELASTIC PLASTIC.

Variable Name Type Mode Description

BULK MODULUS real INITIALIZE Bulk modulus
SHEAR MODULUS real INITIALIZE Shear modulus
DEFORMATION RATE symtensor INPUT Rate of deformation ten-

sor
STRESS symtensor IOPUT Cauchy stress tensor
BACK STRESS symtensor IOPUT Cauchy back stress ten-

sor for kinematic hard-
ening

EQPS real IOPUT Equivalent plastic strain
YIELD STRESS real IOPUT Yield stress in uniaxial

tension

• Modules: material libs/standard models

– matmod elastic.h

– matmod elastic.C

• Physics: solid dynamics

Table 52: Input Parameters for LINEAR ELASTIC.

Parameter Name Type Description

YOUNGS MODULUS real Young’s Modulus of the material
POISSONS RATIO real Poisson’s ratio of the material

$ Sample input for linear elastic model.

model 41 linear elastic

youngs modulus = 1.076e+12 $ dyne/cm^2

poissons ratio = 0.355

end

237

Table 53: Registered Plot Variables of LINEAR ELASTIC.

Variable Name Type Mode Description

BULK MODULUS real INITIALIZE Bulk modulus
SHEAR MODULUS real INITIALIZE Shear modulus
DEFORMATION RATE symtensor INPUT Rate of deformation ten-

sor
STRESS symtensor IOPUT Cauchy stress tensor

12.4.3 Soil Crushable Foam

MODEL model_id_number SOIL CRUSHABLE FOAM

[parameter = value]

...

END

This is an implementation of the pronto soil and crushable foam
model [38]. This model has a pressure-volumetric strain response superposed
on a basic elastic plastic response. The pressure-volumetric strain controls
pressure lockup, unload, fracture, and reloading response of the material.

• Modules: material libs/standard models

– matmod soil foam.h

– matmod soil foam.C

• Physics: solid dynamics

$ sample input for soil crushable foam model.

model 51 soil crushable foam

shmod = 1.4e10

bulk = 2.76e11

a0 = 398083.

a1 = 0.019245

a2 = -1.163e-10

pfrac = -18595369.

pmax = 82738607.

238

Table 54: Input Parameters for SOIL CRUSHABLE FOAM.

Parameter Name Type Description

SHMOD real Shear modulus
BULK real Bulk modulus
A0 real Constant parameter for P-v curve
A1 real Linear parameter for P-v curve
A2 real Quadratic parameter for P-v curve
PFRAC real Fracture pressure or tensile limit
PMAX real Not input; normally set to -A1/(2.*A2), or a

large number if A2 = 0. If the pressure > PMAX,
the yield stress is set using PMAX.

FUNCTION TABLE real Function table id for an input P-v curve

Table 55: Registered Plot Variables of SOIL CRUSHABLE FOAM.

Variable Name Type Mode Description

DEFORMATION RATE symtensor INPUT Deformation rate tensor
STRESS symtensor IOPUT Cauchy stress tensor
EV state IOPUT Volumetric strain
EVFRAC state IOPUT Volumetric strain at fracture
EVMAX state IOPUT Maximum previous volumetric

strain
NUM state IOPUT Last increment in pressure

function where interpolate was
found.

func table = 51

end

function 51 $ P-mu curve for soil material

$ mu P

0.00000 0.00000e+00

0.00500 9.38215e+07

0.01000 1.88356e+08

0.01500 2.95625e+08

$ (data omitted in sample for the sake of brevity)

0.51500 1.15825e+11

239

0.52000 1.17203e+11

end

12.4.4 Isotropic Geomaterial

MODEL model_id_number ISOTROPIC GEOMATERIAL

[parameter = value]

...

END

This model is the implementation of the Fossum isotropic geomaterial
model [14, 13] for use in geologic materials in the elastic to moderate strain
rate range. It is described as a unified, compaction/dilatation, continuous-
surface, strain-rate sensitive, plasticity model. It uses the three stress in-
variants. Isotropic hardening or softening is a function of volumetric strain
and kinematic hardening or softening is a function shear strain. It uses an
associative flow.

• Modules: material libs/isotropic-geomaterial

– Isotropic Geomaterial.h

– Isotropic Geomaterial.C

– Isotropic Geomaterial init.F

– Isotropic Geomaterial calcs.F

– geochk.F

• Physics: solid dynamics

Table 56: Input Parameters for ISOTROPIC

GEOMATERIAL.

Parameter Name Type Description

B0 real Initial elastic bulk modulus (stress)
B1 real High pressure coefficient in nonlinear elastic

bulk modulus function (stress)
continued on next page

240

continued from previous page

B2 real Curvature parameter in nonlinear elastic bulk
modulus function (stress)

B3 real Coefficient in nonlinear elastic bulk modulus to
allow for plastic softening (stress)

B4 real Power in bulk modulus softening (dimension-
less)

G0 real Initial elastic shear modulus (stress)
G1 real Coefficient in shear modulus hardening (dimen-

sionless)
G2 real Curvature parameter in shear modulus harden-

ing (1/stress)
G3 real Coefficient in shear modulus softening (stress)
G4 real Power in shear modulus softening (dimension-

less)
RJS real Joint spacing (length)
RKS real Joint shear stiffness (stress)
RKN real Joint normal stiffness (stress)
A1 real Constant term for meridional profile function

of ultimate shear limit surface (stress)
A2 real Curvature decay parameter in the meridional

profile function (1/stress)
A3 real Parameter in the meridional profile function

(stress2)
A4 real High-pressure slope parameter in merdional

profile function (dimensionless)
P0 real One third of the elastic limit pressure parame-

ter at onset of pore collapse (stress)
P1 real One third of slope of porosity vs pressure crush

curve at elastic limit (1/stress)
P2 real Parameter for hydrostatic crush curve

(1/stress2)
P3 real Asymptote of the plastic volumetric strain for

hydrostatic crush (dimensionless)
CR real Parameter for porosity affecting shear strength

(dimensionless)
RK real Triaxial extension strength to compression

strength ratio (dimensionless)
continued on next page

241

continued from previous page

RN real Initial shear yield offset (stress)
HC real Kinematic hardening parameter (stress)
CUTI1 real Tension cut-off value of I1 (stress)
CUTPS real Tension cut-off value of principal stress (stress)
T1 real Relaxation time constant 1 (time)
T2 real Relaxation time constant 2 (strain-rate)
T3 real Parameter no longer in use
T4 real Parameter no longer in use
T5 real Relaxation time constant 5 (stress)
T6 real Relaxation time constant 6 (time)
T7 real Relaxation time constant 7 (1/stress)
J3TYPE int Type of 3rd deviatoric stress invariant function

1 = Gudehus (default),
2 = Willam-Warnke,
3 = Mohr-Coulomb

A2PF real Potential function parameter 1 (1/stress) (de-
fault=A2)

A4PF real Potential function parameter 2 (radians) (de-
fault=A4)

CRPF real Potential function parameter 3 (dimensionless)
(default=CR)

RKPF real Potential function parameter 4 (dimensionless)
(default=RK)

SUBX real Subcycle control parameter (dimensionless)

Table 57: Registered Plot Variables for ISOTROPIC

GEOMATERIAL.

Variable Name Type Mode Description

DEFORMATION RATE symtensor INPUT Deformation rate tensor

STRESS symtensor IOPUT Cauchy stress tensor

KAPPA real IOPUT Isotropic hardening variable

INDEX real OUTPUT Indicator for plastic hardening

EQDOT real OUTPUT L2 Norm of input strain rate

I1 real OUTPUT First invariant of stress

ROOTJ2 real OUTPUT Second invariant of deviatoric stress

ALPHA symtensor IOPUT Back stress components

continued on next page

242

continued from previous page

GFUN real IOPUT Kinematic hardening decay function

EQPS real IOPUT Equivalent plastic shear strain

EQPV real IOPUT Equivalent plastic volume strain

EL0 real IOPUT Calculated initial value of EL

BACKRN real OUTPUT Second invariant of back stress

CRACK real OUTPUT = 1.0 for tensile cracking failure

SHEAR real OUTPUT = 1.0 for shear failure

YIELD real OUTPUT Yield function (<= 1.0)

LODE real OUTPUT Angle (in degrees) to the stress point
in the pi-plane,
extension = -30.0,
pure shear = 0.0,
compression = 30.0

$ Sample input for isotropic geomaterial model.

model 400 isotropic geomaterial

B0 = 3.333000e+10 $Pa

B1 = 42469.7e6 $Pa

B2 = 410.7e6 $Pa

B3 = 12000.e6 $Pa

B4 = 0.021 $Dimensionless

G0 = 1.27800e+10 $Pa

G1 = 0.0 $Dimensionless

G2 = 0.0 $1/Pa

G3 = 0.0 $Pa

G4 = 0.0 $Dimensionless

RJS = 1.2700e-02

RKS = 2.000e+11

RKN = 1.000e+10

A1 = 843.02e6 $Pa

A2 = 2.731e-10 $1/Pa

A3 = 821.92e6 $Pa

A4 = 1.e-10 $Radians

P0 = -314.4e6 $Pa

P1 = 1.22e-10 $1/Pa

P2 = 1.28e-18 $1/Pa^2

P3 = 0.135 $ [-]

CR = 6.0 $Dimensionless

243

RK = .72 $Dimensionless

RN = 0.0000e+00

HC = 0.0000e+00

CTI1 = 3.e6 $Pa

CTPS = 1.e6 $Pa

T1 = 4.7e-4 $sec

T2 = 0.810 $1/sec

T3 = 0.0 $Dimensionless

T4 = 0.0 $1/sec

T5 = 0.0 $Pa

T6 = 3.5 $sec

T7 = 0.0 $1/Pa

J3TYPE = 3 $Dimensionless

A2PF = 0.0 $ A2PF defaults to A2 for normality

A4PF = 0.0 $ A4PF defaults to A4 for normality

CRPF = 0.0 $ CRPF defaults to CR for normality

RKPF = 0.0 $ RKPF defaults to RK for normality

end

244

12.5 Yield Models

To simplify input for several of the yield models, a specially formatted ascii

file named VP data is distributed with alegra that provides input parame-
ters for many predefined materials. Incorporation of any particular data set
into the VP data file does not imply correctness or validation of the data set,
but it is intended as a starting point for materials of interest in the absence of
experimental data for the particular application. Parameters in the VP data

file are given in CGSEV units (see Section 4.1.3 on page 69), which are stan-
dard cth units (the VP data file is also distributed with cth). The data
are read and automatically converted to problem units during alegra’s set
up phase. The default location of the VP data file is set by the environment
variable $ALEGRA MIGDATA. All models in the VP data file are not necessarily
accessible by the alegra code, and conversely, all models in the alegra

code do not have data provided in the VP data file. For applicability to a
specific model, look in the input data below for the MATLABEL input.

12.5.1 Steinberg-Guinan-Lund

This model is the MIG implementation of the Steinberg-Guinan-Lund
model [40] which is also used in the cth code. This model must be used
as the yield stress submodel to the CTH ELASTIC PLASTIC model so that
the equation of state, the yield model, and the radial return algorithm are
properly coupled (see 12.7 on 260).

The model and its implementation is described fully by Taylor, but the
basic equations will be outlined here as a brief introduction. The Steinberg-
Guinan-Lund model predicts the viscoplastic response of various materials
(principally metals) based on a consideration of thermally-activated disloca-
tion mechanics. The strain rate dependent form of the SGL model defines
the yield stress as

Y = [YT (ε̇, T) + YAf(εp)]
G(P, T)

G0

(12.49)

where the athermal and thermally activated components YAf(εp) and YT are

245

defined by

YAf(εp) = YA [1 + β(εp + εi)]
n (12.50)

ε̇p =

(

1

C1

exp

[

2UK

T

(

1 − YT

YP

)2
]

C2

YT

)

−1

(12.51)

In these equations, P and T are the pressure and temperature, εp and ε̇p are
the equivalent plastic strain and its time derivative, YA is the yield strength
at the Hugoniot elastic limit, f(εp) is the work-hardening function with β,
ε, and n used as fitting parameters. G0 is the initial shear modulus, YP is
the Peierls stress, and 2UK is the energy necessary to form a pair of kinks
in a dislocation segment. The quantities C1 and C2 are defined in terms
of various dislocation mechanics parameters and are specific to the material
being modeled. Two limits are imposed in this model.

YAf(εp) ≤ Ymax and YT ≤ YP (12.52)

where Ymax is the work-hardening maximum in the rate-dependent version
of the model.

The rate-independent model is a special case of the rate-dependent form
with YT set to zero and the following limit applied:

Y0f(εp) ≤ Ymax (12.53)

• Modules: material libs/steinberg-guinan-lund

– st mig.h

– st mig.C

– st.dat is the ascii data file that lists the associated Fortran rou-
tines.

• Physics: solid dynamics

246

Table 58: Input Parameters for STEINBERG GUINAN

LUND.

Parameter Name Type Description

MATLABEL string Material label in the VP data file. If this
parameter is provided, no other parame-
ters are required. Enclose the string in sin-
gle quotes.

DATAFILE string Name and location of the specially format-
ted VP data file if different from the de-
fault $ALEGRA MIGDATA/VP data. Enclose
the string in single quotes.

R0ST real Initial density ρ0

TM0ST real Melting temperature Tm

ATMST real Material constant a in Lindemann melting
law

GM0ST real Initial Grüneisen coefficient γ0

AST real Material constant A in definition of shear
modulus

BST real Material constant B in definition of shear
modulus

NST real Parameter n in work hardening function f
C1ST real Material constant C1 for thermal yield

stress
C2ST real Material constant C2 for thermal yield

stress
G0ST real Initial shear modulus G0

BTST real Parameter β in work-hardening function f
EIST real Initial equivalent plastic strain εi

YPST real Peierls stress and maximum value of YT

UKST real Activation energy
YSMST real Max yield stress of athermal yield compo-

nent Ymax

YAST real Athermal yield stress prefactor YA

Y0ST real Initial yield stress for rate-independent
version Y0

YMST real Max yield stress for rate-independent ver-
sion Ymax

247

Table 59: Registered Plot Variables for STEINBERG GUINAN LUND

Variable Name Type Mode Description

DEFRATE symtensor INPUT Rate of deformation tensor
MATFRAC real INPUT Volume fraction of material
TEMPERATURE real INPUT Absolute temperature
DENSITY real INPUT Material density
PRESSURE real INPUT Pressure
EQPS real INPUT Equivalent plastic strain (previ-

ous cycle)
STRESS real INPUT Cauchy stress (deviator from pre-

vious cycle, mean stress is current
pressure)

YIELD STRESS real OUTPUT Yield stress in uniaxial tension
SHEAR MODULUS real OUTPUT Shear modulus

$ Sample input for steinberg guinan lund yield model.

model 103 steinberg guinan lund

r0st = 16.69

tm0st = 4340.

atmst = 1.30

gm0st = 1.67

ast = 1.45e-12

bst = 1.508650

nst = 0.10

c1st = 0.71e+06

c2st = 0.12e+06

g0st = 0.690e+12

btst = 10.0

eist = 0.00

ypst = 8.2e+09

ukst = 0.31

ysmst = 4.5e+09

yast = 3.75e+09

y0st = 7.7e+09

ymst = 1.1e+10

end

248

12.5.2 Johnson-Cook EP

This model is the MIG implementation of the Johnson-Cook viscoplastic
model [30]. This MIG module is also used in the cth code. In alegra

this model must be used as the yield-stress submodel to the CTH ELASTIC

PLASTIC model so that the equation of state, the yield model, and the radial
return algorithm are properly coupled (see 12.7 on 260).

In this model the yield stress is dependent on temperature, rate of defor-
mation, and history of deformation. The governing equation has the following
form:

Y =
[

A + B(εp)N
]

[1 + C ln (max(0.002, ε̇p))] [1 − θm
h] (12.54)

where A, B, C, N , and m are constants that depend on the material, and ε̇p

is the time derivative of the equivalent plastic strain. θh is the homologous
temperature, defined by

θh =
T − Tr

TM − Tr
(12.55)

where Tr and TM are room temperature and the material melting tempera-
tures. Reference [30] describes the implementation of the equations in detail
and also provides the parameters for 12 materials.

• Modules: material libs/johnson cook ep

– jcep mig.h

– jcep mig.C

– jcep.dat is the ascii data file that lists the Fortran files.

• Physics: solid dynamics

$ Sample input for Johnson-Cook model for copper.

model 113 johnson cook ep

ajo = 8.970000e+08

249

Table 60: Input Parameters for JOHNSON COOK EP.

Parameter Name Type Description

MATLABEL string Material label in the VP data file. If this pa-
rameter is provided, no other parameters are
required. Enclose the string in single quotes.

DATAFILE string Name and location of the specially format-
ted VP data file if different from the de-
fault $ALEGRA MIGDATA/VP data. Enclose
the string in single quotes.

AJO real Material constant A
BJO real Material constant B
CJO real Material constant C
MJO real Material constant m
NJO real Material constant N
TJO real Material melting temperature Tm

bjo = 2.918700e+09

cjo = 2.500000e-02

mjo = 1.090000e+00

njo = 3.100000e-01

tjo = 1.189813e-01

end

12.5.3 Zerilli-Armstrong

This model is the MIG implementation of the Zerilli-Armstrong viscoplastic
model [30]. This MIG module is also used in the cth code. In alegra, the
Zerilli-Armstrong model must be used as the yield stress submodel to the
CTH ELASTIC PLASTIC model so that the equation of state, the yield model,
and the radial return algorithm are properly coupled (see 12.7 on 260).

Like the Johnson-Cook model, in this model the yield stress is dependent
on temperature, rate of deformation, and history of deformation. The Zerilli-
Armstrong model is based on a physical model of the crystal structure of the

250

Table 61: Registered Plot Variables for JOHNSON COOK EP.

Variable Name Type Mode Description

DEFRATE symtensor INPUT Rate of deformation tensor
MATFRAC real INPUT Volume fraction of material
TEMPERATURE real INPUT Absolute temperature
EQPS real INPUT Equivalent plastic strain (previ-

ous cycle)
STRESS real INPUT Cauchy stress (deviator from pre-

vious cycle, mean stress is current
pressure)

SHEAR MODULUS real INPUT Shear modulus
YIELD STRESS real OUTPUT Yield stress in uniaxial tension

material. The simplified governing equation has the following form:

Y = ∇σ′

G +k
√

(l)+
(

c1 + c2

√
εp
)

exp (−c3T + c4T ln(ε̇p))+c5(ε
p)N (12.56)

where the parameters are defined in the table below, T is temperature, and εp

is the equivalent plastic strain. Reference [30] describes the implementation
of the equation in detail and also provides the parameters for copper and
iron.

• Modules: material libs/zerilli armstrong

– za mig.h

– za mig.C

– za.dat is the ascii data file for further information.

• Physics: solid dynamics

$ Sample input for zerilli armstrong

model 123 zerilli armstrong

c1ze = 0.000000e+00

251

Table 62: Input Parameters for ZERILLI ARMSTRONG.

Parameter Name Type Description

MATLABEL string Material label in the VP data file. If this pa-
rameter is provided, no other parameters are
required. Enclose the string in single quotes.

DATAFILE string Name and location of the specially format-
ted VP data file if different from the de-
fault $ALEGRA MIGDATA/VP data. Enclose
the string in single quotes.

C1ZE real Material constant c1 (units of pressure)
C2ZE real Material constant c2 (units of pressure)
C3ZE real Material constant c3 (units of temperature−1)
C4ZE real Material constant c4 (units of temperature−1)
C5ZE real Material constant c5 (units of pressure)

AZE real Material constant ∇σ′

G + k
√

(l) (units of
pressure)

NZE real Material constant N (dimensionless)

c2ze = 8.900000e+09

c3ze = 2.80e-3

c4ze = 1.15e-4

c5ze = 0.000000e+00

aze = 6.500000e+08

nze = 1.000000e+00

end

12.5.4 Bammann-Chiesa-Johnson

This model is the MIG implementation of the Bammann-Chiesa-Johnson
viscoplastic damage model [41] which is also used in the cth code. Taylor
describes the model and implementation fully and also provides the param-
eters for five metals.

The viscoplastic component of this model incorporates isotropic and kine-
matic hardening as well as strain rate and thermal effects. Damage modeling
is based on an analytic expression for spherical void growth. The damage
growth rate is dependent on the effective stress, tensile pressure, plastic strain

252

Table 63: Registered Plot Variables for ZERILLI ARMSTRONG.

Variable Name Type Mode Description

DEFRATE symtensor INPUT Rate of deformation tensor
MATFRAC real INPUT Volume fraction of material
TEMPERATURE real INPUT Absolute temperature
EQPS real INPUT Equivalent plastic strain (previ-

ous cycle)
STRESS real INPUT Cauchy stress (deviator from pre-

vious cycle, mean stress is current
pressure)

SHEAR MODULUS real INPUT Shear modulus
YIELD STRESS real OUTPUT Yield stress in uniaxial tension

rate, and the current damage level. The basic equations are outlined below.

A linear elastic response is represented by

ˆ̃σ = λ(1 − φ)tr(D̃e)1̃ + 2µ(1 − φ)D̃e − φ̇

(1 − φ)
σ̃ (12.57)

where the Cauchy stress σ̃ is convected with the spin W̃ according to the
Jaumann rate

ˆ̃σ = ˙̃σ − W̃ σ̃ + σ̃W̃ (12.58)

D̃e is the elastic part of the rate of deformation tensor D̃, λ and µ are the
Lame’ elastic constants, and φ(0 ≤ φ ≤ 0.99) is the damage.

• Modules: material libs/bammann chiesa johnson

– bcjvpd mig.h

– bcjvpd mig.C

– bcjvpd.dat is the ascii data file that lists the associated Fortran
files.

• Physics: solid dynamics

253

Table 64: Input Parameters for BAMMANN CHIESA

JOHNSON.

Parameter Name Type Description

MATLABEL string Material label in the VP data file. If this
parameter is provided, no other parameters
are required. Enclose the string in single
quotes.

DATAFILE string Name and location of the specially format-
ted VP data file if different from the de-
fault $ALEGRA MIGDATA/VP data. Enclose
the string in single quotes.

RHO real Initial density
YM real Young’s modulus, used to determine the

shear modulus.
PR real Poisson’s ratio, used to determine the shear

modulus.
TEMP0 real Initial temperature
HC real Heat coefficient (1/ρCv)
C1 real Coefficient and exponent for function V (θ)
C2 real Coefficient and exponent for function V (θ)
C3 real Parameter for function Y (θ)
C4 real Parameter for function Y (θ)
C5 real Coefficient and exponent for function f(θ)
C6 real Coefficient and exponent for function f(θ)
C7 real Coefficient and exponent for function rd(θ)
C8 real Coefficient and exponent for function rd(θ)
C9 real Parameter for function h(θ)
C10 real Parameter for function h(θ)
C11 real Parameter for function rs(θ)
C12 real Parameter for function rs(θ)
C13 real Coefficient and exponent for function Rd(θ)
C14 real Coefficient and exponent for function Rd(θ)
C15 real Parameter for function H(θ)
C16 real Parameter for function H(θ)
C17 real Coefficient and exponent for function Rs(θ)
C18 real Coefficient and exponent for function Rs(θ)
C19 real Parameter for function Y (θ)

continued on next page

254

continued from previous page

C20 real Parameter for function Y (θ)
A1 real Initial value of backstress component α11

A2 real Initial value of backstress component α22

A3 real Initial value of backstress component α12

A4 real Initial value of backstress component α23

A5 real Initial value of backstress component α23

A6 real Initial value of scalar hardening variable κ
DEX real Value of exponent m in definition of damage

variable φ
D0 real Initial value of the damage variable φ

FS0 real Initial value of the material spall strength pf
0

Table 65: Registered Plot Variables for BAMMANN CHIESA JOHNSON.

Variable Name Type Mode Description

DEFRATE symtensor INPUT Rate of deformation tensor
TEMPERATURE real INPUT Absolute temperature
PRESSURE real INPUT Pressure
STRESS real INPUT Cauchy stress
BACK STRESS real INPUT Back stress
EQPS real INPUT Equivalent plastic strain
PLSNRT real OUTPUT Plastic strain rate
DAMAGE real IOPUT Damage fraction
KAPP real IOPUT Scalar hardening variable k
BETA real IOPUT Viscoplastic rate b
DAMR real IOPUT Damage rate
BCJP real IOPUT BCJ tensile pressure

$ Sample input for Bammann-Chiesa-Johnson

$ HY-80_STEEL (taken from cth VP_data file)

model 123 bammann chiesa johnson

rho = 7.831000e+00

ym = 2.069000e+12

pr = 3.000000e-01

temp0 = 2.536947e-02

hc = 0.000000e+00

255

c1 = 0.000000e+00

c2 = 0.000000e+00

c3 = 5.449000e+09

c4 = 0.000000e+00

c5 = 1.000000e+00

c6 = 0.000000e+00

c7 = 5.728000e-09

c8 = 0.000000e+00

c9 = 4.262000e+10

c10 = 0.000000e+00

c11 = 0.000000e+00

c12 = 0.000000e+00

c13 = 1.069000e-10

c14 = 0.000000e+00

c15 = 2.262000e+09

c16 = 0.000000e+00

c17 = 0.000000e+00

c18 = 0.000000e+00

a1 = 0.000000e+00

a2 = 0.000000e+00

a3 = 0.000000e+00

a4 = 0.000000e+00

a5 = 0.000000e+00

a6 = 0.000000e+00

dex = 3.700000e+00

d0 = 1.000000e-04

fs0 = 3.670000e+10

c19 = 0.000000e+00

c20 = 0.000000e+00

end

12.5.5 Von Mises Yield

This model [9, 38] provides a calculation of yield stress based upon an
isotropic hardening, von Mises criterion. When this model is sequenced with
LINEAR ELASTIC, and SIMPLE RADIAL RETURN, it is exactly equivalent to
ELASTIC PLASTIC for BETA = 1.0.

Generally, the above sequence of models is not usually used as the

256

ELASTIC PLASTIC model is more compact and efficient. However, if a non-
linear elastic model were developed and needed to be used with a von Mises
yield criterion, then that model sequenced with the VON MISES YIELD and
SIMPLE RADIAL RETURN models would be appropriate.

• Modules: material libs/standard models

– von mises yield.h

– von mises yield.C

• Physics: solid dynamics

Table 66: Input Parameters for VON MISES YIELD.

Parameter Name Type Description

YOUNGS MODULUS real Young’s Modulus of the material
POISSONS RATIO real Poisson’s ratio of the material
YIELD STRESS0 real Initial yield stress in uniaxial tension
HARDENING MODULUS real Hardening modulus for yield stress

Table 67: Registered Plot Variables for VON MISES YIELD.

Variable Name Type Mode Description

STRESS symtensor INPUT Trial Cauchy stress
YIELD STRESS real IOPUT Yield stress in uniaxial tension

material 10 copper

model 11 $ linear elastic

model 12 $ von mises yield

model 13 $ simple radial return

model 14 $ generic eos

density = 8.932

temperature = 298.

end

model 11 linear elastic

...

257

end

model 12 von mises yield

...

end

model 13 simple radial return

end

model 14 generic eos

...

end

258

12.6 Plasticity Models

12.6.1 Simple Radial Return

This model [9, 38] performs stress relaxation to return the deviatoric stress
onto the yield surface and computes the equivalent plastic strain incurred
by this relaxation. This model is an extraction of the plasticity algorithm
used in the ELASTIC PLASTIC model. This model has no input parameters.
It provides a basic radial return algorithm to be used in conjunction with
stress deviator and yield models. In particular, this model may be useful
during development or prototyping of a new yield or stress deviator model.

• Modules: material libs/standard models

– matmod radret.h

– matmod radret.C

• Physics: solid dynamics

Table 68: Input Parameters for SIMPLE RADIAL RETURN.

Parameter Name Type Description

no parameters

Table 69: Registered Plot Variables for SIMPLE RADIAL RETURN.

Variable Name Type Mode Description

STRESS symtensor IOPUT Cauchy stress tensor
(INPUT: trial stress)
(OUTPUT: stress on yield surface)

EQPS real IOPUT Equivalent plastic strain

$ Example of request for simple radial return model.

model 43 simple radial return

end

259

12.6.2 EP Radial Return

This is the MIG implementation of the radial return plasticity algorithm used
in cth. This model performs stress relaxation to return the deviatoric stress
onto the yield surface and computes the equivalent plastic strain incurred
by this relaxation. This model is equivalent to the SIMPLE RADIAL RETURN

model. However, it is implemented for use as a submodel in the CTH ELASTIC

PLASTIC model. This model has no input parameters.

• Modules: material libs/ep radial return

– eprr mig.h

– eprr mig.C

– eprmig.F

– ep radial return.dat is the associated data file

• Physics: solid dynamics

Table 70: Input Parameters for EP RADIAL RETURN.

Parameter Name Type Description

no parameters

$ Example of request for ep radial return model.

model 43 ep radial return

end

12.7 Combined Models

12.7.1 CTH ELASTIC PLASTIC

This model replicates the elastic plastic algorithm in cth [30]. It consists of
three submodels, two of which may be user specified: an equation of state
submodel and a yield stress submodel. The third model is the EP RADIAL

260

Table 71: Registered Plot Variables for EP RADIAL RETURN.

Variable Name Type Mode Description

MATFRAC real INPUT Material fraction of element vol-
ume

DEFRATE symtensor INPUT Rate of deformation tensor
SPIN antitensor INPUT Spin tensor, antisymmetric part

of velocity gradient
SHEAR MODULUS real INPUT Shear modulus
YIELD STRESS real INPUT Yield stress in uniaxial tension
STRESS symtensor IOPUT Cauchy stress tensor

(INPUT: trial stress)
(OUTPUT: stress on yield surface)

EQPS real IOPUT Equivalent plastic strain

RETURN model. The calculational sequence of this model begins with the
equation of state model to compute pressure, temperature, and sound speed.
Next, the shear modulus is calculated as a function of bulk sound speed and
constant Poisson’s ratio.

G =
3(1 − 2ν)

1(1 + ν)
ρC2 (12.59)

The shear modulus is used to compute an elastic deviatoric stress incre-
ment. Next, the yield model is applied to determine if the deviatoric stress
increment exceeds the current yield criterion. Then, the EP RADIAL RETURN

model is used to perform the plasticity calculation to enforce the yield crite-
rion.

This model is an example of a combined model which has a specific se-
quence and set of submodels to be used in computing the material state. Cur-
rently, the Steinberg-Guinan-Lund, Johnson-Cook EP, and Zerilli-Armstrong
models are compatible with CTH ELASTIC PLASTIC and may be used as sub-
models. A sample input fragment is shown below.

• Modules: material libs/combined models

– cth ep.h

– cth ep.C

261

Table 72: Compatible Models for CTH ELASTIC PLASTIC.

Submodel Type Models

Equation of State Models KEOS MieGruneisen

KEOS Sesame

MG US UP

KEOS Sesame

Yield Models STEINBERG GUINAN LUND

JOHNSON COOK EP

ZERILLI ARMSTRONG

BAMMANN CHIESA JOHNSON

• Physics: solid dynamics

Table 73: Input Parameters for CTH ELASTIC PLASTIC.

Parameter Name Type Description

EOS MODEL int Model id of equation of state model
YIELD MODEL int Model id of yield stress model
POISSONS RATIO real Poisson’s ratio

Table 74: Registered Plot Variables for CTH ELASTIC PLASTIC.

Variable Name Type Mode Description

DENSITY real INPUT Material density
SOUND SPEED real IOPUT Sound speed
SHEAR MODULUS real OUTPUT Shear modulus

material 10 ’OFHC Copper’

model 11 $ cth ep

density = 8.932

temperature = 298.

end

model 11 cth ep

eos model = 12 $ mg us up

262

yield model = 13 $ johnson cook

poisson ratio = 0.3

end

model 12 mg us up

...

end

model 13 johnson cook ep

...

end

12.7.2 BFK CONCRETE

This model replicates the brittle fracture kinetics (BFK) concrete model
in cth [31]. This combined model consists of submodels which may NOT
be user specified, including models for the equation of state, yield, radial
return, and fracture. The calculational sequence of this model begins with
a call to the equation of state to compute pressure, temperature, and sound
speed. This is followed by the calculation of the flow stress. The radial
return algorithm is called to enforce the yield criterion and provide the plastic
strain rate. Then follows the calculation of the extra variables, including
the equivalent plastic strain. Finally, the fracture algorithm is called to
compute the void insertion required based on the fracture pressure calculated
previously. In Eulerian problems, after the remap step the equation of state
and the fracture algorithms are called again.

Currently only one model is predefined for concrete. This model, SAC5,
represents small aggregate concrete with an unconfined compressive strength
around 6,000 psi. The input parameter COSFAC can be used to scale all
strength parameters. For example, if the desired material has an unconfined
compressive strength of 5,000 psi, the default parameters for SAC5 can be
used with COSFAC = 0.8333.

• Modules: material libs/bfk concrete

– bfk concrete mig.h

– bfk concrete mig.C

263

• MIG driver routines:

– elvpco.F

– elivco.F

– eoscos.F

– eoscov.F

– eoscox.F

• MIG input, data check, and extra variable routines:

– eoscoi.F

– concck.F

– concxv.F

• MIG utility routines:

– random.F

– splint.F

– gauss.F

– splco.F

• MIG routines, miscellaneous:

– condis.F

– conmfs.F

– conhro.F

• Physics: solid dynamics

Table 75: Input Parameters for BFK CONCRETE.

Parameter
Name

Type Description

continued on next page

264

continued from previous page

MATLABEL string Material label in the EOS data file. If this pa-
rameter is provided, no other parameters are
required. Enclose the string in single quotes.
The only material currently predefined in the
EOS data file is called SAC5.

DATAFILE string Name and location of the specially format-
ted EOS data file if different from the de-
fault $ALEGRA MIGDATA/EOS data. Enclose the
string in single quotes.

COCRX real Switch for crack visualization (not used).
COSC0 real Unconfined compressive strength, sc0.
COST0 real Unconfined tensile strength, st0.
COSD0 real Brittle-ductile transition stress, sd0.
COSHRI real Instantaneous shear modulus, µi.
COCC real Compression at crush, µc

COFRA1 real Fragment size coefficient, A1

COSHRF real Failed shear modulus, µf .
COSTI real Instantaneous unconfined tensile strength, sti.
COCH real Hardening coefficient, Ch

COK0 real Initial bulk modulus, k0

COKN real Limiting bulk modulus, k0

COCV real Specific heat, Cv

CORHO real Reference density, ρ0.
COY0 real Initial yield stress, Y0.
COREC real Recovery compression, µrec.
COTAU real Fundamental time to failure, τ0

COSCI real Instantaneous unconfined compressive
strength, sci.

COGRU real Grüneisen coefficient, Γ0

COYMIN real Residual flow stress, Y 0
res

COYMAX real Limiting flow stress, Ymax.
COKF real Failed bulk modulus, k0

COCRXS real Critical overload for crack growth (not used)
COCRXE real Critical strain for crack growth, εgrow (not

used)
COCRXV real Crack growth velocity (not used)

continued on next page

265

continued from previous page

COCRXM real Maximum number of crack tracer particles per
cell (not used).

COQDF real Maximum fragment size for CDF, λmax. If 0,
no CDF made.

COFRA2 real Fragment size coefficient, A2

COTSOF real Thermal softening temperature, Tsoft

COED1 real Equivalent plastic strain at onset of ductile
damage, εd1

COED2 real Equivalent plastic strain at full ductile damage,
εd1

COPD1 real Pressure at onset of compressive damage, pd1

COPD2 real Pressure at full compressive damage, pd2

COTSPL real Principal stress at spall, Tspall

COBFIC real Critical brittle fracture impulse, Ω̄1

CODIL real Dilantancy parameter (not currently used).
COTTRJ real Trajectory time parameter.
COFTRJ real Trajectory parameter.
COFMOB real Surface mobility coefficient, Csurf

COFDEP real Surface effect depth, Dsurf

COSFAC real Multiplier for strength parameters.
COTREL real Time at which discard flag is set.
COVREL real Minimum velocity for discard.
COBREL real Minimum value of COBFIC (Ω̄1) for discard.
COTDIS real Discard time (greater than or equal to COTREL)
NXSRF

[NYSRF]

[NZSRF]

int Number of potential spall surfaces in planes
aligned with X, Y, and Z coordinated planes.

CXSRF0

CXSRF1

CXSRF2

...
CXSRF9

real Potential spall surfaces defined by a constant
value of x-coordinate. (This basic capability
was brought from cth, later to be extended so
that the code can find the surface.)

CYSRF0

CYSRF1

CYSRF2

...
CYSRF9

real Potential spall surfaces defined by a constant
value of y-coordinate. (This basic capability
was brought from cth, later to be extended so
that the code can find the surface.)

continued on next page

266

continued from previous page

CZSRF0

CZSRF1

CZSRF2

...
CZSRF9

real Potential spall surfaces defined by a constant
value of z-coordinate. (This basic capability
was brought from cth, later to be extended so
that the code can find the surface.)

NTBLCO int Number of data pairs for experimental Hugo-
niot data (data given by CTBLXn and CTBLYn.)
These data are used for a cubit spline fit for
the loading part of the curve. At compressions
greater than those provided in the table, the
reference curve follows a straight line in ρ − µ
space with slope COKN.

CTBLX1

CTBLX2

CTBLX3

...
CTBLXF

real Data for compression, µ = (ρ/ρ0)− 1, used for
the experimental Hugoniot data.

CTBLY1

CTBLY2

CTBLY3

... CTBLYF

real Pressure data for the experimental Hugoniot
data.

material 10 concrete

model 11 $ bfk concrete

end

model 11 bfk concrete

matlable = ’SAC5’ $ predefined concrete model

cotau = 1000.e-6 $ modify parameter

end

12.8 Fracture Models

12.8.1 Pressure Dependent Fracture

This pressure dependent fracture model [24] uses a void insertion algorithm
to allow the volume occupied by a material in an element to decrease, thus

267

Table 76: Registered Plot Variables for BFK CONCRETE.

Variable Name Type Mode Description

DENSITY real IOPUT Material density
ENERGY real INPUT Specific energy.
PRESSURE real OUTPUT Pressure.
TEMPERATURE real OUTPUT Temperature
SOUND SPEED real OUTPUT Sound speed
DPDRHO real OUTPUT Derivative dP/dρ.
STRESS symtensor IOPUT Cauchy stress tensor.
YIELD STRESS real IOPUT Yield in tension.
SHEAR MODULUS real OUTPUT Shear modulus
DEFRATE symtensor INPUT Rate of deformation tensor.
PLAS STRN RATE real OUTPUT Scalar plastic strain rate.
SPIN antitensor INPUT Spin tensor, antisymmetric

part of velocity gradient
EQPS real OUTPUT Equivalent plastic strain.
MD real IOPUT Maximum density, 1/ν̄.
DMG real IOPUT Damage variable, φ.
FS real IOPUT Fracture stress, −Tb.
OL real IOPUT Overload, Ω.
BFI real IOPUT Brittle fracture impulse, Ω̄.
STN real IOPUT Strength, Yinf

MFS real IOPUT Mean fragment size, λf .
REL real IOPUT Release (discard) flag (not yet

implemented.)

allowing the density to increase and the pressure to relax to zero. This
algorithm is triggered when the pressure in the material is less than the
fracture pressure. A Newton iteration scheme is used in which the density is
increased and the equation of state model computes the new pressure. When
the pressure converges to the fracture pressure, the volume of void inserted is
determined by the density change required to produce the fracture pressure.
In subsequent cycles, the fracture pressure is gradually decreased until it is
zero. Note that the material input must have an equation of state model
preceding this fracture model to compute pressure and energy. A typical
application of this model would use the following input.

268

• Modules: material libs/standard models

– frac presdep.h

– frac presdep.C

• Physics: hydrodynamics

Table 77: Input Parameters for FRAC PRESDEP.

Parameter Name Type Description

INIT FRAC PRES real Initial fracture pressure
DENSITY TOLERANCE real Density tolerance for convergence of it-

eration
PRESSURE TOLERANCE real Pressure tolerance for convergence of

iteration
MAX NUM OF ITERATIONS real Maximum number of iterations per cy-

cle
CYCLES TO FAIL real Number of cycles to relax from the ini-

tial fracture pressure to zero
FAILURE INCREMENT real

Table 78: Registered Plot Variables for FRAC PRESDEP.

Variable Name Type Mode Description

FAILURE FRACTION real IOPUT

FRACTURE PRESSURE real IOPUT Current fracture pressure
DENSITY real IOPUT Material density
ENERGY real IOPUT Specific internal energy
PRESSURE real IOPUT Pressure

material 10 ’some material’

model 11 $ mg us up

model 12 $ frac pres dep

...

end

model 11 mg us up

269

...

end

model 12 frac presdep

init frac pres = -5.e10

density tolerance = 1.e-6

pressure tolerance = 1.e+2

end

12.9 KEOS Reactive Burn Models

Five Kerley reactive burn models [21, 22] are available in alegra.

• KEOS ARB

• KEOS FFRB

• KEOS HVRB

• KEOS IGRB

• KEOS Ptran

For each of these KEOS models, the material decomposition is included
in the equation of state, and the time evolution of the reaction is described by
a rate equation. Detailed descriptions of these models and tips for using the
reactive burn models are provided in these references. The basic equations
will be presented here as a summary, followed by the specific rate equation
and input parameters for each burn model.

The reactive burn models require the equation of state for the unreacted
material, the reaction products, and the partially reacted explosive. They
are called “composite” models because they are constructed from the basic
Kerley EOS models:

• KEOS Sesame

• KEOS MieGruneisen

• KEOS JWL

270

• KEOS Ideal Gas

for the unreacted materials and reaction products. The partially reacted
explosive is described by the following equations.

P (ρ, T, λ) = (1 − λ)PUR(ρ, T) + λPRP (ρ, T) (12.60)

E(ρ, T, λ) = (1 − λ)EUR(ρ, T) + λERP (ρ, T) (12.61)

where λ is the extent of reaction (λ = 0.0 for no reaction, λ = 1.0 for complete
reaction). The subscripts UR and RP denote the equation of state for the
unreacted explosive and the reaction products, respectively. The equation
for advancing λ in time is given for each of the five models in the following
subsections.

• Modules: material libs/kerley eos

– rbn mig.h

– rbn mig.C

• Physics: hydrodynamics

The extra hisplt variables for the KEOS reactive burn models are listed
in Table 79. Other hisplt variables are listed in Section 13.3 on page 298.

Table 79: Extra hisplt Variables for KEOS Reactive Burn Models.

Variable Name Description

EXT REACTION The extent of reaction of the burn. The value ranges
from 0 to 1.

ALPI The porosity parameter if the initial state submodel is
a porosity model. This parameter represents the ratio
solid density/porous density.

ALPF The porosity parameter if the final state submodel is a
porosity model. This parameter represents the ratio solid
density/porous density.

271

Table 80: Registered Plot Variables of KEOS Reactive Burn Models.

Variable Name Type Mode Description

DENSITY real INPUT Material density
ENERGY real INPUT Specific internal energy per unit mass
PRESSURE real OUTPUT Pressure
TEMPERATURE real OUTPUT Absolute temperature
SOUND SPEED real OUTPUT Bulk sound speed
DPDRHO real OUTPUT Derivative of pressure with respect to

density
EXT REACTION real OUTPUT Extent of reaction parameter, non di-

mensional.
ALPI real OUTPUT Porosity parameter, alpha, from sub-

model for initial, unreacted state.
ALPF real OUTPUT Porosity parameter, alpha, from sub-

model for final state for reaction prod-
ucts.

12.9.1 KEOS ARB

The KEOS ARB (Arrhenius Reactive Burn) model can be used for the initiation
and propagation of detonations in homogeneous explosives. The rate law is
a function of the temperature.

dλ

dt
= (1 − λ)F exp

(

Θ

T

)

(12.62)

where F is the frequency factor, and Θ is the activation temperature.

Θ = Θ0(1 + AP P) (12.63)

The parameters F , Θ0, and AP are obtained by fitting data from wedge tests
and other experiments.

• Modules: material libs/kerley eos

– arb mig.h

272

– arb mig.C

– arb.doc is the ascii data file that lists associated Fortran routines.

• Physics: hydrodynamics

Table 81: Input Parameters for KEOS ARB.

Parameter
Name

Type Description

MATLABEL string Label listed in the EOS data file for a prede-
fined material for the KEOS ARB model. If this
keyword is used, no other keyword is required.
Enclose the string in single quotes.

DATAFILE string Name and location of the specially format-
ted EOS data file if different than the de-
fault $ALEGRA MIGDATA/EOS data. Enclose the
string in single quotes.

AT real (0.) Rate equation constant Θ0.
Required unless MATLABEL given.

FF real

(1.e10 s−1)
Rate equation constant F .
Required unless MATLABEL given.

ATP real Rate equation constant AP .
Required unless MATLABEL given.

TI real Threshold temperature [initial temp].
RMINa real (0.) Minimum density, unreacted explosive.

Reaction is complete for densities < RMIN.
RMAXa real

(1.e30)
Maximum density, unreacted explosive.
Reaction is complete for densities > RMAX.

TMAXa real

(1.e30)
Maximum temperature, unreacted explosive.
Reaction is complete for temperatures > TMAX.

VFa real (1.) Volume ratio, initial state/final state
TFa real (1.) Temperature ratio, initial state/final state
ESFTa real Shift in energy zero (optional).
EOSUR

MODNUMBER

int The model number in the input deck that will
be used for the unreacted material. [Required
unless defined in EOS data file or by EOSUR

MATLABEL.]
continued on next page

273

continued from previous page

EOSRP

MODNUMBER

int The model number in the input deck that will be
used for the reacted products. [Required unless
defined in EOS data file or by EOSRP MATLABEL.]

EOSUR

MODLABEL

string Model label listed in the EOS data file for a pre-
defined material for the unreacted material. En-
close the string in single quotes. If this param-
eter in used, EOSUR MATLABEL is also required.

EOSRP

MODLABEL

string Model label listed in the EOS data file for a pre-
defined material for the reacted products. En-
close the string in single quotes. If this param-
eter in used, EOSRP MATLABEL is also required.

EOSUR

MATLABEL

string Label listed in the EOS data file for a predefined
material for the unreacted material. Enclose the
string in single quotes. If this parameter in
used, EOSUR MODLABEL is also required.

EOSRP

MATLABEL

string Label listed in the EOS data file for a predefined
material for the reacted products. Enclose the
string in single quotes. If this parameter in
used, EOSRP MODLABEL is also required.

EOSUR string This keyword is only read from the EOS data

file. It points to the model for the unreacted
material in the EOS data file.

EOSRP string This keyword is only read from the EOS data

file. It points to the model for the reacted prod-
ucts in the EOS data file.

a This parameter is normally not input by the user, being left to its default
value.

Two sample inputs for KEOS ARB model, in cgsK units, are:

$ Sample 1:

$ Initial (UR) and final (RP) states are specified in

$ EOS_data for PETN.

model 201 keos arb

matlabel = ’PETN’

end

274

$ Sample 2:

$ The user specifies initial (UR) and final (RP) states.

model 22 keos arb

eosur modnumber = 221 $ UR is model 221 below.

eosrp modnumber = 222 $ RP is model 222 below.

end

model 221 keos miegrun

matlabel = ’petn’

rp = 1.75

end

model 222 keos jwl

matlabel = ’petn’

brn = 0. $ EOS_data file assumes jwl is

end $ programmed burn.

12.9.2 KEOS FFRB

The KEOS FFRB (Forest Fire Reactive Burn) model can be used for the initi-
ation and propagation of detonations in heterogeneous explosives. The rate
law is pressure dependent.

dλ

dt
= (1 − λ)fR(P) (12.64)

where f is the order of the reaction (0 ≤ f ≤ 1). The function R(P) is
derived from the Pop plot, using the “single-curve buildup principle” and fit
to an analytic expression. The required input parameters are the Pop plot
variables and Pmax.

• Modules: material libs/kerley eos

– ffrb mig.h

– ffrb mig.C

– ffrb.doc is the ascii data file that lists the associated Fortran
routines.

275

• Physics: hydrodynamics

Table 82: Input Parameters for KEOS FFRB.

Parameter
Name

Type Description

MATLABEL string Label listed in the EOS data file for a prede-
fined material for the KEOS FFRB model. If
this keyword is used, no other keyword is re-
quired. Enclose the string in single quotes.

DATAFILE string Name and location of the specially format-
ted EOS data file if different than the de-
fault $ALEGRA MIGDATA/EOS data. Enclose
the string in quotes.

P1

X1

real Pressure and run distance at 1st point on Pop
plot.
Required unless MATLABEL given.

P2

X2

real Pressure and run distance at 2nd point on
Pop plot.
Required unless MATLABEL given.

PMAX real Pressure for instantaneous reaction.
Required unless MATLABEL given.

PMIN real

(0.01*PMAX)
Threshold pressure for reaction.

FR real (0.) Order of reaction f .
NRH real (0.) Hugoniot option. NRH = 0 for reactive Hugo-

niot, NRH = 1 for nonreactive Hugoniot.
RMIN real (0.) Minimum density, unreacted explosive. Reac-

tion is complete for densities < RMIN.
RMAXa real

(1.e30)
Maximum density, unreacted explosive. Re-
action is complete for densities > RMAX.

TMAXa real

(1.e30)
Maximum temperature, unreacted explosive.
Reaction is complete for temperatures >
TMAX.

VFa real (1.) Volume ratio, initial state/final state.
TFa real (1.) Temperature ratio, initial state/final state.
ESFTa real Shift in energy zero (optional)

continued on next page

276

continued from previous page

EOSUR

MODNUMBER

int The model number in the input deck that will
be used for the unreacted material. [Required
unless defined in EOS data file or by EOSUR

MATLABEL.]
EOSRP

MODNUMBER

int The model number in the input deck that will
be used for the reacted products. [Required
unless defined in EOS data file or by EOSRP

MATLABEL.]
EOSUR

MODLABEL

string Model label listed in the EOS data file for a
predefined material for the unreacted mate-
rial. Enclose the string in single quotes. If
this parameter in used, EOSUR MATLABEL is
also required.

EOSRP

MODLABEL

string Model label listed in the EOS data file for a
predefined material for the unreacted mate-
rial. Enclose the string in single quotes. If
this parameter in used, EOSRP MATLABEL is
also required.

EOSUR

MATLABEL

string Label listed in the EOS data file for a pre-
defined material for the unreacted material.
Enclose the string in single quotes. If this
parameter in used, EOSUR MODLABEL is also
required.

EOSRP

MATLABEL

string Label listed in the EOS data file for a prede-
fined material for the reacted products. En-
close the string in single quotes. If this pa-
rameter in used, EOSRP MODLABEL is also re-
quired.

EOSUR string This keyword is only read from the EOS data

file. It points to the model for the unreacted
material in the EOS data file.

EOSRP string This keyword is only read from the EOS data

file. It points to the model for the reacted
products in the EOS data file.

a This parameter is normally not input by the user, being left to its default
value.

$ Sample input for ffrb model, in cgsK units.

$ Note that initial temperature and density are from the

277

$ initial state given eosur model.

model 221 keos ffrb

eosur modnumber = 222

eosrp modnumber = 223

x1 = 0.05 $ cm

p1 = 18.1567e10 $ dyn/cm^2

x2 = 0.50 $ cm

p2 = 4.4315e10 $ dyn/cm^2

fr = 1.0 $

pmin = 1.e9 $ dyn/cm^2

pmax = 3.53e11 $ dyn/cm^2

nrh = 1. $

end

model 222, keos miegrun

matlabel = ’pbx9404’

end

model 223, keos sesame

matlabel = ’pbx9404_dp’

end

12.9.3 KEOS HVRB

The KEOS HVRB (History Variable Reactive Burn) model can be used for the
initiation and propagation of detonations in heterogeneous explosives. The
rate law is pressure dependent with a time delay before initiation of rapid
reaction. The equation is written in integral form by introducing a history
variable.

λ = 1 −
(

1 − φM

X

)X

(12.65)

φ(t) =
1

τ0

∫ t

0

(

P − PI

PR

)z

dt (12.66)

The parameters PR and z determine the pressure dependence of the time

278

and distance to detonation (these are usually fit to wedge test data). The
exponent M controls the time delay to pressure buildup behind the shock
front, and X determines the rate at which the reaction goes to completion.
PI is the threshold pressure for initiation, and the coefficient τ0 is used to
make φ dimensionless and is not an independent constant.

• Modules: material libs/kerley eos

– hvrb mig.h

– hvrb mig.C

– hvrb.doc is the ascii data file that lists associated Fortran rou-
tines.

• Physics: hydrodynamics

Table 83: Input Parameters for KEOS HVRB.

Parameter
Name

Type Description

MATLABEL string Label listed in the EOS data file for a prede-
fined material for the KEOS HVRB model. If
this keyword is used, no other keyword is re-
quired. Enclose the string in single quotes.

DATAFILE string Name and location of the specially format-
ted EOS data file if different than the default
$ALEGRA MIGDATA/EOS data.

PR real Rate equation constant PR. This parameter,
along with ZR, determines the overall rate of
the reaction. It is closely related to constants
in Pop plot expressions.
Required unless MATLABEL given.

ZR real Rate equation constant z. This parameter,
along with PR, determines the overall rate of
the reaction. It is closely related to constants
in Pop plot expressions.
Required unless MATLABEL given.

continued on next page

279

continued from previous page

MR real Rate equation constant M . This parameter
primarily affects the shape of the pressure
wave behind the shock wave during buildup
to detonation.
(MR typically ranges from about 1 to 2.)
Required unless MATLABEL given.

PI real Threshold pressure for shock initiation, PI .
Required unless MATLABEL given.

XR real Rate equation constant.
Required unless MATLABEL given.

RMINa real (0.) Minimum density, unreacted explosive. Reac-
tion is complete for densities < RMIN.

RMAXa real

(1.e30)
Maximum density, unreacted explosive. Re-
action is complete for densities > RMAX.

TMAXa real

(1.e30)
Maximum temperature, unreacted explosive.
Reaction is complete for temperatures >
TMAX.

VFa real (1.) Volume ratio, initial state/final state
TFa real (1.) Temperature ratio, initial state/final state
ESFTa real Shift in energy zero (optional).
EOSUR

MODNUMBER

int The model number in the input deck that will
be used for the unreacted material. [Required
unless defined in EOS data file or by EOSUR

MATLABEL.]
EOSRP

MODNUMBER

int The model number in the input deck that will
be used for the reacted products. [Required
unless defined in EOS data file or by EOSRP

MATLABEL.]
EOSUR

MODLABEL

string Model label listed in the EOS data file for a
predefined material for the unreacted mate-
rial. Enclose the string in single quotes. If
this parameter in used, EOSUR MATLABEL is
also required.

continued on next page

280

continued from previous page

EOSRP

MODLABEL

string Model label listed in the EOS data file for a
predefined material for the unreacted mate-
rial. Enclose the string in single quotes. If
this parameter in used, EOSRP MATLABEL is
also required.

EOSUR

MATLABEL

string Label listed in the EOS data file for a prede-
fined material for the unreacted material.

EOSRP

MATLABEL

string Label listed in the EOS data file for a prede-
fined material for the reacted products.

EOSUR string This keyword is only read from the EOS data

file. It points to the model for the unreacted
material in the EOS data file.

EOSRP string This keyword is only read from the EOS data

file. It points to the model for the reacted
products in the EOS data file.

a This parameter is normally not input by the user, being left to its default
value.

$ Simple sample input for keos hvrb. Alternative, the user can

$ specify models for the unreacted initial state and the final

$ reacted products as shown in keos arb or keos ffrb.

$ The user can also modify parameters given in the EOS_data

$ file as shown below.

model 161 keos hvrb

matlabel = ’HMX’

rmin = 0.2

end

12.9.4 KEOS IGRB

The KEOS IGRB (Ignition and Growth Reactive Burn) model describes the
initiation and propagation of detonations in heterogeneous explosives. It
is a three-step model that describes the initiation of reaction in hot spots,
followed by propagation of reaction to the rest of the explosive, and a rapid
completion phase that occurs during coalescence of the hot spot regions. The

281

rate law is a function of pressure and density in the following equation.

λ = (1−λ)s0G0

ρ

(ρ0 − 1 − a0)y0

+(1−λ)s1λq1G1P +(1−λ)s2λq2G2P
y2 (12.67)

The 12 constants in the above equation are chosen to fit experimental
data for a given explosive. Three other constants are also used in the model.
W0 is the value of λ at which the first term (ignition) is turned off, W1 is the
value of λ at which the second term (growth) is turned off, and W2 is the
value of λ at which the third term (completion) is turned on.

• Modules: material libs/kerley eos

– igrb mig.h

– igrb mig.C

– igrb.doc is the ascii data file that lists associated Fortran routines.

• Physics: hydrodynamics

Table 84: Input Parameters for KEOS IGRB.

Parameter
Name

Type Description

MATLABEL string Label listed in the EOS data file for a prede-
fined material for the KEOS IGRB model. If this
keyword is used, no other keyword is required.
Enclose the string in single quotes.

DATAFILE string Name and location of the specially format-
ted EOS data file if different than the de-
fault $ALEGRA MIGDATA/EOS data. Enclose
the string in single quotes.

G0 (or GO) real Ignition parameter G0.
Required unless MATLABEL given.

S0 (or SO) real

(0.667)
Ignition parameter s0.

A0 (or AO) real (0.0) Ignition parameter a0.
continued on next page

282

continued from previous page

Y0 (or YO) real (20.0) Ignition parameter y0.
W0 real (0.3) Ignition turnoff parameter.
G1 real Growth parameter G1.

Required unless MATLABEL given.
S1 real

(0.667)
Growth parameter s1.

Q1 real

(0.111)
Growth parameter q1.

Y1 real (1.0) Growth parameter y1.
W1 real (0.5) Growth turnoff parameter.
G2 real Completion parameter G2.

Required unless MATLABEL given.
S2 real

(0.333)
Completion parameter s2.

Q2 real (1.0) Completion parameter q2.
Y2 real (2.0) Completion parameter y2.
W2 real (0.0) Completion turn-on parameter.
NSUB real (1) Number of subcycles in one time step
RMINa real (0.0) Minimum density, unreacted explosive. Reac-

tion is complete for densities < RMIN.
RMAXa real

(1.e30)
Maximum density, unreacted explosive. Reac-
tion is complete for densities > RMAX.

TMAXa real

(1.e30)
Maximum temperature, unreacted explosive.
Reaction is complete for temperatures > TMAX.

VFa real (1.0) Volume ratio, initial state/final state
TFa real (1.0) Temperature ratio, initial state/final state
ESFTa real Shift in energy zero (optional)
EOSUR

MODNUMBER

int The model number in the input deck that will
be used for the unreacted material. [Required
unless defined in EOS data file or by EOSUR

MATLABEL.]
EOSRP

MODNUMBER

int The model number in the input deck that will
be used for the reacted products. [Required
unless defined in EOS data file or by EOSRP

MATLABEL.]
continued on next page

283

continued from previous page

EOSUR

MODLABEL

string Model label listed in the EOS data file for a
predefined material for the unreacted material.
Enclose the string in single quotes. If this
parameter in used, EOSUR MATLABEL is also re-
quired.

EOSRP

MODLABEL

string Model label listed in the EOS data file for a
predefined material for the unreacted material.
Enclose the string in single quotes. If this
parameter in used, EOSRP MATLABEL is also re-
quired.

EOSUR

MATLABEL

string Label listed in the EOS data file for a prede-
fined material for the unreacted material.

EOSRP

MATLABEL

string Label listed in the EOS data file for a prede-
fined material for the reacted products.

EOSUR string This keyword is only read from the EOS data

file. It points to the model for the unreacted
material in the EOS data file.

EOSRP string This keyword is only read from the EOS data

file. It points to the model for the reacted
products in the EOS data file.

a This parameter is normally not input by the user, being left to its default
value.

$ Sample input for keos igrb model. As with other reactive

$ burn models, the user can specify individual models for

$ the initial and final states, and model parameters

$ specified in the EOS_data file can be changed. The

$ EOS_data file location and name can also be modified from

$ the default value.

model 211 keos igrb

datafile = ’/home/svpetne/mynewdata/EOS_data.new’

matlabel = ’PETN’

end

284

12.9.5 KEOS Ptran

The KEOS Ptran (Phase Transition Reactive Burn) model [23] describes a
material that has a transition between two phases. This model is similar to
the two-state reactive burn models, but the transition is described by a phase
boundary rather than a rate equation. The phase boundary is input by the
user.

The user specifies the pressure in the transition region by the formula:

P (ρ, T, λ) = PT + βT

(

1 − ρT

ρ

)

+ AT (T − T0) + Aλλ (12.68)

where PT and ρT are the transition pressure and density of phase 1 at room
temperature T0, βT is the bulk modulus in the transition region, and AT

and Aλ are derivatives of the transition pressure with respect to T and λ,
respectively. PT , βT , AT and Aλ are input parameters. λ is the mass fraction
of phase 2.

• Modules: material libs/kerley eos

– ptran mig.h

– ptran mig.C

– ptran.doc is the ascii data file that lists associated Fortran rou-
tines.

• Physics: hydrodynamics

Table 85: Input Parameters for KEOS Ptran.

Parameter
Name

Type Description

MATLABEL string Label listed in the EOS data file for a prede-
fined material for the KEOS Ptran model. If
this keyword is used, no other keyword is re-
quired. Enclose the string in single quotes.

continued on next page

285

continued from previous page

DATAFILE string Name and location of the specially format-
ted EOS data file if different than the de-
fault $ALEGRA MIGDATA/EOS data. Enclose
the string in single quotes.

PT real Pressure at start of transition.
BT real Bulk modulus in transition region.
AT real Temperature derivative of transition pressure.
AX real Spatial derivative of transition pressure.
HF real (0.0) Hysteresis flag. HF = 0.0 for reversible case

and HF = 1.0 for irreversible case
RMINa real (0.0) Minimum density for initial state
RMAXa real

(1.e30)
Maximum density for initial state

TMAXa real

(1.e30)
Maximum temperature for initial state

VFa real (1.0) Volume ratio, initial state/final state
TFa real (1.0) Temperature ratio, initial state/final state
ESFTa real Shift in energy zero (optional)
EOSUR

MODNUMBER

int The model number in the input deck that will
be used for the initial phase of the material.
[Required unless defined in EOS data file or by
EOSUR MATLABEL and EOSUR MODLABEL.]

EOSRP

MODNUMBER

int The model number in the input deck that will
be used for the final phase of the material. [Re-
quired unless defined in EOS data file or by
EOSRP MATLABEL and EOSRP MODLABEL.]

EOSUR

MODLABEL

int The model type that will be used for the initial
phase of the material. [If this parameter is
input, EOSUR MATLABEL is also required.]

EOSRP

MODLABEL

int The model type that will be used for the final
phase of the material. [If this parameter is
input, EOSUR MATLABEL is also required.]

EOSUR

MATLABEL

int The model type that will be used for the initial
phase of the material. [If this parameter is
input, EOSUR MODLABEL is also required.]

continued on next page

286

continued from previous page

EOSRP

MATLABEL

int The model type that will be used for the final
phase of the material. [If this parameter is
input, EOSUR MODLABEL is also required.]

a This parameter is normally not input by the user, being left to its default
value.

$ Iron, PTRAN model, phase 1--alpha, phase 2--epsilon.

$ Note esft for epsilon used to include transition energy.

$ Set BT=1.85e12 to match transition pressure to Rayleigh line.

$ Set HF=1 to make transition irreversible.

model 231 keos ptran

eosur modnumber = 232

eosrp modnumber = 233

pt = 13.0e10

bt = 1.0e9

at = -1.034082e7 $ -1.2e11/11604.5

ax = -4.0e10

end

model 232 keos miegrun

r0 = 7.87

t0 = 298.

cs = 4.6e5

s1 = 1.46

g0 = 1.7

cv = 4.601663e6 $ 5.34e10/11604.5

end

model 233 keos miegrun

r0 = 8.29

t0 = 298.

cs = 4.6e5

s1 = 1.51

g0 = 2.4

cv = 4.515490e+6 $ 5.24e10/11604.5

end

287

12.10 Burn Models

12.10.1 Programmed Burn JWL

MODEL model_id_number PROGRAMMED BURN JWL

[parameter = value]

...

END

This model is nearly identical to the JWL equation of state model [21]
(see Section 12.3.3 on page 212). However, it has been modified to work
only with the PROGRAMMED BURN option in alegra (see Section 8.5.1 on
page 177). When using this PROGRAMMED BURN JWL equation of state model,
it is also necessary to include the PROGRAMMED BURN input. This model is
being superseded by the KEOS JWL model (see Section 12.3.5 on page 216),
which can be used with or without the PROGRAMMED BURN option. Input
parameters must be in consistent units, which is not usually the way JWL

parameters are published [10]. The JWL constants are often cited in the
following system of units: A, C and PCJ are given in Mbar = 1012 GPa,
density in gm/cm3, DCJ in cm/µsec, and E0 in Mbar-cm3/cm3.

• Modules: material libs/standard models

– progburn jwl.h

– progburn jwl.C

• Physics: hydrodynamics

288

Table 86: Input Parameters for PROGRAMMED BURN JWL.

Parameter Name Type Description

RHO REF real Density in unreacted reference state
TREF real Temperature in unreacted reference state
E SHIFT real Arbitrary shift of reference energy (optional)
A real JWL parameter in units of problem
B real JWL parameter in units of problem
C real JWL parameter in units of problem
OMEGA real dimensionless JWL parameter
R1 real dimensionless JWL parameter
R2 real dimensionless JWL parameter
E0 real JWL parameter in units of problem
PCJ real Chapman-Jouget pressure
DCJ real Chapman-Jouget detonation front velocity
TCJ real Chapman-Jouget temperature
PB MIN RHO real Defaults to 0.9*RHO REF

PB TMAX real Defaults to maximum of 2.*TREF or 870 K

Table 87: Registered Plot Variables of PROGRAMMED BURN JWL.

Variable Name Type Mode Description

SPECIFIC HEAT VOL real Initialize Initialized from Cv parameter
DENSITY real IOPUT Material density
ENERGY real IOPUT Specific internal energy per unit

mass
PRESSURE real IOPUT Pressure
TEMPERATURE real OUTPUT Absolute temperature
SOUND SPEED real OUTPUT Bulk sound speed
DPDRHO real OUTPUT Derivative of pressure with re-

spect to density

289

12.11 Material Model Examples

Numerous examples of uses of material models can be found in the Ale-
gra Regression suite which is associated with each Alegra installation. Im-
portant examples for a user to look at in terms of material models are
the 2D/comprehensive and 3D/comprehensive regression tests soldyn mat,
burn mat and detonation point. The 3D/comprehensive regression suite
also has the files soldyn mat si, burn mat si for examples running in SI
units. There are some material models in Alegra which are not documented
in the Alegra user documentation. Such models should not be considered to
be fully supported.

290

13 Diagnostics

To evaluate the progress of the calculation or analyze the results of a simula-
tion, there are several diagnostic methods that are available within alegra.
The first method discussed in this section briefly describes an interactive
menu through which calculation status information can be queried. The
second method discussed in this section describes global diagnostic variables
that are tallied by alegra and written to the exodus and hisplt databases
(in addition to the registered plot variables listed with each material model).
The third method describes the additional variables written to the hisplt

database, many of which are directly related to the tracer points specified
in the TRACER POINTS section of the alegra input file (see Section 5.12 on
page 137).

13.1 Interactive Menu

There is a limited interactive menu in alegra, in which the user can make
some limited queries and stop the interactive run. The menu can be obtained
by typing ‘hello’ into the standard input stream. Most of these interactive
menu items will be found to be non-functional. A limited set of calculational
status information can be obtained by typing ‘!’ or ‘status’. Typing ‘stop’
will shutdown the calculation. For the interactive menu to be functional, the
CRT keyword must be set to ON in the user input file. (The default is CRT:

ON. See Section 4.2.2 on page 74).

13.2 Global Diagnostic Variables

Mass, momentum, and energy each obey a conservation law. alegra tallies
the mass, momentum and energy as a diagnostic. These tallies can be used
as indicators of potential inaccuracies or errors in a simulation to the extent
that the conserved quantities are not maintained. These global and material
global variables are written to exodus, and hisplt databases if the relevant
physics is exercised by the alegra calculation. The variable names are
the same for all database types with the following exception. Since the
hisplt database limits the variable names to 16 characters, the root name is
truncated to accommodate the component designators and the material ids
while remaining with the 16-character string length limit. Material identifiers

291

are added to the material global variable names (prefixed with “MAT”) before
they are written to the exodus database; the material identifier is appended
to the variable name as “.n” in the plot request input file for the hisplt

database. The material identifier is the integer material id specified in the
MATERIAL section of the alegra input file. (See Section 12.1 on page 201).

13.2.1 Time Step Tallies

The alegra simulation timestep is a composite of the maximum stable
timestep from numerous numerical considerations. Sometimes the timestep
of an alegra simulation seemingly may become unreasonably small. Usually
there is a good explanation for such behavior. To assist in the diagnosis of
small timesteps a set of tallies has been established that report the timesteps
from each factor that can affect the overall timestep.

Table 88: Timestep Tallies for Hydrodynamics.

Global Variable Name Explanation

TM STEP The actual timestep use in the alegra simu-
lation. This timestep may be smaller than the
minimum of the following timesteps if the TIME

STEP SCALE is non-unity.
DT HYDRO This is the maximum stable timestep for all of

HYDRODYNAMICS. It is a composite of the follow-
ing timesteps.

DT SOUND Courant-limit timestep based upon the material
sound speed computed as if this timestep acted
alone.

DT ELASTIC Courant-like timestep based upon the elastic
wave speed computed as if this timestep acted
alone. The elastic wave speed is computed from
the bulk and shear moduli, B and S, as Velastic =
√

(

B + 4

3
S
)

/ρ

continued on next page

292

continued from previous page

DT MATVEL Timestep based upon the material velocity rel-
ative to the mesh computed as if this timestep
acted alone. This timestep affects the simula-
tion only if ADVECTION is enabled. The intent is
to prevent material from advecting to cells other
than a neighboring cell.

DT ARTVIS Timestep based upon ARTIFICIAL VISCOSITY

limitations.
DT VOLUME Timestep based upon the allowed MAXIMUM

VOLUME CHANGE for a mesh element in a single
cycle.

13.2.2 Mass Tallies

Mass is a conserved quantity. The following table summarizes the mass tallies
appearing in the alegra output files.

Table 89: Mass Tallies for Region (All Physics Options).

Global Variable Name Explanation

MASSTOT Sum of all element masses.
MASSGAIN Mass gain due to advection through the bound-

ary and into the mesh. Since this tally represents
a gain, it should be added to the initial mass in
mass balance equations.

MASSLOSS Mass loss due to advection through the bound-
ary and out of the mesh and due to material
discarded by the Cell Doctor. Since this tally
represents a loss, it should be subtracted from
the initial mass in mass balance equations.

NODEMASS Sum of all node masses, should equal the element
mass.

continued on next page

293

continued from previous page

MASSERR Mass conservation check:
present mass - (initial mass + mass gain - mass

loss)
This check should be negligible compared to
other mass tallies. Large errors may be due to
remapping errors on under-resolved meshes. The
user should try increasing the mesh resolution.

MAT MASS The global value of the mass of material “n,”
where n is the integer material id.

13.2.3 Momentum Tallies

Momentum is a conserved quantity. At the present time alegra does not
separately tally the momentum sources or sinks due to various boundary
conditions or other driving forces. The following table summarizes the mo-
mentum tallies appearing in the alegra output files.

Table 90: Momentum Tallies for Dynamics and All De-
rived Physics Options.

Global
Variable
Name

Explanation

XMOM

YMOM

ZMOM

The x, y, and z components of the total momentum for
Cartesian simulations.

RMOM

ZMOM

THETAMOM

The r, z, and θ components of the total momentum for
cylindrically symmetric simulations.

MOM UP X

MOM UP Y

MOM UP Z

MOM DOWN X

MOM DOWN Y

MOM DOWN Z

The up (positive axial direction) and down (negative ax-
ial direction) x, y, and z components of the total momen-
tum for Cartesian simulations.

continued on next page

294

continued from previous page

MAT MOM X

MAT MOM Y

MAT MOM Z

The x, y, and z components of the momentum of material
“n,” where “n” is the integer material id.

MAT MOM U X

MAT MOM U Y

MAT MOM U Z

MAT MOM D X

MAT MOM D Y

MAT MOM D Z

The up (positive axial direction) and down (negative ax-
ial direction) x, y, and z components of the momentum
of material “n,” where “n” is the integer material id.

13.2.4 Energy Tallies

In many problems of interest, it is often desirable to know the energy budget.
How much energy is related to a given physical process? What is the value
of the kinetic and internal energies? How much energy is supplied by a given
source or is lost to a given sink? How fast does energy change from one
form to another? alegra provides the user with a detailed set of energy
and power tallies to answer such questions. A global energy balance can be
constructed from these tallies as follows.

Eerror(t) = Etot(t) − [Etot(0) + Esources(t) − Elosses(t)] = 0 (13.69)

where
Etot(t) = Eint(t) + Ekin(t) (13.70)

Ideally the error in this energy balance should be zero, or at least small
compared to most energy tallies. Deviations from zero are typically due to
missing energy tallies, numerical inaccuracies, or perhaps too large of a time
step.

Typically the hisplt file will contain tallies at more frequent intervals
compared to the exodus file (depending on the user specification – see
the EMIT HISPLT and EMIT PLOT commands on pages 77 and 78, respec-
tively) because it is smaller and does not contain mesh information and PLOT

VARIABLES over the entire mesh.

The following tables summarize the various energy and power tallies.
The tallies are grouped by choice of the PHYSICS option. Extra global power
tallies marked with an asterisk (*) are omitted from the output files unless
the DETAILED ENERGY TALLIES keyword is specified.

295

Table 91: Energy Tallies for Region (All Physics Options).

Global Variable Name Explanation

ETOT PTOT* Total of the kinetic and internal energies and rate
of change.

EINT PINT* Sum of all element internal energies and rate of
change.

EINTLOSS EINTGAIN Sum of all element internal energy changes.
EERROR* PERROR* Energy conservation check and rate of change.

This check should be small compared to other en-
ergy tallies. Large errors may be due to too large
a timestep, remapping errors on under-resolved
meshes, or incompletely tallied sources, sinks, or
boundary conditions. The user should try de-
creasing the timestep or increasing the mesh res-
olution.

MAT EINT The global internal energy of a material, where
the material id designated by appending the ma-
terial id to the variable name.

MAT ETOT The global total energy of a material, where the
material id designated by appending the material
id to the variable name.

Table 92: Energy Tallies for Dynamics (Hydrodynam-
ics).

Global Variable Name Explanation

EKIN

PKIN*

Kinetic energy and rate of change.

EPDV*

PPDV*

Time-integrated PdV energy and instantaneous
rate of change. The PdV energy is the time-
integrated work done by the pressure on the ma-
terial. This work will manifest itself as internal
energy. This energy is recoverable. If the rate of
change is positive the internal energy is increas-
ing, otherwise if the rate of change is negative,
the internal energy is decreasing.

continued on next page

296

continued from previous page

ENONPDV*

PNONPDV*

Time-integrated non-PdV energy and instanta-
neous rate of change. The non-PdV energy is the
time-integrated work done by the artificial vis-
cosity and hourglass forces on the material. This
work will manifest itself as internal energy. The
rate of change should be positive since these are
dissipative forces and the internal energy should
be increasing.

EVELBC

PVELBC*

Work done on the system by various kinematic
boundary conditions and rate of change.

EGRAV

PGRAV*

Gravitational potential energy and rate of
change. The tally is included only if a non-zero
GRAVITY option is specified. Zero potential en-
ergy is defined to be at the origin.

EINTGAIN

EINTLOSS

Internal energy gain or loss due to advection
through the boundary of the mesh and internal
energy discarded by the CELL DOCTOR. Energy
gain is plotted as a positive value and energy
loss is plotted as a negative value.

EKINGAIN

EKINLOSS

Kinetic energy gain or loss due to advection
through the boundary of the mesh and kinetic
energy discarded by the CELL DOCTOR. Energy
gain is plotted as a positive value and energy
loss is plotted as a negative value.

EK UP X

EK UP Y

EK UP Z

EK DOWN X

EK DOWN Y

EK DOWN Z

Partial kinetic energies associated with each co-
ordinate axis and direction (D = down, U = up).

MAT EK The global kinetic energy of a material, where
the material id designated by appending the ma-
terial id to the variable name. In exodus, the id
is appended to the end of the variable name in
the plotting database. For hisplt, the material
id is appended by the user in the plot request
within the hisplt input file.

continued on next page

297

continued from previous page

MAT EK UP X

MAT EK UP Y

MAT EK UP Z

MAT EK DOWN X

MAT EK DOWN Y

MAT EK DOWN Z

Partial material kinetic energies associated with
each coordinate axis and direction (D = down,
U = up). The material id is designated by ap-
pending the material id to the variable name. In
exodus, the id is appended to the end of the
variable name in the plotting database. For his-

plt, the material id is appended by the user in
the plot request within the hisplt input file.

13.2.5 Additional Diagnostic Variables

Additional variables are written to the exodus and hisplt databases. The
grind time is useful for comparing the relative effort of a calculation per
element, per cycle. This is calculated with and without the time required
for reading and writing all input and output files. The CPU time is also
provided, excluding the I/O time.

Table 93: Global Variables In Addition to Energy/Mass/Momentum Tallies.

Global Variable Name Explanation

GRIND Grind time during the calculation, defined as the
computation time divided by the product of the
number of processors X number of elements X
number of cycles.

CPUNOIO CPU time ignoring the contribution of IO.
GRINDNOIO Grind time ignoring the contribution of IO.

13.3 Additional HISPLT Database Variables

In addition to all global and material global variables listed in Section 4.2.12
on page 81, the hisplt database contains variables relevant to the tracer
points. History variables calculated at tracer particle locations include all
the plot variables specific to the material models assigned to each material
(see the plot variable tables in the material MODEL input section) and general
output variables listed below (Table 94).

298

Hisplt input files can be constructed by referring to these variable lists
or by using the CATALOG input keyword in an initial run of hisplt to obtain
the list of variables specific to the database being read.

Table 94: Point History Variables.

Global Variable Name Explanation

REGION-ID Only one region exists for alegra at this time.
BLOCK-ID The block id for the tracer particle.
ELEMENT-ID The global element id within which the tracer

particle resides.
ON-OFF In a parallel calculation, number of processors

that contain the coordinates of this tracer loca-
tion. (This variable is currently inactivated but
will be enabled in a future release.)

PSY-X

PSY-Y

PSY-Z

Position of the tracer within the local coordinate
system of the element on which the tracer resides.

ELEMENT-VOLUME Volume of the element within which the tracer
particle resides.

ELEMENT-MASS Mass of the element within which the tracer par-
ticle resides.

XPOSITION X position of the tracer particle resides.
YPOSITION Y position of the tracer particle resides.
ZPOSITION Z position of the tracer particle resides.

For the structured mesh option, the ELEMENT-ID that is returned is not
easily interpreted since it is an actual index into the block element array.

299

Table 95: Global History Variables Specific to hisplt.

Global Variable Name Explanation

TIME The solution time in the calculation.
DT Time step size in the calculation.
CPU Accumulated computation time during the calcu-

lation.
CYCLE Accumulated number of cycles during the calcu-

lation.

300

14 Performance Measurement in ALEGRA

The large memories and processor capability of massively parallel proces-
sor (MPP) computers allows the analysis of large two and three-dimensional
problems. These problems may take hours to days even on very large parallel
computers and it is important to achieve the solution times as short as pos-
sible. This high-performance requirement is not easy to satisfy as there are
various levels of granularity and memory hierarchies which should be consid-
ered to achieve high performance and the design of the code and algorithms
can significantly affect performance. One of the first steps to be taken in
the effort to take performance seriously is to provide standardized means for
measuring performance, measure this performance on a regular basis, and
then measure the improvement over gradual refactoring of algorithms and
coding.

The only truly relevant measure of performance in scientific computing is
the time-to-solution to achieve a specified level of accuracy on a given set of
resources. Implicitly this means that both algorithms and machine efficiency
must be considered to obtain a balanced view on performance. Historically,
algorithms have been just as crucial as machine speed in improving perfor-
mance. For expediency sake, more simple measures are often used. Useful
metrics include wall clock time, memory usage, compute/communicate ratios,
FLOPS (floating point operations/second), ”grind time” (second/cycle/cell)
and scalability curves. Generally these measure are useful but not suffi-
cient to gain a balanced picture. For example, a simple iterative solve may
achieve a much higher FLOPS rating than a multigrid method, but a multi-
grid method may get to the correct solution much faster. Very poor FLOPS
numbers may be an indication that the coding style or organization is not
cache friendly and that too much time is being spent in memory movement
to and from main memory or in off processor communications. Inefficient
computations might also lead to excellent scalability numbers while masking
inefficiencies in the communications. Generally a user will want to look at
parallel scalability by increasing the number of processors while at the same
time increasing the size of their problem. Optimal scaling implies that the
wall clock time will be roughly constant. This linear scalability is easy to
achieve for algorithms which are only local in nature but is much more dif-
ficult to achieve for problems which include global interactions or multiple
physics with competing demands. The ability to achieve scalability depends
also on the number of processors and the speed of the communication fabric
relative to the processor speed.

301

The primary mechanism for performance measurement in ALEGRA is
to turn on the various debug mode profiling options. First, outfile requests
must be turned on. For example, EMIT OUTPUT, CYCLE INT 1. Then, pro-
filing output must be turned on, such as DEBUG MODE=PROFILETIME, DEBUG
MODE=PROFILEMEMORY or DEBUG MODE=PROFILEHARDWARE. These turn on spe-
cific timers for various sections of the code and the results finally end up in the
.out file. This may be helpful while working with a developer to pinpoint spe-
cific issues and performance bottlenecks. PROFILETIME and PROFILEMEMORY

are supported on all platforms and give timing and memory usage. PRO-
FILEMEMORY may cause some slowdown due to issues of frequent access
to the allocator information routines. PROFILEHARDWARE is supported only
on some platforms and gives information such as floating point operation
rates. The collected data may be machine specific, and on platforms that
do not support the collection of hardware performance counters, there is no
output. The output comes out twice, once sorted in a hierarchical manner
according to nested calls, and once with a flat alphabetically sorted output
list by tag name. The MPE message passing profiling library is available for
some platforms and should be discussed with a developer if such access is
desired.

14.1 Tricks and Traps

This section is intended to help the user start thinking about how to get the
maximum performance from Alegra on their own machine set.

• Define only the materials you need in the input deck. There is a small
but real cost associated with materials that are defined, even if they
are never used in the problem. Some users tend to define all materials
they may ever use in the input deck, and use only a subset of them
in any given iteration of the problem. Commenting out these material
definitions will result in a slightly smaller memory footprint of the
Alegra mesh, and slightly faster execution as well.

• Try to size and shape your mesh so that when it is spread, the mixed
material regions will cross as few processor boundaries as possible dur-
ing the run.

• The surface area to volume ratio of each processor subdomain has a
significant impact on performance. Large fractions of elements involved

302

in ghost mesh updates will very significantly impact MPP performance.
The default mesh partitioner will try to minimize the surface area to
volume ratio of elements on the surface relative to elements in the
interior.

• In general for most MPP machines, it will greatly benefit machine effi-
ciency in Alegra to maximize the amount of work on a node. Typically
this means that you will size and spread the mesh so that every node
has equal number of elements, and that roughly 90% of physical mem-
ory is used for the ALEGRA calculation.

• Some machines have more than one processor per node and these pro-
cessors may be required to be involved with message passing implemen-
tations. It may be preferable to run N - 1 processes per node rather
than use all processors per node essentially leaving one processor free
for system tasks and message passing interrupts. (For instance if your
machine has 4 processors per node, use 3 rather than 4). On some
machines this may not matter very much and using all processes on all
nodes with memory usage at 9̃0% may give the best performance.

• For structured mesh physics use an inline mesh specification or trans-
late a genesis file into a plot3d file outside of ALEGRA. Using the
genesis input format places a significant memory burden on processor
0.

• Limit the amount of output requested via both frequency selection and
the number of variables.

• Run Lagrangian if at all possible.

• Try running solid dynamics and hydrodynamics problems using the
structured mesh physics options. The structured mesh implementation
runs much faster than the unstructured mesh implementation.

303

15 Frequently Asked Questions

If I am familiar with running cth, how do I run a similar problem with
alegra?

The first major difference between cth and alegra is the mesh input.
In addition to the unstructured mesh physics that has been alegra’s tra-
ditional mesh, alegra now has a choice of using structured mesh physics,
which is more efficient but supports only a subset of the unstructured code’s
capabilities.

For unstructured mesh physics, the mesh must be generated outside of
alegra. This allows alegra to use sophisticated unstructured meshes for
Lagrangian and ALE calculations, as well as simple unstructured meshes
similar to those used in cth. The cth mesh must be an orthogonal struc-
tured mesh, so it is a simple thing to generate the mesh in cthgen [1]. In
alegra, the mesh is generated separately by another program. Examples
of such programs include fastq (2D), a combination of fastq and gen3d

(3D), or the cubit mesh generation tool (2D and 3D).

You can insert materials into the mesh just like in cth using the DIATOM

capability (see the above alegra documentation for slight differences, most
importantly in the keywords). Materials can also be assigned on a block-by-
block basis. Each “REGION” created by fastq corresponds to a “BLOCK” in
alegra. Individual blocks are assigned material numbers in the alegra

block input. (Note that one can still use DIATOM to insert material into an
empty unstructured element block).

fastq and gen3d are part of access. (Make sure your alegra environ-
ment is specified in your path before the access paths, since at least one of
the files has a duplicate name). Complete fastq and gen3d documentation
should be provided with your access distribution.

For structured mesh physics, the mesh input can either be specified in the
input file (see Section 11), or the mesh can be generated externally as long as
each block has the typical cth ijk order (e.g., in each block, the number of
cells in the y and z directions are constant for all x). If the mesh is generated
externally by a program other than plot3d, alegra will translate the mesh
to the plot3d format for use in the structured mesh physics code.

Mesh generation for alegra consists of only the geometric discretization

304

and the assignment of sideset and nodeset flags that may be referenced by
boundary conditions or certain physics packages in the alegra run. Whereas
cthgen assigns materials and material properties prior to the cth run, these
functions are performed in a single alegra run. Sample input files for both
mesh generation and alegra can be found in the Benchmark directories.

What does “Segmentation violation” mean?

This is the message used by the UNIX operating system to tell you that
your program has tried to access memory that has not been assigned to it. It
is always the result of a bug if you see it while running alegra. Such bugs
should be reported to the development team promptly with an associated
sample input file and mesh.

How seriously should I take warnings?

A warning indicates a condition when initializing or running the code
that one of the alegra code developers thinks is suspicious, but not nec-
essarily wrong or perhaps not worth stopping the calculation since it may
still be possible to get useful results. Since alegra is very good at solv-
ing a discrete representation of your physics equations, but not very good
at evaluating the results, it only notices the most obvious problems, such
as negative temperatures. Warnings should therefore be taken seriously and
investigated. However, after issuing a warning, alegra will continue the
calculation on the assumption that the problem is transitory and will not
spoil the calculation as a whole.

My simulation seems to be taking forever to start up. What is going on?

By default, alegra will copy the entire contents of the input file to the
information data records of the exodus [29] output file. For very large input
files, e.g., those having long FUNCTION definitions or large numbers of DIATOM
PACKAGEs, this can be slow and tedious and result in long initialization times.
One suggestion is to reduce the amount of input data if possible, e.g., limit
the number of data points in a FUNCTION table. If this is not possible, then the
default behavior can be suppressed and initialization times can be shortened
by specifying COPY INPUT = FALSE in your input file. See Section 4.2.1 on
page 74.

My calculation reports an “element inversion.” What does this mean?

alegra has detected an element with a negative volume, indicating that

305

the element has turned inside out. If this occurs right away, it may simply
mean that one of the initial conditions you specified is causing an element
to collapse before it has a chance to respond. This can often be corrected
by specifying a smaller MAXIMUM INITIAL TIME STEP (see Section 5.6.2 on
page 98).

Element inversions later in a calculation usually arise from one of two
causes. If the element inversion is preceded by a sharp drop in the time step,
it is usually the result of mesh tangling. Susceptibility to such tangling is a
weakness of the quadrilateral or hexahedral elements used in most alegra

calculations. The usual way to fix this is to identify the portion of the mesh
that is tangling and make it part of an Eulerian or ALE element block.
(Using a triangular or tetrahedral mesh is usually NOT a good way to fix
the problem, since these elements are numerically very stiff.)

Abrupt element inversion (with no warning signs preceding it) usually
indicates either that a large amount of energy has suddenly been deposited
in an element, or a material in the element has run off the bounds of an
equation of state table. The CLIP option for the Kerley SESAME equation of
state can be useful (see Section 12.3.7 on page 223.) If no explanation for
this behavior can be found, it may indicate a program bug that should be
reported to the development team.

The time step has become so small that the calculation is going nowhere.
What do I do?

Most of the problems that lead to element inversion can also lead to a
sharp drop in the time step. In addition, a very hot material in an element
can give rise to a large sound speed and a very small stable time step. The
CELL DOCTOR package (see Section 5.11 on page 135) can detect and remove
tiny volumes of very hot material that sometimes are left in an otherwise
cold or empty cell by the advection package.

alegra is also known to use a very conservative time step calculation.
There are several user-controllable features that can affect the time step cal-
culation. One is the MINIMUM ELEMENT SIDE TIMESTEP CONTROL (see Sec-
tion 8.4.4 on page 176) which controls the calculation of the characteristic
length for the element used in the time step calculation. Another parameter
is the MAXIMUM VOLUME CHANGE (see Section 8.4.3 on page 176) value which
can often cause alegra to use very small time steps in Eulerian calculations.
Finally, the TIME STEP SCALE (see Section 5.6.6 on page 99) parameter con-

306

trols the overall multiplier that alegra applies to the computed time step
to determine what value to actually use in the calculation.

I am using ALE in my calculation and I get an almost immediate abort with
a message in the output that says:

> Error: Dynamics::Determine_Volume_Fluxes()

> Element = 864 Volume Flux = 1.39057e-11 is greater than the

> volume = 5.1859e-12

What’s happening here is that alegra’s idea of a “good” mesh and the
mesh generator’s idea of good do not agree, so alegra rezone is doing its
own thing. In the course of doing that, it is moving the nodes too far in one
step and resulting in an “overflux” where the amount of “space” moved out
of an element exceeds the amount there to start. What needs to happen is
to let alegra do its thing, but do it more gradually. There are inputs in
Domain called

initial remesh movement limiter [real]

remesh movement ratio [real]

remesh movement limiter [real]

The first two commands set an initial limit multiplicative factor on the
movement of any node and then a growth factor that is applied every remesh
pass (usually remesh is done 10 times every cycle). The last value is an
ultimate limit to which the remesh limiter will grow (has to be <= 1.0). So
what you could do is put in the domain section:

initial remesh movement limiter = 0.10

remesh movement ratio = 1.05

remesh movement limiter = 1.0

so the limit factor will start at 10%, grow by 5% per application and stop at
1.0.

My run is stopping before it ever gets to the first cycle print. I have no idea
what is going wrong. What information should I gather to make it easier to
find out what is going on?

307

Use the DEBUG MODE print capability to help locate where the code is
dying. As described in Section 4.2.3 on page 75, the “LOCATION” debug flag
will produce a trail on standard out that will help us track down where the
code is dying. If you are going to send us a problem to take a look at, we
usually need the *.inp and any file used to generate the *.gen file: fastq,
gen3d input files or cubit journal files. Any special input files, like volume
fraction files for DIATOM, are also needed.

My run aborts before anything seems to happen. The screen message says to
look at the .out file, but all I see in that file is the following.

Error: Volume_Average_Plot_Expression::Set_Up

Cannot find a material variable named VELOCITY. See the *.out

file for valid variable names.

Error: Region::Set_Up

Unable to set up plot database

You may also see this occur for variables other than VELOCITY. In your
input file, you have a plot variable specified with the “avg” modifier after
the name. This tells alegra to use a volume-weighted average of the value
of this quantity over all materials in an element and report one value for the
element, as opposed to reporting one value for each material in the element.
The problem is that the variable, VELOCITY in this particular case, is not a
“material” variable. Remove the “avg” modifier and your run will proceed.

How do I handle common nodes between two or more non-orthogonal no
displacement boundary conditions?

Caution should be exercised whenever two or more NO DISPLACEMENT

sidesets share a common edge or vertex. The NO DISPLACEMENT bound-
ary condition (Section 7.1.2 on page 145) operates by removing the normal
component of the nodal acceleration vector for all the nodes on the sideset.
This application occurs sideset by sideset in the order that the sidesets

are specified in the input deck. When two non-orthogonal sidesets share a
common edge, the application of the second sideset will result in the nodes
along the common edge having an acceleration component that is normal to
the first sideset. It is important to recognize that this problem does not
arise if the two sidesets are orthogonal to each other. This is actually the
key to working around this problem.

When two non-orthogonal sidesets meet, a nodeset should be defined

308

to contain the nodes that lie on the common edge between the sidesets.
Realize that the NO DISPLACEMENT sidesets already assumes that the two
sidesets are planar so their common edge must be a line and the nodes
along the common edge must be constrained only to move along the edge.
This is accomplished by specifying NO DISPLACEMENT boundary conditions
over both the sidesets as is usually done in the input deck. To constrain
the edge nodes, however, a third NO DISPLACEMENT boundary condition must
be specified for the edge node set so that they do not move in the direction

(n̂1 × n̂2) × n̂2 (15.71)

where n̂1 and n̂2 are the normal directions specified for the first and second
sidesets as they appear in the input deck respectively. Note that the order
of the sidesets is important. After alegra applies the second sidesets,
the acceleration vector for the nodes along the edge will lie in the plane of
the second sidesets. The cross product within the parenthesis is a vector
tangent to the edge. By removing the acceleration component in the direc-
tion of the cross product of the tangent vector and the normal to the second
surface, the resulting acceleration vector must act along the edge. The fol-
lowing alegra input records provide an example where nodeset 1 is the
common edge between sidesets 10 and 20:

no displacement, sideset 10, normal, x 0.50 y 0.0 z 1.0

no displacement, sideset 20, normal, x 0.50 y 1.0 z 0.0

no displacement, nodeset 1, normal, x -0.50 y 0.25 z -1.25

Another special case is a vertex node that is shared by three non-coplanar
NO DISPLACEMENT sidesets. In this case, the vertex node must be placed in
another nodeset and constrained to have a zero acceleration since it cannot
move in any direction.

309

References

[1] R. L. Bell et al. CTHGEN user’s manual and input instructions. Techni-
cal report Version 5.0, Sandia National Laboratories, Albuquerque, NM,
2002. unpublished.

[2] D. J. Benson. A new two-dimensional flux-limited shock viscosity for
impact calculations. Computer Methods in Applied Mechanics and En-
gineering, 93:39–95, 1991.

[3] T. D. Blacker. FASTQ Users Manual Version 1.2. Technical report
SAND88-1326, Sandia National Laboratories, Albuquerque, NM, July
1988.

[4] R. M. Brannon and M. K. Wong. MIG Version 0.0 Model Interface
Guidelines: Rules to Accelerate Installation of Numerical Models Into
Any Compliant Parent Code. Technical report SAND96-2000, Sandia
National Laboratories, Albuquerque, NM, August 1996.

[5] K. H. Brown et al. ACME Algorithms for Contact in a Multiphysics
Environment API Version 1.3. Technical report SAND2001-1470, Sandia
National Laboratories, Albuquerque, NM, May 2003.

[6] K. H. Brown et al. CavityExpansion: A library for cavity expansion
algorithms, version 1.0. Technical report SAND2003-1048, Sandia Na-
tional Laboratories, Albuquerque, NM, 2003.

[7] R. Brun and L. D. Dumitrescu, editors. CTH: A Software Family for
Multi-Dimensional Shock Physics Analysis, Marseille, France, July 1993.
Proceedings of the 19th International Symposium on Shock Waves Vol.
I.

[8] K. G. Budge and J. S. Peery. RHALE: A MMALE shock physics code
written in C++. International Journal of Impact Engineering, 14:107–
120, 1993.

[9] J. Chakrabarty. Theory of Plasticity. McGraw-Hill Book Company, New
York, 1987.

[10] B. M. Dobratz and P. C. Crawford. LLNL explosives handbook. Techni-
cal report UCRL-52997, Lawrence Livermore National Laboratory, Liv-
ermore, California, January 1985.

310

[11] M. A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley Publishing Company, Reading, MA, 1990.

[12] D. P. Flanagan and T. Belytschko. A uniform strain hexahedron and
quadrilateral with orthogonal hourglass control. International Journal
for Numerical Methods in Engineering, 17:679–706, 1981.

[13] A. F. Fossum and R. M. Brannon. The SANDIA GEOMODEL Theory
and User’s Guide. Technical report SAND2004-3226, Sandia National
Laboratories, Albuquerque, NM, 2004.

[14] A. F. Fossum and J. T. Fredrich, editors. Cap Plasticity Models and
Compactive and Dilatant Pre-Failure Deformation, 2000. Pacific Rocks
2000.

[15] A. P. Gilkey and J. H. Glick. BLOT - A Mesh and Curve Plot Program
for the Output of a Finite Element Analysis. Technical report SAND88-
1432, Sandia National Laboratories, Albuquerque, NM, June 1989.

[16] A. P. Gilkey and G. D. Sjaardema. GEN3D: A GENESIS Database 2D
to 3D Transformation Program. Technical report SAND89-0485, Sandia
National Laboratories, Albuquerque, NM, March 1989. Fourth Printing
February 1994.

[17] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance,
portable implementation of the MPI message passing interface standard.
Parallel Computing, 22(6):789–828, September 1996.

[18] William D. Gropp and Ewing Lusk. User’s Guide for mpich, a Portable
Implementation of MPI. Mathematics and Computer Science Division,
Argonne National Laboratory, 1996. ANL-96/6.

[19] B. Hendrickson and R. Leland. The Chaco users guide version 1.0. Tech-
nical report SAND93-2339, Sandia National Laboratories, Albuquerque,
NM, 1993.

[20] G. L. Hennigan, M. St. John, and J. N. Shadid. NEMESIS I: A set
of functions for describing unstructured finite-element data on paral-
lel computers. Technical report, Sandia National Laboratories, Albu-
querque, NM, May 1998.

[21] G. I. Kerley. CTH reference manual: The equation of state package.
Technical report SAND91-0344, Sandia National Laboratories, Albu-
querque, NM, 1991.

311

[22] G. I. Kerley. CTH reference manual: The equation of state package.
Technical report SAND98-0947, Sandia National Laboratories, Albu-
querque, NM, 1998.

[23] G. I. Kerley. Recent improvements to the CTH EOS package. Technical
report KPS99-1, Kerley Publishing Services, March 1999.

[24] J. M. McGlaun. CTH reference manual: Cell thermodynamics. Techni-
cal report SAND91-0002, Sandia National Laboratories, Albuquerque,
NM, 1991.

[25] J. M. McGlaun, S. L. Thompson, and M. G. Elrick. A brief description
of the three-dimensional shock wave physics code CTH. Technical report
SAND89-0607, Sandia National Laboratories, Albuquerque, NM, 1989.

[26] J. S. Peery and D. E. Carroll. ALE remap algorithms in ALEGRA. Un-
published technical report, Sandia National Laboratories, Albuquerque,
NM, 1999.

[27] M. H. Rice, R. G. McQueen, and J. M. Walsh. Advances in Research
and Applications: Solid State Physics, volume 6, chapter Compression
of Solids by Strong Shock Waves. Academic Press, 1958.

[28] A. C. Robinson, J. R. Weatherby, and J. B. Aidun. Periodic bound-
ary conditions in the ALEGRA finite element code. Technical re-
port SAND99-2698, Sandia National Laboratories, Albuquerque, NM,
November 1999.

[29] L. A. Schoof and V. R. Yarberry. EXODUS II: A Finite Element Data
Model. Technical report SAND92-2137, Sandia National Laboratories,
Albuquerque, NM, November 1995.

[30] S. A. Silling. CTH reference manual: Viscoplastic models. Technical
report SAND91-0292, Sandia National Laboratories, Albuquerque, NM,
1991.

[31] S. A. Silling. Brittle failure kinetics model for concrete: Structures under
extreme loading conditions. ASME: PVP, 351:263–268, 1997.

[32] G. D. Sjaardema. APREPRO: An Algebraic Preprocessor for Parame-
terizing Finite Element Analyses. Technical report SAND92-2291, San-
dia National Laboratories, Albuquerque, NM, December 1992. Updated
March 1997.

312

[33] G. D. Sjaardema. GJOIN: A Program for Merging Two or More GEN-
ESIS Databases. Technical report SAND92-2290, Sandia National Lab-
oratories, Albuquerque, NM, December 1992.

[34] G. D. Sjaardema. GROPE: A GENESIS/EXODUS Database Examina-
tion Program. Technical report SAND92-2289, Sandia National Labo-
ratories, Albuquerque, NM, December 1992.

[35] G. D. Sjaardema. Overview of the Sandia National Laboratories En-
gineering Analysis Code Access System. Technical report SAND92-
2292, Sandia National Laboratories, Albuquerque, NM, January 1993.
Reprinted August 1994.

[36] G. D. Sjaardema et al. CUBIT mesh generation environment, vol. 2:
Developers manual. Technical report SAND94-1101, Sandia National
Laboratories, Albuquerque, NM, 1994.

[37] R. M. Summers et al. Recent progress in ALEGRA development and
application to ballistic impacts. International Journal of Impact Engi-
neering, 20:779–788, 1997.

[38] L. M. Taylor and D. P. Flanagan. PRONTO-2D: A two-dimensional
transient solid dynamics program. Technical report SAND86-0594, San-
dia National Laboratories, Albuquerque, NM, March 1987.

[39] L. M. Taylor and D. P. Flanagan. PRONTO3D: A three-dimensional
transient solid dynamics program. Technical report SAND87-1912, San-
dia National Laboratories, Albuquerque, NM, March 1989.

[40] P. A. Taylor. CTH reference manual: The steinberg-guinan-lund vis-
coplastic model. Technical report SAND92-0716, Sandia National Lab-
oratories, Albuquerque, NM, 1992.

[41] P. A. Taylor. CTH reference manual: The bammann-chiesa-johnson
viscoplastic/damage model. Technical report SAND96-1626, Sandia Na-
tional Laboratories, Albuquerque, NM, 1996.

[42] S. L. Thompson and L. N. Kmetyk. HISPLT, A Time-History Graphics
Postprocessor Users’ Guide. Technical report SAND91-1767, Sandia Na-
tional Laboratories, Albuquerque, NM, September 1991. Revised April
1994.

[43] J. M. Walsh and R. H. Christian. Equation of state of metals from shock
wave measurements. Physical Review, 97(6):1544–1556, 1955.

313

Index

ADAPTIVITY SPECIFICATION, 183
ADD DIATOM INPUT, 103, 105, 116, 117
ADVECTION, 293
ALE TRACER, 139
ALEGRA, 304
ALL MATERIAL GLOBALS, 81
ALL REGION VARIABLES, 81
ARTIFICIAL VISCOSITY, 125, 293
AVERAGE REMESH METHOD, 119

BAMMANN CHIESA JOHNSON, 252
BLOCK, 34, 38, 64, 92, 103, 105, 115, 119,

148, 149, 193, 201, 304
BLOCK ADAPT LEVELS, 188
block-id, 64
block-ids, 64
BUDGE REMESH METHOD, 119

CARTESIAN, 97
CAVITY EXPANSION, 173
CELL DOCTOR, 135, 297, 306
CGS, 69, 98
CLIP, 306
comments ($), 63
Concat, 77
CONSTANT TIME STEP, 100
COPY INPUT, 74
CRT, 74, 291
CTH, 101, 304
CTH ELASTIC PLASTIC, 260
CTHGEN, 101, 304
Cubit, 77, 304
CYCLE INTERVAL, 68
CYLINDRICAL, 97
CYLINDRICAL MODE DENSITY, 153
CYLINDRICAL MODE SURFACE, 155

DEBUG MODE, 62, 75, 308
DEGENERATE BC, 159, 166
DEGENERATE SURFACE, 159
DELETE DATA, 126
DELETE TOPOLOGY, 126
DELETION CYCLE, 126
DELETION TIME, 126
delimiters, 62
DETAILED ENERGY TALLIES, 141, 295

DIATOM, 34, 70, 74, 101, 116, 201, 304, 308
direction-function, 67
DOMAIN, 80, 117, 119, 126, 183, 189
DOUBLE PRECISION EXODUS, 45, 77
DYNAMICS, 150, 181

ELASTIC PLASTIC, 234, 256, 259
ELEMENT BUDGET, 187
EMIT HISPLT, 68, 78, 80, 295
EMIT OUTPUT, 78
EMIT PLOT, 68, 78, 80, 295
EMIT RESTART, 40, 68, 71, 79
EMIT SCREEN, 44, 80
ENABLE ADAPTIVITY, 184
ENERGETICS, 141
EP RADIAL RETURN, 260
EULERIAN ENERGY DEPOSITION, 142
EULERIAN MESH, 117, 118, 125, 149
EULERIAN MOVEMENT, 120
EULERIAN TRACER, 138
EXIT, 69
Exodus, 77
EXODUS VERSION TWO, 77

Fastq, 77, 304
FRAC PRESDEP, 267
FROM ... TO ..., 68
FROM TIME ... TO ..., 68
FUNCTION, 65, 74, 139

SCALE, 65
SHIFT, 65

function-set, 65, 66, 139

GEN3D, 304
GENERIC EOS, 209
Genesis, 77
GEOMETRY, 145
GRADUAL STARTUP FACTOR, 98, 99
GRAVITY, 145, 297

HISTORY PLOT VARIABLES, 89
HOURGLASS CONTROL, 125
HYDRO CELL DOCTOR, 175
HYDRODYNAMICS, 93, 97, 150, 181, 292

IDEAL GAS, 210

314

IGNORE KINEMATIC ERRORS, 181
INITIAL ANGULAR VELOCITY, 150
INITIAL BLOCK VELOCITY, 151
INITIAL REFINEMENT, 80, 183, 189
INITIAL REMESH MOVEMENT LIMITER,

307
INITIAL VELOCITY, 150
INSERT, 103
INTERMATERIAL FRACTURE, 180
ISOTROPIC GEOMATERIAL, 240

JOHNSON COOK EP, 249
JUMP METRIC, 185
JWL, 212, 288

KEOS ARB, 272
KEOS FFRB, 275
KEOS HVRB, 278
KEOS IDEAL GAS, 214
KEOS IGRB, 282
KEOS JWL, 216, 288
KEOS MIEGRUNEISEN, 220
KEOS Ptran, 285
KEOS SESAME, 224
keyword groups, 63
keywords, 62

LAGRANGIAN ENERGY DEPOSITION, 142
LAGRANGIAN MESH, 117, 118
LAGRANGIAN TRACER, 139
LAYERING, 188
LINEAR ELASTIC, 236, 256
LINEAR NORMALIZATION, 124
LOAD BALANCE, 190
LOG NORMALIZATION, 124

MATERIAL, 34, 82, 90, 103, 115–117, 197,
201, 292

MAXIMUM INITIAL TIME STEP, 98, 306
MAXIMUM TIME STEP LIMIT, 99
MAXIMUM TIME STEP RATIO, 99
MAXIMUM VOLUME CHANGE, 176, 293,

307
MECHANICS, 144
MG POWER, 227
MG US UP, 230
MINIMUM ELEMENT SIDE TIME STEP

CONTROL, 176

MINIMUM ELEMENT SIDE TIMESTEP CON-
TROL, 307

MINIMUM TIME STEP, 99
MMALE MESH, 115, 117, 118
MODEL, 82, 197, 204
MOVING MESH, 149
MRDYNAMICS, 95

nem join, 77
NO CYLINDRICAL DISPLACEMENT, 146
NO DEFAULT OUTPUT, 81
NO DISPLACEMENT, 145, 159, 308
NO MATERIAL GLOBALS, 81, 89
NO REGION VARIABLES, 81
NO UNDERSCORES, 82, 84, 89
NODESET, 34, 38, 64
NORMALIZATION FACTOR, 122, 124

OR symbol (|) , 62
OVERWRITE FILES, 72, 80

PACKAGE, 74, 103, 116
PERIODIC BC, 113, 114

ROTATE, 114
TRANSLATE, 113

PISCES HOURGLASS CONTROL, 148
PLOT VARIABLES, 81, 205
PRESCRIBED {X , Y 125
PRESCRIBED ACCELERATION, 167
PRESCRIBED FORCE, 146
PRESCRIBED VELOCITY, 159, 167
PRESSURE BC, 168
PRESSURE WAVE, 168
PROGRAMMED BURN, 87, 178, 216, 288
PROGRAMMED BURN JWL, 288
PRONTO ARTIFICIAL VISCOSITY, 174
PRONTO HOURGLASS CONTROL, 148

RADIAL CONSTRAINT, 120
RANDOM BLOCK VELOCITY, 152
RANDOM DENSITY, 160
RANDOM SURFACE, 161
REACTION, 86
READ RESTART DUMP, 70, 80
READ RESTART TIME, 70, 80
REGION, 304
REMESH, 86, 117
REMESH FREQUENCY, 119, 120
REMESH MOVEMENT, 119

315

REMESH MOVEMENT LIMITER, 307
REMESH MOVEMENT RATIO, 307
RESTART DUMPS, 41, 70, 80, 91
RIGID SEGMENT, 146
RIGID SURFACE, 147

SCALE LENGTH, 98
SESAME, 306
SI, 69, 98
SIDESET, 34, 38, 65
SIMPLE RADIAL RETURN, 256, 259, 260
SINUSOID DENSITY, 161
SINUSOID SURFACE, 162
SINUSOID VELOCITY, 153
SMALE MESH, 115, 117, 118
SMOOTHED EULERIAN MESH, 118, 125,

149
SOIL CRUSHABLE FOAM, 238
SOLID DYNAMICS, 94, 97, 181
START TIME, 66, 71, 72
STEINBERG GUINAN LUND, 245
STRUCTURED HYDRODYNAMICS, 94
STRUCTURED MESH, 192
STRUCTURED SOLID DYNAMICS, 95
SYMMETRY FACTOR, 98
symtensor, 67

TERMINATION CPU, 72–74
TERMINATION CYCLE, 73, 74
TERMINATION TIME, 73, 74
TIME INTERVAL, 68
TIME STEP SCALE, 99, 292, 307
time-or-cycle-interval, 68
time-range, 68
TIPTON REMESH METHOD, 119
TITLE, 69
TRACER POINTS, 78, 89, 137
TRACERS, 38
TRACK, 149
TRACTION BC, 147
TWISTED MESH, 165

UNITS, 38, 69, 98, 101, 140
CGS, 69, 98
SI, 69, 98

UNREFINEMENT CONTROL, 189
USER DEFINED INITIAL CONDITION, 111

vector, 66

vector-function-set, 66
VOID COMPRESSION, 177
VOLUME FRACTION, 81
VOLUMETRIC SCALE FACTOR, 97
VON MISES YIELD, 256
VR UPDATE METHOD, 182

WINSLOW REMESH METHOD, 119

ZERILLI ARMSTRONG, 250

316

DISTRIBUTION:

2 Oak Ridge National Laboratory
P.O. Box 2009,
Oak Ridge, TN 37831

J. Michael Starbuck, MS 8048
Seokho Kim, MS 8045

1 Vanden, K. J.
AFRL/MNAC
101 West Eglin Blvd.
Eglin AFB, FL 32542-6810

1 Chin, Chuck
U.S. Army ARDEC
SMCAR-AEE-WW -
Bldg. 3022
Picatinny Arsenal, NJ 07806-5000

1 Doney, Bobby
U.S. Army Research Laboratory
AMSRL-WT-TA
Aberdeen Proving Ground, MD,
21005-5066

1 Fermen-Coker, M.
U.S. Army Research Laboratory
AMSRL-WT-TC
Aberdeen Proving Ground, MD
21005-5066

1 Filbey, Gordon L., Jr.
U.S. Army Research Laboratory
AMSRL-WT-TC
Aberdeen Proving Ground, MD
21005-5066

1 Kimsey, Kent D.
U.S. Army Research Laboratory
AMSRL-WT-TC
Aberdeen Proving Ground, MD
21005-5066

1 Kingman, Pat
U.S. Army Research Laboratory
AMSRL-WT-TD
Aberdeen Proving Ground, MD
21005-5066

1 Schraml, Stephen J.
U.S. Army Research Laboratory
AMSRL-WT-TC
Aberdeen Proving Ground, MD
21005-5066

1 Becker, J. D.
Attn: CEERD-IH-N
U.S. Army Engineering & Research
Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

1 Howard, Scott
US Army AMCOM
AMSAM-RD-PS-WF
Bldg 5400
Redstone Arsenal, AL 35808

1 Poy, Stephen
Code 673
Carderock Division
Naval Surface Warfare Center
9500 MacArthur Blvd.
West Bethesda, MD 20817-5700

1 Sorenson, Carl D.
Brigham Young University
Dept. of Mechanical Engineering
435 CTB
Provo, UT 84602

1 Ding, Jow L.
Institute for Shock Physics
Washington State University
P.O. Box 642814
Pullman, WA 99164-2814

1 Haque, Aamer
U. S. Deptartment of Energy
MS DP-153
1000 Independence Ave. S. W.
Washington, DC 20585

1 Moore, Timothy W.
600 Boulevard South
Suite 106
Huntsville, AL 35806

1 Stecher, Frederick
Alliant TechSystems
MS: MN07-MW44
4700 Nathan Lane, North
Plymouth, MN 55442-2512

317

1 Stults, Allen
ITT Industires Advanced Engi-
neering & Sciences
600 Boulevard South, Suite 208
Huntsville, AL 35802-2104

1 Scott, Daniel
SAIC
1710 SAIC Dr.
M/S T1-5-2
McLean, VA 22102

1 Bassler, Robert
Applied Research Assoc.
Capital Area Division
2760 Eisenhower Ave., Suite 308
Alexandria, VA 22314-4569

1 MS 0139
P. Yarrington, 9902

1 MS 0321
W. J. Camp, 9200

1 MS 0370
P. N. Demmie, 9232

1 MS 0370
A. V. Farnsworth, Jr., 9232

1 MS 0370
M. E. Kipp, 9232

1 MS 0370
T. G. Trucano, 9211

1 MS 0378
W. J. Bohnhoff, 9231

1 MS 0378
S. Carroll, 9231

1 MS 0378
M. A. Christon, 9231

1 MS 0378
R. R. Drake, 9231

1 MS 0378
D. M. Hensinger, 9231

1 MS 0378
D. A. Labreche, 9231

1 MS 0378
C. B. Luchini, 9231

1 MS 0378
S. J. Mosso, 9231

1 MS 0378
S. V. Petney, 9231

1 MS 0378
A. C. Robinson, 9231

1 MS 0378
J. Robbins, 9231

1 MS 0378
R. M. Summers, 9231

1 MS 0378
T. E. Voth, 9231

1 MS 0378
M. K. Wong, 9231

1 MS 0378
R. L. Bell, 9232

1 MS 0378
G. C. Bessette, 9232

1 MS 0378
R. A. Cole, 9232

1 MS 0378
S. A. Silling, 9232

1 MS 0378
P. A. Taylor, 9232

1 MS 0521
S. T. Montgomery, 2561

318

1 MS 0557
T. W. Simmermacher, 9124

1 MS 0826
J. D. Zepper, 9143

1 MS 0835
J. M. McGlaun, 9140

1 MS 0835
E. A. Boucheron, 9141

1 MS 0835
M. W. Glass, 9141

1 MS 0836
D. A. Crawford, 9116

1 MS 0836
E. S. Hertel, Jr., 9116

1 MS 0836
R. G. Schmitt, 9116

1 MS 1110
P. B. Bochev, 9214

1 MS 1110
J. B. Aidun, 9230

1 MS 1152
S. J. Chantrenne, 1642

1 MS 1152
R. S. Coats, 1642

1 MS 1152
M. L. Kiefer, 1642

1 MS 1152
J. D. Kotulski, 1642

1 MS 1152
L. P. Mix, Jr., 1642

1 MS 1152
M. F. Pasik, 1642

1 MS 1152
T. D. Pointon, 1642

1 MS 1152
D. B. Seidel, 1642

1 MS 1152
C. D. Turner, 1642

1 MS 1166
C. R. Drumm, 15345

1 MS 1166
W. C. Fan, 15345

1 MS 1152
S. J. Chantrenne, 1642

1 MS 1168
C. Deeney, 1646

1 MS 1181
J. P. Davis, 1646

1 MS 1186
T. A. Brunner, 1674

1 MS 1186
R. B. Campbell, 1674

1 MS 1186
P. J. Christenson, 1674

1 MS 1186
K. R. Cochrane, 1674

1 MS 1186
M. P. Desjarlais, 1674

1 MS 1186
C. J. Garasi, 1674

1 MS 1186
T. A. Haill, 1674

319

1 MS 1186
R. J. Lawrence, 1674

1 MS 1186
R. W. Lemke, 1674

1 MS 1186
T. A. Mehlhorn, 1674

1 MS 1186
T. K. Mattsson, 1674

1 MS 1186
B. V. Oliver, 1674

1 MS 1186
K. Peterson, 1674

1 MS 1186
S. A. Slutz, 1674

1 MS 1186
R. A. Vesey, 1674

1 MS 1186
E. C. Wemlinger, 1674

1 MS 1186
E. P. Yu, 1674

1 MS 1190
J. P. Quintenz, 1600

1 MS 1191
M. K. Matzen, 1670

1 MS 1191
M. A. Sweeney, 1670

1 MS 1194
S. E. Rosenthal, 1644

1 MS 1194
E. M. Waisman, 1644

1 MS 1452
S. L. Szarka, 2552

1 MS 9051
S. E. Wunsch, 8351

1 MS 9159
J. J. Hu, 9214

1 MS 9159
R. S. Tuminaro, 9214

2 MS 0899
Technical Library, 9616

1 MS 9018
Central Technical Files, 8945-1

320

	ALEGRA: Version 4.6
	Abstract
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	Summary
	Nomenclature
	1 Introduction to ALEGRA
	2 Overview
	2.1 Basic ALEGRA Environment
	2.2 Running ALEGRA
	2.3 Example Problem
	2.4 Problem Reporting
	2.5 New for Version 4.6

	3 General Input
	3.1 Format and Syntax
	3.2 Common Parameter Constructs

	4 Execution Control
	4.1 Job Initiation and Termination
	4.2 I/O Control

	5 General Physics Input
	5.1 Mesh Choices
	5.2 Unstructured Mesh Physics Choices
	5.3 Structured Mesh Physics Choices
	5.4 Multi-Region Dynamics
	5.5 Geometry
	5.6 Time Step Control
	5.7 General Initial Conditions
	5.8 General Boundary Conditions
	5.9 Block Input
	5.10 Domain Input
	5.11 Cell Doctor
	5.12 Tracer Points
	5.13 Functions

	6 Energetics Input
	6.1 Energetics I/O Control
	6.2 Energy Sources

	7 Mechanics Input
	7.1 Boundary Conditions and Body Forces
	7.2 Mechanics Algorithm Control

	8 (Hydro)Dynamics Input
	8.1 Dynamics Initial Conditions
	8.2 Dynamics Initial Density and Surface Perturbations
	8.3 Dynamic Boundary Conditions
	8.4 Dynamics Algorithm Control
	8.5 Dynamics Supplementary Models

	9 Solid Dynamics Input
	9.1 Solid Dynamics Algorithm Control

	10 Adaptivity Input
	10.1 Adaptivity Algorithm Control
	10.2 Dynamic Load Balancing

	11 Structured Mesh Input
	11.1 Structured Mesh
	11.2 Block
	11.3 Output
	11.4 Mesh Input

	12 Material and Material Model Input
	12.1 Materials
	12.2 Material Models
	12.3 Equation of State Models
	12.4 Constitutive Models
	12.5 Yield Models
	12.6 Plasticity Models
	12.7 Combined Models
	12.8 Fracture Models
	12.9 KEOS Reactive Burn Models
	12.10 Burn Models
	12.11 Material Model Examples

	13 Diagnostics
	13.1 Interactive Menu
	13.2 Global Diagnostic Variables
	13.3 Additional HISPLT Database Variables

	14 Performance Measurement in ALEGRA
	14.1 Tricks and Traps

	15 Frequently Asked Questions
	References
	Index
	Distribution

