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Abstract

The Finite Element Interface to Linear Solvers (FEI) is a linear system assembly library.
Sparse systems of linear equations arise in many computational engineering applications, and the
solution of linear systems is often the most computationally intensive portion of the application.
Depending on the complexity of problems addressed by the application, there may be no single
solver package capable of solving all of the linear systems that arise. This motivates the need to
switch an application from one solver library to another, depending on the problem being solved.
The interfaces provided by various solver libraries for data assembly and problem solution differ
greatly, making it difficult to switch an application code from one library to another. The amount
of library-specific code in an application can be greatly reduced by having an abstraction layer
that puts a ”common face” on various solver libraries.

The FEI has seen significant use by finite element applications at Sandia National Laborato-
ries and Lawrence Livermore National Laboratory. The original FEI offered several advantages
over using linear algebra libraries directly, but also imposed significant limitations and disad-
vantages. A new set of interfaces has been added with the goal of removing the limitations of
the original FEI while maintaining and extending its strengths.
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Finite Element Interface to Linear
Solvers (FEI) Version 2.9: Users Guide

and Reference Manual

1 Introduction

Consider the assembly and solution of a linear system denoted by

Ax � b� A � ℜNxN
� x�b � ℜN (1)

where N is the number of degrees of freedom in the problem being solved. In the context of finite el-
ement formulations the linear system is often denoted by Ku� f , with K being the global “stiffness”
or “system” matrix, f the “load vector” or “forcing term”, and u the solution being sought.

The assembly of a linear system by a computational engineering application involves instanti-
ating data structures (e.g., matrix and vector objects if using a C++ solver library) and populating
them with coefficient data. The solution of the linear system involves passing the populated data
structures to a solution algorithm and then recovering the solution. There are many software li-
braries available for solving linear systems, including Trilinos [7, 8], PETSc [4], HYPRE [5], FETI
[9, 6] and Prometheus [1, 3] (to name only a few). Some libraries provide a selection of solution
and preconditioning methods, while others provide a single specialized iterative algorithm or direct
solver. Choosing the appropriate library to use in an application is often non-trivial and depends on
several factors including the formulation chosen by the application, and the mathematical properties
of the linear system. It is often desirable for an application to be able to choose a solver library at
run-time, depending on the particular problem being solved.

While the tasks of assembling and solving a linear system are conceptually always the same for
a given application, the implementation can vary greatly depending on which solver library is being
used. Since the data structures being populated are almost always provided by the solver library, a
significant amount of application code may need to be library-specific. In order to allow the appli-
cation to switch easily between different solver libraries, the library-specific code that deals directly
with solver data structures needs to be moved from the application into an abstraction layer. The
abstraction layer makes use of the fact that solver libraries share many conceptual details related to
making contributions to matrices and vectors, launching solution algorithms, etc. Thus the abstrac-
tion layer defines generic interfaces for the application to use, and library-specific implementations
of those generic interfaces translate the data into the specific form required by the library. An ap-
plication can then switch between various implementations of the generic interface without altering
the application’s calling code.

The Finite Element Interface to Linear Solvers (FEI) serves as an abstraction layer for assembling
linear systems. As the name implies, the FEI was originally intended for finite element applications.
It consisted of a single large interface that accepted linear system contributions, handled the launch-
ing of an underlying solution method, and finally returned the solution data. This approach was
found to be restrictive and overly opaque (hid too much, restricted access to underlying solver li-
brary and data structures). Rather than having a single interface that represents the entire underlying
library and manages linear system assembly and solution, it is more flexible and natural to have sev-
eral smaller, more modular interfaces which represent individual objects such as matrices, vectors,
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vector-spaces, etc. In addition to the improved modularity, they allow more general use-cases (no
longer focusing exclusively on nodal finite element formulations) and remove restrictions on access
to underlying data and objects.

1.1 Organization of Document

This document will first describe general issues and terms associated with linear system assembly,
then briefly describe the original FEI before describing the new modular interfaces. Each of the
new interfaces is described in conceptual terms, and the details of method prototypes and arguments
is left to the sections in the appendices, which are produced from in-code documentation. For
examples demonstrating usage of the interfaces, see the programs poisson3.C and cube3.C in the
FEI code distribution.

2 Linear System Assembly

The FEI is intended for applications which perform calculations on unstructured meshes and solve
linear systems with sparse matrices. In this document a mesh is described as a collection of mesh-
objects. There are several different kinds of mesh-objects, including nodes, edges, faces and ele-
ments. Note that there are other names for some of these, such as vertices, cells, etc. Additionally,
in some contexts an entity such as a constraint-relation can be used as a mesh-object for the purposes
of defining and placing degrees of freedom in the problem.

The term “degree of freedom” (DOF) denotes a component of a field which is defined at one or
more mesh-objects. Examples of fields include temperature scalars, displacement vectors, etc. Some
finite-element analyses are concerned only with a temperature field defined at the nodes of a mesh,
in which case the linear system to be assembled has dimension equal to the number of nodes. Other
analyses can be far more complex, defining a mixture of nodal displacement fields, edge pressures,
flux on faces, etc.

To specify the location of a particular DOF in the problem, it is necessary to pair a field and a
mesh-object; e.g., temperature at node 983. For vector fields, it is further necessary to specify an
offset into the field. The linear system assembled from the fields defined over a mesh is a system of
equations where each equation corresponds to a degree of freedom in the problem.

Using the FEI, an application assembles a linear system by providing information about the
problem’s mesh and the fields of interest. Only mesh-objects on which solution-fields are defined
need to be referenced. The process of describing the mesh and associated data consists of two major
phases: the initialization phase, and the loading phase. In the initialization phase, the application
defines its fields, topological and structural information such as the number and connectivity of
mesh-objects (e.g., number of elements, number of nodes per element, and element-to-node con-
nectivity lists for a nodal finite-element application). In the loading phase, the application provides
coefficient data through submatrix and subvector contributions (element-stiffnesses, element-loads),
boundary-condition specifications, etc.

The FEI can be thought of as a filter which accepts a variety of different types of contributions

8
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Figure 1. Trivial 2-element mesh showing numbered nodes at
which a scalar field ’T’ is defined. The resulting linear system in
this case has 6 equations, with matrix nonzero locations indicated
by shaded blocks.

in forms that are naturally produced by computational engineering applications, and translates them
into algebraic linear system contributions. It assists the assembly process by defining vector-spaces
and matrix-graphs, assists with loading contributions of coefficient data, and with the imposition
of boundary-conditions and constraint-relations. The FEI provides infrastructure services such as
managing inter-process communication to ensure that contributions from shared mesh-objects are
given to the linear system on the correct processor. The FEI also provides mappings from mesh-
objects and fields on the application side to equations or global indices in the linear system.

Consider the trivial 2-element mesh of 2-D quadrilateral elements shown in figures 1 and 2. The
mesh has a scalar field “T” defined at the nodes. The linear system having the structure shown
would arise from a finite-element formulation that produces, for each element, an element-stiffness
submatrix and an element-load subvector. The dimensions of the submatrices and subvectors is
equal to the number of DOFs defined at mesh-objects connected to an element. In this case, that is
the number of DOFs defined at connected nodes. Thus, the stiffness submatrices are of size 4x4 and
the load subvectors have length 4.

When a mesh is decomposed to reside on multiple processors, the placement of the processor
boundary generally results in some mesh-objects being shared by more than one processor. The
shared mesh-objects are duplicated so that a copy resides on each sharing processor. Note that
the mesh decomposition is performed either by the application or by a preprocessing step performed
before the application is launched. Applications pass all data to the FEI locally on each processor, so
the FEI inherits the mesh decomposition and makes no decisions regarding the distribution of mesh-
objects. In the example, nodes 2 and 3 are shared by both processors. The algebraic linear system
that is assembled by the FEI doesn’t have shared equations. Instead, each equation is assigned
a unique “owning” processor. The FEI uses the arbitrary rule that the lowest-numbered sharing
processor is given ownership of the shared mesh-object, and that processor also owns all equations
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Figure 2. Trivial 2-element mesh on 2 processors.

in the linear system that correspond to DOFs on the shared mesh-object. It is also worth noting that
matrices assembled by the FEI have a one-dimensional row-wise decomposition. In other words,
processors own blocks of complete rows of the matrix.

3 “Old” versus “New” Interfaces

There are currently two distinctly different ways to assemble and solve a linear system using the
FEI; through the “old” original FEI interface, or through the “new” interfaces. As will be described
in more detail in the next section, the original FEI interface is a single large object which manages
the entire process of linear system assembly, solution, and data return. The new interfaces are a
group of several smaller more modular interfaces which play separate roles but are used together to
essentially perform the same overall tasks as the original FEI. It should be noted that there are C
language wrappers that allow the original FEI interface to be used from non-C++ applications. The
new interfaces provide no inter-language support and can only be used from C++. The new inter-
faces represent an improvement over the old, offering increased modularity and flexibility as well
as improved performance due to better implementation practices. The old interface will continue
to be maintained since it is not trivial for applications to immediately switch to the new interfaces.
However, it is hoped that the new interfaces will represent an attractive alternative.

The FEI library is written in the C++ programming language. FEI development began in 1997,
and at that time C++ language support wasn’t entirely uniform from one compiler to another.
Support for language features like templates, namespaces and the Standard Template Library has
steadily improved in recent years, and as a result there are a couple of inconsistencies in FEI im-
plementation code that are worth noting. The original FEI interface was expressed as an abstract
base class called “FEI” and implemented by a class called “FEI Implementation”, neither of which
are in a namespace. The new interfaces are declared as abstract base classes in a namespace called
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“fei::” and implemented by corresponding classes in a different namespace (“snl fei::”). Some of
the implementation code for the new fei classes use STL containers, but this can still be disabled by
a compile-time macro if the code is to be used on a platform which has poor STL support. Some
of the fei implementation classes are templates, and by default the headers in turn include the corre-
sponding ‘.C’ files. This can also be controlled using a compile-time macro.

4 Original FEI Interface

The original FEI interface contained methods in 5 broad groups, as follows.

1. Structure Initialization: Methods for defining field sizes (number of scalar components), num-
ber of elements, nodes-per-element, passing connectivity-lists, etc.

2. Coefficient Data Loading: Methods for loading element-stiffness submatrices, element-load
subvectors, boundary-conditions, etc.

3. Solution and Residual Calculation: Methods for launching underlying solver-library’s solution
methods, residual calculations.

4. Solution Data Return: Methods for returning nodal solution data from underlying ‘x’ vector,
etc.

5. Miscellaneous Queries for Attributes: Methods for querying field sizes, number of elements
in an element-block, etc.

The names of all of the methods are given in an appendix. Over time the number of methods in the
interface became so large as to be a significant motivating factor for developing the group of smaller
interfaces described in later sections.

It is useful to illustrate basic usage of the interface with the following pseudo-code that assembles
and solves a very simple problem. Note that for clarity and brevity the pseudo-code will omit most
function arguments, and will not check function return-codes for errors, etc.

//Declare an instance of the FEI class.
FEI* fei = new FEI_Implementation(...); //arguments not shown

//define fields. e.g., fieldID 0 for displacement, with field-
//size equal to 3.
fei->initFields(...);

//define the characteristics of a block of elements. e.g., specify
//that there will be 8 nodes per element and each node will have
//field 0 defined.
fei->initElemBlock(...);

//loop over elements and pass element-node connectivity lists to
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//the FEI instance.
for(i=0; i<nelem; ++i) {
fei->initElem(...);

}

//advise FEI that initialization is complete.
fei->initComplete();

//loop over elements again and pass stiffness submatrices and
//load subvectors to the FEI instance.
for(i=0; i<nelem; ++i) {
fei->sumInElemMatrix(...);
fei->sumInElemRHS(...);

}

//pass boundary-condition specifications to the FEI instance.
fei->loadNodeBCs(...);

//advise FEI that coefficient loading is complete.
fei->loadComplete();

//launch the underlying linear solver method to solve the
//linear system.
fei->solve(...);

//obtain the solution corresponding to lists of node ids etc.
fei->getNodalFieldSolution(...);

This pseudo-code provides the briefest possible example to show how the original FEI interface
is used to assemble and solve a linear system. For more complete and realistic examples, see the
programs included with the FEI source-code distribution. Specifically, see the programs in the files
poisson.C and cube.C.

4.1 FEI Strengths and Weaknesses

The original FEI interface provided a very strong abstraction layer insulating application code from
the details of using a linear algebra library. For some nodal finite element formulations the interface
is ideal and natural to use. Unfortunately these characteristics are also weaknesses. For many
problems it is necessary to make use of special solver library features in order to use optimal solution
methods. An overly opaque abstraction layer makes it very difficult to interact with particular library
features in some cases. Also, the strong focus on nodal finite element formulations makes it difficult
to consider other formulations, fields defined on other types of mesh-objects (other than nodes), etc.
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5 The “New” Interfaces

The new interfaces are intended to correct several deficiencies of the original FEI interface. Instead
of having a single interface that manages the entire process of linear system assembly and solution,
there are now separate interfaces representing vector-spaces, matrix-graphs, matrices, vectors, linear
systems and solvers. This allows finer and more flexible control of system assembly. Additionally,
input methods have been generalized to allow the definition and use of arbitrary mesh-object types,
rather than having terms like “node” hard-wired into the interface. This removes the focus on nodal
finite element formulations, allowing for easy use of the interfaces for any formulation. Lastly, the
abstraction layer has been made thinner and more light-weight. It still provides insulation from
library-specific interfaces, but it is now easier to by-pass the abstraction layer when appropriate and
gain access to the underlying library-specific objects. The new interfaces are intended to be used
as “helpers” to assist with creating and using library-specific objects, but it is recognized that there
are also situations when the application code may need to deal directly with those objects. If done
intelligently and confined to certain “library-aware” code scopes, it can greatly enhance functionality
by allowing access to library-specific features without defeating the abstraction layer and without
limiting the application’s ability to switch from one library to another.

The fei interfaces are divided into two sub-groups, providing abstraction and infrastructure. Ab-
straction refers to the provision of a layer that allows an application code to work with a “generic”
matrix or vector object without necessarily knowing the details of the data structure or which library
provides it. Infrastructure refers to services provided by fei classes which assist with the initial-
ization or usage of matrices, vectors, etc. An example of fei infrastructure is the fei::VectorSpace,
which maps a set of degrees of freedom to an algebraic equation space, which is in turn needed in
order to define sizes and data distribution when creating vectors, etc.

«interface»
fei::VectorSpace

«interface»
fei::MatrixGraph

«interface»
fei::Matrix

«interface»
fei::Vector

«interface»
fei::LinearSystem

«interface»
fei::Solver

Figure 3. Interfaces in the fei:: namespace.

There are 6 interfaces, separately representing the following entities:
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� fei::VectorSpace describes the problem. It holds definitions of mesh-object types, fields, lists
of mesh-objects on which fields are defined, lists of mesh-objects which are shared with other
processors, etc. It ultimately maps sets of degrees of freedom to a globally consistent algebraic
equation space.

� fei::MatrixGraph represents the connections between two vector-spaces. It accumulates con-
nectivity lists (e.g., element-node lists, constraint-relation connectivities) and generates an
algebraic matrix graph.

� fei::Vector is a thin container that provides an abstraction layer for library-specific vector
objects. It provides methods for passing coefficient data to and from vectors. It also pro-
vides methods for communicating data between processors that own the corresponding mesh-
objects, and processors that only share the mesh-objects. This allows users to access shared
data on the local processor even if the data is owned by a different processor in the underlying
library’s distributed vector.

� fei::Matrix is a thin container that provides an abstraction layer for library-specific matrix
objects. It provides methods for inputting and accessing coefficient data, and also methods for
communicating shared data between processors.

� fei::LinearSystem is a container that binds a matrix and two vectors (solution and right-hand-
side) for the purposes of essential boundary condition enforcement, etc.

� fei::Solver is a thin container that provides an abstraction layer for library-specific solver
objects or interfaces. Implementations of this convert “generic” fei:: matrices and vectors to
the library-specific inputs required by particular solution methods.

These interfaces, like the original FEI interface, are abstract. They provide many of the same ser-
vices provided by the original FEI interface in terms of accepting data that is naturally produced by
the application (element submatrices, etc.) and translating the data into algebraic contributions for
the underlying library-specific data objects.

There is also a factory interface for generating instances of these interfaces in code-scopes that
aren’t aware of the run-time type of the objects. As will be described in more detail in follow-
ing sections, Matrix, Vector and Solver instances will generally have run-time types specific to the
particular linear algebra library being used, while VectorSpace, MatrixGraph and LinearSystem in-
stances will not. Generally the linear algebra library being used provides some form of vector,
matrix and solver, with interfaces and structures that are unique to the library. These are abstracted
by the corresponding fei interfaces mentioned above. The other fei classes (VectorSpace, Matrix-
Graph and LinearSystem) provide infrastructure more than abstraction, since they often don’t have
direct counterparts in linear algebra libraries.

A library-specific instance of the fei::Factory interface is generally created first. That can then
be used in other code-scopes to generate instances of the other interfaces, ensuring that they have
consistent run-time types without requiring that the application code be aware of what the run-time
types are. The assumption here is that the application must create the factory in some code-scope
that is aware of the particular linear algebra library being used. However, those portions of the
application that manage the majority of linear system assembly can use the factory to create objects
such as matrices and vectors without knowing which library is being used.
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Some of the interfaces depend on the others, and this dictates the order in which they must be
created and initialized in some cases. For instance, a vector-space is required as an input argument
when creating a vector. A matrix-graph is required before creating a matrix, etc.

The following pseudo-code provides a rough outline of creating and using these interfaces to
assemble and solve a linear system. (Note again that the pseudo-code omits many arguments and
does not check error return codes, etc.)

//Assume an instance of fei::Factory has been created.
fei::Factory* factory = ...;

//Create vector-space and matrix-graph.
fei::VectorSpace* vecspace;
factory->createVectorSpace(MPI_COMM_WORLD, vecspace);

fei::MatrixGraph* matgraph;
factory->createMatrixGraph(vecspace, ... , matgraph);

//define a displacement field
int displ_field = 0, displ_field_size = 3;
vecspace->defineFields(1, &displ_field, &displ_field_size);

//define two mesh-object types
int nodeType = 0, edgeType = 1;
vecspace->defineIDTypes(1, &nodeType);
vecspace->defineIDTypes(1, &edgeType);

//define the characteristics of a block of elements. e.g., specify
//that there will be 8 nodes per element and each node will have
//the displacement field defined. (Argument declarations not shown.)
matgraph->definePattern(patternID, nodesPerElem, nodeType, displ_field);

//specify how many elements will be in this block of elements.
matgraph->initConnectivityBlock(blockID, nelem, patternID);

//loop over elements and pass element-node connectivity lists to
//the matrix-graph.
for(i=0; i<nelem; ++i) {
matgraph->initConnectivity(blockID, elems[i], nodelist[i]);

}

//advise the matrix-graph that initialization is complete.
matgraph->initComplete();

//create matrix, vectors, bind them into a linear-system
fei::Matrix* A;
fei::Vector *x, *b;
fei::LinearSystem* linearsystem;
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factory->createMatrix(matgraph, A);
factory->createVector(matgraph, x);
factory->createVector(matgraph, b);
factory->createLinearSystem(matgraph, linearsystem);

linearsystem->setMatrix(A);
linearsystem->setSolutionVector(x);
linearsystem->setRHS(b);

//loop over elements again and pass stiffness submatrices and
//load subvectors to the matrix and rhs vector.
for(i=0; i<nelem; ++i) {
A->sumIn(blockID, elems[i], ...);
b->sumInElemRHS(blockID, elems[i], ...);

}

//pass boundary-condition specifications to the linear-system.
linearsystem->loadEssentialBCs(numBCnodes, bcnodeIDs, ...);

//advise linear-system that loading is complete (BCs can be imposed, etc.).
linearsystem->loadComplete();

//create an instance of fei::Solver and solve the linear-system
fei::Solver* solver;

factory->createSolver(solver);

solver->solve(linearsystem, ...);

//obtain the solution corresponding to lists of node ids etc.
x->copyOutFieldData(...);

As illustrated by the pseudo-code, the following sequence of primary steps is required to assem-
ble a linear system.

� initialize basic problem features such as mesh-object types (identifier types), and field identi-
fiers

� initialize relevant mesh connectivities which will induce the matrix graph (nonzero sparsity
structure)

� pass in coefficient data (submatrices, subvectors, etc.)

There are steps not shown in the above pseudo-code which usually are required for real problems,
including identification of shared mesh-objects for parallel computations, definition of constraint-
relations, etc. The following sections provide more detailed descriptions of the individual interfaces,
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along with usage guidelines and expected behavior, as well as arguments that are required when
creating interface instances.

6 fei::VectorSpace

fei::VectorSpace provides methods for defining a solution-space (set of degrees of freedom) and
for mapping that space to a globally consistent algebraic equation space. fei::VectorSpace seldom
has a direct counterpart in linear algebra libraries; it provides infrastructure rather than abstraction.
Factory classes use the algebraic vector-space information provided by fei::VectorSpace (such as
global and local dimensions, etc.) in constructing library-specific vector objects.

Once initialized, fei::VectorSpace holds a description of all degrees of freedom defined for the
problem and has a large number of query methods which can provide information such as the fol-
lowing:

� number of locally held mesh-objects

� lists of locally held mesh-object identifiers

� number of fields defined across the entire problem, and a list of those fields

� list of fields defined at a particular identifier

� global indices for equations corresponding to a particular identifier

� whether a particular identifier is locally owned

� number of scalar components in a particular field

For a complete list of queries available, refer to the class documentation, which is provided in an
appendix (see table of contents).

fei::VectorSpace provides methods for defining mesh-object types (referred to as identifier-types
or ID-types) and fields that will be active in the problem. See the methods defineFields and defineI-
DTypes in the fei::VectorSpace class documentation. Also, methods are provided for initializing
information such as which fields will be active at specific mesh-objects (see initSolutionEntries).
fei::VectorSpace accumulates lists of mesh-objects which have fields defined, and ultimately gener-
ates the information necessary to define an algebraic vector-space, including the total number of de-
grees of freedom in the problem and lists of indices that are local to each processor. fei::VectorSpace
also provides methods for declaring which mesh-objects are shared by multiple processors (see init-
SharedIDs). The generated algebraic vector-space essentially consists of the set of global indices or
equation numbers that arise from the mapped degrees of freedom. This information can be used in
defining or constructing vector objects for almost any linear algebra library. VectorSpace can gener-
ate indices in “overlapping” or “non-overlapping” form. These terms are mainly relevant to parallel
computing. An overlapping set of indices includes, on each processor, indices which correspond to
mesh-objects that are either owned or shared. A non-overlapping set of indices includes only indices
from owned mesh-objects. Thus, some of the indices in the overlapping set may be duplicated on
multiple processors while indices in the non-overlapping set are unique in that they only appear on
one processor. See the methods getIndices Owned, getIndices SharedAndOwned, etc.
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6.1 Shared Identifiers

When a problem is run in a distributed-memory parallel setting, some mesh-objects are typically
shared by multiple processors. It is necessary for the user to tell the fei::VectorSpace object which
mesh-objects are shared and which processors share them, by passing lists of mesh-object IDs and
lists of sharing processors to the fei::VectorSpace::initSharedIDs method. Furthermore, it is neces-
sary to do this in a globally symmetric way. This means that if node 48 is shared by processors 2 and
3, for example, then the initSharedIDs method must be called on processor 2 and also on processor
3. Processor 2 must be told that it shares the node with processor 3, and processor 3 must be told
that it shares the node with processor 2.

6.2 Inactive Degrees of Freedom

A later section details some fei::MatrixGraph functionality related to slave constraints and the pro-
jection of certain degrees of freedom out of the solution space. This corresponds to marking those
degrees of freedom as inactive on a fei::VectorSpace object. The method used for this is markInac-
tiveDOF. Note that the removal of inactive degrees of freedom is transparent to the user for the most
part. The user simply initializes the slave constraints, and the fei::MatrixGraph internally interacts
with the fei::VectorSpace as necessary to deactivate the appropriate degrees of freedom.

7 fei::MatrixGraph

fei::MatrixGraph accumulates connectivities and generates an algebraic matrix graph, defining the
nonzero structure of the sparse matrix that is to be created. Like fei::VectorSpace, fei::MatrixGraph
provides infrastructure rather than abstraction. A fei::MatrixGraph object requires two fei::Vector-
Space objects at creation, which are referred to as a row-space and a column-space. If the column-
space object provided at creation is NULL, the fei::MatrixGraph simply assumes that the column-
space equals the row-space. The input fei::VectorSpace objects don’t need to be fully initialized
when the fei::MatrixGraph is created. If the user passes connectivities to the fei::MatrixGraph that
include mesh-objects that haven’t yet been initialized in the fei::VectorSpace, the fei::MatrixGraph
will call the appropriate fei::VectorSpace methods to initialize them.

Entries in a matrix-graph represent connections between mesh-objects in the row-space and
mesh-objects in the column-space. In the general case, each matrix-graph contribution is associ-
ated with two mesh-objects, one from the row-space and one from the column-space. The location
of the contribution in the algebraic matrix-graph (row and column) is determined by looking up the
equation or index associated with the row-space mesh-object and the column-space mesh-object,
respectively. In the general case a submatrix contribution must be accompanied by two connectiv-
ity lists, row-space mesh-objects and column-space mesh-objects. These connectivity lists, together
with information such as which fields are defined at each mesh-object, are mapped to a list of indices
referred to as scatter-indices. The scatter-indices for the row-space and column-space together spec-
ify the locations in the matrix-graph of the components of the contribution. In the case of symmetric
contributions (such as most finite-element stiffness submatrices) the row-space is the same as the
column-space, and a single list of mesh-objects is used to specify both row and column locations. A
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fei::MatrixGraph object can be queried for its row-space and vector-space objects using the methods
getRowSpace and getColumnSpace.

7.1 Connectivity Blocks, Connectivity Lists

The term “connectivity list” refers to a list of mesh-objects which are connected in some way, and
which will produce entries in the matrix-graph. An example of a connectivity list is a list of nodes
that are associated with an element. In many finite-element formulations, element contributions
are symmetric so that the nodes in an element-to-node connectivity list are both row-space nodes
and column-space nodes. Some problems can produce non-symmetric contributions, which are
specified by two connectivity lists, containing a list of mesh-objects in the row-space, and another
list of mesh-objects in the column-space. The term “connectivity block” refers to a homogeneous
group of contributions, and an example of a connectivity block is a group of elements with the same
topology.

fei::MatrixGraph provides methods for declaring (initializing) connectivity blocks with either
symmetric or non-symmetric contributions. Corresponding methods are provided to initialize con-
nectivities, accepting one or two connectivity-lists. See the methods initConnectivityBlock and
initConnectivity in the fei::MatrixGraph class documentation. When initializing a connectivity-
block, the user must specify a “pattern” which describes the layout of contributions. Patterns are
described in the next subsection.

7.2 Patterns

Connectivities for a large block of homogeneous contributions are initialized on the matrix-graph by
first describing the layout of a single contribution, in terms of connected mesh-objects and associated
fields, and then supplying connectivity lists for each contribution. This layout is referred to as a
“pattern”. A pattern and a connectivity list together contain the information necessary to produce
a set of scatter-indices. Since a pattern only applies to a single connectivity list, two patterns are
required to describe a non-symmetric contribution.

fei::MatrixGraph provides methods for defining patterns of varying levels of complexity. A
pattern defines the number of mesh-objects that will make up a connectivity list, along with the
type of those mesh-objects, and also the fields that are associated with each mesh-object. A simple
pattern might describe a list of mesh-objects which are all the same type and which all have a
single associated field. More complicated patterns may involve a mixture of mesh-object types, and
varying numbers of fields per mesh-object. See the different overloadings of definePattern in the
fei::MatrixGraph class documentation.

7.3 Constraint Relations

Figure 4 shows the trivial 2-element mesh of previous examples, now with 1 element refined (re-
placed with 4 smaller elements). The matrix shown has 12 rows and columns, representing the 11
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nodes in the mesh, plus an additional row and column for the lagrange multiplier constraint that ties
the hanging node (6) to nodes 2 and 3.

Each constraint is defined by a list of constrained mesh-objects, the field to be constrained at
each mesh object, a list of coefficient weights and a right-hand-side value. If the solution field at the
i-th constrained mesh-object is denoted by ui, and the i-th coefficient weight is denoted by wi then
the constraint enforces the relationship

u0w0 �u1w1� � � ��unwn � rhsvalue (2)

where n is the number of mesh-objects in the constraint.

In general, when problems are solved subject to constraint-relations, we denote the linear-system
as follows. Given a system of constraint relations, denoted by

Cu � g� C � ℜNcxN
� g � ℜNc (3)

where Nc is the number of constraint relations and C denotes the rectangular matrix containing
the coefficient weights, and with structure determined by the constraint connectivities (lists of con-
strained mesh-objects). If constraints are imposed using a lagrange multiplier formulation, a logi-
cally partitioned linear system arises

�
K CT

C 0

��
u
λ

�
�

�
f
g

�
(4)

and notably, the matrix is indefinite which is an important consideration if choosing an iterative
solution method.

To impose a constraint-relation using the lagrange multiplier formulation, a user must define
a mesh-object type for constraint-relations in addition to the other “real” mesh-object types being
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used. A user-specified constraint identifier is then passed, along with the identifiers and types of the
mesh-objects being constrained, and the constrained field at each mesh-object, to the fei::MatrixGraph
method initLagrangeConstraint. This ensures that the required structure will exist in the matrix-
graph. Note that it is necessary to separately load the constraint coefficient weights, and that is done
using a method on the fei::LinearSystem class. Constraint-relations may be imposed using a penalty
formulation, by instead calling the method initPenaltyConstraint. Constraint-relations imposed
using the penalty formulation don’t cause extra rows or columns to be added to the linear system.

7.4 Slave Constraints

A third approach for imposing constraint-relations is to use slave constraints. In the example illus-
trated in figure 4, the degree of freedom at node 6 can be considered a “slave”, with its value defined
to be a linear combination of the degrees of freedom at the other nodes in the constraint. In this
particular case, the value at node 6 will simply be the average of the values at nodes 2 and 3.

One of the data-filtering services provided by the fei is the removal of ”master-slave” constraints
during linear system assembly. The matrix in equation (4) is indefinite, and can be difficult to solve
or precondition effectively.

The approach used for projecting the constrained system into a reduced space is described in a
paper by Saint-Georges et al [11].

When constraints represent master-slave relations (one degree of freedom is slaved to a linear-
combination of other degrees of freedom), the constraint matrix C from equation (3) can be ex-
pressed as

C � � D �I � (5)

and D is referred to as the dependency matrix. The solution vector u can be split into dependent and
independent unknowns and written as an expression involving D,

ud � Dui�g (6)

and the global stiffness matrix K can be partitioned according to dependent and independent vari-
ables as follows.

K �

�
Kii Kid

Kdi Kdd

�
(7)

Then a reduced matrix Kr of size N�Nc (N degrees-of-freedom, Nc constraints) is given by

Kr � Kii �KidD�DT Kdi�DT KddD (8)

and if K is symmetric and positive definite, then so is Kr. A reduced right-hand-side fr is given by

fr � fi�DT fd �Kidg�DT Kddg (9)

and the problem of solving equation (1) subject to equation (3) is equivalent to solving the reduced
system

Krui � fr (10)

which is usually much easier to solve with an iterative method. In some cases applications have been
able to solve the reduced system when the unreduced system couldn’t be solved. The reduction can
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be carried out by the fei using local operations during element-wise assembly of the linear system.
It is completely transparent to the user, and the solution data is returned in the original unreduced
space. See the method initSlaveConstraint in the class documentation for fei::MatrixGraph. When
slave constraints are used, the initComplete method internally generates a new fei::VectorSpace
object for the row-space, and that object has mappings to the reduced equation space. The re-
duced row-space object can be obtained from the fei::MatrixGraph using the query method getRe-
ducedRowSpace. If there are no slave constraints, then getReducedRowSpace returns the same
object as getRowSpace.

8 fei::Vector

fei::Vector is a thin container that provides an abstraction layer for library-specific vector objects.
Note that fei::Vector is primarily targeted towards data input and output, and doesn’t attempt to
provide a comprehensive set of mathematical operations. This vector representation does not require
that data be accessed only on the ’owning’ processor. In other words, this representation may be used
with an overlapping data decomposition. In most cases the underlying library-specific vector will
have a non-overlapping data decomposition (each equation uniquely owned by a single processor).
Overlapping data (shared by local processor but the equation is owned by another processor) may be
assembled into an fei::Vector locally, and will be moved into the underlying non-overlapping vector
on the correct processor when the gatherFromOverlap method is called. Conversely, if the user
wants to retrieve overlapping data from the vector locally for an equation that resides on another
processor, that data is not guaranteed to be available until the scatterToOverlap method is called.
The scatterToOverlap method does communication necessary to populate shared-but-not-owned
data in the fei::Vector from data in the underlying algebraic vector.

Several methods are provided for putting data into, and getting data out of the vector object. See
the methods sumIn, copyIn, copyOut, sumInFieldData, copyInFieldData, copyOutFieldData,
etc., in the class documentation for fei::Vector. The distinction between the “sumIn” and “copyIn”
methods is that “sumIn” accumulates partial sums into any data that may already be present in the
specified locations, while “copyIn” replaces any data that may already be present. These input meth-
ods have multiple overloadings. Some accept coefficients with locations specified by corresponding
mesh-objects and fields, while others allow locations to be specified by a connectivity-list identifier
(e.g., an element-identifier for a load-vector contribution). The methods that take a connectivity-list
identifier only work if the fei::Vector instance had a fei::MatrixGraph object supplied at creation. If
the fei::Vector was created with a fei::VectorSpace object instead of a fei::MatrixGraph, then certain
input methods aren’t available. Still other fei::Vector input methods allow coefficient locations to be
specified using “raw” global indices or equation numbers. Global indices can be obtained by obtain-
ing the fei::Vector’s fei::VectorSpace object and using query methods to map degrees of freedom to
indices. Note that if the fei::Vector object has a fei::MatrixGraph object which has slave constraints,
then the reduced vector-space must be used in order to obtain correct indices. Input methods that
take mesh-objects and fields internally do the lookups to put data in the correct locations, accounting
for inactive entries in the vector-space.

The abstract fei::Vector class is implemented by snl fei::Vector, which is a template. snl fei::Vector
is templated on the type of the underlying library-specific vector, and has a query method, getUn-
derlyingVector, for accessing the library-specific vector. Thus, it is easy to get the underlying vector
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from fei::Vector using dynamic cast in code scopes that know which type to cast to.

8.1 Data Input

When locally owned data is input, fei::Vector relays it immediately to the underlying algebraic
vector. When shared remotely owned data is input, fei::Vector holds it in temporary storage. When
gatherToOverlap is called, fei::Vector moves the shared data to the owning processor and then
relays it to the underlying algebraic vector. At that point the temporary storage is deleted.

8.2 Data Access

When locally-owned data is accessed, fei::Vector retrieves it from the underlying algebraic vector
directly. In order to access shared remotely owned data (overlapped data), it is necessary first to
call the method scatterToOverlap. This method does the communication necessary to re-create and
populate temporary storage with the shared data by retrieving that data from the underlying algebraic
vector on the owning processor and sending it to the sharing processors.

9 fei::Matrix

fei::Matrix is a thin container that provides an abstraction layer for library-specific matrix objects.
Like fei::Vector, fei::Matrix is implemented by a template in the snl fei:: namespace.

This matrix representation does not require that data be accessed only on the ’owning’ processor.
In other words, this representation may be used with an overlapping data decomposition in much the
same way as the fei::Vector described in the previous section. In most cases the underlying library-
specific matrix will have a non-overlapping data decomposition (each equation uniquely owned by
a single processor). Overlapping data may be assembled into this abstract matrix locally, and will
be funneled into the underlying non-overlapping matrix on the correct processor when the gath-
erFromOverlap method is called. Conversely, if the user wants to retrieve overlapping data from
the matrix locally, that data is not guaranteed to be available until the scatterToOverlap method is
called. For specific information on data access, see the methods sumIn, copyIn, sumInFieldData,
copyOutRow, putScalar, etc., in the class documentation for fei::Matrix. Additionally, matrix
attributes may be queried using methods such as getGlobalNumRows, getRowLength, etc.

10 fei::LinearSystem

fei::LinearSystem is a container that binds a matrix and two vectors (solution and right-hand-side)
together, providing a convenient way to pass a linear system as a single argument between various
code scopes. fei::LinearSystem also provides methods for performing operations such as essential
boundary condition enforcement, and constraint-relation coefficient loading.
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10.1 Essential Boundary Conditions

For specific information on loading essential boundary conditions, see the method loadEssential-
BCs in the class documentation for fei::LinearSystem. The approach used for imposing essential
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Figure 5. Trivial 2-element mesh with essential boundary condi-
tions imposed for nodes 0 and 1.

boundary conditions is as follows. The corresponding rows and columns in the global matrix are
zeroed and 1’s are placed on the diagonal. (Before a column is zeroed, its coefficients are multiplied
by the boundary condition’s prescribed value and subtracted into the appropriate positions in the
right-hand-side.) Then, the prescribed values are placed in the right-hand-side and the system is
solved. This results in the prescribed values being placed in the solution by the solver. Naturally
this can result in the boundary condition being enforced only as accurately as the tolerance which
was set on the solver. If the user wishes to ensure exact boundary condition enforcement they can
specify that an alternate approach is taken whereby zeros are placed in appropriate positions in the
right-hand-side before the system is solved, and the prescribed values are explicitly placed in the
solution vector after the solver finishes. (This is specified at run-time, by passing the string “EX-
PLICIT BC ENFORCEMENT” to fei::LinearSystem using the parameters method, and by using
the method setBCValuesOnVector after the solve.)

10.2 Constraint Coefficient Loading

For constraint-relations, see the methods loadLagrangeConstraint and loadPenaltyConstraint.
Note that for the constraint-loading methods, the user must supply a constraint-identifier that cor-
responds to a constraint that was already initialized on the fei::MatrixGraph object that is held by
the fei::LinearSystem’s fei::Matrix. fei::LinearSystem then places the coefficients at the appropriate
locations in the matrix and right-hand-side vector.
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For loading penalty constraint coefficients, the following modification is made to the linear sys-
tem. Refer to equation 2 for the definition of the weights. Let the matrix be denoted by A, and
the right-hand-side by b. Let n be the number of constrained degrees of freedom. Note that the ar-
ray “index” contains mappings from the constrained mesh-objects and fields, to the corresponding
indices in the global equation space.

for(i=0; i<n; ++i) {
b[index[i]] += w[i] * rhsvalue * penaltyvalue;

for(j=0; j<n; ++j) {
A[index[i],index[j]] += w[i] * w[j] * penaltyvalue;

}
}

11 fei::Solver

fei::Solver is also an abstract interface. The primary method provided by this interface is solve.
Implementations of this interface accept a fei::LinearSystem object as an argument to the solve
method, and from that they extract “generic” fei::Matrix and fei::Vector objects, and finally obtain
the library-specific underlying data objects to pass to a library-specific solution algorithm. The solve
method also accepts an additional fei::Matrix argument that can be used as a preconditioning matrix.
Some solver libraries allow for using a separate user-assembled matrix as the basis for calculating
the preconditioner, and this handles that scenario.

12 fei::Factory

fei::Factory is an interface that provides methods for creating instances of each of the other fei::
interfaces, as well as the original FEI interface. Implementations of this interface produce instances
of fei interfaces, making sure their run-time types are consistent with the particular linear algebra
library being used. As previously mentioned, the interfaces fei::VectorSpace, fei::MatrixGraph and
fei::LinearSystem provide infrastructure rather than abstraction and so their types don’t change with
the underlying library. fei::Vector, fei::Matrix and fei::Solver, however, almost always have direct
concrete counterparts in the underlying library and so these objects serve as thin wrappers containing
library-specific objects.
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Original FEI interface

The names of the FEI methods, without their arguments, are given below to provide an overview
of the functionality that the interface addresses. The FEI interface contained 5 broad groups of
methods, as follows.

1. Structure Initialization: Methods for defining field sizes (number of scalar components), num-
ber of elements, nodes-per-element, passing connectivity-lists, etc.

setSolveType parameters
initFields initCoefAccessPattern
initElemBlock initCoefAccess
initElem setIDLists
initSharedNodes initCRMult
initSlaveVariable initCRPen
initComplete

2. Coefficient Data Loading: Methods for loading element-stiffness submatrices, element-load
subvectors, boundary-conditions, etc.

sumInElem loadNodeBCs
sumInElemMatrix loadElemBCs
sumInElemRHS loadElemTransfer
sumIntoMatrix putIntoMatrix
sumIntoRHS putIntoRHS
loadCRMult setCurrentMatrix
loadCRPen setCurrentRHS
putNodalFieldData setMatScalars
putBlockNodeSolution setRHSScalars
putBlockFieldNodeSolution putSubstructureFieldSolution
putBlockElemSolution putSubstructureFieldData
loadComplete putCRMultipliers

3. Solution and Residual Calculation: Methods for launching underlying solver- library’s solu-
tion methods, residual calculations.

residualNorm
solve

4. Solution Data Return: Methods for returning nodal solution data from underlying x vector,
etc.

getNodalFieldSolution getBlockFieldNodeSolution
getNodalSolution getBlockNodeSolution
getBlockElemSolution getSubstructureFieldSolution
getCRMultipliers
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5. Miscellaneous Queries for Attributes: Methods for querying field sizes, number of elements
in an element-block, etc.

getFieldSize iterations
getEqnNumbers allocatedSize
getNumLocalNodes cumulative MPI Wtimes
getLocalNodeIDList version
getNumCRMultipliers getBlockNodeIDList
getCRMultIDList getBlockElemIDList
getFromMatrix getFromRHS
getNumSolnParams resetSystem
getNumElemBlocks resetMatrix
getNumBlockActNodes resetRHSVector
getNumBlockActEqns resetInitialGuess
getNumNodesPerElement deleteMultCRs
getNumEqnsPerElement getSubstructureSize
getNumBlockElements getSubstructureIDList
getNumBlockElemDOF
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fei::VectorSpace Class Reference

Abstract class (interface) containing the methods for defining a solution-space (a set of degrees-of-
freedom) and mapping that space to a globally unique set of indices.

Example: define a displacement field over a set of node-identifiers, and map that to a set of
equation-numbers.

There are multiple ways to use an instance of this interface:

For generating vectors:

1. Define fields and identifier-types

2. Initialize active fields over sets of identifiers

3. Obtain index offset and range information via one of the methods getGlobalIndexOffsets()
(p. 35), ’getIndices Owned() (p. 36)’, ’getIndices SharedAndOwned() (p. 37)’, etc., to use
in constructing or initializing a vector object.

For generating matrices:

1. Define fields and identifier-types

2. Construct an instance of fei::MatrixGraph (p. 41) (using this VectorSpace (p. 29) as a con-
tructor argument or intialization argument) and proceed to initialize connectivities and other
structural attributes on the Structure object.

3. Obtain matrix-graph information from the fei::MatrixGraph (p. 41) object to use in con-
structing or initializing a matrix object.

virtual int fei::VectorSpace::defineFields (int numFields, const int � fieldIDs, const int �
fieldSizes) [pure virtual]

Define fields that will occur in this solution space.

Example: a temperature field might be defined as fieldID 0, size 1.

Example: a velocity field might be defined as fieldID 5, size 3.

Parameters:
numFields Input. Length of the fieldIDs and fieldSizes lists.

fieldIDs Input. List of user-supplied field-identifiers. Convention: Active solution-space fields
should generally be denoted by non-negative field-identifiers, while ”other” fields (such as
geometric coordinates) should be denoted by negative field-identifiers.

fieldSizes Input. List of user-specified field-sizes. A field-size is the number of scalar components
that make up a field.
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Returns:
error-code 0 if successful

virtual int fei::VectorSpace::defineIDTypes (int numIDTypes, const int � idTypes) [pure
virtual]

Define identifier-types in this solution space.

For example, define node-identifiers to be type 0, edge-identifiers to be type 1, lagrange-multiplier
identifiers to be type 2, etc.

identifier-types need not be zero-based or contiguous.

Parameters:
numIDTypes Number of distinct identifier-types

idTypes User-supplied list of identifier-types

Returns:
error-code 0 if successful

virtual int fei::VectorSpace::getBlkIndices Owned (int lenBlkIndices, int � globalBlkIndices,
int � blkSizes, int & numBlkIndices) [pure virtual]

Obtain list of global block indices owned by local processor.

Only available after initComplete has been called.

Parameters:
lenBlkIndices Input. Length of user-allocated ’globalBlkIndices’ list.

globalBlkIndices User-allocated list. On output, will contain all indices owned by local processor.

blkSizes User-allocated list. On output, will contain the number of scalars (point-indices) asso-
ciated with each corresponding block-index.

numBlkIndices Output. Number of indices. If ’numBlkIndices’ is different than ’lenBlkIndices’, then
globalBlkIndices will contain ’min(lenBlkIndices, numBlkIndices)’ of the local proces-
sor’s indices.

virtual int fei::VectorSpace::getBlkIndices SharedAndOwned (int lenBlkIndices, int �
globalBlkIndices, int � blkSizes, int & numBlkIndices) [pure virtual]

Obtain list of global block indices on local processor, including ones that are locally owned as well
as shared-but-not-owned.

Only available after initComplete has been called.
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Parameters:
lenBlkIndices Input. Length of user-allocated ’globalBlkIndices’ list.

globalBlkIndices User-allocated list. On output, will contain all indices owned or shared by local pro-
cessor.

blkSizes User-allocated list. On output, will contain the number of scalars (point-indices) asso-
ciated with each corresponding block-index.

numBlkIndices Output. Number of indices. If ’numBlkIndices’ is different than ’lenBlkIndices’, then
globalBlkIndices will contain ’min(lenBlkIndices, numBlkIndices)’ of the local proces-
sor’s indices.

virtual MPI Comm fei::VectorSpace::getCommunicator () [pure virtual]

Return the MPI communicator held by this object.

When built/run in serial mode, MPI Comm is defined to be int.

virtual int fei::VectorSpace::getFieldList (int idType, int ID, int lenFieldIDs, int � fieldIDs, int
& numFields) [pure virtual]

Given a particular identifier, request the list of fields that are associated with that identifier.

Parameters:
idType Identifier-type

ID Specified identifier

lenFieldIDs Input. Length of user-allocated ’fieldIDs’ list.

fieldIDs Input. User-allocated list, length must be at least as large as the value produced by
getNumFields() (p. ??) for this ID.

numFields Output. Number of fields. If numFields � lenFieldIDs, then fieldIDs will contain the
first ’lenFieldIDs’ field identifiers.

virtual int fei::VectorSpace::getFields (int len, int � fields, int & numFields) [pure virtual]

Query for the list of fields defined for this vector-space.

Parameters:
len Input, length of the user-allocated list ’fields’.

fields Input/Output, user-allocated list, on exit contents will contain fields that are defined for
this vector-space.

numFields Output, number of fields that are defined for this vector-space. If numFields is less
than user-provided ’len’, then only ’numFields’ positions in ’fields’ are referenced. If
numFields is greater than user-provided len, then ’fields’ is filled with the first ’len’ field-
ids that are defined for this vector-space.
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virtual int fei::VectorSpace::getFieldSize (int fieldID, int & fieldSize) [pure virtual]

Request the field-size for a specified field-identifier.

Parameters:
fieldID Input. Specified field-identifier

fieldSize Output. If the specified field-identifier is not found, then this argument is not refer-
enced.

Returns:
error-code 0 if successful. If the specified field-identifier is not found, then -1 is returned.

virtual int fei::VectorSpace::getGlobalBlkIndex (int idType, int ID, int & globalBlkIndex)
[pure virtual]

Given a particular identifier, request the corresponding global block-index.

Parameters:
idType Input. Identifier-type of the identifier being queried.

ID Input. Identifier for which a block-index is being requested.

globalBlkIndex Output. This is the global block-index of the specified identifier.

Returns:
error-code 0 if successful. If the specified degree-of-freedom is not found, -1 is returned.

virtual int fei::VectorSpace::getGlobalBlkIndexOffsets (int lenGlobalBlkOffsets, int �
globalBlkOffsets) [pure virtual]

Request the global block-index offsets.

Indices are zero-based.

Parameters:
lenGlobalBlkOffsets Input. This value gives the length of the user-allocated array globalBlkOffsets. Should

be numPartitions+1.

globalBlkOffsets Output. Caller-allocated array of length lenGlobalBlkOffsets. On exit, contains global-
block-offsets.

globalBlkOffsets[i] is first global block-offset on processor i, for i in 0 .. numPartitions - 1

globalBlkOffsets[i+1] - globalBlkOffsets[i] is the number of block-indices on the i-th pro-
cessor

Returns:
error-code 0 if successful
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virtual int fei::VectorSpace::getGlobalBlkIndices (int numIDs, const int � IDs, int idType, int
� globalBlkIndices) [pure virtual]

Given a list of IDs, fill an output-list of the global-block-indices that correspond to each ID.

Parameters:
numIDs Input. Length of the IDs list and of the globalBlkIndices list.

IDs Input. User-provided list of identifiers.

idType Input. Type of the IDs for which block-indices are being requested.

globalBlkIndices Output. User-allocated list which, on exit, will contain the requested indices. Note that
the length of this list is assumed to be numIDs.

Returns:
error-code 0 if successful Note that for any IDs that are not found, the corresponding global-
index will be -1.

virtual int fei::VectorSpace::getGlobalIndex (int idType, int ID, int & globalIndex) [pure
virtual]

Given a particular degree-of-freedom, request the corresponding global index.

In this case, the degree-of-freedom is specified simply by an identifier and identifier-type, with-
out specifying a field. This is intended to be used for requesting global indices for constraint-
identifiers or other identifiers which don’t have associated fields. If the specified identifier actually
does have associated fields, then the output globalIndex will be the global-index corresponding to
the first component of the first associated field.

Parameters:
idType Input. Identifier-type of the location at which the specified degree-of-freedom re-

sides. Must be one of the identifier-types previously defined via a call to ’defineIDTypes()
(p. 30)’.

ID Input. Identifier for the location being specified, such as a node-identifier, etc.

globalIndex Output. This is the global index of the specified degree-of-freedom. Not referenced if
the specified degree-of-freedom is not found.

Returns:
error-code 0 if successful. If the specified degree-of-freedom is not found, -1 is returned.

virtual int fei::VectorSpace::getGlobalIndex (int idType, int ID, int fieldID, int & globalIndex)
[pure virtual]

Given a particular degree-of-freedom, request the corresponding global index.
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A particular degree-of-freedom is specified as a component of a particular field, residing at a
particular location (ID).

Parameters:
idType Input. Identifier-type of the location at which the specified degree-of-freedom re-

sides. Must be one of the identifier-types previously defined via a call to ’defineIDTypes()
(p. 30)’.

ID Input. Identifier for the location being specified, such as a node-identifier, etc.

fieldID Input. Identifier for the field being specified.

globalIndex Output. This is the global index of the specified degree-of-freedom. Not referenced if
the specified degree-of-freedom is not found.

Returns:
error-code 0 if successful. If the specified degree-of-freedom is not found, -1 is returned.

virtual int fei::VectorSpace::getGlobalIndex (int idType, int ID, int fieldID, int fieldOffset, int
whichComponentOfField, int & globalIndex) [pure virtual]

Given a particular degree-of-freedom, request the corresponding global index.

A particular degree-of-freedom is specified as a component of a particular field, residing at a
particular location (ID).

Parameters:
idType Input. Identifier-type of the location at which the specified degree-of-freedom re-

sides. Must be one of the identifier-types previously defined via a call to ’defineIDTypes()
(p. 30)’.

ID Input. Identifier for the location being specified, such as a node-identifier, etc.

fieldID Input. Identifier for the field being specified.

fieldOffset Input. In case there is more than one field with the specified fieldID residing at the
specified ID, this provides an offset into those fields. If only one field with specified field-
ID, then this parameter is 0.

whichComp Input. Specifies a scalar component within the field. If the field only has 1 scalar
component, then this parameter is 0.

globalIndex Output. This is the global index of the specified degree-of-freedom. Not referenced if
the specified degree-of-freedom is not found.

Returns:
error-code 0 if successful. If the specified degree-of-freedom is not found, -1 is returned.
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virtual int fei::VectorSpace::getGlobalIndexOffsets (int lenGlobalOffsets, int � globalOffsets)
[pure virtual]

Request the global index offsets.

Indices are zero-based.

Parameters:
lenGlobalOffsets Input. This value gives the length of the user-allocated array globalOffsets. Should be

numPartitions+1.

globalOffsets Output. Caller-allocated array of length lenGlobalOffsets. On exit, contains global-
offsets.
globalOffsets[i] is first global offset on processor i, for i in 0 .. numPartitions - 1
globalOffsets[i+1] - globalOffsets[i] is the number of indices on the i-th processor

Returns:
error-code 0 if successful

virtual int fei::VectorSpace::getGlobalIndices (int numIDs, const int � IDs, const int �
idTypes, const int � fieldIDs, int � globalIndices) [pure virtual]

Given a list of IDs, fill an output-list of the global-indices that correspond to the first instance of the
specified field at each ID.

Somewhat more general version of the getGlobalIndices() (p. 35) method above.

Parameters:
numIDs Input. Length of the IDs list.

IDs Input. User-provided list of identifiers.

idTypes Input. List of length numIDs, specifying the types of the IDs for which indices are
being requested.

fieldIDs Input. List of length numIDs, specifying a field at each ID.

globalIndices Output. User-allocated list which, on exit, will contain the requested indices. Note that
the length of this list is assumed to be numIDs�getFieldSize(fieldID).

Returns:
error-code 0 if successful Note that for any IDs that are not found, or IDs which don’t have the
specified field, the corresponding global-index will be -1.

virtual int fei::VectorSpace::getGlobalIndices (int numIDs, const int � IDs, int idType, int
fieldID, int � globalIndices) [pure virtual]

Given a list of IDs, fill an output-list of the global-indices that correspond to the first instance of the
specified field at each ID.
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Parameters:
numIDs Input. Length of the IDs.

IDs Input. User-provided list of identifiers.

idType Input. Type of the IDs for which indices are being requested.

fieldID Input. Specified field

globalIndices Output. User-allocated list which, on exit, will contain the requested indices. Note that
the length of this list is assumed to be numIDs�getFieldSize(fieldID).

Returns:
error-code 0 if successful Note that for any IDs that are not found, or IDs which don’t have the
specified field, the corresponding global-index will be -1.

virtual int fei::VectorSpace::getIDTypes (int len, int � idTypes, int & numIDTypes) [pure
virtual]

Query for the list of identifier-types defined for this vector-space.

Parameters:
len Input, length of the user-allocated list ’idTypes’.

idTypes Input/Output, user-allocated list, on exit contents will contain id-types that are defined
for this vector-space.

numIDTypes Output, number of id-types that are defined for this vector-space. If numIDTypes is less
than user-provided ’len’, then only ’numIDTypes’ positions in ’idTypes’ are referenced. If
numIDTypes is greater than user-provided len, then ’idTypes’ is filled with the first ’len’
id-types that are defined for this vector-space.

virtual int fei::VectorSpace::getIndices Owned (int lenIndices, int � globalIndices, int &
numIndices) const [pure virtual]

Obtain list of global indices owned by local processor.

Only available after initComplete has been called.

Parameters:
lenIndices Input. Length of user-allocated ’globalIndices’ list.

globalIndices User-allocated list. On output, will contain all indices owned by local processor.

numIndices Output. Number of indices. If ’numIndices’ is different than ’lenIndices’, then global-
Indices will contain ’min(lenIndices, numIndices)’ of the local processor’s indices.
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virtual int fei::VectorSpace::getIndices SharedAndOwned (int lenIndices, int � globalIndices,
int & numIndices) const [pure virtual]

Obtain list of global indices on local processor, including ones that are locally owned as well as
shared-but-not-owned.

Only available after initComplete has been called.

Parameters:
lenIndices Input. Length of user-allocated ’globalIndices’ list.

globalBlkIndices User-allocated list. On output, will contain all indices owned or shared by local pro-
cessor.

numIndices Output. Number of indices. If ’numIndices’ is different than ’lenIndices’, then global-
Indices will contain ’min(lenIndices, numIndices)’ of the local processor’s indices.

virtual int fei::VectorSpace::getLocalIDs (int idtype, int lenList, int � IDs, int & numLocalIDs)
[pure virtual]

Obtain a list of the local identifiers.

Note that this includes identifiers that are locally shared but not owned.

virtual int fei::VectorSpace::getNumBlkIndices SharedAndOwned (int & numBlkIndices)
const [pure virtual]

Query number of block indices on local processor, including ones that are locally owned as well as
shared-but-not-owned.

Only available after initComplete has been called.

virtual int fei::VectorSpace::getNumIndices SharedAndOwned (int & numIndices) const
[pure virtual]

Query number of indices on local processor, including ones that are locally owned as well as shared-
but-not-owned.

Only available after initComplete has been called.

virtual int fei::VectorSpace::getNumPartitions (int & numPartitions) [pure virtual]

Request the number of partitions.
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(For MPI implementations, partitions is a synonym for processes.) The main purpose of this
function is to give the user a way to calculate the length of the list that needs to be allocated before
calling ’getGlobalIndexOffsets() (p. 35)’.

Parameters:
numPartitions Output. Number of partitions or processors.

Returns:
error-code 0 if successful

virtual int fei::VectorSpace::initComplete () [pure virtual]

Indicate that initialization is complete.

This is a collective function, must be called on all processors. At this time ownership of shared
IDs will be assigned, and the global index space calculated.

Returns:
error-code 0 if successful

virtual int fei::VectorSpace::initSharedIDs (int numShared, int idType, const int � sharedIDs,
const int � numProcsPerID, const int �const � sharingProcs) [pure virtual]

Identify a set of identifiers as being shared with other processors.

The shared ids must be identified in a globally symmetric way. i.e., if the local processor identi-
fies id x as being shared with processor p, then processor p MUST identify id x as being shared with
the local processor.

Parameters:
numShared Input. Length of the lists sharedIDs and numSharingProcsPerID.

idType Input. The identifier-type of the ids that are being identified as shared.

sharedIDs Input. List of shared identifiers.

numProcsPerID Input. List of length numShared, and the i-th entry gives the number of processors
being identified as sharing the i-th sharedID.

sharingProcs Input. Table with ’numShared’ rows, and each row is of length numProcsPerID. This
table contains the sharing processor ranks.

Returns:
error-code 0 if successful
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virtual int fei::VectorSpace::initSharedIDs (int numShared, int idType, const int � sharedIDs,
const int � numProcsPerID, const int � sharingProcs) [pure virtual]

Identify a set of identifiers as being shared with other processors.

The shared ids must be identified in a globally symmetric way. i.e., if the local processor identi-
fies id x as being shared with processor p, then processor p MUST identify id x as being shared with
the local processor.

Parameters:
numShared Input. Length of the lists sharedIDs and numSharingProcsPerID.

idType Input. The identifier-type of the ids that are being identified as shared.

sharedIDs Input. List of shared identifiers.

numProcsPerID Input. List of length numShared, and the i-th entry gives the number of processors
being identified as sharing the i-th sharedID.

sharingProcs Input. Packed list of length sum(numProcsPerID), containing the sharing processor
ranks.

Returns:
error-code 0 if successful

virtual int fei::VectorSpace::initSolutionEntries (int idType, int numIDs, const int � IDs)
[pure virtual]

Add a set of identifiers to the solution-space.

These solution-space entries consist of identifiers that don’t have associated fields.

Example: Lagrange-multiplier constraint identifiers.

This method may also be used for initializing a finite-element solution-space where the user
knows that the entire problem contains only one scalar field (e.g., temperature) and so it is suffi-
cient to define a solution space on identifiers without associating fields with those identifiers. (This
will achieve a performance gain for the structure- definition, graph-generation and matrix/vector
assembly.)

Parameters:
idType Input. The identifier-type over which the solution- space is being defined. Must be one

of the idTypes defined previously via ’defineIDTypes() (p. 30)’.

numIDs Input. Number of identifiers being added to the solution- space.

IDs Input. List of length numIDs. Identifiers being added to the solution-space.

Returns:
error-code 0 if successful
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virtual int fei::VectorSpace::initSolutionEntries (int fieldID, int numFieldInstances, int
idType, int numIDs, const int � IDs) [pure virtual]

Add a set of identifiers to this solution-space.

These solution-space entries consist of fields residing at identifiers.

Example: temperature field at a set of finite-element nodes.

Parameters:
fieldID Input. The field-identifier to be added. Must be one of the fieldIDs defined previously

via ’defineFields() (p. 29)’.

numFieldInstances Input. It is possible to have multiple fields of the same fieldID at each mesh location.
e.g., you could have 2 pressure fields at each edge.

idType Input. The identifier-type over which the active field is being initialized. Must be one
of the idTypes defined previously via ’defineIDTypes() (p. 30)’.

numIDs Input. Length of the IDs list.

IDs Input List of identifiers over which ’fieldID’ is active.

Returns:
error-code 0 if successful

virtual int fei::VectorSpace::markInactiveDOF (int idType, int ID, int fieldID, int fieldOffset,
int whichComponentOfField) [pure virtual]

Mark a degree-of-freedom as inactive.

This function should not be called until AFTER all degrees-of-freedom have been added to this
solution-space. After all inactive degrees-of-freedom have been marked inactive, initComplete()
(p. 38) must be called to calculate the correct reduced set of global indices, etc. If global indices are
requested for an inactive degree-of-freedom, they will be -1.

virtual int fei::VectorSpace::parameters (int numParams, const char �const � paramStrings)
[pure virtual]

Set parameter strings.

Parameters:
numParams Number of parameters being supplied.

paramStrings List of ’numParams’ strings.

The documentation for this class was generated from the following file:

� fei VectorSpace.h
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fei::MatrixGraph Class Reference

Abstract class (interface) containing the methods for defining/initializing a structure, and generating
the corresponding matrix graph.

virtual int fei::MatrixGraph::createGraph (fei::SparseRowGraph �& locallyOwnedRows,
fei::SparseRowGraph �& remotelyOwnedRows, bool blockEntryGraph) [pure virtual]

Generate a sparse row-based graph from structural data that has been accumulated.

Don’t use this until after initComplete() (p. 44) has been called.

Parameters:
locallyOwnedRows Those rows of a matrix that would be owned by the local processor.

remotelyOwnedRows Those rows of the matrix that would be owned by remote processors, but for which the
equations arise from mesh-objects that are shared (and thus contributed to) on the local
processor.

blockEntryGraph Specifies whether the graph should be constructed on a block-entry or point-entry basis.
If there is only 1 scalar DOF at each mesh-object, then a block-entry graph is the same as
a point-entry graph.

virtual int fei::MatrixGraph::definePattern (int patternID, int numIDs, const int � idTypes,
const int � numFieldsPerID, const int � fieldIDs) [pure virtual]

Define a pattern to use for subsequent blocked-contributions.

Examples include element-contributions.

This is the most general of the pattern-definition methods. This method defines a pattern con-
sisting of a mixture of identifier-types, with each identifier having an arbitrary list of associated
fields.

Parameters:
patternID Input. Identifier to be used later when referring to this pattern.

numIDs Input. number of identifiers per pattern ’instance’.

idTypes Input. List of length numIDs. Specifies the type of each identifier to be contributed
for instances of this pattern. Each of the idTypes must be one of the idTypes defined for a
VectorSpace (p. 29) that is associated with this MatrixGraph (p. 41). idTypes are defined
via the method VectorSpace::defineIDTypes() (p. 30).

numFieldsPerID Input. List of length numIDs. i-th entry gives the number of fields to be associated
with the i-th identifier in a contribution.

fieldIDs Input. Packed list of length sum(numFieldsPerID[i]). Contains the fieldIDs to be asso-
ciated with the identifiers for a contribution.
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Returns:
error-code 0 if successful

virtual int fei::MatrixGraph::definePattern (int patternID, int numIDs, int idType, const int �
numFieldsPerID, const int � fieldIDs) [pure virtual]

Define a pattern to use for subsequent blocked-contributions.

Examples include element-contributions.

This is the ’middle’ of the pattern-definition methods, in terms of the complexity of pattern that
can be defined. This method defines patterns for contributions where the identifiers are all of the
same type, but an arbitrary list of fields can be associated with each identifier.

Parameters:
patternID Input. Identifier to be used later when referring to this pattern.

numIDs Input. number of identifiers per pattern ’instance’.

idType Input. Specifies which type of identifiers are associated with instances of this pattern.
Must be one of the idTypes defined for a VectorSpace (p. 29) that is associated with this
MatrixGraph (p. 41). idTypes are defined via the method VectorSpace::defineIDTypes()
(p. 30).

numFieldsPerID Input. List of length numIDs. i-th entry ives the number of fields to be associated with
the i-th identifier in a contribution.

fieldIDs Input. Packed list of length sum(numFieldsPerID[i]). Contains the fieldIDs to be asso-
ciated with the identifiers for a contribution.

Returns:
error-code 0 if successful

virtual int fei::MatrixGraph::definePattern (int patternID, int numIDs, int idType, int fieldID)
[pure virtual]

Define a pattern to use for subsequent blocked-contributions.

Examples include element-contributions.

This is the simplest of the 3 pattern-definition methods that associate fields with identifiers (there
is one pattern-definition method above that allows for specifying a pattern of identifiers that don’t
have associated fields). This method defines patterns for contributions where a single field is asso-
ciated with each identifier in a list of identifiers, and all the identifiers in the list are of the same
type.

Parameters:
patternID Input. Identifier to be used later when referring to this pattern.
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numIDs Input. number of identifiers per pattern ’instance’.

idType Input. Specifies which type of identifiers are associated with instances of this pattern.
Must be one of the idTypes defined for a VectorSpace (p. 29) that is associated with this
MatrixGraph (p. 41). idTypes are defined via the method VectorSpace::defineIDTypes()
(p. 30).

fieldID Input. field-identifier for the single field that is to reside at each identifier.

Returns:
error-code 0 if successful

virtual int fei::MatrixGraph::definePattern (int patternID, int numIDs, int idType) [pure
virtual]

Define a pattern to use for subsequent blocked-contributions.

Examples include element-contributions.

This is the simplest of the pattern-definition methods. IMPORTANT NOTE: this method does
not associate a field with the identifiers. Only use this method for problems where you explicitly
don’t want or need to associate fields with identifiers. Examples would include problems where
only a single scalar field exists across the entire mesh and thus doesn’t need to be explicitly ref-
erenced. Other cases where this might be used is for non finite-element problems that don’t have
identifier/field pairs.

Parameters:
patternID Input. Identifier to be used later when referring to this pattern.

numIDs Input. number of identifiers per pattern ’instance’.

idType Input. Specifies which type of identifiers are associated with instances of this pattern.
Must be one of the idTypes defined for a VectorSpace (p. 29) that is associated with this
MatrixGraph (p. 41). idTypes are defined via the method VectorSpace::defineIDTypes()
(p. 30).

Returns:
error-code 0 if successful

virtual int fei::MatrixGraph::getReducedRowSpace (fei::VectorSpace �& reducedSpace)
[pure virtual]

Obtain the VectorSpace (p. 29) corresponding to the reduced row-space for this MatrixGraph
(p. 41) object.

If there are no slave-constraints, or if the MatrixGraph (p. 41) implementation doesn’t support
slave-reduction, then this will return the same solution-space as getRowSpace() (p. ??).
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virtual int fei::MatrixGraph::initComplete () [pure virtual]

Signal the MatrixGraph (p. 41) object that initialization is complete.

At this point MatrixGraph (p. 41) implementations will perform internal synchronizations etc.
This will generally be a collective method.

virtual int fei::MatrixGraph::initConnectivity (int idType, int numRows, const int � rowIDs,
const int � rowLengths, const int �const � columnIDs) [pure virtual]

Initialize a set of arbitrary positions in the graph by providing data in a ”raw” or ”purely algebraic”
format similar to what might be used with a standard sparse CSR (compressed sparse row) matrix.

Parameters:
idType identifier-type

numRows Number of rows, length of the following ’rowIDs’ list.

rowIDs List of length ’numRows’, specifying identifiers in the row-space.

rowLengths List of length numRows, giving the number of column IDs for each row ID.

columnIDs C-style table (list of lists) containing the column IDs. Number of rows is numRows,
length of i-th row is rowLengths[i].

virtual int fei::MatrixGraph::initConnectivity (int idType, int fieldID, int numRows, const int
� rowIDs, const int � rowOffsets, const int � packedColumnIDs) [pure virtual]

Initialize a set of arbitrary positions in the graph by providing data in a ”raw” or ”purely algebraic”
format similar to what might be used with a standard sparse CSR (compressed sparse row) matrix.

Also specify a fieldID to be associated with these graph positions.

Parameters:
idType identifier-type

fieldID field-identifier

numRows Number of rows, length of the following ’rowIDs’ list.

rowIDs List of length ’numRows’, specifying identifiers in the row-space.

rowOffsets List of length numRows+1, giving offsets into the ’packedColumnIDs’ list at which
each row begins. i.e., the column IDs for rowIDs[i] are packedColumnIDs[rowOffsets[i]...row-
Offsets[i+1]-1].

packedColumnIDs Packed list of length rowOffsets[numRows], containing the column IDs.
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virtual int fei::MatrixGraph::initConnectivity (int idType, int numRows, const int � rowIDs,
const int � rowOffsets, const int � packedColumnIDs) [pure virtual]

Initialize a set of arbitrary positions in the graph by providing data in a ”raw” or ”purely algebraic”
format similar to what might be used with a standard sparse CSR (compressed sparse row) matrix.

Parameters:
idType identifier-type

numRows Number of rows, length of the following ’rowIDs’ list.

rowIDs List of length ’numRows’, specifying identifiers in the row-space.

rowOffsets List of length numRows+1, giving offsets into the ’packedColumnIDs’ list at which
each row begins. i.e., the column IDs for rowIDs[i] are packedColumnIDs[rowOffsets[i]...row-
Offsets[i+1]-1].

packedColumnIDs Packed list of length rowOffsets[numRows], containing the column IDs.

virtual int fei::MatrixGraph::initConnectivity (int rowPatternID, const int � rowConnectedIds,
int colPatternID, const int � colConnectedIds) [pure virtual]

Make a contribution to the MatrixGraph (p. 41)’s connectivity.

This overloading of initConnectivity() (p. 46) provides for structurally non-symmetric entries.

Parameters:
rowPatternID Input. Must correspond to a Pattern ID that was previously used in a call to define-

Pattern() (p. 43).

rowConnectedIds Input. List of the identifiers that form the connectivity list for the row-space.

colPatternID Input. Must correspond to a Pattern ID that was previously used in a call to define-
Pattern() (p. 43).

colConnectedIds Input. List of the identifiers that form the connectivity list for the column-space.

Returns:
error-code 0 if successful

virtual int fei::MatrixGraph::initConnectivity (int blockID, int connectivityID, const int �
rowConnectedIds, const int � colConnectedIds) [pure virtual]

Make a contribution to the MatrixGraph (p. 41)’s connectivity.

This overloading of initConnectivity() (p. 46) provides for structurally non-symmetric entries.
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Parameters:
blockID Input. Must correspond to a blockID that was previously used in a call to initConnectivity-

Block() (p. 47).

connectivityID Input. Identifier for this connectivity list. May be an element-identifier, etc.

rowConnectedIds Input. List of the identifiers that form the connectivity list for the row-space.

colConnectedIds Input. List of the identifiers that form the connectivity list for the column-space.

Returns:
error-code 0 if successful

virtual int fei::MatrixGraph::initConnectivity (int blockID, int connectivityID, const int �
connectedIds) [pure virtual]

Make a contribution to the MatrixGraph (p. 41)’s connectivity.

Examples would include element-node connectivity lists, etc.

Parameters:
blockID Input. Must correspond to a blockID that was previously used in a call to initConnectivity-

Block() (p. 47).

connectivityID Input. Identifier for this connectivity list. May be an element-identifier, etc.

connectedIds Input. List of the identifiers that form this connectivity list.

Returns:
error-code 0 if successful

virtual int fei::MatrixGraph::initConnectivityBlock (int blockID, int numConnLists, int
rowPatternID, int colPatternID) [pure virtual]

Initialize a block of connectivity contributions.

An example is a block of elements which share a common layout of nodes/fields per element.

This method accepts two pattern-ids, implying that connectivities in this block describe a non-
symmetric structure. See the other overloading of this method for the symmetric case.

Parameters:
blockID Input. User-specified identifier for this block. Will generally be required to be non-

negative.

numConnLists Input. Number of connectivity-lists that will be supplied for this block.

rowPatternID Input. Descriptor for the row-connectivities to be provided. Must be a pattern that was
previously defined via definePattern() (p. 43).
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colPatternID Input. Descriptor for the column-connectivities to be provided. Must be a pattern that
was previously defined via definePattern() (p. 43).

Returns:
error-code 0 if successful

virtual int fei::MatrixGraph::initConnectivityBlock (int blockID, int numConnLists, int
patternID) [pure virtual]

Initialize a block of connectivity contributions.

An example is a block of elements which share a common layout of nodes/fields per element.

This method accepts only one pattern-id, implying that connectivities in this block describe a
symmetric structure. See the other overloading of this method for the non-symmetric case.

Parameters:
blockID Input. User-specified identifier for this block. Will generally be required to be non-

negative.

numConnLists Input. Number of connectivity-lists that will be supplied for this block.

patternID Input. Descriptor for the connectivities to be provided. Must be a pattern that was
previously defined via definePattern() (p. 43).

Returns:
error-code 0 if successful

virtual int fei::MatrixGraph::initSlaveConstraint (int numIDs, const int � idTypes, const int �
IDs, const int � fieldIDs, int offsetOfSlave, int offsetIntoSlaveField, const double � weights,
double rhsValue) [pure virtual]

Initialize a slave constraint.

(Note to self: document the parameters.)

virtual int fei::MatrixGraph::parameters (int numParams, const char �const � paramStrings)
[pure virtual]

Set parameter strings.

Parameters:
numParams Number of parameters being supplied.

paramStrings List of ’numParams’ strings.
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virtual int fei::MatrixGraph::setColumnSpace (fei::VectorSpace � columnSpace) [pure
virtual]

Provide a VectorSpace (p. 29) to be used for looking up indices, field-masks, etc., for the column-
space.

If no column-VectorSpace (p. 29) is provided, it will be assumed that the column-space equals
the row-space.

Returns:
error-code 0 if successful

virtual int fei::MatrixGraph::setRowSpace (fei::VectorSpace � rowSpace) [pure virtual]

Provide a VectorSpace (p. 29) to be used for looking up indices, field-masks, etc., for the row-space.

If no column-VectorSpace (p. 29) is provided, it will be assumed that the column-space equals
the row-space.

Returns:
error-code 0 if successful

The documentation for this class was generated from the following file:

� fei MatrixGraph.h
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fei::Matrix Class Reference

Abstract representation of an algebraic matrix.

This representation does not require that data be accessed only on the ’owning’ processor. In
other words, this representation may be used with an overlapping data decomposition. In most
cases the underlying library-specific matrix will have a non-overlapping data decomposition (each
equation uniquely owned by a single processor). Overlapping data may be assembled into this
abstract matrix locally, and will be funneled into the underlying non- overlapping matrix on the
correct processor when the gatherFromOverlap() (p. ??) method is called. Conversely, if the user
wants to retrieve overlapping data from the matrix locally, that data is not guaranteed to be available
until the scatterToOverlap() method is called.

virtual int fei::Matrix::copyIn (int numRows, const int � rows, int numCols, const int � cols,
const double �const � values, int format = 0) [pure virtual]

Copy coefficients into the matrix, overwriting any coefficients that may already exist at the specified
row/column locations.

Parameters:
numRows

rows

numCols

cols

values

format For compatibility with old FEI (p. ??) elemFormat... 0 means row-wise or row-major,
3 means column-major. Others not recognized

virtual int fei::Matrix::copyOutRow (int row, int len, double � coefs, int � indices, int &
rowLength) [pure virtual]

Obtain a copy of the coefficients and indices for a row of the matrix.

Parameters:
row Global 0-based equation number

coefs Caller-allocated array, length ’len’, to be filled with coefficients

indices Caller-allocated array, length ’len’, to be filled with indices. (These indices will be
global 0-based equation numbers.)

len Length of the caller-allocated coefs and indices arrays

rowLength Output. Actual length of this row. Not referenced if row is not in the local portion of
the matrix.

Returns:
error-code non-zero if any error occurs.

49



virtual int fei::Matrix::getRowLength (int row, int & length) [pure virtual]

Get the length of a row of the matrix.

Parameters:
row Global 0-based equation number

length Output. Length of the row.

Returns:
error-code non-zero if any error occurs.

virtual int fei::Matrix::sumIn (int blockID, int connectivityID, const double �const � values,
int format = 0) [pure virtual]

Sum coefficients, associated with a connectivity-block that was initialized on the MatrixGraph
(p. 41) object, into this matrix.

Parameters:
blockID

connectivityID

values

format For compatibility with old FEI (p. ??) elemFormat... 0 means row-wise or row-major,
3 means column-major. Others not recognized

virtual int fei::Matrix::sumIn (int numRows, const int � rows, int numCols, const int � cols,
const double �const � values, int format = 0) [pure virtual]

Sum coefficients into the matrix, adding them to any coefficients that may already exist at the spec-
ified row/column locations.

Parameters:
numRows

rows

numCols

cols

values

format For compatibility with old FEI (p. ??) elemFormat... 0 means row-wise or row-major,
3 means column-major. Others not recognized
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virtual int fei::Matrix::sumInFieldData (int fieldID, int idType, int rowID, int colID, const
double � data, int format = 0) [pure virtual]

Sum coefficients into the matrix, specifying row/column locations by identifier/fieldID pairs.

Parameters:
fieldID Input. field-identifier for which data is being input.

idType Input. The identifier-type of the identifiers.

rowID Input. Identifier in row-space, for which data is being input.

colID Input. Identifier in column-space, for which data is being input.

data Input. 1-D list representing a packed table of data. Data may be backed in row-major
or column-major order and this may be specified with the ’format’ argument. The ”table”
of data is of size num-rows X num-columns and num-rows is the field-size (i.e., number
of scalar components that make up the field) of ’fieldID’, as is num-columns.

format For compatibility with old FEI (p. ??) elemFormat... 0 means row-wise or row-major,
3 means column-major. Others not recognized

Returns:
error-code 0 if successful

virtual int fei::Matrix::sumInFieldData (int fieldID, int idType, int rowID, int colID, const
double �const � data, int format = 0) [pure virtual]

Sum coefficients into the matrix, specifying row/column locations by identifier/fieldID pairs.

Parameters:
fieldID Input. field-identifier for which data is being input.

idType Input. The identifier-type of the identifiers.

rowID Input. Identifier in row-space, for which data is being input.

colID Input. Identifier in column-space, for which data is being input.

data Input. C-style table of data. num-rows is the field-size (i.e., number of scalar compo-
nents that make up the field) of ’fieldID’, as is num-columns.

format For compatibility with old FEI (p. ??) elemFormat... 0 means row-wise or row-major,
3 means column-major. Others not recognized

Returns:
error-code 0 if successful
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virtual int fei::Matrix::writeToFile (const char � filename, bool matrixMarketFmt = true)
[pure virtual]

Write the matrix contents into the specified file.

Parameters:
filename Text name of the file to be created or overwritten. If in a parallel environment, each

processor will take turns writing into the file.

matrixMarketFmt Optional argument, defaults to true. If true the contents of the file will be Matrix-
Market real array format. If not true, the contents of the file will contain the matrix global
dimensions on the first line, and all following lines will contain a space-separated triple
with global row index first, global column index second and coefficient value third. Note
also that if matrixMarketFmt is true, indices will be output in 1-based form, but if not true,
indices will be 0-based.

Returns:
error-code 0 if successful, -1 if some error occurs such as failure to open file.

virtual int fei::Matrix::writeToStream (ostream & ostrm, bool matrixMarketFmt = true)
[pure virtual]

Write the matrix contents into the specified ostream.

Parameters:
ostrm ostream to be written to.

matrixMarketFmt Optional argument, defaults to true. If true the data will be written in MatrixMarket real
array format. If not true, the stream will receive the matrix global dimensions on the first
line, and all following lines will contain a space-separated triple with global row index
first, global column index second and coefficient value third. Note also that if matrix-
MarketFmt is true, indices will be output in 1-based form, but if not true, indices will be
0-based.

Returns:
error-code 0 if successful, -1 if some error occurs.

The documentation for this class was generated from the following file:

� fei Matrix.h
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fei::Vector Class Reference

Abstract representation of an algebraic vector.

This representation does not require that data be accessed only on the ’owning’ processor. In
other words, this representation may be used with an overlapping data decomposition. In most
cases the underlying library-specific vector will have a non-overlapping data decomposition (each
equation uniquely owned by a single processor). Overlapping data (shared by local processor but
the equation is owned by another processor) may be assembled into this abstract vector locally,
and will be moved into the underlying non-overlapping vector on the correct processor when the
gatherFromOverlap() (p. ??) method is called. Conversely, if the user wants to retrieve overlap-
ping data from the vector locally for an equation that resides on another processor, that data is not
guaranteed to be available until the scatterToOverlap() (p. 53) method is called. The scatterTo-
Overlap() (p. 53) method does communication necessary to populate shared-but-not-owned data in
the fei::Vector from data in the underlying algebraic vector.

From the point of view of fei::Vector, there are two types of data: owned and shared-but-not-
owned.

Data Input (passing user data into the vector):

When locally-owned data is input, fei::Vector relays it immediately to the underlying algebraic
vector. When shared-but-not-owned data is input, fei::Vector holds it in temporary storage. When
gatherToOverlap() is called, fei::Vector moves it to the owning processor and then relays it to the
underlying algebraic vector. At that point the temporary storage is deleted.

Data Access (retrieving data from the vector):

When locally-owned data is accessed, fei::Vector retrieves it from the underlying algebraic vec-
tor directly. In order to access shared-but-not-owned data (overlapped data), it is necessary first
to call the method scatterToOverlap() (p. 53). This method does the communication necessary
to re-create and populate temporary storage with the shared data by retrieving that data from the
underlying algebraic vector on the owning processor and sending it to the sharing processors.

virtual int fei::Vector::copyOut (int numValues, const int � indices, double � values) [pure
virtual]

Retrieve a copy of values from the vector for the specified indices.

Note that if the specified indices are not local in the underlying non-overlapping data decomposi-
tion, these values are not guaranteed to be correct until after the scatterToOverlap() (p. 53) method
has been called.

virtual int fei::Vector::scatterToOverlap () [pure virtual]

Scatter data from the underlying non-overlapping data decomposition to the overlapping data de-
composition.
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In other words, update values for shared indices from underlying uniquely owned data.

virtual int fei::Vector::writeToFile (const char � filename, bool matrixMarketFmt = true)
[pure virtual]

Write the vector’s contents into the specified file.

Parameters:
filename Text name of the file to be created or overwritten. If in a parallel environment, each

processor will take turns writing into the file.

matrixMarketFmt Optional argument, defaults to true. If true the contents of the file will be Matrix-
Market real array format. If not true, the contents of the file will contain the vector’s
global dimension on the first line, and all following lines will contain a space-separated
pair with global index first and coefficient value second.

Returns:
error-code 0 if successful, -1 if some error occurs such as failure to open file.

virtual int fei::Vector::writeToStream (ostream & ostrm, bool matrixMarketFmt = true)
[pure virtual]

Write the vector’s contents to the specified ostream.

Parameters:
ostrm ostream to be written to.

matrixMarketFmt Optional argument, defaults to true. If true the contents of the vector will be written in
MatrixMarket real array format. If not true, the stream will be given the vector’s global
dimension on the first line, and all following lines will contain a space-separated pair with
global index first and coefficient value second.

Returns:
error-code 0 if successful, -1 if some error occurs such as failure to open file.

The documentation for this class was generated from the following file:

� fei Vector.h
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fei::LinearSystem Class Reference

A simple container to bind a matrix and two vectors together as the matrix, rhs and solution of a
linear system.

virtual int fei::LinearSystem::loadEssentialBCs (int numIDs, const int � IDs, int idType, int
fieldID, int fieldSize, const double �const � gammaValues, const double �const � alphaValues)
[pure virtual]

Essential boundary-condition function that’s similar to the ’old’ FEI (p. ??)’s boundary-condition-
loading function.

For each component of each field, a gamma-value and an alpha-value is supplied. If alpha is
nonzero, then the boundary condition value is gamma/alpha. If alpha is zero, then no boundary
condition is applied for that component.

Parameters:
numIDs

IDs

idType

fieldID

fieldSize

gammaValues Input. C-style table of values, num-rows = numIDs, num-cols = fieldSize.

alphaValues Input. C-style table of values, num-rows = numIDs, num-cols = fieldSize.

virtual int fei::LinearSystem::loadLagrangeConstraint (int constraintID, const double �
weights, double rhsValue) [pure virtual]

Lagrange constraint coefficient loading function.

Parameters:
constraintID Input. Must be an identifier of a lagrange constraint that was initialized on the fei::Matrix-

Graph (p. 41) object which was used to construct the matrix for this linear system.

weights Input. List, with length given by the sum of the sizes of the constrained fields.

rhsValue

virtual int fei::LinearSystem::loadPenaltyConstraint (int constraintID, const double �
weights, double penaltyValue, double rhsValue) [pure virtual]

Penalty constraint coefficient loading function.
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Parameters:
constraintID Input. Must be an identifier of a lagrange constraint that was initialized on the fei::Matrix-

Graph (p. 41) object which was used to construct the matrix for this linear system.

weights Input. List, with length given by the sum of the sizes of the constrained fields.

penaltyValue

rhsValue

virtual int fei::LinearSystem::parameters (int numParams, const char �const � paramStrings)
[pure virtual]

Set parameters on this object.

Currently two parameters are recognized: ”debugOutput ’path’” where ’path’ is the path to the
location where debug-log files will be produced.

”name ’string’” where ’string’ is an identifier that will be used in debug-log file-names.

The documentation for this class was generated from the following file:

� fei LinearSystem.h
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fei::Solver Class Reference

Interface for requesting that a linear-system be solved.

#include �fei Solver.h�

Inheritance diagram for fei::Solver::

Public Methods

� virtual �Solver ()

virtual destructor

� virtual int solve (fei::LinearSystem �linearSystem, fei::Matrix �preconditioningMatrix, int
numParams, const char �const �solverParams, int &iterationsTaken, int &status)=0

Solve a linear system.

The documentation for this class was generated from the following file:

� fei Solver.h
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fei::Solver

snl_fei::Solver
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fei::Factory Class Reference

Interface for creating fei:: interface instances. This interface inherits the various fei:: factory in-
terfaces which in turn provide the method prototypes for creating instances of the corresponding
interfaces. In addition to inheriting the fei:: factories, fei::Factory provides a method for creating
instances of the ’old’ FEI class.

Inheritance diagram for fei::Factory::

fei::Factory

fei::VectorSpace::Factory fei::MatrixGraph::Factory fei::Matrix::Factory fei::Vector::Factory fei::LinearSystem::Factory fei::Solver::Factory

snl_fei::Factory

Public Methods

� virtual �Factory ()

virtual destructor

� virtual int parameters (int numParams, const char �const �paramStrings)=0

Set parameters.

� virtual int createFEI (LibraryWrapper �wrapper, MPI Comm comm, FEI �&fei)=0

Produce an instance of the ”old” FEI class (implements the FEI 2.1 interface specification). The
run-time type of this class is FEI Implementation, which is implemented by the original body of
FEI implementation code.

� virtual int createFEI (MPI Comm comm, FEI �&fei)=0

Produce an instance of the ”old” FEI class, with run-time type snl fei::Super, which implements
the FEI 2.1 interface specification using the newer modular implementation classes. In many cases
snl fei::Super should provide significantly better performance than FEI Implementation.

� virtual int getOutputLevel ()=0

Query screen output-level (set by parameter-string ”outputLevel n”.

The documentation for this class was generated from the following file:

� fei Factory.h
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fei::VectorSpace::Factory Class Reference

Inheritance diagram for fei::VectorSpace::Factory::

fei::VectorSpace::Factory

fei::Factory

snl_fei::Factory

Public Methods

virtual int fei::VectorSpace::Factory::createVectorSpace (MPI Comm, const char � name,
fei::VectorSpace �& solnSpace) [pure virtual]

Produce an instance of a VectorSpace (p. 29).

name may be NULL.

The documentation for this class was generated from the following file:

� fei VectorSpace.h

fei::MatrixGraph::Factory Class Reference

Inheritance diagram for fei::MatrixGraph::Factory::

fei::MatrixGraph::Factory

fei::Factory

snl_fei::Factory

virtual int fei::MatrixGraph::Factory::createMatrixGraph (fei::VectorSpace � rowSpace,
fei::VectorSpace � columnSpace, const char � name, fei::MatrixGraph �& structure) [pure
virtual]

Produce an instance of a MatrixGraph (p. 41).

Either or both of columnSpace and name may be NULL. If columnSpace is NULL, it will be
assumed that the structure to be created/defined is symmetric. i.e., columnSpace will be assumed to
be identically equal to rowSpace.
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The documentation for this class was generated from the following file:

� fei MatrixGraph.h

fei::Matrix::Factory Class Reference

Inheritance diagram for fei::Matrix::Factory::

fei::Matrix::Factory

fei::Factory

snl_fei::Factory

Public Methods

� virtual �Factory ()

Usual virtual destructor.

� virtual int createMatrix (fei::MatrixGraph �matrixGraph, fei::Matrix �&matrix)=0

Produce an instance of a Matrix (p. 49).

The documentation for this class was generated from the following file:

� fei Matrix.h

fei::Vector::Factory Class Reference

Inheritance diagram for fei::Vector::Factory::

fei::Vector::Factory

fei::Factory

snl_fei::Factory
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Public Methods

� virtual �Factory ()

Usual virtual destructor.

� virtual int createVector (fei::VectorSpace �vecSpace,

fei::Vector �&vector)=0

Produce an instance of a Vector (p. 53) using a VectorSpace (p. 29).

� virtual int createVector (fei::VectorSpace �vecSpace, bool isSolutionVector,

fei::Vector �&vector)=0

Produce an instance of a Vector (p. 53) using a VectorSpace (p. 29).

� virtual int createVector (fei::MatrixGraph �matrixGraph,

fei::Vector �&vector)=0

Produce an instance of a Vector (p. 53) using a MatrixGraph (p. 41).

� virtual int createVector (fei::MatrixGraph �matrixGraph, bool isSolutionVector,

fei::Vector �&vector)=0

Produce an instance of a Vector (p. 53) using a MatrixGraph (p. 41).

The documentation for this class was generated from the following file:

� fei Vector.h

fei::LinearSystem::Factory Class Reference

Inheritance diagram for fei::LinearSystem::Factory::

fei::LinearSystem::Factory

fei::Factory

snl_fei::Factory

Public Methods

� virtual �Factory ()

Usual virtual destructor.
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� virtual int createLinearSystem (fei::MatrixGraph �matrixGraph,

fei::LinearSystem �&linearSystem)=0

Produce an instance of a LinearSystem (p. 55).

The documentation for this class was generated from the following file:

� fei LinearSystem.h

fei::Solver::Factory Class Reference

Inheritance diagram for fei::Solver::Factory::

fei::Solver::Factory

fei::Factory

snl_fei::Factory

Public Methods

� virtual �Factory ()

Usual virtual destructor.

� virtual int createSolver (fei::Solver �&solver)=0

Produce an instance of a Solver (p. 57).

The documentation for this class was generated from the following file:

� fei Solver.h
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Distribution:

Internal:

1 MS 0384 T.C. Bickel 9100
1 MS 9003 K.E. Washington 8900
1 MS 0384 H.S. Morgan 9140
1 MS 0382 J.R. Stewart 9143
1 MS 0382 E.A. Boucheron 9141
1 MS 0380 K.F. Alvin 9142
1 MS 1110 D.E. Womble 9214
1 MS 9917 S.W. Thomas 8962
1 MS 9915 M.L. Koszykowski 8961

1 MS 0382 H.C. Edwards 9143
1 MS 0382 K.D. Copps 9143
1 MS 0382 G.D. Sjaardema 9143
1 MS 0382 J.R. Overfelt 9143
1 MS 0382 K.N. Belcourt 9143
1 MS 0382 K.M. Aragon 9143
1 MS 0382 D.M. Brethauer 9143
1 MS 0382 M.E. Hamilton 9143
10 MS 0382 A.B. Williams 9143

1 MS 0382 S.W. Bova 9141
1 MS 0382 S.P. Domino 9141
1 MS 0382 T.O. Okusanya 9141
1 MS 0382 C.K. Newman 9141
1 MS 0382 R.R. Lober 9141
1 MS 0382 A.A. Lorber 9141
1 MS 0382 S.R. Subia 9141
1 MS 0380 J.D. Hales 9142
1 MS 0380 K.H. Pierson 9142
1 MS 0380 M.K. Bhardwaj 9142
1 MS 0380 G.M. Reese 9142
1 MS 0380 T.F. Walsh 9142
1 MS 0382 P.K. Notz 9114
1 MS 0826 D.K. Gartling 9100
1 MS 0836 R.E. Hogan 9116
1 MS 0847 C.R. Dohrmann 9124
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1 MS 9159 M.F. Adams 9214
1 MS 1110 M.A. Heroux 9214
1 MS 0316 R. Hooper 9233
1 MS 0316 J.N. Shadid 9233
1 MS 0316 T.M. Smith 9233
1 MS 0370 R.A. Bartlett 9211
1 MS 1110 D.M. Day 9214
1 MS 0316 R.J. Hoekstra 9233
1 MS 9159 R.S. Tuminaro 9214

1 MS 9018 Central Technical Files 8945-1
2 MS 0899 Technical Library 9616
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