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Abstract
We have developed a novel approach to modeling the transmembrane spanning helical
bundles of integral membrane proteins using only a sparse set of distance constraints,
such as those derived from MS3-D, dipolar-EPR and FRET experiments. Algorithms
have been written for searching the conformational space of membrane protein folds
matching the set of distance constraints, which provides initial structures for local
conformational searches. Local conformation search is achieved by optimizing these
candidates against a custom penalty function that incorporates both measures derived
from statistical analysis of solved membrane protein structures and distance constraints
obtained from experiments. This results in refined helical bundles to which the
interhelical loops and amino acid side-chains are added. Using a set of only 27 distance
constraints extracted from the literature, our methods successfully recover the structure of
dark-adapted rhodopsin to within 3.2 Å of the crystal structure.



4

This page intentionally left blank



5

Table of Contents
Model-Building Codes for Membrane Proteins ............................................................... 3
Introduction .................................................................................................................... 7
Chapter 1: A deterministic algorithm for constrained enumeration of
transmembrane protein folds ....................................................................................... 8
Abstract .......................................................................................................................... 8
Introduction .................................................................................................................... 8
The ESSEB Algorithm.................................................................................................... 9

Overview .................................................................................................................... 9
Dividing the Conformational Space........................................................................... 10
Internal Error............................................................................................................. 11
RMSD Upper Bounds ............................................................................................... 12
Local SSE Enumeration ............................................................................................ 13
Divide-and-Conquer.................................................................................................. 14
Parameterization........................................................................................................ 15

Results and Discussion.................................................................................................. 15
Summary....................................................................................................................... 17
Acknowledgments......................................................................................................... 17
References .................................................................................................................... 17
Chapter 2: Optimal bundling of transmembrane helices using sparse distance
constraints ................................................................................................................... 19
Abstract ........................................................................................................................ 19
Introduction .................................................................................................................. 19
Results .......................................................................................................................... 21

Statistical analysis of membrane protein structures .................................................... 21
Penalty function ........................................................................................................ 23
Scoring Function Validation...................................................................................... 28
Two-step approach to modeling transmembrane helical bundles using sparse distance
constraints to build the rhodopsin helical bundle ....................................................... 30

Discussion..................................................................................................................... 33
Methods ........................................................................................................................ 35

Representation of the helical bundle .......................................................................... 35
Assembly of membrane protein dataset ..................................................................... 35
Determination of force constants ............................................................................... 35
Conformational Search under a set of distance constraints......................................... 35
Monte Carlo Simulated Annealing............................................................................. 36
Structural analysis and data processing...................................................................... 37

References .................................................................................................................... 37
Chapter 3: Optimizing an Empirical Scoring Function for Transmembrane Protein
Structure Determination............................................................................................. 43
Abstract ........................................................................................................................ 43
Introduction .................................................................................................................. 43
Biological Background.................................................................................................. 44
Transmembrane Protein Structure Determination .......................................................... 45

Mathematical Description of the Problem.................................................................. 45
The Scoring Function: Bundler.................................................................................. 46



6

Optimizing Bundler................................................................................................... 49
Optimization Methods................................................................................................... 50

Simulated Annealing ................................................................................................. 50
Asynchronous Parallel Pattern Search ....................................................................... 52

Numerical Results ......................................................................................................... 53
Motivation................................................................................................................. 53
Numerical Study ....................................................................................................... 54

Conclusions .................................................................................................................. 58
Acknowledgments......................................................................................................... 59
References .................................................................................................................... 59
Chapter 4: Using a Detailed Atomistic Potential to Place Side-Chains onto Poorly-
Folded Backbones ....................................................................................................... 65
Abstract ........................................................................................................................ 65
Introduction .................................................................................................................. 65
Comparison Scheme...................................................................................................... 66
CENTIPEDE................................................................................................................. 66

Energy Function........................................................................................................ 66
Dead End Elimination ............................................................................................... 67
Branch and Bound..................................................................................................... 67

Test Set of Protein Fragments........................................................................................ 67
Results and Discussion.................................................................................................. 70
References .................................................................................................................... 73



7

General Introduction
Integral membrane proteins are essential components of the cell membrane that

participate in many important cellular processes such as cell intoxication and
pathogenesis, energy transduction, cell signaling, mediation of senses and immune
recognition. Their significance is emphasized by the fact that approximately one third of
the proteins encoded for by a typical genome are membrane proteins, and approximately
70 percent of current pharmaceuticals are thought to act on membrane proteins. Despite
their obvious importance, in contrast to over 27,000 soluble proteins structures, the
structures of fewer than 75 integral membrane proteins have been solved. Given the
difficulties, such as the instability of membrane proteins in environments lacking
phospholipids, their tendency to aggregate and precipitate, and protein abundance,
expression and purification issues, it is unlikely that generating high-resolution structural
data from traditional methods such as X-ray crystallography and NMR will yield a
significant increase in the number of solved membrane protein structures in the near
future.

The Interfacial Biosciences Grand Challenge (IBIG) supported the development
of algorithms for modeling the geometry of transmembrane helical bundles, as well as
new theoretical approaches to protein side-chain packing and loop building. In this work
we built on the successes demonstrated under IBIG by developing and validating an
integrated set of software tools for membrane protein modeling. Our goal was to develop
methods to model transmembrane proteins using a set of sparse distance constraints, thus
leveraging the many recent advances in techniques for measuring distances within protein
in their native environment, including chemical cross-linking combined with mass
spectrometry (MS-3D), which was developed for membrane proteins under IBIG, site
directed spin labeling combined with electron paramagnetic resonance (SDSL-EPR) and
fluorescence resonance energy transfer (RET). We combined this low-to-moderate
resolution structural data with constraints derived from analysis of existing membrane
protein structures, such as structural rules derived from helix - helix interactions in
known structures, to determine the structure of the transmembrane spanning domain.
Lastly, the loop domains and side-chains are added to the structure.

This document presents the results of this work in the form of four chapters
representing the following four stages of our membrane protein modeling method:

1. Complete enumeration of the membrane protein folds satisfying a set of
distance constraints (Chapter 1)

2. Ranking and refining these structures using an empirical scoring function
based on solved membrane protein structures (Chapter 2)

3. Optimization of the empirical scoring function (Chapter 3)

4. Addition of amino acid-side chains the backbone level model structures
(Chapter 4).
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Chapter 1: A deterministic algorithm for constrained
enumeration of transmembrane protein folds

W. Michael Brown, Jean-Loup Faulon, Ken Sale, Joseph S. Schoeniger, Malin M. Young

Abstract
A deterministic algorithm for enumeration of transmembrane protein folds is

presented. Using a set of sparse pairwise atomic distance constraints (such as those
obtained from chemical cross-linking, FRET, or dipolar EPR experiments), the algorithm
performs an exhaustive search of secondary structure element packing conformations
distributed throughout the entire conformational space. The end result is a set of distinct
protein conformations, which can be scored and refined as part of a process designed for
computational elucidation of transmembrane protein structures.

Introduction
Integral membrane proteins compose roughly 20% of the total proteins encoded

by the human genome1 and play essential roles in energy transduction, cell signaling,
mediation of senses, and immune recognition. Their obvious importance in human
physiology and great potential as targets for pharmaceutical therapies has made structure
elucidation of membrane proteins highly attractive. However, due to limited solubility,
low protein abundance and expression, and sample purity issues, the efficacy of
traditional structure determination by X-ray crystallography or NMR spectroscopy has
been limited such that only a handful of protein structures have been solved. Therefore,
attention has been given to the development of computational strategies for membrane
protein structure determination.

In light of the limited number of structures available for homology modeling,
Bowie proposed a four stage computational approach for structure determination based
on the Popot & Engelman model2 for helix-bundle membrane protein folding:

1. Prediction of transmembrane regions within the primary sequence
2. Construction and optimization of individual helices
3. Assembly of the helix bundle
4. Addition of interhelical loops and side-chains

Success has been achieved in the accurate prediction of transmembrane-spanning
secondary structure elements3-5 (stages 1-2), and our laboratory has demonstrated success
in the development of algorithms for the optimal bundling of transmembrane helices6-8

(stage 3). The latter effort has focused on a two-step approach which makes use of sparse
pairwise distance constraints that can be determined experimentally from experiments
such as NMR, chemical cross-linking, dipolar EPR, or FRET. The first step involves a
search of the conformational space of membrane protein bundles to find those matching
the experimental distance constraints. Second, the top-scoring helical bundles are refined
using a Monte Carlo simulated annealing protocol designed for local minimization of a
custom penalty function.8 Finally, for stage 4, the addition of loops can be performed
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using commercially available software such as WHATIF,9 SCWRL,10 and Jackal.11

In our previous work on optimal bundling, step 1 was performed by mapping
membrane helices onto a library of helix-bundle templates calculated to represent the
possible protein folds for a given number of helices.7  For each template, every possible
mapping was considered using 1˚ increments for helical axis spins. For each mapping, the
distance restraints and associated experimental errors were checked and the conformation
was thrown out if any were violated. The template library was calculated as described by
Bowie12 based on statistics from 45 transmembrane helices and 88 helix packing
interactions. While this approach can be successful, it suffers from several important
drawbacks:

1. The library generation is stochastic and reproducible results are not guaranteed.
2. The distributions from which the helix center of mass distances and packing

angles are drawn are not uniform. Therefore, helix bundles with helix center of
mass distances lying outside the mean will be poorly represented, for example.

3. The approach suffers from an inherent error that is impossible to assess.

The last drawback can be seen when no experimental errors are added to the
distance restraints. Because the template library is a discrete set of transmembrane helix
bundles, it is highly unlikely that mapping onto one of these templates will produce a
protein conformation where the interatomic distances match exactly. In this case, no
protein conformations will be found. Because the library is generated in a stochastic
process, it is impossible to determine how much tolerance should be added to a distance
restraint to account for the discrete spacing between conformations. Even when
experimental error is added to the distance restraints, there is a chance that the helix
bundle representing the minimum RMSD from the desired structure will be thrown out
due to violation of a single distance restraint.

We have therefore developed a deterministic algorithm for enumeration of
potential transmembrane helix bundles. The program is called ESSEB (Enumeration of
Secondary Structure Element Bundles). Given a set of individual helices and
corresponding distance restraints, the program will output a set of distinct protein
conformations, which can be scored and refined in order to predict the structure of
integral membrane proteins.

The ESSEB Algorithm

Overview
The ESSEB algorithm works by dividing the conformational space of each

secondary structure element (SSE) into a set of cells. For each cell there is a
representative conformation and for each atom in the SSE for which a distance restraint is
available, there is an associated internal error. The internal error for a distance restraint is
the maximum distance that the atom, when positioned in any conformation within a cell,
can be from the atom in the representative conformation. The algorithm works
recursively by positioning one representative conformation of an SSE. All distance
restraints are checked with a tolerance that includes both the experimental and internal
error. If all restraints are satisfied, every representative conformation of the next SSE is
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checked, otherwise, the program moves on to the next representative conformation of the
current SSE.

In addition to the distance restraints, other constraints on protein conformation
can be enforced. These include the distance of closest approach between SSE axes, a
restraint which prevents the cross-over of loops connecting adjacent SSEs, and a
restriction on the minimum and maximum distances between axis end-points. Any
protein conformation satisfying all of the restraints is enumerated for later scoring and
possible refinement. Additionally, in order to make run-times feasible, a divide-and-
conquer approach is used in which the cells of each SSE in an accepted protein
conformation can be further divided such that the internal errors are reduced and the new
representative conformations can be evaluated.

Dividing the Conformational Space
A protein conformation is considered as an arrangement of SSE axes. The SSE

axis vector is calculated as described previously13 as the eigen vector corresponding to
the minimum eigen value for the inertia matrix calculated for all C-a atoms in the SSE.
The endpoints of the SSE axis are the projection of the N-terminal nitrogen atom onto the
axis vector and the projection of the C-terminal carbon atom onto the axis vector. For
integral membrane proteins, the axis centers are restricted to coordinates in the xy-plane
(the plane is intended to represent the center of the membrane bilayer). Therefore, a
protein conformation consisting of n SSEs can be described by a set of n quaternions and
n-1 axis centers (the first SSE is always positioned at the origin). The axis-center space
for one SSE is divided by considering its position relative to another SSE. Defining dmin

as the minimum distance from another SSE and dmax as the maximum distance, the axis-
center space consists of the area in the bilayer plane between the concentric circles with
radii dmin and dmax (Figure 1). An axis center within this area is defined by a polar angle
(w) and a distance (d). The angular space for an SSE is defined by the Euler angles q, y,
and f where q represents the angle with the z-axis (normal to the bilayer plane), w
represents the axis-angle spin about the z-axis, and f represents the spin about the SSE
axis itself. Using these definitions, the conformation of an SSE is defined by (d, w, q, y,
f) where d and w describe the axis center and q, w, and f describe the quaternion. The
conformational space is divided into SSE cells. The range of conformational space
contained within a SSE cell is given by (Dd, Dw, Dq, Dy, Df) and each cell is represented
by a SSE axis conformation lying in the “middle” of this space (see Figures 1 and 2a).
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Figure 1. Division of the axis center conformaional space for one SSE using dnum=3 and _num=12

Internal Error
Due to the fact that the SSE constraints are evaluated on representative

conformations, which are intended to represent a range of SSE conformations within a
cell, the tolerance on each distance restraint is calculated such that if any conformation
within the cell satisfies the constraints, the representative conformation will be accepted.
We describe this tolerance as internal error. There are two internal error values, which are
useful in describing the internal error for an atom — icm and i_. The internal error for axis
center displacement (icm) is given by the distance from the axis center at (d,w) to the axis
center at (d+Dd/2,w+Dw/2):

icm = 2d 2 - 2 cos Dw
2

Ê
ËÁ

ˆ
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d 2 - cos Dw
2
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The internal error for axis end point displacement (it), assuming a fixed axis
center, is given by the distance from the end point at (q,j) to the end point at
(q+Dq/2,j+Dj/2) using an axis length of l:

it =
l 2
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Figure 2: (a) Division of the angular conformational space for one SSE using _num=3 and _num=8 (b)
Internal error components for an SSE atom

The internal error for an atom within the SSE (iatom) can be estimated as the sum
of the maximum individual displacements arising from axis center movement (icm), axis
angle movement of the atom (it’), and axis spin movement of the atom (if). This number
represents a slight over-approximation because it assumes maximum displacement in the
same direction for all three components, and the axis angle displacement vector cannot
have the exact same direction as the vectors measured by icm and if unless Dq is equal to
zero. Let d|| represent the distance from the atom to the axis center projected onto the
axis, and let d_ represent the distance from the atom to the axis. The internal error for the
atom can then be calculated as (see also Figure 2b):

iatom = icm + it
' + if

= icm +
d
l

it + 2d^ sin Df
4

Ê
ËÁ

ˆ
¯̃

(3)

RMSD Upper Bounds
If every representative conformation within the conformational space of the

protein is enumerated, what is the maximum RMSD that an arbitrary conformation can
have from an enumerated conformation? We answer this question by calculating two
upper bounds, the all-atom RMSD and the RMSDHEL. The RMSDHEL was introduced
previously12 in order to study the deviation between helical axes and is useful in that it is
independent of the atomic content of the SSEs within a protein. It is calculated simply as
the RMSD of the axis centers and both sets of endpoints. Assuming that the
conformational space for an SSE is divided such that i_ and icm remain constant for each
of the cells, a tight upper bound to the RMSDHEL can be calculated.

Let a represent the vector of maximum displacement of an axis endpoint with
fixed center within a cell and ax, ay, and az represent the Cartesian component vectors of
a. Likewise, let b represent the vector of maximum displacement for the other axis end
point. Because the axis is rotating about its center, we have:
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ba
ba

-=

==ti (4)

The maximum deviation for the endpoint moving by a is:

da = icm + ax( )2
+ ay

2 + az
2È

Î
˘
˚

1
2

= icm
2 + 2 ax icm + it

2ÈÎ ˘̊
1

2

(5)

Likewise, by making the substitution in equation 4, the maximum deviation for
the endpoint moving by b is:

db = icm
2 - 2 ax icm + it

2ÈÎ ˘̊
1

2 (6)

The maximum deviation for the axis center is simply icm, and therefore the upper
bound to the RMSDHEL for a single SSE can be calculated as:

RMSDHEL = icm
2 +

2
3

it
2 (7)

The upper bound for the entire protein conformation can be calculated by
including the internal errors for each of the SSEs within the summation, noting that the
icm for the first SSE is always 0 and that the icm for the second SSE is also reduced
because the axis-center space covers only the x-axis.

For the all-atom RMSD, the calculation is less straightforward. Simply summing
the squares of the internal errors for each atom results in a significant over-approximation
because it neglects the fact that the axis is rotating about its’ center. We therefore
calculate the all-atom RMSD upper bound by assuming that the axis halves are
symmetric. This assumes that for every atom that moves on one side of the axis, an atom
on the other half moves in an opposite direction. Then, analogous to the RMSDHEL
calculation, the all-atom RMSD can be calculated as:

RMSDUPPER ª
1
n

icm + if j( )( )2
+ it j( )2È

Î
˘
˚j =1

n

Â
È

Î
Í

˘

˚
˙

1
2

(8)

In this equation, the summation is over each atom j in the SSE with i(j)
representing an internal error component for atom j. It is also important to note that
neither the RMSDHEL upper bounds nor the all-atom RMSD upper bounds represent
optimal (fitted) upper bounds.

Local SSE Enumeration
A local enumeration of SSE cells is implemented by enumerating each SSE

relative to a previous SSE (and thus absolute axis center positions are not considered).
The local enumeration for each SSE is specified by a division count (dnum, wnum, qnum,
jnum, fnum). The axis centers are enumerated at distances dj between dmin and dmax,
indexed at j from 1 to dnum (see Figure 1). For each cell:

dj = dmin +
Dd 2 j - 1( )

2
  ,  Dd =

dmax - dmin

dnum

(9)
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Using a constant Dw would lead to a decrease in the axis-center space covered by
each cell with decreasing distance. Therefore, Dw is calculated at each distance di to
maintain an approximately constant icm. wnum is used only to calculate Dw at dd_num and
the resulting value for icm is used to calculated Dw at each other distance (as derived from
equation 1):

Dw dj( ) = 2p • int 2p 2cos-1 8dj
2 + 4djDd + Dd 2 - 4icm

2

8dj
2 + 4djDd
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Ë
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¯
˜
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˘
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˙
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(10)

The angular orientations for the axes are enumerated at qj between 0 and tmax

indexed at j between 1 and qnum:

q j =
Dq 2 j - 1( )

2
  ,  Dq =

t max

qnum

(11)

The value for Dj is calculated at each qj in order to maintain an approximately
constant it (as derived from equation 2):

Dy qi( ) = 2p • int 2p cos-1 1 - cosq cos q + Dq / 2( ) - 2it
2

l2 sinq sin q + Dq / 2( )
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The axis spin division is straightforward:

Df =
2p

fnum

(13)

The equations allow the conformational space for an SSE to be divided with
approximately constant values for it and icm such that the RMSD upper bounds and
internal errors for each atom remain consistent. The axis-center space for the first SSE
consists of only the origin, and thus the icm for the first SSE is zero. The axis-center space
for the second SSE consists of only the x-axis between dmin and dmax, and therefore the icm

for the second SSE is calculated with Dw equal to zero. It is also important to note that
dmin and dmax are adjusted for the third and higher SSEs based on the icm for the previous
SSE. This is to account for internal error in the positioning of the previous SSE. The
“global” enumeration will enumerate any combination of representative axis
conformations that satisfy all of the constraints as described in the Overview. The
software performing the global enumeration takes as input an RMSDHEL or all-atom
RMSD upper bound and calculates, based on this value, the division counts for each SSE
needed in order to satisfy the upper bound. This is performed in an iterative manner,
starting with division counts of 1. At each iteration, the division count, which results in
the greatest decrease in internal error, is increased until the upper bound is satisfied.

Divide-and-Conquer
In order to decrease the run-times required for enumeration, a divide-and-conquer

strategy is implemented. In this case, two RMSD upper bounds are supplied — an initial
and final upper bound. The conformational space is originally divided according to the
initial upper bound. If a representative conformation satisfies the constraints, its’ cell is
split, the internal errors are recalculated, and the new set of representative conformations
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are evaluated. This division continues until a representative conformation is accepted for
a cell whose RMSD upper bound is below the final value. The software allows two
options for enumeration during divide-and-conquer. In the first, every accepted
conformation per original cell is accepted. This option allows the final RMSD upper
bound to be satisfied. In the second option, only the first accepted SSE-bundle within an
original cell is accepted. This option prevents the enumeration of the large number of
very similar protein conformations needed to satisify a small RMSD upper bound, while
still allowing a low internal error condition for acceptance of protein conformations.

The options for dividing a conformational cell include splitting the axis-center
space (Dd or Dw), the angular space (Dq or Df), or the axis-spin space (Dj). The decision
is made by assessing which split will result in the largest decrease in internal error for a
cell based on the values for the icm, the it, and the if  for the atom farthest from the SSE
axis. For the axis-center space, the cell can be split by dividing Dd, Dw, or both. The
decision is made by assessing the decrease in icm for each method. Unless the icm

decreases by at least twice the amount that would be obtained by splitting Dd or Dw, the
split into fourths is not performed and the better of the other two methods is taken. When
splitting Dw, the Dw for each of the new cells is set to maintain an approximately equal
icm. The split of the angular space is made in a manner analogous to that of the axis-center
space.

Parameterization
The parameters that govern the conformational space for an integral membrane

helical bundle are taken from the ranges reported in a survey by Bowie.14 The maximum
angle of a helical axis with the bilayer plane (tmax) is set at 40º. The minimum distance
between axis centers (dmin) is set to 6 Å and the dmax between helical axes adjacent in
terms of primary sequence is set to 13.4 Å. The distance of closest approach between two
SSE axes is set to lie in the same range as the axis center distances.

Results and Discussion
As described above, the RMSDHEL is useful because it only represents the

deviation of the axis center and endpoints, and is therefore independent of specific
protein structures. The total number of representative conformations that exist for a given
RMSDHEL upper bound are plotted in Figure 3a for a 7-helix bundle containing axes 30 Å
in length. There is an exponential increase in the number of representative conformations
that must be evaluated with decreasing RMSDHEL. This increase is relevant in that the
RMSDHEL is intimately related to the internal error for each distance restraint. This
presents an interesting problem in view of the objective to determine the percentage of
total conformational space in which a helix bundle satisfies experimental distance
restraints. By decreasing the RMSDHEL upper bound, the internal error becomes reduced.
However, there is an exponential increase in the number of potential conformations that
must be evaluated. Likewise, there is an exponential increase in the number of
conformations that lie within a fixed percentage of the conformational space and must
later be considered for scoring and refinement. On the other hand, by increasing the
RMSDHEL, the constraints become relaxed such that the percent of conformational space
in which the helix bundle can exist increases.
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Figure 3: (a) Total number of possible representative conformations as a function of the RMSDHEL
Upper Bound. The numbers were calculated using seven 30 angstrom SSE axes. (b) Divide-and-
conquer search of the conformational space for bovine rhodopsin using an initial RMSD upper
bound of 17 angstroms

Our solution to this problem is a divide-and-conquer approach. The algorithm
prevents the enumeration of a large number of very similar conformations, while at the
same time allowing for a small internal error in distance restraint evaluation. We have
tested the efficacy of this approach using the crystal structure of bovine rhodopsin
(1F88.pdb). Thirty-eight distance restraints were calculated between atoms in amino acid
pairs that could potentially be cross-linked (K-K, K-D, K-E, K-C, and C-C) as reported in
our previous work.7 The “experimental” errors were set to ±2 angstroms. When using as
input an all-atom RMSD upper bound of 17Å, 3088 out of a total of 2.6_109

representative conformations were enumerated, indicating that they satisfied both the
distance restraints and other helical-bundle constraints listed in the overview. In terms of
conformational cells, this represents less than 1.2_10-6 percent of the total conformation
space.

By implementing the divide-and-conquer approach, this number can be reduced
further. Figure 3b illustrates the effect of the final divide-and-conquer RMSD upper
bound on the number of accepted conformations. Using a final all-atom RMSD upper
bound of 7Å, the number of accepted conformations is reduced to 48. Out of the
enumerated conformations, the minimum all-atom RMSD from the crystal structure is
found to be 4.3Å. The superimposition of the structures is shown in Figure 5.
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Figure 4. Superimposition of the helix bundle from the crystal structure of bovine rhodopsin with a
representative conformation selected from enumeration.

Summary
We have described a deterministic algorithm for enumeration of transmembrane

protein folds, which does not suffer from the drawbacks of the stochastic approach we
have used previously. Additionally, we have demonstrated the efficacy of the approach
via the constrained enumeration of potential helix bundles for bovine rhodopsin using
sparse distance constraints. The results show that an exhaustive search of the potential
conformational space of a transmembrane helix bundle is possible, based only a set of
sparse experimental distance restraints. The source code for ESSEB is available upon
request from the authors.
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Chapter 2: Optimal bundling of transmembrane helices using
sparse distance constraints

Ken Sale, Jean-Loup Faulon, Genetha A. Gray, Joseph S. Schoeniger and Malin M.
Young

Abstract
We present a two-step approach to modeling the transmembrane spanning helical

bundles of integral membrane proteins using only sparse distance constraints, such as
those derived from chemical cross-linking, dipolar EPR and FRET experiments. In step
one, using an algorithm we developed (Faulon et al. 2003), the conformational space of
membrane protein folds matching a set of distance constraints is explored to provide
initial structures for local conformational searches. In step two, these structures refined
against a custom penalty function that incorporates both measures derived from statistical
analysis of solved membrane protein structures and distance constraints obtained from
experiments. We begin by describing the statistical analysis of the solved membrane
protein structures from which the theoretical portion of the penalty function was derived.
We then describe the penalty function, and, using a set of six test cases, demonstrate that
it is capable of distinguishing helical bundles that are close to the native bundle from
those that are far from the native bundle. Finally, using a set of only 27 distance
constraints extracted from the literature, we show that our method successfully recovers
the structure of dark-adapted rhodopsin to within 3.2 Å of the crystal structure.

Introduction
Integral membrane proteins are essential components of the cell membrane that

participate in many important cellular processes such as energy transduction, cell
signaling, mediation of senses such as vision, cell intoxication and pathogenesis, and
immune recognition. Their significance is emphasized by the fact that approximately one-
third of the proteins encoded for by a typical genome are membrane proteins (Buchan et
al. 2002).  Furthermore, at least 70 percent of current pharmaceuticals are thought to act
on membrane proteins (Wilson and Bergsma 2000). Despite their obvious importance, to
date, the structures of fewer than 75 integral membrane proteins have been solved (see
(White 2003) and references therein), and this number includes  redundant structures
across species.   This is a vast contrast to the over 25,000 soluble proteins whose
structures have been solved using X-ray crystallography and NMR.  Reasons for the slow
progress in the structural analysis of membrane proteins include the instability of
membrane proteins in environments lacking phospholipids, their tendency to aggregate
and precipitate, and protein abundance, expression and purification issues.   These
characteristics highlight why the application of standard structure determination methods
to membrane proteins is non-trivial.

Given the nature of the difficulties in generating high-resolution structural data
from methods such as X-ray crystallography and NMR, it is unlikely that these
experimental techniques will yield a significant increase in the number of solved
membrane protein structures in the near future. As an alternative approach, the focus here
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is on modeling transmembrane proteins using a set of sparse distance constraints, thus
leveraging the many recent advances in techniques for measuring distances within a
protein. Such methods include chemical cross-linking combined with mass spectrometry
(Bennett et al. 2000; Rappsilber et al. 2000; Young et al. 2000; Back et al. 2002;
Taverner et al. 2002; Dihazi and Sinz 2003; Kruppa et al. 2003; Novak 2003; Schilling et
al. 2003), site directed spin labeling combined with electron paramagnetic resonance
(SDSL-EPR) (Rabenstein and Shin 1995; Farrens et al. 1996; Hustedt et al. 1997;
McHaourab et al. 1997; Steinhoff et al. 1997; Hustedt and Beth 1999; Altenbach et al.
2001; Borbat et al. 2001; Liu et al. 2001; Persson et al. 2001; Radzwill et al. 2001; Brown
et al. 2002; Perozo et al. 2002; Hubbell et al. 2003), disulfide bond formation mapping
(Cai et al. 1999; Yu et al. 1999; Cai et al. 2001) and fluorescence resonance energy
transfer (FRET) (Matyus 1992; Hillisch et al. 2001; Klostermeier and Millar 2001;
Parkhurst et al. 2001; Rye 2001; Szollosi et al. 2002; Sekar and Periasamy 2003). These
methods produce low-to-moderate resolution structural data that can be used in
conjunction with computational predictions, such as structural rules derived from helix-
helix interactions in known structures (Bowie 1997; 1999), to determine a transmembrane
protein structure to moderate resolution.

The modeling challenge of constructing a transmembrane helical bundle that is
consistent with a set of low-to-moderate resolution experimental constraints can be
simplified by considering some of the relative characteristics of a transmembrane protein.
The low dielectric environment of a lipid bilayer favors the formation of regular
secondary structural elements (SSE), such as helices and beta sheets, by increasing the
strength of hydrogen bonds (White and Wimley 1999; Kim and Cross 2002).  The
thermodynamic disadvantages of transferring non-hydrogen bonded peptides from a
water to a lipid environment (+5 kcal/mol per H-bond, (Engelman et al. 1986)) imply that
transmembrane proteins fold and assemble in a multi-stage process (Jacobs and White
1989; Popot and Engelman 1990).  We assume the two-stage model (Popot and
Engelman 1990) and describe the construction of transmembrane protein models as two
separate tasks: (1) defining the transmembrane SSEs and (2) determining their relative
orientations or packing.

While not a solved problem, transmembrane spanning SSEs can be accurately
predicted from sequence information using widely accepted methods such as sliding-
window hydrophobicity analysis (Rose 1978; Jayasinghe et al. 2001a; b). However,
subsequent prediction of the association of these helices into the final transmembrane
protein fold is not well established. Structural constraints imposed by the lipid bilayer on
transmembrane SSEs do limit the number of possible membrane protein folds (White and
Wimley 1998), and several ab-initio and potential based computational approaches for
predicting interhelical packing have been proposed  (Bowie 1997; 1999; Nikiforovich et
al. 2001; Dobbs et al. 2002; Fleishman and Ben-Tal 2002; Vaidehi et al. 2002; Kim et al.
2003).

Several of these approaches incorporate experimental data into their models. For
example, Nikiforovich et al.(Nikiforovich et al. 2001) use the similarity between the X-
ray structures of bacteriorhodopsin and rhodopsin to estimate helix packing in the
membrane plane. Specifically, the intersections between the helical axes and the
membrane plane are fixed at values derived from the two X-ray structures. Vaidehi et al.
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orient each helical axis of the helical bundle according to the 7.5 Å electron density map
of rhodopsin (Vaidehi et al. 2002). Herzyk and Hubbard developed an automated
approach to modeling seven helix transmembrane receptors using a combination of data
from electron microscopy, neutron diffraction, mutagenesis, chemical cross-linking, site-
directed spin labeling, disulfide mapping, FTIR difference spectroscopy, solid state 13C
NMR, semi-empirical calculations on ligand-protein interaction, multiple sequence
alignment and hydrophobicity (Herzyk and Hubbard 1995). Using a potential function
designed to constrain model structures to satisfying these data, they built a model
structure of bacteriorhodopsin that was within 1.87 Å RMSD of the structure determined
by electron microscopy. By combining several types of data, they have laid the
groundwork for developing scoring functions that constrain helical bundles using
experimental data. In this work, we take a similar approach; however, rather than using
data taken from a variety of experiments, we develop a function based solely on distance
constraints and data mined from structures in the PDB.

In this paper, we describe a two-step approach to modeling the transmembrane
spanning, helical bundles of integral membrane proteins using sparse distance constraints.
Since many of the known membrane protein structures are all alpha-helical, we limit our
discussion to modeling helical bundles. The method is as follows:  step 1) search the
conformational space of membrane protein folds to find those matching a given set of
distance constraints (Faulon et al. 2003);  step 2) refine the helical bundles from step one
using a Monte Carlo simulated annealing protocol designed for local minimization of a
custom penalty function referred to as Bundler. The Bundler function scores a helical
bundle based on its consistency with the structural features of known transmembrane
bundles as well as with distance constraints from experimental methods such as chemical
cross-linking, NMR, FRET and EPR. In the following sections the Bundler penalty
function is described in detail and validated across a set of six known transmembrane
protein structures to show that it is capable of distinguishing between structures close to
and far from the native structure.  We also demonstrate that our two-step approach can
recover the transmembrane helical bundle of the dark-adapted rhodopsin structure (1f88)
to within 3.2 Å RMSD of the native structure using only 27 experimental distance
constraints gathered from the literature.

Results
We begin this section by presenting a statistical analysis of a set of non-redundant

helical transmembrane proteins. This is followed by a description of the penalty function,
referred to as Bundler, and validation of the penalty function as a tool to differentiate near
native helical bundles from those far from the native bundle is then described. Using a set
of six membrane proteins crystal structures the penalty function is validated by showing
that helical bundles with lower RMSD from the X-ray structure score lower than those
with higher RMSD. Lastly, we demonstrate the method on the structure of dark-adapted
rhodopsin using a set of distance constraints taken from the literature.

Statistical analysis of membrane protein structures
 The set of 14 membrane proteins listed in Table 1, with all-alpha helical
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transmembrane
domains, was
examined to
extract statistical
information about
their helix packing
distances, angles
and number of
nearest neighbors.
Since the structure
of the individual
helices comprising
the helical bundle
is not likely to be
known, we
assumed that in
most cases the
bundle will
initially be modeled using idealized helices and concluded that collecting statistics on an
idealized set of the 14 transmembrane proteins would result in the most useful statistical
parameters for the scoring function.  Idealized representations of the 14 proteins were
constructed by superimposing perfect alpha-helical structures of the appropriate lengths
onto the helices in the transmembrane domains.  The Ca level RMSD between the
individual idealized helices and their corresponding helices from the PDB structure
ranged from 0.56 Å (1PRC, 17 aa) to 4.07 Å (1QLAC, 35 aa), while across all helices of
the transmembrane domain, the Ca level RMSDs ranged from 1.15 Å (1FQY, 136 aa) to
2.37 Å (1QLAC, 160 aa).

Statistics collected on the 14 idealized representative structures are listed in Table
2.   Means and standard deviations were calculated for the distances between the centers
of mass for consecutive helices (dCOM,cons), distances between the centers of mass for all

helical pairs (dCOM), the
minimum approach distance of
the helical axes for consecutive
helices (dmin,cons), the minimum
approach distance of all helix
axial pairs (dmin), the packing
angle of helical axes (qpack), and
the number of helical neighbors
(nneigh) with a minimum
pairwise approach distance less
than 15 Å.  Note that in Table 2,
N indicates the sample size.

Fleishman and Ben-Tal have suggested that short loops, less than 20 amino acids,
play an important role in determining the packing of helices in membrane protein
structures (Fleishman and Ben-Tal 2002).  Hence, in addition to experimentally

Table 1:  Structures used for statistical characterization of transmembrane
protein bundles

PDB ID Name Number of AAs
1BL8 KcsA Potassium Channel 388
1C3W Bacteriorhodopsin 222
1E12 Halorhodopsin 239
1EHK Ba3 Cytochrome C Oxygenase 743
1EUL Calcium ATPase 994

1EZVC Cytochrome bc1 Complex 385
1F88 Rhodopsin 338
1FQY AQP1 –Aquaporin Water Channel 226
1FX8 GlpF-Glycerol Facilitator Channel 254
1JGJ Sensory Rhodpsin II 217

1MSL McsL Mechanosensitive Channel 545
1OCC aa3 Cytochrome C Oxidase 1780
1PRC Photosynthetic Reaction Center 605

1QLAC Fumerate Reductase Complex 254

Table 2: Statistics describing transmembrane protein helical
bundles1

Statistic m s N
dCOM,cons 12.8 Å 5.3 Å 86

dCOM 18.6 Å 7.32 Å 336
dmin,cons 10.7 Å 5.2 Å 86

dmin 16.3 Å 7.4 Å 336
qpack 30.9° 16.4° 336
nneigh 3.4 1.4 102
rpack 37.1 2.5 16

1 All statistics were calculated on the set of proteins listed in
Table 1 with the exception of the packing density, rpack,
which was calculated on the proteins listed in Table 3.
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determined
distances, we
include
distances
generated by
correlating loop
lengths to helix-
end to helix-end
distances. Using
our set of 14
helical
membrane
proteins, we
correlated the
helix-end to
helix-end
distances with
the number of
amino acids in
the loop connecting the two helices (Figure 5). Across the span of loop lengths, this
correlation is quite low (R2 = 0.4).  However, dividing this sample into a group with
loops containing seven or fewer amino acids (R2 = 0.8) and loops with eight or more
amino acids (R2 = 0.2) allowed us to develop a set of guidelines for deriving helix-end to
helix-end distance constraints given the number of amino acids in the loop. The least
squares line through the points with seven or fewer amino acids is

† 

D =1.2x(±0.2) + 4.9(±1.0), where D is the helix-end to helix-end distances and x is the
number of amino acids. Using a 95% confidence interval around this least squares line
and the minimum and maximum distances for loops with 8 or more amino acids, we
obtain the following upper (UB) and lower (LB) bounds for distance constraints between
helix ends:

† 

# AA £ 7     
LB = 0.7x + 2.9
UB =1.6x + 6.9

Ï 
Ì 
Ó 

# AA ≥ 8     
LB = 5

UB = 25
Ï 
Ì 
Ó 

. (1)

For loops ranging from 4 to 8 residues the upper bounds are 13.5 Å, 15.2 Å, 16.8 Å, 18.1
Å and 20.1 Å, respectively, which compare well to the values of 14.7 Å, 15.7 Å, 18.2 Å,
18.2 Å and 20.7 Å reported by Hertzig and Hubbard (Herzyk and Hubbard 1995).

Penalty function
The Bundler penalty function incorporates distance constraints determined via

experimental methods such as chemical crosslinking, dipolar EPR, FRET and NMR.
Bundler assesses a possible helical bundle and assigns it a score reflecting, in part, its
degree of consistency with a set of experimental distance constraints.  Given a large
enough experimental distance constraint set, such a function would require no additional

Figure 5:  Correlation of helix-end to helix-end distance with number of amino
acids in the loop. Statistics are for the 36 helix-end to helix-end distances
extracted from the set of 14 non-redundant structures given in Error! Reference
source not found.
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considerations;  however, measuring distances in membrane proteins is difficult, so it is
likely that only a sparse number of distance constraints will be available. Moreover, it is
expected that the available distances will not be error free.  Therefore, to improve its
viability, Bundler also includes penalties for violating a set of helix packing parameters
determined by the analysis of a set of membrane protein structures from the PDB. Note
that while after the first step of the overall modeling procedure only helical bundles
satisfying the distance constraints remain, it is still necessary to include a distance
constraints penalty to avoid allowing the bundle to deviate far from experimental results
in favor of the structure survey-based constraints. The total penalty, P, is thus the sum of
a distance constraint penalty and the structure-based penalties:

† 

P = Pdistance constraints + Pstructure (2)

Distance Constraints Penalty (Pdist)

Distance constraints provide moderate resolution structural information and are a
crucial component in our modeling of helical membrane proteins (Faulon et al. 2003).
Bundler penalizes structures that violate distance constraints according to a “soft” square
well potential defined as

† 

Pdist = kdist

dij - lij( )
2
,    dij < lij

 0,            lij £ dij £ uij

uij - dij( )
2
,   dij > uij

Ï 

Ì 
Ô Ô 

Ó 
Ô 
Ô 

, (3)

where lij and uij  are the lower and upper limits on the distance between atoms i and j,
respectively; dij is the distance between atoms i and j in the current bundle; and kdist is a
force constant and was set to 500.

Structure based penalties

The structure based piece of the scoring function consists of penalties for helical
bundles with packing angles, packing distances, and/or packing densities outside the
ranges determined from analysis of a non-redundant set of helical transmembrane protein
structures. It also incorporates a van der Waals repulsive potential, a “compactness”
penalty for having too few neighboring helices, and a penalty for unlikely side-chain
interactions. Summing these terms gives the total structure based penalty

† 

Pstructure = Ppacking distance + Ppacking angle + Ppacking density + Pvdw + Pcontacts + Pside-chain preference. (4)

Below, we describe each of the terms of (4) in detail.

Packing Distance Penalty (Ppdist)

The mean distance between the centers of mass of consecutive helices, as derived
from the set of 14 non-redundant helical transmembrane protein structures Table 1, is
12.8 ± 5.3 Å, while the mean distance between consecutive helical line segments is 10.7
± 5.2 Å. A packing distance penalty is applied if either the centers of mass of the
consecutive helices or the minimum distance between the two helical axes falls outside
1.5 standard deviations of their respective mean. The packing distance penalty is defined
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as a soft square well potential,

† 

Pd = kd

dij -dl( )
2
,    dij < dl

 0,        dl £ dij £ du,      dl = d -1.5sd  and du = d +1.5sd

du -dij( )
2
,    dij > du

Ï 

Ì 
Ô 
Ô 

Ó 
Ô 
Ô 

, (5)

where 

† 

d  and 

† 

sd  are the mean and standard deviation of the interhelical distance,
respectively; 

† 

dij is the distance between the centers of mass of helix i and helix j in the
current structure; and 

† 

kd  is a force constant, which we set at 50.  The packing distance
term is summed over the set of distinct helical pairs.

Packing Density Penalty (Ppdens)

 Packing density is defined as the ratio of atomic volume to solvent accessible
volume (Richards 1974). Since average protein packing density does not vary
significantly with secondary structure class (Chothia 1975), we increased our sample size

for calculating packing density statistics by analyzing a non-redundant set of 28 alpha-
helical and/or beta strand-containing membrane proteins Table 3from which the mean
backbone packing density was 37.1 ± 2.5. Structures with a packing density greater than

Table 3:  Packing density statistics

PDB ID Number of AAs Name TM Class Packing Density
1BL8 388 KcsA Potassium Channel a 37.0

1BXW 172 OmpA b 37.0
1C3W 222 Bacteriorhodopsin a 38.0
1E12 239 Halorhodopsin a 38.0
1EHK 743 ba3 Cytochrome C Oxygenase a 38.0
1EK9 423 TolC Outer Membrane Protein b 37.0
1EUL 994 Calcium ATPase a 37.0

1EZVC 385 Cytochrome bc1 Complex a 37.0
1F88 338 Rhodopsin a 37.0
1FEP 669 FepA b 37.0
1FQY 226 AQP1-Aquaporin Water Channel a 36.0
1FX8 254 GlpF-Glycerol Facilitator Channel a 38.0
1JGJ 217 Sensory Rhodopsin a 38.0

1LGH 198 Light Harvesting Complex a 37.0
1MAL 421 Maltoporin b 37.0
1MSL 545 MscL Mechanosensitive Channel a 35.0
1OCC 1780 aa3 Cytochrome C Oxidase a 37.0
1PHO 330 PhoE b 37.0
1PRC 605 Photosynthetic Reaction Center a 36.0
1QD5 257 OMPLA b 37.0
1QJ8 148 OmpX b 39.0

1QLAC 254 Fumerate Reductase Complex a 37.0
2FCP 705 FhuA b 37.0
2MPR 421 Maltoporin b 37.0
2OMF 340 OmpF b 38.0
2POR 301 Porin b 38.0
3LKF 292 LukF b 37.0
7AHL 293 Alpha-hemolysin b 36.0
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1.5 standard deviations away from the mean are penalized using a soft square well
potential

† 

Pr = kr

r - rl( )2,    r < rl

 0,       rl £ r £ ru,    where rl = r -1.5sr  and ru = r +1.5sr

ru - r( )2,    r > ru

Ï 

Ì 
Ô Ô 

Ó 
Ô 
Ô 

, (6)

where 

† 

r  and 

† 

sr  are the mean and standard deviation of the packing density, respectively;
and 

† 

kr  is a force constant, which we set at 500.

Packing Angle Penalty (Pangle)

The helix packing angle score penalizes structures in which the angle between the
helical axes of consecutive pairs of helices is outside 1.5 standard deviations of the
average angle. The mean packing angle between consecutive pairs of helices, calculated
over the non-redundant set of 14 helical transmembrane proteins in Table 3, is 30.9 ±
16.3 Å. Packing angle violations are penalized according to a soft square well potential,

† 

Pq = kq

qij -ql( )
2
,    qij < ql

 0,        ql £ qij £ qu,    where ql = q -1.5sq  and qu = q +1.5sq

qu -qij( )
2
,    qij > qu

Ï 

Ì 
Ô 
Ô 

Ó 
Ô 
Ô 

, (7)

where

† 

q  and 

† 

sq  are the mean and standard deviation of the packing angles, respectively;
and 

† 

qij is the angle between helix i and helix j.  The force constant is 

† 

kq  = 5. The packing
angle penalty is summed over the set of consecutive helical pairs.

van der Waals Repulsion (Pvdw)

In order to avoid overlapping helices, we include a van der Waals potential. Since
our helix bundling is done at the Cb level of atomic detail, we use only the van der Waals
repulsive function (Brünger et al. 1998),

† 

Pvdw = kvdw

0,                    rij ≥ sRij

s2Rij
2 - rij

2( )
2
,    rij < sRij

Ï 
Ì 
Ô 

Ó Ô 
,  (8)

to prevent interhelical clashes.  Here, s is a predetermined van der Waals scaling factor
and was set to 1; rij is the distance between Cb atoms i and j; Rij is the distance at which
atoms i and j begin to repel each other; and kvdw is a weighting constant and is set at 5.
This piece of the penalty function is summed over the set of all pairs of Cb atoms, and for
computing efficiency, we consider only Cb – Cb clashes.

Contact Penalty (Pcontact)

Our analysis of the 14 membrane proteins listed in Table 1 revealed that the
helices are usually in contact with at least two neighbor helices. To guarantee that this is
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the case in our candidate helical bundles, we apply a simple linear penalty to any
structure containing a helix that is not in contact with at least two neighbors and define a
contact penalty as

† 

Pcontact = kcontact 2 - c( ), (9)

Here, 

† 

c < 2  is the number of helices with a center of mass that is less than md(COM) –
1.5sd(COM) of the center of mass of the specified helix and kcontact= 500. A contact penalty
score is calculated for each helix in the bundle.

Side-Chain Interaction Preference Penalty (Psc)

The amino acids in membrane proteins show a preference for which amino acids
they interact with on neighboring helices (Adamian and Liang 2001; Nikiforovich et al.
2001; Adamian et al. 2003). To evaluate this characteristic in our candidate helical
bundles, we incorporate the membrane helical interfacial pairwise (MHIP) amino acid
interaction propensity matrix of Adamian and Liang (Adamian and Liang 2001) into our
penalty function.  The entries of this matrix have been adjusted to reflect penalties for
low propensity pair interactions rather than bonuses for favored pair interactions by
subtracting the propensity score for each amino acid pair from the value of the highest
propensity pair (Table 4).  Note that the penalty for the strongest interacting pairs, such as
CYS – GLN, which have an MHIP = 6.0, is now 0.0, while the penalty on the weakest
interacting pairs, such as ARG – SER with an MHIP = 0.0, is now 6.0, the largest value
in Table 4.  The side-chain propensity penalty is simply the sum of the pair wise
propensity over all side-chain pairs, for which the Cb atoms are within 4.9 Å of each
other,

† 

Psc = Pij ,      dij
ij
Â £ 4.9 Å (10)

where Pij is the interaction penalty of amino acids i and j and dij is the distance between
the two Cb atoms.

Table 4:  Helical interfacial side-chain packing penalties1

ALA CYS ASP GLU PHE GLY HIS ILE LYS LEU MET ASN PRO GLN ARG SER THR VAL TRP TYR
ALA 4.7 4.3 4.8 5.2 4.9 4.9 4.7 5.0 5.3 5.1 4.3 4.9 3.9 5.0 5.5 5.1 5.0 5.2 4.9 5.2
CYS 4.3 5.2 6.0 5.2 4.2 3.6 4.7 4.9 6.0 5.0 4.5 5.2 5.4 6.0 5.6 3.8 4.8 5.7 5.6 5.7
ASP 4.8 6.0 6.0 5.6 5.7 5.9 5.4 5.0 3.8 5.3 5.5 1.2 4.2 6.0 2.3 4.8 5.0 5.9 5.6 3.2
GLU 5.2 5.2 5.6 4.4 5.5 5.3 5.0 5.6 4.3 5.5 5.0 4.7 4.1 5.6 4.8 5.0 5.0 5.3 5.9 5.3
PHE 4.9 4.2 5.7 5.5 4.3 4.7 4.9 5.2 5.6 4.9 4.6 5.5 5.4 5.0 5.6 5.0 5.3 5.1 4.6 5.2
GLY 4.9 3.6 5.9 5.3 4.7 3.0 2.9 5.4 5.6 5.0 4.7 4.4 5.4 4.6 5.4 5.0 5.4 5.0 4.6 4.4
HIS 4.7 4.7 5.4 5.0 4.9 2.9 2.1 5.3 5.5 5.3 5.0 5.8 5.7 3.5 5.7 4.7 3.7 5.5 4.1 4.8
ILE 5.0 4.9 5.0 5.6 5.2 5.4 5.3 4.7 5.5 5.0 4.9 4.9 4.8 5.0 5.8 5.4 5.1 5.2 5.0 5.5
LYS 5.3 6.0 3.8 4.3 5.6 5.6 5.5 5.5 6.0 5.3 3.8 3.2 5.0 4.4 5.2 4.9 5.8 5.6 5.4 3.5
LEU 5.1 5.0 5.3 5.5 4.9 5.0 5.3 5.0 5.3 4.9 5.0 5.1 5.3 5.2 5.4 4.9 5.4 5.0 5.0 5.0
MET 4.3 4.5 5.5 5.0 4.6 4.7 5.0 4.9 3.8 5.0 4.5 5.2 4.6 5.0 4.7 4.1 5.3 5.1 4.8 5.4
ASN 4.9 5.2 1.2 4.7 5.5 4.4 5.8 4.9 3.2 5.1 5.2 0.0 4.8 3.6 5.3 4.6 5.2 5.1 5.3 4.5
PRO 3.9 5.4 4.2 4.1 5.4 5.4 5.7 4.8 5.0 5.3 4.6 4.8 4.2 5.1 5.4 4.8 4.7 5.4 4.8 4.0
GLN 5.0 6.0 6.0 5.6 5.0 4.6 3.5 5.0 4.4 5.2 5.0 3.6 5.1 6.0 3.2 3.5 4.6 5.3 4.7 3.7
ARG 5.5 5.6 2.3 4.8 5.6 5.4 5.7 5.8 5.2 5.4 4.7 5.3 5.4 3.2 6.0 0.0 5.0 5.0 1.0 5.0
SER 5.1 3.8 4.8 5.0 5.0 5.0 4.7 5.4 4.9 4.9 4.1 4.6 4.8 3.5 0.0 1.6 4.5 5.2 4.9 5.0
THR 5.0 4.8 5.0 5.0 5.3 5.4 3.7 5.1 5.8 5.4 5.3 5.2 4.7 4.6 5.0 4.5 4.9 4.9 4.9 4.8
VAL 5.2 5.7 5.9 5.3 5.1 5.0 5.5 5.2 5.6 5.0 5.1 5.1 5.4 5.3 5.0 5.2 4.9 5.0 5.1 5.5
TRP 4.9 5.6 5.6 5.9 4.6 4.6 4.1 5.0 5.4 5.0 4.8 5.3 4.8 4.7 1.0 4.9 4.9 5.1 5.2 5.1
TYR 5.2 5.7 3.2 5.3 5.2 4.4 4.8 5.5 3.5 5.0 5.4 4.5 4.0 3.7 5.0 5.0 4.8 5.1 5.1 5.4
1 Penalties are the membrane helical interfacial pairwise contact propensities from Adamian and Liang (Adamian and Liang 2001) for which each propensity has
been subtracted from the highest propensity to yield a penalty for preferred side-chains not interacting.
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Total Score

The total score is the sum of the individual components, which are summed over
the appropriate set of pairwise interactions. Let m be the number of helices, n the number
of amino acids, W the set of amino acids among which distances have been measured, G
the set of m(m – 1)/2 distinct helical pairs and L the set of n(n – 1)/2 distinct Cb pairs.
Then, the Bundler penalty can be written as

† 

P = Pexp
(i, j )ŒW

Â + Pangle + Pdist
(i, j )ŒG

Â
(i, j )ŒG

Â + Pdensity + Pvdw + Psc
(i, j )ŒL

Â
(i, j )ŒL

Â + Pcontacts
iŒG

Â . (11)

Scoring Function Validation
Given the small sample size of transmembrane helical bundles from which to

draw a picture of the “average” transmembrane helical bundle, we did not necessarily
expect Bundler to identify the native structure as the least penalized bundle. Rather, we
expected to be able to coarsely group bundles in such a way that their penalty would
identify how near or far a given model bundle is from the native bundle and that these
groupings would be dependent on the class of membrane protein from which a helical
bundle is a member. This is a reasonable expectation when one considers that the
minimum score structure represents the average bundle across a diverse set of
transmembrane helices. As a result, we placed only modest demands on the Bundler
penalty function. Our principal requirement is that it can be calibrated in such a way that
the score of near-native structures clearly differentiates them from structures that are not
likely to be native bundles.

To determine whether or not Bundler is capable of distinguishing the known
helical bundle from a set of helical bundles close to the PDB structure, we analyzed the
helical bundles of six known membrane proteins. Helical bundles were extracted as is
(i.e. any distortions from ideality were maintained) from the PDB files, and only those
portions of the transmembrane helices completely embedded in the membrane were
considered.  For example, the two short helices, 76 – 86 and 192 – 202, of Aquaporin
(1fqy.pdb) only partially insert into the membrane and thus were excluded. For each
structure, we derived a set of Ca to Ca distances corresponding to pairs of amino acids
(K-K, K-D, K-E, K-C and C-C) that could potentially be obtained via chemical cross-
linking using commercially available chemical cross-linkers and then added a 4 Å error
to each distance. Five hundred bundles were generated for each test case by running a
Monte Carlo simulated annealing algorithm at 500 °K, a temperature high enough to
generate a set of structures with an RMSD spectrum of several angstroms. Specifically,
we considered the following six helical bundles (PDB identifier, number of helices and
number of distance constraints, respectively, are given in parentheses): bacteriorhodopsin
(1c3w, 7, 60), halorhodopsin (1e12, 7, 9), rhodopsin (1f88, 7, 38), aquaporin-1 (1fqy, 6,
17), sensory rhodopsin (1jgj, 7, 18), and a subunit of fumarate reductase flavoprotein
(1qlaC, 5, 58).
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Figure 6 displays the results for all six test cases as plots of the Bundler function
value versus distance from the known structure measured using the RMSD across the Ca
atoms (Ca-RMSD). The scatter plots show the results for a representative case of 500
structures generated as outlined above for each of the test proteins. In all cases, the
helical bundle from the PDB file has the lowest Bundler penalty. Moreover, the general
trend is that bundles closer in Ca-RMSD to the known structure have lower Bundler
penalty scores than those farther from the known structure. In the case of aquaporin,

while the known structure had the lowest penalty, the correlation between distance from
the known structure and penalty was not as strong.  This lack of correlation for aquaporin

Figure 6: Bundler penalty as a function of root mean square deviation from the x-ray structure for
six integral membrane proteins. Sets of 500 structures were generated using a Monte Carlo simulated
annealing algorithm at a single high temperature as described in the text. Scatter plots show the
results for a typical single set of 500 structures. Bar charts show the mean and standard error of 10
sets of 500 structures each generated with different random number streams.  The number of helices
and number of distances are provided in the inset of each scatter plot.
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may be due to the fact that we are including only the transmembrane helices that span the
membrane and omitting two short helices that are only partially inserted into the
membrane, which most impacts the contacts penalty portion of the Bundler score:
omission of the two short helices removes neighbors within the cut-off distance from
several helices which increases the contacts penalty.

To further test the robustness of Bundler at predicting native like helical bundles,
we generated 10 sets, using different random number streams, of 500 structures for each
of the six test proteins. These structures were then grouped into 2 Å bins and the mean
and standard deviation of the penalty was calculated within each bin (Figure 6). Overall,
the structures with lower Bundler scores correspond to structures closer to the target or
native structure. Thus, it is reasonable to expect that the models with the lowest Bundler
scores represent structures within a few Angstroms of their corresponding native bundle.
The variation in penalty within each group is small, suggesting that the trend is not due to
the presence of a few very low penalty structures and a few very high penalty structures.
We can thus be confident that a bundle with a higher Bundler score is not close to the
native-like bundle and the bundles with the lowest Bundler penalty represent the most
native-like bundles amongst the set of possible models. Excluding aquaporin, these
results also provide sufficient evidence that an upper bound on the Bundler penalty can
be set and used to pick a subset of models for further refinement. For example, model
bundles with a Bundler penalty of less than 2000, or more conservatively 3000, are good
candidates for further refinement by penalty function minimization.

Two-step approach to modeling transmembrane helical bundles using sparse
distance constraints to build the rhodopsin helical bundle

The overall goal of this work was to develop a technique for building the
transmembrane helical bundles of integral membrane proteins given a sparse set of
distance constraints.  In this section, we demonstrate a two-step approach to modeling
transmembrane helical bundles. This method combines our previous work on searching
the conformational space of membrane protein bundles satisfying a set of distance
constraints (Faulon et al. 2003) with Monte Carlo simulated annealing (MCSA) of the
empirical scoring function described in the previous sections. The method is designed to
provide a computationally efficient means of searching the conformational space of the
helical bundle by first searching the global space of all possible helical bundles to find
those satisfying a given set of distance constraints and then searching the local
conformational space of each of these candidate models. Each step is detailed in the
Methods section.

The method is demonstrated using the seven transmembrane helices from the
rhodopsin crystal structure 1f88.pdb, and a set of 27 distances constraints compiled from
various experiments, reported in the literature, and summarized by Yeagle et al., (Yeagle
et al. 2001). These included dipolar EPR distances (Farrens et al. 1996; Yang et al. 1996;
Albert et al. 1997; Galasco et al. 2000), disulfide mapping distances (Yu et al. 1995;
Sheikh et al. 1996; Cai et al. 1997; Cai et al. 1999; Yu et al. 1999) and distances from
electron cryo-microscopy (Unger and Schertler 1995; Yeagle et al. 2001). These distance
constraints are given in Table 5 and have an average error of ± 3.75 Å.
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Since the published EPR dipolar distances are between nitroxide spin labels, they
do not directly correspond to distances between helical axes. To better represent these
distances, we determined the error associated with interpreting spin-spin distances as Ca-
Ca distances by comparing the two measures in proteins for which distances have been
measured by EPR and a crystal structure is also available. We used a total of sixteen
measures for this analysis including six from rhodopsin (1F88) (Farrens et al. 1996; Yang
et al. 1996; Palcewski et al. 2000), four from human carbonic anhydrase II (Hakansson et
al. 1992; Persson et al. 2001), four from T4-lysozyme (3LZM) (Matsumura et al. 1989;
Table 5:  Experimental distances used for modeling the rhodopsin helical bundle1

Helix1 Helix2 Residue1 Residue2
Minimum
 Distance

Maximum
 Distance

Experimental
 Method

Reference

C F 139 248 6 20 Dipolar SDSL-
EPR2 (Farrens et al. 1996)

C F 139 249 9 26 ″ ″
C F 139 250 9 26 ″ ″
C F 139 251 6 20 ″ ″
C F 139 252 9 26 ″ ″
A G 65 316 4 19 ″ (Yang et al. 1996)

E F 204 276 4 8 Disulfide
Mapping3 (Yu et al. 1995)

C E 140 222 4 8 ″ (Yu et al. 1999)
C E 140 225 4 8 ″ ″
C F 135 250 4 8 ″ ″
C E 136 222 4 8 ″ (Cai et al. 1997)
C E 136 225 4 8 ″ ″

B C 71 134 9 13 Electron
Diffraction4

(Unger et al. 1995;
Yeagle et al. 2001)

B C 90 116 5 10 ″ ″
B D 71 153 5 10 ″ ″
B D 86 172 15 20 ″ ″
C E 136 226 6 9 ″ ″
C E 125 215 6 9 ″ ″
D E 152 225 18 22 ″ ″
E F 216 258 9 13 ″ ″
F G 253 305 6 8 ″ ″
F G 264 298 6 8 ″ ″
A G 39 286 9 14 ″ ″
C F 114 268 14 18 ″ ″
D F 171 268 17 20 ″ ″
B F 73 250 10 15 ″ ″
A F 62 250 16 20 ″ ″
A F 47 264 16 19 ″ ″

1 Helices A, B, C, D, E, F, G correspond to residues 33-65, 70-101, 105-140, 149-173, 199-226, 245-278
and 284-309, respectively.
2 Reported distance ranges were adjusted to account for the error involved in using spin-spin distances as
Ca – Ca distances as described in the text.
3 Ca – Ca distances from disulfide mapping were set to 5.68 Å ± (reported error) as described in the text.
4 Ca – Ca distances correspond to distances measured from the top, middle and bottom of consecutive
helices as described by Yeagle et al. (Yeagle et al. 2001).
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McHaourab et al. 1997), and one each from maltose-binding protein liganded form
(1MDP) (Sharff et al. 1995; Hall et al. 1997) and maltose-binding protein un-liganded
form (1DMB) (Sharff et al. 1993). From this analysis, we determined the difference
between spin-spin distances and Ca-Ca distances to be 4.3 ± 1.8 Å. We used this
distance to adjust the lower and upper limits of the reported distances to better represent
the inter-nitroxide distances as helix backbone distances. We use the reported distance
plus 6 Å as an upper bound and either the minimum of the reported distance minus 6 Å
and 4 Å as a lower bound. For the disulfide mapping distances, we use a Ca to Ca
distance of 5.68 Å, which corresponds to two Cb to Sg bonds (1.82 Å) and one Sg to Sg
bond (2.04 Å), plus or minus the reported error.

 In a recent paper (Faulon et al. 2003), we described a method for searching the
conformation space of a set of transmembrane helices for bundles matching a given set of
distance constraints. Applying this method to the seven rhodopsin helices using the 27
distance constraints given in Table 5 reduced the approximately 7.0 x 1011 possible
seven-helix configurations to only 87 helical bundles with Ca – RMSDs ranging from
4.3 to 9.5 Å (Faulon et al. 2003). Thus, given only 27 distance constraints from a variety
of experimental methods with differing levels of error, we were able to extract a
reasonable number of structures suitable for further refinement from an overwhelmingly
large dataset of possible helix bundles.

We refined each of these 87
structures using the Monte Carlo
simulated annealing (MCSA) protocol
described in the Methods section. The
local conformation space of each helical
bundle was searched for the structure
with the minimum Bundler penalty
function value. Since our goal is only to
search the local conformational space of
each bundle in a way that allows uphill
moves over small barriers within a
larger penalty function minima, we use
a starting temperature of 30 and a
geometric cooling schedule with the
cooling constant set at 0.9
(i.e.,

† 

Ti = 0.9Ti-1). A temperature cycle
was terminated after either a total of
1000 structures were generated or after
100 structures were accepted,
whichever occurred first. The MCSA
simulations were run for 34 temperature
steps.

The least penalized structure in this cluster has a penalty of 3.3 and a Ca – RMSD
from the known structure of 4.1 Å. Compared to the scores of the decoy structures
tabulated in Figure 6 the Bundler penalty on this structure is much lower than those of the
lowest RMSD helix assemblies.  This indicates that models with Bundler penalties in the

Figure 7: Comparison of the predicted helical
bundle (black) to the X-ray structure (1F88.pdb)
helical bundle (gray).  The Ca – RMSD between the
two structures is 3.2 Å. As is clearly visible the
helices are correctly arranged and most of the
deviation is due to differences in helical tilt angles.
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range of 1000 to 2000 should have properties most similar to those of an “average”
membrane protein helical bundle, while satisfying a set of experimental distance
constraints. Among the 87 refined bundles, several have minimized penalties around
1000. The least penalized bundle among these has a Bundler score of 1003.3 and a Ca –
RMSD of 3.2 Å (Figure 7). This result again provides evidence that simply minimizing
an empirical structure based penalty function may not produce the ultimate best structure.
Minimization drives the structure toward an “average” structure, which is not the most
native-like structure for a particular protein. It is therefore essential to calibrate the
function to a particular family of structures. Our results show that for seven helix
bundles, the most native-like structures have Bundler penalties between approximately
1000 and 2000, which provides a better stopping criterion for our MCSA refinement
protocol. For example, we could anneal the structure using a faster cooling schedule, until
reaching a penalty of 2000 and then slow the cooling to more thoroughly sample
conformations with Bundler scores between 1000 and 2000. The search will ultimately be
stopped when the Bundler penalty drops below 1000.

Discussion
Due to the difficulties of using the standard structure determination methods for

structural modeling of transmembrane proteins, it is important to develop methods using
more easily obtainable, but lower resolution, data. With this in mind, we have developed
a method for using sparse distance constraints to model the transmembrane spanning
domain. Development of such a method is particularly timely and important given the
progress in using methods such as chemical cross-linking, dipolar EPR and FRET for
providing distance constraints.

We have presented a two-step approach to modeling transmembrane helical
bundles and demonstrated its effectiveness by accurately modeling the transmembrane
helical bundle of dark-adapted rhodopsin. In the first step, the set of all possible helical
bundles is generated and filtered to find the set of bundles that satisfy the set of distance
constraints using a previously reported algorithm (Faulon et al. 2003). In step two, the
structures from step one are refined using a Monte Carlo simulated annealing protocol to
minimize a scoring function that penalizes helical arrangements that violate distance
constraints and that violate constraints derived from a statistical analysis of solved
membrane protein structures from the PDB. Using a set of 27 experimental distance
constraints extracted from the literature, we modeled the helical bundle of dark-adapted
bovine rhodopsin to within 3.2 Å of the X-ray structure.

A major component of this work was the development and validation of a penalty
function designed to discriminate near native helical bundles from those far from the
native structure and thus build transmembrane helical bundles that are consistent with
both experimental distance constraints and other helical bundles from known structures.
Because the majority of known transmembrane protein structures are seven helix bundles,
it is not surprising that the Bundler penalty function works very well for this class of
membrane proteins (Figure 6). However, we have also illustrated that Bundler can be
useful for modeling other classes of helical bundles (e.g. aquaporin, fumarate reductase
flavoprotein).

In the case of aquaporin, the correlation between the RMSD from the crystal
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structure and the Bundler score is less pronounced than for the other validation cases.
Inspection of Bundler’s components revealed that the relatively higher scores are due to
larger contacts penalties resulting from a reduction in the number of neighboring helices
within the cut-off distance, presumably caused by removal of the two partially inserted
helices. Moreover, there is a high side-chain interaction preference penalty and a high
helix packing angle penalty for some of the lower RMSD bundles.  This again is likely
due to the removal of the partially inserted helices, which in this case is likely to have
removed favorable side-chain interactions and reduced the overall helix packing,
allowing non-typical helix tilt angles.

Clearly a structure based penalty function for helical membrane bundles is a work
in progress that will continually be updated as more structures become available. In
addition to refinements of the penalty as the database of solved membrane protein
structures grows, we are also investigating the value of increasing the level of molecular
detail by either representing each side-chain atom explicitly or using a reduced side-chain
representation such as that described by Herzyk and Hubbard (Herzyk and Hubbard
1993). Additionally, the penalty function force constants are based on the assumption that
the variance of a component scales with its importance as a predictor and as such are
somewhat arbitrary. Refinement of these parameters against, for example, our databases
of decoy structures may also improve the penalty function. We are also exploring ways to
include, either explicitly or implicitly, ligands such as retinal. Increased structural detail
will impact the packing parameters of the helical bundle by enhancing the level of detail
of side-chain van der Waals interactions and by increasing the accuracy of packing
density calculations. The inclusion of ligands such as retinal may be necessary in order to
more accurately predict helix-helix interactions that are unlike those of an average
bundle. For example, in helix bundles containing a ligand, additional van der Waals
interactions between helix atoms and the ligand may be necessary to force the associated
helices of the bundle outside the range of allowed distances or angles derived from
idealized versions of solved structures without ligands.

Moreover, our results in using this method to recover the structure of rhodopsin
prompt questions as to whether similar results could be obtained using fewer distances
and how the accuracy of a helical bundle generally varies with number of distance. In
response, we note that the determination of accuracy solely as a function of the number of
distances is non-trivial. Previously, we showed that the number possible helical bundles
simultaneously satisfying a set of distance constraints varies with the number of
distances, the error on these distances, and the radius of the associated distance graph or,
in other words, the way in which the distances are distributed among and connect the
helices (Faulon et al. 2003). This result likely carries over to the accuracy of modeling
membrane proteins using Bundler, however, we have not yet carried out the extensive
analysis required to confirm this assumption. For now, it suffices to say that only a
modest number of distances are needed to build accurate models of transmembrane
helical bundles using the approach outlined here.

It remains to be seen whether or not a truly general function useful for refining
helix bundles with a range of secondary structural elements can be developed. While it is
likely that the form of the penalty function presented in this paper utilizes many
necessary structural components, the determination of a broader range of structures with
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a varying number of transmembrane secondary structural elements may result in separate
sets of statistical parameters that depend on the number of these elements. Regardless of
such future findings, the approach proposed here is general, and Bundler is easily
adaptable to new statistics based parameterization.

Methods

Representation of the helical bundle
For the test cases used in this study, the helices were obtained using the helix

definitions provided in the PDB file. All side chain atoms beyond the Cb were removed
(i.e. we represent the helix in its native form at the Cb level of detail).  Helices are treated
as rigid bodies with the helical axis defined as the line segment between the unweighted
centers of mass of the last four residues of the C and N termini.

Assembly of membrane protein dataset
The membrane proteins used in this work were selected from the list of solved

structures kindly provided by Professor Stephen H. White at the University of California,
Irvine (http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html).  Proteins without
definable backbone atom positions were not used (eg. 2PPS, 1FE1).  Monomers, if they
form a compact folding unit, were used.  An exception was made for small monomers
that pack together to form a helical bundle; in those cases, the entire bundle was used (eg.
1BL8).  If the structure of a single protein was solved more than once, we selected the
structure of the highest resolution, and if the structure was solved for multiple species, the
structure for the species with the highest resolution was chosen.  Heteromultimeric
complexes were parsed to remove all but the transmembrane bundle subunits (eg.
1EZVC).  Helices that only partially span the membrane were removed from the final
bundle structures (eg. 1FQY).

Determination of force constants
The variance in the measured properties of transmembrane protein bundles is a good
indicator of the importance of a given property in predicting the fold of a helical bundle.
We use the variance from our analysis of a set of non-redundant structures to guide our
choices of force constants in the Bundler penalty function. Those measures having the
smallest variances as a percentage of the mean were assumed to be better descriptors of a
helical bundle and were assigned a force constant of 500. The largest variance measure,
the packing angle, is assigned a force constant of 5, and the remaining force constants
were given intermediate values.

We have recently shown the importance of distance constraints in exploring the
conformational space of helical bundles and in reducing the number of candidate
structures for local conformational search to a reasonable number (Faulon et al. 2003). To
accurately represent this importance in Bundler, we set the force constant for
experimental distance constraints to the highest value of 500.

Conformational Search under a set of distance constraints
Details of our procedure for exploring the conformational space of membrane
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protein folds matching distance constraints are provided in (Faulon et al. 2003) and are
summarized in the methods section. Briefly, the procedure generates an exhaustive set of
helix bundles within a specified RMSD by positioning the helices such that distance
constraints are satisfied. The data required by step 1 is a set of individual helices in PDB
format that we assume has been modeled and optimized and a set of distances. Step 1
results in a set of all possible helical bundles matching the distances such that the bundles
in the set differ from one another by some user defined RMSD. These helical
arrangements are described at an atomistic level suitable for further refinement by local
conformational search (step 2).

Monte Carlo Simulated Annealing
In step 2 of our procedure for building an optimized helical bundle, we refine a

subset of the structures from the conformational search step 1 using the Bundler penalty
function developed in this paper and a Monte Carlo simulated annealing (MCSA)
protocol to search the local conformational space of the bundle.

Helical Bundle

A helical bundle is defined as any arrangement of the helices in Cartesian
coordinate space. The helix z-axis (z¢ in Figure 8) is defined as the line segment
connecting the average coordinates of the N and C termini for each helix (Figure 4). Each
helix has six degrees of freedom consisting of translations in the global (x, y, z) axis
system and rotations in the (x¢, y¢, z¢) axis system (Figure 8), giving a system wide total
of 6n degrees of freedom,
where n is the number of
helices.

Monte Carlo Sampling

Starting from the
last accepted arrangement,
a new helical bundle is
generated by randomly
selecting one of the
secondary structural
elements (SSEs) and
randomizing its position
by either translation in the
global axis system (x, y,
z) or rotation in the local
axis system (x¢, y¢, z¢)
(Figure 8). Similar to
those used by Hertzyk and
Hubbard (Herzyk and
Hubbard 1995), four
moves are possible (Figure 8): (1) translation along the z, (2) two consecutive translations
along the x and y, (3) rotation around z¢ or (4) two consecutive rotations around x¢ and y¢.

Figure 8: Definition of helix axis system (left) and helix degrees of freedom
(right). The helix z-axis is defined as the vector connecting the average
coordinates of the last four residues of the helix N and C termini. Helix
degrees of freedom include translations in the global (x, y, z) axis system
and x¢, y¢ and z¢ rotations around the helix axes.
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The size of this move is chosen randomly within some user defined limits. If the Bundler
penalty of the new structure is lower than that of the current lowest scoring structure, then
that structure is accepted as the current structure. Otherwise, the Boltzmann probability
factor, p, is calculated as 

† 

e-DP /T , where DP is the difference in total penalty between the
least penalized structure and the newly generated structure and T is the temperature,
which in this case is simply a parameter for controlling the probability of a given helical
bundle (Kirkpatrick et al. 1983). Then p is compared to a random number, r, from a
uniform [0,1] distribution. If 

† 

p < r , the new configuration is accepted as the new best
structure; otherwise, the new bundle is rejected (Metropolis et al. 1958).

Cooling Schedule

The cooling schedule used for the refinements of step 2 started at T = 30 and was
reduced at each new temperature cycle according to a geometric temperature schedule
with the temperature reduction factor set to 0.95 (i.e., 

† 

Ti = 0.95Ti-1). Thirty-four
temperature cycles were completed, and each temperature cycle terminated after either
1000 Monte Carlo steps were completed or after 100 candidate structures were accepted.

Structural analysis and data processing
Membrane protein statistics were calculated using in-house software.  Root mean

square deviation calculations and various manipulations of PDB files were performed
using the Multiscale Modeling Tools in Structural Biology, MMTSB, tool set (Feig et al.
2001). Molecular visualization and renderings were obtained using VMD (Humphrey et
al. 1996). All analysis of the penalty data was done using programs written in MATLAB
6.5 (The Math Works Inc., Natick, MA).
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Chapter 3: Optimizing an Empirical Scoring Function for
Transmembrane Protein Structure Determination

Genetha Anne Gray and Tamara G. Kolda, Ken Sale and Malin M. Young

Abstract
We examine the problem of transmembrane protein structure determination. Like

many questions that arise in biological research, this problem cannot be addressed
generally by traditional laboratory experimentation alone.  Instead, an approach that
integrates experiment and computation is required.  We formulate the transmembrane
protein structure determination problem as a bound-constrained optimization problem
using a special empirical scoring function, called Bundler, as the objective function.  In
this paper, we describe the optimization problem and its mathematical properties, and we
examine results obtained using two different derivative-free optimization algorithms.

Introduction
In this study, we formulate the transmembrane protein structure determination problem as
a bound-constrained nonlinear optimization problem,

min f (x)
s.t. l £ x £ u,

(1)

where  f :� n Æ � is a nonlinear function;  x,l.u Œ� n ; and l and u  are given lower and
upper bounds on x , respectively.  In this application, the objective function f is an
empirical scoring function designed to rate the validity of proposed transmembrane
protein structures.  The variable  x Œ� n  represents the spatial positions of certain
components of the transmembrane protein, and the bounds l  and u  are derived using
observed properties of these components.

There is a wide variety of optimization methods available for finding a solution to
(1).  However, the effectiveness and efficiency of these algorithms can be application-
specific. Hence, answering the question of which to use is not easy.  In this paper, we
examine the transmembrane protein structure identification problem and its model
formulation.  We consider two different optimization algorithms that are appropriate for
this application.  We discuss why we chose these two methods and compare and contrast
numerical results for a transmembrane protein of known structure.

This paper is organized as follows:  in the Biological Background section, we
discuss the biological significance of transmembrane proteins and the importance of
determining their structures.  Then, in the Transmembrane Protein Structure
Determination section, we describe the mathematical formulation of the transmembrane
protein structure determination problem and give some details of the scoring function.  In
the Optimization Methods section we review the basic characteristics of the optimization
methods that we chose to apply to the problem, motivate their use, and give the details of
their implementations.  The results of our numerical study are presented in the Numerical
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Results section.  Finally, we summarize our work and draw conclusions.

Biological Background
Approximately one third of the proteins encoded for by a typical genome are

transmembrane proteins (Buchan et al., 2002), and they participate in many important
cellular processes.  Some transmembrane proteins form a channel through which certain
ions and molecules can enter or leave the cell. Others act as signal transduction receptors
or play roles in cell recognition, senses mediation, or cell-to-cell communication.  Many
diseases are the result of transmembrane protein malfunction, absence, or mutation.
Hence, these proteins are an important target of drug design.  In fact, a large percentage
of the current pharmaceuticals act on transmembrane proteins (Wilson and Bergsma,
2000).  Additional information about the structure and function of transmembrane
proteins can be found in texts such as (Brandon and Tooze, 1999; Banaszak, 2000; and
Creighton, 1992), and references therein.

Like all proteins, a transmembrane protein is a  macromolecule consisting of a
chain of amino acids.  The defining characteristic of a transmembrane protein is that this
chain traverses the cell membrane one or more times.  For example, a G-protein-coupled
receptor, one type of transmembrane protein involved in signal transduction, spans the
cell membrane seven times.  The portion of the transmembrane protein within the cell
membrane consists primarily of hydrophobic amino acids, while the portion outside the
cell membrane consists mainly of hydrophilic amino acids.  These characteristics, in
conjunction with the makeup
of the cell membrane, dictate
the overall structure of
transmembrane proteins.  In
particular, due to the chemical
environment of the membrane
interior, the amino acids that
are inside the cell membrane
form stable secondary
structures including a-helices
and b-sheets.  To date, two
major structural classes of
transmembrane domains have
been observed: all a-helical
and all b-stranded.  We will
limit the subsequent discussion to the all a-helical case and note that 20 % to 30 % of a
genome's proteins are likely to have a transmembrane helical domain (Wallin and von
Heigne, 1998; Krough et al., 2001).  In this study, we consider a transmembrane protein
to consist of a bundle of connected a-helices. Figure 1 contains an illustration of the
transmembrane protein rhodopsin contained in a retina cell membrane. In this cartoon,
the seven linked cylinders, labeled A through G, represent the seven a-helices that
traverse the cell membrane. (Note that this cartoon was obtained from the G-protein-
coupled receptor website (Hulsen and Lutje-Hulsik, 2001).)

As of May 2004, the protein data bank (PDB) contains over 25,000 structures, and

Figure 1: Illustration of the transmembrane protein rhodopsin.
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its size is increasing exponentially (Berman et al., 2000).  However, the majority of the
proteins found in the PDB are soluble proteins.  In contrast, the structures of only about
$80$ transmembrane proteins have been determined (see (White, 1998) and references
therein). This is due to the fact that experimental structure determination methods such as
X-ray crystallography and nuclear magnetic resonance (NMR) have been difficult to
apply to transmembrane proteins.  Furthermore, since so few transmembrane protein
structures have been determined, few suitable templates exist for homology modeling
(Herzyk and Hubbard, 1998).  Therefore, the development of an integrated
computational/experimental model to address transmembrane protein structure and
function questions is an important challenge in the field of structural biology.  The
modeling of transmembrane proteins can be broken up into the separate tasks of defining
the transmembrane helices and determining the relative orientation of these helices.  A
process known as sliding-window hydrophobicity is an accurate and well established
method of predicting transmembrane helices given their amino acid sequences (Rose,
1978; Jayasinghe et al., 2001a; Jayasinghe et al., 2002).  No widely accepted method has
yet emerged to subsequently ascertain the spatial locations of these helices. Because the
cell membrane imposes certain structural constraints on the positions of the helices and
thus limits the number of possible structures, several ab-initio computational approaches
have been proposed (Bowie, 1999; Nikiforovich et al., 2001; Vaidehi et al., 2002).  One
such procedure is based on the fact that the conformational space of membrane proteins
can be effectively sampled and enumerates all the possible helical bundles (Bowie, 1999).

However, this method neglects the orientations of the individual helices around
their respective axes.  Several other promising methods have been specifically designed
for G-protein coupled receptors but have yet to be validated for other transmembrane
proteins (Nikiforovich et al., 2001; Vaidehi et al., 2002; Dobbs et al., 2002).

Transmembrane Protein Structure Determination
In (Faulon et al., 2003; Sale et al., 2004), a novel two-step approach for

determining the spatial location of the transmembrane protein helices is proposed.  The
first step, described in detail in (Faulon et al., 2003), involves searching the
conformational space of transmembrane proteins to find a set of candidate helical bundles
matching some given experimental distance constraints.  The second step refines and
reduces this set of bundles via optimization techniques.  Using the structures obtained in
step one as starting points, solutions to problem (1) are sought, where the objective
function f assigns a score to each candidate helical arrangement that indicates how similar
it is to the true structure.  The minimization problem of step two is the focus of this paper.

Mathematical Description of the Problem
In this study, determining the structure of the transmembrane protein focuses on

describing the relative orientation of the helices, or how they bundle.  Each helix is
assumed to be a rigid body, so we describe its position in space using its center of mass
and a line segment defined by the two points centered in the terminal turns of the helical
ends.  We define a three-dimensional reference space for each helix using its initial center
of mass and initial helix axial line segment.  In other words, the position of each helix is
defined in terms of its original location.  Then, the variables in (1) are merely the x, y, and
z translations from the original centers of mass of each helix and the x, y, and z rotations
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about the initial helix axial line segment for each helix.  This is illustrated in Figure 2.
Hence, a transmembrane protein with m helices has 6m variables. At this time, we do not
consider the loops that connect the helices as part of the structure determination but note
that they can be added via existing techniques after the helical positions have been
established
(Vriend, 1990;
Xiang and Honig,
2001).

Most of the
6m variables have
simple bounds that
derive from the
fact that
transmembrane
proteins reside in
the cell membrane.
The restrictions on
the x and y
rotations of each helix are based on the survey of helix tilt angles given in (Bowie, 1997).
The z rotational variables have no such limitations and are allowed to vary in the entire z
rotational space.  Both the x and the y translations are confined to a space that is
approximately one third of the total radius of the membrane protein.  These constraints
are based on the study of helix packing behavior presented in (Bowie, 1997). The z
translation variables have the tightest bounds to restrict the helical portions of the
transmembrane protein to the interior of the cell membrane.

We now need a way to compare possible structures and decide which one best
approximates the transmembrane protein in question.  If the structure were known, such
comparisons could be made simply using root mean square deviation (RMSD), a way of
comparing two protein structures by calculating the sum of the distances of comparable
atoms (see, for example, (Leach, 2001)).  However, the overall goal of this work is to
identify unknown transmembrane protein structures, so we must develop another
technique.  We use a penalty scoring function known as Bundler to rate each structure
(Sale et el., 2004).  Bundler measures how well a structure conforms to specific criteria
based on experimental data and helix bundling features described in the literature, and it
does not require any a priori knowledge of the location of the helices.  The Bundler score
is smallest for those structures that most closely meet the specified criteria.  Thus, we
define an objective function f for problem (1) using Bundler to give this structure a score.
Therefore, minimizing f is the computational tool for determining the structure of a
transmembrane protein.

The Scoring Function: Bundler
As previously stated, the Bundler scoring function combines experimental data

and topological models created from a survey of known transmembrane helix packing
interactions.  For each structure, the score is calculated as the sum

P = PE + PI , (2)

Figure 2: Depiction of the six positional variables associated with each helix.
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where PE  quantifies the structure's violation of a set of experimental distance
constraints and PI  quantifies how well the structure satisfies some helix packing
parameters determined by analyzing a set of 16 nonredundant membrane proteins (Sale et
al., 2004).

It has been shown that distance constraints are important in determining
transmembrane protein structure.  In fact, the number of possible structures decreases
exponentially with the number of distance constraints available and increases
exponentially with the error on the distance measures (Faulon et al., 2003).  Bundler
incorporates experimental distance constraints in the term

PE = KE *
dab - lab( )2 ,   dab < lab

 0,                 lab £ dab £ uab

uab - dab( )2 ,  dab > uiab

Ï

Ì
ÔÔ

Ó
Ô
Ô

a,b( )ŒW
Â (3)

where lab  and uab  are predetermined upper and lower bounds on the distance between
atoms a  and b , respectively; dab  is the distance between atoms a  and b  in the current
structure; W  is a subset of atom pairs; and KE  is a force constant.  The distance
constraints where lab  and uab  are obtained from experimental methods such as chemical
cross-linking, dipolar electron paramagnetic resonance (dipolar EPR) (Berliner et al.,
2001), fluorescence resonance energy transfer (FRET), or NMR for assembling
transmembrane helical proteins (Krishna and Berliner, 1999). Note that these constraints
are not procurable for every pair of atoms in the structure.  Instead, experimental distance
constraints are only available for a small subset, W , of all atom pairs.

Obtaining enough distance constraints to determine a structure uniquely is
difficult, particularly for transmembrane proteins (Faulon et al., 2002; Faulon et al.,
2003). Furthermore, these distances are not error-free.  Therefore, to better identify
desirable structures, Bundler also includes a term that measures correspondence to
observed helix packing properties (determined from an analysis of known structures).
This term, PI  is actually a sum of six different terms:

PI = Pd + Pq + Pf + Psc + Pvdw + Pc . (4)

Each term checks a different helical bundling property.
The packing distance score, Pd , and packing angle score, Pq , consider all the

helical pairs in the bundle and penalize them if they are too far apart or too close together.
More specifically, the packing distance score gauges how far apart two helices are in
terms of their centers of mass, and the packing angle score examines the angle between
two helices in terms of their axial line segments. Let G  denote the set of m(m - 1) / 2
distinct helical pairs (i, j) .  Then, the packing distance score is defined as
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Pd = Kd *
d ij - d l( )2

,    d ij < d l

 0,                d l £ d ij £ du

du - d ij( )2
,   d ij > du

Ï

Ì
Ô
Ô

Ó
Ô
Ô

i, j( )ŒG
Â . (5)

Here, d l = d - 1.5sd  and du = d + 1.5sd , where d  and sd  are the mean and
standard deviation of the inter-helical distances, respectively, which are calculated using
a set of 16 known structures; d ij  is the distance between the centers of mass of helices i
and j in the current structure; and Kd  is a given force constant. Similarly, the packing
angle score is defined as

Kq *
qij - ql( )2

,   qij < ql

 0,               ql £ qij £ qu ,

qu - qij( )2
,   qij > qu

Ï

Ì
Ô
Ô

Ó
Ô
Ô

(i, j )ŒG
Â (6)

where ql = q - 1.5sq  and qu = q + 1.5sq , and q  and sq  are the mean and standard
deviation of the inter-helical packing angles; qij  is the inter-helical packing angle
between helices i and j in the current structure; and Kq  is a given force constant.

The packing density is defined as the ratio of atomic volume to solvent accessible
volume (Richards, 1974).  It gauges how efficiently a protein folds together or,
equivalently, how much interior space is left unused.  The packing density score, Pf , is
defined as

Pf = Kf *
f - fl( )2 ,   f < fl

 0,              fl £ f £ fu ,   

fu - f( )2 ,   f > fu

Ï

Ì
ÔÔ

Ó
Ô
Ô

(7)

where fl = f - 1.5sf  and fu = f + 1.5sf , and f  and sf  are the mean and standard
deviation of the observed packing density; f  is the packing density of the current
structure; and Kf  is a given force constant.  It penalizes structures that are packed too
tightly or too loosely.

In transmembrane proteins, it has been observed that amino acids have a
preference for which amino acids they interact with on neighboring helices (Adiman and
Liang, 2001; Nikiforovich et al., 2001; Adamian et al., 2003).  The side-chain interaction
propensity score, Psc , incorporates this into Bundler.  It is based on the membrane helical
inter-facial pairwise (MHIP) amino acid interaction propensity table in (Adiman and
Liang, 2001), and it penalizes structures containing amino acid pairs that are in contact
contrary to their normal observed behavior. Let Li be the set of Cb atoms (see, for
example, (Brandon and Tooze, 1999)) in helix i and °  be the set of m consecutive helical
pairs. (Note that two helices are a consecutive pair if they are directly connected by an
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outer loop.)  Then, the side-chain propensity score is defined as

Psc = Ksc *(p - pab)
aŒLi ,bŒL j

Â
È

Î
Í
Í

˘

˚
˙
˙(i, j )Œ°

Â (8)

where p is the maximum propensity score in the MHIP table, pab  is the MHIP propensity
value of atoms a and b, and Ksc  is a constant.

To prevent inter-helical clashes, Bundler includes the van der Waals repulsive
function (Brünger, 1992)

 Pvdw = Kvdw *
0,                     rab ≥ sRab

s2Rab
2 - rab

2( )2
,   rab < sRab

Ï
Ì
Ô

ÓÔ(a,b)ŒL
Â , (9)

Here, L  is the set of all distinct pairs of Cb atoms, rab  is the distance between Cb atoms
a and b in the current structure, Rab  is the observed distance at which atoms a and b
interact or repulse, s is a predetermined van der Waals scaling factor, and Kvdw  is a given
constant.

Finally, to ensure that each helix has at least two neighboring helices, Bundler
includes a contact score.  This piece of the scoring function guarantees that the helices are
packed tightly and prevents any one helix from being excluded from the bundle.  It is
defined as

Pc = Kc
iŒD
Â *

0,             ci ≥ 2
(2 - ci ),    ci < 2

Ï
Ì
Ó

(10)

where D  is the set of helices; ci  is the number of helices that helix i is in contact
with; and Kc  is a given constant.  Two helices are defined to be in contact if their centers
of mass are within a given distance of one another.  This distance bound is calculated
using the analysis of the 16 known structures.

Observe that both the side-chain interaction propensity score, Psc , and the contact
score, Pc , introduce discontinuities in the Bundler scoring function.  Moreover, PE , Pd ,
Pq , and Pf  contain points at which the derivative is undefined.  These properties of
Bundler are worth noting as they affect our choice of optimization method.  We also note
that all the pieces of the Bundler scoring function contain at a least one constant as well
as some predetermined bounds. Setting these parameters is an important component of
the transmembrane protein structure determination problem but does not effect the
optimization of Bundler and is thus not addressed in this paper.

Optimizing Bundler
In this paper, we are interested in the details of optimizing the Bundler scoring

function, and so we have included only a basic description of Bundler.  Further details
and more specific explanations of the function's development and validation are not
critical to our numerical study and can be found in (Sale et al., 2004).  However, we wish
to make some comments and observations about Bundler in terms of our optimization
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goals and expectations.
First, we reiterate the fact that the Bundler scoring function incorporates real data

obtained via laboratory experimentation. Hence, there is a certain amount of noise in our
objective function. At present, there is no regularization term in the Bundler scoring
function to prevent fitting this noise, and thus it is not productive to demand that an
optimization algorithm yield a structure with a Bundler  score of zero.  Moreover, we
have observed that small variations in Bundler  scores result in only noise-level
differences in the structures (Sale et al., 2004), and so we do not require a high level of
accuracy from the optimization method.

Secondly, we remind the reader that optimizing the Bundler scoring function is
the second step of a method for determining the spatial locations of the helices of a
transmembrane protein.  In the first step, the discrete conformational space is reduced to
hundreds or even thousands of candidate helical bundles to be used as the starting points
in the second step, minimizing (1).  In order to attain a small number of final candidates
for further study, we require a fast and efficient optimization method capable of further
refining the results of step one.

Finally, it should be noted that the Bundler scoring function incorporates helix
packing parameters defined using a very small sample (16 nonredundant proteins) of
transmembrane helical bundles.  Until this set can be dramatically increased, we do not
necessarily expect Bundler to identify the true (or native) structure as the structure with
the absolute lowest score.  Instead, we have designed the Bundler scoring function to
serve as an empirical measure for differentiating between groups of bundles that are far
from the native structure from those that are near. It is still unclear to us how low the
Bundler score of a structure must be in order for that structure to be of use in our process
of protein structure determination.  We believe that the threshold of useful scores will
vary from protein to protein and thus must be determined empirically.

Optimization Methods
Since the Bundler scoring function is non-smooth and contains discontinuities, we

have chosen to apply derivative-free methods to obtain a solution to (1).  Although we
focus on two particular methods here, there are many other derivative-free methods (see,
for example, (Powell, 1998; Kolda et al., 2003) and references therein).  Moreover, finite
differencing could be used to approximate the gradient so that we could use derivative-
based methods.  However, because Bundler is discontinuous and directly incorporates
noisy experimental distance constraints, such approximations may contain too much error
to be useful (Hough and Meza, 2002).  In this paper, we present results using simulated
annealing and parallel pattern search, described below.

Simulated Annealing
Simulated annealing (SA) is arguably the most widely used optimization method

for molecular conformation problems.  For just a few of the many examples of the use of
simulated annealing in computational biology, (Ghosh et al., 2002; Perkins and Dean,
1993; Campbell et al., 1998; Goodsell and Olson 1990; Brünger et al., 1997).  The SA
algorithm is a computational analogue to the industrial annealing process in which metal
alloys are slowly cooled to obtain an optimal molecular configuration. This controlled



51

cooling process is very important since a less stable configuration is obtained when the
alloy is cooled too quickly. Computationally, annealing is implemented by allowing
optimization steps that do not necessarily reduce the objective function.  The idea is that a
few bad steps can be accepted in order to get on the best path to the solution.

The SA algorithm is based on the Metropolis method (Metropolis et al., 1958) of
obtaining the equilibrium configuration of a group of atoms at a given temperature.  A
connection between the Metropolis method and Monte Carlo simulation was first
described in (Pincus, 1970).  The simulated annealing optimization technique that is used
today was proposed in (Kirkpatrick et al., 1983). It begins with a Metropolis Monte Carlo
simulation at a high temperature. After a sufficient number of Monte Carlo steps have
been taken, the temperature is reduced and the Metropolis Monte Carlo is continued.
This process is repeated until a specified final temperature is reached.  At high
temperatures, a relatively large number of random steps will be accepted, and, as the
temperature decreases, fewer steps are accepted.

The main advantage of SA over other optimization methods is that it is global.  In
theory, the algorithm can avoid becoming trapped in bad local  minima regardless of its
starting point.  Furthermore, SA is easy to  implement.  Unfortunately, SA also has many
well-documented disadvantages.   It requires extensive computational work (van
Laarhoven and Aarts, 1987; Moret and Shapiro, 1991; Aarts et al., 1997; Elmohamed et
al., 1998), and it is sensitive to the choices of its many parameters (Elmohamed et al.,
1998, Piccioni, 1987, Stiles, 1994; Aarts et al., 1997; Randelman and Grest 1986; van
Laarhoven and Aarts, 1987). For example, there are at least a dozen different temperature
cooling schedules from which to choose (Kirkpatrick et al., 1983; Geman and Geman,
1984; van Laarhoven and Aarts, 1987; Salamon et al., 2002).  Finally, because the steps
in SA are taken randomly, the algorithm does not employ any knowledge gained in
previous iterations (Ali and Storey, 1997).

Since SA is the method of choice in the computational biology community and
since it is also easy to implement, it was the first optimizer that we tried.  In our
implementation of SA, we use the geometric annealing schedule,

Tnew = aTold (11)

where a  = 0.95.  We selected this schedule on the basis of numerical experiments, and
our selection is supported by (Johnson et al., 1989; Johnson et al., 1991).  The initial
temperature and number of temperature cycles were chosen independently for each of the
numerical tests presented in this paper.  Each temperature cycle is terminated after either
1000 structures are generated or 100 structures are accepted.  New structures are
generated as follows: first, one of the helices is randomly selected.  Then, starting from
the arrangement of the last accepted structure, the position of the selected helix is
randomized either by translating it or by rotating it around the x and y or the z-axis.  The
type and amount of randomization are randomly chosen within a user-defined maximum.

Our SA algorithm is implemented in C and uses the PDB Record I/O Libraries to
read and write Brookhaven PDB formatted files (Couch et al., 1995).  Our
implementation of SA is serial.  Although some parallelized versions exist (Kliewer and
Tschöke, 1998; Stiles et al., 1989; Lee, 1995), none are compatible with MPI libraries
such as MPICH-1.2.4 (Gropp et al., 1996; Gropp and Lusk, 1996).  We chose to use a
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basic implementation of SA but note that there are many sophisticated variations.  For
example, re-annealing has been shown to be effective by adapting to changes in
parameter sensitivities when the search becomes trapped (Ingber, 1989; Ingber, 1993).
Other adaptive and multi-start modifications of SA have also been shown to be successful
(Piccioni, 1987; Stiles, 1994; Ali and Storey, 1997; Salamon et al., 2002).

Asynchronous Parallel Pattern Search
To contrast SA, we opted to apply an algorithm from a completely different class

of optimization methods---pattern searches. Because this class of methods is generally
overlooked in computational biology, we were particularly interested in examining its
applicability and performance.

Pattern search methods are practical for solving problems such as (1) when the
derivative of the objective function is unavailable and approximations are unreliable.
They use a predetermined pattern of points to sample the given function domain.  When
certain requirements on the form of the points in the pattern are followed, it can be shown
that if the objective function is smooth, global convergence to a stationary point is
guaranteed (Dolan et al., 2000; Lewis and Torczon, 1996; Torczon, 1997).  Bundler, our
objective function, is not smooth, but further analysis reveals that pattern search may still
find a minimum even for non-smooth functions (Kolda et al., 2003).  We also note that
pattern search methods are typically used for optimization problems with fewer than 100
variables (Kolda et al., 2003).  Most transmembrane proteins have fewer than 13 helices,
and we are interested in proteins that have 12 or fewer.  Hence, the transmembrane
protein structure determination problem that we consider contains at most 72 variables,
and pattern search is a reasonable choice.

The majority of the computational cost of pattern search methods is in the
function evaluations, so parallel pattern search (PPS) techniques have been derived to
reduce the overall computational time.  Specifically, PPS exploits the fact that, once the
points in the search pattern have been defined, the function values at these points can be
computed simultaneously (Dennis and Torczon, 1991; Torczon, 1992). The particular
implementation of PPS that we use is asynchronous. Asynchronous parallel pattern
search (APPS) (Kolda and Gray, 2004) retains the positive features of PPS, but it does
not assume that the amount of time required for an objective function evaluation is
constant or that the processors are homogeneous.  It does not have any required
synchronizations and thus requires less total time than PPS to return results (Hough et al.,
2001).  Furthermore, it has been shown that APPS is globally convergent under the
standard assumptions for PPS (Kolda and Torczon, 2004).  Finally, there is an existing
open source version of APPS, called APPSPACK, which is easy to install and use (Kolda
and Gray, 2004).

APPSPACK is available in MPI, PVM, and serial modes.  To make use of the
parallel machines at our disposal, we opted to use the MPI mode of APPSPACK version
3.0.  This mode and version requires a minimum of three processors: one master agent to
coordinate the search, one cache agent to save and look up points at which the function
has already been evaluated, and at least one worker to perform function evaluations. For
our problem, the use of cache is particularly advantageous as it should reduce the
required number of new function evaluations and increase algorithm efficiency.  The
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default MPI version of APPSPACK requires that the function evaluations be run as
separate executables and communicates with the worker tasks via file input and output. In
our case, we customized APPSPACK to avoid the overhead of system calls and file I/O
and improve overall efficiency.

We found that APPS required almost no tuning.  We used the default values for
all the parameters except the convergence tolerance, which was set to be 0.01.  The
default tolerance of 10-4 is small with respect to the variable sensitivity in our application,
and thus we increased it in order to reduce the number of function evaluations required to
obtain convergence.  We also note that our implementation uses the coordinate direction
search pattern.

Numerical Results
In this section, we present numerical results obtained using experimental distance

constraints for rhodopsin.  Rhodopsin is a transmembrane protein that is located in the
retinal rods of the eye, and it plays a role in vision.  It is a G-protein-coupled receptor
made up of seven transmembrane helices and thus has 42 variables in its structure
determination problem.  The 3-D structure of the dark-adapted form of rhodopsin is
known, having been determined using x-ray crystallography (Palczewski et al., 2000).
Moreover, a set of experimental distance constraints for dark-adapted rhodopsin has been
compiled in (Yeagle et al., 2001) making it an appropriate test case for our numerical
experiments.  In this paper, we use the structure of rhodopsin determined in (Palczewski
et al., 2000), PDB entry 1F88, as the true structure.  Because we are using a known
structure, we can compute the difference between the true structure and any other
structure using RMSD computed across the Ca atoms.  Although we cannot use RMSD
when trying to ascertain structures that have not yet been determined, we use it in our
study to add clarity to the comparisons.

Motivation
We begin by presenting a simple example that motivated this study. Here, we use

only one starting point, which was obtained by randomizing the true structure of

Figure 3: Comparison of the true and calculated locations of the helices of dark-adapted rhodopsin.

(a) (b)
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rhodopsin.  The subsequent starting structure has an initial Bundler score of 11,342 and
an RMSD of 15.0.  We first tried optimizing this structure using our SA algorithm.  After
extensive tuning, the best structure we were able to produce resulted from using a starting
temperature of 500 and 290 temperature cycles.  This structure has a final Bundler score
of 377 and an RMSD of 4.5.  Next, we applied the APPS algorithm.

On our first try, we were able to produce a structure with a score of 122 and an
RMSD 3.4.  Figure 3 contains two pictures that illustrate the spatial positions of the
helices relative to the known structure.  In both pictures, the light gray cylinders represent
the a-helices of dark-adapted rhodopsin.  In picture (a), on the left, the dark cylinders
depict the locations of the helices found using simulated annealing.  Picture (b), on the
right, shows the helices' locations determined by APPS as the dark cylinders.  Note that
APPS determines the orientation of all seven helices relatively well.  In contrast, two of
the helices determined by SA are a poor match.

We also examined the computational efficiency of each method.  As previously
discussed, SA often requires extensive computational work.  This example was no
exception.  The SA algorithm required 81,800 function evaluations and 61 hours of run
time on a single processor.  In comparison, the APPS algorithm required only 32,458
function evaluations and 17 minutes of run time on 86 processors.  It is difficult to
compare the two algorithms directly since SA is serial and APPS is parallel.  However,
we can note that APPS required fewer total function evaluations than SA.  Moreover, if
SA were parallelized in the most efficient manner possible and run on 86 parallel
processors, it would still take almost 45 minutes to obtain a solution.

This result led us to pursue a more thorough evaluation.  We now present this
study and its results.

Numerical Study
For our numerical study, 87 starting structures were selected from 7.0 x 1013

possible candidates using the procedure described in detail in (Faulon et al., 2003) and a
set of 27 distance constraints, D1  obtained from (Yeagle et al., 2001).  This procedure

resulted in structures that have no
experimental distance penalty, i.e.,
PE = 0  where PE = 0  is as defined in
(3), for each of the 87 structures with
respect to D1 .

To fully test the capabilities of
the optimization methods, we use a
different set of distance constraints, D2 .
The set D2  contains upper and lower
bounds for the same 27 pairs of atoms
as D1  but the range of these bounds is
tighter as detailed in (Yeagle et al.,
2001; Sale et al., 2004).  The average
Bundler score of the starting structures

Figure 4: Distribution of the intial Bundler scores.
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is 26,555 with a maximum of 76,080 and a minimum of 8,608.  The distribution of these
scores is shown in Figure 4.

To optimize the 87 structures, we first applied our SA algorithm with a starting
temperature of 300 and 125 temperature cycles.  Next, we applied APPS to the same set
of 87 starting structures.  The results of this test set are displayed in Figure 5 and
summarized in Figure 6.  Note that APPS produces a much wider range of final scores
than SA, and it appears that with APPS, some of starting structures get stuck in bad local
minima.  In contrast, the majority of the scores achieved by SA are below 200 and in fact,
40 of the 87 structures differ by less than six Bundler points.

We can conclude that overall, this implementation of SA more effectively reduces
the Bundler score.  However, recall the aim of this particular project: to produce at least
one structure with an empirically low score as efficiently as possible.  In considering this
goal, the fact that SA produced more structures with low scores does not necessarily give
it an edge over APPS.  The APPS algorithm does yield some structures with low scores.

Figure 5: Final Bundler scoring distribution for SA (left) and APPS (right).

Figure 6: Summary of the final APPS and SA Bundler values (left) and required number of function
evaluations (right).
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Further study showed that for each SA structure with a score of less than 200, there is at
least one APPS structure with a score of less than 200 such that its RMSD with respect to
the SA structure is less than three.  Given the errors in the distance constraints, we can
therefore conclude that SA and APPS are finding the same minima.  Furthermore, as
Figure 6 shows, the computational cost of the success of SA is quite high.  Each structure
requires a minimum of 49,500 function evaluations to produce a solution.  In comparison,
the maximum number of function evaluations needed by APPS is 48,812, and 24 of the
runs required fewer than 20,000 evaluations.  Therefore, we conclude that APPS more
efficiently reduces the Bundler scoring function.  In fact, APPS is better suited than this
implementation of SA for our transmembrane protein structure determination problem.

Next, we decided to more closely examine our implementation of SA to see if
there was a simple way of improving the efficiency of SA without sacrificing too much
of its effectiveness.  One way of reducing the number of SA function evaluations is

reducing the number of temperature cycles.  We use SA2 to denote the SA algorithm
terminated after only 60 temperature cycles, or approximately one third of the number of
function evaluations of the previous implementation.  The results of this comparison are
shown in Figure 7.  The APPS and SA2 algorithms obtain solutions to problem (1) for the
87 different starting points in a similar number of function evaluations.  An RMSD
comparison of the structures with scores less than 200 showed that SA2 and APPS find
the same minima. Hence, for our problem, both SA2 and APPS achieve our goals.  The
SA2 algorithm is less effective than SA at reducing the scoring function, but it still
produces structures with a low Bundler score, and it is more efficient than SA.

The explicit distribution of the final SA2 Bundler scores is shown in Figure 8.
The average final Bundler score is 306 with a maximum of 1883 and a minimum of 132.
The results of this test allowed us to conclude that APPS is indeed a practical choice for
our problem and that it is competitive with simulated annealing, the method of choice in
the computational biology community.

Figure 7: Summary of the final APPS and SA2 Bundler values (left) and required number of function
evaluations (right).
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For our final test, we tried to
reduce the number of SA temperature
cycles by using a lower starting
temperature.  Here, we use an initial
temperature of 30 and do 75
temperature cycles.  By beginning
with a lower temperature, we will not
accept as many randomized steps and
thus we are, in effect, doing a more
localized search.  We use SA3 to
denote this algorithm and summarize
its results in Figure 9.  Although SA3
still requires fewer function
evaluations than SA, it does not
successfully produce structures with

low Bundler scores.  None of the SA3 final scores are below 275, and, in fact, only two
structures have scores below 300.  The final Bundler score distribution for SA3 is given
in Figure 10, and the average final Bundler score is 561 with a maximum of 2386 and a
minimum of 274.  In addition, SA3 is overall less efficient than both the SA2 and the
APPS algorithms.  Therefore, we can conclude that the simulated annealing algorithm
using these particular parameters, a low initial temperature and a small number of
temperature cycles, is not a viable alternative for solving our problem.

Figure 9: Sumary of the final APPS and SA3 Bundler values (left) and required number of function
evaluations (right).

Figure 8: Distribution of the final SA2 Bundler scores.
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Conclusions
In this paper, we discuss the

transmembrane protein structure
identification problem.  In particular, we
focus on the second step of an innovative
two-step method that combines
laboratory and computational techniques
(Faulon et al., 2003; Sale et al., 2004) to
determine the spatial locations of the
transmembrane helices.  This second step
refines a large set of possible helical
bundles, generated in step one, by
optimizing an empirical scoring function
known as Bundler.  The optimization of
Bundler raises the question of finding an
appropriate minimization algorithm.

Because Bundler is a
discontinuous function that incorporates noisy experimental data, we opted to use a
derivative-free method.  We considered two very different algorithms: SA and APPS.
The SA algorithm imitates an industrial cooling process and uses Metropolis Monte Carlo
to generate new points.  In contrast, APPS is a pattern search method that uses a
predetermined pattern of points to sample a given function domain.  In testing these
methods, we had to consider the goal of our project: identifying at least one structure with
a Bundler score low enough to warrant further study.  Since Bundler was designed using
only a small set of transmembrane proteins and inexact laboratory data, a high level of
accuracy is neither expected nor desired from the optimization.  However, efficiency is
important as hundreds or even thousands of structures must be optimized. Therefore, we
were looking for an optimization method that is both efficient and sufficiently accurate.

Given the numerous variations of the SA algorithm and the number of
documented successes using SA, we are confident that we could eventually find a
suitable version of the SA algorithm to solve our transmembrane protein structure
determination problem.  In fact, we have demonstrated that the SA2 implementation is
sufficient for identifying the helical placement of rhodopsin.  However, it is unclear
whether or not this algorithm would be sufficient for a general transmembrane protein or
if its parameters would be biased for certain proteins.  We must also consider the fact that
the Bundler scoring function will likely undergo a series of minor improvements, and we
do not want any of these small changes to require that the optimization algorithm be re-
tuned.

To our knowledge, APPS has not been previously applied to a problem of protein
structure determination.  We did not encounter any difficulties in applying it to our
transmembrane protein problem. In fact, on our first try, we were able to produce
desirable results. Moreover, in light of our efficiency and accuracy specifications, APPS
was superior to both our SA and the SA3 algorithms and was comparable to our SA2
algorithm.

Figure 10: Distribution of the final SA3 scores.
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Despite their similar performance, APPS still has two implicit advantages over
our SA2.  First, APPS is easy to fine tune.  Note that SA2 is exactly the same as our
original SA algorithm with the exception of one small change to one parameter.
However, the results obtained from these two algorithms are significantly different.
Choosing the total number of temperature cycles is difficult.  We must complete enough
cycles to sufficiently reduce the Bundler score but not so many as to ignore our efficiency
requirements.  This is of concern to us because we will be using different sets of distance
constraints and making minor changes to the Bundler scoring function.  Second, because
it is parallel, APPS will require less wall-clock time for problems with a large number of
starting structures.  Therefore, we have chosen to use APPS as the optimizer for this
problem.

Acknowledgments
We gratefully acknowledge the Mathematical, Information, and Computational

Sciences Program of the United States Department of Energy and the Laboratory
Directed Research and Development program at Sandia National Laboratories for their
support of this research.  Sandia National Laboratories is a multi-program laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy under contract DE-AC04-94AL85000.

References

Aarts, E. H., Korst, J., and van Laarhoven, P. J. (1997). Local Search in Combinatorial
Optimization, chapter 4, Simulated Annealing. John Wiley and Sons, New York.

Adamian, L., Jackups, Jr., R., Binkowski, T. A., and Liang, J. (2003). Higher-order inter-
helical spatial interactions in membrane proteins. J. Mol. Biol., 327:251-272.

Adiman, L. and Liang, J. (2001). Helix-helix packing and interfacial pairwise interactions
of residues in membrane proteins. J. Mol. Biol., 311:891-907.

Ali, M. M. and Storey, C. (1997). Aspiration based simulated annealing algorithm. J.
Glob. Opt., 11:181-191.

Banaszak, L. (2000). Foundations of Structural Biology. Academic Press, San Diego,
CA.

Berliner, L. J., Eaton, S. S., and Eaton, G. R. (2001). Distance Measurements in
Biological Systems by EPR, volume 19 of Biological Magnetic Resonance.
Kluwer Academic Publishersn Plenum Publishing Corp., New York.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov,
I. N., and Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research,
28:235-242. http://www.rcsb.org/pdb.

Bowie, J. U. (1997). Helix packing in membrane proteins. J. Mol. Biol., 272:780-789.
Bowie, J. U. (1999). Helix-bundle membrane protein fold templates. Protein Sci., 8:2711-

2719.
Brandon, C. and Tooze, J. (1999). Introduction to Protein Structure. Garland Publishing



60

Inc., New York, 2nd edition.
Brunger, A. T. (1992). X-PLOR: A System for X-ray Crystallography and NMR, Version

3.1. Department of Molecular Biophysics and Biochemistry, Yale University,
New Haven, CT.
http://www.ocms.ox.ac.uk/mirrored/xplor/manual/htmlman/htmlman.html.

Brunger, A. T., Adams, P. D., and Rice, L. M. (1997). New applications of simulated
annealing in X-ray crystallography and solution NMR. Structure, 5:325-336.

Buchan, D., Shepherd, D., Lee, D., Pearl, F., Rison, S., Thorton, J., and Orengo, C.
(2002). Gene3D: Structural assignment for whole genes and genomes using the
CATH domain structure database. Genome Res., 12:503{514.

Campbell, B. J., Bellussi, G., Carluccio, L., Perego, G., Cheetham, A. K., Cox, D. E., and
Millin, R. (1998). The synthesis of the new zeolite, ERS-7, and the determination
of its structure by simulated annealing and synchrotron X-ray powder di®raction.
J. Chem.Soc. Chem. Commun., 16:1725-1726.

Couch, G. S., Pettersen, E. F., Huang, C. C., and Ferrin, T. E. (1995). Annotating PDB
les with scene information. J. Molec. Graphics, 13:153-158.

Creighton, T. E. (1992). Proteins: Structures and Molecular Properties. W.H. Freeman &
Co., New York, 2nd edition.

Dennis, Jr., J. E. and Torczon, V. (1991). Direct search methods on parallel machines.
SIAM J. Opt., 1:448-474.

Dobbs, H., Orlandini, E., Bonaccini, R., and Seno, F. (2002). Optimal potentials for pre-
dicting inter-helical packing in transmembrane proteins. Proteins, 49:342-349.

Dolan, E. D., Lewis, R. M., and Torczon, V. (2000). On the local convergence properties
of parallel pattern search. Technical Report 2000-36, NASA Langley Research
Center, Institute for Computer Applications in Science and Engineering,
Hampton, VA.

Elmohamed, S., Fox, G., and Coddington, P. (1998). A comparison of annealing
techniques for academic course scheduling. In 2nd International Conference on
the Practice and Theory of Automated Timetabling, pages 146-166, Syracuse,
NY.

Faulon, J.-L., Rintoul, M. D., and Young, M. M. (2002). Constrained walks and self-
avoiding walks: implications for protein structure determination. J. Phys. A.:
Math. Gen., 35:1-19.

Faulon, J.-L., Sale, K., and Young, M. M. (2003). Exploring the conformational space of
membrane protein folds matching distance constraints. Protein Sci., 12:1750-
1761.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Trans. Patt. Anal. Mach. Intel., 6:721-741.

Ghosh, A., Elber, R., and Scheraga, H. A. (2002). An atomically detailed study of the
folding pathways of protein A with the stochastic di®erence equation. Proc. Natl.



61

Acad. Sci., 99:10394-10398.
Goodsell, D. S. and Olson, A. J. (1990). Automated docking of substrates to proteins by

simulated annealing. Proteins: Str. Func. and Genet., 8:195{202.
Gropp, W., Lusk, E., Doss, N., and Skjellum, A. (1996). A high-performance, portable

implementation of the MPI message passing interface standard. Parallel Comp.,
22:789-828.

Gropp, W. D. and Lusk, E. (1996). User's guide for mpich, a portable implementation of
MPI. Technical Report ANL-96/6, Mathematics and Computer Science Division,
Argonne National Laboratory.

Herzyk, P. and Hubbard, R. E. (1998). Using experimental information to produce a
model of the transmembrane domain of the ion channel phospholamban. Biophys.
J., 74:1203-1214.

Hough, P. D., Kolda, T. G., and Torczon, V. (2001). Asynchrounous parallel pattern
search for nonlinear optimization. SIAM J. Sci. Comput., 23:134{156.

Hough, P. D. and Meza, J. C. (2002). A class of trust-region methods for parallel
optimiza- tion. SIAM J. Optim., 13:264-282.

Hulsen, T. and Lutje-Hulsik, D. (2001). GPCR Websire: Pictures about GPCRs (G
protein-coupled receptors). University of Nijmegen, The Netherlands.
http://www.cmbi.kun.nl/~dlutjehu/pictures.html.

Ingber, L. (1989). Very fast simulated re-annealing. Math. Comp. Mod., 12:967-973.

Ingber, L. (1993). Simulated annealing: Practice versus theory. Math. Comp. Mod.,
18:29-57.

Jayasinghe, S., Hristova, K., and White, S. H. (2001a). Energetics, stability, and
prediction of transmembrane helices. J. Mol. Biol., 312:927-934.

Jayasinghe, S., Hristova, K., and White, S. H. (2001b). MPtopo: A database of membrane
protein topology. Protein Sci., 10:455-458.

Johnson, D. S., Aragon, C. R., McGeoch, L. A. M., and Schevon, C. (1989).
Optimization by simulated annealing: An experimental evaluation; part I, graph
partitioning. Oper. Res., 37:865-892.

Johnson, D. S., Aragon, C. R., McGeoch, L. A. M., and Schevon, C. (1991).
Optimization by simulated annealing: an experimental evaluation; part II, graph
coloring and number partitioning. Oper. Res., 39:378-406.

Kirkpatrick, S., Gerlatt, Jr., C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220:671-680.

Kliewer, G. and TschÄoke, S. (1998). A general parallel simulated annealing library
(parSA) and its applications in industry. PAREO 1998: First meeting of the
PAREO working group on Parallel Processing in Operations Research, Versailles,
France. http://www.uni-
paderborn.de/fachbereich/AG/monien/SOFTWARE/PARSA/.

Kolda, T. G. and Gray, G. A. (2004). APPSPACK 4.0: asynchronous parallel pattern



62

search for derivative-free optimization. in preparation for ACM Trans. Math.
Software. Software and documentation available at
http://software.sandia.gov/appspack/.

Kolda, T. G., Lewis, R. M., and Torczon, V. (2003). Optimization by direct search: New
perspectives on some classical and modern methods. SIAM Rewiew, 45:385-482.

Kolda, T. G. and Torczon, V. (2004). On the convergence of asynchronous parallel
pattern search. SIAM J. Opt., 14:939-964.

Krishna, N. R. and Berliner, L. J. (1999). Structural Computation and Dynamics in
Protein, volume 17 of Biological Magnetic Resonance. Kluwer Academic
Publishersn Plenum Publishing Corp., New York.

Krough, A., Larsson, B., von Heijne, G., and Sonnhammer, E. (2001). Predicting
transmem-brane protein topology with a hidden Markov model: application to
complete genomes. J. Mol. Bio., 305:567-580.

Leach, A. R. (2001). Molecular Modeling. Principles and Applications. Prentice Hall,
New York, 2nd edition.

Lee, F. H. A. (1995). Parallel simulated annealing on a message-passing multi-computer.
PhD thesis, Utah State University, Department of Electrical Engineering, Logan,
UT.

Lewis, R. M. and Torczon, V. (1996). Rank ordering and positive basis in pattern search
algorithms. Technical Report 96-71, NASA Langley Research Center, Institute
for Computer Applications in Science and Engineering, Hampton, VA.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.
(1958). Equations of state calculations by fast computing machines. J. Chem.
Phys., 21:1087-1092.

Moret, B. M. E. and Shapiro, H. D. (1991). Algorithms from P to NP, volume I.
Benjamin/Cummings Publishing Company, Redwood City, CA.

Nikiforovich, G. V., Galaktionov, S., Balodis, J., and Marshall, G. R. (2001). Novel
approach to computer modeling of seven-helical transmembrane proteins: current
progress in the test case of bacteriorhodopsin. Acta Biochimica Polinica, 48:53-
64.

Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A.,
Trong, I. L., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., and
Miyano, M. (2000). Crystal structure of rhodopsin: a G protein-coupled receptor.
Science, 289:739-745.

Perkins, T. D. J. and Dean, P. M. (1993). An exploration of a novel strategy for
superposing several °exible molecules. J. Comp.Aided Mol. Design, 7:155-172.

Piccioni, M. (1987). A combined multistart-annealing algorithm for continuous global
optimization. Technical Report 87-45, The University of Maryland, Systems and
Research Center, College Park MD.

Pincus, M. (1970). Monte Carlo method for the approximate solution of certain types of



63

constrained optimization problems. Oper. Res, 18:1225-1228.
Powell, M. J. D. (1998). Direct search algorithms for optimization calculations. Acta

Numer., 7:287-336.
Randelman, R. E. and Grest, G. S. (1986). N-city traveling salesman

problem|optimization by simulated annealings. J. of Stat. Phys., 45:885-890.
Richards, F. M. (1974). The interpretation of protein structures: total volume, group

volume, distributions and packing density. J. Mol. Biol., 82:1-14.

Rose, G. D. (1978). Prediction of chain turns in globular proteins on a hydrophobic basis.
Nature, 272:586-590.

Salamon, P., Sibani, P., and Frost, R. (2002). Facts, Conjectures, and Improvements for
Simulated Annealing. Monographs on Mathematical Modeling and Computation
7. SIAM, Philadelphia, PA.

Sale, K. L., Gray, G. A., Faulon, J.-L., Schoeniger, J., and Young, M. M. (2004). Optimal
bundling of transmembrane helices of integral membrane proteins using sparse
distance constraints. Prot. Sci., 13:2613-2627.

Stiles, G. S. (1994). The e®ect of numerical precision upon simulated annealing. Phys.
Lett. A., 185:253-261.

Stiles, G. S., Bosworth, K. W., Morgan, T. W., Lee, F. H., and Pennington, R. J. (1989).
Parallel optimization of distributed database networks. In Proc. First Int'l Conf.
Applications of Transputers, Amsterdam, The Netherlands. IOS Press.

Torczon, V. (1992). PDS: Direct search methods for unconstrained optimization on either
sequential or parallel machines. Technical Report TR92-09, Rice University,
Department of Computational & Applied Math, Houston, TX.

Torczon, V. (1997). On the convergence of pattern search algorithms. SIAM J. Opt., 7:1-
25.

Vaidehi, N., Floriano, W. B., Trabanino, R., Hall, S. E., Freddolino, P., Choi, E. J.,
Zamanakos, G., and Goddard, III, W. A. (2002). Prediction of structure and
function of G protein-couple receptor. Proc. Natl. Acad. Sci., 99:12622-12627.

van Laarhoven, P. M. J. and Aarts, E. H. L. (1987). Simulated Annealing: Theory and
Applications. Dordrecht Reidel Publishing Company, Dordrecht, The
Netherlands. Republished in 1989 by Kluwer Academic, Boston, MA.

Vriend, G. (1990). WHAT IF: a molecular modeling and drug design program. J. Mol.
Graphics, 8:52-56.

Wallin, E. and von Heijne, G. (1998). Genome-wide analysis of integral membrane
proteins from eubacterial, archaen, and eukaryotic organisms. Prot. Sci., 283:489-
506.

White, S. (1998). Membrane Proteins of Known 3D Structure. Stephen White Laboratory
at UC Irvine. http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html. Wilson,
S. and Bergsma, D. (2000). Orphan G-protein coupled receptors: Novel drug
targets for the pharmaceutical industry. Drug Des. Discov., 17:105-114.



64

Xiang, Z. and Honig, B. (2001). Extending the accuracy limits of prediction for side
chain conformations. J. Mol. Biol., 311:421-430.

Yeagle, P. L., Choi, G., and Albert, A. D. (2001). Studies on the structure of the G-
protein coupled receptor rhodopsin including the putative G-protein binding site
in unactivated and activated forms. Biochemistry, 40:11932-11937.



65

Chapter 4: Using a Detailed Atomistic Potential to Place Side-
Chains onto Poorly-Folded Backbones

Alex Slepoy, Thomas W. Hunt and David Shirley

Abstract
We compare the performance of a simplified energy function with a full atomistic

one with implicit solvation in a side-chain placement algorithm. We find that, while their
performance is comparable for well-folded structures, the full atomistic energy function
use often results in significantly better sidechain conformations for backbones deformed
from the well-folded structure.

Introduction
Sidechain placement plays a critical part in computational protein structure

determination, homology modeling, and flexible ligand docking. Often cited difficulties
arise from a need to explore a large conformational space and inaccuracies in the energy
function approximations. The extent of the conformational space that placement methods
need to search has been reduced by discovery of strong localization propensities in side-
chain conformations. This discovery led to a development of rotamer libraries [1], where
the allowed conformations for a given sidechain are limited to a small discrete set. Such
an approximation permits the search to be conducted in a reduced integer representation,
leading to an exact ground state solution in computationally feasible time.

It is possible to guarantee an exact ground state given a particular energy function
and a set of discrete rotamers through use of Branch-And-Bound [5] type of algorithms
(BAB), that avoid performing an exhaustive enumeration by use of bounding functions.
Preconditioners [4], like Dead End Elimination (DEE), are often able to reduce the
combinatorial space so that enumeration becomes possible. Widely-used methods [1] use
hybrid combinations of the above methods and other preconditioners to improve
execution speed. It appears that the hurdle of the conformational search has been
overcome.

The debate continues over the required accuracy of the energy function [7]. Less-
detailed energy functions lead to a faster performance, which is still an important
consideration, especially in the protein design problems. However, the simplicity of the
reduced energy function leads to a limited range of applicability and a potential for
considerable error. Recent research suggests that including solvent effects and
electrostatics may be critical to an accurate sidechain placement [6,8].

A convincing case has been made that the quality of the placement prediction also
highly depends on the relative proximity to the native fold of the backbone conformation
[9]. We wish to investigate a proposition that the accuracy of the energy function
becomes more important when the backbone is not well-folded. Our investigation
involves generating a set of backbone structures that are progressively deformed from the



66

well-folded conformation, placing sidechains on these using a simplified partially
information-based energy function and a full atomistic model that includes an implicit
solvent, and evaluating the quality of placement. We chose the latest release of SCWRL
[1] for the method that uses a simplified energy function. This is a widely-used method
that finds the exact ground state of its given energy function. For an atomistic function,
we chose CHARMM19 [3] with an implicit solvation mode EEF1 [2], parameterized for
this force field.

To achieve sidechain placement using the CHARMM energy function with the
EEF1 solvent model, we have developed a software application called CENTIPEDE that
includes a set of combinatorial methods employed in SCWRL. We closely follow the
SCWRL algorithm in the ground state search to avoid introducing simulation artifacts.
However, certain alterations to the algorithm were unavoidable, as described below [in
Section 3].

Comparison Scheme
Since the backbones we populate are deformed from the native structure, for

which the sidechain conformations are available in the database, we need an alternate
method to evaluate the quality of the placement. We choose the CHARMM software to
evaluate the energy of the resulting structures from both SCWRL and CENTIPEDE using
the CHARMM19 energy function with the EEF1 solvent. Though this may seem a
recursive strategy on our part, it is useful to mention here that, for well-folded structures
SCWRL and CENTIPEDE performed similarly. The energies of the resulting structures
were not found to favor either energy function, except in a few cases occasioned by the
SCWRL's use of smaller steric constraint parameters. The comparison is also mixed for
the perturbed structures [in Section 4].

CENTIPEDE
CENTIPEDE is a deterministic sidechain confirmation prediction code that finds

the lowest energy combination of rotamers from a user specified rotamer library.
CENTIPEDE employs a two-step process to find the lowest energy combination of
rotamers. First, rotamers are eliminated with a Dead End Elimination algorithm (DEE).
After the DEE step, a Branch And Bound (BAB) algorithm picks out the lowest energy
combination from the reduced set of rotamers. We did not follow the graph component
decomposition strategy, which makes SCWRL runtime orders of magnitude shorter.
CHARMM-based residue interaction graph includes electrostatic and solvent effects,
which prevent such a decomposition. The graph contains a single giant highly connected
component that has no low order articulation points.  Thus, CENTIPEDE run times are
orders of magnitude slower then SCWRL even for the relatively small protein fragments.

Energy Function
CENTIPEDE's energy function is based on the CHARMM19 force field and the

EEF1 implicit solvation model [2]. We chose EEF1 as the solvation model for its pair-
wise decomposition properties, which allowed us to calculate the solvent contribution to
the sidechain interaction energies.
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Dead End Elimination
CENTIPEDE's dead end elimination algorithm uses several variants to reduce the

number of possible rotamer combinations. The simplest DEE variant that CENTIPEDE
uses is Goldstein DEE, which is the cheapest DEE scheme in terms of computational
cost, but usually the least effective. After the Goldstein DEE algorithm has exhausted all
the rotamers that it can eliminate, CENTIPEDE employs Split DEE, which is
computationally costlier than Goldstein DEE, but potentially more effective at reducing
the set of rotamers.

Branch and Bound
After the set of rotamer combinations has been reduced by DEE, the number of

rotamer combinations is typically still quite large, so CENTIPEDE uses a branch and
bound algorithm to determine the lowest energy combination of rotamers without
necessarily calculating the energy of every rotamer combination. Branch and bound can
skip over certain rotamer combinations by determining if an incomplete combination of
rotamers cannot possibly be in the full combination of rotamers that minimizes the
energy of the structure.  Here are two ways that CENTIPEDE can avoid calculating the
energy of any rotamer combination that contains a given fixed subset of rotamers. A
lower bound on the energy of any rotamer combination containing the rotamer subset can
be computed, and if this lower bound is greater than the energy of a previously computed
rotamer combination, then it is unnecessary to compute the energy of any combination of
rotamers that contains the subset of rotamers. During Split DEE, pairs and triples of
rotamers, known as dead end pairs and triples are often discovered. Any rotamer
combination that contains a dead end pair or triple cannot possibly be the lowest energy
combination of rotamers, so the energy of such combinations do not have to be
computed.

Test Set of Protein Fragments
Several sets of perturbed structures were generated to compare CENTIPEDE and

SCWRL rotamer placement quality.
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1BDC-Immunoglobulin-Binding Protein

1A7F-Insulin Mutant

Figure 1: Two sets of structures were generated from the protein 1BDC. First, three helices were
extracted from the structure. One set of test structures was produced by progressively rotating a
single helix out of its native orientation with respect to the other helices. Another set of structures
was produced progressively altering the f and y angles of one of three helices so that it eventually
flattened out.

Figure 2: A test set of 1A7F based structures was generated by progressively altering the f and y
angles of the original structure's helix so that the helix flattened into a planar confirmation.
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1B03-Viral Protein

1UBQ-Chromosomal Protein

Figure 3: A test set was derived from the initial 1B03 structure by progressively altering the f angle
in a beta hairpin so that the beta hairpin was perturbed from its native planar confirmation.

Figure 4: Two test sets were derived from the initial 1UBQ structure. The first 46 residues of
ubiquitin were extracted, and the test structures were derived from this extracted structure. One test
set was created by successively perturbing the tertiary structure of 1UBQ. This was done by altering
a backbone f angle successively.  The second set was produced by altering a y angle in a beta hairpin
in the same fashion as the 1B03 derived test set.
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Results and Discussion
We have performed two basic types of deformations on our test set. The first type

of deformation moves secondary structure domains to new relative positions with respect
to other domains without distorting their secondary structure. The second type of the
deformation explicitly distorts secondary structure by unfolding helices or prying apart
beta-sheets.  We find that, in a large number of cases, CENTIPEDE is able to identify a
lower energy sidechain solution then SCWRL for the backbones that are distorted from
the native fold. This is particularly true for the second type of the deformation. Secondary
structure distortion leads to the unexplored territory for the knowledge-based portion of
the SCWRL energy function, whose training set consists entirely of the native structures
with intact secondary structure.

Figure 5: Perturbation index reflects a single axis tick per 3 degrees of angle rotation. CENTIPEDE
energies are consistently lower except for two perturbed structures. SCWRL has a large conflict for
unperturbed structure, rooted in the use of small steric clash parameter.
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Figure 6: Here perturbation coordinate is proportional to the initial angle value, progressively taking
all angles toward zero, which corresponds to a planar structure. Again, SCWRL is unable to find low
energy conformations, producing many extreme conflicts. CENTIPEDE states appear significantly
more controlled, always finding a much lower energy value.

 Figure 7: Here the two methods are in closer agreement. Centipede however always finds a lower
energy structure.
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Figure 8: For a distorted beta sheet, SCWRL manages to find reasonable solutions at the low
perturbation range, but performs less efficiently at the larger perturbation scale.

Figure 9: For Ubiquitin, we get anomalous results. SCWRL outperforms CENTIPEDE in the small
perturbation regime, but has difficulty for the larger ones.
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Figure 10: For this single dihedral rotation, SCWRL outperforms CENTIPEDE all the way.
However, this perturbation represents no secondary structure distortion.

This preliminary study indicates that a more detailed energy function may be
appropriate under certain circumstances. It appears to perform better whenever a
significant secondary structure distortion occurs. This makes it useful in the homology
modeling, when large portions of the backbone are unknown. It is also valuable in the
structure determination methods where the native conformation of the backbone is not
available. We intend to continue studying this effect by looking closely into the
individual contributions of the different fractions of the full energy function to the
accuracy of the sidechain placement.
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