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Abstract

Mobile manipulator systems used by emergency response operators 
consist of an articulated robot arm, a remotely driven base, a collection of 
cameras, and a remote communications link.   Typically the system is completely 
teleoperated, with the operator using live video feedback to monitor and assess 
the environment, plan task activities, and to conduct the operations via remote 
control input devices.    The capabilities of these systems are limited, and 
operators rarely attempt sophisticated operations such as retrieving and utilizing 
tools, deploying sensors, or building up world models. This project has focused 
on methods to utilize this video information to enable monitored autonomous 
behaviors for the mobile manipulator system, with the goal of improving the 
overall effectiveness of the human/robot system. Work includes visual servoing, 
visual targeting, utilization of embedded video in 3-D models, and improved 
methods of camera utilization and calibration.
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1.0 Introduction

Mobile manipulator systems, such as the Remotec
Advanced Manipulator (Figure 1) are used by emergency
response personnel to respond to threats posed by impro-
vised explosive devices (IEDs). Existing commercial sys-
tems are limited in their autonomous capability because
they rely solely on operator interpretation of the live video
images and direct operator control of the manipulator, i.e.,
teleoperation. With this LDRD we have focused on devel-
oping techniques to reduce the burden on the operator by
digitally sampling the live video image and developing
algorithms that use this information to semi-autono-
mously control the remote manipulator system. 
The mobile response systems that have been considered,
are all similar in setup. A remote vehicle is operated out
of direct line of sight of the operator. A live video feed is
brought back to an operator console similar to one shown
in Figure 2 and captured on a frame grabber attached to the operator control unit. Snapshots of this
video can be taken, and/or the live video stream used directly.
A large number of tasks related to the utilization of video in the remote control of emergency
response vehicles have been conducted during the course of this LDRD. Automatic tool pickups
have been demonstrated using visual servoing algorithms based on statistical pressure snakes. The
algorithms have proven to be robust despite the unstructured lighting conditions. The remote
manipulator is able to visually servo based off of the snake inputs to automatically grasp tools.
This work is described in section 2.0. 
Visual servoing uses the continuous live video feed from the wrist camera. Visual targeting, on the
other hand, utilizes a pair of snapshots
from a pair of calibrated cameras.
Visual targeting and active sketch tech-
nology have also been further developed
within this project. With the active
sketch framework simple primitives are
used in a pair of stereo images. Select-
ing these primitives enables a set of pos-
sible actions for the operator to choose
between. The latest active sketch imple-
mentations are described in section 3.0. 
Embedded video provides context for
live video information and allows a cor-
relation between live video data and vir-
tual representations of the world. Work
in embedded video for mobile response
system is described in section 4.0.
Camera calibration is crucial for converting image data to robot action. Section 5.0 documents
developments in camera calibrations, including the latest developments utilizing calibrated zoom
camera systems.

Figure 1: Remotec Advanced 
manipulator with target head

Figure 2. Remote Manipulator Operator Console
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2.0 Automatic Tool Pick-Up With Visual Servoing

An emergency response robotic operator can deploy a wide variety of tools, depending on the task
at hand. Grappling hooks, explosive tools, X-ray equipment, chemical sniffers, small drills etc.,
might all be utilized. In many cases, these
may be picked up from a trailer, or from a
secondary pack-mule robot, and the loca-
tion of these tools with respect to the robot
cannot be precisely known.   Figure 3 illus-
trates the retrieval of tools from a pack-
mule robot.
Teleoperating a tool grasp can be a slow
procedure, since the position and orienta-
tion of the tool must be controlled pre-
cisely to prevent damage to the tool or the
tool holder. The tools themselves, how-
ever, can be engineered for easy recogni-
tion and retrieval. Tool grasps, are
therefore, an excellent candidate for auto-
mation. In this section we describe how we
have utilized statistical pressure snakes
and visual servoing to demonstrate auto-
matic visual grasping for telerobotic sys-
tems.

2.1 Statistical Pressure Snakes

Our approach to visual servoing utilizes statistical pressure snakes, based on the Perrin-Smith
model [1]. A pressure snake is a mathematical construct representing a closed loop segmented
contour on an image plane. The snake’s length and position is constantly being pushed by image
pressures, as it seeks to find a minimum energy solution. Regions of the image with a “good” fea-
ture, such as its measured closeness to a desired color generate pressures that push out the snake
from its interior, while contour tension tries to collapse the contour. Snakes can be initiated by
either starting at an initial selection point and growing the snake outward, or by using the entire
region and collapsing the snake around a region. In either case when the snakes are well tuned,
they should expand or contract to follow the contours of a shape of interest after a few iterations.
Snakes provide many advantages over other image processing techniques. First, the algorithm is
fast. The computations are typically of order n, where n is the number of segments in the snake.
This number can shrink or grow depending on the overall length of the snake contour, but is still
small compared to the image size. Only a small window of pixels around each vertex is all that is
used for image analysis in a given iteration. Second, the snake allows for easy interaction with the
user. A simple button click can define a seed-region for growing a new snake. The evolution of the
snake algorithm is easily displayed by overlaying a snake drawing on the live video, so the opera-
tor can monitor operations in real-time. The snake data structure can be queried for essential object
features such as center, size and orientation, which can be used to drive the visual servoing opera-
tions.

Figure 3: Pack-Mule Retrieval of Tools
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The development of color based statistical pressure snakes under this LDRD has been well docu-
mented in number of SAND reports and conference proceedings. [2-7]

2.2 Using Snakes For Tool-Pickups

Snakes help to define a region of interest for the robot system, but do not directly result in any use-
ful operations. To become truly useful for the mobile manipulator system, information derived
from the snakes must be utilized as one part of a motion planning algorithm. In a completely
unstructured environment this is difficult, since the robot system has no method to transform gen-
eral object contour information into a plan of action. By constraining the problem and controlling a
part of the environment, however, a automated activity for the mobile manipulator can be devel-
oped. This has been done for tool pickups.
Industrial robots commonly pick up tools without visual
servoing simply by moving to a series of pre-taught points.
Mobile manipulator systems, on the other hand, typically
lack the structure and the precision required to pick up
tools open loop. In many cases tools pickup locations are
improvised, tools are placed on trays or on tool racks with-
out precise alignment locations. Tools may be delivered
off of a mobile pack-mule, or retrieved from the back of a
tool trailer, without any precision a priori location infor-
mation available to the robot. Mobile manipulators tend to
be less rigid, with more mechanical play and less accurate
joint calibration, so even if the tool position is precisely
known, an open loop attempt to grab a tool may fail even
if the tool location with respect to the robot is precisely
known. Industrial robots also work in a workcell where
humans, and their corrupting influences are avoided. Tools
are always located in the same locations, because no-one
was allowed to move them away. Emergency response robots, however, work closely with human
operators, and are thus subject to the whims of operators to move and deploy different tools.
To enable automated tool pick-ups, we add a level of structure to the tools themselves. In particular
we place a colored rectangular patch at a known position and location offset from the tool pickup
point. This patch is designed so it will be completely viewable from the gripper camera during the
entire approach sequence.   Figure 4 shows a colored patch attached to a telemanipulator tool, in
this case an X-ray source. By standardizing the distance and size of the rectangular patch, we can
directly convert the information gleaned from the active snake, to a motion plan to pick up a tool.
Since the size of the rectangular patch is known a priori, the measured area in pixels of the
enclosed snake contour maps directly to an absolute distance to the target.   The principal axes of
the rectangular block can be used for orientation alignment, and the center of the target is used to
determine the amount of translation needed. Thus a single rectangular block can be used to deter-
mine four degrees-of-freedom of motion: x, y, z translation, and roll orientation in the image frame.
In addition, by controlling the color of both the rectangular patch and its background, an extremely
robust snake can be obtained.
Pitch and yaw errors in the image plane for the rectangular block also result in skewing of the sides
of the rectangle, but the measurement sensitivity to pitch and yaw is far less than for the other
parameters and was not used.1   In practice, tools are oriented so that a standard vertical approach

Figure 4: Standardized Tool Pickup 
on an X-Ray source tool
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is needed to make the grab, and no additional orientation alignment other than roll is needed. Only
if the robot is operating in very hilly terrain and neither the robot nor the tool caddy can be placed
on the same slope is this seen as a problem. 

2.3 Improving Tracking Reliability

Emergency response operators have been reluctant to utilize autonomous manipulator behaviors,
because it is easy for something to go wrong in an unstructured environment. It is difficult to repli-
cate the operator’s ability to map camera imagery into a course of action for the manipulator. Even
for the snake based algorithms,
changes in lighting conditions,
occlusions, motion blur, auto-iris
adjustments, etc., can cause the
snakes to perform unpredictably.
For operator acceptance, however,
the algorithms implementing
autonomous behaviors need to be
fool-proof. Luckily for telerobotic
systems, there is always a fallback
course of action. If the autono-
mous system cannot perform the
operation and can recognize it can-
not perform the operation, the
operator can always be asked to
intervene. Thus the key is to recognize when the snake has failed in some way to track the desired
shape, and then halt the autonomous behavior and request assistance from the operator.   
To help insure the quality of automatic tool pickup we have implemented a simple sanity check. A
snake tracking a rectangular block will appear as a rounded rectangle. The finite number of points
and the line pressure will result in the corners being rounded off. The amount of rounding depends
on the number of points in the snake, the image pressure, and the size of the contour. In any case a
properly performing snake should always be bounded by a slightly larger rectangle on the outside,
and by a slightly smaller ellipse on the inside. If any points in the snake are driven outside of these
bounding areas, then the visual servoing is stopped, and the operator’s assistance is requested. In
addition to this sanity check, a number of additional checks regarding acceptable size, aspect ratio,
and rate of change are also performed on the active contour. 
Figure 5 shows the snake and the boundary regions during normal operation and when corrupted
by occlusion. The points of the snake outside the bounding regions are flagged accordingly.

2.4 Implementation Details

The visual servoing application was implemented using two Sandia developed technologies,
Umbra and SMART [8-11]. Both are connector based technologies that allow the developer to

1.To improve sensitivity to pitch and yaw a dual snake system could be used, whereby a 3-dimen-
sional feature such as a peg or elevated block is placed in the center of the rectangular block. A snake
is used to capture the outside contour, and the contour of the elevated peg surface, and the centers of
the two snakes are computed. Any offsets in the centers is then directly converted into pitch and yaw
errors.

Figure 5: Rectangular Snake with Boundary Checks
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combine system modules to implement behaviors. Umbra is focused on graphics, visualization,
and operator interaction. SMART is used for real-time servo control and teleoperation. Together,
they provide a rich environment for advanced robotic systems.

Figure 6 Umbra Modules Used for Implementation

Figure 6 shows the icon representation of the relevant Umbra components in the system. An 
ACTIVE_SKETCH module provides a connection to the live camera frame grabber (via a DigiCam Umbra 
module). The vsSnake module uses the image connector as an input and implements the snake algorithm. 
The vsServo module takes the snake inputs and generates a velocity error command to drive the robot’s tool. 
The UMB_REG module provides a direction socket connection between Umbra’s connectors and SMART’s 
data registers, allowing the servo error command to directly drive the embedded robot controller. Finally, 
the USG_VIEWER is used to embed an Umbra scene graph visualizer within the application.

Figure 7 SMART Modules Used for Visual Servoing Implementation

Figure 7 shows the icon representation of the SMART modules used in the system. The REG_VEL receives 
the velocity error commands from the UMB_REG module. The ROTATE_KIN module rotates the velocities 
into the tool reference frame, the WOLVERINE_KIN converts tool speeds into joint speeds, and the 
WOLVERINE_JNTS module drives the robot.

2.5 Stages of Automated Visual Servoing

The visual servoing process for an automated tool grab is illustrated in Figure 8. First the robot is
moved to a point above the expected location of the tool. Initial snake acquisition is obtained by
either the operator clicking on the colored patch on the tool and growing the snake outward, or by
shrinking a snake around the entire region until it collapses on the tool region of interest. Once a
valid tool patch has been acquired, the visual servoing stage begins. During visual servoing the 4-
11



axis correction values are fed from the vsS-
ervo umbra module to the REG_VEL mod-
ule on the SMART controller. Motion
proceeds until either the goal pose has been
reached, or the snake has failed to maintain
its shape for some reason.   

Figure 8: Visual Servo Grasp: a) Initial 
Acquisition; b) Approach; c) Final Grab.

a)

b)

c)
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3.0 Visual Targeting and Active Sketch

Active Sketch and Visual Targeting have been the mainstay technologies for developing autono-
mous behaviors for mobile manipulators. Although they were invented within prior research
projects, they have been heavily utilized, developed and refined during the course of this project.
In this section we define these approaches and document their current implementation as applied
to mobile robot control.

3.1 Visual targeting

Visual Targeting provides the basis for the more operation focused Active Sketch techniques, and
has been utilized by robotics researchers for years [13] Targeting requires a pair of calibrated cam-
era snapshots to be taken of a common object viewed from different angles.   Typically this is done
using a calibrated stereo camera head, with snapshots being taken simultaneously, but this isn’t
always the case. 
As an example, Figure 9 shows a Sandia developed stereo targeting head containing two fixed
focal length cameras mounted on a pan-tilt-unit, which is attached to a mast that is in turn attached
to the robot torso. The operator moves the PTU with a joystick to point both cameras at a target of
interest, and then clicks a button to take a pair of snapshots.

The user then selects a common feature in both
images. Using the mathematics of the calibrated
camera model, each pixel selected in space corre-
sponds to a vector cast in 3-dimensional space.
The pair of vectors from the two images corre-
spond to a unique point in 3-D space, ideally the
point of intersection of the two vectors, but more
typically due to image and calibration errors the
point of nearest intersection of the two skew vec-
tors. In summary, visual targeting simply uses tri-
angulation of two calibrated camera images too
determine the 3-D position of a point in space with
respect to the robot. And a feature so selected is
considered “targeted”.

3.2 Active Sketch

Visual targeting in itself does not specify robot
action. All it specifies is the 3-D point of a feature
in the robot’s workspace. For a robot to perform
an automatic action, however, much more infor-
mation must be available. A robot task requires
much more than the 3-D position of a feature in

space. It requires a complete goal pose, consisting of a desired 6-DOF position and orientation of
the robot’s gripper. It also requires an approach path, the series of joint angles that will safely take
the robot from its current location to the goal pose. 

Figure 9: Visual Targeting Head on a 
Remotec Advanced Mobile Manipulator
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The Active Sketch technology was developed at Sandia, [14,15] to bridge the gap between 3-D
position targeting and robot action. With Active Sketch, the task is divided into two steps, the
object specification and the task specification. In our implementation, the available object specifi-
cation tools are simple geometric primitives: a point, a line, two connected lines representing a
plane, and three lines with a common vertex used to define a volume called a triad. Selecting the
tool places a copy of the geometric primitive into both images, where they can be dragged to align
with common features in the image plane.   
Rather then forcing the operator to completely match image features at each vertex, however,
Active Sketch, utilizes the epi-polar constraint to substantially simplify the stereo matching prob-
lem. The epi-polar constraint is a realization that the ray cast by selecting a pixel in a target image,
corresponds to a line when viewed from a second range image.   By limiting mouse selections in
the range image to points that lie along the constraint line, the search process becomes a one
dimensional selection rather than a two dimensional selection. Not only is the likelihood of the
operator selecting the wrong feature substantially diminished, it is also possible to find alignments
even when targets are completely occluded in the second image.     
 

Figure 10 Stereo Snapshots of a pipe.
One of the object specification tools are placed in the image plane, e.g., point tool, line tool, plane
tool, and triad tools, and then moved in alignment with common features in both images. Selecting
and highlighting the object makes available a set of actions. An intelligent planner then uses the 3-
D location data as a starting point for planning a path to execute the desired action. Figure 10
shows a pair of stereo images taken within Active Sketch. A line tool if being used by the operator,
and has been dragged over the features of interest, namely the axis of the pipe bomb.

3.3 Implementing Automatic Motion Behaviors

Figure 11 below shows a typical trajectory task control panel used for mobile manipulation. It
works intimately with the Active Sketch environment. As different active sketch primitives are
chosen, i.e., points, lines or surfaces, different motion macros become available. When no features
have been selected only the fixed, “Canned Motion” routines are allowed. If a line tool is chosen,
macros such as “Grab Pipe” or “Move Around Axis” become selectable.
14



Figure 11 Automated Control Panel
The automatic control panel also includes a large “VCR” controller. Play begins automatically
when a trajectory macro has been selected. The operator is free to pause, backup, change speeds,
and resume motion as needed, simply by clicking on the interface buttons.
For example, to grab a pipe, the operator first aims the stereo
camera system at the pipe of interest, and takes the pair of snap-
shots as in Figure 10. A Line tool is selected and dragged across
the image. Once the line is selected a series of line-based trajec-
tory macros becomes available to the operator, as in Figure 12.
By clicking on the appropriate button, the “Grab Pipe” motion
planner is called, and a path to grab the center of pipe from above
is planned and initiated. The cameras are automatically slewed
over to directly monitor the operation and the robot starts to exe-
cute the planned motion. The operator monitors the motion, and if
needed, can pause or add position corrections. 
A door opening task can be conducted in much the same fashion.
In this case the line of interest is the hinge line of the door and the
“Move Around Axis” button should be selected. This
planner will apply the right hand rule to the axis and
sweep out an arc around the axis, starting with the robots
current grip point. Figure 12: Operator Line 

Tool Macros
15



Figure 13 Automated Door Opening
Other line planners will approach a designated line from the side, move parallel to the line, aim a
weapon along the axis of the line, or assuming the line represents the bottom of a package, will
place a water bottle disruption device directly in front of the package.
A number of operations can also be performed on the surface of an object. Chemical sniffers need
to be swept across the surface of an object in order to pick up trace compounds. By using the
Active Sketch Plane tool a rectangular surface area can be designated in the model. Selecting the
plane tool enables access to both the surface scan and follow perimeter planners. (Figure 14).

Figure 14 Automatic Surface Following
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4.0 Embedding Visual Information

Another problem inherent in the utilization of
remote cameras is the tunnel vision phenomena.
Operators lose spatial awareness of the live video
feed and are often unable to correctly interpret
imagery. By embedding visual information within a
3-D modelling environment this problem can be
largely averted. 
During the course of this LDRD a number of visu-
alization tools have been added to the system. Live
camera imagery has been embedded in correspon-
dence with the graphical model, and video imagery
is cast onto an embedded video screen. The opera-
tor is able to change the level of transparency of
the live video feed to move between live views
and virtual views as needed.
Image snapshots can also be taken and embedded
within the working model. Each snapshot has a
working image frustum associated with it which
can be visually displayed. The images can be viewed from the original camera position and orien-
tation, or from any other location. Figure  15 shows a pair of snapshots taken of a box from a dif-
ferent points of view.
The active sketch tool can be used to add geometry to the scene graph. By using the triad tool, box
shaped objects can be readily placed and visualized within the virtual world. This not only helps
keep the operator informed of objects in the robot’s workcell, but it also serves as a forensics tool,
to help build up a working model of the robot’s environment. Figure 16 shows a box that has been
added to the scene graph via the active sketch interface. The semi-transparent image lines up with
the 3-D geometry when viewed from the camera’s point of view. 

Figure 16 Semi-Transparent Video overlay over a modeled box

Figure 15: Embedded Visual Model
17



5.0  Improving Camera Calibration

For the robot system to be able to perform operations semi-autonomously, precise 3-D measure-
ments must be directly obtainable from the video feedback, and correlated from multiple camera
views.   This task is called camera calibration, and involves determining the mapping between
image plane coordinates and 3-D space. Good camera calibration is crucial for visually directed
mobile manipulation systems. Appendix A summarizes the terminology and algorithms used for
computing the calibration of a fixed focal length camera. Appendix B describes the decomposition
of the camera calibration matrix into intrinsic and extrinsic representations.
Mobile manipulator systems typically have a suite of cameras: a drive camera, a reverse camera,
one or two wrist cameras, and a torso mounted pan and tilt targeting head. For visual targeting sys-
tems, camera calibration has typically involved accurately calibrating a stereo pair of fixed focal
length targeting cameras. These cameras are taken to a precision optical bench, where both intrin-
sic and extrinsic camera parameters are measured and recorded. The calibrated stereo camera sys-
tem is then attached to the robot, and the position offset is measured. 
Unfortunately, our experience with applying calibrated camera heads to mobile manipulation has
uncovered a number of problems with this approach. Off-line camera calibration works well in a
lab environment, but in the field, cameras are too easily jostled and moved from initial setup posi-
tions. Small orientation alignment errors can lead to relatively large targeting errors. Camera
mount points may change or degrade over time. All of this leads to error buildup for targeting
operations. 
The single stereo head is also problematic. To fit within the footprint of the robot, the spacing of
stereo cameras is typically ten inches or less. This small spacing reduces the accuracy of distance
measurements. A torso mounted camera may also have issues with arm occlusion. The arm often
needs to be rotated out of the way for the targeting operations to succeed, reducing the both the
operational speed and advantages of autonomous operations.   In addition, remaining cameras,
such as drive, reverse and wrist cameras, are under-utilized. These cameras could provide valuable
information from a different perspective, if calibration for randomly mounted cameras were
straight-forward. 
Camera calibration has, to date, relied on fixed focal length cameras. Unfortunately without zoom
capabilities, these cameras have limited utility. They work well for targeting operations on objects
with measurable features between 4” and 20” in length, but are unable to adequately target small
features such as key-holes, or large features such as shipping crates, packages or buildings.
This research project has begun to address these issues, but the work has not been completed. We
have developed an interactive tool for calibrating cameras using a benchtop fixture. We have
developed a new algorithm for pose estimation which should ultimately allow improved in situ
camera calibration. We have partially developed an interactive graphics tool for pose estimation
which makes it possible to use any known geometric object as a possible calibration tool. We’ve
begun to integrate calibrated zoom cameras into our environments and have developed a calibra-
tion approach for these cameras. This section describes these most recent developments.

5.1 Intrinsic Camera Calibration and the Distortion Model

There is a significant body of work in camera calibration [16-18]. Typically camera calibration can
be divided into three stages, intrinsic and extrinsic calibration, and pose estimation. Intrinsic cali-
bration involves the measurement of camera focal lengths, camera distortion, and pixel offsets.
18



These characteristics are fundamental to a particular camera/lens combination and can be done off-
line on a precision bench top without a problem. For our intrinsic model we are using the model
used within the Intel® Open Source Computer Vision Library camera code [19]. It is a collection
of C functions and few C++ classes that implement some popular algorithms of image processing
and computer vision. 
The lens distortion model is parameterized as follows.   Let (u,v) represent the ideal pin-hole pro-
jection model parameters and let  represent the measured distorted values. Similarly let (x,
y) represent the ideal distortion free parameters and  represent the distorted physical model.

Taking into account the first two expansion terms in a radial distortion model gives,

(1)

where, . Since , , , this
results in

 (2)

These latter two relations are used to undistort the images from the camera using the OpenCV rou-
tine UnDistort. The camera’s distortion is modeled by four coefficients: two radial distortion
terms, k1 and k2, and two tangential distortion terms, p1, p2. In practice, these parameters are
obtained either by taking multiple snapshots of a checkerboard and letting an OpenCV routines
compute the coefficients, or by running the UnDistort OpenCV function on the image and manu-
ally adjusting the parameters until straight lines on a fixture map to straight lines in the image.
Unfortunately, for cameras with relatively small distortion, the native OpenCV often fail to con-
verge, and only the manual adjustment method is available.
The distortion model uses second and fourth order quadratic terms to represent distortion in the
system.   Once distortion parameters are estimated, image distortion can be reduced by running the
image through a image distortion correction tool.   The distortion filter allows us to decouple
image distortion from camera calibration. By first running unDistort on any captured image, all
subsequent calibration measurements can be assumed to operate on an ideal pin-point camera
image.   The subsequent discussion assumes that this distortion correction has been applied. 

5.2 Extrinsic Calibration and the Camera Calibration Tool

Extrinsic calibration measures the position and orientation of the camera with respect to a fixed
reference frame. It is essentially the same as pose estimation, except for two important differences.
It is the transform that is closest to the camera mapping, and is typically computable using a
benchtop setup. Pose estimation, on the other hand, is done on site.   In addition, for a zoom cam-
era the extrinsic calibration transform will also change as a function of zoom settings, since the
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effective center of the camera model changes as a function of zoom. The pose estimation, should
be constant as a function of zoom setting. 
Figure 17 shows a interface tool that has been developed to calibrate cameras using a bench top
fixture. Both the intrinsic and extrinsic parameters of the cameras can be calibrated with this tool,
but not the final camera pose estimation. The intrinsic parameters can be computed in one of two
methods: the native method within OpenCV which takes a series of pictures of checkerboards and
computes distortion parameters, and the fixture based method which computes the pin-hole cam-
era model intrinsic parameters, and allows the distortion to be determined interactively. 

Figure 17 Fixture based Camera Calibration Tool
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The method requires a camera fixture containing a series of measured points. The points must not all be co-
planar. In practice we have used either a series of posts on a precision optical bench, or a calibration fixture 
with a sliding panel containing a grid of known points. (see Figure 18) 

Figure 18 Calibration Fixture with Adjustable depth feature.

5.3 The Non-Perspective Pose Estimation Problem

A camera can be carefully calibrated on a bench top, and then fail when placed on the robot due to
inaccuracies in mounting the camera system. For visual targeting to work well, this last transfor-
mation needs to be computed accurately. This transform is called the camera pose, and consists of
the position and orientation of the image device with respect to the robot.    The same problem
arises when the position and orientation of known objects need to be known with respect to the
robot’s position. 
Pose estimation focuses on just the orientation and position of a device, either a camera or targeted
object. In many cases, the imaging device is a single perspective camera with a single snapshot,
with multiple features selected.   In this case (assuming the pin-point model of the camera) all of
the UV selections correspond to rays which all intersect at a common point. If three such well-
determined points are selected, then a correct solution can be found algrebraically by solving a
polynomial.   In general, however, four possible solutions exist, and additional information must
be used to determine the correct solution. This problem is called the P3P problem.
To improve the accuracy of the P3P solution a number of researchers have extended the results to
N points (N>3). By using the 3 point solution as an initial seed, further refinement and accuracy is
obtained by adding more points to the system. The fourth point is often used to resolve the multi-
ple solutions found from solving the algebraic equation. All points must still intersect at a common
point, however, for these approaches to work.
In tracking operations a target object may have essentially the same perspective distortion over all
feature points. In this case, a weak perspective assumption can be made, and the equations can be
simplified substantially.   The POSIT algorithm is a highly efficient approach for computing cam-
era frames for perspective systems using a weak perspective assumption.   
A number of general imaging devices (GIDs) don’t fit the perspective camera model, i.e., when the
ray segments don’t all intersect at a common point. This may occur with high distortion lenses,
line cameras, or in our case, due to obtaining pose estimation from multiple camera views, from a
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camera mounted on a PTU system. The non-perspective n point problem of finding a camera
object pose is a variation of the PnP (Perspective N Point problem), without a common intersec-
tion point [20]. Finding an effective means of solving this problem is critical for robot pose estima-
tion for our mobile manipulators. 
In general, the problem amounts to finding the rotation matrix and translation offset between the
camera system and the object, by establishing a correspondence between objects in the image
frame (i.e., u, v coordinates) and objects in a world frame (x, y, z) coordinates. The rotation/transla-
tion can be represented by 6 independent parameters, and thus by defining 3 UV-XYZ correspon-
dences a solution for the rotation frame should be attainable.
In Appendix D we develop an algorithm for iteratively solving the nPnP problem assuming a good
approximate value for the rotation and offset has already been obtained. The algorithm is generic
and can be used to find any unknown transformation given a sufficient number of image corre-
spondences.

5.4 The Calibration Transform Loop

A generic solution to camera and object calibration uses more then just a intrinsic and extrinsic
model for the camera. Cameras may be attached to moving devices with their own kinematics.
Objects are typically defined with respect to a world coordinate frame that is independent of the
camera frame. 
To accommodate all of these possible transforms, we will augment the conventional camera trans-
formations with some additional transforms. Let Cint and Text represent the conventional camera
intrinsic and extrinsic transformations. These can be computed using the benchtop calibration
approach of section 5.2. Tkin represents the kinematics of an aiming device, typically a PTU or the
kinematic chain of a robot, and is assumed known, but may vary as a function of joint angles. Tdev
represents the transform of the image device with respect to a world coordinate system. Tobj repre-
sents the transform of a object target with respect to a world coordinate system. 
The equation relating all of these transformations is given in Equation 3, and is called the calibra-
tion transform loop. It relates image plane coordinates identifying features in a snapshot of a imag-
ing device to the position of points on the target object.
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This transformation loop is shown graphically in Figure 18. The calibration objective is to find all
of the transformation matrices in the system by a combination of benchtop component calibration
and in-situ pose estimation. 

Figure 19 Camera Transforms for Final Pose Estimation

5.5 Developing an Interactive Pose Estimation Tool

An interactive camera pose estimation tool is being developed within an Umbra based graphical
environment that utilizes the nPnP algorithm. The objective is a tool which can both accurately
place an imaging device in the environment given known 3-D geometry (Tdev), and place 3-D
geometry given known camera locations (Tobj). Rather then relying on a calibration fixture, the
pose estimation tool is being designed to use any known CAD geometry, and to allow the user to
pick the feature points interactively. These features are called calibration points, and represent any
feature that can be easily recognized from visual inspection of an image. To fix the relative fixed-
body pose between the camera frame and the world frame, a minimum, of three calibration points
must be found. The user can define calibration points within the Umbra environment simply by
clicking on features. The system will automatically attach a point to the surface of the object under
the mouse pointer at the point of intersection of the ray cast, and compute its 3-D position in the
model. Figure 20 below shows a camera image embedded within a 3-D reconstruction and four
calibration points determined interactively by the user. 

Figure 20 Calibration Points within a 3-D Environment
Once a series of calibration point correspondences have been made, the user of the calibration tool
will be able to calibrate any one of the following: the transform for the calibration object with
respect to the camera (Cobj), the transform of the camera with respect to the device (Cext), the cal-

Tobj

Tdev Tkin Text Cint

nPnP Solver (non-perspective
n-point )

or POSIT Solver (using weak
perspective apx)

Take multiple points, multiple
views, solve for missing

transformation
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ibration of the camera device, (Tdev), or the intrinsic parameters for the camera.   The final trans-
formation, the internal kinematics of the camera device, (Tkin), is assumed known.

A minimum of three correspondences should be taken, but more is desirable to improve accuracy.
There may only be a single image with lots of UV correspondence points, or there may be lots of
images, with only a single correspondence point on each image, or a mixture of both. For instance,
to calibrate a drive camera with respect to a robot, a series of individual snapshots must be taken
with the robot holding a robot tool. To best determine the Tobj transform tor a PTU system, on the
other hand, a series of images from widely varying pan and tilt angles should be taken to optimize
orientation accuracy.
A preliminary version of the Camera Pose Tool is shown in Figure 21 below. The tool allows mul-
tiple snapshots to be taken of an environment. For each picture correspondence between the 3-D
calibration balls and image features are determined interactively by the operator. A desired object
is selected which should have a consistent pose in all images.   The graphical representation gives
the starting position and orientation for the iterative pose estimation algorithm. The pose is then
accurately determined by executing the algorithm described in Appendix D.

Figure 21 Preliminary Pose Estimation Tool

5.6 Digital Zoom Camera Calibration

Compact calibrated digital zoom cameras, such as the SONY-FCB-10A (Fig. 22), have just
recently become available commercially. These cameras solve a critical problem inherent in exist-
ing fixed field-of-view cameras system, namely, they can scale to the task at hand. Previous visual
targeting systems utilized for IED operations could only perform tasks on objects with features
ranging from 4" to 18" in length.   Analog zoom cameras could not be used because they were
either too bulky, or because the effective field-of-view could not be accurately measured or con-
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trolled. The introduction of these new compact cameras, with repeatable, digitally assigned zoom
controls has allowed us to reconsider approaches for digital targeting operations.
To utilize these cameras as a precision targeting cameras, we designed a camera housing that accu-
rately and repeatably attaches the camera to a Directed Perception pan and tilt unit, creating a
small fast single camera imaging system.    

Figure 22 Sony FCB-10A with Customized Housing on PTU Unit
With a pair of these small PTU system mounted on a mobile manipulator as shown in Figure 23 it
will be possible to substantially improve visual targeting operations for mobile manipulators.
Improved speed, improved field-of-view, and reduced issues with occlusion should all result as
part of this effort.

Figure 23 Mobile Manipulator With a Pair of Independent Zoom Cameras
The first step in utilizing these advanced cameras as part of a visual targeting system, is benchtop
calibration. Rather than just having a static set of intrinsic and extrinsic parameters for the camera,
the calibration values for a zoom camera need to be adjusted whenever the zoom value has been
changed. The allowable settings for zoom are essentially continuous, with over 10000 effective
settings between full wide view and fully zoom. Our approach is to compute the bench top intrin-
sic and extrinsic calibration values at a series of discrete settings, and use interpolation to estimate
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intermediate settings. Appendix D shows the format for the XML file used for camera calibration.
The zoom setting is normalized between zero and one for each particular camera, where zero rep-
resents a full wide view, and one represents full zoom. 

Figure 24 Zoom Camera Calibration Flowchart
The flow of parameters is shown in Figure 24 above. A SMART SONY module monitors the cur-
rent state of the camera’s zoom settings. These settings can either be changed automatically by the
targeting system, or manually by the operator. The current zoom setting for each camera is moni-
tored, and any change initiates a callback in the user interface. The call-back computes a new inter-
polation setting, and adjust the Umbra CamCalib module accordingly. Methods within the
CamCalib module can then be used to perform visual targeting operations as if a fixed camera sys-
tem had been used for a snapshot.
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6.0  Conclusions

In this LDRD we have explored the use of visual imagery for automating operations with mobile
manipulator systems used in emergency response.
During the course of this LDRD we demonstrated the use of statistical pressure snakes for auto-
mating tool pickups. The experiment consisted of a 6-degree-of-freedom (DOF) robot system with
a wrist mounted camera. Special made tool pickups were designed that contained a uniquely col-
ored a rectangular block attached to a robot tool. The robot was able to automatically approach,
align itself and grab the robot tool by responding to information gleaned from the snake. Tool
alignment variations in 4-DOF, (3 translation, and z-axis rotation) could be readily accommodated
with this approach. The snake algorithms proved to be robust in the unstructured lighting condi-
tions typically seen by emergency response manipulators.
We also further developed visual targeting and active sketch technologies. By providing simple
object primitives to the operator, and a derived list of tasks based on the primitives, we’ve devel-
oped an interface which is fast, intuitive and powerful for a wide range of activities, such as grasp-
ing objects, opening doors and scanning surfaces.
We demonstrated that live video imagery could be utilized by the robotic operators within a 3-D
modelling environment. Operators are often plagued with a tunnel vision phenomena, where they
have the video feed, but lose the context of the video. By embedding the video within a 3-D world
model, this problem is addressed. The operator is able to freely move from video perspective to
overview perspective and back. The 3-D world serves as a working environment to embed new
information as it is received.
Finally, several advancements in camera calibration have been made. An interactive, graphical tool
for bench top calibration of intrinsic and extrinsic camera parameters has been developed. A
robust algorithm for non-perspective n-point pose estimation has been developed, and is being
incorporated into an interactive pose estimation tool. New zoom camera systems have been inves-
tigated, and a working continuously variable calibration model has been developed which is com-
patible with existing targeting systems. 
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 Appendix A: Camera Calibration Terminology

Camera calibration is the process of determining the relationship between 2-D image points and 3-D world 
points. There is a large body of work developing camera calibration approaches and techniques. This section 
defines the notation and provides an overview of the algorithms employed for computing the camera 
calibration (as used by the camCalib Umbra module).     

A 3-D point, xi, is represented in homogenous coordinates as 

(4)

and a 2-D image point (ui, vi) is represented in homogenous coordinates as

(5)

where

 (6)

The mapping between the two frames utilizes the camera calibration matrix.

(7)

and is given by

(8)

It is possible to solve for the elements of C for a given camera by recording the u, v coordinates of
various points that are defined in x, y, z coordinates. Following the approach in [1], but applying
the notation used here 
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(9)

Expanding the inner products and utilizing equation 6 gives the following mapping (where c34 has
been set to one since the scaling on the matrix is arbitrary).

(10)

This represents a linear equation in the unknown parameters cii which is valid for pair of xyz and
uv parameters. By applying this equation to n sample pairs (x1 through xn) a overdetermined sys-
tem of equations can result, as shown below:

(11)

Ui

Vi

ti

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

xi

yi

zi

1

=

xi yi zi 1 0 0 0 0 uixi– uiyi– uizi–
0 0 0 0 xi yi zi 1 vixi– viyi– vizi–

c11

c12

c13

c14

c21

c22

c23

c24

c31

c32

c33

ui

vi

=

x1 y1 z1 1 0 0 0 0 u1x1– u1y1– u1z1–
0 0 0 0 x1 y1 z1 1 v1x1– v1y1– v1z1–
  .          

xn yn zn 1 0 0 0 0 unxn– unyn– unzn–
0 0 0 0 xn yn zn 1 vnxn– vnyn– vnzn–

c11

c12

c13

c14

c21

c22

c23

c24

c31

c32

c33

u1

v1

 .
un

vn

=

30



 This is in the form of a the equation  which can be solved in a least squares optimal sense
by using the pseudo-inverse of A.

(12)

This gives both a representation and an algorithm for computing the full camera calibration matrix
in terms of 11 free parameters. By taking at least 6 non-planar (i.e., all points should not exist in
the same plane) points the rank of A should be greater than 11 and a valid solution will be found. If
desired, The parameters in C can be further optimized by performing a non-linear optimization
(e.g., Levinburgh-Marquadt) to minimize the square of the error in

 (13)
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 Appendix B: Using the Extrinsic/Intrinsic Reference Model

The algorithm provided a representation that utilizes 11 parameters, but it does little to separate
what are considered to be the intrinsic parameters of the camera (i.e., focal lengths and distortion)
and the extrinsic parameters (i.e., the transformation matrix that locates the camera in a workcell).
Thus if any one parameter were to change, this model is unsuited to track the changes and would
require a recomputing of the complete camera matrix.
Consider the mapping below which breaks out the camera calibration matrix into two sub-matri-
ces, the intrinsic calibration matrix Cint, and the extrinsic calibration matrix, Cext

 (14)

where fx is the x-axis focal length, fy is the y-axis focal length, u0 and v0 are the image plane off-
sets, R, is a orthonormal rotation matrix and d is the translation. The parameter fxy represents a
skew term that is ideally zero, but is required in order for there to be a one-to-one mapping
between parameter representations
This would appear to have seventeen independent variables, but because the matrix R is required
to be orthonormal, there are 6 additional constraints on the form of R, and thus only eleven inde-
pendent parameters. It is possible to solve for these parameters in terms of the camera calibration
matrix elements. This is shown in the approach below.
Define the 3x1 vectors c1, c2, c3 as shown below

(15)

and define the rotation matrix as a series of row vectors

(16)

then the resulting equation is obtained
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(17)

From the bottom row of this equation the following equalities:

(18)

Because the matrix C can be arbitrarily scaled and the vector r3 must have a unit norm, it is clear
the matrix  must first be normalized accordingly.

(19)

In this case the term c34 is no longer unit valued, but directly gives the value for dz.

From the second row of Eq. 17,

(20)

Multiplying both sides by r3 and taking advantage of the orthonormal requirement on R gives

(21)

Once v0 is known then the focal length fy and rotation vector r3 can be retrieved by utilizing the
unit value condition on r3.

(22)

(23)

The top row of Eq. 17 gives us
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Using the same orthonormal constraints on R gives us
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(27)

(28)

Finally, by computing the second column variables the values for dy and dx are derived.

(29)

(30)

This set of equations provides the mappings to create the intrinsic and extrinsic parameter files
from the camera calibration matrix given an undistorted image.
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 Appendix C:  Solving the non-Perspective n-Point problem

For a series of XYZ points attached to an object frame, viewed from a imaging device (i.e., PTU
camera), the imaging equation relating the image coordinates to XYZ points is given by

(31)

Typically  may vary for each point taken but is well known,  is known and fixed,  is
considered known (but may vary based on zoom settings), and the goal of the pose estimation is to
determine either  or  accurately, assuming every other transform is known for the given
view, and that the value for either of these transforms is fixed for multiple measurements.
Without loss of generality equation  31 simplifies to

(32)

where depending on which transforms are known a priori.

  or (33)

(34)

Defining the transform 
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(36)

Representing the estimated transform using a first order approximation

(37)

where  is the skew-symmetry operator,  is the initial rotation estimate,  is

the initial distance estimate,  is the angular correction, and  is the position correction.

(38)

substituting again gives
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(40)

(41)

(42)

Finally, solving for  and substituting

(43)

(44)

(45)

This is of the linear equation form 

A least squares fit is then obtained by taking multiple points and fitting the data.
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In summary, the algorithm is as follows.

First, compute the least squares equation 47 to solve for  where

(48)

Second, compute a new rotation R matrix

(49)

Using the axis angle representation,

 (50)

the new rotation matrix can be written as

(51)
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 Appendix D: XML Format for Zoom Camera Calibration

The XML format defines a series of intrinsic and extrinsic camera settings associated with a zoom
camera. The Zoom camera is assumed to range between a normalized zoom range of 0.0 for full
wide view, and 1.0 for a fully zoomed view. The XML file uses the following keywords: 

SR_cam: Defines the name of the camera object, and encompasses each recorded normalized
zoom setting.

SR_zoom: Contains the normalized zoom setting at which any intrinsic and extrinsic settings
are valid.

SR_cam_int:  Specifies the intrinsic parameters, and should be followed by the seven intrinsic

parameter values:  

SR_cam_ext: Specifies the extrinsic parameters, and should be followed by the six extrinsic

parameter values:  

The XML file for a calibrated SONY zoom camera is shown below:

<?xml version="1.0"?>
<SR_world>
<SR_filename> C:/ieddApps/camera/zoom_cam.xml </SR_filename>
<SR_comment>
Sony Zoom Camera Values  Used for calibration of  Sony FCB camera.
</SR_comment>

<SR_cam> zcam
  <SR_zoom> 0.0 
  <SR_cam_int>{740.09 741.60 -4.58 344.25 212.84 0. 0. 0. 0.} </SR_cam_int>
    <SR_cam_ext> {-0.004 0.041 0.006 0.009 -0.004 0.034   } </SR_cam_ext>
  </SR_zoom>

  <SR_zoom> 0.025 
    <SR_cam_int> {794.40 800.52 -6.28 327.35 251.45 0.0 0. 0. 0.} </SR_cam_int>
    <SR_cam_ext> {-0.004 0.040 0.009 0.056 0.016 0.032   } </SR_cam_ext>
  </SR_zoom>

  <SR_zoom> 0.05
    <SR_cam_int> {844.86 849.04 -7.24 316.87 219.260 0. 0. 0. 0. } </SR_cam_int>
    <SR_cam_ext> {-0.002 0.041 -0.000 0.022 0.022 0.032  } </SR_cam_ext>
 </SR_zoom>

  <SR_zoom> 0.1 
    <SR_cam_int> {1004.12 1005.49 -5.17 329.62 227.659 0. 0. 0. 0.} </SR_cam_int>
    <SR_cam_ext> {-0.002 0.041 0.008 0.034 0.004 0.033    } </SR_cam_ext>
  </SR_zoom>

  <SR_zoom> 0.15
    <SR_cam_int> {1208.51 1207.932 -5.85 358.46 249.57 0. 0. 0. 0.} </SR_cam_int>
   <SR_cam_ext> {-0.002 0.041 0.014 0.052 -0.020 0.033    } </SR_cam_ext>
  </SR_zoom>

  <SR_zoom> 0.3 

fx fy fxy u0 v0 k1 k2 p1 p2⎩ ⎭
⎨ ⎬
⎧ ⎫

dx dy dz θx θy θz⎩ ⎭
⎨ ⎬
⎧ ⎫
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    <SR_cam_int> {2314.0 2319.32 -15.74 321.77 139.95 0. 0. 0. 0.} </SR_cam_int>
   <SR_cam_ext> {-0.002 0.042 0.019 0.001 0.003 0.034  }   </SR_cam_ext>
  </SR_zoom>

  <SR_zoom> 0.4
    <SR_cam_int> {3500.0 3500.0 0.0 320.0 240.0 0.0 0.0 0.0 0.0} </SR_cam_int>
    <SR_cam_ext> {-0.001 0.041 0.021 0.078 0.051 0.032  } </SR_cam_ext>
  </SR_zoom>

  <SR_zoom> 1.0
    <SR_cam_int> {29600.0 29600.0 0.0 320.0 240.0 0.0 0.0 0.0 0.0} </SR_cam_int>
    <SR_cam_ext> {-0.001 0.041 0.021 0.022 0.022 0.032     } </SR_cam_ext>
   </SR_zoom>
</SR_cam>
</SR_world>
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