SAND2004-xxxx SAND2004-6172
Unlimited Release

Printed Sep. 2004

Unified Parallel C and the Computing
Needs of Sandia National
Laboratories

Jonathan Leighton Brown, Zhaofang Wen

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

v vy &

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2004-xxxx
Unlimited Release
Printed Sep. 2004

Unified Parallel C and the Computing Needs
of Sandia National Laboratories

Jonathan Leighton Brown, Zhaofang Wen

Abstract

As Sandia looks toward petaflops computing and other advanced architectures, it is
necessary to provide a programming environment that can exploit this additional com-
puting power while supporting reasonable development time for applications. Thus, we
evaluate the Partitioned Global Address Space (PGAS) programming model as imple-
mented in Unified Paralllel C (UPC) for its applicability. We report on our experiences
in implementing sorting and minimum spanning tree algorithms on a test system, a
Cray T3e, with UPC support. We describe several macros that could serve as language
extensions and several building-block operations that could serve as a foundation for a
PGAS programming library. We analyze the limitations of the UPC implementation
available on the test system, and suggest improvements necessary before UPC can be
used in a production environment.

Contents

1 Introduction e 7
2 Sample Problem: Sorting........ ... i 8
2.1 Algorithms Considered 8
2.2 Testing Protocol e 9
2.3 Results ... 9
2.4 Discussion: Writing The Code i 10
3 Sample Problem: Minimum Spanning Tree 12
3.1 Algorithms Considered 12
3.2 Testing Protocolo 13
3.3 Results ... e 13
4 Common Functions. i e 14
4.1 Bucketing e 14
4.2 Gather Buckets 15
4.3 Thread Prefix 15
4.4 Generalized Thread Prefix 16
4.5 Thread Concatenate e 16
A/ 13 0 16
5.1 Thread View e e 17
5.2 Reverse Thread View i 17
5.3 Block Size Mapping e 18
6 Comparison to MPT 18
6.1 Communication Latency and Cost 19
6.2 Radix SOTt. e 22
6.3 Prim’s Algorithm 23
7 Future Research.o e 23
7.1 Performance Model. 23
7.2 Library Function e 25
7.3 Implementation. e 25
7.4 Petaflop Architecture 27
8 CONCIUSIONS . . . ettt e e 27
9 Acknowledgements 28
Referenceso 29
Appendix
A Comparative Sorting Algorithm Results i, 31
B Summary of Sorting Results By Algorithm oL, 37
C Minimum Spanning Tree Results i 41
D Communication Latency and Cost Measurements....................ccoiieonn... 47
E Code Samples e 53
E.1 Sorting Algorithms 53
E.2 Minimum Spanning Tree Code i 76
E.3 Low Level Code Tests 95

E.4 Common Function Implementations 101

Figures

A.1 Results for Sorting a 128K-Entry List. 31
A.2 Results for Sorting a 512K-Entry List. 32
A.3 Results for Sorting a 2M-Entry List 33
A.4 Results for Sorting a AM-Entry List 34
A.5 Sorting Times in Processor Cycles for 8M-Entry List 35
B.6 Sorting Results for Parallel Bubble Sort 37
B.7 Sorting Results for Bottom-Up Merge Sort 38
B.8 Sorting Results for Radix Sort....... 39
B.9 Sorting Results for Sample Sort 40
C.10 Time in processor cycles for each implementation of Prim’s algorithm - 10,000-

node graph e 41
C.11 Speedup for each implementation of Prim’s algorithm - 10,000-node graph ... 42
C.12 Time in processor cycles for each implementation of Prim’s algorithm - 40,000-

node graph 43
C.13 Speedup for each implementation of Prim’s algorithm - 40,000-node graph ... 44
C.14 Time in processor cycles for each implementation of Prim’s algorithm - 160,000-

node graph 45
C.15 Speedup for each implementation of Prim’s algorithm - 160,000-node graph .. 46
D.16 Average Cost per Element for Writes to a UPC Array 47
D.17 Access Time Per Array Element for Shared Array Reads 48
D.18 Average Cost per Element for Reads from a UPC Array 49
D.19 MPI Communication Cost: Direct Transfer 50
D.20 MPI Communication Cost: Collective Operation........................ 51
D.21 T3E Cache Profile e 51

Tables

1 Run Times for Sequential Radix Sort in Cycles 10
2 Cost per Element for Reads from a UPC Array 20
3 Time for Consecutive Unoptimized Reads from a UPC Shared Array 21
4 Execution Time of MPI Radix Sort in Processor Cycles 22
5 Scaling of MPI Radix Sort 23
6 Run Times for 40,000-Node Graph 23

Unified Parallel C and the
Computing Needs of Sandia
National Laboratories

1 Introduction

Unified Parallel C (UPC) is an extension to standard C to include explicit parallel directives
in the language [3]. UPC programs are designed to be executed concurrently across multiple
processors or processing elements, referred throughout as threads. UPC is an implementation
of the Global Address Space (GAS) model; each thread has a portion of its memory space
that is private to it and a portion that is globally addressable. Each thread can access any
address in globally addressable memory on any other thread. However, the language has an
affinity attribute for this globally-addressable memory so that a particular thread “owns” a
segment of the globally addressable memory [2]. Although UPC provides a distributed shared
memory interface to the programmer, there exist compilers and other tools for converting
UPC code to MPI and other underlying network layers. Currently compilers are available
from Cray, SGI, HP/Compagq, and UC-Berkeley.!

The UPC language extensions are designed to be unobtrusive and intuitive. The shared
keyword is used to declare a globally-addressable variable. As UPC is array-oriented, there is
a parameter to the shared declaration that describes the block size. If an array has block size
b, entries 0...b—1 have affinity to thread 0, entries b, ..., 2b—1 have affinity to thread 1, and
so on, so that the array is striped across globally-addressable memory [3]. This differs from
Co-Array Fortran, where arrays with co-array dimensions are replicated across all threads [7].
Macros described in section 5 can be used to convert the UPC view of an array into that of
Co-Array Fortran. We shall throughout abuse the language and call the globally-addressable
memory declared with the shared keyword “shared”, with the understanding that this is a
logical view as shared, irrespective of the underlying hardware.

Other language extensions include those expected of a parallel language like OpenMP,
with some new ideas. UPC has a upc_forall directive for compiler-parallelized loops, with
an additional argument so that the programmer can suggest which thread should be assigned
which loop iteration based on affinity of a shared variable. In addition to a barrier for syn-
chronization, UPC has a split-phase barrier implemented with notify and wait keywords,
so that work can be done between notifying other threads of reaching the barrier and waiting
for all threads to reach the barrier.

Recent work in UPC standards groups has focused on adding MPI-style collective op-
erations to UPC [9]. These would include gather and scatter operations adapted to the
UPC memory model. Although our research suggests that these could be beneficial from a

'For more details on availability of UPC compilers, or for copies of UPC standards and specifications,
visit the official UPC Consortium website at upc.gwu.edu.

7

performance perspective (see Section 6), they were unavailable on test systems and thus not
evaluated.

What follows is a summary of research done to date on UPC. Sample problems are
used to test language features and evaluate performance of UPC on test systems. Common
functions abstracted from test programs for the sample problems are described. Macros
defined to augment or vary the presentation of UPC are described and defined. We then
make a comparison of UPC to MPI, and conclude with a discussion of current and future
lines of research before providing some concluding remarks. An appendix of code developed
is included at the end of this document.

2 Sample Problem: Sorting

The first sample problem considered was that of sorting a list of numbers. For our purposes,
we restrict ourselves to positive integers generated uniformly at random. We implement a
variety of algorithms in UPC with different communication patterns and develop two good
sorting algorithms for UPC.

2.1 Algorithms Considered

Six sorting algorithms were implemented in UPC, two in each of three broad categories.
QuickSort and a merge sort variant using Batcher’s odd-even operators were implemented
with fine-grained parallelism, using extensive synchronization, collective recursive function
calls, and/or UPC parallel loops. Radix and random sample sorts were implemented using
coarse parallelism similar to message-passing or distributed-memory code. A bottom-up
merge sort and a “parallel bubble sort” were implemented as well, similar to the radix and
sample sorts but not as tuned for performance. We now briefly detail each implementation.
Throughout N denotes the length of the list of numbers to be sorted and P denotes the
number of threads.

e QuickSort: A recursive formulation of QuickSort was used, wherein all threads exe-
cuted recursive calls concurrently. The partitioning of the list of numbers was done
in parallel, with each processor partitioning an equal-sized subset of the list. Barrier
synchronization was used to maintain the collective nature of the function calls.

e Merge Sort with Batcher’s Odd-Even: This was an iterative merge sort, implemented
with UPC upc_forall loops for compiler parallelization. As the straightforward imple-
mentation with Batcher’s odd-even operators had several nested loops, and upc_forall
loops cannot be nested, implementations with the UPC parallelization at each level of
nesting were tried. No appreciable performance benefits were measured when the level
of nesting was varied. Code was adapted from [8].

8

e Bottom-up Merge Sort: Each processor locally sorted an % fraction of the list using
an efficient serial radix sort. These sorted lists were then merged in a tree-like fashion.

e Parallel Bubble Sort: This was like the bottom-up merge sort, except that, instead of
merging the list in a tree-like fashion, each processor merged and split its portion of
the list with its neighbors in P — 1 rounds.

e Radix Sort: This sort has parameters r, the radix, and d, the number of rounds. If M
is the maximal number in the list, then d = [log, M|, so only one need be specified.
The sort proceeds from least to most significant digit, so that on the ** iteration, each
thread chooses a contiguous block of % numbers, sorts these into buckets based on the
i" least-significant digit. The buckets are then collected into a shared array in order —
so that all 0 buckets from threads 0 to P — 1 are concatenated and placed before all 1
buckets from threads 0 to P — 1, and so on. This is repeated for d iterations, at which
time the list is sorted.

e Random Sample Sort: There is an oversampling factor, s, that is used to smooth the
random sample. Each thread chooses a contiguous block of % numbers from the list
and selects s samples from this block. The sP samples are collected, sorted, and, from
these, P — 1 pivots p; < ps < --- < pp_1 are selected. Each thread then buckets
its numbers into each of P buckets, based on which pivots they fall between. These
buckets are then concatenated as with the radix sort. Thread ¢ then takes the numbers
between p; and p;,; and locally sorts these with an efficient serial radix sort. Code was
adapted from [1].

Code for all sorting algorithms is included in Section E.1.

2.2 Testing Protocol

All tests were done on a Cray T3e/750 with 1, 2, 4, 8, 16, or 32 processing elements. The
“random” list was generated in advance with the rand () system call and saved to a file. All
sorting algorithms were implemented as function calls, and times were computed using the
times () system call on thread 0 before and after the call to the sorting function. Times are
reported in absolute clock cycles. Due to restrictions on the size of shared memory segments
of UPC programs on the Cray, only lists of sizes between 128K and 16M numbers were used.

2.3 Results

The sorting algorithms were quickly differentiated by their scaling and execution time (Fig-
ures A.1 - A.5). The fine-grained QuickSort and merge with Batcher’s odd-even operators
were an order of magnitude slower than the other implementations. The QuickSort imple-
mentation in UPC required two processors, so scaling from a UPC uniprocessor time is not

available, but the Odd-Even implementation showed almost no scaling as the number of
processors increased. These two implementation reached the shared memory segment limit
on the test system quickly, and so measurements are only available for lists of up to 512K
entries.

The bottom-up merge and parallel bubble sorts showed anemic scaling. Although they
performed reasonably well for small numbers of processors, their scaling peaked between 4
and 8 processors. This is inherent in the algorithms — both contain a series of exchange steps
that grows with the number of processors, ©(P) for the parallel bubble sort, and so impacts
scaling.

The best execution times were demonstrated by the radix and random sample sorts for
all list lengths. Both showed good scaling with increasing numbers of processors, with the
random sample sort doing somewhat better. When considering scaling problem size, the
radix sort showed the most promise as it showed sub-linear scaling with increasing problem
size for 16 and 32 processors, whereas the other sorts all showed at least a linear increase in
processing time when increasing the list length (Figure B.8).

We also compare our results to a sequential radix sort. Sequential times are provided for
lists of length ranging from 128K to 4M entries in Table 1.

Table 1. Run Times for Sequential Radix Sort in Cycles

List Length | Running Time
128K 3.85E+407
512K 1.54E+08

2M 6.16E4-08
4M 1.25E4-09

At 128K, only 32 processors for radix and random sample sorts were faster than the
sequential implementation. At 512K or 2M, at least 16 processors for radix or 32 for random
sample are needed to be faster than the sequential implementation. For 4M, at least 16
processors are needed for either radix or random sample.

2.4 Discussion: Writing The Code

We examine the radix sort, as it was the most analyzed and had the most aberrant behavior
on initial runs. The code is included in Section E.1.6.

The radix sort was written to use GAS techniques wherever possible. The first idea was
to maintain perfect load balancing for each iteration of the radix loop. Thus, instead of
identifying threads with buckets and sending all the “0” buckets to thread 0, all the “1”
buckets to thread 1, and so on, a large shared array equal in length to the list was employed

10

as a buffer. Threads compute where each of their buckets are to go in the buffer, copy
them to the buffer, then select a new contiguous block from the buffer after synchronization.
Buckets are copied back so that, in the i** round, bucket for digit j on thread ¢ will be copied
back so that buckets appear in sorted order first by digit and then by thread. Threads take
contiguous blocks in order, so that thread 0 takes the first % items, thread 1 takes the second
% items, and so on. This preserves the radix ordering for a least-significant-bit radix sort.
It became clear that the original list was unused except at the start when copied from and
at the end when copied back to, and so the original list was used as the buffer. This helped
with the memory restrictions on the shared segment.

Synchronization was then found to be a bottleneck. The original code had many barri-
ers, used mostly for parallel prefix operations. Although the code still has a single thread
computing the number of iterations (“depth”) of the radix sort before the start of the main
loop, inside the main loop, computation of TargetOffsets is now done independently by
each thread. This allowed for the removal of an additional barrier statement from the main
loop, leading to a measurable performance gain. Changing the depth code did not measur-
ably improve performance. In assembly code, the barrier statement is converted to over fifty
instructions, including multiple calls to external UPC runtime functions. Thus, a style of
coding preferring re-computation to synchronization was favored.

The last significant change to the radix code was the introduction of the QOVERDEC macro.
In our original implementation, the radix was hardwired to P, except if P = 1, in which
case it was set to 2. This meant that the radix for 32 processors was only 32. A serial
radix implementation on the Cray showed empirically that a radix of between 128 and 512
was best for performance. The serial code showed large performance gains on doubling the
radix, up to around 256, at which point it leveled off before falling due to excess overhead.
This in part explains the super-linear speed-up observed in our initial study: doubling the
number of processors also doubled the radix, slashing the number of iterations of the main
loop. Thus, the OVERDEC macro is used to make the radix very large at the outset. Although
it was not explored in detail, the code can also be written so that the number of iterations
of the main loop are parameterized instead of the radix, and thus one could demand two
iterations of the loop with the smallest possible radix. This would be, in essence, a smart
version of the sample sort. This was not pursued.

The major innovation of the UPC implementation is the load balancing. Using the shared
array as a buffer, we achieve perfect load balancing throughout the execution of the program,
in that each thread always holds an % fraction of the list. This final code could be improved
with collective operations, similar to those in MPI, to streamline the copy back in the main
loop.

11

3 Sample Problem: Minimum Spanning Tree

A second sample problem considered was that of finding a minimum spanning tree of an
undirected graph with weighted edges. For the graph representation, we use adjacency lists
with a structure for each entry with the vertex number and edge weight.

3.1 Algorithms Considered

A minimum spanning tree algorithm takes as input a graph G = (V, E), with a weight
function wt for each edge, and outputs a tree 7" and weight w. We take V = {1,2,...,|V|}.
The three most common MST algorithms in the literature are:

e Prim’s [5]:

— Set T'= {0}. Set new = 0. Set w = 0. For each v € V' \ T, set dist(v) = oc.

— Fori=1,...,|V|-1:
* For each vertex v € V\T, if {v, new} € E, set dist(v) = min{dist(v), wt({v, new})}.
x Choose v' € V'\T such that dist(v') = min{dist(v)|v € V\T}. Set new = v'.
*x w = w + dist(new). Add new to T.

e Boruvka’s [4]:

— Make a list L of |V| trees, each initially a single vertex.
— While L contains more than one tree:

x For each tree S in L, select a minimum weight edge e that connects S to
G\S.

* Add each e to our minimum spanning tree, 7', merging trees in L as they
become connected

e Kruskal’s [4]:

— Let T = (V,0). Let € be the set of edges F as a list.
— Sort £ by increasing order of weight.

— For each e € € (in order), if e = {x,y} and z and y are separated in T, add e to
T.

Parallel versions of Prim’s and Boruvka’s algorithms were implemented in UPC. As sug-
gested by [5], we parallelized Prim’s algorithm by dividing the vertices of G among processors
P1,P2,---,pp as Vi, Vo, ..., Vp , computing the minimum-distance v} from each V} in parallel,
and then from these v}, computing a minimum-distance v'. There are four variants of the
UPC implementation:

12

e Prim-UPC-1: A naive implementation of the algorithm where each Vj is chosen to be
of size %, where N = |V| and P is the number of processors.

e Prim-UPC-2: A change to Prim-UPC-1 such that each Vj is chosen to evenly distribute
the edges of G, instead of the vertices, as the main loop of Prim’s algorithm checks the
edges at each unadded vertex.

e Prim-UPC-3: A change to Prim-UPC-2 so that all V; are updated periodically using
a fixed schedule. This load balancing is done irrespective of the actual distribution of
work in the system, and thus will be called “oblivious load balancing”.

e Prim-UPC-4: A change to Prim-UPC-3 so that the V; are updated only when there is
a processor that has exhausted its V; (i.e., all are in T').

In our parallel version of Boruvka’s algorithm, every vertex selects a lightest-weight edge
for contraction. These are selected with a secondary key of vertex number to prevent cy-
cles. The connected components are then identified, and the induced graph resulting from
contracting all components to a single vertex is then solved recursively.

We make the simplification that our implementations only return w, not w and 7. Minor
modifications would make them return 7" as well. We assume all inputs are adjacency lists.

An MPI version of Prim’s algorithm was implemented for comparison. See Section 6.3
for details.

3.2 Testing Protocol

All tests were done on a Cray T3e/750 with 1, 2, 4, 8, or 16 processing elements. Graphs with
10,000, 40,000, and 160,000 nodes were constructed by connecting vertex i to those vertices
7 where 7 is prime and j divides 7. A randomized parameter p was also introduced for some
test graphs so that edges were only added with probability p. For the results presented in
this paper, we take p = 1. Times are reported in absolute clock cycles.

3.3 Results

The oblivious-rebalancing UPC implementation, Prim-UPC-3, showed near-linear speedup,
and except for single-processor tests, had the best time for any of the UPC implementa-
tions. The Prim-UPC-2, with initial load balancing, and Prim-UPC-4, with monitored load
balancing, achieved some speedup, of between 8 and 11 for 16 processors. The naive UPC
implementation showed very poor performance, slowing down for two processors and even-
tually achieving a speedup of roughly 5 for 16 processors. For all implementations and all
number of processors, the ratio of time for the 40,000-node graph to that for the 10,000-node

13

graph, or for the 160,000-node graph to that for the 40,000-node graph was 16 on average,
and varied little.

For the 10,000-node graph, times are presented in Figure C.10 and scaling results are
presented in Figure C.11. For the 40,000-node graph, these are Figures C.12 and C.13. For
the 160,000-node graph, these are Figures C.14 and C.15.

Performance for the UPC implementation of Boruvka’s algorithm was poor. For a 10,000-
node graph, it took 4.48E+411 processor cycles on a single processor, 2.38E+11 for four
processors, and 1.58E+11 for sixteen processors. These are two orders of magnitude greater
than for any UPC implementation of Prim’s algorithm on the same graph for the same
number of processors. Trials on larger graphs did not terminate after five days. The scaling
was very shallow — for this 10,000-node graph, only 2.83 for 16 processors.

4 Common Functions

Several operations were extracted from the sorting algorithm implementations and imple-
mented as common functions. These are the first steps toward a UPC library or programming
idiom.

4.1 Bucketing

Several of the sorting algorithms use an idea similar to bucketing — assigning each element
of an array to one of several logical buckets.

e Declaration:

void Bucketing(int * localSrc, int * localDest, int * localBuckets[], int length, int
* Count, int range, int (*getkey)(int))

e Input:

— localSrc - array of elements to be assigned to buckets
— length - length of localSTc array
— range - maximum value returnable by getkey

— getkey - function that assigns each element of the source array to a bucket

e Output:

14

— local Dest - array of elements assigned to buckets, serialized

— local Buckets - array of pointers into localDest such that local Bucketsli][j] re-
turns the j% item in the i** bucket

— Count - count of items in each bucket

4.2 Gather Buckets

Once items have been placed into local buckets, we would like to gather them to a shared
array so that they can be accessed by all threads. Buckets are arranged in the array first by
bucket number and then by source thread.

e Declaration:

void GatherBuckets(int * localBuckets|[], int length, int * Count, int range, shared
int * list)

e Input:

— local Buckets - array of pointers from Bucketing call
— length - number of items contained in all buckets
— Count - array of bucket lengths as returned by Bucketing

— range - maximal bucket number
e Output:

— list - shared list with items copied from localBuckets on each thread and placed
in order first by bucket number and then by source thread

4.3 Thread Prefix

For our parallel prefix operation, each thread ¢ holds a value S;, and we compute T[t] to be
the sum of Sy to S;. This function is called by all threads, and, as it was implemented, was
a synchronization point.

e Declaration:

shared int * ThreadPrefix(int S) or void ThreadPrefix(shared int * target_indices,
int S)

e Input:
S - value held by the thread

15

e Output:

target_indices or return value - array of values such that the i** value is the sum
of those S values held by threads 0 to 1.

4.4 Generalized Thread Prefix

A generalization of the thread prefix operation was developed that added a function pointer
to the input. This allowed an arbitrary binary function from integers to integers to be used
for the parallel prefix operation, not just addition. This was frequently used with a maximum
or minimum operation.

4.5 Thread Concatenate

This allows us to serialize several private arrays held by different threads into a large, shared
array, thus making all information available to all threads. This is similar to the gather
operation in MPL.

e Declaration:
void ThreadConcatenate(shared int * target, int * Source, int S)
e Input:

Source - a list of values held by the thread
S - the length of Source

e Qutput:

target - shared array into which all private arrays are to be copied

5 Macros

UPC pointers have block, offset, and phase fields that are determined for each memory
location in the array at declaration. As UPC shared arrays are striped across the differ-
ent threads, it is often advantageous to access a UPC shared array as if it had a different
block size. The following macros are used to manipulate UPC shared array indices to pro-
duce a malleable interface to the shared array, presenting different blocking patterns to the
application programmer.

16

5.1 Thread View

This macro produces an index j into an array with block size b given that we have P threads
and we want the 7' item (physically) mapped to thread ¢. This allows UPC to simulate the
Co-Array Fortran view of globally-addressable memory [7].

e Notation:
j = ThreadView(t,i,b, P)
e Input:
t - thread identifier
1 - offset on thread
b - block size of array
P - number of threads
e Output:
j - array index
e Definition:

j=1i+bx*P%xb+1%b+ (i mod b)

5.2 Reverse Thread View

This macro produces a thread number ¢ and offset ¢ given an index j into an array with
block size b and P threads. ¢ and 7 are defined such that, on input of these to the Thread
View macro with the same parameters b and P, the Thread View macro returns j.

e Notation:
(t,i) = ReverseT hreadView(j,b, P)
e Input:

J - array index
b - block size of array

P - number of threads
e Output:

t - thread identifier

17

1 - offset on thread
e Definition:

t=1]j~+b] mod P
i=(jmodb)+ [|j+b] +P|xb

For implementation, it is necessary to create separate “thread” and “offset” macros to
return ¢ and ¢ separately.

5.3 Block Size Mapping

This macro produces an index j into an array with block size given an index 7 into
an array with block size b, given that we have P threads. This is particularly useful for
providing the application programmer with arbitrarily large UPC array blocks, whereas the
implementation of the UPC pointer as a 32- or 64-bit value limits the block size possible at
declaration. For example, on the Cray T3e, 10 bits are reserved for the block size, and so
it is only through a software solution that a sixteen-million-entry array can be divided into
two-million-entry contiguous chunks of the array for each of eight threads.

e Notation:
j = BlockSize Mapping(i, b, 3, P)
e Input:

1 - array index for source block size
b - source block size
B - target block size

P - number of threads
e Output:

J - array index for target block size
e Definition:

j = ThreadView(ReverseT hreadView(i, b, P), 3, P)

6 Comparison to MPI

UPC is a language implementation of the Global Address Space programming model. Thus,
we compare it to the current programming model, message passing, as implemented in MPI.

18

6.1 Communication Latency and Cost

Simple tests were implemented for UPC and MPI to measure simple communication latency
and cost. We first tested the cost to write to a UPC shared element. We measured this by
allocating a large (up to 2?? entries) shared array and measuring the time for thread 0 to
traverse the array, writing a constant to each array location. To simulate network congestion,
we also timed thread 0 when all threads write to the array and then synchronize at a barrier.
The write test was compiled with optimization (-03). The number of threads varied from 1
to 32. Overhead was computed and removed by timing the same code without the write to
shared instruction. Throughout, we used a block size of 1; experiments with different block
sizes showed similar results as all accesses are to individual array entries.

For writing to the shared array, no appreciable difference was observed in these mea-
surements as the number of threads varied between 1 and 32 without network congestion.
The average time in cycles to write to an element of a shared array was between 85 and 90
cycles. With network congestion, there is a slight trend toward a higher cost to write to
shared with more processors, 119.92 cycles per element for a single thread and between 125
and 127 cycles per element for more than one thread, suggesting only a small penalty for a
remote UPC write with network congestion. As the code with all threads writing included a
barrier, the difference in single thread cost per write is most likely due to some barrier cost
included in the timing measurement. These results are summarized in Figure D.16.

A read test was similarly devised. We again traversed a large shared array, reading the
shared array value and writing it to a local variable. The number of threads varied from 1
to 32. The code was similarly optimized (-03), and loop and other overhead was discounted
by timing the same code but writing the index variable value to the local variable instead of
the shared array value.

Locality of access did matter for read accesses to shared variables. For a single UPC
thread, reading from the shared array averaged 197.66 cycles per element. For additional
processors, the average time to access an array element is modeled by

P-1
P

1
Average Cost = ﬁﬁ + ! (1)

where P is the number of threads and we treat S and a as constants representing the
cost to access local or remote shared items, respectively. We take advantage of the fact
that the array is evenly distributed across the threads in this formula. Without congestion,
B = 197.66 cycles per element. « can be approximated as a constant, but grew slightly from
496 cycles per element to 554 as the number of processors increased. The data suggest that
there is a fixed cost for accessing remote shared memory, and a small term that grows as
O(V/P), so that a = o’ + ©(v/P), where o is in fact a constant.

This model works well for describing timing behavior observed with the all-to-all shared
array read used to simulate network congestion. In this case, 8 = 206.69 cycles per element,

19

Table 2. Cost per Element for Reads from a UPC Array

Thread 0 Reads All Threads Read
Array Size | P=1|P=4 |P=16 | P=32 | P=1|P=4|P=16 | P =32
210 = 1024 | 198.72 | 421.41 | 512.50 | 544.48 | 207.71 | 419.75 | 466.06 | 566.83
2048 | 196.32 | 423.93 | 510.49 | 542.75 | 205.90 | 418.16 | 520.70 | 580.35
4096 | 196.30 | 424.45 | 511.51 | 544.71 | 205.47 | 418.69 | 515.24 | 586.90
8192 | 199.13 | 425.77 | 511.07 | 543.32 | 206.12 | 423.94 | 511.88 | 589.73
16384 | 197.83 | 423.42 | 510.50 | 543.45 | 207.81 | 429.03 | 510.57 | 594.63
32768 | 197.24 | 422.91 | 510.68 | 541.89 | 206.90 | 433.55 | 508.96 | 592.87
65536 | 197.72 | 422.92 | 510.31 | 542.58 | 206.56 | 432.12 | 511.53 | 594.10
131072 | 197.69 | 422.86 | 510.23 | 542.43 | 206.70 | 432.26 | 514.77 | 595.69
262144 | 197.75 | 423.17 | 510.28 | 542.54 | 206.73 | 432.34 | 519.96 | 595.81
524288 | 197.74 | 423.05 | 510.21 | 542.48 | 206.70 | 432.46 | 520.62 | 595.99
1048576 | 197.76 | 423.05 | 510.24 | 542.56 | 206.76 | 432.53 | 521.01 | 596.63
2097152 | 197.76 | 423.10 | 510.29 | 542.49 | 206.76 | 432.43 | 520.72 | 597.05
222 = 4194304 | 197.76 | 423.10 | 510.29 | 542.46 | 206.76 | 432.57 | 520.74 | 597.30
Trimmed Mean | 197.66 | 423.27 | 510.54 | 542.87 | 206.69 | 428.92 | 515.97 | 592.70
«a Estimate 498.47 | 531.39 | 554.00 502.99 | 536.59 | 605.16

and « increased from 503 to 605 cycles per element. These results are summarized in
Figure D.18.

An unoptimized version of the read test was conducted on a single thread, so that all
accesses would be to local shared memory. To test caching of UPC shared items, the read
from shared memory was repeated to provide two consecutive reads from the same shared
memory location. When the loop overhead is removed, we find that the cost of two consecu-
tive reads to the same location is almost exactly twice the original time. Results are shown
in Table 3 below. We observe a slight trend toward a cheaper cycles per array element for
the read, but due to limitations on the UPC shared segment size, we could not see whether
the trend continued or stayed near 250 cycles per array element. From this we conclude that
there is no caching of any UPC shared items.

By way of comparison, we implemented a simple MPI latency test. Blocking send and
receive pairs were used to transmit an integer from process 0 to process 1, which replied with
an integer. The time was measured from before process 0 transmitted to after it received
the reply, and thus represents a round-trip time. The code was compiled with optimization
(-O3). The average round-trip time was 4728 processor cycles.

Additional MPT tests were conducted to determine how the ability to move larger chunks
of data per communication in MPI provides a performance advantage. Processor 0 trans-
mitted a large array of integers — up to 223 entries — to each of 31 other processors as a single
message, and each processor responded with an acknowledgement message. The round-trip
time was measured in cycles by processor 0, and these were averaged across the 31 destina-

20

Table 3. Time for Consecutive Unoptimized Reads from a,
UPC Shared Array

List Length | Average Time to Read Array | Average Time for Two Reads | Ratio
210 =1024 2.66E+05 5.19E+405 1.95
4096 1.06E4-06 2.08E4-06 1.95

16384 4.17E+06 8.26E4-06 1.98

65536 1.66E4+07 3.30E+07 1.98

262144 6.53E+07 1.31E+08 2.01
1048576 2.63E+08 5.26E4-08 2.00

222 = 4194304 1.05E+09 2.10E+09 2.00

tions. The data are summarized in Figure D.19. Up to a payload of roughly 2'° integers,
the data closely fit the equation

Round-Trip Cost (Cycles) = 5.08 - Number of Integers Transferred + 3751.2

Thus, the cost per additional item transferred is on the order of 5 cycles once the initial
communication overhead is paid. However, for larger payloads, the data closely fit the
equation

Round-Trip Cost (Cycles) = 1.89 - Number of Integers Transferred + 203711

Thus, we see that this long protocol has a much higher overhead, but yields a cost per
additional item transferred on the order of only 2 cycles.

We also measured the time for the MPI MPI_Allgather collective communication, wherein
portions of a large array are exchanged. Array sizes varied up to 2?2 entries. The data are
summarized in Figure D.20. The cost in processor cycles for the collective operation was
modeled by:

Round-Trip Cost (Cycles) = 8.85- Total Integers Transferred + 189562

Thus, we see a slightly higher cost per additional item transferred — on the order of 9
cycles — but still far less than the cost for transferring an individual item in UPC.

For reference, the average cost per array access when traversing a large array in an
unoptimized sequential C program on the test system was 6.1 cycles — 5.7 for writing a
constant to each entry, 6.5 for reading the array value and assigning it to a temporary
variable after loop and other overhead is discounted. With optimization, this reduces to 2.5
cycles. However, this amortized cost is affected by cache effects. Using the cache profiler

21

from [6], we found the cost of accessing a non-cached block of private memory is 57 cycles.
These results are summarized in Figure D.21.

From this we draw the following conclusions: Respecting locality of reference on the test
system provides a considerable performance boost (a factor of 3), but the UPC overhead
for a local UPC access lags the cost per access for a sequential-C cache miss by almost the
same factor. Although UPC is faster than MPI by an order of magnitude for transferring
an individual item, MPI is able to amortize communication overhead be transferring larger
packets and with communication collectives. Individual memory accesses were required of
UPC programs on the test system, and show an area needing improvement.

Code for all UPC and MPI tests is included in Section E.3.

6.2 Radix Sort

An MPI version of the UPC radix sort was implemented. MPI collective operations are used
for all communication steps. The MPI implementation, included in section E.1.8, is almost
a direct translation of the UPC code. The only difficulty is that the MPI version cannot
use the UPC shared array for automatic load balancing, so considerably more work is done
inside the main loop to achieve load balancing. Run time and scaling numbers are provided
in Tables 4 and 5.

Table 4. Execution Time of MPI Radix Sort in Processor

Cycles
List Length
Processors | 131072 262144 524288 2097152 | 4194304 | 8388608 | 16777216
1 8.14E+07 | 1.63E408 | 3.25E+08 | 6.50E+08 | 1.30E+09
2 4.14E+07 | 8.22E+07 | 1.64E+08 | 3.28E+08 | 6.55E+08 | 1.31E+09
4 2.40E+07 | 4.72E407 | 9.40E+407 | 1.87TE+08 | 3.75E+08 | 7.48E+08
8 1.25E+07 | 2.45E+07 | 4.82E407 | 9.55E407 | 1.91E408 | 3.80E+408 | 7.61E+08
16 6.96E+06 | 1.31E407 | 2.51E407 | 4.16E+07 | 7.61E4+07 | 1.45E+08 | 2.82E+08
32 4.67E+06 | 8.05E+06 | 1.43E+07 | 2.70E+07 | 5.23E+07 | 8.67E+07 | 1.59E+08

A runtime limit on the size of dynamically-allocable arrays was encountered at 8M entries,

and thus measurements are not available for several processor counts on the larger array sizes.

The MPI implementation scales better than any of the UPC implementations. The UPC
implementation of the random sample sort is closest in performance, with a 22.7 speed-up
for 32 processors on a 2M-entry list. The MPI implementation is an order of magnitude
faster than any of the UPC implementations. Only 2 processors are needed for the MPI
implementation to beat the sequential implementation in execution time for the larger (2M-
and 4M-entry) lists.

22

Table 5. Scaling of MPI Radix Sort

List Length
Processors | 131072 | 262144 | 524288 | 2097152 | 4194304
1 1.00 1.00 1.00 1.00 1.00
2 1.97 1.98 1.98 1.98 1.98
4 3.39 3.44 3.46 3.47 3.47
8 6.49 6.63 6.74 6.81 6.82
16 11.71 | 1237 | 12.94 15.61 17.08
32 17.43 | 20.20 | 22.65 24.08 24.83

6.3 Prim’s Algorithm

A version of Prim’s algorithm was also implemented in MPI as a benchmark. The MPI
implementation, Prim-MPI, was based on a direct translation of the algorithm without
tuning. Prim-MPI showed near-linear speedup on the 10,000-, 40,000-, and 160,000-node
random graphs. Its absolute time in processor cycles was consistently one-fourth to one-fifth
that of the best UPC implementation for any size graph or number of processors.

We present in Table 6 the results for the 40,000-node graph in tabular form.

Table 6. Run Times for 40,000-Node Graph

Processors | Prim-UPC-1 | Prim-UPC-2 | Prim-UPC-3 | Prim-UPC-4 | Prim-MPI
1 1.23E+13 2.43E+12 2.35E+12 2.48E+12 4.86E+11
2 N/A 2.03E+12 1.68E+12 2.01E+12 2.48E+11
4 7.5TE+12 1.02E+12 7.01E+11 1.01E+12 1.23E+11
8 4.19E+12 5.14E+11 3.15E+11 3.62E+11 6.18E+10
16 2.48E+12 2.63E+11 1.53E+11 2.62E+11 3.13E+10

7 Future Research

There are several areas of future work in evaluating UPC, and some work would need to
be done on the implementation and runtime support to achieve good performance to make
UPC competitive with MPI.

7.1 Performance Model

Work was done to develop a predictive performance model for UPC as well as describe the
costs of various UPC operations on test systems. The goal of this line of research remains

23

the development of a set of configuration scripts or other executables that can be executed
on a system, measure specific parameters, and then return suggestions to the programmer
for a performance-oriented programming style.

7.1.1 Model: V, T, B

A simple first model with overhead (V'), transmission cost (7') and barrier time (B) param-
eters was devised. We assume that communication cost is considerably more than computa-
tion cost and thus dominates the runtime of the program. The UPC implementations were
then analyzed with these models to develop an equation to describe the behavior of the code.
For example, we have for the random sample sort:

e Copy from List to local: V + (N/P)T

e Copy samples to Samples array: V + ST
e Computation of Pivots: V + SPT

e Copy of bucket lengths: V + PT

e Computation of global offsets: V + P2T
e Copy back of buckets: V + (N/P)T

o Getting new size of chunk: V + PT

e Sorting of bucket: 2(V + L(N/P)T)

3 Barrier synchronization: 3B

which gives a formula of 9V + 3B + (2(1 + L)YN/P + S+ SP + P + P*)T. S is the
oversampling factor and L is the maximal fraction of the array that is allocated to a single
thread by the selection of the pivots. With a large oversampling factor, this should be
reasonably well-balanced. N is the length of the list and P is the number of threads. We
have assumed that when a thread starts a request for a large section of a shared array, it
pays overhead costs only at the start.

Unfortunately, the above formula is not helpful. The constants were approximated to fit
several sections of the code, but these then did not provide a reasonable estimate of the total
run time of the code. Thus, a better model is needed.

24

7.1.2 TUPC Barriers

UPC Barriers are very expensive on the test systems. On the Cray, a strange behavior was
observed that barrier costs spiked at two threads and then declined as the number of threads
increased. This needs further analysis and testing to determine whether this is indeed a real
phenomenon or an artifact of the testing strategy adopted.

7.2 Library Function

Some preliminary work has been done to convert portions of Sandia’s Zoltan library to UPC.
However, there are some impediments to building a UPC library:

e Platform: The test systems used are inappropriate for this development. They are not
operated by Sandia and, as noted in the next subsection, do not provide full support
for UPC in terms of the current language standard and runtime support to fully utilize
hardware resources.

e Functions in UPC: In the Cray implementation, the typing of shared pointers ignores
the block size of the striped array. This leads to difficulties when creating a library
of functions where ordering in an array matters — such as a sorting functions. It is
possible to work around this by passing the block size as an integer parameter to the
function as follows:

void function(shared int * myArray, int blocking) {
shared [blocking] int * newArray;

newArray = myArray;

}

However, the work around is somewhat awkward.

7.3 Implementation

Two test systems were available for this project: a Cray T3e/750 with 48 nodes and an
HP/Compaq cluster with eight nodes, each having four 800-MHz processors. The following
shortcomings in the implementations were encountered:

e Node Limitations: On the HP/Compagq, the UPC runtime was restricted to run within
a single node only. Furthermore, within the four-processor node, no more then two
processors could be used to execute a UPC program. Thus, we could not use the
HP /Compagq cluster for scalability testing.

25

e Memory Limitations: Both the Cray and the HP/Compaq suffered from limits on the
maximum segment size for shared items. On the HP/Compaq, the largest integer
array that could be allocated was 512K entries. On the Cray, this was limited to 16M
entries. In both cases, these could only be allocated if no other UPC shared memory
was allocated. This limited the size of problem that could be tested, and ruled out all
testing on the HP/Compaq.

e Full Standard Support: The compiler on the Cray lacked full support for several lan-
guage features. For example, in allocation of shared items dynamically, the compiler
only supported the upc_all_alloc collective function. Neither the upc_global_alloc,
which allocates shared memory across all threads and is called by a single thread, nor
the upc_local_alloc, which allocates shared memory only on the calling thread, were
supported. The UPC string functions — such as upc_mem_cpy — also were not supported.

e Caching: Tests suggest that no caching was used with UPC shared items on the Cray.
Although the UPC implementation on the Cray uses hardware to handle shared mem-
ory requests, and, as we have seen in Section 6, is thus considerably faster in accessing
a single item from shared memory than an MPI transmission, the locality at the heart
of the UPC specification is somewhat lost without the caching. Although UPC code is
written to take advantage of locality through thread affinity, the lack of caching makes
this a moot point on the Cray. A version of the radix sort that took pains to use much
more locality than that code in the appendix was developed using our macros (Section
5) and this led to a slight slow-down in execution time.

e No Collective Operations: The UPC implementation available on the Cray lacked
collective operations for gather and scatter operations. As we saw in section 6, the
final UPC radix sort implementation could be readily translated to MPI, using only
MPI collective operations. Further, although to access a single integer in MPI using
a send/receive combination takes an order of magnitude more time than to access a
single integer in UPC shared space, the MPI radix sort ran an order of magnitude
faster than the UPC code. This suggests that efficient collective operations in UPC
could dramatically improve the performance of UPC code.

We thus have several clear requirements of a UPC compiler and runtime if UPC is to be
used in a production environment at Sandia:

e We should be able to deploy UPC code to all processing elements in a cluster, not just
nodes on a single shared-memory processor board. If a job uses 500 nodes in MPI, we
should expect to be able to dedicate 500 nodes to a single UPC instance of the same
job.

e The size of the shared memory segment should be substantially larger, so that large
problems can be solved with UPC code. Ideally, the shared memory segment size
should only be limited by the physical memory of the processing elements.

26

e The compiler and runtime should support the current UPC specification as well as
collective operations, and these should be tuned for the hardware. Fast collective
operations can be implemented while still remaining relatively unobtrusive extensions
to C.

e Locality, as presented to the programmer through the UPC extensions, should in fact be
realized in hardware. On the Cray, although the programmer can see locality in arrays
through thread affinity, this is not borne out by the implementation and hardware.
What may be needed is a third memory model, in addition to the strict and relaxed
already used in UPC, that would be programmer-directed. The programmer could, for
performance gains, issue a pragma to the compiler to disable synchronization of specific
shared items until the next synchronization event (barrier or notify/wait). Then, the
compiler would be free to optimize those memory accesses as private memory up to
the synchronization event. This could be realized by copying the shared items to
private memory and only using the private memory addresses within the code up to
the synchronization.

UPC offers the application programmer the option of putting the burden on the compiler
with upc_forall and similar directives, or of tuning the code to exploit locality where
possible. The programmer should be provided software tools that allow this code tuning
to be realized into real performance gains to tackle large problems. For this, an improved
compiler and runtime are needed.

7.4 Petaflop Architecture

One of the initial goals of the UPC project at Sandia was to determine whether the GAS
model in general and UPC in particular would be an appropriate programming environment
for petaflop-scale computing. This continues to be an open topic, especially as new and
different petaflop architecture ideas are considered. Lacking access to petaflop architecture
candidate designs, no work was done on this.

8 Conclusions

UPC and the GAS programming model remain promising new ideas for Sandia’s future
computing needs, but are not yet ready for deployment in an environment where performance
is key. Our sample codes for sorting and minimum spanning tree applications were slower
in overall execution time than MPI counterparts. UPC compilers and runtimes are available
for select systems, and these have varying degree of support for language features. However,
there are several important points that we consider provide hope for future use of UPC or
similar GAS languages:

27

e Immaturity of Implementation: The UPC specification dates from 1999, with the first
fully-featured specification accepted in 2003. The test systems had what could be
termed immature implementations, and many of our complaints stem from problems
with these implementations. Limitations on shared memory segment size, number of
processors that could be utilized, and lack of support for thread affinity and locality at
the core of UPC were all flaws encountered with the implementations available on the
Cray and HP/Compaq. Better runtime and compiler support, as outlined in Section
7.3, are needed to improve the viability of the language and improve performance.

e Scaling: As shown with the random sample sort and the Prim-UPC-3 implementations,
good scaling can be achieved with UPC code. The performance of the Prim-UPC-3
code, and why better load balancing improved its scaling, still needs to be analyzed, as
the MPI code was implemented without load balancing and yet achieved good scaling
on the same test graphs.

e Ease of Programming: As described in Sections 2.4 and 3.1, UPC development has
the advantages of shared memory development. A functional, correct program can be
implemented, and then iterative improvements can be made to achieve performance
goals. The language extensions are simple and unobtrusive extensions to standard C.

e New Language Features: The MPI radix sort scaled well using MPI collective oper-
ations for scatter, gather, and broadcast. Although our measurements show that, on
the Cray test system, UPC shared memory accesses of single items are an order of
magnitude faster than MPI send/receive communications, the UPC code was overall
an order of magnitude slower than the MPI code. This suggests that good, well-tuned
collective operations can greatly improve performance. No bulk transfer operations or
collective operations were available on the test system; their availability may well lead
to better performance.

Work needs to be done on compiler and runtime support for UPC before it can be
deployed in a production environment where performance and scalability is key. However,
new language features and improvements to the UPC programming environment may make
this a viable option in the future.

9 Acknowledgements

We wish to thank Quentin F. Stout of the University of Michigan for his assistance with
this work. We also would like to thank Ronald Brightwell and Sue Goudy for assistance
with this project and an initial poster presentation at SC03. We would like to express our
appreciate many constructive comments from Mahesh Rajan. This work was supported in
part by Sandia Contract 235451, a Sandia National Laboratories summer internship, and a
Department of Homeland Security fellowship.

28

References

1]

Guy E. Blelloch, Charles E. Leiserson, Bruce M. Maggs, C. Gregory Plaxton, Stephen J.
Smith, and Marco Zagha, A comparison of sorting algorithms for the connection machine
cm-2, ACM Symposium on the Theory of Computation, 1991, pp. 3-16.

Sébastien Chauvin, Proshanta Saha, Francois Cantonnet, Smita Annareddy, and Tarek
El-Ghazawi, Upc manual, 2003.

Tarek A. El-Ghazawi, William W. Carlson, and Jesse M. Draper, Upc language specifi-
cation v 1.1.1., 2003.

David Eppstein, Minimum spanning trees, ICS 161 Lecture Notes, David Eppstein, 1996.

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar, Introduction to par-
allel computing, second ed., Addison Wesley, 2003.

John L. Hennessy and David A. Patterson, Computer architecture: A quantitative ap-
proach, third ed., Morgan Kaufman, 2003.

R. Numrich and J. Reid, Co-array fortran for parallel programming, 1998.

Robert Sedgewick, Algorithms in ¢, parts 1-4: Fundamentals, data structures, sorting,
searching, third ed., Addison Wesley Professional, 1998.

UPC Consortium, Upc collective operations specification v1.0, 2003.

29

30

A Comparative Sorting Algorithm Results

Speedup

40

35

30

25

20

T T T T T T 8e+09 T T T
Odd-Even —— ¥ Odd-Even ——
Bubble -« 7e+09 1 | Bubble -
Radix = Radix =

1 6e+09 | |
8 \
MPI Radix -~~~] (_>{ 56409 |- ~_ MPI Radix =
6) ~S~— S
S 4e+09 r
.0 1%
Q
§ 3e+09
o a
2e+09
) 1e+09
gl B
L L L L L L 0 o .o .. g1 ;. 1 L.g L n L
5 10 15 20 25 30 0 5 10 15 20 25 30

Number of Processors

(a) (b)

Figure A.1. (a) Speed-Up for Sorting a 128 K-Entry
List Good speed-up was seen with the random sample sort.
The radix sort showed reasonable speed-up until 32 proces-
sors. The parallel bubble and bottom-up merge sorts showed
anemic scaling, and the merge with Batcher’s odd-even op-
erators showed almost no scaling. No scaling is reported for
QuickSort as the UPC version required two processors. The
best UPC scaling was seen with the UPC implementation
of sample sort, which is competitive with that of the MPI
radix sort. (b) Sorting Time in Processor Cycles for
128K-Entry List The fine-grained sorts, QuickSort
and Merge with Batcher’s Odd-Even operators, per-
formed poorly, almost an order of magnitude slower
than the other four sorts.

31

Number of Processors

4e+10

Odd-Even —— | "Odd-Even —+—
Bubble 35e+10 - | Bubble]
Radix = Radix =
3e+10 | |
3
MPI Radix -~~~ S 25e+10 | MPI Radix -~
o o ~—
S 2e+10 | S
0
Q
g 15e+10 |
o
= 1e+10
o - 5e+09 -
?.,571’7,47*‘ B E e
L L 0 o g ot - L L L SR I
5 10 15 20 25 30 0 5 10 15 20 25 30

Number of Processors

Figure A.2.

()

Number of Processors

(b)

(a) Speed-Up for Sorting a 512K-Entry

List Good speed-up was seen with the random sample sort.
The radix sort showed reasonable speed-up until 32 proces-
sors. The parallel bubble and bottom-up merge sorts showed
anemic scaling, and the merge with Batcher’s odd-even op-
erators showed almost no scaling. No scaling is reported for
QuickSort as the UPC version required two processors. The
best UPC scaling was seen with the UPC implementation of
sample sort, which is competitive with that of the MPI radix
sort. (b) Sorting Time in Processor Cycles for 512K-
Entry List The fine-grained sorts, QuickSort and Merge
with Batcher’s Odd-Even operators, performed poorly, al-
most an order of magnitude slower than the other four sorts.
No further numbers will be reported for these as they either
ran out of shared memory or did not complete after several
weeks on larger problem sizes.

32

25

20

Number of Processors

(a)

1.6e+10

=

—

Number of Processors

(b)

Figure A.3. (a) Speed-Up for Sorting 2M-Entry
List We see anemic scaling for the parallel bubble and
bottom-up merge sorts, reasonably good scaling from the
radix sort, and good scaling from the random sample sort.
The best UPC scaling was seen with the UPC implementa-
tion of sample sort, which is competitive with that of the MPI
radix sort. (b) Sorting Time in Processor Cycles for
2M-Entry List The radix and random sample sorts
are considerably faster than the bottom-up merge or
the parallel bubble sorts. The radix sort is the fastest
sort, but the superior scaling of the random sample
sort leads to almost the same time for 32 processors.
The MPI radix sort is consistently an order of mag-
nitude faster than any of the UPC implementations.

33

Mérge — Me‘rge
Radix = 1.4e+10 | Radix
Sample e Sample
1.2e+10 r,
1] \
k] \
; 23 1e+10 \
. 3 \
S 8e+09 [|
=) @» ER
i3 \
« S 6e+09 \
a x
B 4e+097§> .
D 2e+09
[— v ———
. 0 . , ! ;
5 10 15 20 25 30 10 15 20 25

2e+10

Radix ——

Linear -~

T 46+09 | \

1.8e+10 =©
1.6e+10 |
1.4e+10 *
1.2e+10 |
fe+10 ¢ % °
8e+09 | \
6e+09 \

Processor Cycles

2e+09

Radix ——

Merge s
Bubble e

0

10 15 20 25 30 0 5 10 15
Number of Processors

(a) (b)

Figure A.4. (a) Speed-Up for Sorting 4AM-Entry List
Scaling is only shown for the radix sort, as it is the only sort
that completed for the UPC uniprocessor case. Radix ex-
hibits good scaling up to 16 processors, but appears to level
off quickly at 32. The UPC radix implementation, however,
lags the MPI implementation. (b) Sorting Times in Pro-
cessor Cycles for 4AM-Entry List The radix and ran-
dom sample sorts are considerably faster than the
bottom-up merge or the parallel bubble sorts. The
radix sort is the fastest sort, but the superior scaling
of the random sample sort leads to almost the same
time for 32 processors. The MPI radix sort is consis-
tently an order of magnitude faster than any of the
UPC implementations.

34

20

25 30

Number of Processors

3e+10

Radix ——
250410 | Bubble - |
8 2e+10 |
[]
) R
o *
5 15e+10 [
3 \
o \
3
£ tertof
5e+09 \
0 . .) ———
0 5 10 15 20 25 30

Number of Processors

Figure A.5. Sorting Times in Processor Cycles for
8M-Entry List Only the parallel bubble, radix, and random
samples sorts were sufficiently efficient with shared memory
resources to complete sorting the 8M-entry list. The radix
sort is still the fastest sort, but the superior scaling of the
random sample sort leads to almost the same time for 32
processors. The bubble sort is significantly slower than the
other two.

35

36

B Summary of Sorting Results By Algorithm

The following is a breakdown of results per algorithm for each of the UPC sorting algorithm
implementations.

4.5e+10 T T T T 140 T T T T
1 Processor —+— - 1 Processor —+—
4e+10 g [0} o
e+10 4 Processor - £ 120 | 4 Processor -
3.5e+10 | 8 Processor a i 8 Processor a
x
100
8 3e+10 | &
£ T
O 25e+10 £ 80
2
§ 2e+10 8 E 60 ’,.w
o ®
~ 1.5e+10
< o E af V
1e+10 / g > ¥
/ é € 20 "
5e+09 ’// b 8 '///*
0 E” L L L L L L L L 0 b L L L L L L L L
0 2000 4000 6000 8000 1000012000140001600018000 0 2000 4000 6000 8000 1000012000 14000 16000 18000
Number of List Entries (Thousands) Number of List Entries (Thousands)

(a) (b)

Figure B.6. (a) Sorting Time for Parallel Bubble
Sort The parallel bubble sort did not scale well beyond a few
processors, as can be seen by the relative similarity of slope
of the 8, 16, and 32 processor lines. (b) Bubble Sort List
Length Scaling from 128K-Entry The processing time for
the parallel bubble sort scaled linearly with the increasing list
length, irrespective of the number of processors. Scaling is
measured with respect to a 128K-entry list.

37

Processor Cycles

1.6e+10

1.4e+10

1.2e+10

1e+10

8e+09

6e+09

4e+09

2e+09

0

: . . . 35 : T .
1 Processor —+— - 1 Processor ——
F 1 [A
4 Processor - £ 30 4Processor ¥ 1
8 Processor & i 8 Processor @
Vs & 25 1
3V}
S 20]
L B ()
° £
= 15 ¢ - 1
| | g
L | = 10 r) J
o d
£
L | 5 5¢ 1
%] P
L L L L L L L L 0 . L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of List Entries (Thousands) Number of List Entries (Thousands)

(a) (b)

Figure B.7. (a) Sorting Time for Bottom-Up Merge
Sort The bottom-up merge sort did not scale well beyond a
few processors, as can be seen by the relative similarity of
slope of the 8, 16, and 32 processor lines. (b) Merge Sort
List Length Scaling from 128K-Entry The processing
time for the bottom-up merge sort scaled linearly with the
increasing list length, irrespective of the number of proces-
sors. Scaling is measured with respect to a 128K-entry list.

38

Processor Cycles

1.6e+10

1.4e+10

1.2e+10

1e+10

8e+09

6e+09

4e+09

2e+09

0 : . .
0 2000 4000 6000 8000 1000012000140001600018000

; . .
1 Processor

4 Processor -~
8 Processor -2

W&

Number of List Entries (Thousands)

()

Sorting Time / Time for 128K Entries

120

100

80 r

60

40

20

0
0

/

. .
1 Processor —+—

%0

4 Processor --x--- |
8 Processor @

*o

2000 4000 6000 8000 10000 12000 14000 16000 18000
Number of List Entries (Thousands)

(b)

Figure B.8. (a) Sorting Time for Radix Sort The
radix sort did not exhibit the same scaling as the random
sample sort for increasing the number of processors, but still
exhibited reasonably good scaling. The execution times de-
crease as the number of processors increases. Observe that
the graph for 32 processors is sublinear in form. (b) Radix
Sort List Length Scaling from 128K-Entry The process-
ing time for the Radix sort algorithm scaled linearly with the
size of the list to be sorted for up to 8 processors. However,
we observe that for 16 and 32 processors, we have sublinear
growth. This leads us to conclude that this is a good can-
didate for a general purpose UPC sort algorithm. Scaling is
measured with respect to a 128K-entry list.

39

Processor Cycles

1.2e+10 ; ; ; ; 120 : T T T
1 Processor - - 1 Processor —+—
2 [0}
| 4 Processor -] = | 4 Processor - CE
1e+10 8 Processor -~] 100 8 Processor =
: %
8e+09 1 N80 | . 1
5 5
6e+09 |/ 1 2 60t . 1
o =
ses09 | | 1 2 40t o]
/ * g’ |
2e+09 [/ . 1 £ 20 L 1
/ o (i
[l .8 [72]
0 £f5 0 _;:/
0 2000 4000 6000 8000 1000012000140001600018000 0 2000 4000 6000 8000 10000 1200014000 16000 18000
Number of List Entries (Thousands) Number of List Entries (Thousands)

(a) (b)

Figure B.9. (a) Sorting Time for Sample Sort The
random sample sort exhibited good scaling as the number of
processors increased, as shown with the increasingly shallow
execution time lines. (b) Sample Sort List Length Scal-
ing from 128K-Entry The processing time for the random
sample sort algorithm scaled linearly with the size of the list
to be sorted irrespective of number of processors, ecept for a
slight jump for four processors and a 8M-entry list. Scaling
is measured with respect to a 128K-entry list.

40

C Minimum Spanning Tree Results

5e+10 . .

Prim-UPC-1 ——
45e+10 \
\ Prim-UPC-3 - Koo
4e+10 | \ Prim-UPC-4 &
w 3.5e+10 | \
[6)) \
S 3e+10 | \
(@)
g 2.5e+10 |
3 2e+10
<]
O {5e+10 | —
1e+10 | T
5e+09 | N
0 g
0 5 10 15

Number of Processors

Figure C.10. Time in processor cycles for each
implementation of Prim’s algorithm — Prim-UPC-1,
Prim-UPC-2, Prim-UPC-3, Prim-UPC-4, and Prim-
MPI - for varying numbers of processors and a
10,000-node graph. The graph was constructed using the
sieve algorithm and p = 1. The Prim-MPI implementation
was consistently faster than any of the UPC implementations,
by a factor of at least 4. Prim-UPC-3, with oblivious load
balancing, was the fastest UPC implementation.

41

Speedup

20

20

Prim-UPC-1 —+—
Prim-UPC-3
Prim-UPC-4 =
15 | -
10 + . -
5t . X .
0 1 1 1
0 5 10 15

Number of Processors

Figure C.11. Speedup for each implementation of
Prim’s algorithm for a 10,000-node graph. A linear
speedup line is provided for reference. Near-linear speedup
was achieved by Prim-UPC-3 and Prim-MPI. Good speedup
was achieved by Prim-UPC-2 and Prim-UPC-4. The naive
UPC implementation, Prim-UPC-1, did not exhibit good

scaling.

42

Processor Cycles

1e+12 . : : —
Prim-UPC-1 ——
9e+11 /| .
J Prim-UPC-3
ge+11 | | | Prim-UPC-4 5 1
7e+11 |]
Be+11 |]
S5e+11 _
4e+11 -
3e+11 -
2e+11 |] -
e =
fe+l | % T
0 *l """""" R | Rt g A
0 5 10 15

Number of Processors

Figure C.12. Time in processor cycles for each
implementation of Prim’s algorithm — Prim-UPC-1,
Prim-UPC-2, Prim-UPC-3, Prim-UPC-4, and Prim-
MPI - for varying numbers of processors and a
40,000-node graph. The graph was constructed using the
sieve algorithm and p = 1. The Prim-MPI implementation
was consistently faster than any of the UPC implementations,
by a factor of at least 4. Prim-UPC-3, with oblivious load
balancing, was the fastest UPC implementation for any more
than a single processor.

43

20

Speedup

20

Prim_UPC_1 T —
PrmM-UPC-3
Prim-UPC-4 :
15 } |
10 _ D |
5+ D | |
0 | | I
0 : -)

Number of Processors

Figure C.13. Speedup for each implementation of
Prim’s algorithm for a 40,000-node graph. A linear
speedup line is provided for reference. Near-linear speedup
was achieved by Prim-UPC-3 and Prim-MPI. Good speedup
was achieved by Prim-UPC-2 and Prim-UPC-4, with an
bump in speedup for eight processors with Prim-UPC-4 most
likely be due to underlying graph properties (i.e., the division
for 8 processors stayed balanced). The naive UPC implemen-
tation, Prim-UPC-1, did not exhibit good scaling.

44

20

Processor Cycles

1.4e+13 T

Prim-UPC-1 ——
1.2e+13 | \ Prim-UPC-3 = 1
\ Prim-UPC-4 o
1e+13 \ -
\
ge+12 | \]
6e+12 r i
4e+12 i
2e+12 r %\i.) i
O Q 1 B - Sy (bl e
0 5 10 15

Number of Processors

Figure C.14. Time in processor cycles for each
implementation of Prim’s algorithm — Prim-UPC-1,
Prim-UPC-2, Prim-UPC-3, Prim-UPC-4, and Prim-
MPI - for varying numbers of processors and a
160,000-node graph. The graph was constructed using the
sieve algorithm and p = 1. The Prim-MPI implementation
was consistently faster than any of the UPC implementations,
by a factor of at least 4. Prim-UPC-3, with oblivious load
balancing, was the fastest UPC implementation.

45

20

Speedup

20

20

Prim-UPC-1' ——
PrmM-UPC-3
Pr|m-Upc_4)
15 + |
10 } | |
5t | |
g g
0 | | I
0 : - .

Number of Processors

Figure C.15. Speedup for each implementation of
Prim’s algorithm for a 160,000-node graph. A linear
speedup line is provided for reference. Near-linear speedup
was achieved by Prim-UPC-3 and Prim-MPI. Good speedup
was achieved by Prim-UPC-2 and Prim-UPC-4. The naive
UPC implementation, Prim-UPC-1, did not exhibit good

scaling.

46

D Communication Latency and Cost Measurements

180 : : ;
Thread 0 —+—

‘qc: 160 + 1
IS

[0

W 140 |
>

o

< 120t 1
o

a

% 100 | E
@)

O A E—— S

g 801 1
o

()

Z 60°Ff .

40 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Number of Processors

Figure D.16. Average Cost per Element for Writes to a
UPC Array. Average per processor are 20% trimmed means
of average cost per element for accessing arrays of sizes rang-
ing from 1024 (2'%) to 4194304 (2?2) elements. Little varia-
tion was observed as the array size varied. The “Thread 0”
line is for the test in which only thread 0 writes to the array;
the “All Threads” line is for the test in which all threads
write to the array simultaneously. The cost per array entry
varies little for write operations as the number of processors
increases.

47

600 — ‘
Experimental —+—

> Fit Curve . ,:;;7L;;;7;;,;;-,:;,—:4:;:—'74»’
500 r

450 r

400/]
350 |/]

300 f |]

Average Cost Per Array Element

250 | | 1

200 L : :
0 5 10 15 20 25 30

Number of Processors

Figure D.17. Access time per array element for reads from
a large shared array. Average costs from Table 2 are graphed
for between 1 and 32 processors (Experimental line). Equa-
tion 1 is graphed with constants 8 = 197.66, the experimental
cost per access for a single UPC thread, and o = 518.9, the
average of the values computed from the experimental data
(Constants line). Using a fixed constant for « does not fit the
experimental data well when P increases. A third line (Fit
Curve line) is graphed using equation 1 but so that « satis-
fies P = 0.0053a2 — 5.0685a + 1211.6, an equation that fits
the experimental data with high correlation (R? = 0.9979).
This suggests that a(P) = o/ +©(,/p), where o is a constant
and ©,/p term is small. This agrees with the topology of the
test system — as it is a three-dimensional taurus, allocation
of the processing elements to minimize the maximal distance
between processing elements would lead to a packing with
edges of size proportional to VP or VP.

48

'IJhread 0 ‘4.7

— 600 | |
c
(]
£ —
@ s
w 500 - - |
£ o=
o
< /
CTJ 400 t y |
- /
2 /
o 300 |
g {
o
2 /
< /
< 200 |1 7

0 5 10 15 20 25 20 .

Number of Processors

Figure D.18. Average Cost per Element for Reads from a
UPC Array. Average per processor are 20% trimmed means
of average cost per element for accessing arrays of sizes rang-
ing from 1024 (2!°) to 4194304 (22?) elements. We observe
that access to shared memory with local affinity is very ex-
pensive (on the order of 200 cycles per array element) and,
depending on the number of processors and activity on the
system, can cost upwards of 600 cycles per element for remote
shared accesses. The curves follow the model from Equa-
tion 1. The “Thread 0” line is for the test in which only
thread 0 reads from the array; the “All Threads” line is for
the test in which all threads read from the array simultane-
ously.

49

1.8e+07

‘Avera‘ge Cost for Direct Transfer ———

1.6e+07 | Equation B "
1.4e+07
1.2e+07

1e+07

8e+06

Processor Cycles

6e+06

4e+06 | / >
2606 |/ 1

L

0 1e+062e+063e+064e+065e+066e+067e+068e+069e+06
Message Payload Size (Number of Integers)

Figure D.19. Average round-trip time for transfer of a
large integer array using MPI with acknowledgement. A large
packet was transferred from processor 0 to each of the other
processors, and each processor returned a small acknowledge-
ment packet. Average time over the other 31 processors is
shown. There was very small variance (often with a standard
deviation considerably less than 10% of the average time),
with no discernable trend from architectural features as was
observed with the UPC test. Equation A is an approximation
with C' = 5.08- N +3751.2, where C is the average cost and NV
is the number of integers in the payload. This corresponds to
the “short” protocol. Equation B is an approximation with
C =1.89- N + 203711, which corresponds to the “long” pro-
tocol. A is a good fit for payloads of up to one million entries
(229), whereas B is a good fit for larger payloads.

20

4e+07

‘ Avefage Cost for Collective Operafion -
3.5e+07 | Equapen 4
3e+07 | 1
%]
o
O 25e+07 | :
o
S 2e+07 t 1
(%]
[0]
§ 1.5e+07 | 1
o
1e+07 b
5e+06 | 1
0 1 1 1 1 1 1 1 1
0 500000 e+06.5e+08e+08.5e+08e+08.5e+08e+08.5e+06
Total Data Moved (Number of Integers)
Figure D.20. Average cost for executing an

MPI_Allgather collective operation. Using 32 processors,
up to four million integers (22?) items were exchanged. For
larger quantities exchanged, cost fits the equation C' =
8.85 - N + 189562, where C' is the average cost and N is
the total number of integers moved.

60 M T ' *.
kﬁ>§—*,—,f\

- AM e Al
S sof 2M o o |
S ™ o / L
g /
O i a et \
5 07 128K e \ |
2 . : I E
5 30T 16K | i
o 14 o : |
E 20 A]
= 4 1‘ b
@ ' : |
@ | 5 \
g 10 1
= g:)—.—¢—¢—.—¢ZX—!/23 ‘e o '

0 ‘ ‘ ‘ ‘

Stride Size (Log Bytes)

Figure D.21. Access time per array element for varying
array strides on T3E. We observe that an access to memory
outside the cache on the test system consumes roughly 57
cycles. This compares to the write to shared on UPC with
optimization taking between 85 — 90 cycles.

ol

52

E Code Samples

E.1 Sorting Algorithms
E.1.1 Testing Harness

This testing harness was used for all UPC sorting algorithm tests. The function call varied
— that for the random sample sort is shown.

#include <stdio.h>
#include <stdlib.h>
#include <upc_relaxed.h>
#include <sys/types.h>
#include <time.h>
#include <sys/times.h>
#include <limits.h>

shared int List[N];
#include '"sample2.h"
int main() {

FILE * number_file;

int i, j;

char 1line[100];

struct tms timerStructure;
clock_t start, end;

if (MYTHREAD == 0) {
// £ill the list from the random number file
number_file = fopen("Random.txt", "r");

if (number_file == NULL) {
fprintf(stderr, "Could not read random number file.\n");
exit (0);

}

for (i = 0; i < N; i++) {
fgets(line, sizeof(line), number_file);
sscanf (line, "%d", &j);
List[i] = j;

93

fclose(number_file);

if (MYTHREAD == 0) {
start = times(&timerStructure);

upc_barrier;

// sort the list
SampleSort();

upc_barrier;

if (MYTHREAD == 0) {
end = times(&timerStructure);
printf("%d\n", end - start);

E.1.2 QuickSort

The following is a recursive QuickSort with very fine-grained parallelism. Thread groups —
subsets of threads that could be independently synchronized — might make such a recursive
formulation, where threads advance down a recursion tree, splitting off on different branches
into subsets, feasible. At present, this performs poorly.

#include <upc_relaxed.h>
#include "local_quicksort.h"
#include "prefix.h"

#include "thread_concat_target.h"

int ComputePivot(int * A, int length) {
int i, j, k;
int localPivot[3 * THREADS];
shared int * PivotArray;
shared int * result;

PivotArray = (shared int *) upc_all_alloc(sizeof(shared int), 3 * THREADS);
result = (shared int *) upc_all_alloc(sizeof (shared int), 1);

o4

PivotArray[3 * MYTHREAD] = A[0];
PivotArray[3 * MYTHREAD + 1] = A[length/2];
PivotArray[3 * MYTHREAD + 2] = A[length - 1];

upc_barrier;

if (MYTHREAD == 0) {
for (i =0; i <3
localPivot[i]

*

THREADS; i++) {
PivotArrayl[il;

QSort(localPivot, 0, 3 * THREADS);

(xresult) = localPivot[3 * THREADS / 2];

upc_barrier;

return (*result);

void QuickSort(int left, int right) {
int temp[THREADS], A[(right - left)/THREADS + 1],
B[(right - left)/THREADS + 1], lowTail, highHead;
int i, j, k, pivot;
shared int * prefixes;
int length = (right - left) / THREADS;

if (MYTHREAD < (right - left - length * THREADS)) length++;

if (right - left <= THREADS) {
if (MYTHREAD == 0) {
for (i = 0; i < right - left; i++) {
temp[i] = List[left + il;

QSort(&temp[0], 0, right - left);

for (i = 0; i < right - left; i++) {
List[left + i] = templ[i];
}
}

upc_barrier;

95

return;

if (left >= right - 1) return;

for (j = 0; j < length; j++) {
A[j] = List[MYTHREAD + j * THREADS + left];
}

pivot = ComputePivot(A, length);

for (i = 0, lowTail = O,
if (A[i] < pivot) {
B[lowTaill = A[i];
lowTail++;
} else {
B[highHead] = A[i];
highHead--;

highHead = length - 1; i < length; i++) {

prefixes = ThreadPrefix(lowTail);

upc_barrier;

ThreadConcatenate(List + left, B, lowTail);

ThreadConcatenate(List + left + prefixes[THREADS - 1],
B + lowTail, length - lowTail);

upc_barrier;

QuickSort(left, left + prefixes[THREADS - 1]);
QuickSort(left + prefixes[THREADS - 1], right);

E.1.3 0Odd-Even

This is a fine-grained merge sort that uses the UPC parallel loop directive, upc_forall, and
Batcher’s Odd-Even operators . The nesting of the UPC loop directive was varied to little
effect on performance.

o6

#include <upc_relaxed.h>

#ifndef ODDEVEN
##define ODDEVEN

void OddEvenMerge(shared int * a, int 1, int m, int r) {
int i, j, k, temp;
int span = r - 1 + 1;

for (k = span / 2; k> 0; k /=2) {
for (j =k % (span / 2); j + k < span; j += k + k) {
upc_forall (i = 0; i < k; i++; &al[l + j + i) {
if (a[l+j+i] > al[l+j+i+k]) {
temp = al[l+j+il;
all+j+i] = a[l+j+i+k];
al[l+j+i+k] = temp;

}
}
upc_barrier;
}
}
}
void 0ddEven(shared int * a, int 1, int r) {
int m, i;
int temp;

for m=1; m<=r -1; m=m+m) {
for (i =1; i<=r-m; 1i+=m+ m) {
temp = (i +m+m-1<r) ?i+m+m-1: r;
OddEvenMerge(a, i, i + m - 1, temp);

#endif

E.1.4 Bottom-up Merge

This references a local radix sort, which is also referenced by the parallel bubble sort and
the random sample sort.

57

#include <upc_relaxed.h>
#include "local_radix.h"

#ifndef PARALLELMERGE
#define PARALLELMERGE

void Merge(int * T, int * A, int * B, int la, int 1lb) {
int tempTarg[la + 1b];
int temp = 0, ptra = 0, ptrb = O;

while (ptra < la && ptrb < 1b) {

if (A[ptral < B[ptrbl) {
tempTarg[temp] = Alptral;
ptrat+;

} else {
tempTarg[temp] = B[ptrb];
ptrb++;

}

temp++;

while (ptra < la) {
tempTarg[temp] = Alptral;
temp++;
ptrat+;

while (ptrb < 1b) {
tempTarg[temp] = Blptrb];

temp++;
ptrb++;

}

for (temp = 0; temp < ptra + ptrb; temp++) {
T[temp] = tempTarg[temp];

}

void MergeSort() {
int i, list_length, start_index, ordering;

int local_array[N], temp_list[N];
int j, k, m, n, p, q, T;

o8

// copy the list
for (i = 0; i < N / THREADS; i++) {

temp_list[i] = List[MYTHREAD * N / THREADS + i];
}

// sort your piece of the array
RSort (temp_list, N / THREADS, 16);

// copy your list back!
for (i = 0; i < N / THREADS; i++) {
List [MYTHREAD * N / THREADS + i] = temp_list[i];

upc_barrier;

// now we need to merge these things together
for (i = 2; i <= 2%THREADS-1; i <<= 1) {
if (MYTHREAD % i == 0) {
if ((MYTHREAD+i/2) * N / THREADS >= N)
else {
if ((MYTHREAD + i) * N / THREADS >= N)
k = N - (i/2 + MYTHREAD) * N / THREADS;
else
k = i/2 * N / THREADS;

// copy the new half
for (j = 0; j < k; j++) {
temp_list[i/2 * N / THREADS + j] =
List [(MYTHREAD + i/2) * N / THREADS + jI;
}

// merge them

Merge (&temp_list [0],
&temp_list[0],
&temp_list[i/2 * N / THREADS],
i/2 * N / THREADS,
k);

// move them back
k += i/2 * N / THREADS;

99

for (j = 0; j < k; j++) {
List[MYTHREAD * N / THREADS + j] = temp_list[j];
}

// we unfortunately have to synchronize again
upc_barrier;

#tendif

E.1.5 DParallel Bubble

This references a local radix sort, which is also referenced by the bottom-up merge sort and
the random sample sort.

#include <upc_relaxed.h>
#include "local_radix.h"

/* Function: MergeLowerHalf
* Purpose: Given two lists of integers, merge them halfway and put
* the sorted list of the lesser half into the target array
*/
void MergeLowerHalf(int * T, int * A, int * B, int length) {
int TempTargl[length];
int tempPtr = 0, aPtr = 0, bPtr = 0;

/* proceed through the length of A and B, which */
/* is 1/2 the total length */
for (tempPtr = 0; tempPtr < length; tempPtr++) {
if (A[aPtr] < B[bPtr]) {
TempTarg[tempPtr] = A[aPtr];
aPtr++;
} else {
TempTarg[tempPtr] = B[bPtr];
bPtr++;

/* Copy from a temporary array to the target in case T = A or B */

60

for (tempPtr = 0; tempPtr < length; tempPtr++) {
T[tempPtr] = TempTargl[tempPtr];
}
}

/* Function: MergeUpperHalf
* Purpose: Given two lists of integers, merge them halfway and put
* the sorted list of the upper half into the target array
*/
void MergeUpperHalf(int * T, int * A, int * B, int length) {
int TempTarg[length];
int tempPtr = length - 1, aPtr = length - 1, bPtr = length - 1;

/* do the merge backwards to get the upper half */
for (tempPtr = length - 1; tempPtr >= 0; tempPtr—-) {
if (A[aPtr] > B[bPtr]) {
TempTarg[tempPtr] = A[aPtr];
aPtr--;
} else {
TempTarg[tempPtr] = B[bPtr];
bPtr--;

/* copy from temp in case T = A or B */

for (tempPtr = 0; tempPtr < length; tempPtr++) {
T[tempPtr] = TempTargl[tempPtr];

}

/* we use these instead of List for faster access */
shared int Arrays[THREADS] [N / THREADS];

/* Function: Bubble()
* Purpose: Parallel version of bubble sort
*

* Note that this expects the numbers to start in List with length N
*/
void Bubble() {
int length = N;
int i, j, k, temp[length/THREADS], temp2[length/THREADS];

/* move from list to Bubble’s arrays */
for (i = 0; i < length / THREADS; i++) {

61

Arrays[MYTHREAD] [i] = List[MYTHREAD + i * THREADS];

/* copy out of the arrays into a local variable */
/* in retrospect, this and the above could be merged */
for (i = 0; i < length / THREADS; i++) {

temp[i] = Arrays[MYTHREAD] [i];

/* do a local radix sort */
RSort (&temp[0], length/THREADS, 16);

/* move from the local array back to our shared arrays */
for (i = 0; i < length / THREADS; i++) {
Arrays[MYTHREAD] [i] = templ[il;

upc_barrier;

/* now, we have to bubble our lists */
for (i = 0; i < THREADS; i++) {

/* copy from the shared memory to a local temporary variable */
for (j = 0; j < length / THREADS; j++) {

temp[j] = Arrays[MYTHREAD] [j];
}

/* if parity of thread matches parity of loop iteration, */
/* then that thread does a lower half merge */
if ((MYTHREAD - i) %2 == 0) {
if (MYTHREAD != THREADS - 1) {
/* copy the shared arrays */
for (j = 0; j < length / THREADS; j++) {
temp2[j] = Arrays[MYTHREAD + 1]1[j1;
}

/* do the merge */
MergeLowerHalf (&temp[0], &temp[O0], &temp2[0], length/THREADS) ;
}
} else {
/* when parity mismatches, do an upper half merge */
if (MYTHREAD != 0) {
/* copy the shared arrays */
for (j = 0; j < length / THREADS; j++) {

62

temp2[j] = Arrays[MYTHREAD - 11[j1;

/* do the merge */
MergeUpperHalf (&temp[0], &temp[0], &temp2[0], length/THREADS) ;

upc_barrier;

for (j = 0; j < length / THREADS; j++) {
Arrays [MYTHREAD] [j] = temp[jl;

}

upc_barrier;

/* copy out of our arrays back to list */

k = MYTHREAD * length / THREADS;

for (i = 0; i < length / THREADS; i++) {
List[i + k] = Arrays[MYTHREAD] [i];

}
upc_barrier;
}
E.1.6 Radix

The following version of the radix sort code for UPC shows several of the final design ideas.
The OVERDEC macro was used to vary how much over-decomposition of the data was used to
smooth wide-ranging execution times for small radix values that led to initial super-linear
speed-up. Bucketing was inlined to allow for a combination of local bucketing and update of
global counts in the BucketLengths array. TargetOffsets, originally a shared array used
for a collective parallel-prefix computation of copy-back locations, is now a private array,
and each thread computes the parallel prefix itself, saving on synchronization. Originally, a
“copy-in-place” strategy was attempted, whereby, except for the last iteration, the buckets
were copied back to the thread that would need them on the next iteration rather than just
into the list in list order. This added overhead and led to an increase in execution time over
the two-copy implementation.

#include <upc_relaxed.h>
#include "prefix.h"

63

#include <math.h>

#ifndef OVERDEC
#tdefine OVERDEC 256
#tendif

#ifndef SHARED_RADIX
#define SHARED_RADIX

shared int * BucketLengths;
shared int depth;

void RadixSort() {
int A[N/THREADS] ;
int * TargetOffsets;
int B[N/THREADS];
int ** Buckets;
int * Counts;
int i, j, k, max = 0;
shared int * maximums;
double logResult;
int radix, multiple = 1;

//radix = (THREADS == 1) ? 2 : THREADS;
radix = THREADS * OVERDEC;

BucketLengths = (shared int *) upc_all_alloc(sizeof(shared int),
radix * THREADS) ;

TargetOffsets = (int *) malloc((sizeof(int) * radix * THREADS));

Buckets = (int **) malloc(sizeof (int *) * radix);

Counts = (int *) malloc(sizeof(int) * radix);

// partition Data

for (i = 0; 1 < N / THREADS; i++) {
A[i] = List[MYTHREAD + i * THREADS];
if (A[i] > max) max = A[i];

// compute depth
maximums = ThreadPrefixExt(max, &maximum) ;

if (MYTHREAD == 0) {

64

logResult = log(maximums[THREADS - 1]) / log(radix);

if (logResult > (int) logResult) {
depth = (int) logResult + 1;

} else {
depth = (int) logResult;

upc_barrier;

for (j = 0; j < depth; j++) {
/* other than the first time, we need a fresh bucket */
if (7 '=0) {
for (i

= 0; i < N / THREADS; i++) {
A[i] =

List[i + MYTHREAD * N / THREADS];

}
for (i = 0; i < radix; i++) {
Counts[i] = 0;

/* find the count of each */

for (i = 0; i < N / THREADS; i++) {
k = (A[i] / multiple) % radix;
Counts [k]++;

/* do a mini-prefix */

Buckets[0] = &B[0];

BucketLengths [MYTHREAD] = Counts[0];

for (i = 1; i < radix; i++) {
Buckets[i] = Buckets[i - 1] + Counts[i - 1];
BucketLengths[i * THREADS + MYTHREAD] = Counts[il];
Counts[i - 1] = 0;

}

Counts[radix - 1] = 0;

/* now, put into a bucket */
for (i = 0; i < N / THREADS; i++) {

65

k = (A[i] / multiple) % radix;
Buckets[k] [Counts[k]] = A[i];
Counts [k]++;

upc_barrier;
TargetOffsets[0] = O;

for (i = 1; i < radix * THREADS; i++) {
TargetOffsets[i] = TargetOffsets[i - 1] + BucketLengths[i - 1];

/* copy your bucket back */
for (i = 0; i < radix; i++) {
for (k = 0; k < Counts[i]; k++) {
List[TargetOffsets[i * THREADS + MYTHREAD] + k] = Buckets[i] [k];
}

multiple *= radix;

upc_barrier;

#tendif

Alternatively, the depth code can be written with one fewer synchronization:

// partition Data

for (i = 0; 1 < N / THREADS; i++) {
A[i] = List[MYTHREAD + i * THREADS];
if (A[i] > max) max = A[i];

// compute depth
maximums = ThreadPrefixExt(max, &maximum) ;

logResult = log(maximums[THREADS - 1]) / log(radix);

66

if (logResult > (int) logResult) {
depth = (int) logResult + 1;

} else {
depth = (int) logResult;

upc_barrier;

The greatest performance boosts were seen when improving the main loop. By contrast,
no real gain was achieved by this modification.

E.1.7 Random Sample

This code is based on that in [1].

#include <upc_relaxed.h>

#include "bucketing.h"

#include "local_quicksort.h"
#include "thread_concat_target.h"
#include "local_radix.h"

#ifndef SAMPLE_SORT
#define SAMPLE_SORT

#ifndef OVERSAMPLE
#define OVERSAMPLE 2 * THREADS
#tendif

int * ChooseK(int * Src, int length, int k) {
int i, step;
int * temp = (int *) malloc(sizeof (int) * k);
step = (length / (k + 1) < 1) ? 1 : length / (k + 1);

for (1 = 0; i < k; i++) {
temp[i] = Src[step * il;

return temp;

67

int localPivots[THREADS - 1];
shared int Pivots[THREADS - 1];
shared [OVERSAMPLE] int SampleS[DVERSAMPLE * THREADS] ;

int aBsearch(int * A, int x, int L, int H) {
int M;

if (L >= H) {
if (x > A[H]) {
return H + 1;
} else {
return H;

M= (L+H /2;

if (x > A[M]) {

return aBsearch(A, x, M + 1, H);
} else {

return aBsearch(A, x, L, M - 1);

int getPosition(int a) {

return aBsearch(localPivots, a, 0, THREADS - 2);

shared int * Buckets[THREADS * THREADS];
shared int BucketLengths[THREADS * THREADS];
shared int BucketOffsets[THREADS * THREADS] ;

void SampleSort() {
int temp[THREADS], A[N / THREADS], B[N / THREADS];
int * localBuckets[THREADS];
int * localSamples;
int localCounts[THREADS] ;
int i, j, k;
int * localData, size;

// partition List

68

for (i

= 0; i < N / THREADS; i++) {
Ali] =

List [MYTHREAD + i * THREADS];

// Find samples and set up partitions
localSamples = ChooseK(A, N / THREADS, OVERSAMPLE);

for (i = 0; i < OVERSAMPLE; i++) {
Samples [MYTHREAD * OVERSAMPLE + i] = localSamples[il;

upc_barrier;

if (MYTHREAD == 0) {
for (i = 0; i < OVERSAMPLE * THREADS; i++) {
B[i] = Samples[i];
}

QSort (&B[0], O, OVERSAMPLE * THREADS);
for (i = 0; i < THREADS - 1; i++) {
Pivots[i] = B[(i + 1) * OVERSAMPLE];
}
upc_barrier;
for (i = 0; i < THREADS - 1; i++) {

localPivots[i] = Pivots[il];

3

// do the bucketing
Bucketing(A, B, localBuckets, N / THREADS, localCounts, THREADS, &getPosition);

// move out of localbucket into a shared array
// this could be further parallelized, but we’re only going to 32 proc.
for (i = 0; i < THREADS; i++) {

BucketLengths[i * THREADS + MYTHREAD] = localCountsl[i];

upc_barrier;

69

if (MYTHREAD == 0) {
BucketOffsets[0] = 0;
for (i = 1; i < THREADS * THREADS; i++) {
BucketOffsets[i] = BucketOffsets[i - 1] + BucketLengths[i - 1];

upc_barrier;

for (i = 0; i1 < THREADS; i++) {
for (j = 0; j < localCounts[il; j++) {
*(List + BucketOffsets[i * THREADS + MYTHREAD] + j) =
*(localBuckets[i] + j);

upc_barrier;

// gather your buckets and do a local sort
size = 0;
for (j = 0; j < THREADS; j++) {
size += BucketLengths[MYTHREAD * THREADS + jl;
}

localData = (int *) malloc(sizeof (int) * size);
i=0;
for (j = 0; j < THREADS; j++) {
for (k = 0; k < BucketLengths[MYTHREAD * THREADS + jl; k++, i++) {
localDatal[i] = List[BucketOffsets[MYTHREAD * THREADS + j] + k];
}

RSort(localData, size, 16);

// bring it all together in one array
ThreadConcatenate(List, localData, size);

#tendif

70

E.1.8 MPI Implementation of Radix Sort

The MPI implementation of the radix sort was an almost direct translation of the UPC radix
implementation. MPI collective operations were used extensively. The major difficulty was
in achieving the load balancing that came for free with UPC. This was done with extensive
matrix manipulation and added to the much longer main loop.

#include <stdio.h>
#include <mpi.h>
#include <stdlib.h>
#include <math.h>

int main(int argc, char ** argv) {

int i, j, k;

int * A, * B, *x Counts, ** Buckets, * GlobalCounts,
* Offsets, * GlobalCountsTrans;

int * C, * MyOffsets, * ArrayOffset, * Transmit, spread,
target, * ReceiveSizes, * ReceiveUffsets;

int max, globalmax;

double logResult;

int depth;

int radix, multiple = 1;

int rank, size;

int n, d;

FILE * number_file;

char 1ine[100];

int * list;

double starttime, endtime;

MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);

n = (argc < 2) ? 1024 : atoi(argv([1]);
d = (argc < 3) 7 8 : atoi(argv[2]);
radix = size * d;

list = (int *) malloc(sizeof(int) * n);

A = (int *) malloc(sizeof(int) * n / size);

B = (int *) malloc(sizeof(int) * n / size);

GlobalCounts = (int *) malloc(sizeof(int) * radix * size);
GlobalCountsTrans = (int *) malloc(sizeof(int) * radix * size);
Counts = (int *) malloc(sizeof(int) * radix);

71

Buckets = (int **) malloc(sizeof (int *) * radix);

C = (int *) malloc(sizeof(int) * n / size);

Offsets = (int *) malloc(sizeof(int) * size * radix);
MyOffsets = (int *) malloc(sizeof (int) * radix);
Array0ffset = (int *) malloc(sizeof(int) * size);
Transmit = (int *) malloc(sizeof(int) * size);
ReceiveSizes = (int *) malloc(sizeof(int) * size);
ReceiveOffsets = (int *) malloc(sizeof(int) * size);

/* read in the data */
if (rank == 0) {
number_file = fopen("Random.txt", "r");

if (number_file == NULL) {
fprintf(stderr, "Could not read random number file.\n");
MPI_Finalize();
exit(1);

for (i = 0; i < n; i++) {
fgets(line, sizeof(line), number_file);
sscanf (line, "%d", &j);
list[i] = j;

fclose(number_file);

starttime = MPI_Wtime();

MPI_Scatter(list, n / size, MPI_INT, A, n/size, MPI_INT, 0, MPI_COMM_WORLD);

/* they should be set to radix sort now... */
/* get the maximum */
max = 0;

for (i = 0; i < n / size; i++) {
if (A[i] > max) max = A[i];

MPI_Allreduce(&max, &globalmax, 1, MPI_INT, MPI_MAX, MPI_COMM_WORLD) ;
logResult = log(globalmax) / log(radix);

depth = (logResult > (int) logResult) ? (int) logResult + 1 :

72

(int) logResult;

for (j = 0; j < depth; j++) {

for (i = 0; i < radix; i++) {
Counts[i] = 0;

for (1 =0; 1 < n / size; i++) {
k = (A[i] / multiple) % radix;
Counts [k]++;

}

Buckets[0] = &B[0];

for (i = 1; i < radix; i++) {
Buckets[i] = Buckets[i - 1] + Counts[i - 1];
Counts[i - 1] = 0;

}

Counts[radix - 1] = 0;

for (1 =0; 1 < n / size; i++) {
k = (A[i] / multiple) % radix;
Buckets[k] [Counts[k]] = A[il;
Counts[k]++;

}

/* build a global bucket lengths array with an all gather */
MPI_Allgather(Counts, radix, MPI_INT, GlobalCounts, radix,
MPI_INT, MPI_COMM_WORLD);

/* transpose Global Counts array -- it is now row by processor,
column by bucket, and needs to be column by processor, row by
bucket */

for (1 = 0; i < size; i++) {
/* i iterates on processor */
for (k = 0; k < radix; k++) {
/* k iterates on buckets */
GlobalCountsTrans[k * size + i] = GlobalCounts[i * radix + kJ];

}

/* do a global parallel prefix */
Offsets[0] = 0;

73

for (i = 1; i < size * radix; i++) {
Offsets[i] = Offsets[i-1] + GlobalCountsTrans[i-1];

/* pluck out this processor’s offsets */
for (i = 0; i < radix; i++) {
MyOffsets[i] = Offsets[i * size + rank];

/* now try to find where these things must go */
for (1 = 0; i < size; i++) {

Transmit[i] = O0;

ArrayOffset[i] = 0;

for (i = 0; i < radix; i++) {
target = MyOffsets[i] / (n / size);
spread = MyOffsets[i] + Counts[i];

if (spread > (target + 1) * (n / size)) A
Transmit [target] += (target + 1) * (n / size) - MyOffsets[il];
Transmit[target + 1] += spread - (target + 1) * (n / size);

} else {
Transmit [target] += Counts[il];

for (1 = 1; i < size; i++) {
ArrayOffset[i] = ArrayOffset[i - 1] + Transmit[i-1];
}

/* spread around the amount you’re going to send */
MPI_Alltoall(Transmit, 1, MPI_INT, ReceiveSizes, 1, MPI_INT, MPI_COMM_WORLD) ;

ReceiveOffsets[0] = 0;
for (i = 1; i < size; i++) {
ReceiveOffsets[i] = ReceiveOffsets[i - 1] + ReceiveSizes[i - 1];

}

/* now do the real sending! */
MPI_Alltoallv(B, Transmit, ArrayOffset, MPI_INT,
C, ReceiveSizes, ReceiveOffsets, MPI_INT, MPI_COMM_WORLD) ;

74

for (i = 0; i < radix; i++) {
Counts[il 0;

for (1 =0; 1 < n / size; i++) {
k = (C[i] / multiple) % radix;
Counts [k]++;

}

Buckets[0] = &A[0];

for (i = 1; i < radix; i++) {
Buckets[i] = Buckets[i - 1] + Counts[i - 1];
Counts[i - 1] = 0;

}

Counts[radix - 1] = 0;

for (1 =0; 1 < n / size; i++) {
k = (C[i] / multiple) % radix;

Buckets[k] [Counts[k]] = C[il;
Counts[k]++;

multiple *= radix;
MPI_Barrier (MPI_COMM_WORLD) ;
endtime = MPI_Wtime();
if (rank == 0) {

printf("p %d n %d d %d time %f \n", size, n, d, endtime - starttime);

MPI_Finalize();

75

E.2 Minimum Spanning Tree Code
E.2.1 Structures

The following data structures are used in all the UPC implementations. The “edgeNo”
field is used by the Boruvka algorithm as an index to a list of edges.

struct adjEntry {
int vertex;
int weight;
int edgeNo;
s

struct edgeStruct {
int vertex[2];
int weight;
int low_select;
int high_select;
+;

E.2.2 Prim-UPC-1

The following is the original implementation of Prim’s algorithm in UPC. We assume that
a driver program loads the adjacency lists of the graph into AdjacencyList, ListCounts, and
ListPtrs, and that there are n vertices in the graph.

void prim_mst(shared struct adjEntry * Adjacencylist,
shared int * ListCounts,
shared int * ListPtrs,
int n,
shared int * sum)

int i, j, k;

/* local copies and variables */
struct adjEntry localMin;

int localCount;

int localSize;

int localVerts[n];

int localDistances[n];

76

int localListCounts[n];

int localListPtrs[n];

int locallInTree[n];

struct adjEntry * localAdj;

/* shared arrays -— must be dynamically allocated */
/* because shared cannot go in activation record */
shared int * inTree;

shared struct adjEntry * minimums;

shared int * new;

/* allocate the shared structures needed for the algorithm */
inTree = (shared int *) upc_all_alloc(sizeof(shared int), n);
minimums = (shared struct adjEntry *)
upc_all_alloc(sizeof (shared struct adjEntry), THREADS);

new = (shared int *) upc_all_alloc(sizeof(shared int), 1);

/* use upc_forall to assign vertices to threads */
/* also get the count to size the localAdj */
k = 0;
localCount = 0;
localSize = 0;
upc_forall(i = 0; i < n; i++; &ListCounts[i]) {
localVerts[localCount] = i;
localCount++;
localSize += ListCounts[i];

localAdj = (struct adjEntry *) malloc(sizeof (struct adjEntry) * localSize);

/* copy the adjacency list entries to local variables */
for (i = 0; 1 < localCount; i++) {
/* build our own counts and pointers */
locallListCounts[i] = ListCounts[localVerts[il];
localListPtrs[i] = (i == 0) ? 0 : locallListPtrs[i - 1] +
localListCounts[i - 1]1;

/* set the default distances */
localDistances[i] = INT_MAX;

/* copy the adjacency list entries */

for (j = 0; j < locallListCounts[i]; j++) {
localAdj[j + localListPtrs[i]] =
AdjacencyList[ListPtrs[localVerts[i]l]l + jI;

77

/* kickstart Prim’s by adding vertex O to the tree */
if (MYTHREAD == 0) {

*new = 0;
inTree[0] = 1;
*sum = 0;

upc_barrier;

/* Prim’s parallel algorithm */
for (i = 0; i <n - 1; i++) {

/* find the minimum distance for my local vertices */
localMin.weight = INT_MAX;

localMin.vertex = -1;

for (j = 0; j < localCount; j++) {

/* update my local tree records if necessary */
if (*new == localVerts[j]) {

localInTreel[j] = 1;
}

/* only consider un-added nodes */
if (locallnTreel[j] !'= 1) {
/* update for the latest new case */
for (k = 0; k < localListCounts[jl; k++) {
if (localAdjl[k + localListPtrs[jl].vertex == *new) {
if (localDistances[j] > localAdjlk +
localListPtrs[j]] .weight) {
localDistances[j] = localAdjlk +
localListPtrs[j]] .weight;

/* see if this is a new minimum */

/* is <= so that we will suggest */

/* a real vertex if we have one */

if (localDistances[j] <= localMin.weight) {
localMin.vertex = localVerts[j];
localMin.weight = localDistances[j];

78

/* post my new minimum to globally-accessible memory */
minimums [MYTHREAD] = localMin;

upc_barrier;

/* compute the actual minimum and post the newly-added vertex */
if (MYTHREAD == 0) {
for (j = 1; j < THREADS; j++) {
if (localMin.weight > minimums[j].weight || (
localMin.weight == minimums[j].weight &&
minimums [j].vertex >
localMin.vertex)) A
localMin = minimums[j];

*new = localMin.vertex;
if (localMin.weight < INT_MAX) {
*sum += localMin.weight;

}

upc_barrier;

E.2.3 Prim-UPC-2

In the second version of Prim’s algorithm in UPC, we change the initial distribution of
vertices so that it is balanced by number of edges, not number of vertices. The upc_forall
loop is replaced by the following, and start and end now replace the localVerts array to
indicate what vertices are owned by a particular thread.

/* copy the ListCounts */
sumEdgesOut = O;
for (i = 1; i < n; i++) {

79

localListCountsCopy[i]l = ListCounts[i];
sumEdgesOut += localListCountsCopyl[il;
b

pivots [THREADS] = n;

/* attempt to balance so everyone gets roughly sumEdgesOut/THREADS edges */
for (j =1, i = 0; i < THREADS; i++) {
pivots[il = j;
k = 0;
while (k < sumEdgesOut / THREADS && j < n) {
k += localListCountsCopyl[j];
jts;
}
counts[i] = k;

}

start = pivots[MYTHREAD];

end = pivots[MYTHREAD + 1];
localCount = end - start;
localSize = counts[MYTHREAD];

E.2.4 Prim-UPC-3

In the third version of Prim’s algorithm in UPC, we add load balancing at regular intervals
throughout the main loop. This oblivious load balancing is done by the following block of
code, placed at the top of the main loop after the update to locallnTree.

/* oblivious rebalance */
if (1 % (n / THREADS) == 0 &% i > 0 & i < n - 1 - THREADS) {

/* preserve distances */
for (j = 0; j < localCount; j++) {
globalDistances[j + start] = localDistances[j];

3

/* get new sum of available edges */
sumEdgesOut = 0;
for (j = 1; j < mn; j++) {
if ('localInTreel[jl) {
sumEdgesOut += localListCountsCopy[jl;
}

80

/* compute everyone’s new piece of the array */
for (j =1, r = 0; r < THREADS; r++) {
pivots[r] = j;
k = 0;
while (k < sumEdgesOut / THREADS && j < n) {
if (!'localInTree[j]) { k += localListCountsCopy[jl; }
j++s
}

counts[r] = k;

start = pivots[MYTHREAD];

end = pivots[MYTHREAD + 1];
localCount = end - start;
localSize = counts[MYTHREAD];

/* get and copy your piece of the adjacency list */
free(localAdj);
localAdj = (struct adjEntry *) malloc(sizeof (struct adjEntry) * localSize);

for (j = 0; j < localCount; j++) {
localListCounts[j] = (localInTree[j + start] == 1) 7 0 :
localListCountsCopy[j + start];
localListPtrs[j]l = (j == 0) ? 0 : localListPtrs[j - 1] +
localListCounts[j - 1];

if (!localInTree[j + start]l) {
localDistances[j] = globalDistances[j + start];

}

for (r = 0; r < locallListCounts[jl; r++) {
localAdj[r + localListPtrs[jl] = AdjacencyList[ListPtrs[j +
start] + rl;

E.2.5 Prim-UPC-4

For this final implementation if Prim’s algorithm in UPC, we change the condition of the

load balancing step from one based on the iteration, and thus oblivious to the current work
distribution, to one that monitors the work distribution and rebalances whenever a processor

81

becomes idle.

The following is added before the load balancing step in the main loop:

r = 0;
for (s = 0; s < THREADS; s++) {
if (pivots[s] <= localNew && localNew < pivots[s + 1]) {
r = s;
}
}

counts[r]--;

The condition of the load balancing step is changed to:

if (counts[r] < 1 & i < n - n / THREADS)

The upper bound on 7 is provided to prevent thrashing as the algorithm completes.

E.2.6 Prim-MPI

The following is the MPI implementation of Prim’s algorithm. This implementation scaled
well for the test cases. It avoids explicit barrier synchronizations by using collective functions.
From this we believe that UPC performance could be improved with the use of the recently-
standardized collective operations once they are supported by UPC compilers. This code
does have the somewhat unrealistic assumption that the adjacency list can be held in local
memory on any particular processing element. However, unlike with UPC, no memory limit
was encountered with MPI code on the T3e.

We assume that a driver program initializes and finalizes MPI, and that it loads the
adjacency lists into ListCounts, ListPtrs, AdjListVerts, and AdjListWeights.

int
int

ListCounts;
ListPtrs;

int * AdjListVerts;
int * AdjListWeights;
int rank;

int threads;

int sum;

int n;

* ¥ X *

82

int mst() {

int i, j, k;

int * inTree;

int edges;

int start, end;

int * scatterDispls;
int * scatterSizes;
int new;

int * minimums;

int localMins[2];
int localCount;

int * distances;

int minimumWeight, minimumVertex;

/* initialize sum */
sum = 0;

/* these are used for computing global information */
scatterSizes = (int *) malloc(sizeof (int) * threads);
scatterDispls = (int *) malloc(sizeof (int) * threads);
minimums = (int *) malloc(sizeof(int) * 2 * threads);

/* only O holds n at present */
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

/* these are used for local copies of data */

if (rank !'= 0) {
ListCounts = (int *) malloc(sizeof(int) * n);
ListPtrs = (int *) malloc(sizeof (int) * n);
inTree = (int *) malloc(sizeof(int) * n);
distances = (int *) malloc(sizeof(int) * n);

/* we assume these starting values -- nothing in tree, */
/* everything at maximal distance */
for (i = 0;i < n; i++) {

inTreel[i] = 0;

distances[i] = INT_MAX;

/* spread around the adjacency list details */
MPI_Bcast(ListCounts, n, MPI_INT, O, MPI_COMM_WORLD) ;

83

MPI_Bcast(ListPtrs, n, MPI_INT, O, MPI_COMM_WORLD) ;

/* prepare to receive the adjacency list from 0 */
if (rank !'= 0) {
k = 0;
for (i = 0; i < mn; i++) {
k += ListCounts[il;
}
edges = k;

AdjListVerts = (int *) malloc(sizeof(int) * k);
AdjListWeights = (int *) malloc(sizeof(int) * k);

for (i = 0; i < threads; i++) {
scatterSizes[i] = rank * n / threads;
}

scatterSizes[threads - 1] += n % threads;

start = scatterSizes[rank];

end = (rank == threads - 1) ? n : scatterSizes[rank + 1];
localCount = end - start;

/* receive the adjacency list from 0 */
MPI_Bcast(AdjListVerts, edges, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(AdjListWeights, edges, MPI_INT, O, MPI_COMM_WORLD) ;

/* kickstart Prim’s algorithm by adding O to the tree */
new = 0;

/* Parallel Prim’s %/
for (i = 0;i < n - 1; i++) {

/* Tell everyone the latest added vertex */
MPI_Bcast(&new, 1, MPI_INT, 0, MPI_COMM_WORLD);

inTree[new] = 1;

/% find the new vertex at a minimal distance from the tree */
localMins[0] = -1;

localMins[1] = INT_MAX;

for (j = start; j < end; j++) {

84

if (inTree[j]l !'= 1) {
for (k = ListPtrs[j]; k < ListPtrs[j] + ListCounts[jl; k++) {
if (AdjListVerts[k] == new) {
if (AdjListWeights[k] <= distances[j]) {
distances[j] = AdjListWeights[k];
}

if (distances[j] < localMins[1]) {
localMins[0] = j;
fflush(stdout);
localMins[1] = distances[j];

/* everyone tell O what your new minimum is */
MPI_Gather(&localMins[0], 2, MPI_INT, minimums,
2, MPI_INT, 0, MPI_COMM_WORLD) ;

/* 0 computes the new vertex to add to the tree */
if (rank == 0) {
minimumVertex = minimums[0];
minimumWeight = minimums[1];
for (j = 1; j < threads; j++) {
if (minimums[2 * j + 1] < minimumWeight) {
minimumVertex = minimums([2 * j];
minimumWeight = minimums[2 * j + 1];

new = minimumVertex;
if (minimumWeight < INT_MAX) {
sum += minimumWeight;

}

85

E.2.7 Boruvka-UPC

The following is the first implementation of Boruvka’s algorithm in UPC. The algorithm
performed poorly, and does not attempt to take advantage of locality or minimize commu-
nication.

void mst_2(shared struct adjEntry * Adjacencylist,
shared int * ListCounts,
shared int * ListPtrs,
int n, shared int * sum)

shared struct edgeStruct * edgelist;
int i, j, k, r, s, t, offsets[THREADS];
int iter;

int count, offset;

int edges;

int components;

struct adjEntry tempAdj;

shared int * lowCount;

shared int * ppArray;

struct edgeStruct tempEdge;

shared int * edgeChoice;

shared int * componentVertexMap;

shared int * componentVertexCount;
shared int * componentVertexPtrs;
shared int * newComponentMap;

shared int * newAdjacencyListCounts;

shared int * newAdjacencylListPtrs;
shared struct adjEntry * newAdjacencylist;
shared int * localSums;

/* allocate the various shared arrays needed */

ppArray = (shared int *) upc_all_alloc(sizeof(shared int), THREADS);
localSums = (shared int *) upc_all_alloc(sizeof (shared int), THREADS);
lowCount = (shared int *) upc_all_alloc(sizeof (shared int), n);
edgeChoice = (shared int *) upc_all_alloc(sizeof(shared int), n);
componentVertexMap = (shared int *) upc_all_alloc(sizeof (shared int), n);

/* we repeat until our tree is too small! */
while (n > 1) {

upc_forall(i = 0; i < THREADS; i++; &ppArrayl[i]) A
ppArrayl[i] = 0;

localSums[i] = 0;

86

upc_forall(i = 0; i < n; i++; &lowCount[i]) {
lowCount[i] = O0;
edgeChoice[i] = 0;
componentVertexMap[i] = 0;

upc_barrier;
/* PHASE 1: Make an edge list */

/* get a count of how many edges we have. Further, lowCount will
be the offset to the edges in the edge list such that those
edges for which i is low will start at lowCount[i] */

localSums [MYTHREAD] = O;

offset = MYTHREAD * (n / THREADS);
count = n / THREADS;

if (MYTHREAD == THREADS - 1) {
count += n J THREADS;
}

ppArray [MYTHREAD] = 0;
for (i = offset; i < offset + count; i++) {
lowCount[i] = O;
for (j = ListPtrs[il]; j < ListCounts[i] + ListPtrs[i]; j++) {
if (AdjacencyList[j].vertex > i) {
lowCount [1]++;
}
}
ppArray [MYTHREAD] += lowCount[i];
if (i > offset) {
lowCount [i] += lowCount[i - 1];

upc_barrier;
edges = 0;

offsets[0] = 0;
for (i = 0; i < THREADS; i++) {

87

edges += ppArrayl[il;
if (i != THREADS - 1) {
offsets[i+1] = offsets[i] + ppArrayl[il;

for (i = offset; i < offset + count; i++) {
lowCount[i] += offsets[MYTHREAD];

edgeList = (shared struct edgeStruct *)
upc_all_alloc(sizeof (shared struct edgeStruct), edges);

/* link low */

k = offsets[MYTHREAD] ;

tempEdge.low_select = 0;

tempEdge .high_select = 0;

for (i = offset; i < offset + count; i++) {

for (j = ListPtrs[i]; j < ListCounts[i] + ListPtrs[i]; j++) {
if (AdjacencyList[j].vertex > i) {

tempEdge.vertex[0] = i;
tempEdge.vertex[1] = AdjacencyList[j].vertex;
tempEdge .weight = AdjacencyList[j].weight;
AdjacencyList[j].edgeNo = k;
edgeList[k] = tempEdge;
k++;

upc_barrier;

/* link high */
for (i = offset; i < offset + count; i++) {
for (j = ListPtrs[il; j < ListCounts[i] + ListPtrs[il; j++) {
if (AdjacencyList[j].vertex < i) {
if (AdjacencyList[j].vertex == 0) {
s = 0;
} else {
s = lowCount[AdjacencyList[j].vertex - 1];
}
r = lowCount[AdjacencyList[j].vertex];

for (k = s; k < r; k+t+) {

88

if (edgeList[k].vertex[1] == i) {
AdjacencyList[j].edgeNo = k;
}

upc_barrier;
/* PHASE 2: Everyone, grab your lightest edge! */

for (i = offset; i < count + offset; i++) {
r = -1;
] INT_MAX;
edgeChoice[i] = -1;
for (j = ListPtrs[i]; j < ListCounts[i] + ListPtrs[i]; j++) {

if (AdjacencyList[j].weight < s) {

r = AdjacencyList[j].vertex;
s = AdjacencyList[j].weight;
edgeChoice[i] = AdjacencyList[j].edgeNo;
}
}
if (r = -1) {
localSums [MYTHREAD] += s;
if (r < i) {
edgeList[edgeChoice[i]] .high_select = 1;
} else {
edgeList [edgeChoice[i]] .low_select = 1;
}
}

upc_barrier;

/* add our partial sums to the running total */
if (MYTHREAD == 0) {
for (i = 0; i < THREADS; i++) {
*sum += localSums[i];

89

/* forward everyone to the root of their tree */
upc_forall(i = 0; i < n; i++; &edgeChoicel[i]) {
while(edgeList[edgeChoice[i]] .high_select !=
edgeList[edgeChoice[i]].low_select) {

if (edgelist[edgeChoice[i]].high_select) {

edgeChoice[i] = edgeChoicel[edgelList[edgeChoice[i]].vertex[0]];
} else {

edgeChoice[i] = edgeChoicel[edgelList[edgeChoice[i]].vertex[1]];

upc_barrier;

/* count the number of components that you hold */

/* also, fix the nagging overcount on the local sums */

localSums [MYTHREAD] = O;

ppArray [MYTHREAD] = 0;

for (i = offset; i < offset + count; i++) {

if (edgeChoice[i] != -1 && edgeList[edgeChoicel[il].vertex[0] == i &&

edgeList [edgeChoice[i]] .low_select == 1 &&
edgeList [edgeChoice[i]] .high_select == 1) {

ppArray [MYTHREAD] ++;
localSums [MYTHREAD] += edgeList[edgeChoice[i]].weight;

upc_barrier;

/* add our partial sums to the running total */
if (MYTHREAD == 0) {
for (i = 0; i < THREADS; i++) {
*sum -= localSums[i];

90

components = 0;

for (i = 0; i < THREADS; i++) {
components += ppArrayl[i];

if (components == 0) break;

/* PHASE 3: Identify the new components, and map vertexes to components */

newComponentMap = (shared int *) upc_all_alloc(sizeof (shared int),

components) ;

newAdjacencyListCounts = (shared int *) upc_all_alloc(sizeof(shared int),
components) ;

newAdjacencyListPtrs = (shared int *) upc_all_alloc(sizeof (shared int),
components) ;

componentVertexCount = (shared int *) upc_all_alloc(sizeof(shared int),
components) ;

componentVertexPtrs = (shared int *) upc_all_alloc(sizeof (shared int),
components) ;

if (MYTHREAD == 0) {
for (i = 1; i < THREADS; i++) {
ppArray[i] += ppArrayl[i - 1];

upc_barrier;

k = (MYTHREAD == 0) ? O : ppArray[MYTHREAD - 1];
for (i = offset; i < count + offset; i++) {

if (edgeList [edgeChoice[i]] .vertex[0] == i) {
newComponentMap[k] = edgeChoicel[il;

K++;

b

upc_barrier;

upc_forall(i = 0; i < components; i++; &newComponentMap[i]) {
componentVertexCount[i] = 0;

for (j = 0; j < mn; j++) {
if (edgeChoice[j] == newComponentMap[il) {

91

componentVertexCount [i] ++;

upc_barrier;

if (MYTHREAD == 0) {
componentVertexPtrs[0] = 0;
for (i = 1; i < components; i++) {

componentVertexPtrs[i] = componentVertexPtrs[i - 1] +
componentVertexCount[i - 1];

upc_barrier;
upc_forall(i = 0; i < components; i++; &newComponentMap[i]) {
componentVertexCount[i] = 0;
for (j = 0; j < mn; j++) {
if (edgeChoicel[j] == newComponentMap[il) {
componentVertexMap [componentVertexPtrs[i] +

componentVertexCount [i]] = j;
componentVertexCount [i] ++;

}

upc_barrier;

/* PHASE 4: Build the new adjacency matrix */

/* now, at last, we build a new adjacency matrix */

upc_forall(i = 0; i < components; i++; &newAdjacencyListCounts[i]) {
newAdjacencyListCounts[i] = O;
for (j = 0; j < components; j++) {

t = 0;
if (j '=1) {

92

for (r = componentVertexPtrs[jl; r < componentVertexPtrs[j] +
componentVertexCount[j] && t == 0; r++) {

for (s = ListPtrs[componentVertexMapl[r]];
s < ListPtrs[componentVertexMap[r]] +
ListCounts [componentVertexMap[r]] && t == 0; s++) {

for (k = componentVertexPtrs[i];
k < componentVertexPtrs[i] +
componentVertexCount [i] &&
t == 0; k++) {

if (Adjacencylist[s].vertex ==
componentVertexMap[k]) {

}

newAdjacencyListCounts[i] += t;

upc_barrier;

if (MYTHREAD == 0) {
newAdjacencyListPtrs[0] = 0;
for (i = 1; i< ppArray[THREADS - 1]; i++) {
newAdjacencyListPtrs[i] = newAdjacencyListPtrs[i - 1] +
newAdjacencyListCounts[i - 1];

3

upc_barrier;

newAdjacencyList = (shared struct adjEntry *) upc_all_alloc(
sizeof (shared struct adjEntry),
newAdjacencyListPtrs[components - 1] +
newAdjacencyListCounts [components - 1]);

/% build the list */

/* now, at last, we build a new adjacency matrix */
upc_forall(i = 0; i < components; i++; &newAdjacencyListCounts[i]) {

93

newAdjacencyListCounts[i] = 0;

for (j = 0; j < components; j++) {
tempAdj.vertex = j;
tempAdj.weight = INT_MAX;
t = 0;
if (j '=1) {

for (r = componentVertexPtrs[j]; r < componentVertexPtrs[j] +
componentVertexCount[j]; r++) {

for (s = ListPtrs[componentVertexMap[r]];
s < ListPtrs[componentVertexMap[r]] +
ListCounts[componentVertexMap[r]]; s++) {

for (k = componentVertexPtrs[i];
k < componentVertexPtrs[i] +
componentVertexCount [i]; k++) {

if (AdjacencyList[s].vertex ==
componentVertexMap[k]) {
t =1;
if (Adjacencylist[s].weight < tempAdj.weight) {
tempAdj.weight = AdjacencyList[s].weight;

}
}
}
}

}
}
if (¢t > 0) {

newAdjacencyList [newAdjacencyListPtrs[i] +

newAdjacencyListCounts[i]] = tempAdj;

newAdjacencyListCounts [i]++;

}

n = components;
upc_barrier;

upc_free(AdjacencyList) ;

94

AdjacencyList = newAdjacencyList;
upc_free(ListCounts) ;

ListCounts = newAdjacencyListCounts;
upc_free(ListPtrs);

ListPtrs = newAdjacencyListPtrs;

upc_free (componentVertexMap) ;
upc_free (lowCount) ;

upc_free (edgeChoice);
upc_free (ppArray) ;
upc_free(localSums) ;

E.3 Low Level Code Tests
E.3.1 Read Time

The following was used to measure the time to read from shared memory in UPC on the
Cray T3e.

shared int bigArray[8 * 1024 * 1024];

int main() {

int i, j, k, m, qt;

shared int * mediumArray;

int littleArray[1024 * 1024];
clock_t start[20];

struct tms timeStruct;

for(i = 1024; i < 8 * 1024 * 1024; i *x= 2) {
start[3] = 0;
for (qt = 0; qt < 10; qt++) {
if (MYTHREAD == 0) start[0] = times(&timeStruct);

for (k = 0, j = MYTHREAD * i / THREADS; k < i; k++, j++) {

95

J=3hi;
m=j % (1024 * 1024);
littleArray[m] = bigArrayl[jl;

3

upc_barrier;

if (MYTHREAD == 0) {
start[1] = times(&timeStruct);
start[3] += start[1] - start[0];
}

upc_barrier;

}

upc_barrier;

if (MYTHREAD == 0) {
printf ("%d %d \n", i, (int) (start[3]1/10));
}
upc_barrier;
}

upc_barrier;

E.3.2 Write Time

The following was used to measure the time to write to shared memory in UPC on the Cray
T3e.

shared int bigArray[8 * 1024 * 1024];
int main() {
int i, j, k, m, qt;
shared int * mediumArray;
int littleArray[1024 * 1024];
clock_t start[20];
struct tms timeStruct;

for(i = 1024; i < 8 x 1024 * 1024; i *x= 2) {

start[3] = 0;
for (gt = 0; qt < 10; qt++) {

96

if (MYTHREAD == 0) start[0] = times(&timeStruct);
for (k = 0, j = MYTHREAD * i / THREADS; k < i; k++, j++) {
IR REE
m=j % (1024 * 1024);
bigArray[jl = j;
}

upc_barrier;

if (MYTHREAD == 0) {
start[1] = times(&timeStruct);
start[3] += start[1] - start[0];
}

upc_barrier;

}

upc_barrier;

if (MYTHREAD == 0) {
printf("%d %#d \n", i, (int) (start[3]/10));
}
upc_barrier;
}

upc_barrier;

E.3.3 MPI Latency Test

The following is a quick MPI latency test. A single integer is sent between two threads. The
time printed is that for sending the message and receiving the reply.

#tinclude <stdio.h>
#include <stdlib.h>
#include <mpi.h>
#include <sys/times.h>
#include <time.h>

int main(int argc, char * argv[]) {
int rank, temp;

MPI_Status status;
double starttime, endtime;

97

MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

if (rank == 0) {
starttime = MPI_Wtime();
MPI_Send(&rank, 1, MPI_INT, 1, 0, MPI_COMM_WORLD) ;
MPI_Recv(&temp, 1, MPI_INT, 1, O, MPI_COMM_WORLD, &status);
endtime = MPI_Wtime();
printf ("Round-trip time: %f %f \n", endtime - starttime,

CLK_TCK * (endtime - starttime));

printf("Clock tick %d\n", CLK_TCK);

} else {
MPI_Recv(&temp, 1, MPI_INT, O, O, MPI_COMM_WORLD, &status);
MPI_Send(&rank, 1, MPI_INT, O, 0, MPI_COMM_WORLD) ;

MPI_Finalize();

E.3.4 MPI Communication Cost Tests

The following was used to measure the cost for larger payloads in MPI.

#include <stdio.h>
#include <mpi.h>
#include <stdlib.h>
#include <sys/times.h>
#include <time.h>
#include <sys/types.h>

int main(int argc, char * argv[]) {

int bigArray[8 * 1024 * 1024];
int bigArray2[4 * 1024 * 1024];
int temp;

double sum, processor_sum;

int i, j, k;

double starttime, endtime;

int rank, count;

MPI_Status status;

98

MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &count);

if (rank == 0) {
printf("Sequential send times: \n");

for (i = 1024; i < 16 * 1024 * 1024; i = i + i) {
if (rank == 0) {
sum = 0;
for (j = 1; j < count; j++) {
processor_sum = 0;
for (k = 0; k < 10; k++) {
starttime = MPI_Wtime();

MPI_Send(&bigArray, i, MPI_INT, j, O, MPI_COMM_WORLD) ;

MPI_Recv(&temp, 1, MPI_INT, j, O, MPI_COMM_WORLD,
endtime = MPI_Wtime();
processor_sum += endtime - starttime;
}
printf("PO to P)%d Size %d Time %f \n",
j, i, processor_sum / 10.0 * CLK_TCK);
sum += processor_sum;
}
printf ("PO average Size %d Time %f \n",
i, sum / 10.0 / (count - 1) * CLK_TCK);
} else {
for (k = 0; k < 10; k++) {
MPI_Recv(&bigArray, i, MPI_INT, O, 0, MPI_COMM_WORLD,
MPI_Send (&temp, 1, MPI_INT, O, 0, MPI_COMM_WORLD) ;

MPI_Finalize();

This was modified to measure time for collective operations:

#include <stdio.h>
#include <mpi.h>

99

&status) ;

&status) ;

#include <stdlib.h>
#include <sys/times.h>
#include <time.h>
#include <sys/types.h>

int main(int argc, char * argv[]) {

int * bigArray, * bigArray2;
int temp;

double sum, processor_sum;
int i, j, k;

double starttime, endtime;
int rank, count;

MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &count);

bigArray = (int *) malloc(sizeof(int) * 4 x 1024 * 1024);
bigArray2 = (int *) malloc(sizeof(int) * 4 * 1024 * 1024);

for (i = 1024; i < 8 * 1024 * 1024; i =i + i) {
sum = 0;
for (k = 0; k < 10; k++) {
if (rank == 0) {
starttime = MPI_Wtime();

MPI_Alltoall(bigArray, i / count, MPI_INT, bigArray2, i / count, MPI_INT,
MPI_COMM_WORLD) ;
if (rank == 0) {
endtime = MPI_Wtime();
sum += endtime - starttime;
}
if (rank == 0) {

printf("All to all for array size %d time %f \n", i, sum / 10.0 * CLK_TCK);
fflush(stdout) ;

100

MPI_Finalize();

E.4 Common Function Implementations
E.4.1 Bucketing

void Bucketing(int * localSrc, int * localDest, int * localBuckets[],
int length, int * Count, int range, int (*getkey) (int)) {
int i, j, k;
int offsets[range]; /* the offset in localDest corresponding to
each bucket in localBuckets */
/* zero our counters */
for (i = 0; i < range; i++) {
Count[i] = offsets[i] = 0;
}
/* find out the quantity that go in each bucket */
for (i = 0; i < length; i++) {
Count [(*getkey) (localSrc[i])]++;
}
/* build offsets as a parallel prefix of counts */
/* while zeroing the counters */
offsets[0] = 0;
for (j = 1; j < range; j++) {
offsets[jl = offsets[j - 11 + Count[j - 11;
Count[j - 1] = 0;
}
Count [range - 1] = 0;
/* construct the buckets as pointers into localDest using
our computed offsets */
localBuckets[0] = &localDest[0];
for (j = 1; j < range; j++) {
localBuckets[j] = localBuckets[0] + offsets[j];
}
/* at last, put everything from localSrc into a bucket */
for (i = 0; i < length; i++) {
k = (xgetkey) (localSrc[il);
*(localBuckets[k] + Count[k]++) = localSrc[il];

101

E.4.2 Thread Prefix

Two variants were produced — one in which the final array was allocated by the function
call, and one in which this was passed to the function as an argument.

shared int * ThreadPrefix(int S) {

int i;

// shared int * segment_size;

shared int * target_indices;

// segment_size = (shared int *) upc_all_alloc(sizeof(shared int), THREADS);
TPH_segment_size [MYTHREAD] = S;

target_indices = (shared int *) upc_all_alloc(sizeof(shared int), THREADS);
target_indices [MYTHREAD] = 0;
for (i = 0; i <= MYTHREAD; i++) {

target_indices [MYTHREAD] += TPH_segment_size[i];

upc_barrier;

return target_indices;

void ThreadPrefix(shared int * target_indices, int S) {

int i;
shared int * segment_size;

segment_size = (shared int *) upc_all_alloc(sizeof(shared int), THREADS);
segment_size [MYTHREAD] = S;

for (i = 0; i <= MYTHREAD; i++) {

target_indices [MYTHREAD] += segment_sizel[i];
}

upc_barrier;
if (MYTHREAD == 0) upc_free(segment_size);

102

E.4.3 Generalized Thread Prefix

The thread prefix code above always performed an addition. This generalization was devel-
oped to use an arbitrary binary function of two integers.

shared int * ThreadPrefixExt(int S, int (*func) (int, int)) {
int i;
shared int * target_indices;
shared int * TPEH_segment_size;
TPEH_segment_size = (shared int *) upc_all_alloc(sizeof (shared int), THREADS);
TPEH_segment_size [MYTHREAD] = S;
target_indices = (shared int *) upc_all_alloc(sizeof(shared int), THREADS);
target_indices [MYTHREAD] = O0;
for (i = 0; i <= MYTHREAD; i++) {
target_indices [MYTHREAD] = (func) (target_indices[MYTHREAD],
TPEH_segment_size[i]);

upc_barrier;

return target_indices;

E.4.4 Thread Concatenate

void ThreadConcatenate(shared int * target, int * Source, int S) {
int i, start;
shared int * target_indices;

target_indices = ThreadPrefix(S);
start = (MYTHREAD == 0) ? O : target_indices[MYTHREAD - 1];

for (1 = 0; i < 8; i++) {
target[start + i] = Sourcel[il];

upc_barrier;

103

