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Abstract
By means of coupled-cluster theory, molecular properties can be computed

with an accuracy often exceeding that of experiment. The high-degree polyno-
mial scaling of the coupled-cluster method, however, remains a major obstacle
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in the accurate theoretical treatment of mainstream chemical problems, de-
spite tremendous progress in computer architectures. Although it has long
been recognized that this super-linear scaling is non-physical, the development
of efficient reduced-scaling algorithms for massively parallel computers has not
been realized. We here present a locally correlated, reduced-scaling, massively
parallel coupled-cluster algorithm. A sparse data representation for handling
distributed, sparse multidimensional arrays has been implemented along with
a set of generalized contraction routines capable of handling such arrays. The
parallel implementation entails a coarse-grained parallelization, reducing inter-
processor communication and distributing the largest data arrays but replicat-
ing as many arrays as possible without introducing memory bottlenecks. The
performance of the algorithm is illustrated by several series of runs for glycine
chains using a Linux cluster with an InfiniBand interconnect.
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Scalable Fault Tolerant
Algorithms
for Linear-Scaling
Coupled-Cluster
Electronic Structure Methods

1 Introduction

Quantum chemistry, the application of quantum mechanics to molecular problems,
has evolved into an indispensable tool for understanding chemical physics. With the
rapid development of advanced computational hardware and algorithms, the field has
blossomed into a major component of molecular science, and it is often possible to
compute thermodynamic or spectroscopic properties of molecules with an accuracy
exceeding that of even the best available experiments. However, a serious limitation
of quantum chemistry is its poor extensibility: The most rigorous and reliable meth-
ods — those that carefully correlate the motion of the electrons — can be applied only
to small molecules containing at most a few atoms. Larger molecules remain out of
reach due to the high-degree polynomial computational scaling of these methods with
molecular size. For example, an accurate computation of the minimum-energy struc-
ture for the amino acid valine (containing only eight non-hydrogen atoms) would
require approximately one week on modern high-performance computational hard-
ware with a state-of-the-art quantum chemical program. For the valine-valine dimer,
however, a comparable calculation would require nearly two years to complete. This
high-degree polynomial scaling behavior represents perhaps the greatest obstacle to
the application of high-level quantum mechanics to mainstream chemical problems.

Great improvements have been made in the scaling of a number of simpler quan-
tum chemical techniques (e.g., Hartree-Fock and density functional theory), but the
inherent complexity of the higher-accuracy methods has slowed the development of
reduced- or linear-scaling implementations. Furthermore, because high-accuracy ap-
proaches involve such extreme cost, they are currently applied only to relatively small
molecules, where there can be little advantage from linear scaling formalisms; that is,
the prefactor of the linear steps would be large enough to actually make the linear
scaling approach more time consuming than a conventional calculation. However,
tremendous progress in computer architectures now makes it possible to treat sys-
tems large enough to be beyond the crossover point where the linear scaling methods
become faster than their conventional counterparts. This now makes it reasonable
and necessary to address the nonphysical scaling of the correlated methods.

One method in particular has emerged as the best for high accuracy calculations:
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coupled-cluster (CC) theory[2]. In the singles and doubles excitation version of this
theory (CCSD), the amplitudes of the singles and doubles excitations from a ref-
erence wavefunction are the unknowns. Products of these amplitudes are used to
approximate higher order excitations. This gives rise to a coupled system of nonlin-
ear equations that must be solved iteratively. Other variants of the coupled cluster
method exist, some including higher order excitations and others eliminating the
singles through reference orbital rotations. The version that includes triples correc-
tions perturbatively, CCSD(T), has proved to be a particularly effective predictor of
molecular properties, often rivaling the accuracy of experiment.

Coupled-cluster theory, in common with all other quantum chemical models, uses
molecular orbitals (MO’s), simple functions that describe the motion of individual
electrons. The most convenient choice of such functions are the so-called canonical
MO’s, for which the resulting mathematical equations assume a particularly simple
form. Unfortunately, canonical MO’s are also the source of the computational scaling
problem: Due to their delocalized nature, they result in interactions between elec-
trons on spatially distant parts of a large molecule. One route to overcoming this
serious hindrance is the concept of “local correlation”, originally explored by Pulay
and Saebg[7]. They demonstrated that if one abandons canonical MO’s and instead
chooses a more localized orbital form, vast numbers of electronic wavefunction pa-
rameters become negligible and may thus be ignored. This approach is tantamount to
correlating only the motions of the electrons on parts of the molecule that are in close
spatial proximity. Thus far, the local correlation idea has been applied to many-body
perturbation theory and to coupled-cluster theory with some success|3, 8, 9, 10].

In this work we have employed the local correlation idea of Pulay and Saebg in
the context of coupled-cluster theory to develop a reduced scaling local CCSD(T)
algorithm. A parallelization scheme for this algorithm has been worked out, and a
massively parallel implementation realized for the major computational steps.

2 Local Coupled-Cluster Theory

We will employ the local formalism presented by Pulay and Saebg[5, 6]. In this
formalism, the occupied orbitals are localized molecular orbitals, and the virtual
orbitals are projected atomic orbitals. The occupied orbitals are localized by means
of the Pipek-Mezey localization procedure[4], and the projection of the atomic orbitals
entails projecting the atomic orbital space against the occupied orbital space to ensure
orthogonality of the occupied and virtual spaces.

A key idea in the local correlation method is the use of orbital domains. A domain
consists of a set of atomic orbitals, and an orbital domain [i] is assigned to each
occupied orbital . The domain [i] includes all atomic orbitals that are spatially close
to the localized orbital i. To construct an orbital domain [z], the Mulliken charges ¢’

8



are first computed as follows

Qix = Z Z O,uiouis,uw (1)

HEA Vv

where A designates an atom, i, v are atomic orbitals, C); is a molecular orbital co-
efficient, and S, is an element of the overlap matrix. The charges are then ordered
in decreasing order, and atoms A are included until the sum of the included charges
q' exceedes some threshold, typically 1.8. The domain [i] is then constructed as the
union of all the atomic orbitals on the included atoms. The procedure is described
in detail in Refs. [1] and [3]. When constructing the coupled-cluster wavefunction,
excitations out of the occupied orbitals are only allowed into the virtual orbitals in
the corresponding domains. Thus, only single excitations out of an orbital 7 into the
domain [i] are included. For the double excitations, pair domains [ij] are constructed
for each occupied ij pair by combining the domains [i] and [j], and excitations are
allowed out of ij into the [ij] domain only. Analogously, triple excitations out of a
triplet ijk are allowed into only the corresponding domain [ijk|, obtained by combin-
ing the [i], [j], and [k] domains. By including only these excitations and by restricting
the number of 7j pairs and 7k triplets that are included as well as by employing var-
ious screening protocols for the integrals, a linear scaling algorithm can be obtained.
To limit the number of included ¢j pairs, pairs may be classified as strong or weak,
depending on the minimum distance R;; between any two atoms in the domains [i]
and [j]. For example, strong pairs may be defined as pairs for which R;; equals zero
(i.e., [{] and [j] share an atom). A screening protocol leading to linear scaling has
been described in detail in Ref. [9].

In the following, the indices ¢, j, k, [ denote occupied, localized molecular orbitals,
and the indices r,s,t,u represent projected atomic orbitals. For the two electron
integrals, the Mulliken notation is employed. Elements of the Fock matrix are denoted
as fyy, where x,y are indices that belong to either the localized occupied molecular
orbital or projected atomic orbital space. Elements of the overlap matrix in the
projected atomic orbital basis are designated S,s, and d;; represents the Kronecker
delta. t! and T represent elements of the single and double substitution arrays,
respectively.

The local closed-shell coupled-cluster singles residual and doubles residual equa-
tions take the following form

Uf« = Si + Srs Z[(ZT;I{C - Tfti)rf - ﬁkz‘t];L (2)
k
Vil = KT+ Y Ci(rtlus) + Y (rifts)t] + Y (sjltr)t; + G, + G2
tu t t

+Se[>_(ijrr — 61Bki — 0riBij) Crid] Sus- (3)

kl



The intermediates used in Eqs. 2 and 3 are defined as follows:
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The CCSD correlation energy is computed from the two-electron integrals and the
single and double substitution amplitudes

Etsp = D_[2(rilsj) — (rjls)]Cy + Qwat’

ijrs

(16)

The residual equations are a set of nonlinear equations, and they are solved iteratively.
The equations are converged when the root mean square value of the single and double
residuals arrays as well as the change in the energy are below selected thresholds.
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corr

The expression for the (T) correction, EGy, to the LCCSD energy may be written
as

B = By + By, (17)

where E(ST) and Eg?r) are the contributions from the single and double substitution
amplitudes, respectively, and may be expressed as

Efy = 3 (2= 0y = 0)[ X thSm (slkt) X2 + D7 thSeu (ir|kt) X7
i>5>k rstr! rsts’
+ > S (ir]jis) X2 (18)
rstt!
ERy = > (2—6;— ) Y WX, (19)
i>5>k rst

where X is defined in terms of the triples amplitudes

XHE = 4TI — 2TV — 2Tk — o 4 Tk 4 TR, (20)

rst rst rts

The triples amplitudes 7, ;gf are obtained by solving the equation
Qi + Wit = Ry =0, (21)
where Rﬂ? is the triples residual, and in,]z and W;ﬁf are defined as

er]sli = Z{Z ftuT;/]sk/u/ Srr’ Sss/ + Z fsuqu/qujt/ Srr’Stt’ + Z fruTuZZ/ Sss’Stt’}

u T/Sl T/t/ S/t/

- Z{ Z [flej/jsl/tl + flez/lgft' + filTlejjt/]Srr’Sss’Stt’}u (22)
l

r's't!
Wi = YD (usth) T, S + 3 (ur|th) T2, e
+ Zr(utlsj)Tf/’“uSW + Zzuﬂsj)Tif, Sir + 3 (ut|ri) T2 Sy
7! t s’
+ Z(us|ri)T£ﬁStt/}
"
— > IR TS + Uilkt) T ]S Sy
I r's
+ Y [(Ukljs) Ty + (Uil j5) T Srre St
r't/
+ N (ki) T2 + (1)ir) T Sser i }- (23)
s't!
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Eq. 21 must be solved iteratively to get the full local (T') correction, but an approx-
imation to the full (T) contribution, (T0) can be computed by a non-iterative scheme.
In the non-iterative scheme, the off-diagonal elements of the occupied-occupied block
of the Fock matrix are ignored in the last three terms of Eq. 22. Consequently, only
amplitudes of the type Tg’;i’z, where x,y, z represent projected atomic orbitals, con-
tribute to Q?S’,f For each ijk block, it is then possible to diagonalize the fock matrix
in the corresponding triples domain, and Eq. 21 then reduces to

QZZZ’(TO) = [fee+ foo+ faa — frr — fij — fu]T;if
DieToi. (24)
where the indices a, b, ¢ represent pseudocanonical virtual orbitals in the space ob-

tained by diagonalizing the fock matrix in the [ijk] domain. The (TO0) triples may
then be computed, as in the canonical case, by the following expression

Taic(O) = _Walj?c /Dajbc‘ (25)
The amplitudes computed in this way are labeled with (0) to distinguish them from

the triple amplitudes computed from the iterative solution of Eq. 21 without making
approximations.

We then get two expressions for the local coupled-cluster energy including the
triples correction

Ei¢osnery = Ercosp + Eiry s (26)
recsnero) = Erccso + Ero)- (27)

E@y and Efgg) are the local triples corrections computed from the (T) and (T0)
amplitudes, respectively, as described above.

3 Parallel Sparse Data Representation

The parallel sparse data representation was chosen to permit rapid prototyping, ease
of use, and good performance. The primary type is the C++ generic class Array.
Array’s primary template parameter is an integer, which gives the number of in-
dices in the array. Array relies on a variety of auxiliary classes that describe blocks,
distribution schemes, index ranges, etc. Array’s store the block descriptors for con-
tributing blocks, and the data for each block. Array’s are capable of manipulating
this data by performance copying of Array’s, summation of Array’s, binary products
of Array’s (a contraction) to produce a third Array, and contractions that result in a
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class Range {
public:
// Used to select blocking method.
enum BlockingMethod {AtomBlocking, ShellBlocking ,
FunctionBlocking , ExtentBlocking };
// Distribute basis functions using the given BlockingMethod.
Range(const sc::Ref<sc:: GaussianBasisSet > &,
BlockingMethod b = ShellBlocking , int blocksize = 1);
// Constructor using a fixed block size.
Range(int nindex, int block_size);
// Constructor that uses the block sizes given in the argument.
Range(const std::vector<int > & block_size);
// Returns the dimension of this range.
int nindex () const;
// Returns the number of blocks.
int nblock () const;
// Returns the size for the given block.
int block_size(int i) const;

Figure 1. The Range interface.

scalar. Parallelization is supported by members that convert replicated to distributed
arrays, distributed to replicated arrays, and distributed arrays to a different distri-
bution scheme. Helper classes are also employed to permit the use of the implicit
summation convention in the C++ source code, greatly increasing the readability of
the program. This section will discuss these arrays and their auxiliary classes in more
detail.

3.1 Auxiliary Classes

Several auxiliary classes are needed to support the operations of the Array class.
These classes are implemented in C++. The most important of these are outlined
in this section. Simplified interfaces are presented, showing only the most important
features.

A Range object represents a set of integers, [0, N). For example, one Range could
represent the atomic orbitals and another could represent the molecular orbitals.
These ranges are subdivided into user defined blocks. It is these blocks that determine
the granularity of Array’s data storage and distribution. A simplified interface for
Range is given in Figure 1.

BlockInfo stores information about a block of data, but not the data itself. This
information includes the block numbers for each index. The interface for BlockInfo
is given in Figure 2. The BlockInfo class has a single template parameter, N. This
parameter gives the number of indices.

The map structures that maintain Array’s internal blocks require a comparison
functor to establish an ordering relationship between BlockInfo objects. The internal
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template <int N>
class Blocklnfo {
public:
// Initialize the blocks to the values in the argument, v. The
// number of blocks assigned is the smaller of N and v.size ().
BlockInfo (const std::vector<bi_t> &v);
// Initialize the blocks to the values in the argument, b. The IndexList,
// |, specifies the order used to extract the indices from b.
BlockInfo(const Blocklnfo<N> &b, const IndexList &I);
// Set/retrieve block numbers.
bi_t &block(int i);
// Compute the size of this block.
unsigned int size(const Range *xindices);

Figure 2. The BlockInfo interface.

template <int N>
class IndiceslLess {
public:
bool operator () (const Blocklnfo<N>&bl, const Blocklnfo<N>&b2) const;
int compare(const Blocklnfo<N>&bl, const Blocklnfo<N>&b2) const;

b

Figure 3. The IndicesLess interface.

Array manipulations require a particular ordering relationship. The first index is most
significant using a simple comparison between the integer values. If the first indices
are equal then the second indices are compared, and so on. This is done with the
IndicesLess object that is outlined in Figure 3. Template specializations exist for
IndicesLess and BlockInfo for N = 2, N = 3, and N = 4, to speed up comparison
operations.

An Index is used in the symbolic notation for contractions. Its interface is shown
in Figure 4.

class Index {
public:

Index (const std::string &name);
Index(int value);
const std::string name() const;
int value() const;
bool has_value() const;
bool has_name() const;
bool operator == (const Index &i) const;
void set_.name(const std::string &name);
void set_value(int value);

Figure 4. The Index interface.
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template <int N, class Compare = IndicesLess <N> >
class Array {

public:

// The underlying date structure containing the blocks.

typedef std::multimap<Blockinfo<N>, doublex*, Compare > blockmap_t;

// Array’'s with varying numbers of indices can be initialized.

Array(const Range &i0,const Range &il);

// Adds block b. The data is not allocated.

blockmap_t:: value_type &add_unallocated_block (const BlocklInfo<N>&b);

// Allocate storage for all blocks.

void allocate_blocks ();

// These and related operators enable the use of shorthand

// for Array manipulations.

ContractPart<N> operator ()(const Index &il);

ContractPart<N> operator()(const Index &il, const Index &i2);

// Accumulates partial contributions from all nodes and places the

// results on all nodes. The block map must be the same on all nodes.

void parallel_accumulate(const sc::Ref<sc::MessageGrp> &grp);

// Convert a distributed array to a replicated array.

void replicated_from_distributed (const sc::Ref<sc:: MessageGrp>&,
const Array<N, Compare> &);

// Change the block distribution pattern.

void distributed_from_distributed (const sc:: Ref<sc:: MessageGrp>&,
const BlockDistrib<N> &,
Array<N, Compare> &,
bool clear_source_array = false);

Figure 5. The Array interface.

3.2 The Array Class

An Array maps BlockInfo objects to each block’s data. Two template parameters
can be given: N and Compare. N is the number of indices in the array and Compare is
comparison functor used to sort the blocks. The Array interface is shown in Figure 5.
The ContractPart type that appears as a return type of operator() is used to
implement the symbolic notation for contractions. It is not directly visible to users

and will not be discussed further.

3.3 Array Contraction

The most important operation using an Array is a contraction. An example of such

an operation is

L Z i
Rl“l Sp“qu
p
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The Array class organizes R, S, and 1" into blocks. In terms of blocks, Equation 28
can be written

i ) 5], [Tpﬂpfq (29)
pb,p

A

ulq/

The primed (element) indices are treated as if the arrays are ordinary, dense
multi-dimensional arrays. The unprimed (block) indices only run over a subset of
the possible values, according to the screening protocol employed on the Array. The
contract in terms of these sparse Array’s is implemented as follows:

Vi, j, i, q | R, #0
Vp | gpu 7% Ojﬁé # Q/ 3 A
LA R A B SV B -

M/q, p/q/

The code is implemented in such a way that it is not necessary to explicitly loop
though all indices. The map structures drive the computation and are used to obtain
lists of indices corresponding to nonzero blocks.

4 A Scalar Local CCSD(T) Algorithm

Before implementing the local coupled-cluster method, we have implemented a pro-
gram to perform local second-order Mgller-Plesset perturbation theory (MP2) com-
putations so that the scaling behavior of the model can be studied and potential
bottlenecks identified. Figure 6 illustrates the polynomial scaling of various steps in
the program. The localization procedure is inherently O(n?), but the procedure is
fast and is not expected to become dominant even for larger computations. Reducing
the scaling of this step is desirable but is beyond the scope of the present work. For
the integral transformation, the scaling is nearly quadratic, whereas sub-quadratic
scaling (O(n'7)) is obtained in the iterative procedure. It is possible to make each
of these steps truly linear scaling by employing more advanced screening protocols,
but these protocols involve a computational overhead that may not be offset by the
improved scaling, and we have therefore chosen not to implement them, at least for
the present. It is also expected that scaling will continue to improve as the system
size increases. We emphasize that the precise scaling of the algorithm is irrelevant as
long as the scaling is reduced sufficiently to enable computations for the system sizes
of interest.

The essential merit of reduced scaling correlation methods is the possibility of do-
ing computations for larger systems than those that can be treated by conventional
correlation methods. The touchstone for evaluating the merits of reduced scaling
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MP2 computations for (glycine),, chains using a 3-21G basis.

correlation procedures, therefore, is their performance relative to the corresponding
conventional correlation procedures. As documented in Figure 7, we have performed
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crossover studies for glycine chains comparing our reduced scaling local MP2 pro-
gram and a conventional MP2 program. As expected, the conventional algorithm is
faster for small systems, but the relative performance of the local MP2 algorithm
improves rapidly with the size of the system, and the local MP2 method becomes
faster than the conventional model around (glycine)s. For the larger glycine chains,
the conventional method, due to its high computational scaling (O(n°)) soon becomes
impractical, whereas computations for the large glycine chains, e.g., (glycine)y can
easily be performed with the local MP2 method even on a single processor. The
storage requirements for the local MP2 model are similarly reduced so that computa-
tions that become prohibitively expensive in terms of memory requirements with the
conventional method still can be performed with the local MP2 model.

After initial studies of the local correlation model using the local MP2 program,
a CCSD(T) algorithm was developed and implemented. An outline of the local
CCSD(T) algorithm is shown in Fig. 8. The major computational steps in the al-
gorithm are the transformation of the two-electron integrals and the computation of
the doubles and triples residuals in the CCSD and (T) iterative procedures.

The transformation of the two-electron integrals is carried out as two separate
transformations. The first transformation generates the integrals (rs|ti) with one
occupied index and the all-virtual integrals (rs|tu), and in the second transformation,
the integrals (rs|ij), (ri|sj), (ri|jk), and (ij|kl) with two, three, or four occupied
indices are computed.

The local CCSD energy is computed in an iterative procedure as described in
Chapter 2. After completion of the CCSD computation, the (T0) energy can be
computed from the local CCSD single and double substitution amplitudes. The (T0)
amplitudes are subsequently used as the initial guess for the triple substitution am-
plitudes in the iterative procedure computing the full (T) correction.

5 Parallel Implementation and Performance

All major computational steps in the algorithm have been parallelized. Where possi-
ble, parallelization has been implemented by distributing pairs (ij) or triplets (ijk) of
localized occupied molecular orbitals and letting each node process only the subset of
the 77 pairs or ¢5k triplets held locally. For cases where parallelization over 45 or 17k is
not possible, work has been distributed over a single index representing either an occu-
pied orbital or an atomic orbital. The employed data distribution scheme distributes
all the largest data arrays but replicates as many data arrays as possible without in-
troducing memory bottlenecks. The replication of most data arrays greatly simplifies
the parallelization of the various contraction steps that constitute the major compu-
tational steps in the computation of the coupled-cluster energy and also reduces the
amount of communication required. The largest data arrays, representing the atomic
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Initialize all arrays
Compute screening quantities required for integral transformations

Integral transformation: generate (rs|tu), (rsl|ti)
Integral transformation: generate (rs|ij), (ri|sj), (ri|jk), (ij|kl)

Begin CCSD iterations

Compute singles residual

Compute doubles residual

Compute At, AT

DIIS extrapolation of t, T

Compute B, AESH:p

Check for convergence on AEEES,, At, AT
End CCSD iterations

Compute (T0) correction

Begin (T) iterations
Compute triples residual
Compute AT3
Compute Eiy
Check for convergence on ALY, AT3

End (T) iterations

Figure 8. Outline of the scalar local CCSD(T) algorithm.
The arrays t, T, and T3 represent the single, double, and
triple substitution amplitudes, respectively.

orbital basis and partially transformed two-electron integrals, are distributed across
nodes, but all other arrays, including the fully transformed two-electron integrals, the
singles and doubles residuals and the single and double substitution amplitudes, are
replicated. Let us briefly describe how the major computational steps, including the
two-electron integral transformation and the computation of the doubles and triples
residuals, are parallelized.

The two-electron integral transformations (there are two transformations, wvide
supra) are implemented using a coarse-grained parallelization strategy to reduce com-
munication, and the same parallelization scheme is employed for both transforma-
tions. An outline of the part of the transformation generating the (rs|tu) integrals
is shown in Fig. 9. All partially transformed integral arrays are distributed, whereas
the fully transformed integrals are replicated across nodes. The partially transformed
integral arrays are distributed by distributing an atomic orbital index (u in Fig. 9).
With this distribtion, the first three quarter transformations can be performed inde-
pendently on each node without any interprocessor communication. When the third
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(iplvu) — (pp|lvo) x P(o,u) First quarter transformation

(apltu) «— (pplvu) x P(v,t) Second quarter transformation

(as|tu) «— (mpltu) x P(p,s) Third quarter transformation

(us|tu) «— (ms|tu) Redistribution of integrals

(rs|tu) « (ust|u) x P(u,r) Fourth quarter transformation

(rs|tu) « (rs|tu) Global accumulation of transformed integrals

Figure 9. The integral transformation generating the
(rs|tu) integrals. A horizontal bar above an index indicates
that the index is distributed. The steps requiring communi-
cation are printed in bold face.

quarter transformation is complete, a redistribution of the three-quarter transformed
integrals is required, generating the three-quarter transformed integrals distributed
over the index u representing a projected atomic orbital. The fourth quarter transfor-
mation, subsequently, is performed on each node without any further communication.
After completion of the fourth quarter transformation, the tranformed integrals held
locally on each node are sent to all other nodes in a global accumulation step.

Computation of the doubles residual (Eq. 3) is parallelized by distributing work
over ij pairs. Each node computes the elements VY of the residual for a subset of
the 77 pairs, and no communication is required until the computation of the residual
is complete on each node. At this point, a global accumulation is carried out to send
the computed residuals from each node to all other nodes.

The computation of the triples residual (Eq. 21) is parallelized in a similar way,
except that triplets ijk, not ij pairs, are distributed. Each node independently com-
putes a subset of the triple residual elements Rrst, and, afterwords, the computed
residuals are accumulated on all nodes.

The parallel performance of the algorithm is illustrated in Figs. 10 and 11. These
curves were obtained on a Linux cluster with dual 3.06 GHz XEON nodes and a
4X InfiniBand interconnect. Only one processor per node was used for these runs.
Performing only a local MP2 computation (which is a subset of the coupled-cluster
computation), speedups were obtained for (glycine), using the 6-31G and 6-31G*
basis sets. Due to the distributed memory requirements for these algorithms, the
6-31G basis set computation would run on 4 or more nodes and the the 6-31G* basis
set computation required at least 16 nodes. The dominant computational step is the
4-index integral transformation, and the speedups for the total time closely track the
integral transformation speedup. Steady improvement is seen as the number of nodes
increases, with a drop-off from ideal behaviour seen around 8-16 processors. Larger
problem sizes are expected to increase the number of processors where a significant
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Figure 10. Parallel speedups for the LMP2 total time and
transformation step for (glycine)s using 6-31G and 6-31G*
basis sets.
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Figure 11. Parallel speedups for the LCCSD transforma-
tion and (T) steps for (glycine)s using a 6-31G basis set.
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deviation from ideal before is first seen.

The LCCSD(TO0) speedups were obtained for (glycine)s using the 6-31G basis
set. The steps shown are the 4-index transformation (which for LCCSD produces
a larger set of integrals than the LMP2 algorithm needs to compute) and the (TO0)
correction. The performance trends are very similar to those for the LMP2 speedups.
The LCCSD code is currently memory bound, which limited the size of the problems
that could be studied. In this case, the LCCSD iterative procedure obtains a low
parallel efficiency (~6% for 32 nodes).

The replicated all-virtual integrals (rs|tu) and integrals with one occupied index
(rs|ti) currently constitute memory bottlenecks in the program. The (rs|tu) integrals
only appear in one term in the computation of the doubles residual, and this term
can be computed in an integral-direct manner, making it possible to avoid storage of
the (sr|tu) integrals. Regarding the (rs|ti) integrals, the memory bottleneck may be
avoided by distributing the integrals across nodes.

6 Fault Tolerance

A major goal of this work has been to understand how the new parallel algorithms
described herein can be implemented in a way that will permit application handled
scalable fault tolerance. We define scalable fault tolerance as having the following two
properties: The time-to-solution in the absence of faults is not significantly different
than the time-to-solution of an algorithm that does not support fault tolerance and
the time-to-solution in the presence of faults is not significantly different than the
time-to-solution when running a algorithm that is not fault-tolerant on the number
of processors remaining after the fault. Handling faults directly in the application
has several advantages in that only the application programmer knows at any given
time what data is hard to recompute and what data is easy to recompute in case of a
failure. That knowledge can for many applications dramatically reduce the expense
of providing fault tolerance compared to automatic checkpointing. The disadvan-
tages of handling faults within the application is that this requires correct processing
during uncommon circumstances, which creates additional burdens in developing the
algorithm and in providing regression tests that guarantee that correct results are
obtained in the presence of faults.

The local electronic structure theories that we are investigating provide a good
testbed for fault tolerant algorithms in that they exhibit a range of properties and thus
would capture the behavior of a wide variety of other applications. It has turned out
that the first phase of the calculation, the four index transformation of the two electron
integrals, is very data intensive and requires that most of the data be distributed
among the nodes. The second phase, the iterative solution of the LMP2 equations
in the localized basis, is compute intensive and requires relatively small amounts of
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data. In this phase it is best to replicate the data on all nodes.

Fault handling in the second phase would be the simplest. At the beginning of
the iterative solution a record can be made of which processor is responsible for each
occupied orbital pair. These records can be replicated on each task. At the end of
each iteration, when the updated solution is redistributed, the new iterate can be
accumulated into a temporary buffer. The application will then check for a fault.
If no fault occurs, then the temporary iterate is copied into the current iterate and
the calculation proceeds. If a fault has occurred, then a new communicator can be
built from the remaining processors and processing for that iteration can resume by
redistributing the work from the faulty tasks onto the remaining nodes to complete
the iteration. At the application level, the processing time will be exactly the same
obtained by starting the iteration with the number of nodes remaining after the fault.
The only performance penalty will be a result of the need for the MPI layer to quiesce
all message passing and purge messages to and from the faulty nodes.

Fault handling in the first phase is more interesting as it requires a way to handle
the loss of distributed data. The large amount of data involved makes checkpointing
to a filesystem undesirable. Total replication of the data is impossible because more
data is involved than can be held on any node. Recomputation of the lost data is
complicated because of the unavoidable redistribution of third quarter transformed
integrals. After this step, each node will contain contributions from all other nodes.
If any node’s data is lost, then the entire set of second transformed integrals must be
recomputed to recompute the lost third quarter transformed integrals. This leaves two
alternatives: Partial replication or storing the second quarter transformed integrals
until the fourth quarter transformed integrals are completed. Our current thinking is
that partial replication is the best approach as this would reduce the the application
code complexity somewhat.

The actual implementation of fault tolerance has been hampered by the slow
development of MPI extensions that report failures to the application and give the
application an opportunity to continue running. Based on this and the feedback
from the second year review of this project suggesting that we focus on the electronic
structure methods, we have not gone beyond the above analysis of fault tolerance in
our application. We continue to work with investigators at Sandia and other labs to
provide the MPI features required for application level fault tolerance.

7 Conclusions

We have developed a local, reduced-scaling coupled-cluster algorithm for computing
CCSD(T) energies. The algorithm also computes local MP2 energies as well as the
CCSD(T0) energy, which is an approximation to the full local CCSD(T) energy. A
preliminary implementation of the MP2 part of the local coupled-cluster algorithm
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method exhibited low-order polynomial scaling and demonstrated very significant
computational savings relative to a conventional MP2 computation. For the local
coupled-cluster algorithm, a parallelization scheme has been developed and imple-
mented for massively parallel computation of local CCSD(T) energies. The parallel
performance of both the MP2 part and the coupled-cluster part of the algorithm has
been investigated.

Parallel performance testing has yet to be done for larger cases where the bene-
fits of both the local correlation scheme and of the parallel implementation will be
more pronounced. Currently, the replicated storage of two-electron integrals of the
type (rs|tu) and (rs|ti) constitute a memory bottleneck, but this bottleneck may be
removed relatively easily by modifying the algorithm to no longer require storage of
the (rs|tu) integrals and to distribute the (rs|ti) integrals.

Finally, strategies for implementing fault tolerance have been investigated. Whereas
fault handling is relatively straightforward in the part of the code that employs repli-
cated data arrays, a more sophisticated fault handling scheme involving partial repli-
cation of data is required for the part of the code that employs distributed data.
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