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Abstract 
 
 
The convergence of nanoscience and biotechnology has opened the door to the 
integration of a wide range of biological molecules and processes with synthetic materials 
and devices. A primary biomolecule of interest has been DNA based upon its role as 
information storage in living systems, as well as its ability to withstand a wide range of 
environmental conditions. DNA also offers unique chemistries and interacts with a range 
of biomolecules, making it an ideal component in biological sensor applications. The 
primary goal of this project was to develop methods that utilize in vitro DNA synthesis to 
provide spatial localization of nanocrystal quantum dots (nQDs). To accomplish this 
goal, three specific technical objectives were addressed: (1) attachment of nQDs to DNA 
nucleotides, (2) demonstrating the synthesis of nQD-DNA strands in bulk solution, and 
(3) optimizing the ratio of unlabeled to nQD-labeled nucleotides. DNA nucleotides were 
successfully attached to nQDs using the biotin-streptavidin linkage. Synthesis of 450-nm 
long, nQD-coated DNA strands was demonstrated using a DNA template and the 
polymerase chain reaction (PCR)-based method of DNA amplification. Modifications in 
the synthesis process and conditions were subsequently used to synthesize 2-µm long 
linear nQD-DNA assemblies. In the case of the 2-µm structures, both the ratio of 
streptavidin-coated nQDs to biotinylated dCTP, and streptavidin-coated nQD-dCTPs to 
unlabeled dCTPs affected the ability to synthesize the nQD-DNA assemblies. Overall, 
these proof-of-principles experiments demonstrated the successful synthesis of nQD-
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DNA using DNA templates and in vitro replication technologies. Continued development 
of this technology may enable rapid, spatial patterning of semiconductor nanoparticles 
with Ångstrom-level resolution, as well as optically active probes for DNA and other 
biomolecular analyses. 
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1.0 Introduction 
 

Nanocrystal quantum dots (nQDs) are crystalline particles composed of 
semiconductor materials such as cadmium selenide (CdSe) and indium arsenide (InAs), 
and emit photons of light in which the wavelength is highly size-dependent. nQDs are 
chemically synthesized in solution by a variety of methods, and subsequently coated  
with a shell of zinc oxide (ZnO) or zinc sulfide (ZnS) to enhance the photoluminescence 
and quantum efficiency [1-4]. The utility of these semiconductor nanoparticles is 
becoming increasingly recognized based upon their exceptional optical properties when 
compared with standard fluorescent dyes [5-9]. For example, the excitation spectra of 
nQDs are quite broad, which allows nQDs differing in size and spectral emission to be 
excited by a single wavelength and source (e.g., laser). In contrast, fluorescent dyes have 
narrow excitation spectra, and thus require multiple sources to excite multiple dyes. 
nQDs also do not suffer from photo-bleaching as is common with traditional fluorescent 
dyes. Because the optical properties of nQDs are based on the specific size of individual 
particles, the spectral emission may be tuned for specific applications.  

Deoxyribose nucleic acid (DNA) represents an excellent nanoscale scaffold for 
spatially patterning nQDs into 2- and 3-dimensional arrays, based on the composition, 
structure, and stability of a DNA molecule. The importance of DNA in living organisms 
has been renowned since its structure was first reported by Watson and Crick in 1953 [10, 
11]. The structure of DNA is relatively simple, and composed of two polynucleotide 
chains that are intertwined to form a double helix. Each DNA chain consists of a sugar-
phosphate backbone and four nucleotide subunits: deoxyadenine (dATP), deoxycytidine 
(dCTP), deoxyguanosine (dGTP), and deoxythymidine (dTTP). Together these subunits 
encode all the information necessary for living organisms to function and survive. Based 
on its central role in information storage in living systems, the potential use of DNA in 
hybrid engineered devices and systems has been increasingly recognized. Further, the 
structural features (e.g., the highly selective pairing of nucleotides) and ability to 
engineer DNA sequences have enabled the development of hybrid nanomaterials that 
utilize DNA as a scaffold for organizing nanoparticles [12-14]. The Watson-Crick base-
pair interactions provide a unique way of designing nanoscale scaffolds on which 
synthetic materials may be formed. Linear assemblies of metal and semiconductor 
nanocrystals have been formed using bifunctional crosslinking of nQDs to DNA, as well 
as hybridization of complementary DNA strands [14, 15]. These methods, however, rely 
on the production of DNA strands, and covalent linking of nanoparticles to the DNA to 
assemble the hybrid materials. In addition, such assembly methods do not fully utilize the 
nucleotide sequence of the DNA scaffold to control the relative spacing between 
nanoparticles. 

The ability to synthesize and amplify DNA sequences using the polymerase chain 
reaction (PCR) was a significant factor leading to the biotechnology revolution. PCR 
enables the mass production of DNA “copies” using as little as one strand of DNA as the 
starting template [16]. The PCR process utilizes a thermostable DNA polymerase enzyme 
to incorporate individual deoxynucleotides into a new strand of DNA based on 
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complementary base pairing with the template strand. The synthesis process involves 
sequential cycling of the reaction temperature to induce denaturation of parent DNA, 
oligomer annealing, and DNA synthesis. The number of DNA molecules increases 
exponentially through repeated cycling of the process. Since its inception, the process of 
PCR has been adapted for a wide array of applications including site-directed 
mutagenesis and DNA sequencing. In the case of DNA sequencing, radio- or 
fluorescently-labeled nucleotides are used in the PCR reaction, and subsequently used to 
discern the sequence of the target DNA. 

From an engineering standpoint, PCR represent a highly efficient process for the 
mass manufacturing of nanoscale scaffolds with atomic-level precision, and a “bottoms-
up” approach to nanotechnology. The overarching goal of the work presented in this 
report was to explore the use of DNA replication technologies (e.g., PCR) to assemble 
nQDs into 1-, 2-, and 3-D architectures. It was hypothesized that spatially-resolved 
patterns of crystalline nanoparticles could be synthesized using DNA scaffolds and in 
vitro synthesis techniques. To test this hypothesis, it was necessary to address a number 
of technical issues and questions. For example, can DNA nucleotides be interfaced with 
nQDs? Will such interfaces be stable to the temperature cycling necessary for DNA 
replication? Can modified DNA nucleotides be directly incorporated into replicating 
DNA? The results presented in this report address three specific technical objectives 
related to these technical issues: (1) attachment of nQDs to DNA nucleotides, (2) 
demonstrating the synthesis of nQD-DNA strands in bulk solution, and (3) optimizing the 
ratio of unlabeled to nQD-labeled nucleotides to produce extended nQD-DNA strands. 
The ability to assemble patterned strands of nQD-DNA using DNA replication 
techniques offers significant advantages that are lacking in current technologies. For 
example, while current technologies rely on random crosslinking of nanoparticles to 
DNA, the proposed method will exploit the intrinsic information defined by the DNA 
nucleotide sequence to define the specific location and pattern of nQDs with Ångstrom-
level precision. Further, nQD-DNA strands may be mass-produced using PCR-based 
methods that exponentially increase the number of DNA molecules starting from as little 
as a single template molecule. Lastly, nQD-DNA strands may be used in an array of 
biomolecular assays, and offer the ability to use a single wavelength laser to excite range 
of nQDs different emission spectra, thus simplifying detection. 

 
 
2.0 General Strategy 
 

The overall strategy involved the use of single-stranded (ss-) DNA as a template for 
the synthesis of new, complementary DNA strands that incorporate nQDs at specific 
locations dependent upon the position of labeled nucleotides. Figure 1 shows an overview 
of this strategy. The process requires a known ssDNA template, one or two 
complementary strand DNA primers, and a thermostable DNA polymerase enzyme such 
as Taq polymerase. A mixture of DNA nucleotides (i.e., dATP, dGTP, dCTP, and dTTP) 
is then be added to the solution. One or more of these nucleotides has been modified with 
biotin, and reacted with a solution of streptavidin-labeled nQDs prior to use. The reaction 
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is then initiated by heating the mixture to 95°C, removing the enzyme inhibitor and 
activating the Taq polymerase. As the complementary DNA strands are being 
synthesized, an nQD-nucleotide is incorporated into the newly formed DNA strand each 
time the particular nucleotide is selected. For example, in Figure 1 (left), green- and red-
emitting nQDs are bound to dCTP and dATP nucleotides, respectively, via biotin-
streptavidin linkage. As the Taq polymerase synthesizes the new DNA strand, an nQD is 
attached to the DNA strand at each place a guanosine (G) or thymine (T) is present in the 
template sequence. Using this strategy a maximum of four different size and wavelength 
emitting nQDs may be patterned on a single DNA strand.  
 
 

 
 
Figure 1: Schematic overview of the developed method for patterning nQDs using in 
vitro DNA replication techniques. 

3.0 Materials and Methods 
 
3.1 Materials 
 

A circular DNA plasmid, pET-Kin797, containing the coding sequence for a 
monomeric kinesin from Thermomyces lanuginosus was used as the DNA template for all 
experiments (Figure 2). This plasmid DNA was developed as part of a related project, 
and constructed by cloning the Thermomyces kinesin gene (2393 bp) into the pETBlue-1 
plasmid vector from EMD Biosciences (3476 bp). E. coli strain NovaBlue (EMD 
Biosciences) was transformed with the pET-Kin797 construct, and cultured to obtain 
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concentration of 0.2 µM dCTP. The temperature cycling profile for these reactions was: 
(1) 95°C for 2 min, (2) 95°C for 30 sec, (3) 55°C for 30 sec, (4) 72°C for 3 min, and (5) 
4°C hold; steps 2-4 were cycled a total of 35 times.    

The second experimental approach used to form nQD-DNA strands was based on 
methods used to form complementary DNA strand probes used for DNA hybridization 
assays. Only a single primer (i.e., Primer 1) was used to synthesize a 5869 bp DNA copy 
of the linearized pETBlue-Kin797 plasmid, which in turn should generate 2-µm long 
nQD-DNA strands. Solutions of streptavidin-coated nQDs and biotinylated dCTPs were 
prepared as described above. Because each deoxynucleotide is ~3.4Å in size, varying 
ratios of nQD-labeled and unlabeled dCTPs were used such that the 15-nm nQDs did not 
sterically interfere with the synthesis of the nQD-DNA strands. Thus, five ratios of 
streptavidin-coated nQD-dCTPs to unlabeled dCTPs were evaluated: 1:10, 1:20. 1:30, 
1:40, and 1:520. The template DNA consisted of the pETBlue-Kin797 plasmid described 
above, except the template was digested with the restriction endonuclease EcoRI. 
Following enzyme digestion, the linearized template DNA was extracted with 25:24:1 
phenol:chloroform:isoamyl alcohol to remove the restriction endonuclease, precipitated 
with sodium acetate and ethanol, and resuspended in deionized water. The concentration 
of the linearized template was determined by spectrophotometry.  nQD-DNA  reactions 
were assembled by diluting the template DNA to a final concentration of 2 µg/mL (~1.7 x 
1010 template molecules per reaction) in 1x PCR buffer containing 0.2 mM dATP, 0.2 
mM dGTP, 0.2 mM dTTP, 0.2 µM Primer 1, and 0.02 Units/µL Taq DNA polymerase. 
Biotinylated dCTP-nQD and unlabeled dCTP were then added to achieve the desired 
rations described above, as well as a final concentration of 0.2 µM dCTP. The 
temperature sequence for these reactions consisted of (1) 95°C for 3 min, (2) 55°C for 3 
sec, and (3) 72°C for 15 – 30 min. 
 
3.3 nQD-DNA characterization 
 

nQD-DNA reactions were evaluated using two methods: epifluorescence microscopy 
and agarose gel electrophoresis. Small aliquots (5 – 10 µL) of each reaction were placed 
on 3 x 5 cm glass microscope slides, and covered with a 15 x 15 mm #1 coverslip. Slides 
were imaged on an Olympus IX-71 inverted microscope using a 100x oil immersion 
objective lens, mercury arc lamp for nQD excitation, and a WIG filter cube (520 – 550 
nm band pass filter, 565 nm cut-off filter, Olympus Inc). Photomicrographs were 
captured using a Hamamatsu Orca II-ER CCD camera, and processed using the 
MicroSuite AnalySIS software package from Olympus. 

Agarose gel electrophoresis was used to both separate nQD-DNA strands from 
unincorporated nQDs, as well as to estimate the size of the nQD-DNA strands that were 
produced. Aliquots (5 – 20 µL) of the nQD-DNA samples were mixed with DNA loading 
buffer (8% glycerol, 20 mM Ethylenediaminetetraacetic acid, and 0.05% Bromophenol 
Blue), and loaded on a 0.7% TBE-agarose gel. Samples were separated by 
electrophoresis at 100 V for 60 – 90 min, and visualized using a UV transilluminator. For 
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Figure 3: Fluorescence photomicrographs of composite structures formed using a 
PCR-based approach to synthesizing nQD-DNA strands. Scale bars = 1 µm. 

 
 

selected samples, nQD-DNA bands were excised from the gel with a razor blade, isolated 
using a gel extraction kit (Qiagen Inc), and viewed by epifluorescence microscopy. 
 
 
4.0 Results 
 
4.1 Epifluorescence microscopy 
 

In terms of the first strategy (i.e., PCR-based methodology) used to synthesize nQD-
DNA, short (0.5 – 2 µm in length), irregular-shaped arrays of nQDs were observed by 
epifluorescence microscopy. Figure 3 shows several examples of these nQD-DNA arrays. 
Similar types of structures were absent from control samples that lacked the DNA 
template and/or primers, and primarily consisted of randomly disperse nQDs, with some 
minor aggregation of particles. In general, neither the ratio of streptavidin-coated nQDs 
to biotinylated dCTP nor the ratio of streptavidin-coated nQD-dCTPs affected the 
synthesis of these structures. Overall, these experiments provide the simple proof-of-
principle that assemblies of nQDs could be synthesized using DNA scaffolds and in vitro 
replication techniques. 

For the second approach (i.e., formation of a single complementary DNA strand), 
epifluorescence microscopy demonstrated the synthesis of linear nQD-DNA strands of 2 
– 5 µm in length, as shown in Figure 4. As with prior experiments, control samples 
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Figure 4: Fluorescence photomicrographs of nQD assemblies using the 
complementary strand synthesis approach to synthesizing nQD-DNA structures. Scale 
bar = 2 µm 

 
 

lacking template DNA and/or primers did not yield any similar structures. The observed 
structures often displayed very intense regions of fluorescence, representing a high 
density of nQDs, that were separated by less intense fluorescent regions (i.e., low density 
of nQDs). Although the majority of the structures were linear in nature, bent and kinked 
nQD-DNA structures were also observed. The nQD-DNA assemblies formed by this 
method displayed a significant dependence on the conditions used for synthesis reactions.  
Specifically, linear nQD-DNA assemblies were most prevalent in samples in which the 
ratios of streptavidin-coated nQDs to biotinylated dCTP, and streptavidin-coated nQD-
dCTPs to unlabeled dCTPs were 1:64,000 and 1:520, respectively. Conversely, short, 
(i.e., < 0.5 µm) assemblies of nQDs were observed at higher ratios of streptavidin-coated 
nQD-dCTPs to unlabeled dCTPs, and streptavidin-coated nQD-dCTPs to unlabeled 
dCTPs. 
 
4.2 Gel electrophoresis 
 

Samples prepared using both the PCR-based and complementary strand synthesis 
methods were separated by agarose gel electrophoresis, and demonstrated the successful 
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Figure 5: Photomicrographs of gel electrophoresis of nQD-DNA assemblies formed by the 
PCR-based (A) and complementary strand synthesis methods (B). 

    
 

(B) (A) 

synthesis nQD-DNA strands that fluoresced under ultraviolet light (Figure 5). Because a 
fluorescent dye such as ethidium bromide was not used to stain the DNA, the observed 
fluorescence may be attributed to the attached nQDs. For the PCR-based method, a DNA 
band was observed at 1.3 kb, which is consistent with the predicted size of the amplified 
fragment using Primers 1 and 2 for the pETBlue-Kin797 template. Similarly, a DNA was 
observed at slightly less than 6 kb, which corresponds well with the predicted size of the 
linearized template DNA. Several of these bands were excised from the gel, extracted, 
and visualized by epifluorescence microscopy. Structures similar to those observed prior 
to electrophoresis (e.g., images shown in Figures 3 and 4) were observed following 
electrophoresis, although the relative quantity of these structures was significantly lower. 
In addition, the overall background of nQDs was significantly reduced following 
electrophoresis, due to the physical separation of nQD-DNA from unincorporated nQDs. 
Overall, the electrophoresis results confirm those obtained by epifluorescence 
microscopy, and suggest that nQD-DNA strands were synthesized by both approaches. 
 
5.0 Discussion and Conclusions 
 

Spatially organized assemblies of nQDs and DNA were synthesized using both the 
PCR-based and complementary strand synthesis approaches. Agarose gel electrophoresis 
demonstrated the specific attachment of nQDs to DNA by separating attached and 
unattached nQDs from the reaction. Moreover, epifluorescence microscopy demonstrated 
synthesis of nQD-DNA composites of varying sizes tuning template and reaction 
conditions. For the PCR-based approach, nQD-DNA strands of 0.5 – 2 µm in size were 
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observed, as compared to the predicted size of ~ 0.5 µm based on the DNA sequence. 
Aggregation of several 0.5 µm nQD-DNA strands into an agglomeration likely explains 
the presences of the observed larger structures. The ability to discern individual linear 
nQD-DNA strands from aggregation is difficult for structures of this size using 
epifluorescence microscopy. A certain degree of nQD-DNA aggregation, however, is 
expected based on the ability of each streptavidin molecule to bind four biotin molecules. 
In addition, each nQD is coated with approximately fifteen streptavidin molecules, thus 
providing a means of aggregating several nQD-DNA into larger agglomerations. nQD-
DNA strands larger than the predicted size were also observed using the complementary 
strand synthesis method (i.e., observed: 2 – 5 µm, expected: 2 µm). Similarly, 
streptavidin-based aggregation of multiple nQD-DNA likely explains these observations. 
Potential solutions to eliminate aggregation include pre-conditioning streptavidin-coated 
nQDs with biotin such that the number of available bindings site would be limited, or 
synthesizing streptavidin-coated nQDs with only a single streptavidin molecule per nQD.  

Formation of the 2-µm nQD-DNA strands using the complementary strand synthesis 
approach was significantly dependent on both the ratio of streptavidin-coated nQDs to 
biotinylated dCTP, and streptavidin-coated nQD-dCTPs to unlabeled dCTPs. The 
dependence of the latter ratio is expected based on a significant difference in the relative 
size of the nQDs (i.e., ~15 nm) as compared with deoxynucleotides (i.e., 3.4 Å). 
Approximately 44 deoxynucleotides occupy the same space as a single nQD, which 
would include presence of about eleven dCTP nucleotides assuming a random 
distribution. Based on these assumptions, a significant increase in the number of nQD-
DNA strands was expected for ratios greater than 1:10. An increase in the production of 
nQD-DNA, however, was only observed at the 1:520 ratio, suggesting the involvement of 
other mitigating factors in addition to steric inhibition. Overall, maintaining a proper ratio 
of unlabeled to streptavidin-coated nQD-dCTP appears to alleviate factors inhibiting the 
synthesis of nQD-DNA strands. In terms of the streptavidin-coated nQDs to biotinylated 
dCTP ratio, differences are likely attributable to the large number of streptavidin binding 
sites on each nQD, as discussed above. Increasing the relative number of biotinylated 
dCTP nucleotides per nQD should result in an increase in the number of dCTPs per nQD. 
Thus, incorporation of nQDs into the newly synthesized DNA strand should be more 
efficient based on an increased number of available dCTPs on a given nQD. 

The mechanism by which the nQD-DNA strands are synthesized is not known, but 
likely occurs by one of two different mechanisms. In the first mechanism, dCTP-
conjugated nQDs are used by the polymerase, and directly inserted into the newly 
synthesized DNA strand. The structure and mechanism by which this enzyme acts must, 
however, permit the binding and catalytic addition of nucleotide-conjugated nQDs for 
this mechanism to occur. Alternatively, the DNA polymerase uses only biotinylated 
dCTP nucleotides to form the new DNA strand, and attachment of a streptavidin-coated 
nQD occurs immediately following synthesis. Based on the structure and proposed 
mechanism of DNA synthesis by the Taq polymerase enzyme, the latter mechanism is the 
more plausible hypothesis. Insertion of nucleotides by DNA polymerase enzymes into a 
newly synthesized strand is a highly selective process. For example, insertion of ribose-
based nucleotides and modified deoxynucleotides by DNA polymerases occurs at a 
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substantially reduced frequency compared with normal, unmodified deoxynucleotides 
[17, 18]. Such biased incorporation of unmodified deoxynucleotides is attributable to 
decreased rates of phosphodiester bond formation and the proofreading ability of the 
enzyme [18, 19]. Thus, incorporation of dCTP-conjugated nQDs directly by the Taq 
DNA polymerase is unlikely due the considerable modification of the deoxynucleotide, 
as well as the overall size of the complex compared to the size of the catalytic domain (~2 
– 3 nm) of the polymerase enzyme. Therefore, incorporation of biotinylated dCTPs (not 
attached to nQDs) should happen at a higher frequency based on the ability of the 
modified nucleotide to fit into the catalytic domain of the enzyme. It is also expected that 
unmodified dCTPs should be incorporated at a higher frequency than the biotinylated 
dCTPs, which is beneficial based on the relative size issues discussed above. 

Recently, there has been significant interest in using biological molecules as a means 
for assembling and organizing nanoscale materials [20-24]. In this work, the synthesis of 
nQD-DNA structures demonstrates the ability to assemble photoactive materials with a 
range of materials science-, nanoelectronics-, and nanophotonics-based applications. 
DNA templates possess a number of intrinsic properties that are extremely attractive. For 
example, DNA molecules are ~2 nm wide and can measure several meters long for 
uncoiled chromosomal DNA, which translates into an aspect ratio of 109. Genetic design 
and engineering of DNA sequences enables the ability to “program” nQD-binding sites 
into a given DNA strand, which in turn may be used to regulate interactions among 
adjacent nQDs. Information may also be encoded in these strands by controlling the 
spacing and color of nQDs within a given strand. In terms of manufacturability, the 
methods of synthesizing nQD-DNA strands developed in this project offer the capability 
of mass production. Further, the size of each deoxynucleotide translates into Å-level 
precision during the manufacturing process. 

In addition to materials science applications, the ability to synthesize nQD-DNA 
strands also offers a number of biotechnological applications. Fluorescent organic dyes 
are widely used for the study of biological systems, and include microarray analysis, 
DNA sequencing, confocal cell imaging, and protein-protein interactions. nQDs offer 
superior properties (i.e., high quantum yield, photo-stability), and have begun replacing 
many of the standard dyes [6, 7]. Thus, the ability to synthesize these photoactive DNA 
molecules provides an enabling platform for a number of biotechnological and sensor-
based applications. 
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