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Abstract

Relationships to determine the probability that a weak link (WL)/strong link (SL) safety system will fail
to function as intended in a fire environment are investigated. In the systems under study, failure of the
WL system before failure of the SL system is intended to render the overall system inoperational and thus
prevent the possible occurrence of accidents with potentially serious consequences. Formal developments
of the probability that the WL system fails to deactivate the overall system before failure of the SL system
(i.e., the probability of loss of assured safety, PLOAS) are presented for several WL/SL configurations:
(i) one WL, one SL, (ii) multiple WLs, multiple SLs with failure of any SL before any WL constituting
failure of the safety system, (iii) multiple WLs, multiple SLs with failure of all SLs before any WL consti-
tuting failure of the safety system, and (iv) multiple WLs, multiple SLs and multiple sublinks in each SL
with failure of any sublink constituting failure of the associated SL and failure of all SLs before failure of
any WL constituting failure of the safety system. The indicated probabilities derive from time-dependent
temperatures in the WL/SL system and variability (i.e., aleatory uncertainty) in the temperatures at which
the individual components of this system fail and are formally defined as multidimensional integrals.
Numerical procedures based on quadrature (i.e., trapezoidal rule, Simpson’s rule) and also on Monte
Carlo techniques (i.e., simple random sampling, importance sampling) are described and illustrated for the
evaluation of these integrals. Example uncertainty and sensitivity analyses for PLOAS involving the rep-
resentation of uncertainty (i.e., epistemic uncertainty) with probability theory and also with evidence the-
ory are presented.
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1. Introduction

Weak link (WL)/strong link (SL) systems constitute important parts of the operational design of high conse-
quence systems. In such designs, the SL system is very robust and is intended to permit operation of the system
under, and only under, intended conditions (e.g., by transmitting a command to activate the system). In contrast, the
WL system is intended to fail in a predictable and irreversible manner under accident conditions (e.g., in the event

of a fire) and render the entire system inoperational before an accidental operation of the SL system.

A simple example of a WL/SL system with one WL and one SL is shown in Fig. 1.1. Under nonoperational
conditions, the WL is closed (e.g., permits the passage of an electrical signal) and the SL is open (e.g., does not per-
mit the passage of an electrical signal) (Fig. 1.1a). For the entire system to operate, the SL must close and thereby
allow the passage of an activating signal to the system (Fig. 1.1b). In the event of an accident, it is highly undesir-
able for the SL to close and place the system in a configuration in which it can be accidentally activated (Fig. 1.1b).
To prevent the potential for such an accidental activation, the WL is designed to fail before the SL under accident
conditions (Fig. 1.1¢) and thus render impossible the passage of an activating signal should the SL fail at a subse-
quent time (Fig. 1.1d). As an aside, the phrase “WL failure,” although widely used, is an oxymoron as such failure
actually constitutes “WL success” in that the system has been deactivated by the intended (i.e., designed) operation

of the WL.

As another example, the term WL is often applied to a device or component such as a capacitor. In an abnor-
mal thermal environment, the capacitor is designed to melt and thus fail to function as a capacitor. Hence, the term

WL failure. The WL as a device has indeed failed. However, the safety function of the WL has been a success.

SL/
Actuation WL } System

Source

a: Nonoperational (i.e., Nominal) Condition

Actuation ~-a WL . SL
>e —> »o—» System
Source

b: Operational Condition

M y'
Actuation ) ; ) System

Source

c: WL Failure before SL Closure

>—>V1 *—————Ppo—p
Actuation « SL System

Source

TRO4A109-0.ai

d: WL Failure with SL Closure
Fig. 1.1. Example WL/SL system with one WL and one SL.



This presentation considers the behavior of WL/SL systems under fire conditions that arise from an accident.
In particular, the overall system is assumed to be in a fire that causes heating of the WL and SL systems. The de-
sired outcome in such an accident is for the WL system to fail before the SL system fails. The undesired outcome is
for the SL system to fail before the WL system fails. The likelihood that the WL system fails to deactivate the en-
tire system is referred to as the probability of loss of assured safety (PLOAS). The word “assured” appears in the
preceding definition because failure of the WL system before the SL system renders the entire system inoperational
but failure of the SL system before the WL system does not necessarily imply that the entire system will operate.
Thus, PLOAS is not the probability that the system will operate; rather, it is the probability that the intended opera-

tion of the WL system fails to deactivate the system.

The determination of PLOAS falls within the broad area of study relating to the reliability of engineered sys-
tems (e.g., Refs. [1-7]). As developed in this presentation, the “probability” in PLOAS derives from variability in
the temperatures at which individual WLs and SLs fail. The variability in WL and SL failure temperatures is as-
sumed to be an aleatory uncertainty arising from manufacturing variability or some other source not explicitly in-
cluded in the presented analyses (e.g., Refs. [8-11]). Because individual WLs and SLs have different failure
temperatures and experience different time-dependent temperature regimes, there is in effect a race through time
that determines whether the WLs fail before the SLs or the SLs fail before the WLs. Thus, the determination of
PLOAS falls in the subarea of reliability analysis generally known as competing risk analysis or competing failure

analysis (e.g., Refs. [12-15]).

Formal developments of the probability that the WL system fails to deactivate the overall system before failure
of the SL system (i.e., PLOAS) are presented for several WL/SL configurations: (i) one WL, one SL (Sect. 2), (ii)
multiple WLs, multiple SLs with failure of any SL before any WL constituting failure of the safety system (Sect. 3),
(iii) multiple WLs, multiple SLs with failure of all SLs before any WL constituting failure of the safety system
(Sect. 4), and (iv) multiple WLs, multiple SLs and multiple sublinks in each SL with failure of a sublink constituting
failure of the associated SL and failure of all SLs before failure of any WL constituting failure of the safety system
(Sect. 5). The indicated probabilities derive from time-dependent temperatures in the WL/SL system and variability
in the temperatures at which the individual components of this system fail and are formally defined as multidimen-
sional integrals. Numerical procedures based on quadrature (i.e., trapezoidal rule, Simpson’s rule) and also on
Monte Carlo techniques (i.e., simple random sampling, importance sampling) are described and illustrated for the
evaluation of these integrals. Example uncertainty and sensitivity analyses for PLOAS involving the representation
of uncertainty (i.e., epistemic uncertainty) with probability theory and also with evidence theory are presented (Sect.
6). A comparison with previous PLOAS results (Sect. 7) and a concluding discussion (Sect. 8) are also provided.
Finally, appendices present an earlier approach to the determination of PLOAS (Apps. I, II) and software for deter-
mining PLOAS with the approaches developed in this presentation (App. III).
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2. One WL, One SL

The analysis of PLOAS for a system involving one WL and one SL is now presented. The following topics are
considered: formal mathematical representation of PLOAS (Sect. 2.1), a simple illustrative example (Sect. 2.2),
numerical evaluation of the defining integral for PLOAS with quadrature methods (Sect. 2.3), numerical evaluation
of the defining integral for PLOAS with Monte Carlo methods (Sect. 2.4), a simple numerical example (Sect. 2.5), a

more complex numerical example (Sect. 2.6), and comparison with an earlier representation for PLOAS developed

by M.P. Bohn (Sect. 2.7, Apps. I, II).

2.1 Formal Representation

The system is assumed to involve one WL and one SL. The temperatures of the links are time dependent (Fig.

2.1) and are represented by
TMPWL(?) = temperature (°C) of WL at time # (min), 2.1)

TMPSL(?) = temperature (°C) of SL at time # (min). (2.2)

Further, temperature of the SL is assumed to range from TMNSL to TMXSL, and time is assumed to range from
tMIN to tMAX.

TMXSL

v TMPWL(t)

Tarm|

\TMPSL(t)
%)
Q-
o ., | [t TMPWL(t)]
g = [TMPSL™Y(T)), TMPWL[TMPSL™"(T))]]
g
E [t. TMPSL(t)]
- —1
E L S—— | = [TMPSLY(T)), T]
______ [l/ [t|_1 , TM PSL(tl_»] )]

Tict . = [TMPSL(T,), T]

: o

Ty i —t }

) LI U thtm
TMNSL 4 A

tMIN _ tMAX
t: Time (sec) TRO4A062-1.ai

Fig. 2.1. lllustration of time dependent temperature curves for one WL and
one SL.
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The preceding temperature functions are assumed to be strictly increasing with time (i.e., TMPWL(#) <
TMPWL({) and TMPSL(t) < TMPSL({ ) for t < ). The following derivations are predicated on the assumption
that the WL and the SL fail at the instant that they reach their failure temperatures. As a result, if TMPWL(#) or
TMPSL(¢) is non-increasing, then its value can be defined by linear interpolation between successive increasing lo-
cal temperature maxima. This redefinition, if necessary, produces temperature functions with the appropriate in-

creasing character.

The failure temperatures TFWL and TFSL for the WL and SL, respectively, are assumed to be aleatory in the
sense that the WL and SL are manufactured components and the exact failure temperature will vary from compo-

nent to component. This variability is characterized by density functions /WL and fSL, where
pWL(T1,T2)=probability that T/ < TFWL < T2
T2
= |, WL(Tyy ) ATy, (23)

pSL(T1,T2)= probability that 7/ < TFSL < T2
T2
= 71 fSL(TSL) dTSL' (24)

The density functions fWL and fSL define distributions on the ordinate of Fig. 2.1.

The objective of this section is to determine the probability pF that the SL fails before the WL given
TMPWL(®), TMPSL(Y), fWL(Tyy) and fSL(T;). The sample space underlying this calculation is

S={t: t=[sFSL,tFWL)}, (2.6)
where tF'SL and tFWL denote the failure times of the SL and WL, respectively. In particular,

pF = prob(€), (2.6)
where Eis the subset of & defined by

E={t: t=[(FSL,(FWL)e S and tFSL < tFWL}
and prob denotes probability.

The probability pF will initially be obtained by an integration on time (i.e., on the abscissa of Fig. 2.1). Later,
pF will also be obtained by an integration on temperature (i.e., on the ordinate of Fig. 2.1). The set € can be repre-

sented by

12



= (s,. ué ), (2.7)

& ={t: t=[tFSL,tFWL]e &, t;_ | <tFSL<t;, t; <tFWL},
& ={t: t=[tFSL,tFWL) € &, t,_y <tFSL <1, tFSL <tFWL<t},

and tMIN = ty < t; < ... < t, 3y = tMAX is a partition of [tMIN, tMAX] as indicated in Fig. 2.1. The equality
nITM nTM

prob(&)= z prob(&)+ Y. prob(&) (2.8)

i=1
holds because the sets &, €5, ..., Emap 10 Eas oy Eupar are disjoint.
The following relations hold fori =1, 2, ..., n"TM:

prob(& )< I[TMPSL(t,_y), TMPSL (t;), fSL] 1[TMPWL(1;-, ), TMPWL (1;), fWL]
= {[ TMPSL(t;)~ TMPSL(t;_, )] fSL[TMPSL(1;)]}
« {[TMPWL(t;)~ TMPWL(t;_, ) | fWL[TMPWL(s;) ]}

<B(AyY 2.9)
and

i—

prob(&)=1[TMPSL(t,_;), TMPSL(t;), fSL| 1[TMPWL(t;),, fWL]

;{[TMPSL t;)~ TMPSL(t,_y) ] SSL[TMPSL(1;) ]} 1[TMPWL(x;), o, fWL], (2.10)
where the expression
[a,b, f]= j f(v)dv

appearing in Egs. (2.9) and (2.10) represents the integral of the function f from a to b, and the constant B appearing
in Eq. (2.9) is independent of i and derives from properties of the functions involved (i.e., TMPSL(¢) and T. ‘MPWL(f)
are continuous and of bounded variation on [tMIN, tMAX] and fSL(Tg;) and fWL(Tyy) are bounded on [TMNSL,
TMXSLY)).

As aresult,

13



nTM nTM

prob =nT}¢[n_1) . ,Z; prob nT}\ilma N E prob(éi)
. nTM
= nT}Illrn—wo E prob(&;)+0
nT™
= lm 3 {[TMPSL (t;)~TMPSL(t;_) ] SSL[TMPSL(t;) |} I[TMPWL(t;), 0, fWL], (2.1

i=1

where the first, second and third equalities follow from Eqgs. (2.8), (2.9) and (2.10), respectively. Evaluation of the
final limit in Eq. (2.11) leads to the representation of prob( &), and hence pF, by

f MIN {fSL [ TMPSL(t )]} { I:MPWL(,)fWL(TWL) dTWL} dTMPSL(1)

= [ SL[TMPSL(1) ]} {dTMPSL (1), dr) { [ — L e dTWL} dr, (2.12)

where the first integral is a Riemann-Stieltjes integral (i.e., an integral of the form J.b f(£)dg () ; see Sect. 29, Ref.
[16]) and the second integral is the corresponding Riemann integral (i.e., an integral of the form Ib f(Hg'(®)de; see
Theorem 29.8, p. 220, Ref. [16]). As indicated by the final summation in Eq. (2.11), the two integrals in Eq. (2.12)

correspond to integrating along the abscissa (i.e., the time axis) in Fig. 2.1.

The failure probability pF can also be obtained by integration on temperature. Similarly to Eq. (2.7), the set £

defined in conjunction with Eq. (2.6) can be represented by

&= (J«j uj?;) 2.13)

where

F; ={t: t=[tFSL, FWL] e &, TMPSL™ (T,_;) <tFSL < TMPSL™ (T;), TMPSL™(T;) < tFWL},

F; ={t: t=[tFSL, FWL] < &, TMPSL™(T,_;) < (FSL < TMPSL™'(T;), tFSL < tFWL < TMPSL™ (T;),
and TMNSL = Ty <T| < ... <T,ryp = TMXSL is a partition of [TMNSL, TMXSL] as indicated in Fig. 2.1.

Now, with the same logic as used to produce Eq. (2.11),
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nITMP—o 7 nTMP— 7
nTMP J]’
= i
i, 2 prob(i)+o
nTMP )
= - L
im ; {7 ~1i0) SL(T )} 1 (T7PWL TMPSL (T,) ] oo, S ) 214

where the first, second and third equalities follow from results analogous to those contained in Egs. (2.8}, (2.9) and

(2.10). Evaluation of the final limit in Eq. (2.14) leads to the representation of prob(€), and hence pF, by

J-T "MXSL

pF = TMNSL{J(S (SL)I;TSL)fWL(TWL)dTWL}dTSLa (2.15)

where

F(Ts) = TMPWL] TMPSL™ (T )]

is used for notational compactness. As indicated by the final summation in Eq. (2.14), the integral in Eq. (2.15)

corresponds to integrating along the ordinate (i.e., the temperature axis) in Fig. 2.1.

The integrals in Egs. (2.12) and (2.15) define the same probability pF' and do not require independent deriva-
tions. In particular, the integral in Eq. (2.15) can be obtained from the Riemann integral in Eq. (2.12) by a change

of variables. As a reminder, the change of variables formula for integrals is
j g)dg = jb #[2(6)][dg()/ar] ar. (2.16)

provided f'is continuous on [g(a), g(b)] and dg(¢)/dt is continuous on [a, b] (p. 558, Ref. [17]). Application of the
preceding change of variables to Eq. (2.12) with g(¢) = TMPSL(Y) yields

pF = leN {/SL{TMPSL(¢) |}{d TMPSL(t)/dt} I[ TMPWL(1), 0, WL ] dt

= [ st {rmpsL ()]} 1| rapws {raapsi [TMPSL (1) e, WL | {d TMPSL (1) i}

- j i) ) sz g)I[TMPWL{TMPSL ()}, ,fWL}dg

TMXSL

- TMVSL{fSL(TSL)J( )fWL(TWL)dTWL}dTSL’ (2.17)

where (i) the change of variables takes place at the third equality and (ii) the fourth equality is produced from the

equalities
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g(tMIN) = TMPSL (tMIN ) = TMNSL,
g(tMAX y = TMPSL (tMAX ) = TMXSL,

and the notational replacement of g by T'; within the integral. Thus, the integral defining pF in Eq. (2.15) can be
obtained from the integral defining pF in Eq. (2.12) by a change of variables.

The Riemann integral with respect to time that defines pF in Eq. (2.12) has the drawback that it requires the
evaluation of the derivative of the function TMPSL(f). The Riemann integral with respect to temperature that de-
fines pF in Eq. (2.15) has the drawback that it requires the evaluation of the inverse function TMPSL~!(T). In prac-
tice, the Riemann-Stieltjes integral with respect to time that defines pF in Eq. (2.12) may be the easiest of the three
integrals to evaluate numerically. The assumption that the temperature functions are strictly increasing in time is
made so that inverse functions such as TMPSL~Y(T) will be single valued. The representations for pF in Eq. (2.12)
do not involve inverse temperature functions and are valid under the weaker assumption that TMPWL(f) and

TMPSL(¢) are nondecreasing functions of time.

2.2 Simple Example

A simple, illustrative example is now presented. In this example, tMIN = 0 min, tMAX = 500 min, TMNSL =
100°C, TMXSL = 1150°C, TFWL is uniform on [200, 600°C], TFSL is uniform on [500, 1000°C] and the tempera-
ture functions for the WL and SL are defined by

TMPWL(t)=100+2¢ (2.18)

and

TMPSL(t)=100+2.1¢ (2.19)

for 0 < ¢ < 500 min (see Fig. 2.2).

Additionally, the inverse functions associated with TMPWL(r) and TMPSL(¥) are given by

TMPWL™ (T) = (T -100)/2 (2.20)
and

TMPSL™ (T) = (T -100)/2.1, (2.21)

and the density functions associated with TFWL and TFSL are given by
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[t, TMPSL(®)] = [t, 100 + 2.1{]

1100 [TMPS~!(T), T] =[(T - 100)/2.1, T]
| so0f
© 4
Q-

2

SE|  7oof
e [t. TMPWL(t)] = [t, 100 + 2t]
£ L |s00f [TMPWL™"(T),T] = [(T - 100)/2, T]
2
FoE

300

100 -

1 1

] ] ] |
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t: Time (min) TRO4A061-0.ai

Fig. 2.2. Simple example illustrating calculation of failure probability pF for
one WL and one SL.

1/400 for 200 £ Ty <600°C
0 otherwise

and

1/500 for 500 < T¢; <1000°C
SSL(Tg ) = { i
0 otherwise.

Finally, F(Tg;) and F~1(T}y;) are defined by

F(Ts, ) =TMPWL| TMPSL™ (Tg; )|

=100+2[(Tg;, -100)/2.1]
=(10+2Tg )/2.1

and

F™(Tyy,) = TMPSL[ TMPWL™ (Tyy ) |
=100+2.1[(Tyy, —100)/2]
=(2.1Ty; -10)/2

and are used in defining limits of integration (see Eq. (2.15)).

The determination of pF by integration on time as indicated in Eq. (2.12) is considered first. Specifically,
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- L%ff {ASL[TMPSL(t) |}{d TMPSL(r)/dt} { jTMPWL 0 PWL(Tyy) dTWL} dr

- ISOO {/SL[100+2.11]H2. 1}“1

=) [ oy UUSOON [ WL (T Ty |

= (2.1/500) [**° “600 (1/400)dTWL}dt

00+2thL(TWL) dTWL}df

00/2.1{100+2 ¢

-0.0372, (2.26)

with the omitted steps involving elementary calculus manipulations.

The determination of pF by integration on temperature as indicated in Eq. (2.17) is now considered. In this

case,

TMXSL
pF = .[TMNSL{ SL)I fWL TWL)dTWL}dTSL

1150

~ oo {fSL( )1(10+2TSL)/21fWL(TWL)dTWL}dTSL

1000 o
= Jsoo {(1/500) I(m+2 TSL)/z,lfWL(TWL )dTyy, }dTSL

F1(600) [ 600
(1/500) jsoo {I(10+2 Tsr)/2. ,(1/400) dTWL}dTSL

_ 5\ 625 [ ¢600
B (I/ZXIO ) Jsoo {L10+2 TSL)/2.11 dTWL}dTSL
=0.0372, (2:27)

with the omitted steps again involving elementary calculus manipulations. Thus, as should be the case, integration
on time with the representation for pF in Eq. (2.12) and integration on temperature with the representation for pF in

Eq. (2.17) produce the same failure probabilities.

2.3 Numerical Evaluation: Quadrature

The preceding section (Sect. 2.2) provides a simple example in which it is possible to analytically carry out the
integrations used in the definition of the failure probability pF. In practice, few problems are likely to be encoun-
tered in which it is possible to determine pF in this manner. Rather, some type of numerical approximation will be
required. This section considers approximations based on numerical integration (i.e., quadrature). Only integrals
over temperature as in Eq. (2.17) will be considered; however, the same general ideas are applicable to integrals

over time of the form in Eq. (2.12).
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The defining integral for pF in Eq. (2.17) can be viewed as being of the form

TMXSL

pF=[ o G(Tg)dTg, (2.28)
where
G(Tsy )= fSL(Ts) I:;TSL)J(WL(TWL) ATy
= fSL(Tsy ) I[ F (Tsy ), 0, /WL ]. (2.29)

Thus, if G(Tg;) can be defined or approximated in a reasonably simple manner, then the evaluation of pF' only in-
volves the approximation of an integral of a single variable. In particular, the goal is to design the analysis so that
the integral designated by I[F(Tgy), o, fWL] does not require a complex numerical evaluation. Because I[F(Tg;), oo,

fWL] involves the integral of a probability density function (i.e., fWL), it is indeed possible to do this.

Possibilities for the density functions fSL and WL include correspondence to uniform distributions, loguniform
distributions, normal distributions, and lognormal distributions. The density functions for such distributions are

given by

1/(b-a) fora<T<b
0 otherwise (2.30)

/i (T)={

for T uniform on [a, 5],

Y[T In(b/a)] fora<T<b

0 otherwise (2.31)

)]
for T loguniform on [a, 5] with a > 0,
2 2
(1) =(ov2r) exp[—(T—u) [20 } (2.32)
for T’ normal with mean p and standard deviation o, and
fin(T)=(YoT2m) exp|:—(1n T-p)/2 52] (2.33)

for T lognormal with 7> 0, E(In T) = p, ¥(In T) = 62, and E and V used to represent expected value and variance,

respectively. For the lognormal distribution, the expected value and variance of T are given by

E(T) =exp(p+02 /2) (2.34)
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and
V(T)z[exp(cz)—l} exp(2u+0?), (2.35)
where p and o2 are the corresponding mean and variance for In T appearing in Eq. (2.33).

Determination of G(T;) in Eq. (2.28) requires evaluation of the integral represented by [[F(T;), o, fWL],
which equals the probability of having a WL failure temperature that exceeds F(Ts;) and thus, in effect, defines the
CCDF associated with the distribution defined by the density function fWL. Significant computational savings can
be achieved by precalculating the functional form of this integral, and then reusing this functional form rather than

repeatedly evaluating the underlying integral. Specifically,

e;eo, £,]= [ fu(T)dT
1

ifec<a
= (b—c)/(b—a) ifa<e<bh
0 ifb<c (2.36)
for —o0 < ¢ < oo,
e, fiu]= [ i (T)dT
1 ifc<a
=:In(b/c)/In(b/a) ifa<c<b
0 ifb<c (2.37)

for —oo < ¢ < o0,

Ieo, fy]= [ £u(T)dT
= jjo(l/mh—n) exp[—(T—u)Z/Zcz}dT (2.38)

for —co < ¢ < 00, and

[[6’005 fln]: J.:ofln(T) dr
= -‘:O(I/GT\/Z'C—) exp[—(ln T—p)z/Zcz} dr
= j‘]:c(l/cs\/ﬁ) exp [—(y - u)z /262} dy (2.39)

for 0 <c¢ <.
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Closed form representations for the integrals in Egs. (2.38) and (2.39) do not exist. However, owing to the
wide occurrence of such integrals, extensive effort has been devoted to developing compact approximations. For

example,

e, , f,]=1-P[(c-p)/o] (2.40)
for —oo < ¢ <o and

I[e,, f,]=1-P[(Inc-p)/o] (2.41)
for 0 < ¢ < oo, where P(x) denotes the Gaussian probability integral defined by

P(x)= (1/\/57;) fw exp(—t2/2) dr
~1-(yN2r) [ exp(—tz/Z) dr. (2.42)
Specifically, Eq. (2.40) is obtained from Eq. (2.38) and the change of variables formula in Eq. (2.16) with g(¢) = (¢

—-w)o, and Eq. (2.41) is obtained similarly from Eq. (2.39) with g(c) = (Inc — u)/o. In turn, P(x) can be approxi-
mated by

P(x)=1-(1/\2n )exp(—xz/Z)t({[(l.330274429 1—1.821255978) £ +1.781477937] ¢

(2.43)
~0.356563782} 1 +0.31938153) +¢(x),

where #=(1+0.2316419 x)~! and |e(x)| < 7.5 x 1078 (see Sect. 16.3, Ref. [18]).

Another approximation is possible based on the relationships

1e,, f,]=(1/2)erfe] (c-n)/ov2 | (2.44)
for o < ¢ < o0 and

I[c, o, fln]:(1/2)erfc[(lnc—u)/c\/§}, (2.45)
for 0 < ¢ < o, where erfc(x) denotes the complementary error function defined by

erfe(x) = (2/\/;) J:oexp(—tz) de. (2.46)

In tumn, erfc(x) can be approximated by

erfo(x) = texp(—x? — 1.26551223 + #(1.00002368 + #(0.37409196 + #(0.09678418 + #—0.18628806
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+1#(0.27886807 + #(—1.13520398 + #(1.48851587) + #(—0.82215223 + ¢ 0.170872777))MN)), 2.47)
forx>20and r=1/(1 + 0.5 x) and by

erfc(x) =2—erfe(|x]) (2.48)

for x <0 (p. 164, Ref. [19]). The preceding approximation has a fractional (i.e., relative) error everywhere less than

1.2 x 1077

Thus, G(T'g;) can be approximated with expressions that are relatively easy to evaluate (i.e., numerically, not by
“hand”) for uniform, loguniform, normal and lognormal distributions. As a result, evaluation of pF’ is really just a
problem in the numerical integration of a function of a single variable. The numerical evaluation of such integrals is
a rich and well-studied field and many techniques are available (e.g., Refs [20, 21]). The extended trapezoidal rule
provides a simple but often adequate procedure for the numerical evaluation of integrals (pp. 107 — 115, Ref. [19]).

With this procedure, the integral in Eq. (2.28) defining pF is approximated by

N-1
TMXSL N 2

Jrunsy G (Ts1) dTsp = h{G1/2+ Zz G, +Gy /2} +0(1/N?), (2.49)

i=

where h = (TMXSL — TMNSLY(N - 1), T; = TMNSL + h(i — 1) fori= 1,2, ..., N, G;=G(T) fori= 1,2, ..., N, and
the term O(1/N?) indicates that there exists a constant K such that the error in the approximation is bounded by
K(1/N?) = K/N? for all sufficiently large values of N. A higher order approximation (i.e., O(1/N*) rather than
O(1/N%) is provided by the extended Simpsons rule (p.- 108, Ref. 19) With this procedure,

J-TWSL

T G (T51) 4Ty = K[Gy +4G, +2Gy +4Gy +--++2Gy_ +4Gy +GN]/3+0(1/N4), (2.50)

where the 4,2 alteration continues throughout the interior of the summation and all other notation is the same as in
Eq. (2.49). However, higher order does not necessarily imply higher accuracy. If neither of the preceding proce-

dures is adequate, more sophisticated procedures are available.2% 21

A relative error tolerance criterion can be used to terminate the approximation procedures indicated in Eqs.
(2.49) and (2.50). Specifically, a relative error tolerance € > 0 is specified and the integration process is continued
with increasing values of N obtained halfing % at each step (i.e., N=3, 5,9, 17, ...). The approximation process is
terminated when the absolute value of the difference between the last two approximations (i.e., the previous ap-
proximation and the current approximation) is less than the product of the relative error tolerance ¢ and the absolute
value of the previous approximation. All quadrature results in this presentation are calculated with a relative error

tolerance of £ = 107,
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2.4 Numerical Evaluation: Monte Carlo

A Monte Carlo procedure for the evaluation of the failure probability pF is now presented.?!: 22 For this proce-

dure, pF is represented by
() Q0
pF=[" [ 8(Ty.To) WL(Tyy ) SSL(Ts ) dTpy AT @2.51)

where integrals from —oo to oo are used for notational convenience, the indicator function 8(Ty;, Ty) is defined by

S(TWL,TSL)z 1 if TSL <TWSL(IMN) and either TMPWL(tMN)STWL or
T < Ty < TMPWL(tMIN ) (2.52)
=1 if TMPSL(tMIN)< Tg; < TMPSL(tMAX)

and TMPSL™' (Tg, ) < TMPWL™ (T, (2.53)
=0 otherwise (2.54)

and the notational convention

TMPWL ' Ty ) = o0 if Ty, > TMPWL (tMAX ) (2.55)

is adopted for use in Eq. (2.53).

The role of the indicator function 8(Ty;, T;) defined in Egs. (2.52) — (2.54) is to “pick out” the failure tem-
perature pairs (T, Tg) in which the SL fails before the WL. In particular, (i) the assignment in Eq. (2.52) picks
out the pairs in which the SL fails before the start of the analysis at time tMIN and, for the special case with the WL
also failing before tMIN, in which Tg; is less than Ty ; (ii) the assignment in Eq. (2.53) picks out the pairs in which
the SL fails between tMIN and 1MAX before the failure of the WL; and (iii) the assignment in Eq. (2.54) removes the
probability associated with pairs in which the SL does not fail before the WL from incorporation into pF. In prac-

tice, the limits of integration in Eq. (2.51) are determined by the density functions fWL(Tyy;) and fSL(Tgz).

The integral defining pF in Eq. (2.51) can be approximated by

N
PF =Y 8(Ty, i Tz, i) N, (2.56)
i=1
where
[TWL,i’TSL,i:|’ i=1325 --sz (257)

is a random sample from the possible values of Ty; and Ty generated in consistency with the distributions defined

by the density functions fSL(Ty;) and fSL(Tg;). The preceding approximation will converge to the same value of
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PF as the approximations in Egs. (2.49) and (2.50). However, the convergence will be slower as the order of the
Monte Carlo approximation is O(1/ JN ) and the orders of the approximations in Egs. (2.49) and (2.50) are O(1/N?)
and O(1/N*), respectively.

Probably the greatest value of the Monte Carlo approximation to pF is that it provides an independent means of
verifying the complex, but more numerically efficient, approximation procedures presented in Sect. 2.3. In particu-
lar, procedures of the form described in Sect. 2.3 involving normal and lognormal distributions are essentially im-
possible to check by hand. However, the Monte Carlo procedure provides an independent way to calculate pF and

thus verify that the procedures of Sect. 2.3 are operating correctly.

The Monte Carlo approximation of the integral in Eq. (2.51) is very inefficient when pF is small. For example,
approximately 1 out of every 10% sample elements in Eq. (2.57) produces a nonzero result when pF has a value in
the vicinity of 107°. Thus, a very large sample would be required to produce a reasonably converged estimate to
pF. In such situations, the efficiency of the Monte Carlo approximation can be increased by using an importance
sampling procedure?3-2 that emphasizes subregions of the [T}y, Ts;] space in which the failure of the SL before

the WL is known to be likely (i.e., regions that have large values of Tyy; and small values of T ).

With an importance sampling procedure, the integral in Eq. (2.51) defining pF is reformulated as

pF=[" J’j‘;[s(TWLa Ts,) WL (T, ) SSL(Tsy )

SWL(Tyr) ASL(Tg ) ]ﬂWL(TWL)ﬂSL(TSL)dTWL 7z (2.58)

where fIWL(Ty;) and fISL(Tg;) are the density functions that correspond to the distributions used for importance
sampling on Ty and Ty, respectively. For example, fIWL(Tyy;) and fISL(T;) could be defined to emphasize large

and small values of Ty; and Tg;, respectively. The resulting approximation to pF is given by

oF = % 3(Twri» Tsr,i ) SWL( Ty SSL(Tsz ;) W, 2.59)
i=1 ﬂWL(TWL,i) SISL(Tsz;)

where [Tyy ;» Tsr 1, 1= 1,2, ..., N, is now a random sample from the possible values of Ty, and Tg; generated in

consistency with the distributions defined by the density functions fTWL(Tyy;) and fISL(Tg;).

The efficacy of importance sampling depends on the appropriate selection of the sampling distributions defined
by AAIWL(Ty;) and fISL(Tg;). A good choice for these distributions can accelerate a Monte Carlo estimate of pF
relative to simple random sampling. However, a poor choice for the sampling distributions can result in a slower

convergence to pF than would be obtained with random sampling.
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A single example of the use of importance sampling follows. For this example, it is assumed that the non-zero
ranges for Ty and T are given by [TWL;, TWL,] and [TSL;, TSL,], respectively, which results in representation
for pF in Eq. (2.51) having the form

TSL, (TWL,

F =
p SLy WLy

8(Twr, Tor ) SWL(Tyy ) SSL(Tsy ) dTyyy, ATy . (2.60)

Further, the importance sampling distributions for Ty; and Tg; on [TWL;, TWL,] and [TSL;, TSL, ] are right triangu-
lar and left triangular, respectively, which results in more emphasis on large values of Ty; and small values of Tg;
than is likely to be the case for the original definitions of fWL(Ty;) and fSL(Tg;) (e.g., if these distributions corre-
spond to truncated normal distributions with ranges extending for many standard deviations on either side of their

means). The resultant definitions for IWL(Ty; ) and fISL(Ts;) are

SIWL( Ty ) = 2(Tyy —TWL,)/(TWLu —TWL,)2 (2.61)
and

SISL(Tgy }=2(TSL, - Tgp )/(TSLu —-TSL, )2 . (2.62)

In turn, the importance sampling approximation to pF is

i=1 SIWL( Ty ;) AISL(To ;)

o % S(TWL,i’TSL,i) fWL(TWL,i)fSL(TSL,i):l/N

_(TwL, -TwL, ) (7SL, -TSL;)* & I:ES(TWL,D Tsg,i) SL( T ) SSL(Ts) 2.63)

4N i=1 (T -T WLy ) (TSL, —T; SL,i)
where [Ty ;, Tsp ), i=1,2, ..., N, is sampled from [TWL;, TWL,] and [TSL;, TSL,] in consistency with the defini-
tions of fIWL(Ty;) and fISL(Tgr) in Eqs. (2.61) and (2.62).

2.5 Numerical Evaluation: Simple Example

The example of Sect. 2.2 is used to illustrate the numerical evaluation of the failure probability pF" with both

quadrature and Monte Carlo procedures. For the quadrature procedures, pF is given by

TMXSL
PF = | e O(Ts1) 4T

= lgjofSL(TSL) I[F(Tg ), fWL]dTy 2.64)
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as indicated in Eqs. (2.28) and (2.29), with fWL(Tyy), fSL(Ts;), F{Tsr) and I[F(Tsy), oo, fWL] defined in Egs. (2.22),
(2.23), (2.24) and (2.36), respectively. For the Monte Carlo procedures pF is given by

pF = E,o wa(TWL’TSL) SWL(Tyy ) SSL(Ty,) ATy dTg,

1000 (600
= koo EOOS(TWL’TSL)fWL(TWL)fSL(TSL)dTWL dTg (2.65)

as indicated in Eqs. (2.51) — (2.54), with fWL(Ty; ) and fSL(Tg; ) again defined in Eqs. (2.22) and (2.23).

The representation for pF in Eq. (2.64) is evaluated with the trapezoidal rule (see Eq. (2.49)) and Simpson’s
rule (see Eq. (2.50)), and the representation for pF in Eq. (2.65) is evaluated with simple random sampling (see Eq.
(2.56)) and importance sampling based on right and left triangular distributions for Tyy; and Ty, respectively (see
Egs. (2.60) — (2.63)). All approximations converge to values for pF that are equal to, or very close to, the analyti-
cally calculated value of pF = 3.720 x 102 (Table 2.1). Further, the convergence behavior of the approximations
with the trapezoidal rule and Simpson’s rule are similar, and the selected importance sampling procedure (i.e., right
and left triangular for WL and WL failure temperature, respectively) shows little advantage over sampling directly
from the assigned failure temperature distributions. Thus, the higher order Simpson’s rule does not necessarily out-
perform the lower order trapezoidal rule, and the use of an intuitively posited importance sampling procedure does
not necessarily outperform random sampling of the assigned failure temperature distributions. The numerical
evaluation of pF’ with the trapezoidal rule and Simpson’s rule required significantly fewer function evaluations than
the sampling-based evaluations (e.g., 16,385 versus 1,000,000). Further, the numerical results required more func-
tion evaluations than may actually be the case in many calculations due to the discontinuities at the ends of the uni-

form failure temperature distributions (e.g., see the sample results in Sects. 2.6, 3.4, 4.4 and 5.4).

2.6 Numerical Evaluation: More Complex Example

An example is presented in which the WL and SL temperature curves are nonlinear functions of time and the
failure temperatures for the WL and SL are characterized by normal distributions. The WL and SL temperatures are

defined by

TMPWL(t) = ¢y +| ¢y +c5 € sin (cst) ] tanh cgr) (2.66)
TMPSL(t)=c; +c, tanh[ c (1+¢7)t], (2.67)
where

I

c initial temperature (°C) of the WL and SL (10 °C),

¢, = increase in temperature (°C) of the WL and SL at steady-state conditions (900 °C),

c3 peak amplitude (°C) of a temperature transient of the WL (-1000 °C),
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Table 2.1. Approximations of Failure Probability pF for System Defined in Sect. 2.2 with One
WL, One SL. and Uniform Distributions for WL and SL Failure Temperatures?

b Trapezoidal Simpson’s Ne Rande Importtance

Rule® Ruled Sampling! Sampling®

3 0.000E+00 0.000E~+00 1,000 3.300E-02 3.998E-02

5 0.000E+00 0.000E+00 10,000 3.950E-02 3.737E-02

9 0.000E+00 0.000E+00 100,000 3.781E-02 3.700E-02

17 2.051E-02 2.734E-02 1,000,000 3.734E-02 3.722E-02

33 3.076E-02 3.418E-02 10,000,000 3.722E-02 3.719E-02

65 3.589E-02 3.760E-02 100,000,000 3.718E-02 3.721E-02
129 3.845E-02 3.931E-02
257 3.725E-02 3.685E-02
513 3.665E-02 3.645E-02
1025 3.696E-02 3.706E-02
2049 3.711E-02 3.716E-02
4097 3.718E-02 3.721E-02
8193 3.722E-02 3.724E-02
16385 3.720E-02 3.720E-02
32769 3.719E-02 3.719E-02
65537 3.720E-02 3.720E-02
131073 3.720E-02 3.720E-02
262145 3.720E-02 3.720E-02
524289 3.720E-02 3.720E-02

2 Calculations performed with CPLOAS program (App. IIT).

b Number of evaluations of G(Ts.) (see Eq. (2.29)) with trapezoidal rule and Simpson’s rule, which corresponds to the interval [TMNSL,
TMXSL] being divided into N-1 subintervals and a relative error tolerance of £ = 107,

Approximation to pF obtained with trapezoidal rule (see Eq. (2.49)) and a relative error tolerance of € = 107,
Approximation to pF obtained with Simpson’s rule (see Eq. (2.50)) and a relative error tolerance of £ = 107",
Number of evaluation of 8(Twrz, Ts.) (see Egs. (2.52) — (2.54)) for random sampling and importance sampling.
Approximation to pF obtained with random sampling (see Eq. (2.56)).

Approximation to pF obtained with importance sampling with right and left triangular distributions for T; and T, respectively (see Eqs.
(2.58) — (2.63)).

0 = 0 o o

I

Cy4 thermal heating time constant (min~!) of a temperature transient of the WL (0.30 min~1),

Cs frequency of response (min~!) of a temperature transient of the WL (0.17 min~1),
ce = time constant (min~!) determining rate at which WL attains steady-state temperature (0.03 min~1),

¢y = additive time constant (dimensionless) that accounts for more rapid heating in the SL than in the WL (0.6).

The values for ¢, ¢, ..., c7 used in the following example are indicated in parentheses (see Sect. 4, Ref. [30]), and

the resultant time-temperature curves are shown in Fig. 2.3. The time-temperature curves in Egs. (2.66) and (2.67)
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and the associated definitions of ¢|, ¢,, ..., ¢; were selected to mimic the time-dependent behavior of results ob-
tained in actual analyses of WL/SL systems (i.e., through a numerically demanding solution of a system of nonlin-
ear partial differential equations). As used, quantities such as ¢y are not real physical properties of a system but

rather devices employed in the emulation of results obtained with a mechanistic model.

Use of the representations in Egs. (2.66) and (2.67) simplifies the presentation of the example but does not fun-
damentally deviate from the character of a real problem. In practice, the time-temperature results will be obtained
as sequences of time-temperature pairs which would be smoothed or interpolated on in some way to obtain results
corresponding to those in Egs. (2.66) and (2.67) for use in determination of the failure probability pF. The quanti-
ties ¢q, ¢y, ..., ¢7 will be used later in this presentation in the illustration of uncertainty and sensitivity analysis pro-

cedures applied to pF (see Sect. 6).

The density functions for the normal distributions (see Eq. (2.32)) characterizing the WL and SL failure tem-

peratures are given by

PWL(Tyy, ) =(1/eo27) exp[—(TWL ~c)?/ 2c92] (2.68)
SSL(Tg ) =(1ey; V2x) exp]:—(TSL —a0)?/ 2c121}, (2.69)

where cg and ¢g are the mean and standard deviation for the WL failure temperature distribution and ¢y and c;; are
defined similarly for the SL failure temperature distribution. For the example, cg = 310°C, ¢g = 8°C, ¢19 = 560°C
and c1; = 18°C (see Sect. 4, Ref. [30]). As for ¢y, ¢y, ..., ¢, the quantities cg, co, ¢, ¢11 Will be used at a later

point in the presentation in the illustration of uncertainty and sensitivity analysis procedures.
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Fig. 2.3. Time-temperature curves defined in Egs.
(2.66) and (2.67) and used to illustrate calculation of
failure probability pF.
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Similarly to the example in Sect. 2.5, the failure probability pF can be calculated with the trapezoidal rule and
Simpson’s rule from the representation in Eq. (2.64), except that now TMPWL(t), TMPSL(t), fWL(Ty;) and
SSL(Tgy) are defined in Egs. (2.66) — (2.69). The function F(Tg;) is defined in conjunction with Eq. (2.15), and
IIF(Tg1), o, fWL) is defined by the approximation obtained by combining Egs. (2.44), (2.47) and (2.48). Results

obtained with the trapezoidal rule and Simpson’s rule are given in Table 2.2.

The failure probability pF can also be calculated with Monte Carlo procedures used in conjunction with the
representation in Eq. (2.65). Both simple random sampling and importance sampling can be used. For this exam-
ple, importance sampling is illustrated with uniform sampling on the failure temperatures, which is equivalent to
sampling uniformly with respect to standard deviation (i.e., if the temperature intervals [a, b] and {c, d] for one of
the failure temperatures are both of length ko, where o is the corresponding standard deviation for that failure tem-
perature, then both intervals will contain approximately the same number of sampled temperatures). For calcula-
tion, the importance sampling distributions are defined over the intervals p + 15 o for each failure temperature
distribution, which corresponds to [150, 390°C] and [322.5, 877.5°C] for the WL and the SL, respectively. As a

result,

JWL (T ) = 1/(390°C ~150°C) = 4.167x 107> °C” (2.70)

Table 2.2. Approximations of Failure Probability pF for System Defined in Section 2.6 with One
WL, One SL and Normal Distributions for WL and SL Failure Temperatures?

Nb Trapezoidal Simpson’s Ne Randgm Importgnce

Rule¢ Ruled Sampling® Sampling®

3 1.831E-06 2.441E-06 1,000 0.000E+00 3.386E-05

9.155E-07 6.103E-07 10,000 0.000E+00 1.744E-05

9 4.577E-07 3.052E-07 100,000 4.000E-05 1.511E-05

17 6.895E-07 7.667E-07 1,000,000 1.900E-05 1.474E-05

33 1.865E-05 2.464E-05 10,000,000 1.540E-05 1.499E-05

65 1.512E-05 1.394E-05 100,000,000 1.562E-05 1.511E-05
129 1.512E-05 1.512E-05
257 1.512E-05 1.512E-05
513 1.512E-05 1.512E-05

Calculations performed with CPLOAS program (App. I1I).

b Number of evaluations of G(Ts.) (see Eq. (2.29)) with trapezoidal rule and Simpson’s rule, which corresponds to the interval [TMNSL,
TMXSL)] being divided into N—1 subintervals.

Approximation to pF obtained with trapezoidal rule (see Eq. (2.49)) and a relative error tolerance of € = 107°.

Approximation to pF obtained with Simpson’s rule (see Eq. (2.50)) and a relative error tolerance of € = 107,

Number of evaluation of 8(Twz, Ts.) (see Egs. (2.52) — (2.54)) for random sampling and importance sampling.

Approximation to pF obtained with random sampling (see Eq. (2.56)).

Approximation to pF obtained with importance sampling with right and left triangular distributions for Ty, and Ty, respectively (see Egs.
(2.58) - (2.63)).

@ Th O QO O
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ASL(Tg ) =1(877.5°C~322.5°C) =1.802x107 °C1, 2.71)

and the resultant importance sampling approximation to pF is given as indicated in Eq. (2.59). Results obtained

with simple random sampling and importance sampling are given in Table 2.2.

The results obtained with importance sampling converge more rapidly than the results obtained with random
sampling. As the sample size increases, the sampling-based results approach the quadrature-based results. How-

ever, the quadrature-based results required far fewer function evaluations than the sampling-based results.

2.7 Comparison with One WL, One SL Representation Developed by Bohn

The competing temperature-dependent failure of a WL/SL system has been previously considered by Bohn
(App. I). For one WL and one SL and with the notation used in his presentation, Bohn’s representation for the

probability pF that the SL fails before the WL for the system described in Sect. 2.1 is

MAX
pF = [ CDFg (1) PDFyy; (1)dr, (2.72)

where
CDFgr1(f) = probability that SL fails before time 1,

PDFyy;1(f) = probability density function for time at which the WL fails (i.e., I{#;, t,, PDFyp; 1] is the probabil-

ity that the WL fails between time #; and time #,),

and [tMIN, tMAX] is the time interval over which the calculation is carried out. This is the representation given in
Eq. (4) of Bohn’s report (App. I) with (i) one WL and one SL, (ii) the time interval [0, ] replaced by [tMIN, tMAX)
(note: in practice fMAX is always finite because calculations will never be carried out for £AJAX = o in a real prob-

lem), and (iii) #, replaced by ¢ for notational convenience.

In the notation used in this presentation, the representation for pF in Eq. (2.72) becomes

PF = L’;ﬂ“}f ( sz o jSL[TMPSL(r)J}{dTMPSL(r)/dr}dz')

- ({we[ v (o) {a TMPWL (1) fdr} )b, (2.73)
where

CDFs () = [ {SLITMPSL(z)]} {dTMPSL(r)/d7}dz

PDFyy(t) = {WL[TMPWL(t) |} {dTMPWL(r)/dr} .
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The corresponding representations for pF given in Egs. (2.12) and (2.15) of this presentation are

pF = [ /SL{TMPSL (1) ]} {dTMPSL (1) /dt}{ [ oL )dTWL}dt (2.74)
- %NX;L J;O(TSL)fWL(TWL)ﬁL(TSL)dTWLdTSLa (2.75)

where F(Tgr) = TMPWL[TMPSL™(Tg;)] expresses the WL temperature as a function of the SL temperature. An
unstated but underlying assumption with respect to Egs. (2.72) — (2.75) is that the probability of either the WL or
the SL failing at a time before tMIN or at a temperature below TMNSL is either zero or negligibly small.

Although they appear to be different, the representation for pF in Eq. (2.73) and the representations for pF in
Egs. (2.74) and (2.75) are effectively the same. This equivalence can be seen by using suitable changes of variable

(see Eq. (2.16)) to reformulate the representation for pF in Eq. (2.73). Specifically, Eq. (2.73) can be rewritten as

pF = th( TMPSL(?)

i fSL(TSL)dTSLj({fWL[TMPWL(t)]}{dTMPWL(t)/dt})dt

- e ) s o | v
B -[TMNWL MvsiWL)ﬁL(TSL)fWL (T2 ) dTsdTrpr » (2.76)

where (i) the first equality results from the change of variables Ty = TMPSL(t) in the inner integral in Eq. (2.73),
(ii) the second equality results from the change of variables Ty; = TMPWL(?) in the outer integral in the first equal-
ity and the use of F~1(Ty;), TMNWL, and TMXWL to represent TMPSL[TMPWL ™ \(Ty;)], TMPWL(tMIN) and
TMPWL(tMAX), respectively and (iii) the third equality results from a rearrangement of the terms in the second
equality.

The functions F(Tg;) and F-1(Ty;) are defined by

F(Tg,) = TMPWL| TMPSL™ (T ) | and F ™! (T, ) = TMPSL| TMPWL™ (Tiy) . @.77)

with (i) F(T;) providing the WL temperature associated with a SL temperature of Tg; and (ii) £~ Y(Typ) providing
the SL temperature associated with a WL temperature of Ty;. Thus, as anticipated by the notation selected for use,
the functions F(Tg;) and F~1(Tyy;) are inverses of each other (Fig. 2.4). Because of this inverse relationship, the
double integrals in Eqs. (2.75) and (2.76) are effectively over the same area. Specifically, both integrals are over
the cross-hatched area in Fig. 2.4, with (i) the outer integral in Eq. (2.76) along the abscissa (i.e., the Ty, axis) from
TMPWL to TMXWL and the inner integral up to the curve [Ty, F~1(Ty;)], and (ii) the outer integral in Eq. (2.75)
along the ordinate (i.e., the Tg; axis) from TMNSL and TMXSL and the inner integral starting at the curve [F(Tg;),

31



T, ], which is the same as the curve [Ty, F~1(Ty;)], and moving to the right. In addition, the integral in Eq. (2.75)
covers the area to the right of TMXWL on the abscissa. Geometrically, this is an infinite area. However, if the prob-
ability of having a WL failure temperature greater than TMXWL is zero, then the part of the integral in Eq. (2.75)
over this area will be zero and so the representations for pF in Egs. (2.75) and (2.76) will produce the same value.
Similarly, as long as the probability of a WL failure temperature larger than TMXWL is small, the representations
for pF in Egs. (2.75) and (2.76) will produce numerically similar results. In summary, the representations for pF in
Egs. (2.72) — (2.73) (i.e., in the Bohn development) and in Egs. (2.74) — (2.75) (i.e., in the development of this pre-
sentaiton) produce the same value for pF when the probability of the WL failing at a temperature greater than
TMXWL = TMPWL(tMAX) is zero. However, if the probability of the WL failing at a temperature above TMXWL is

greater than zero, then use of the representations in Egs. (2.72) — (2.73) results in an underestimate of pF.

[TWL* TMPSL [TMPWL- (TWL)]]

= [TWL’ F'1(TWL)] Region Integrated Over:
=[F(TsL), Teu] Ea. 279 /[

= [TMPWLITMPSLY(Tg ], Tq]  °% B 7O BN

TMXSL 1

25
oleRe%e 2% 2% %%
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Fig. 2.4. lllustration of regions integrated over to
determine the failure probability pF with Egs.
(2.75) and (2.76)

32



3. Multiple WLs and SLs with Failure of One SL
Before Any WL Constituting System Failure

The analysis of PLOAS for a system involving multiple WLs and multiple SLs with failure of one SL before
failure of any WL constituting system failure is now presented. The following topics are considered: formal mathe-
matical representation of PLOAS (Sect. 3.1), numerical evaluation of defining integral for PLOAS with quadrature
methods (Sect. 3.2), numerical evaluation of defining integral for PLOAS with Monte Carlo methods (Sect. 3.3),

and an example of the numerical evaluation of PLOAS (Sect. 3.4).

3.1 Formal Representation

The system is now assumed to involve nL WLs and nSL SLs. The system is assumed to fail if any SL fails

before any of the WLs fail. The notation introduced in Sect. 2 is extended as follows:

TMPWLj(t) = temperature (°C) of WL, j = 1,2, ..., nWL, at time ¢ (min), 3B.D
TMPSL(r) = temperature (°C) of SL k, k=1, 2, ..., nSL, at time ¢ (min), 3.2)
JWL; = density function (°C1) for failure temperature TF WL;of WLj,j=1, 2,....,nWL, (3.3)
SSL, = density function (°C1) for failure temperature TFSL, of SLk, k=1, 2, ..., nSL. (34

The bounding times (i.e., zMIN, tMAX) remain as before; however, the individual SLs can have different minimum

and maximum temperatures.

The objective of this section is to determine the probability pF that a SL fails before any WL fails. The sample

space underlying this calculation is

S={t: t=[tFSL, 1FSLy, ..., tFSLygp , FWLy, tFWLy, ..., tFWLysp |} » (3.5)

where tFSLy and tFWL; are the failure times of the kth SL and jth WL, respectively. In particular,

pF = prob(E), (3.6)

where € is the subset of & defined by

E= {t : t=[tFSLy, tFSLy, ..., tFSL,sy , tFWLy, tFWL,, ..., tFWL,gy | € S and there exists an integer k
such that 1< k <nSL and (FSLy < tFWL; forj =12, ...,nWL}. (3.7)

Specifically, € contains the elements of & for which a SL fails before any WL fails.
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The determination of pF is based on the following decomposition of €

nTM | nSL .
Sy [U (Sl-ku&k)}, (3.8)

i=1 k=1
where

i ={t:te&, 1 SIFSL; <t; <tFSL; for =k, t; <tFWL, for j=1,2,...,nWL},

éik = {t te &, iy SHFSL <t;, tFSLy <tFSL; for I+ k, tFSL, <tFWL, forj=1,2, ..., nWL and either (i) there
exists at least one value of / such that £FSL; < ¢, or (ii) there exists at least one value ofj such that tFWL;
<13,

and tMIN =ty <ty < ... <t,m,= tMAX is a partition of [tMIN, tMAX] as indicated in Fig. 2.1. The set éik contains
elements of € that have a SL failure time (FSL,, I # k, satisfying #FSL; < tFSL; < t; or a WL failure time tFWL;, j =
1,2, ..., nWL, satisfying tFSL; < tFWLj <t The equality

nTM nSL nTM nSL

prob(€)= "3 3" prob(&x)+ 3. 3 prob(&) (3.9)

i=1 k=1 i=1 k=1

holds because the sets involved are disjoint (or, to be more precise, have intersections with a probability of zero, to

cover the situation that arises for & and &; when tFSL, = tFSL;, 1 < k <!< nSL).

The equality
lim > prob(&;)=0 (3.10)

holds because the indicated probabilities involve products whose individual terms are proportional to At; (see Eq.

(2.9) for an analogous situation). Further,

nSL
prob(&y ) =1[TMPSL (1;1), TMPSL (1;), fSLy | [ [Z[ TMPSL, (t;). %, f5L; |
i
nWL
« [T 1[TmPwL; (5;), 0, WL ]
j=1
nSL
= ([ TMPSL (1;) - TMPSLy (1;_,) ] fSL [ TMPSLy (1;) ]} T 1[ TMPSL; (4;), , /5L, ]
pr
nWL
. r[ll[TMPWLj (1), 00, WL} |, (3.11)
i
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where (i) I[a, b, f] is defined in conjunction with Egs. (2.9) and (2.10), (ii) the first term in the preceding products
corresponds to the probability that SL & fails in the time interval [#,_;, #;], (iii) the second term corresponds to the

probability that all SLs except SL k fail after ¢, and (iv) the third term corresponds to the probability that all WLs
fail after ¢;.

As aresult,
¢ ) nTM nSL ) nTM nSL -
prob(€) = nT}lllril-)w E kZ::l prob (&) + nT}\ilnl)oo IZI kZ:‘iprob (Sik)
nTM nSL
= K ,
Aim E kz:lprob(glk) +0
) nTM nSL
= lim E kzz‘i{[TMPSLk ()~ TMPSLy (t,-1) ] fSL [ TMPSLy (1;) ]}
nSL nWL
[T17[mPsL; (), =, 55, T I[TMPWL]. (), o0, fWL]], (3.12)
I=1 j=1
1#k

where the first, second and third equalities follow from Egs. (3.9), (3.10) and (3.11), respectively. Evaluation of the
final limit of Eq. (3.12) leads to the representation of prob(€), and hence pF, by

pF = Zsf( L%X { /5L [ TMPSL () ]} ﬁ I1[TMPSL (1), =, fSL; ]

=] =1
Ik

. {ﬁ][TMPWLJ (1), 0, SWL; ]} dTMPSLy (t) j

J=l

- L”‘AZVX ( '%L{ SSLy [ TMPSLy, (r)]} ﬁJ[TMPSL, (1), fSL, | {dTMPSLy (¢)/dt} J

I#k
nWL
. ql[TMPWLj(t),w,fWLj] dr, (3.13)
j=

where the first integral is a Riemann-Stieltjes integral and the second integral is the corresponding Riemann inte-

gral.

The Riemann integral defining pF in Eq. (3.13) is with respect to time. As discussed in conjunction with Eqgs.
(2.16) and (2.17), the definition of pF can be converted to an integral with respect to temperature by a suitable

change of variable. In particular, pF can also be represented by
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k| Thxsyy nSL »
PF =3 [yst 50 (Tt} HI[TMPSL, [ rmpsiy! (1), fSLle
k=1 I=1

12k

nWL
. {H [[TMPWL i [TMPSL,;1 (T )], %, fWL,}} dTyg;

j=1
TMXSL
= MNSLG(TSL)dTSL, (3.14)
where
TMNSL; = TMPSL(tMIN),k=1,2, ..., nSL, (3.15)
TMXSL, = TMPSL(tMAX), k=1,2, ..., nSL, (3.16)
TMNSL = min{TMNSLy :k=1,2,...,nSL}, (3.17)
TMXSL = max{TMXSL; :k=1,2,...,nSL}, (3.18)
nSL
G(Ty) = D G (Tg ), (3.19)
k=1
nSL )
Gy (Tsz ) = fSLy (T ) H[[TMPSLZ [TMPSL; (Tsr )],oo, fSLZJ
=1
I#k

nWL
-1
. { H I[TMPWLJ« [TMPSLk (TSL )J, 00, fWLj J} for TMNSLy, < Ty <TMXSL,
j=1

= 0 otherwise, (3.20)

and all integrals are now on temperature. The simpler representation

TMxsL| 5L nSL B
= Lramss | 2o 5% (Tsp )} HI[TMPSL, [TMPSLkI (TSL)},OO, fSLl:I
k=1 =1
Ik

. ﬁI[TMPWL-[TAJPSL_I(T )], fWL] dT;
1 j i (Ts ) |» 0, JWL; SL> 321)

for the first equality in Eq. (3.14) results when TMNSL; = TMNSL and TMXSL;, = TMXSL fork=1,2, ..., nSL.
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3.2 Numerical Evaluation: Quadrature

The same numerical procedures that were described in Sect. 2.3 for one WL and one SL are also appropriate for

the configuration described in the preceding section (Sect. 3.1) for n#L WLs and nSL SLs. In particular, as the

representation for pF in Egs. (3.14) — (3.20) is the same as the representation described in Eqgs. (2.28) and (2.29)

except that the function G(T;) is more complicated. However, the integrals in the definition of G(Tg7) in Egs.

(3.19) and (3.20) can be approximated as described in Sect. 2.3. Thus, G(Tg;) can be determined in an efficient

manner, and as a result, pF defined in Egs. (3.14) — (3.20) can be evaluated with the integral approximations in Eqs.

(2.49) and (2.50).

3.3 Numerical Calculation: Monte Carlo

Monte Carlo procedures similar to those described in Sect. 2.4 for one WL and one SL can also be used for the

WL/SL configuration described in Sect. 3.1. The determination of the failure probability pF for the WL/SL con-

figuration in Sect. 3.1 is based on the representation of pF with the integral

nWL nSL nWL nSL
pF={ [ I 8T T ) TT Ly (B, ) TT Sk (Tswa) [T dz. TT 475t
j=1 j=1 j=1 k=1

where

Ty = [TowssTwn s Trmn, |»
Ts = [TSL,I’ Tst 2> Tsp st |-
8(Tyr, Tor) = S(TWL,I: Tyras - Twpawe> Tsp1s Tsp,2s o0 TSL,nSL)
=1 if Sg (Tg ) # ¢ and either (i) Sy Ty ) =9¢ or (i) Syy (Tyy ) # ¢ and
min{Ty; ;2 j €8s (Tsg)} < min{Typ e :k €Sy (Ty )}, with
Ssr (Top ) ={k : Tsy < TMPSLy (tMIN)} and
Sy (Tw ) ={J: Ty, ; < TMPWL; (tMIN )}

= 1 if TMPSL, (tMIN)<Tg; ; fork=1,2, ..., nSL and

min{TMPSL;1 (Tspx ) k=1.2..... nSL} < min{TMPWL_l (Tyr, ) i=1.2...

with TMPSL' (Tg 5 ) = o0 if Tgy, . > TMPSLy (tMAX) and
TMPWL;' (T, ;) = o if Tyyy o > TMPWL; (1MAX)

= (0 otherwise,

and the iterated integrals involve integration over Ty 4 for k=1, 2, ..., nSL and over Ty, ; forj=1,2, ...
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The role of the indicator function 8(Ty;, Tg;) defined in Egs. (3.23) — (3.25) is to “pick out” the failure tem-
perature pairs (Tyy, Tgy) in which at least one SL fails before any WL. In particular, (i) the assignment in Eq.
(3.23) picks out the pairs in which at least one SL fails before the start of the analysis at time tMIN and, for the spe-
cial case with one or more WLs also failing before zMIN, in which the minimum of the SL failure temperatures is
less than the minimum of the WL failure temperatures for the links failing before tMIN; (ii) the assignment in Eq.
(3.24) picks out the pairs in which at least one SL fails between tMIN and tMAX before the failure of any of the
WLs; and (iii) the assignment in Eq. (3.25) removes the probability associated with pairs in which none of the SLs

fail before any of the WLs from incorporation into pF.

The integral defining pF in Eq. (3.22) can be approximated by

N
PF =Y 8(Tyy, s, TSL,i)/N : (3.26)
i1
where
I:TWL,ia TSL,iJ =[Twetis Tr oo T i Tt Top g -oos Tsgmsei > 1=1,2, ..., N, (3:27)

is a random sample from the possible values of Ty; and Tg; generated in consistency with the distributions defined

by the density functionstLj(TWL),j =1,2,..,nWL,and fSL(T¢;), k=1,2, ..., nSL.

As previously indicated in conjunction with Eqs. (2.58) and (2.59) for one WL and one SL, importance sam-
pling can be used to accelerate the convergence of Monte Carlo approximations to pF obtained from the integral in

Eq. (3.17). In particular, the representation for pF defined by this integral can be reformulated as

nWL nSL

8(Tyr. T ) [T 2, (TWL,j) T1/5 (Tsr )
k=1

pF:foo'“fooEZo”.foo nWL = nSL

[T, (TWL,j) [ 1 7L, (TSL,k)
k=1

j=1
nWL nSL nWL nSL

1} WL, (TWL,j) TT /5L (Tse.i ) TT a1 1 %50 4 (3.28)
J=1 k=1 J=1 k=1

where fT WL{(Tyy, P J=1,2,...,nWL, and JSL(Tgp 1), k= 1,2, ..., nSL, are density functions that correspond to the

distribution functions used for importance sampling on the WL and SL failure temperature distributions.

The resulting importance sampling approximation of pF is given by

nWL nSL
¥ 8Ty To ;) [1 72, (TWL,j,i) 1152, (TSL,k,i)
=1 k=1
pF Eg A nSL N,

11 amL (TWL,j,i) [17sL (TSLJCJ)
i P (3.29)
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where [Ty 5, Tgr i1, i= 1,2, ..., N, is a sample of the form indicated in Eq. (3.27) but now generated in consistency

with the distributions defined by IWL(Ty; ;) and fISLi(Tg; ;) rather than the distributions defined by fWL(Tyy ;)
and fSL(Tgy, ).

3.4 Numerical Evaluation: Example

The following example involves two WLs and two SLs, with failure assumed to occur if either SL fails before
either WL fails. For illustration, the WL and SL temperature curves are assumed to have the same general shapes as
in Egs. (2.66) and (2.67), with some modifications to the coefficients so that the individual links will have different

temperature curves. In particular,

TMPWL, (1) =¢| +[c2 toy e A sin (e jt)} tanh (g ) (3.30)

TMPSLy (t) = ¢ + ¢, tanh| cgy (1+ ¢4 )t ] (3.31)

where ¢; and ¢, are defined the same as in conjunction with Egs. (2.66) and (2.67) (i.e., ¢; = 10°C, ¢; = 900°C), c3,
=-900°C, ¢y, = —1100°C, ¢4y = 0.25 min~!, ¢4, = 0.30 min~!, ¢5; = 0.12 min~!, 5, = 0.18 min~!, ¢g; = 0.02 min~1,
cgp = 0.04 min~1, ¢5; = 0.5 and ¢, = 0.8 (Fig. 3.1). Use of the term cgy(1 + ¢7;) in the definition of TMPSL(?) in
Eq. (3.26) results in the temperature behavior of the two SLs being related to the temperature behavior of WL2 but

unrelated to the temperature behavior of WL1.

I 1 | | I 1 | 1 |
1000 1 5¢rong Link 1 1
__ 800}
e _ < Strong Link 2
g
3 600 .
s —Weak Link 1
o i i
3 “~~—Weak Link 2
£ 400 .
h —
200 -
0 ] | I | i | 1
0 20 40 60 80 100
Time (min) TRO5A001-0.doc

Fig. 3.1. Time-temperature curves defined in Eqs.
(3.30) and (3.31) and used to illustrate calculation
of failure probability pF for two WLs and two SLs.
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Further, the density functions JWL{Tyy) and SSL{Tgy) for failure temperature are defined as in Egs. (2.68) and
(2.69), respectively. Specifically, cg =310°C and cg = 8°C in the definition of fWL(Ty;) and fWL(Tyy), and ¢y =
560°C and ¢y = 18°C in the definition of fSL,(7g;) and fSL,(Ts;). However, although the distributions defined by
JWL\(Tyy) and fWL,(Ty;) are the same, the failure temperatures for the two WLs are assumed to be independent;
the same assumption is also made for the SL failure temperatures. The integral representations for pF developed in
this presentation are predicated on the assumption that the failure temperatures are independent. The assumption of
dependence would result in more complex integral representations for pF. However, it would be relatively easy to

modify the Monte Carlo calculations of pF to incorporate correlations involving the failure temperatures.

The failure probability example introduced in this section is evaluated with the trapezoidal rule, Simpson’s rule,
simple random sampling and importance sampling (Table 3.1). The evaluations with the trapezoidal rule (see Eq.
(2.49)) and Simpson’s rule (see Eq. (2.50)) use the representations for pF associated with Egs. (3.14) and (3.20).
The Monte Carlo evaluations based on simple random sampling and importance sampling use the representations
for pF in Eqs. (3.22) and (3.28), respectively. Further, the importance sampling evaluation uses uniform distribu-
tions with density functions f7 WL(Tyy) and fISLi(Tsy) defined the same as fIWL(Ty;) and fISL(Tgy) in Egs. (2.68)
and (2.69), respectively. The four approaches produce similar values for pF, although the two sampling based ap-

proaches require larger numbers of function evaluations.
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Table 3.1. Approximation of Failure Probability pF for System Defined in Sect. 3.4 with Two
WLs, Two SLs, Normal Distributions for WL and SL Failure Temperatures, and Failure of a SL
Before Either WL Constituting System Failure (i.e., the Failure Configuration Described in Sect.

3.1)a

Nb Trapezoidal Simpson’s Ne Randgm Importz.mce

Rule® Ruled Sampling? Sampling8

3 3.623E-06 4.831E-06 1,000 1.830E-01 2.629E-05

1.812E-06 1.208E-06 10,000 1.690E-01 2.250E-01

9 4.086E-04 5.442E-04 100,000 1.668E-01 1.604E-01

17 6.489E-02 8.639E-02 1,000,000 1.679E-01 1.648E-01

33 1.781E-01 2.159E-01 10,000,000 1.679E-01 1.760E-01

65 1.679E-01 1.645E-01 100,000,000 1.679E-01 1.666E-01
129 1.678E-01 1.678E-01
257 1.678E-01 1.678E-01
513 ———- 1.678E-01

& Calculations performed with CPLOAS program (App. I1).
Number of evaluations of G(Ts;) (see Eq. (3.14)) with trapezoidal rule and Simpson’s rule, which corresponds to the interval [TMNSL,
TMXSL] being divided into N-1 subintervals.

Approximation to pF obtained with trapezoidal rule (see Eq. (2.49)).

o

Approximation to pF obtained with Simpson’s rule (see Eq. (2.50)).
Number of evaluation of 8(Tyz, Tsz) = 8(Twr.1» Twrzs Tsei» Tsr2) (see Egs. (3.23) — (3.25)) for random sampling and importance sampling.
Approximation to pF obtained with random sampling (see Eq. (3.26)).

[05] [asr T 1] o (¢}

Approximation to pF obtained with importance sampling with uniform distributions for Tyz1, Twz2, s, and T (see Egs. (3.28) and
(3.29), with fIWL(Twy ) and fISL«(Ts.4) defined as indicated in Egs. (2.70) and (2.71), respectively).
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4. Multiple WLs and SLs with Failure of All SLs
Before Any WL Constituting System Failure

The analysis of PLOAS for a system involving multiple WLs and multiple SLs with failure of all SLs before
failure of any WL constituting system failure is now presented. The following topics are considered: formal mathe-
matical representation of PLOAS (Sect. 4.1), numerical evaluation of defining integral for PLOAS with quadrature
methods (Sect. 4.2), numerical evaluation of defining integral for PLOAS with Monte Carlo methods (Sect. 4.3),
example of the numerical evaluation of PLOAS (Sect. 4.4), and comparison with a representation for PLOAS de-

veloped by M.P. Bohn for one WL and two SLs (Sect. 4.5).

4.1 Formal Representation

The system is assumed to involve nWL WLs and »SL SLs as in Sect. 3. However, the system is now assumed to
fail only if all SLs fail before any WL fails. The functions 7. MPWL,, TMPSLy, JWL; and fSL; are the same as in Egs.
(3.1)-(3.4).

The underlying sample space & is the same as defined in Eq. (3.5). However, the set € used in the definition

of pF is different. In particular,

pF = prob(€), “.1)

where € is now the subset of & defined by

& ={t:t=[tFSLy,1FSLy, ..., tFSL,5 , tFWL, tFWL,, ..., tFWL,y; | € S and tFSL;, <tFWL;
fork=1,2,...,nSL, j=1,2,...,nWL}. 4.2)

Specifically, & contains the elements of S for which all SLs fail before any WL fails.

The determination of pF is based on the following decomposition of ¢ :
nTM | nSL -
Uy (e,.k uSik) : (4.3)
i=] Lk=1

where

Ex ={t:te & 1,y <IFSL <t;, tFSL) <t;_ for [ £k, 4; <tFWL; for j=1,2,...,nWL},

(Ej,-k = {t :te &, <tFSL, <t;,tFSL; <tFSL for I # k, tFSL; < tFWL;forj=1,2, ..., nWL and either (i) there
exists at least one value of / such that #,_; < #FSL; or (ii) there exists at least one value of j such that
IFWL; < 1},
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and tIMIN = 1y <1, < ... <t,3,= tMAX is a partition of [tMIN, tMAX)] as indicated in Fig. 2.1. The set é,-k contains
elements of € that have a SL failure time 1FSL,, [ # k, satisfying tiy < tFSL < tFSLy or a WL failure time tFWL;, j =
1,2, ..., nWL, satisfying tFSL; < tF WL; < t;. The equality

nTM nSL nTM nSL

prob(E)= " Zprob(&-k)+ > Zprob(éik) (“4.4)

i=l k=1 i=1 k=1

holds because the sets involved are disjoint (see parenthetical remark following Eq. (3.9)).

The equality
lim > > prob(&;)=0 45)

holds because the indicated probabilities involve products whose individual terms are proportional to At; (see Eq.

(2.9) for an analogous situation). Further, similarly to Eq. (3.11),

prob(&y )= 1[ TMPSL (t,_, ), TMPSL; (1;), SSL; ]
nSL nWL

« [17[-o0. TMPSLy (14). g1, ] [T 1[TMPIL (1), 0, WL ]
=
= {[TMPSL (1;)~ TMPSLy (1, )] fSL [ TMPSL, (1 ik
nSL nWL
s [T1[-o0 TMPSLy (114), /51, ] T 2[TMPWL, (1), o0, 7L ], “6)
I=1 j=1 :
1=k

where (i) /[a, b, f] is defined in conjunction with Egs. (2.9) and (2.10), (ii) the first term in the preceding products
corresponds to the probability that SL & will fail in the time interval [#;_1, t;], (1i1) the second term corresponds to the
probability that all SLs except SL & will fail before t;_1, and (iv) the third term corresponds to the probability that all
WLs will fail after ¢,.

As aresult,

44



nTM nSL nTM nSL

prob(€)= lim > > prob(&y )+ T}\lem ZZprob( )

nTM—0 (o 1oy i1 k=t
WTM nSL

= i b(€, 0
nTAllrr—l)oo ; I;pro ( lk)+
nTM nSL

im Y > {[TMPSLy (1)~ TMPSLy (1) ] fSLi [ TMPSLy (1 )}
HIM =0 1 k=1

nSL nWL

s [12[~o0. TMPSL (1,y), SL; | T 1[TMPWL; (5;), , ML ], @7
I=1 J=l
I#k

where the first, second and third equalities follow from Egs. (4.4), (4.5) and (4.6), respectively. Evaluation of the
final limit in Eq. (4.7) leads to the representation of prob( ), and hence pF, by

nSL

PF = ,;UZWN { £ [TMPSLy (1)) Hl[—oo TMPSL, (1), fSL; ]
Lk
{ﬁI[TMPWL (1), ]} dTMPSLy (t) ]
- L”‘Aflf ( Zij{ SSL [TMPSL (1)]} ﬁ][—oo TMPSL (t), fSL; ]} {dTMPSLy (¢)/dt} j
ok
. [ﬁ][mpm ;i (1),00, WL, ]} dr, (4.8)

where the first integral is a Riemann-Stieltjes integral and the second integral is the corresponding Riemann inte-

gral.

The Riemann integral defining pF in Eq. (4.8) is with respect to time. As discussed in conjunction with Egs.
(2.16) and (2.17), the definition of pF can be converted to an integral with respect to temperature by a suitable

change of variable. This change produces

nSL TMXSL, nSL
pF:Z‘l st | 150 (7o)} 11‘1[1[ o0, TMPSL, [ TMPSL (T ) | fSL,}
Izk
nWL
S [ 1| oL [ TMpsE (T )| o, Myl |dZs:
j=1
TMXSL
= Lo @ Tsz M sz 4.9)

where notation is the same as in Eq. (3.14) except that now
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nSL

Gy (Tey ) = fSLy (Tgr ) Hl[—oo, TMPSL, | TMPSL;! (Ts; ) | fSL,}
=1
I=k

nWL
-1
. {H I[TMPWLJ- [TMPSLk (TSL )], oo, fWL; ]} for TMNSL;, < Tg; < TMXSLy,
j=1

=0 otherwise (4.10)

in the definition of G(T¢;). The simpler representation

TmxsL| "L nSL L

PF = Jruawr | 2 1Lk (Tse)} Hl[”"ovTMPSLl[TMPSLk (TSL)]»fSLI:I
k=1 =1
Ik

nWL
. {H I[TMPWL J [TMPSL;‘ (Tg; )], w, WL, ]} Ty,

= (4.11)

results for the first equality in Eq. (4.9) when TMNSL, = TMNSL and TMXSL, = TMXSL fork=1,2, ..., nSL.

4.2 Numerical Evaluation: Quadrature

The same numerical procedures indicated in Sect. 3.2 (i.e., the quadrature formulas in Egs. (2.49) and (2.50))
can be used to determine the failure probability pF for the WL/SL configuration described in the preceding section
(Sect. 4.1). The only difference is a change in the definition of the function G(Ts;) resulting from a changed defini-
tion for Gi(Tg1) (see Egs. (3.19), (3.20), (4.10)).

Evaluation of G(Tg;) in conjunction with Eq. (4.19) involves integrals of both the forms I[c, =, f] and /[-, c,
£], where fis a probability density function (see definition of Gi(Tsz) in Eq. (4.10)). The evaluation of [[c, o, f] is
discussed in Egs. (2.36) — (2.48) for uniform, loguniform, normal and lognormal distributions (i.e., for the density
functions £, f},,, f,, and f;,, in the notation used in conjunction with Eqs. (2.36) — (2.48)). Similar evaluations are also

possible for I[-w, ¢, f]. Specifically,

0 ifc<a
I[—OO,c,fu]z (c—a)/(b—a) ifagc<h
1 ifc>b

4.12)

for —o0 < ¢ < oo and the uniform density function £, defined in Eq. (2.30);
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0 ifc<a
I[-,¢, fi,]=4In(c/a)/In(b/a) ifa<c<b
1 ifczb (4.13)
for —oo < ¢ < and the loguniform density function f;, defined in Eq. (2.31);

1[0, ¢, f,]= [ (1/ov/2r) exp[-(T—u)z /202} dr (4.14)

for —o < ¢ < o0 and the normal density function f,, defined in Eq. (2.32), and

0 ifc<0
I[~0,c, fi,]= Ig(l/Tm) exp[—(ln T—u)z/zcz]dT
- f;nc(l/"m) exp[—(y—u)2/202]dy ife>0 (4.15)

for —oo < ¢ < o0 and the lognormal density function f;,, defined in Eq. (2.33) with f;,,(7) = 0 assumed for 7< 0.

Similarly to /[c, , £,] and I[c, , f;,] as discussed in conjunction with Eqgs. (2.40) — ( 2.48), closed form repre-

sentations for I[—w, c, f,] and [[-, ¢, f;,] do not exist. However, I[-, ¢, f,,] and /[-, ¢, f},,] can be represented by

I[—oo, c, fn]=P[(C—H)/G] (4.16)
and
) 0 ife<0
I[~.c. fin] = P[(lnc—u)/cj ifc>0, @.17)

where P(x) denotes the Gaussian probability integral defined in Eq. (2.42). In turn, P(x) can be approximated by the
relation in Eq. (2.43).

An alternative approximation can be obtained from the representations
I[-,c, f,]=1-1[c,, f,]=1=(1/2) erfe] (c-n)/oV2 | (4.18)
and

I[-o,¢, fi,]=1-1[c,, fi,]=1-1/2 erfc[(lnc—p.)/cs\/i],c >0, (4.19)

that result from Eqs. (2.44) and (2.45). Then, approximations to /[, ¢, f,,] and I[-, c, f;,] follow from the repre-
sentations for erfc(x) in Eqs. (2.47) and (2.48).
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4.3 Numerical Evaluation: Monte Carlo

The same Monte Carlo procedures indicated in Sect. 3.3 can be used to determine the failure probability pF for
the WL/SL configuration described in Sect. 4.1. The only difference is in the definition of the indicator function
3(Twy, Tgr) in Eq. (3.22). For the WL/SL configuration described in Sect. 4.1, 3(Ty;, Tg) is defined by

3(Twe> Tse) = (Tt Twpao o Tww s Tspo Tsz, 20 Tspomst,)

= 1 if Tgy ;< TMPSLy (tMIN) for k=1,2, ..., nSL and max {Tg; 4 -k =1,2,...,nSL} <
min{Ty, ; 1< j <nWL and Ty, ; < TMPWL ; (tMIN )| (4.20)

It

I if Sgg (Tsp)# ¢ Syr (Tyz ) = ¢ and max {TMPSL;I (Toi )k eSer (Tsg )} <
min{TMPWL_l (Tor, )i =120 nWL}, where
Ssr.(Tsp ) = {k : TMPSL, (tMIN) < Ty 4}, Sy (T ) = { i Tyy,; < TMPWL, (tMN)},
TMPSL;' (Tsp 1 ) = o if Tgy, > TMPSL (tMAX ), and

—1 .
TMPWL; (TWL,j)=°° if Ty j > TMPWL; (tMA4X) 4.21)
= 0 otherwise. 4.22)

With respect to the role of the indicator function 8(Tyy, Tgr), (i) the assignment in Eq. (4.20) picks out the pairs
(Twr, Tg) in which all SLs fail before the start of the analysis at time zMIN and any WL failing before the start of
the analysis has a higher failure temperature than any SL, (ii) the assignment in Eq. (4.21) picks out the pairs in
which all SLs fail before the end of the analysis at tMAX and also before the failure of any WL, and (iii) the assign-
ment in Eq. (4.22) removes the probability associated with pairs in which one or more WLs fail before all of the SLs

fail from incorporation into pF.

With the definition of (T, Tg,) in Egs. (4.20) — (4.22), the Monte Carlo approximation to pF for the WL/SL
configuration in Sect. 4.1 has the form in Eq. (3.26) when simple random sampling is used and the form in Eq.

(3.29) when importance sampling is used.

4.4 Numerical Example: Example

The example introduced in Sect. 3.4 is also used to illustrate the WL/SL configuration described in Sect. 4.1
where all SLs are required to fail before any WL to produce a failure of the WL/SL system (Table 4.1). The only
difference in the implementation of the numerical results is the use of the definition of Gi{Ts;) in Eq. (4.10) instead
of the definition in Eq. (3.20) in the generation of quadrature results (see Egs. (2.49) — (2.50)) and the use of the
definition 8(Ty;, Tg) in Egs. (4.20) — (4.22) instead of the definition in Egs. (3.23) — (3.25) in the generation of
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Monte Carlo results with simple random sampling (see Eq. (3.26) and importance sampling (see Eq. (3.29)). The
four approaches produce similar values for pF, with the two quadrature approaches requiring far fewer function
evaluations than the two sampling approaches. Further, the requirement that both SLs fail before either WL fails
results in a much smaller value for pF (i.c., pF = 1.6 x 107 in Table 4.1) than is the case in the preceding section

(Sect. 3) where only one SL is required to fail prior to the failure of either WL (i.e., pF'= 1.7 x 107" in Table 3.1).

4.5 Comparison with One WL, Two SL Representation Developed by Bohn

For one WL and two SLs and with the notation used in his presentation, Bohn’s representation for the probabil-

ity pF that both SLs fail before the WL for the system described in Sect. 4.1 is

MAX
pF = J;tM,N CDFgy) (t)CDFgy 5 (t) PDFyy, (1) dt, (4.23)

Table 4.1. Approximation of Failure Probability pF for System Defined in Sect. 3.4 with Two
WLs, Two SLs, Normal Distributions for WL and SL Failure Temperatures, and Failure of Both
SLs before Either WL Constituting System Failure (i.e., the Failure Configuration Described in

Sect. 4.1)2

A N smplng’_ Samplngt
3 8.273E-08 1.103E-07 1,000 0.000E+00 2.185E-13
4.136E-08 2.758E-08 10,000 0.000E+00 5.521E-07
9 2.076E-07 2.630E-07 100,000 0.000E+00 2.226E-06
17 1.058E-07 7.183E-08 1,000,000 2.000E-06 1.968E-06
33 2.052E-06 2.700E-06 10,000,000 1.500E-06 1.573E-06
65 1.567E-06 1.405E-06 100,000,000 1.670E-01 1.594E-06
129 1.557E-06 1.553E-06
257 1.557E-06 1.557E-06
513 — 1.557E-06
1025 — 1.557E-06
2049 — 1.557E-06

& Calculations performed with CPLOAS program (App. ITT)

b Number of evaluations of G(Tgp) (see Eq. (4.9)) with trapezoidal rule and Simpson’s rule, which corresponds to the interval [TMNSL,
TMXSL] being divided into N—1 subintervals.

Approximation to pF obtained with trapezoidal rule (see Eq. (2.49)).

Approximation to pF obtained with Simpson’s rule (see Eq. (2.50)).

Number of evaluation of 8(Tpz, Tsz) = 8(Tww1, Twizs Tsers Ts2) (see Eqgs. (4.20) — (4.22)) for random sampling and importance sampling.
Approximation to pF obtained with random sampling (see Eq. (3.26)).

m@| o~ 0 A 6

Approximation to pF obtained with importance sampling with uniform distributions for Tyz,1, Twr2, Tsr,1 and Tsz», (see Eqgs. (3.28) and
(3.29), with /T WLJ(TWL ;) and fISLi(Ts, ;) defined as indicated in Eqs. (2.70) and (2.71), respectively).
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where (1) CDFg () and CDFgy,(¥) are the probabilities that SLs 1 and 2, respectively, fail before time #, (ii)
PDFpy1(¢) is defined the same as in Eq. (2.72), and (iii) [tMIN, tMAX] is the time interval over which the calcula-
tion is carried out. This is the representation given in Eq. (4) of Bohn’s report with the time interval [0, ] replaced

by [tMIN, tMAX] and ¢, replaced by ¢ for notational convenience.

In the notation used in this presentation, the representation for pF in Eq. (4.23) becomes

pF = L’%X (f:[l[ [\ e\ 5L [TMPSL (2) ]} {dTMPSL (r)/dr}drU

« ({mL[TPwL ()]} {drmPwL (1) /ar})r, (4.24)

where (i) CDFg;1(f) and CDFg;5(f) are defined analogously to CDFg;(f) in Eq. (2.73) with subscripts of k=1, 2
used on fSL; and TMPSL;, to distinguish between the two SLs and (ii) PDFyy(¢) is defined the same as PDF (%)
in Eq. (2.73) with no subscripting needed on /WL and TMPWL as only one WL is involved. The corresponding
representations for pF given in Eqs. (4.8) and (4.9) are

pF = rW[{jSLI[TMPSLI t)]}{fWSLz ﬂ)‘L2(TSLz)dTSLz}{dTMPSLI(t)/dt}

(s [MPSL s { JZOMPSLI(f TSLl)dTSLI}{dTMPSlQ (t)/dt})( J‘;MPWL ” fWL(TWL)dTWL)dt

(4.25)
= %LLI SSL (Tsra ){ ﬁLﬂ(TSLl)fSLz (Tse2 )dTSLZ} {J;WLI(TSLI)fWL(TWL )dTWL}dTSLl
TAZZ;?EZ ALy (Tse2) { EfLIZ(TSLZ) SSL (Tspy ) dTgr, H J;OWLz(Tst)fWL (T )3T }dTSLz’ (4.26)
where
FSLy (T, ) = TMPSL [TMPSL,‘1 (Tg: )} 4.27)
expresses the temperature of SL £ as a function of the temperature of SL / and
FWL (Ts; ) = TMPWL| TMPSL (T, ) | (4.28)

expresses the temperature of the WL as a function of the temperature of SL k.

The equivalence of the representation for pF in Eq. (4.24) and the representation for pF in Egs. (4.25) and
(4.26) will be established by using suitable changes of variable (see Eq. (2.16)) to reformulate the representation for
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pF in Eq. (4.24) into a form that can be shown to have the same value as the representation in Eq. (4.26). Specifi-

cally, Eq. (4.24) can be rewritten as
2
pF = fAAZVX [H[ T;Csf:(t) L (TSLk)dTSLkD({ /WL[TMPWL(t)]}{dTMPWL(z)/dt})dr
k=1

MNWL "MNSL;,

2 1
_ TMXWL[H{ FWL, (TWL)stk (TSLk)dTSLkD JWL(Tyyy )Ty,
k=1

MxwL FWL (T oFWE (T

ALy (Ta ) SSLy(Tspy ) SWL(Tyy, ) AT 24751 4Ty

MNWL JTMNSL MNSL)
= ,[gf (Twr> Toras Tsz2 )4V, (4.29)
where
TMNWL = TMPWL(tMIN ), TMXWL = TMPWL (tMAX ), (4.30)
STy Tsprs Tszz ) = Ly (Tor2) SSL(Tsa ) L(Tr ) (431)

S= {(TWL, Ty sz ): TMNWL < Ty < TMXWL, TMNSL, < Tgyy < FWL (T, ), TMNSL, < Ty < FWL;' (T )}
- {(TWL, Tgis Tspz ) : TMNWL < Ty < TMXWL, TMNSL, < Tgy; < TMPSL, [TMPWL‘1 (T )},

TMNSL, < Tg;, < TMPSL, [TMPWL‘1 (T )]}
(432)

and d¥ corresponds to an increment of volume from & (i.e., dTg; dTszy dTpy).

To facilitate establishing the equivalence of the representations for pF in Eqs. (4.24) and (4.26), the representa-

tion in Eq. (4.26) can be rewritten as

TMXSLy (FSLp)(T:
= [ ) J;QWLl(TSLI)fWL(TWL)fSLz(TSL2)fSL1 (Tsr1) AT AT 24Ty

"MNSIy
TMXSLy FSL12(TSL2)
MNSL) s Wiy (1g0) " ¢ (T ) SSLy (Tspa ) SSLo (Tsp2 ) AT dT5014 1.2
TMXSL) ¢FSLy TSLI) TMXWL
Ty )d Ty AT »dT,
MNSL) JTMNSL -[FWLl(Tsm SWL(Ty) fSLa (Tsz2 ) SSIy (Tsga ) 4T AT s 2T

TMXSLy (FSIio(Tsra) (TMXWL
T ATy dTgr,dT
MNSLy STMNSI IFWLZ(TSLz)fWL(TWL)fSLl(TSLl)fSL2( 522 )Ty 475014751,

= Iglf(TWL’ T TSLz)dV+L§2f(TWL, Tspr> Top2 )4V
= S (T Ts> Tsp2 )V, (4.33)

IS

where
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Sy ={(Ty» Tspa> Topa ) FWLy (Tsyy ) < Ty, < TMXWL, TMNSIy < Top; < TMXSL, TMNSL, < T3 < FSLyy (Tspy )}

- {(TWL, Tyg1s Tsa): TMPWL| TMPSL (Tgpy ) | < Ty, < TMXL,

TMNSL, < Tg;| < TMXSL;, TMNSL, < Tg;, < TMPSL, [TMPSL;‘ (Tsy )}}
(4.34)

Sy ={(Twr» Tsp1> Tora ) : FWLy (Tsp2) < Ty, < TMXWL, TMNSLy < Tgpy < FSLy5 (T ), TMNSLy <Tgp < TMXSL, }

= {(TWL B TSL] . TSLZ) . TMPWL[TMPSLEI (TSL2 ):\ < TWL < TWWL,

TMNSLy < Tgy, < TMPSLy | TMPSIS! (T ) |, TMNSL, < Ty, < TMXSL, }

(4.35)
and ATwy, Ty, Tsro) and dV are defined the same as in conjunction with Eq. (4.29). The approximation in Eq.
(4.33) results from truncating infinite integrals at TMNSL,, TMNSL, and TMXWL as appropriate. As long as prob-
lems start and end at temperatures such that the probability of an SL failure temperature below the corresponding
starting temperature (i.e., TMNSL, or TMNSL,) is inconsequential and the probability of a WL failure temperature
above TMXWL is inconsequential, the indicated approximation will have no significant effect on the calculated
value for pF. The final equality in Eq. (4.33) is contingent on the intersection of &) and &, being a set of zero vol-

ume (i.e., measure zero) in three-dimensional space; this is established in the following two paragraphs.

The following inequalities are required by the definitions of &, and &, in Egs. (4.34) and (4.35) for a point

(Twrs Tsp1> Tsrp) in & 0 Sy

TMNSL, < T, < TMPSL, I:TMPSLI“I (Tsa )] (4.36)
and

TMNSL; < Tg, < TMPSL [TMPSL}‘ (TSLZ)} (4.37)

Because T. MPSL_Z1 (Tgzp) and T MPSLI'1 (T ) are increasing functions, the preceding inequalities imply that
TMPSL;' (Tgp, ) < TMPSL (T, (4.38)

TMPSL (Tg, ) < TMPSLy' (Tgp) (4.39)

and hence that

TMPSL;' (Tg;, ) < TMPSL' (Tgp, ) < TMPSL; ' (Tgp)- (4.40)

In turn, the immediately preceding inequalities imply that
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TMPSL; " (Tsyy ) = TMPSL (T
and hence that the equalities
Tspy = TMPSLy [TM’SIEI (Tsza ):l
Tspp = TMPSL, [T MPSL; (Tepy )]
hold for (Tyy, Tgr1» Tgrn) in S N Sy, Thus, Ty and Ty, fall on the line defined by the points
[TSLI, TMPSL, | TMPSI; (T, )ﬂ TMNSL, < Tg;, < TMXSL,,
or equivalently by the points
[TMPSLI [7MPs13! (T.5) . TSLJ, TMNSL, < Ty, , < TMXSL,.
Further, the relationships

TMPWL [TMPSL;‘ (TSLZ)] = TMPWL[TMPSL{I (Tsta )} < Ty < TMXWL

follows from the definition of &§; in Eq. (4.34) and the equality in Eq. (4.41).

Together, the results in Egs. (4.44) — (4.46) imply that &; N S, is the surface defined by

[TWL, Tyg1, TMPSLy | TMPSIT (T )ﬂ

for TMPWL] TMPSLI_1 (Tsr 1)) < Ty < TMXWL and TMNSL; < Ty < TMXSLy, or equivalently, by

[TWL’ TMPSLy [TMPSLEI (Zsz2 )] TSLZ}

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

for TMPWL[ TMPSL;" (T )] < Tyy, < TMXWL and TMNSL, < Tg;5 < TMXSL,. Thus, 8 N S, is a surface and the

equality in Eq. (4.33) is valid.

The integrals defining pF in Egs. (4.29) and (4.33) have the same general form and differ only in the sets & and

§1 U &, being integrated over. The sets S and §; U &, will now be shown to be the same. As a result, the repre-

sentations for pF developed by Bohn (i.e., Egs. (4.23), (4.24) and the representations developed in this presentation

(i.e., Egs. (4.25), (4.26) are the same (conditional on the approximation introduced in Eq. (4.33)). The equality of $

and S| U S, is established by showing that §; U §, = § and that § © §1 U &. In establishing the preceding,
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the properties that TMPSL, TMPSL, and TMPWL are nondecreasing functions of time and that 7. MPSLI_I,

TMPSL, ! and TMPWL-! are nondecreasing functions of temperature play an important role.

Let (Tyz, Tsp1, Tsiz) € St S). Then, either (Tyy, Tsy 1, Tspa) € S or (T, Tsprs Tszz) € S First, assume

(Twr> Tsp1, Tspo) € ;. Then, the following inequalities hold:

TMNWL = FWL, (TMNSLy) < FWL, (Tgy, ) < Ty, < TMXWL,
TMNSL, < Ty, = FWLT [ FWL (T, )] < FWIT (T ) = TMPSL, [TMPWL’I (T )},
TMNSL, < Tg;» < FSLy; (Tspy ) < FSLy, [FWL;‘ (T )J = TMPSL, [TMPWL‘1 (T )]

Thus, (Tyz, Tsp1. Tspp) € S(see definition of Sin Eq. (4.32)). Similarly, if (T, Tsz1> Tsz2) € &, then

TMNWL = FWL, (TMNSL, ) < FWL, (Ts;, ) < Ty < TMXWL,

TMNSLy < Tgy; < FSLyy (Ts2) < FSLy | FWI3 (T )|=rmpst, | mPwL (T, )]

TMNSL, < T, = FWLy' | FWLy (Tg; )| < FWL,' (Ty, ) = TMPSL, [TMPWL‘I (Tt )],
which implies that (T, Ts1, Tszo) € S (see definition of Sin Eq. (4.32)). Hence, $; U S, < S

Now, let (Tyy, Tsr1» Tsz2) € S Then, either

Ts12 < FSLy) (Tsp1 ) = TMPSL, [TWSLII (Tsa )]
or
TMPSL, | TMPSIT (T, )| = PSLa (Tsu1) < Tz
If the inequality in Eq. (4.55) holds, then
TWWL[TMPSL[I (Tsty )] = FWL, (Tg, ) < FWL [FWLI“I (T )] =Ty, < TMXWL,
TMNSL, < Tg, < FWL' Ty ) < FWI;' (TMXWL) = TMXSL,,

TMNSL, < Ty < FSLyy (Tsyy) = TMPSLy | TMPSIT! (T ) |

and thus, (Tyy, Ty, Tsro) € S (see definition of ) in Eq. (4.34)). If the inequality in Eq. (4.56) holds, then
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(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)




TMPWL| TMPSL;' Ty, )} = FWLy (Tsy2) < FWLy | FWI3' (T )| =T < TR0ODL, (4.60)
TMNSL, < Tg;y < FSL;1 (T2 ) = TMPSL, [TMPSL;l (Tsz2 )}, (4.61)
TMNSL, <Tg;, < FWL;' (Tyy ) < FWL,' (TMXWL) = TMXSL, , (4.62)

and thus, (Tyy, Ts1» Tsra) € S, (see definition of &, in Eq. (4.35)). Hence, (Tyy, Tz, Tsro) € 31 U &, andas a
result, Sc S, U 5.

Given that §; U §, « Sand S §; U §,, it follows that & = §; U §,. Hence, the integrals in Egs. (4.29)
and (4.33) are the same. As a result, the representations for pF in Egs. (4.24) and (4.26) are the same.

Although formally correct, the preceding derivation is not very intuitive. To help facilitate an understanding of
the preceding derivation, an example follows. In this example, the time-temperature curves for the WL and the two

SLs are defined by

TMPWL(t) =100+ 6¢ (4.63)
TMPSLy () =100+7¢ (4.64)
TMPSL, (1) =100+ 8¢ (4.65)

for 0 <7< 100 min. Then,
TMNWL = TMNSL, = TMNSL, = 100°C, (4.66)

TMXWL = 600°C, TMXSL, = 800°C, TMXSL, = 900°C, (4.67)
and the set S defined in Eq. (4.32) corresponds to the three-dimensional region indicated in Fig. 4.1a.

The integral defining pF in Eq. (4.29) corresponds to integration (i) along the Ty axis from TMNWL = 100°C
to TMXWL = 600°C (i.e., along the line segment .__; in Fig. 4.1a), (ii) then, for each value of Ty, along the Tg;
axis from TMNSL, = 100°C to TMPSL,[TMPWL=\(Ty;)], (i.., along the line segment .L_, in Fig. 4.1a), and (iii)
finally, for each value of Tg;, along the Tg;5 axis from TMNSL, = 100°C to TMPSL,[ T. MPSLl_1 (Tgr ] (e, along
the line segment L5 in Fig. 4.1a). The line segments £_;, /.5 and 5 in Fig. 4.1a are formally defined by

Ly = {[ Ty, TMPSL, (0), TMPSL, (0)]: 100 < Ty, <600°C}

{{TwPWL(z),100°C,100°C]: 0<¢<100 min}, (4.68)

Ly = {[TWL, Ts11, TMPSL, (0) ] 100°C < Ty < TMPSLy [TMPWL“1 (Tir )J}
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= {[Tipw, TMPSL (),100°C]: 0 min <t <TMPWL™ (T )}, (4.69)

Ly = {[TWL, Tor-Tsza]: 100°C < Ty < TMPSL, [TMPWL_I (Tws )]}

- {[TWL, Typ1, TMPSLy (1) ]: 0 min <1< TMPSL, [ TMPWL™! (T )]} (4.70)

and collectively correspond to the set S (with appropriate recognition that .. , is conditional on Ty and that L 5 is

conditional on Ty and Ty ;).

The sets & and &, defined in Egs. (4.34) and (4.35) correspond to the three-dimensional regions indicated in
Figs. 4.1b and 4.1c, respectively. Further, §; m &, corresponds to the triangular planar region that forms the top
surface of &} in Fig. 4.1b and the bottom surface of &, in Fig. 4.1c.

The integral over S| in Eq. (4.33) corresponds to integrating (i) along the T'g;; axis from TMNSL, = 100°C to
TMXSL, = 800°C (i.e., along the line segment L _, in Fig. 4.1b), (ii) then, for each value of T, along the Ty, axis
from TMNSL, = 100°C to TMPSL,[ T. MPSLI_1 (Tsz1)]1 (i-e., along the line segment [ 5 in Fig. 4.1b), and (iii) finally,
for each value of Tg; 5, along the Ty axis from TMPWL[T. MPSLI_1 (Tgr1)] to TMXWL = 600°C (i.e., along the line
segments [_¢ in Fig. 4.1b). The line segments L 4, £ 5 and L ¢ in Fig. 4.1b are formally defined by

L4 = {[TMPWL(0), Tg;, TMPSL, (0)]: 100 <Tyg;; <800°C}

= {[100°C, TWPSL, (1),100°C]: 0<7<100 min}, @71
L= { TMPWL [ TMPSL; (T )],TSU,TSM} 100°C < Ty, < TMPSLy | TMPSL; ! (T )}}

= { TMPWL TM)SLI (TSL]):\ TSLI’ TMPSLz( )} Omin<t< TWSLIl (TSLI )}, (472)
L= { [Tr T, Tsgz): TMPWL] TMPSIT (Tspy) | < T 600°C}

= {[TMPWL(2), Tspy, Tz ): TMPSL;' (Tggy) <1100 mm} 4.73)

and collectively correspond to the set &, (with appropriate recognition that . s is conditional on Tg;; and that /¢

is conditional on Tg;; and Tgz5).

The integral over §, in Eq. (4.33) corresponds to integrating (i) along the Tg;, axis from TMNSL, = 100°C to
TMXSL, = 900°C (i.e., along the line segment [ 5 in Fig. 4.1¢), (ii) then, for each value of Ty, along the Tg;; axis
from TMNSL; = 100°C to TMPSL,[ T. MPS[Q (Tsr2)] (i-e., along the line segment L g in Fig. 4.1c), and (iii) finally,
for each value of Ty, , along the Ty axis from TMPWL[T. MPSLZ (Ts12)] to TMXWL = 600°C (i.e., along the line
segment [ g in Fig. 4.1¢). The line segments [ 5, L g and L in Fig. 4.1c are formally defined by
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L‘ 4 TR04A110-0.ai

Fig. 4.1. Three-dimensional failure temperature regions used in example comparison with compu-
tational structure developed by M.P. Bohn (see App. I) for probability of loss of assured safety for
system with one WL and two SLs.

L ={[TMPWL(100), TMPSL, (0), Tg;5 = 100 < Ty, < 900°C}

— {[100°C, 100°C, TMPSL, (1) ]: 0<¢ <100 min}, (4.74)
Ly = {[TMPWL[TMPSL;1 (Tsta )], Typss TW“} . 100°C < Ty, < TMPSI, [TMPSL;1 (Tsio )}}

- {[TMPWL [ TMPSES! (Tsy2) ], TMPSL (1), TSL?_} . 0 min</<TMPSL;' (TSLZ)}, (4.75)
Ly = {[TWL, Tur, Topa|: TMPWL TMPSI' (Tsp ) | < Ty < 600°c}

- {[TMPWL(t), Tsui Topa ]t TMPSL;' (Tegz) < <100 minl, (4.76)
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and collectively correspond to the set &, (with appropriate recognition that . g is conditional on Tz, and that /g

is conditional on Tgr, and Tg; ).

As illustrated in this example, the set § integrated over in Eq. (4.29) and set §| U S, integrated over in Eq.
(4.33) are the same. Further, 8; N S, is a surface. Thus, the integral of the function fin Eq. (4.31) over &Sis equal
to the sum of the integrals of fover & and §,, respectively. Hence, the representation for pF developed by Bohn
for one WL and two SLs and the representation developed in this presentation are equivalent conditional on the
truncation of the integrals over WL failure temperature at TMXWL in Eq. (4.33). This corresponds to truncating the
integrals over WL failure temperature in the example at 600°C. As long as the probability of WL failure below this
temperature is effectively one, this truncation has no effect on pF and so the two representations result in the same

value for pF.
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5. Multiple WLs and SLs with Individual SLs
Composed of Multiple Components

The analysis of PLOAS for a system with the following properties is now presented: multiple WLs, multiple
SLs, multiple components in each SL, failure of any component in a SL constitutes failure of that SL, and failure of
all SLs before failure of any WL constitutes system failure. The following topics are considered: formal mathe-
matical representation of PLOAS (Sect. 5.1), numerical evaluation of defining integral for PLOAS with quadrature
methods (Sect. 5.2), numerical evaluation of defining integral for PLOAS with Monte Carlo methods (Sect. 5.3),

and example of the numerical evaluation of PLOAS (Sect. 5.4).

5.1 Formal Representation

As in Sects. 3 and 4, the system is assumed to involve nWL WLs and nSL SLs. In addition, each SL is now as-
sumed to be composed of multiple components, with a SL failing when any one of its components fails. System

failure is assumed to occur if all SLs fail before any WL fails.

The following additional notation is introduced:

nC(k) = number of components associated with SL £, (5.1
TMPSL;(f) = temperature (°C) of component ¢ of with SL £ at time ¢ (min), 5.2)
fSLy. = density function (°C~1) for failure temperature Ts; of component ¢ of SL . (5.3)

As for the WLs and SLs in prior sections, a SL component is assumed to fail if its temperature reaches its failure
temperature. The WL properties TMPWL(() and fWL; remain as before. As for /WL, and fSZ, in Sects. 3 and 4,

fSL;, represents aleatory uncertainty.

The objective of this section is to determine the probability pF that all SLs fail before any WL fails. The sam-

ple space underlying this calculation is

S={t:t=[tFSL,,tFSL,, ..., tFSL g , tFWLy, tFWL,, ..., (FWL,y ]} , (5.4)

where (i)

tFSLy = tFSLyy, tFSLip, .o tFSLi e |

fork=1,2, ..., nSL, (ii) tFSLy, is the failure time of component c of SL &, and (iii) tFWL; is the failure time of WL
Jj. Inturn, pF is defined by
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pF = prob(€), (5.5)

where

E={t:t=[tFSL; tFSLy,... . tFSL g tFWL (FWL,,...,tFWL,y; | €8 and tFSLy < tFWL;
for k=1,2,....nSL, j=1,2,..., nWL} (5.6)

and

1FSLy = min {tFSLyy, tFSLea, ..., tFSLy e} (5.7)

is the failure time of SL k. Specifically, € contains the elements of & for which all SLs fail before any WL fails.

The determination of pF is based on the following decomposition of € :

nTM | nSL| nC(k)
U U!: U (glkc )} > (5.8)

i=l | k=l| c=1

where

Gre =t te &t SUFSLy, <1, t; <tFSLy for d # ¢, tFSL; < 1,y for I # k, t; <tFWL; forj= 1,2, ...,
nWL}

éikc ={t te &1 <tFSLy, <t, tFSLy, < tFSLy, for d # c, tFSLy < tFSLy, for I # k, tFSLy, < tFWL; forj =
1,2, ..., nWL and either (i) there exists at least one value of d such that tFSL;; < or (ii) there ex-
ists at least one value of / such that 7,_y < tFSL; or (iii) there exists at least one value of j such that

IFWL; <t}

and tMIN =ty <1t) < ... <t,r3,= tMAX is a partition of [fMIN, tMAX] as indicated in Fig. 2.1. The set éikc contains
elements of €that have a SL k component failure time tFSLy,, d # ¢, satisfying tFSLy, < tFSLy; < t; or a SL failure
time ¢FSLy, [ # k, satisfying #; | < tFSL; < tFSLy, or a WL failure time tFWL;, j = 1, 2, ..., nWL, satisfying tFSL; <
tFWL; < t;. The equality

nTM nSLnC(k) nTM nSLnC(k)

prob( ) Z Z Z prob(Ey, +Z Z z prob( ,kc) (5.9)

i=l k=1 c=1 i=l k=1 c=l
holds because the sets involved are disjoint (see parenthetical remark following Eq. (3.9)).

The equality
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nTM nSLnC(k)

lim Z Z Z prob(& ) =0 (5.10)

holds because the indicated probabilities involve products whose individual terms are proportional to Az; (see Eq.

(2.9) for an analogous situation). Further, similarly to Egs. (3.11) and (4.6),

nSL
prob(Eye ) =11 PSL; (—o0,1,4) { [ TMPSLy (t;1), TMPSLy (1;), fSch]}
pr
nC(k) ' WL
[T 1[TMPSL (1), 0, fSLye 24 T [ TMPWL, (1), 0, L, |3,
;;l j=1 .11

where (i) the first term in the preceding product is the probability that all SLs except SL & have failed by ¢;_; (i.e.,
PSLf(~ox, t;_;) is the probability that SL !/ fails between —co and #;_j, and so the indicated product is the probability
that all SLs except SL k fail by #,_,), (ii) the second term is the probability that component ¢ of SL £ fails in the time
interval [£;_4, #,], (iii) the third term is the probability that all components of SL k except for component c¢ fail after #;,

and (iv) the fourth term is the probability that all WLs fail after ¢

The SL failure probability pSL -, #,_;) in Eq. (5.11) is given by

nC(l)
pSLl ("‘00, ti—l) =1- H {1 - I[—w, TMPSle (ti—l ), fSle :|}
d=1
nC(l nC(1)
= 3 1[0, TMPSLyy (ti1), fSLy | T {1-1[~, TMPSL, (41-1), /5L ]}
d=1 e=d+1
nC(I) nC(I)
= D 1[0, TMPSLy (t;1), fSLig | [] 1[TMPSLy (ti-1), 0, fSLs ], (5.12)
d-=1 e=d+1

where (i) in the first equality, /[—co, TMPSL;£t;_1), fSL;;] is the probability that component & of SL / fails by #;_;, 1
— I[~0, TMPSL;[t;_1), fSL;;] is the probability that component d of SL / does not fail by #;_;, and so the entire ex-
pression is the probability that at least one component of SL / has failed by t;_;, which is the probability that SL /

has failed by #,_;, (ii) in the second equality, use of the algebraic identity
n

ﬁl xd =1 ixd ) (513)
d=1

d=1 e=d+1

produces the indicated expression, and (iii) in the third equality, the final expression is based on the identity 1 —

I(~, ¢, f) = I(c, =, f) for —00 < ¢ < o0 and f'a density function.
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By using Egs. (5.9) — (5.12), it follows that

nTM nSL nC(k) nTM nSL nC(k)

prob(&)= lim 3 > > prob(&;, )+ T}é[m > Z P”Ob( lkc)

nTM—% 33 3 el n i=l k=1 c=1
nTM nSL nC(k)

= lim > > 3 prob(Ey.)+0

nTM—> 2 b2 el
nTM nSL nC(k) | nSL{ nC(l) nC(D)
= lim Z > H[ > 1[0, TMPSLyy (4;4), fSLg | [ 1[TMPSLi (t;1), . fSLig |
nTM—® 00 o el 1=l \ d=l e=d+1

I#k

nC(k)
- {1[TMPSL;. (ti_y), TMPSLy. (;), fSLge [} TT 1] TMPSLys (1), 0, Sy |
o
nWL
. HI[TMPWL]- (), o, fWLj]}, (5.14)

Jj=1

where (i) the first equality follows from Eq. (5.9), (ii) the second equality follows from Eq. (5.10), and (iii) the third
equality follows from Eqs. (5.11) and (5.12). Evaluation of the final limit in Eq. (5.14) leads to the representation
of prob(€), and hence pF, by

nSL nC(k){ (MAX nSL[nC(l) nC(l)

pF = Z >, jMN ]j D 1[~o0, TMPSLy, (t), fSLiy | ]‘[ 1[ TMPSLy, (1), o, fSL,e]]

k=l c=1 = d=1 e=d+1
1#k -

nC(k)
« {fSLie [TMPSLy (1) ]}5 TT 1[TMPSLys (1), o0, /5Ly |

f=1
f#c

-{ﬁ][TWWLj (t),OO, fWLj:I}dTWSch (t) :l

J=1

rMAX nSL nSL[nC(l) nC(l)

= o | 2910 Z_ 1[0, TMPSLyy (1), fSha ] 1 I[TMPSLIe(t)’OO’fSLIe:']

k=1 (I=1 e=d+1
I#k

nC(k)

3 > (fSLy[TMPSL (1)]) nlc—([k)I[TMPSka() %, fSLiz | |(d TMPSLy, (t)/ dt)

7=l
f#c
nWL
. HI[TMPWLj (1), o, fWLj]] dr, (5.15)

J=1
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where (i) the first equality involves Riemann-Stieltjes integrals and (ii) the second equality involves the correspond-

ing Riemann integral.

The Riemann integral defining pF in Eq. (5.15) is with respect to time. As discussed in conjunction with Egs.
(2.16) and (2.17), the definition of pF can be converted to an integral with respect to temperature by a suitable

change of variable. This change produces

nSL nC(k) nSL( nC(l) nC(l)
pF = Z Z j { > 1[0, TMPSLy, (1), fSLy | ] 1[TMPSL (1), =, fSL,e]J
g;k =1 e=d+1
nC(k)
o2 (/8L [TMPSLy (1)) T1 [ TMPSLy (2), o0, fSLiy | |(dTMPSLy (1)/dr)
7=l
f#c

nWL
. {Hl 1[TMPWL, (1), , fWLjJ} dt
=

nSL( nC(I)
TMXSLic ( [—oo TMPSL,, [TMPSch (Tgr )],ﬁde}

nSL (
ZZ 21 MNSLj, [T 21

=1\ d=1
Ik
nC(l)
61;[+11[TMPSL,6 [TvpsEzl (7)<, ﬁL,eﬂ
nC(k)
(Lo (Tsy )} jH I[TMPSLV [ TMPSEl (T ) | ]S‘ka]
=]
f#c

nWL
. {H 1[TMPHL, | TMPSL (Tt ) |, . /WL, ]} dTy;

j=1

TMXSL
= MNSL G(TSL)dTSL (516)

where the first equality results from moving the summations in Eq. (5.15) to outside the integration, the change of

variables takes place at the second équality, and the following notation is used:

TMNSLy, = TMPSLy, (tMIN),c=1,2,..,nC(k),k=1,2,...,nSL, (5.17)
TMXSLy, = TMPSLy, (tMAX ), c =1,2,..,nC(k),k=1,2,...,nSL, (5.18)
TMNSL = min {TMNSL;,, ¢ =1,2,..,nC(k),k=1,2,...,nSL}, (5.19)

63



TMXSL = max {TMXSLy., c =1,2,..,nC(k), k=1,2,..., nSL}, (5.20)

nSLnC(k)
G(Ter)=2. 2. G (Tor): (5.21)
k=1 c¢=1
nSL( nC(l) ;
Gre (Tor ) = H( 2 1[—0‘% TMPSLy, I:TJMPSLI_CC(TSL)J’J(SLM:'
o
nC(l)
- T1 I(TMPSL,e [TMPSL,;C‘(TSL )J,oo, fSL,em
e=d+1
nC(k)
{SLie (T )} T1 I[TMPSka [TMPSL;C1 (T )},oo, fSka}
f=1
f#c

nWL
. {H J[TMPWL ; [TMPSL;CI (Tg )} o0, WL, J} for TMNSL,, <Tg; < TMXSLy,
j=1

= 0 otherwise. (5.22)

The simpler representation

sy, SLnC k) | nSL ( nC(l)

P = -[fMNSL 2 2 21 [_“” TMPSLy [T MPSL (Tsy )} fSleJ
k=l c=1 [I=1 \ d=1
1=k

. nlc_[(l) j[TMPSL,e [T MPSL) (Tg; )} ©, fSLe ])}

e=d+1

nC(k)
AL (T )} f]k 1 [T MPSLy [TMPSLZCI (Tse )}00, fSkajl

f=1
f#c

nWL
. { I I[TMPWLJ. [ TMPS (T1) ] o0, L ]} dTg, (5.23)
=1

for the first integral in Eq. (5.16) results when TMNSL;, = TMNSL and T. MXSLy, = TMXSL forc=1,2, ...,nCk), k
=1,2,...,nSL.

5.2 Numerical Evaluation: Quadrature

The same numerical procedures indicated in Sect. 3.2 (i.e., the quadrature formulas in Egs. (2.49) and (2.50))

can be used to determine the failure probability pF for the WL/SL configuration described in the preceding section
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(Sect. 5.1). The only difference is a change in the definition of the function G(7g;) resulting from the definitions
for Gy (Ty) (see Egs. (3.19), (3.20), (5.21), (5.22)). Integrals of the form /[c, ©, f] and /[-, c, f] appearing in the

definition of G (Tg;) can be approximated as indicated in Sects. 2.3 and 4.2, respectively.

5.3 Numerical Evaluation: Monte Carlo

The same Monte Carlo procedures indicated in Sect. 3.3 can be used to determine the failure probability pF for
the WL/SL configuration described in Sect. 5.1. The only real difference is in the definition of the indicator func-
tion 8(Ty;, Tgr) in Eq. (3.22). For the WL/SL configuration described in Sect. 5.1, & has the more complex form

8(Twr, Tz 1o Tsp,2o > T nsr)» Where Ty is the same as defined in conjunction with Eq. (3.22),
Tsrk = | Tsries Tsp s - TSt ki) | (524
fork=1,2,...,n,and Tg ; . is the failure temperature (°C) of component c of SL .

More specifically, the failure probability pF for the WL/SL configuration described in Sect. 5.1 can be repre-

sented by
pF = -[S'B(TWL B TSL,I> TSL,2’ ey TSL,nSL) fT(T) dT, (525)
where
§ = {T 'T= [TWL, Tsr1s Tsr.25--05 TSL,nSL] consistent with the distributions that define the WL
and SL component failure temperatures},
JT(T) = density function defined on & consistent with the distributions that define the WL and SL compo-

nent failure temperatures

nWL nSL| nC(k)

= HfWL (TWL,J)H{ [T AL (TSch)} (5.26)

nWL nSL| nC(k)
ar = HdTWL]H HdTSch=

tFSL, = min{TMPSchl (Tope):€ =12, nC(k)} fork=1,2, ..., nSL, with TMPSL} (Tsp g ) =~ if
Tsp ke < TMPSLy . (tMIN) and TMPSL, (Top i) = if Ty o > TMPSLy, (tMAX ),
TSL,k = min{TSL’k’C ZC=1, 2,,1’1C(k)}
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and

8T = 8(Twr Top1s Tszs o Tz mst)

1 if max {tFSL; 1k =1,2,...,nSL} = —0 and max{TSL’k k=1, 2,...,nSL}<

min {Tyy;, ;2 j € (T )} with S(Tyy)={: Ty, ; < TMPWL; (tMIN )} (5.27)

1 if —o<max{tFSL; :k=1,2,...,nSL} < min {tFWL j UFWL; = TMPWL;' (Tyy ;)
TMPWL' (T, ) = ~o0 if Tyyy, ; < TMPWL; (tMIN), TMPWL (T ; ) = o0

if Ty, ; > TMPWL; (tMAX ), j=1,2, .., nWL} (5.28)

I

0 otherwise. (5.29)

With respect to the role of the indicator function 8(T), (i) the assignment in Eq. (5.27) picks out the T’s in which all
SLs fail before the start of the analysis at time tMIN and any WL failing before the start of the analysis has a higher
failure temperature than any SL, (ii) the assignment in Eq. (5.28) picks out the T’s in which all SLs fail before the
end of the analysis at tMAX and also before the failure of any WL, and (iii) the assignment in Eq. (5.29) removes the

probability associated with T’s in which any of the WLs fail before all of the SLs from incorporation into pF.

The integral defining pF in Eq. (5.25) can be approximated by

n
pF =Y 8(T;)/N, (5.30)
i=1
where

T =T Tspii Toron-oos Tsrmse,i ]
with
Ty = [TWL,I,i s T 2,5 s TWL,nWL,i]

Tsr ki = l:TSL,k,l,i’ Tsr a0 TSL,k,nc(k),i] k=12, ...n,

is randomly sampled from Sfori=1, 2, ..., N in consistency with the joint density function f7(T) in Eq. (5.26).

The approximation to pF in Eq. (5.30) is based on simple random sampling from the joint failure temperature
distribution defined by f7(T). Importance sampling can also be used in the approximation of pF. In this case, the

approximation to pF becomes

pFég[%f)T—i)}/N, (5.31)
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where T, i=1,2, ..., N, is a random sample from & generated in consistency with a joint density function

nWL nSL| nC(k)
AT(T) =TT WL, (T ;) TT| TT ASGke (Toz e ) (5.32)
j=1 k=1| =1

and the individual density functions appearing in the definition of fIT(T) (i.e., AIWL(Tyyr ), j = 1, 2, ..., nWWL,
ASLy(Tsp o) ¢ = 1,2, ..., nC(k), k=1, 2, ..., nSL) define importance sampling distributions for the individual
WLs and SL components.

5.4 Numerical Evaluation: Example

The example introduced in Sect. 3.4 is modified to illustrate the WL/SL configuration described in Sect. 5.1
(Table 5.1). Specifically, a system involving two WLs (i.e., nWL = 2), two SLs (i.e., nSL = 2), and two components
in each SL (i.e., nC(1) = nC(2) = 2) is considered, with (i) the WL temperature curves TMPWL(¢) the same as in
Eq. (3.30), (ii) the component temperature curves TMPSL; (1), ¢ = 1, 2, for SL k the same as the corresponding SL
temperature curve TMPSL(?) in Eq. (3.31) (i.e., TMPSL;(f) = TMPSL(?)), (iii) the WL failure temperature density
functions JWL(Twy) the same as in Sect. 3.4, and (iv) the component failure temperature density functions
SSLiTsp), ¢ = 1, 2, for SL k the same as the corresponding SL failure temperature density function fSL(Tg;) in
Sect. 3.4 (i.e., fSL(T;) = fSLi(Ts;)). As in Sect. 3.4, the WL failure temperatures are assumed to be independent
although the distributions defined by /WL ;(Ty;) and fWL,(Ty;) are the same; the same assumption is also made for

the four SL component failure temperature distributions.

The system with internal SL components illustrated in this section has a higher failure probability than the cor-
responding system in Sect. 4.4 with no internal SL components (i.e., pF = 4.55 x 107 in Table 5.1 versus pF = 1.56
x 1076 in Table 4.1). This difference results because a SL is assumed to fail when either of its components fails.
Thus, all other things being the same (which is indeed the case for the examples in Sects. 4.4 and 5.4), a SL with
two components is more likely to fail by a given time than a SL with only one component, which is effectively the
situation considered in Sect.4.4. In turn, this failure pattern and the assumption that the WLs in the two examples

have the same properties leads to the indicated inequality involving the failure probability pF.
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Table 5.1. Approximation of Failure Probability pF for System Defined in Sect. 5.4 with Two
WLs, Two SLs, Two Components in Each SL, Normal Distributions for WL and SL Component
Failure Temperatures, Failure of Either Component in a SL Constituting Failure of That SL, and
Failure of Both SLs before Either WL Constituting System Failure (i.e., the Failure Configuration

Described in Sect. 5.1)2

A N Sampling!  Samplngt
3 3.230E-07 4.306E-07 1,000 0.000E+00 8.163E-14
5 1.615E-07 1.077E-07 10,000 0.000E+00 1.064E-10
9 2.629E-07 2.967E-07 100,000 0.000E+00 1.374E-08
17 1.356E-07 9.316E-08 1,000,000 4.000E-06 1.416E-06
33 6.111E-06 8.102E-06 10,000,000 4.700E-06 3.451E-06
65 4.576E-06 4.064E-06 100,000,000 4.700E-06 4.468E-06

129 4.552E-06 4.545E-06

257 4.552E-06 4.552E-06

513 -—- 4.553E-06

1025 -—-- 4.553E-06

2049 — 4.553E-06

8 Calculations performed with CPLOAS program (App. 11I).

b Number of evaluations of G(Tsr) (see Eq. (5.16)) with trapezoidal rule and Simpson’s rule, which corresponds to the interval [TMNSL,
TMXSL] being divided into N-1 subintervals.

¢ Approximation to pF obtained with trapezoidal rule (see Eq. (2.49)).

d Approximation to pF obtained with Simpson’s rule (see Eq. (2.50)).

€ Number of evaluation of 8(T) = 8Tz, Tr1, Tsr2) = 8(Twz1 Tz, Tsewn T Tszot Tonzz) (see Egs. (5.27) —(5.29)) for random sampling
and importance sampling.

f Approximation to pF obtained with random sampling (see Eq. (5.30)).

& Approximation to pF obtained with importance sampling with uniform distributions for Twy.1, Twz.2, Tsz.11, Tszr Tse21, Tsioz (see Eqs.
(5.31) and (5.32), with fIWL(Tw:,) and fISL{Tsz, 1) defined as indicated in Egs. (2.70) and (2.71), respectively).
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6. Example Uncertainty and Sensitivity Analysis

Substantial epistemic (i.e., state of knowledge) uncertainties®-!! are present in the analysis of WL/SL systems
of the form described in this presentation. In particular, epistemic uncertainty is present in both the modeling of the
temperature responses of the system and in the definition of the distributions that characterize the variability in WL
and SL failure temperatures. In practice, these uncertainties can be both large and poorly characterized. As a result,
a properly designed and implemented uncertainty and sensitivity analysis is an important part of a reliability analy-
sis of a WL/SL system or any other complex system.31-35 In this section, two approaches to uncertainty and sensi-
tivity analysis of the reliability of a WL/SL system are illustrated for a hypothetical WL/SL system involving 2 WLs

and 2 SLs. The first approach is a traditional uncertainty analysis based on the use of probability to characterize

epistemic uncertainty.36-43 The second approach uses evidence theory to characterize epistemic uncertainty.#4-31
Uncertainty analysis involves the investigation of a relationship of the form
y=f(x),x=[x1,x2,...,an], 6.1

where X is a vector of imprecisely known analysis inputs and f'is a function (i.e., a model) that produces an analysis
result y for each possible value for X. In practice, f can be quite complicated and might correspond to the numerical
solution of a nonlinear partial differential equation or possibly to the operation of several successively linked mod-
els as is often the case in performance assessments for complex systems. For convenience, y is represented as being
real (i.e., scalar) valued, although in most analyses y is a vector of high dimension. In the example that follows, y
corresponds to the probability pF that the WLs fail to deactivate a system composed of 2 WLs and 2 SLs in a fire
environment, and f corresponds to the calculational model for pF described in Sect. 4. Uncertainty in X results in
many possible values for y of varying levels of credence. The goal of uncertainty analysis is to provide a formal

representation of the uncertainty in y that derives from the uncertainty in X.

The following topics are considered: representation of uncertainty with probability theory (Sect.6.1), represen-
tation of uncertainty with evidence theory (Sect. 6.2), numerical estimation complementary cumulative distribution,
belief and plausibility functions (Sect. 6.3), an example problem for the illustration of uncertainty and sensitivity
analysis (Sect. 6.4), an example uncertainty and sensitivity analysis (Sect. 6.5), and formal justification of a proce-

dure used to construct uncertainty representations in the context of evidence theory (Sect. 6.6).

6.1 Representation of Uncertainty with Probability Theory

The traditional approach to uncertainty analysis is to use probability to characterize the uncertainty in the ele-
ments x;, i = 1,2, ..., nX, of X and then to determine the resultant probability distribution for y. With this approach,

distributions
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Dy, D,,...,Dx (6.2)

are defined to characterize the uncertainty in x, x,, ..., X,x- Specifically, D; is a probability distribution that pro-
vides a mathematical characterization of the uncertainty in x; in the sense that D; is providing a degree of belief rep-
resentation with respect to where the appropriate value of x; to use in the determination of y is located. Various
correlations and other restrictions may also accompany the definition of Dy, D,, ..., D,y. In practice, the D; are
often determined through expert review processes.>2-63 Collectively, all possible values for X constitute a set X,
with X often referred to as the sample space or the universal set for the X’s. When viewed formally, the distribu-
tions in Eq. (6.2) define a probability space (<X, X, pX), where <X is the sample space, <X is the set of events, and
Py is the probability measure that assigns probabilities to elements of X (Ref. 64, Sect. IV.4); similarly, each indi-
vidual distribution D; in Eq. (6.2) defines a probability space (<X, X,, p;) for x;. For notational purposes, it is con-
venient to represent the distribution of X over <X defined by the individual distributions Dy, D,, ..., D,y and any

additional correlations and/or restrictions by a density function dy(x) defined on <X

Once the uncertainty in X is characterized in a probabilistic format as indicated in the preceding paragraph, the
corresponding uncertainty in y = X} can also be characterized in a probabilistic format. Specifically, the probabil-

ity prob(y >v) that a value y larger than v could result from the uncertainty in X is given by

prob(y>v)= .[XS‘,[y(x)} dy (x) dx, 6.3)
where
5 [y(x):|= 1 ify(x)>v (6.4)
Y 0 otherwise.

In effect, prob(y > v) defines the complementary cumulative distribution function (CCDF) for y that derives from
the uncertainty in X characterized by the distribution Dy, D,, ..., D,x. Complementary cumulative distribution func-
tions are a standard format for the representation of uncertainty because they answer the question “How likely is y

to be this large or larger?”, which is usually the question of interest in risk and uncertainty assessments.

6.2 Representation of Uncertainty with Evidence Theory

The evidence theory approach to the representation of the uncertainty associated with the elements x;, i = 1, 2,
..., nX, of X is to assign an uncertainty structure to each x; based on what are called basic probability assignments
(BPAs). Specifically, (i) the set oX; of all possible values for x; is identified, (ii) a finite collection X; = {JQJ», ji=1,
2, ..., nX(i)} of subsets of <X; is identified about which uncertainty information is available, and (iii) a set function

m; is defined for subsets U of <X; such that
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50 f U =X eX,
mi(@)={p”> 1 e 6.5)
0 otherwise
and
nX(i)
> m,.(J(,.j)zL (6.6)

Jj=1

The function m,(¥/) defines the BPA for the subset #/of oX;, with the BPA for ¥/ corresponding to the amount of
probability that can be assigned to &/ but for which there is no information or rationale to assign this probability to
any proper subset of €/ Formally, an evidence space (=X, X,, m;,) is being defined for each x;, where cX; is the
sample space or universal set (i.e., the set of all possible values for x;), X is the set of all subsets of oX; with non-

zero BPAs, and m; is the function such that, if €/ <X, then my ¥)) is the BPA for U

Similarly to probability theory, the evidence theory representation (=X, X, my) for the uncertainty in X is built
up from the representations for the uncertainty in the elements x; of X. With the simplifying assumption that there

are no correlations or other restrictions involving the elements of X, the BPA for a subset ¥/ of oX'= oX] x X5 x ...

x X, x I8 given by

T2 m (©;) Y=Y xUy x..x Y,y and VY, eX, fori=1,2, ...,nX
0 otherwise. (6.7)

mX(CU)={

Further, X contains the subsets &/ of <X for which my(€/) > 0. In turn, the evidence space (X, X, my) can be used
to develop an evidence theory representation (V, Y, my) for the uncertainty in y = fAx). However, before this is

done, it is useful to introduce the constructions used to represent uncertainty in conjunction with evidence theory.

Unlike probability theory which uses probability as the only representation for uncertainty, evidence theory
uses two representations for uncertainty. These representations are referred to as belief and plausibility. For a sub-
set ¥ of a universal set <X on which a function m( V) defining BPAs for subsets Vof <X has been defined, the be-
lief Bel(¥)) and plausibility PI( ¥/) of ¥/ are defined by

Bel(U)="Y m(V) (68)
Ve
and
P(YYy= % m(V). (6.9)
VU=

Conceptually, Bel(¥) is the smallest amount of probability that must be assigned to &/, and PI(¥)) is the largest
amount of probability that could possibly be assigned to &/ Put another way, Bel(¥) is the smallest probability
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that can be assigned to ¥/ without violating the constraints imposed by the BPA assignments given by m, and
PI(¥)) is the largest probability that can be assigned to &/ without violating the constraints imposed by the BPA

assignments given by m.
In probability theory, the probability of a set and its complement are related by

prob(¥)+ prob(@c) =1, (6.10)

where (i) @/is a subset of the sample space under consideration (subject to the usual constraints with respect to &/
belonging to the o-algebra of subsets of the sample space associated with a conceptually complete development of
probability) and (ii) /¢ is the complement of the set /. Thus, the specification of the probability of a set also de-

termines the probability of its complement. Less restrictive constraints hold for belief and plausibility. In particu-

lar,
Bel(V)+ Bel (U°) <1 (6.11)
p,(@)+p1(@c) >1 (6.12)
Bel(U)+PI(V°)=1. (6.13)

As a result, the use of belief and plausibility allows finer gradations in the expression of uncertainty than is the case
with the use of probability in that an expression of a lack of knowledge about ¥/ does not necessarily imply knowl-

edge about /¢,

For notational convenience, let .} denote the set {y: y = f{X), X € <X }. In concept, BPAs could be developed
for the subsets of .}, In practice, the direct consideration of beliefs and plausibilities for subsets of .} leads to more
readily computed results. Specifically, the belief Bely{ ¥/) and plausibility PIy(¥/) of a subset ¥ of Vare given
by

Bely (U)=Bely | ' (V)]= % myx(V) (6.14)
Ve (@)
and
Py (U)=Pi [ (W)= T mx(V) (6.15)
Vs Y (W)=e

where Bely and Ply correspond to the set functions defining belief and plausibility for subsets of <X on the basis of

the set function my defined in Eq. (6.7) and f~! denotes the inverse of £ (i.e., f () = {x: X € Xand Aix) € V}.
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Tust as CCDFs provide the standard representational format for uncertainty in the context of probability theory,
complementary cumulative belief functions (CCBFs) and complementary cumulative plausibility functions (CCPFs)
provide standard representational formats for uncertainty in the context of evidence theory. Specifically, the CCBF

and the CCPF associated with the set Vare defined by

Bely (v>v)=Bely (1 (B))= X mx(V) (6.16)
VCf_l(yv)

and

Ply(y>v)=Pix (/' (N)= T me(V), (6.17)

Vs (W,

where V, = {y: y>v,y € V} and Bely(y > v) and Ply(y > v) designate the belief and plausibility, respectively, that

a value of y larger than v could occur (i.e., a value in the set V).

The sets

CCDF ={[v, prob(y>v)]:ve V} (6.18)
CCPSF ={[v, Ply (y>v)]:ve V) (6.19)
CCBF ={[v, Bely (y >v)]:ve V} (6.20)

provide formal representations for the CCDF, CCPF and CCBF associated with y.

6.3 Numerical Estimation of CCDFs, CCBFs and CCPFs

Numerical estimation of CCDFs, CCBFs and CCPFs is now considered. In practice, the CCDF for y is not ob-
tained by a traditional numerical evaluation of integrals of the form appearing in Eq. (6.3). Rather, a Monte Carlo
procedure is used. With such a procedure, a random or Latin hypercube sample X, k=1, 2, ..., nS, is generated
from <X in consistency with the distributions Dy, D,, ..., D, x for the elements of X and any associated restric-

tions.®3 06 Then, prob(y > v) is approximated by
nS
prob(y>v);26v[y(xk)J/nS, (6.21)
k=1

where the indicator function &, is defined in Eq. (6.4).
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A similar Monte Carlo procedure can also be used to estimate CCBFs and CCPFs.51,67, 68 Again, a random or
Latin hypercube sample Xz, k=1, 2, ..., nS, is generated from <X in consistency with distributions for the x; that will
provide a dense sampling coverage of <X as the sample size increases. The selected sampling distributions can af-
fect the rate at which the resultant approximations converge to the corresponding beliefs and plausibilities but do
not affect the limiting values except in special cases where sets of measure zero have nonzero BPAs. Once the indi-
cated sample is generated, the exceedance plausibilities that define the CCPF can be estimated by

Ply(y>v)=Ply(X,)= > mx(V), (6.22)
VreX, 2

where X, = {X;: y =f(X;) > v}. The exceedance beliefs that define the CCBF cannot be estimated directly be-
cause the subset relation used in the definition belief (see Eq. (6.8)) cannot be employed when the sets with nonzero
BPAs have infinite numbers of elements and a finite sample is in use. Rather, the relationship between belief and
plausibility indicated in Eq. (6.13) must be used to convert from a problem involving the estimation of belief to a

problem involving the estimation of plausibility. Specifically,

Bely (y >v) = Bely (X,)
=1—P1X(@X5)

=1- > m(V), (6.23)
VXS =9

where X, is defined in conjunction with Eq. (6.22).

6.4 Problem for Analysis

The example uncertainty analyses are based on the hypothetical system of 2 WLs and 2 SLs described in Egs.
(3.30) — (3.31). The sixteen variables used to characterize this system are treated as being uncertain (Table 6.1).
Each variable has an uncertainty range [ a, b] as indicated in Table 6.1. As this example is for illustration of ideas,
it is assumed for simplicity that the uncertainty in each variable’s possible values is specified in the same manner by
four independent experts (Table 6.2, Fig. 6.1). This is unlikely to be the case in a real analysis but providing differ-
ent uncertainty specifications for each variable would complicate the presentation of this example while adding little
to its illustrative value. The information indicated in Table 6.2 is encoded into a probability distribution for each
variable in Table 6.1 for use in a probabilistic representation of the uncertainty in pF and into BPAs for use in an

evidence theory representation of the uncertainty in pF.
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Table 6.1. Uncertain Variables and Associated Uncertainty Ranges Considered in Example Un-
certainty Analyses

c; — Temperature (°C) of WLs and SLs before start of fire. Range: [-30, 40°C].

¢, — Temperature increase (°C) above ¢, at steady state. Range: [800, 1000°C].

c¢31 — Peak amplitude of temperature transient for WL 1. Range: [-2600, —100°C].

¢35 — Peak amplitude of temperature transient for WL 2. Range: [-2600, —100°C].

c41 — Thermal heating time constant (min~!) for WL 1. Range: [0.2, 0.4 min~!].

¢4y — Thermal heating time constant (min~!) for WL 2. Range: [0.2, 0.4 min~!].

¢s1 — Frequency response (min!) of temperature transient for WL 1. Range: [0.1, 0.2 min™!].
¢sy — Frequency response (min~1) of temperature transient for WL 2. Range: [0.1, 0.2 min~!].

¢g1 — Time constant (min~!) determining the rate at which WL 1 reaches steady state temperature. Range: [0.02,
0.04 min~1].

¢gp — Time constant (min~!) determining the rate at which WL 2 reaches steady state temperature. Range: [0.02,
0.04 min~1].

c¢71 — Factor (dimensionless) used to account for more rapid heating in SL 1 than in the associated WL (i.e., WL
2). Range: [0.5, 0.8].

¢7p — Factor (dimensionless) used to account for more rapid heating in SL 2 than in the associated WL (i.e., WL
2). Range: [0.5, 0.8].

cg — Expected value (°C) of normal distribution for WL failure temperatures. Range: [255, 285°C].
¢g — Standard deviation (°C) of normal distribution for WL failure temperatures. Range: [4, 12°C].
c10 — Expected value (°C) of normal distribution for SL failure temperature. Range: [590, 610°C].

c11 — Standard deviation (°C) of normal distribution for SL failure temperature. Range: [15, 22°C].

The construction of a probability distribution from the information in Table 6.2 is considered first. Expert 1
only specifies an interval. The usual probabilistic encoding of this type of sparse information is to assume a uni-
form distribution over the specified interval [Ref. 69, pp. 52-62]. That is, Expert 1 is assumed to have specified a

probability distribution with a density function given by

d(v)— 1/(b—a) ifa<v<b
"0 otherwise. (6.24)

Experts 2 and 3 have in essence specified quantiles on CDFs. Again, in consistency with common procedure, uni-
form distributions are assumed for the variable between these quantiles. As a result, the density functions associ-

ated with Experts 2 and 3 have the form
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Table 6.2. lllustrative Specification of Uncertainty Information Used in Example Uncertainty
Analyses with Probability Theory and Evidence Theory for Variables in Table 6.1 (see Fig. 6.1 for
a graphical representation of the indicated uncertainty specifications)

Expert 1: States appropriate value for variable is in the interval I|; = [a, b] but provides no information on uncer-
tainty structure within [a, b].

Expert 2: Divides [a, b] into five nonoverlapping intervals of equal length (i.e., I5; =[a+ (b — a)(i—1)/5,a + (b -
a)i/S) fori=1,2,3,4 and 5= [a+ (b - a)(i— 1)/5, a + (b - a)i/5] for i = 5) and states that the appropriate value
for the variable is equally likely to be in each of these intervals.

Expert 3: Divides [a, 4] into following five nonoverlapping intervals: I3; = [a, a + (b —a)/10], I3, =[a+ (b -
a)/10, a + 4(b — a)/10), Iz3 = [a + 4(b — a)/10, a + 6(b — a)/10), I35 = [a + 6(b — a)/10, a + 9(b — a)/10), [z5=[a +
9(b - a)/10, b]. States that the probability (i.e., likelihood) that the appropriate value for the variable is contained
in each of these intervals is 0.05, 0.2, 0.5, 0.2 and 0.05, respectively.

Expert 4: Divides [a, b] into following five nested intervals: I; =[a +4(b - a)/10, a + 6(b — a)/10), I;p =[a +
3(b — a)/10, a + 7(b — a)/10), 143 = [a+ 2(b — a)/10, a + 8(b — a)/10), L4 = [a + (b — a)/10, a + 9(b — a)/10), I4s =

{a, b]. States that amount of probability (i.e., likelihood) that can be assigned to the proposition that a given inter-
val contains the appropriate value to use for the variable is 0.2.

1.0
Expert 1: [ {
0 1
0.2 0.2 0.2 0.2 0.2
Expert2: | —t } t | !
0 2 4 6 8 1
10 10 10 10
0.05 0.2 0.5 0.2 0.05
Expert 3: — + ] —
0 1 4 6 9 1
10 10 10 10
F ——t—t —t—+—+—
0 1 2 3 4 6 7 8 9 1
10 10 10 10 10 10 10 10
0.2 |
Expert 4: < — 0.2 |
, 0.2 ,
r L
. 0.2 »
1 1
L 0.2 ,

1
TR04A064-0.ai

Fig. 6.1. Graphical illustration of uncertainty in-
formation in Table 6.2 with variable range [a, b]
normalized to [0, 1] for notational convenience.

( )z{Probi(Iij)/L(Iij) ifvely

d;(v
0 otherwise (6.25)

1

for i = 2, 3, where prob (I ;7) denotes the probability for interval I i specified by Expert i and L i) denotes the

length of interval I i~ Expert 4 specifies what is, in essence, a BPA assignment for the variable. This specification
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can be converted to a probability distribution in a manner consistent in spirit with the handling of the information
supplied by Experts 1, 2 and 3 by assuming a uniform distribution over each of the specified intervals and then
weighting each of these distributions by the BPA assigned to the corresponding interval. The outcome of this proc-

ess for the information supplied by Expert 4 is the density function
4
d4(v)=2541-(v)prob4(f4j)/L(I4j), (626)
j=l

where 84(v) =1 ifve I 4j and 0 otherwise, prob,(I 4)) denotes the amount of probability that can be assigned to [ ;

but not to any particular subset of 1 4;, and L(1 4)) is the same as in Eq. (6.25).

The distributions obtained from the individual experts can now be combined to obtain a single distribution that
characterizes the uncertainty in the variable under consideration. Such “aggregation” of information from multiple
sources is a much studied topic.7%-74 Here, the widely used approach of assigning equal weight (i.e., credibility) to
each expert to produce a single distribution is used. Specifically, the resultant density function from this approach

is given by
nE
d(v)=>d;(v)/nE, (6.27)
i=1

where nE = 4 is the number of experts. The described approach results in each variable in Table 6.1 having an un-
certainty distribution of the form shown in Fig. 6.2, with only the values of a and b and associated scaling between

a and b changing from variable to variable.

T |
1.0

o e o
> o )

Prob (<v)

o
(M)

0.0

1 |

a b

v TRO4A085-0.ai

Fig. 6.2. Distribution of a variable over the inter-
val [a, b] derived from the information in Table
6.2.
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The construction of BPAs from the information in Table 6.2 is now considered. The experts specify intervals
and associated probabilities. These probabilities can be interpreted as BPAs for the corresponding intervals (i.e.,
I, for Expert 1, and I ijJ=1,2,...,5 for Expert i, i = 2, 3, 4). Specifically, the BPA m; associated with Expert i is
given by

prob, (V) if Ue M
0 otherwise (6.28)

m,.(@):{

for an arbitrary set ¥ of points from [a, b], where M, = {f;;} and M, = {I};,j=1,2, ..., 5} fori=2,3, 4. Analo-
gously to the weighting process implemented in Eq. (6.27) for density functions, the BPAs from the individual ex-

perts can be equally weighted to produce a final BPA m. In particular, this final BPA is given by

m(Y) = %El:m,. (¥)/nE, (6.29)

where nE = 4 is the number of experts and ¥/is an arbitrary subset of points from [a, #]. The preceding procedure
produces 13 sets with nonzero BPAs (Table 6.3). The indicated approach results in each variable in Table 6.1 hav-

ing a BPA structure of the form indicated in Fig. 6.3.

Table 6.3. Basic Probability Assignments (BPAs) for a Variable on the Interval [a, b] Derived
from the Information in Table 6.2

m(V) =3/10 if Y=1,=[a, b]
=120 if U= 1L, =[a,a+(b-a)5)
=120 if U=IL=[a+(b—a)5, a+2(0b-a)s)
=9/40 if U= 1I,=[a+2b-a)5,a+3b-a)s)
=120 if U=Is=[a+3(b-a)5,a+4b-a)5)
=120 if U= Ig=[a+4(b-a)/5, b]
=1/80 if ¥=1I,=[a,a+(b-a)10)
=120 if U=Ig=[a+(b-a)10,a~+4(b-a)10)
=120 if U= Iy=[a+6(b-a)10,a+ b - a)/10)
=1/80 if Y= 1I,=1[a+9b - a)/10, b)
=120 if U=1I,;=[a+3(b-a)10,a+ (b~ a)/10)
=120 if U=1I,=[a+2(b-a)10,a+ 8 — a)/10)
=120 if YU=1I3=[a+(b-a)10,a+9b—a)/10)
=0__  otherwise

1.0
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Fig. 6.3. Graphical illustration of the 13 sets in Ta-
ble 6.3 assigned nonzero BPAs with variable range
[a, b] normalized to [0, 1] for notational conven-
ience.

6.5 Example Uncertainty and Sensitivity Analysis Results

The probabilistically-based uncertainty analysis procedures described in Sects. 6.1 and 6.3 are applied first.
Specifically, a random sample of size 200 is generated from the 16 uncertain variables listed in Table 6.1 in consis-

tency with the distributions indicated in Eq. (6.27). The sample elements are vectors of the form

X; = [Xi1s Xi2s o Xi16] (6.30)

fori=1,2,...,200, where each component x;;, /= 1, 2, ..., 16, of X; corresponds to one of the 16 variables in Table
6.1. Each sample element results in four time-temperature curves (i.e., one curve for each of the two WLs and two
SLs) as defined in Egs. (3.30) — (3.31) and a corresponding failure probability pF as defined in Eq. (4.9) with nl¥VL
= nSL = 2 (Fig. 6.4). The 200 failure probabilities that result from the 200 sample elements indicated in Eq. (6.30)
can be displayed as a CCDF (Fig. 6.5), which provides a representation of the epistemic uncertainty associated with

the probability that both SLs fail before either WL fails.

A natural adjunct to the uncertainty analysis results presented in Fig. 6.5 is a sensitivity analysis to determine
the importance of the individual variables in Table 6.1 in determining the uncertainty in pF. In particular, the sam-

pling-based uncertainty analysis in use has generated a mapping

X, pFl,i=1,2, ..., 200, (6.31)
[x;, PF;]
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Fig. 6.5. Use of CCDF generated with a random
sample of size 200 to display the epistemic un-
certainty in the probability pF that both SLs fail
before either WL fails.

from the uncertain analysis inputs contained in X; to the corresponding failure probability pF;. A variety of sensitiv-
ity analysis procedures exist that can be used in the exploration of this mapping.38-43 75 As an example, stepwise
regression procedures with log-transformed and rank-transformed data’® 77 are used to explore this mapping (Table

6.4). In the analysis with log-transformed data, the dependent variable is log (pF) rather than pF, and the independ-

ent variables retain their original (i.e., raw or untransformed) values.
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Table 6.4. Stepwise Regression Analysis with Log-Transformed and Rank-Transformed Data
for Probability pF that Both SLs Fail before Either WL Fails

Stept Log-Transformed Data Rank-Transformed Data
P Variableb SRC® R Variable® SRRC® R
1 cyy 0.77 0.59 €1y 0.84 0.67
2 7 0.31 0.69 7y 0.34 0.79
3 cg 0.24 0.75 cg 0.26 0.86
4 ¢y 0.18 0.78 10 -0.16 0.89
5 Cy 0.18 0.81 Cy 0.12 0.90
6 c10 -0.15 0.84 ¢ 0.12 0.91
7 Ce2 0.11 0.85 c) 0.10 0.92
8 €4 —-0.08 0.85 C4n -0.09 0.93
9 ¢ 0.07 0.86 cl —-0.06 0.93

& Steps in stepwise regression analysis with significance levels of @ = 0.02 and o = 0.05 required of a variable for entry into and retention
in a regression model, respectively.

b Variables listed in order of selection in regression analysis.
¢ Standardized regression coefficients (SRCs) in final regression mode! with log-transformed values for pF.
4 Cumulative R value with entry of each variable into regression model.

¢ Standardized rank regression coefficients (SRRCs) in final regression model with rank-transformed values for all variables.

The regression results with log-transformed and rank-transformed data are similar. In particular, both regres-
sion approaches identify ¢|; (standard deviation of normal distribution for SL failure temperature), c7; (factor used
to account for more rapid heating in SL1 than in the associated WL), and cg (expected value of normal distribution
for WL failure temperature) as the most important variables with respect to the observed uncertainty in pF. The
positive regression coefficients are consistent with patterns observed in the associated scatterplots (Fig. 6.6) and the
known effects of these variables. In particular, (i) increasing c;; increases the number of low SL failure tempera-
tures and thus increases pF, (ii) increasing ¢7; increases the temperature of SL 1 relative to WL 1 and thus increases
pF, and (iii) increasing cg increases the number of high WL failure temperatures and thus increases pF. As is often
the case due to the linearizing effects of the rank transformation, the analyses with rank-transformed data result in

somewhat higher R? values than is the case for the analyses with raw data.

For perspective, the analysis was also performed for three samples of size 200, three samples of size 1000 and
three samples of size 10,000 (Fig. 6.7). Except for getting better resolution with respect to the likelihood of obtain-
ing very large values for pF (i.e., close to 1073), the results for the different sample sizes are quite similar. Thus, as
is usually the case, the sample size needed to determine where most of the uncertainty is located is not particularly
large. Of course, this changes if the goal of the analysis is to identify high consequence but unlikely analysis out-
comes. For example, if the goal of the analysis was to determine an epistemic (i.e., degree of belief or subjective)

probability that the value for pF exceeds 1079, then the same conclusion would be drawn from any of the nine
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CCDFs presented in Fig. 6.7. Specifically, and conditional on the assumptions of the hypothetical example under

consideration, this probability is approximately 0.1.
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Fig. 6.6. Scatterplots for 16 variables in Table 6.1 sampled in uncertainty analysis of the probabil-
ity pF that both SLs fail before either WL.

The representation of the epistemic uncertainty associated with pF in the context of evidence theory is now
considered. This representation is based on the BPAs for the 16 elements of X defined in Eq. (6.29) and illustrated
in Table 6.3 and Fig. 6.3. In concept, the CCPF and CCBF for pF can be constructed from the evidence space (<X,
X, my) defined in Sect. 6.4 with the Monte Carlo procedure defined in conjunction with Eqgs. (6.22) and (6.23).
Unfortunately, the large number of sets contained in X, (i.e., 1316 = 6.7 x 1017) makes direct use of this procedure
with the evidence space (<X, X, my) computationally impracticable. Specifically, it is not computationally possible

to carry out an analysis with a sufficiently large sample to assure adequate coverage of all sets contained in X.
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Thus, some approach other than a direct application of the procedures in Egs. (6.22) and (6.23) with (X, X, my)
must be sought to obtain the CCPF and CCBF for pF.
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Fig. 6.7. Estimation of epistemic uncertainty in pF with three replicated random samples: (a) N =
200, (b) N =1000, (c) N = 10,000, and (d) one CCDF from each of the preceding frames.

Fortunately, a computationally practicable approach can be based on the following two ideas. First, if a vari-
able does not affect an analysis outcome of interest, then calculated beliefs and plausibilities are unaffected by the
evidence theory structure assigned to this variable. Thus, any convenient structure can be assigned to this variable
for use in the construction of CCBFs and CCPFs. Second, the uncertainty bounds represented by CCBFs and
CCPFs narrow as the resolution in the evidence spaces assigned to the input variables increases. Intuitively, the
resolution in an evidence space increases when its focal elements are subdivided to produce a new evidence space
with an increased number of focal elements. Specifically, if the evidence space (oX;, X;, m;) associated with x; is

replaced by an evidence space (X, Xl» , ;) with the properties that (i) all sets in X,- are subsets of sets in X, (ii)
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any set in X can be obtained from a union of sets in Xl- , and (iii) the BPA for each set £in X, is apportioned over
the sets in Xi contained in & then the CCBF and CCPF that result from the uncertainty characterization that de-
rives from (oXj, Xi , m;) will be inside the CCBF and CCPF that result from the uncertainty characterization that
derives from (<X}, X,, m;). Thus, an uncertainty analysis of increasing resolution can be carried out by starting with
relatively low resolution evidence spaces and then increasing resolution, and hence computational demands, until ac-
ceptably converged CCBFs and CCPFs are obtained. In particular, resolution only needs to be added for the variables
that actually affect the analysis outcome of interest. As indicated in conjunction with Table 6.4, sensitivity analysis can
be used to identify such variables. The preceding ideas are elaborated on and applied to the example uncertainty analy-
sis problem in the remainder of this section. A formal justification for the mathematical basis of this approach is given

in Sect. 6.6.

The approach to the construction of CCBFs and CCPFs when the cardinality of <X is large can be represented
as an algorithm of the form shown below, where X = [x}, x,, ..., x,,], (<X, X, my) is an evidence space constructed
from evidence spaces (<X, X;, m,) for the individual elements x; of X, and fis a function that produces the analysis

outcome y = f{X) under study:

Step 0. Perform a sensitivity analysis to determine the most important variables X, X,, ..., ¥, with respect to

the uncertainty in y, where %, is the most important variable, ¥, is the next most important variable, and so on.

Step 1. Estimate a CCBF CCB.¥; (see Eq. (6.23)) and a CCPF CCP.#; (see Eq. (6.22)) for y on the basis of
the evidence space (<X, S, mg,) obtained from the original evidence space for % and degenerate evidence spaces

for %, X3, ..., %, in which the sample spaces are assigned BPAs of 1.

Step 2. Estimate a CCBF CCB.% and a CCPF CCP.%, for y on the basis of the evidence space (X, S,, mg,)

obtained from the original evidence spaces for ¥ and %, and degenerate evidence spaces for X¥j, X4,..., %, in

which the sample spaces are assigned BPAs of 1.

Step s. Estimate a CCBF CCB.¥, and a CCPF CC®.¥, for y on the basis of the evidence space (X, Sy, mgy)
obtained from the original evidence spaces for %, %,,..., ¥, and degenerate evidence spaces for X1, Xs19, ..., X, in

which the sample spaces are assigned BPAs of 1.

Termination. End process when no significant difference exists between CCB.%,_, and CCP.¥,_; obtained at
Step s—1 and CCB., and CCPF; obtained at Step s.

The preceding approach is used in the construction of CCBFs and CCPFs for the failure probability pF. Step 0
corresponds to the sensitivity analysis summarized in Table 6.4, which identified (in the rank regression) cy1, ¢71, cg,

¢y and ¢y as the dominant variables with respect to the uncertainty in pF (i.e., ¢ ~ ¥, ¢71 ~ %, cg~ X3, ¢c19~ X4,
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cg~ Xs5). Steps 1,2,3,4 and S are then carried out with the successive full inclusion of ¢; to produce CCB.# and
CCPH, ¢1; and ¢7; to produce CCB.F and CCLHF, ¢yy, ¢71 and cg to produce CCBF and CCPF, ¢11, 71, c3
and ¢y to produce CCB.F, and CCP.F, and c,y, ¢7y, c5, €10 and cq to produce CCB.F5 and CCLF; (Fig. 6.8).

The construction of the indicated CCBFs and CCPFs was carried out with a random sample of size N = 10°
from the distributions defined by the density functions in Eq. (6.27) and the associated mapping from uncertain
analysis inputs to analysis results (i.e., a mapping of the form indicated in Eq. (6.31) but generated with a sample

size of 10° rather than 200).

As illustrated in Fig. 6.8, the CCBFs and CCPFs move closer together as the resolution increases in the evi-
dence spaces for the elements of X. The CCPFs, which are shown in greater detail in Fig. 6.9, are probably close to
being converged with the five variables under consideration. The addition of several more variables (i.e., steps in
the construction algorithm) may be needed to converge the CCBFs. The CCDF in Figs. 6.8 and 6.9 is the CCDF
that derives from sampling distribution used in the estimation of the CCBFs and CCPFs (i.e., the distribution de-
fined by the density functions in Eq. (6.27)); specifically, this CCDF is constructed from the previously indicated
sample of size N = 10° and associated mapping from uncertain analysis inputs to analysis results. As such, it is one
of the many CCDFs for pF that are consistent with the evidence space for X under consideration (i.e., the evidence

space defined by the BPAs for the individual variables defined in Eq. (6.29)).
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Fig. 6.8. Successive CCBFs (i.e., CCB¥,s=1,2,
..., 5, with s = 1,2 off scale) and CCPFs (i.e.,
CCPH, s=1,2, ..., 5) estimated in application of
algorithm described in Sect. 6.5 to develop an
evidence theory representation of the epistemic
uncertainty in the probability pF that both SLs fail
before either WL fails.
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Fig. 6.9. Successive CCPFs (i.e., CCP¥, s=1,2,
3, 4, 5) appearing in Fig. 6.8 plotted with short-
ened intervals on the axes.

The evidence spaces for the individual elements of X are defined with 13 focal elements. Thus, as the number
of steps in the construction algorithm for CCBFs and CCPFs increases, the number of focal elements in the evi-
dence space (X, S, m s5) for X rapidly increases. For example, consideration of 5, 6 and 7 variables results in evi-
dence spaces (<X, S,, mg,), s = 5, 6, 7, for x with approximately 3.71 x 103, 4.83 x 106 and 6.27 x 107 focal
elements, respectively. Adequate sampling of this many focal elements is not possible except for models that are
inexpensive to evaluate. A possible numerical solution in this situation is to replace the original evidence spaces for
the elements of X with evidence spaces that have a similar structure but a smaller number of focal elements. For
example, such a reduction can be carried out by (i) evaluating the CBF and CPF for a variable, (ii) determining in-
tervals [a;, b;] of variable values associated with the CBF and CPF values of i/n for i = 0, 1, ..., n, and then (iii) as-

signing a BPA of 1/(n + 1) to each interval [a;, b;] fori=0, 1, ..., n.

6.6 Justification of Assumptions for Estimation of CCBFs and CCPFs

Two key assumptions underlie the algorithm presented in Sect. 6.5 for the estimation of the CCBF and CCPF
that results from the mapping of an evidence space (<X, X, my) into an evidence space (\V, Y, my) by a function f
defined on <X The first assumption is that, if a variable does not affect an analysis outcome of interest, then the
calculated beliefs and plausibilities for this outcome are unaffected by the evidence theory structure assigned to the
variable. The second assumption is that the uncertainty bounds represented by CCBFs and CCPFs narrow as the

resolution in the evidence spaces assigned to input variables increases. These assumptions are now formalized and
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Justified through a sequence of definitions and theorems. In particular, the first assumption is justified by Theorem

6.3, and the second assumption is justified by Theorem 6.2.

Intuitively, an evidence space (V, V, m}) refines an evidence space (¥, U, my) provided (i) ¥/ and Vare the
same, (ii) the elements of V are obtained by subdividing (i.e., refining) the elements of U, (iii) the BPA for each
element €of U is partitioned over the sets into which €is subdivided, and (iv) the BPA for each element of V is the
sum of the values assigned to this set in the partitioning of the elements of U. The preceding summation is neces-
sary when an element of V appears in the partitioning of two or more elements of U. The following definition pro-

vides a formal statement of the intuitive idea that (V, V, my) refines (¥ U, my).

Definition 6.1. An evidence space (V) V, my) is a refinement of an evidence space (¥, U, my) provided: (i)

@J= V), (ii) the sets U and V are related by

U = {Y;:i=1,2,...,m} (6.32)
n(i)

Y= UV.i=L2,...,m (6.33)
Jj=1

Vo= (Vyij=12,n(),i=1,2,...,m

I

(Ve k=1,2,..,n}, (6.34)

and (iii) there exists an m x n matrix F = [f;;] with nonnegative elements such that

fix=0if Vj is not a subset of ¥/, (6.35)

n
Y fa=Li=L2,...,m, (6.36)
k=1

and

my (6) = |20 (V) €=V eV

0 otherwise (6.37)
for each subset €of /.

Theorem 6.1. Suppose the evidence space (V, V, m)) refines the evidence space (¥, U, my)) and Eis a subset
of U Then,

Bely; (€) < Bely (&) < Pl (&) < Pl (), (6.38)
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where the subscripts U and ¥ designate beliefs and plausibilities defined with respect to (¥}, U, my) and (V, V,

my), respectively.

Proof. The inequality

Bely (&) < Ply (&) , (6.39)

is a fundamental property of belief and plausibility and follows immediately from their definitions (see Eqgs. (6.8)
and (6.9)). Thus, the middle inequality in Eq. (6.38) is valid. Further,

Belyy (€)= my (Y;), with I ={i: ¥, < &}

iel
= Z] 2 ciemy (Vi ), with ¢ = fyemy (Y; )/ZflkmU (V)
iel k=1 =1
= Z’”V (Vk) Zcz’k
k=1 iel
= z my (Pk)Zcik, with GK = {kipk (e g}, Zcik =0 fork EOK
keK iel iel
< > my (V}), since D oy <1
ke iel
_ Bely (&), (6.40)

Thus, the left inequality in Eq. (6.38) is established. Finally,

Pl (&)= %Cmy (Vi) with oK = {k: V), N E # ¢}
ke

=2 ifikmU (V)

keK i=1
=2 my (Vi) 2. f
i=1 keK
=X my(V;) Y. fa-with I={i:U;nE=P}, Y fy=0forigl
iel keX keK
<Y my (Y,), since Y fy <1
iel keK
- Ply (). (6:41)

Thus, the right inequality in Eq. (6.38) is valid, which completes the proof.

Theorem 6.2. Suppose the evidence space ( V, V, my) refines the evidence space (¥, U, my)), fis a function
defined on ¥/ with range V(i.e., fmaps Wonto V), and (\V, Yy, myy) and (Y, Yy, myy) are the evidence spaces
that derive from (¥} U, my) and (V, V, my) and the mapping from @/to Y defined by £, and Eis a subset of V.
Then,
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Belyyy (€) < Belyy () < Plyy (€) < Plyy (€), (6.42)

where the subscripts UY and V'Y designate beliefs and plausibilities defined with respect to (Y, Yy, myy) and (V)

Yy, mpy), respectively.

Proof. This result follows immediately from Theorem 6.1 in the following manner:

Belyy (€)= Bely | 17 (€)]

= Plyy (g)’ (6.43)
where the three inequalities follow from Theorem 6.9.

Definition 6.2. Suppose x; are variables with evidence spaces (X, X;, m;) fori =1, 2, ..., n, (X, X, my) is the
corresponding evidence space for X = [x}, Xy, ..., x,,], [is a set satisfying ¢ = I< {1, 2, ..., n}, and (X, X;, ;) is
an alternative evidence space for x; for i € I Then, the evidence space (S, S, mg) for X constructed from (X, X,

m;) fori € I°and (X;, Xi , ;) for i € [ is called a substitution evidence space for X.

Definition 6.3. Suppose x; € oX;fori=1,2, ..., n, X =[x, X,, ..., X,)], fis a function defined on X= X| x X,
x ... x oX,, and [ is a set satisfying ¢ = I'< {1, 2, ..., n}. Then, the following two statements are equivalent: (i) the
variables x;, i € I are nonaffecting with respect to £, and (i) if X € <X, X € <X, and x; = %; for i € [°, then Ax) =

AX).

Theorem 6.3. Suppose x; are variables with evidence spaces (@X,«, X,-, myfori=1,2,..,n, (X, X, my) 1s the
corresponding evidence space for X = [x{, X, ..., x,,], [is a set satisfying ¢ = I< {1, 2, ..., n}, (X, Xi, m; ) is an
alternative evidence space for x; for i € I (<X, S, my) is the substitution evidence space for X constructed from (Xj,
X, m)) fori e I°and (X, Xl- , m;) for i € I fis a function defined on <X, (Y, Y yy, myy) and ((V, Yy, mgy) are the
evidence spaces that derive from (X, X, my) and (X, S, mg) and the mapping from <X onto } defined by f, the x;

for i € Iare nonaffecting with respect to £, and Eis a subset of V. Then,

Belyy (€)= Belgy (€) < Plgy (€) = Plyy (£), (6.44)

where the subscripts XY and SY designate beliefs and plausibilities defined with respect to (\V, Y yy, myy) and (.},

Yy, mgy), respectively.

Proof. For notational convenience, assume that the elements of X are reordered so that
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I°={1,2,....,m} andI={m+1,m+1,...,n}.

(6.45)

Thus, the first m elements of X are assumed to potentially affect the value of y = {X) and the remaining elements are

assumed to be nonaffecting. Further, the following notation is introduced for use later in the proof:

n(i) = cardinality of X fori=1,2, ..., n,
X (i,j) =elementjof X;fori=1,2, ... n,

= cardinality of X,- fori=m+1,m+2,..,n,

S
~—~
~.
S’
|

e
-
<
N’

I

element j of X,- fori=m+1,m+2,..,n

B

{@:a=[ji, jas o Jm |- 1< Jy (i) fori=1,2,...,n},

IB = {b:b=[]p1 jmsas - Jn]s 1< J; <0(i) fori=m+1,m+2,...,n},

IC = {c:C=[jumuts Jmszs s Jn ) 1S jy SA(i) fori=m+1L,m+2,...,n},

IX = {n:n=[a,b],ae[g§[,beI@},

IS ={n:n=[a,c],ae[d.ccIC},

Ha = XL ji)xX(2, jp)x..xX (m, ji,) fora=[j, jas .o j] € IA .

By = X(m+1, iy )X (m+2, fpyg ). xX (1, ) T8 B=[Jrats jmszs s jn] € 1B,

G = X(m+1, )< X (m+2, sz )% xX (1, fi) 08 € = [fymats fipss-r Jn] € IC,

mA(Jﬂa) = i mk[“)((k’fk):l fOI'a=[j1,j2,..., jm]EM,
k=1

mB(@b) =TT me[X(k k)] forb=[jpmi1, jimszs s Jn] € IB,

k=m+1

me(Ce) = [1 rhk[ef((k,jk)] £ € = [ s 1> Jims2s -+r ] € IC..

k=m+1

(6.46)

(6.47)

(6.48)

(6.49)

(6.50)

(6.51)

(6.52)

(6.53)

(6.54)

(6.55)

(6.56)

(6.57)

(6.58)

(6.59)

(6.60)

The preceding notation facilitates a distinction between the elements of X that affect and do not affect the value of

S

90



The equality Belyy( €) = Belgy(&) is considered first. The following sets are defined involving /1 &):

IEX = {n:n=[a,b]e X, U = A, xB, < 1 (€)}, (6.61)
IAX = {a:n=[a,b]e [&X]}, (6.62)
IES = {n:n=[a,c]e I8, V= daxC; (S (6.63)
IAS = {a:n=[a,c]eIES}. (6.64)

Further, the equality
IAX = IAS (6.65)

follows from the assumption that the variables associated with I (i.e., X1, X;+2, ---» X,,) are nonaffecting with re-
spect to . Specifically, if a € J¢d-X and n = [a, b] is an element of IEX; then A, x B,) c & however, because
the variables associated with Iare nonaffecting, f{#l, x Co) = figda x By) for any ¢ € IC. Hence, iy x G) < &
a e JAS, and so J/-X < [AS. Similarly, [AS = JA-X and so the equality in Eq. (6.65) is valid. The equalities

IEX = Uae&@({n:nz[a,b],be]@}, (6.66)

Es = n:n=[a,c],celC} (6.67)

aeMS{

also derive from the assumption that the variables associated with [are nonaffecting.

From the underlying assumption of independence among the elements of X,

my (. AaxBo ) =my(Aa) mp(By) (6.68)
for [a, b] € I.X and

mg (AaxCe)=my(a) mc(Ce) (6.69)

for [a, ¢] € IS. Further, the equalities

Y me(By)=1 (6.70)

belB

and

ZI:CmC (Ce)=1 (6.71)
Ce

follow from the assumption that the elements of X associated with Jare nonaffecting with respect to /.
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The belief Belyy(E) is given by

BelXY(8)= Z mX(quaX@b)

[a,bJElEX

= Z Z mX(ﬂaX@b)

acJAX belB

= Z ’"A(ﬂa) Z mB(@b)

aeJdX belB

- i

where the second, third and fourth equalities follow from Egs. (6.66), (6.68) and (6.70), respectively. Similarly,
Belgy (8) = Z mg (ﬂa XCc)

[a, cleléS

= Z st(ﬂaxcc)

ac[AS celC

= X my(Aa) 2 me (Ce)

ac]AS celC

) ae%ﬂs malHAa) 6.73)

where the second, third and fourth equalities follow from Egs. (6.67), (6.69) and (6.71), respectively. The equality
Belyy(€) = Belgy() now follows from Egs. (6.72) and (6.73) and the equality of [-X and [AS indicated in Eq.
(6.65).

The equality Ply(&) = Plg/(&) follows by an argument analogous to the one used to establish the equality
Bel x1(€) = Belgy(). The only difference is the consideration of sets that intersect € rather than sets that are con-
tained in & Further, the inequality Belgy( &) < Plgy(E) is a basic property of belief and plausibility. Thus, theorem
is established.
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7. Comparison with Previous (Bohn) Analysis

Bohn developed an approach to the treatment of uncertainty in WL/SL temperature curves (App. I) that is dif-
ferent from the approaches presented in Sect. 6. In Bohn’s approach, the uncertainty in the temperature curve for a
given link and the variability in the failure temperature for that link are combined into a single distribution. The
distributions that result from this combination procedure are then used in the calculation of ;I? (i.e., the expected
value for probability of loss of assured safety, with the indicated expectation being calculated over epistemic uncer-
tainty in the time-dependent temperature curves for the individual links). Bohn also presents results for three test
problems. Although Bohn’s procedure for determining pF in the presence of uncertainty is less general than the
sampling-based procedure for uncertainty analysis presented in Sect. 6, his solutions to the test problems can be

used for an independent verification of the procedures developed in this presentation.

In the following, a formal development of Bohn’s approach is presented (Sect. 7.1), and the results obtained
with Bohn’s approach and the procedures introduced in earlier sections of this presentation are shown to be the

same (Sect. 7.2).

7.1 Bohn’s Presentation for pF with Uncertainty in Temperature Curves

A derivation for Bohn’s representation for pF with an incorporation of uncertainty in time-dependent tem-
perature curves follows. This derivation is presented for two reasons. First, the original derivation by Bohn is in-
complete and difficult to follow. Second, the original derivation contains an oversight that under certain conditions
leads to erroneous values for pF . Without a careful derivation of the representation used for pF , this error is dif-
ficult to identify and explain. This error is manifested in the third of Bohn’s three test problems as will be discussed

later.

For simplicity, a system with two SLs and one WL is considered. The basic relationship used in Bohn’s devel-

opment to define probability of loss of assured safety in the presence of time-dependent temperature uncertainty is

;I*:(t) = probability that all links fail before time 7 with both SLs failing before the WL fails

[ CDFgy1(v) CDFgy5(v) o[ CDFyy (v)]

i

j; CDFgy, (r) CDFg5(z) [dCDFyy (7)/d]dr, 7.1)

where the first integral is a Riemann-Stieltjes integral, the second integral is the corresponding Riemann integral,

and CDFgy(t), CDFgr5(t) and CDF () are defined by

CDF¢, (r) = probability that SL 1 fails between time 0 and time T,
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CDFg;,(7) = probability that SL 2 fails between time 0 and time T,

and

CDFy; (z) = probability that WL fails between time 0 and time T,

respectively.

The integrals defining pF(¢) in Eq. (7.1) are obtained from the approximating sums
_ n
PF ()= Y CDFg; (7;1) CDFyp3 (7:4) [ CDFyy (7;) = CDFyy, (7:1) ]

i=1

AT;

1

n
= ZCDFSLI (Ti—-l ) CDFSL2 (Ti—l)

i=1

CDFy; (7;) - CDFyy (7,4 )}
At;

1
forO=1y<t1<...<1,=tA1;=1;—-171,_y, and
CDFg, (z'i_l) = probability that SL1 fails between time 0 and time t;_,

CDFyg;, (7;_;) = probability that SL2 fails between time 0 and time T;_j,

CDFy; (7;)— CDFyy (7;_) ) = probability that the WL fails between time 7;_; and time ;.

(7.2)

The two integrals in Eq. (7.1) result in the limit as At; goes to zero. The preceding derivation for p_F (9 is predi-

cated on the assumption that the failures of the three links are independent.

The next step in the development is to obtain representations for CDFg; (1), CDF gy () and CDF (7). These

representations are based on the assumption that there is variability in the temperatures at which the individual links

fail and also uncertainty in the temperatures of the individual links at each point in time. In particular, the following

density functions are assumed to be known:

FSLI(T) = density function for SL 1 failure temperature,

F. SLZ(T) = density function for SL 2 failure temperature,

FWL(T) = density function for WL failure temperature,
TSLI(T t‘r) = density function for SL 1 temperature at time 1,
TSL2(T| r) = density function for SL 2 temperature at time T,

TWL ( T| r) = density function for WL temperature at time .
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In addition, the tacit assumptions are made that the possible time-temperature curves for the individual links are
nondecreasing and that a link fails instantly if it reaches its failure temperature. The density function FWL corre-
sponds to the density function /WL, introduced in Eq. (3.3), and the density functions FSL1 and FSL2 correspond to
the density functions fSL; and fSL, introduced in Eq. (3.4).

Given the preceding density functions, CDFg; (1), CDFgy5(t) and CDFyy;(7) are defined by

CDFgy, (7)= [ [L FSLI TF)dTF]TSLl(T| )dr (7.9)

CDFg5(r)= [ [L FSL2 TF)dTF]TSLz(T{ )dT (7.10)
and

CDFyy (7) = f;[ J._TwFWL(TF)dTF}TWL(Th)dT, (7.11)

respectively. In the preceding, —oo and co are used as limits of integration for notational convenience, with the defi-

nitions of the density functions effectively resulting in integrals over finite intervals.

When a finite temperature interval [TMIN, TMAX] is under consideration, the representation for CDFgy (1) is

CDFg;, (1) = ﬁfzj[ LTMNFSLl(TF) dTF} TSLA(T|7) dT

1]

i[L—l FSI1 TF)dTF}TSLl( i-1|7) AT; 712)

i=1

where TMIN = Ty < Ty < ... < T, = TMAX in the approximation, AT; = T; — T;_;, and the integral defining
CDF g () is obtained in the limit as AT; goes to zero. In the preceding,

Ti-1
[y FSLU(TF ) AT (7.13)

is the probability that SL 1 fails at a temperature less than T;_;, and

TSLI(T;4|7) AT; (7.14)

is an approximation to the probability that SL 1 experiences a temperature between 7;_; and 7; at time t. As are-

sult, the product

T
[ j”’w‘N FSLI(Tf) dTF} TSLI(T;|7) AT; (7.15)
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approximates the probability of the event “SL 1 fails at a temperature less than T;_; and also reaches a temperature
between 7;_; and 7; at time t.” Thus, the summation in Eq. (7.12) approximates the probability that SL 1 has failed
by time 1, and the corresponding integral is equal to this probability. The preceding derivation for CDFg;(t) has
two underlying assumptions. First, the possible time dependent temperature curves whose behavior is summarized
in the density functions TSL1(T |t) are nondecreasing. Second, the failure temperatures characterized by FSL1(T)
and the time dependent temperatures characterized by TSL1(T |t) are independent. The functions CDFgr5(t) and

CDF yy;(t) are obtained in an analogous manner.

In concept, p_F (1) in Eq. (7.1) is now determined by the definitions of CDFg; (t), CDFgr5(t) and CDFpy(7) in
Egs. (7.9) — (7.11) once the density functions in Egs. (7.3) — (7.8) are specified. In general, the evaluation of DF ()
requires a numerical integration because no simple forms for CDFg (1), CDFgr5(t) and CDFyy;(t) will be avail-

able for most potential specifications for the density functions in Egs. (7.3) — (7.8).

The numerical procedures used for the evaluation in p—F (¢¥) in Bohn’s development are based on-a simplifica-
tion of the integrals defining CDFg; (1), CDFg;,(t) and CDF () that is obtained by restricting the density func-
tions in Egs. (7.3) — (7.8) to either normal or lognormal distributions. More specifically, the density functions
FSL1(T) and TSL1(T |t) associated with SL 1 are required to be all normal or all lognormal. Similarly, the density
functions FSL2(T) and TSL2(T |t) are required to be all normal or all lognormal, and an analogous requirement
holds for FWL(T) and TWL(T|z). As shown below, the indicated restrictions result in a simplification of the integral
representations for CDFgr1(t), CDFg;5(t) and CDFypy (7).

The simplification of CDFg; (1) is considered first for the following two cases: (i) FSLI(T) corresponds to a
normal distribution with mean pgg;; and standard deviation 6zg;; (i.e., FSL1(T) ~ Mg 1, Orsr1)) and TSLY(T|t)
corresponds to a normal distribution with mean prg(t) and standard deviation orgyi(t) (i.e., TSLI(T|t) ~
Nuzsr1(r), orgr1(0)]), and (ii) FSL1(T) corresponds to a lognormal distribution with median mfg;; and standard
deviation Bpg for In T (ie., FSLI(T) ~ LN(mgsr 1, Brsr1)) and TSL1(T|t) corresponds to a lognormal distribution

with median mTSLl(‘r) and standard deviation BTSLI(T) forlnT (i.e., TSLl(T|T) ~ LN[mTSLl(T), BTSLl(T)]).

Case (i) is treated first. Determination of CDFg; () involves consideration of two sets of temperatures:

Spsi1 ={Tr : T a possible failure temperature for SL 1} (7.16)

and

Srsz1(z)={T : T apossible temperature for SL 1 at time )., ‘ (7.17)

By assumption, the temperatures in Spg;; and Syg(t) have the distributions M(uggz1, Opszi) and Npzg(t),

Orsz1(v)]. In turn,
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CDFgpy(7)= prob(Sg), (7.18)

where prob denotes probability and
Sp = {[TF’ T):Tr € Sgspy» T € Sygpy (7) and Tp < T}

z{[TF,T]:TF ESFSLI,TESTSLl(T) and TF—TSO} (719)

. 2
Because Ty~ M(Ugsz 1> Opsz1) and T~ Nz (7). o7s1(2)], it follows that Tp— T~ N{uggz1 — Wrszi(7), [OFspi +
O'%SLI(T) 112}, Thus, prob(Sg) is simply the probability that a normally distributed variable (i.., T~ T) has a

value less than or equal to zero, which can be obtained from the standard normal distribution. In particular,
CDFSLI (T) = p?‘Ob(SF)

0- [ﬂFSLl — prsp (7 )]

=@ 5 5 172
[UFSLl + 07311 (T)J

_ @l Hsu (7)-HEsia

I:O'}%"SL] +O—72"SL1 (f)T/2 ’ (7.20)
where
©(x)=[* (1/v27) exp(-v*/2) dv )

is the cumulative distribution function for the standard normal distribution (i.e., ®(x) is the probability that v has a

value less than or equal to x when v ~ M0, 1); see Eq. (1.21) in Ref. [2]).

Use of the representation in Eq. (7.20) in the evaluation of CDFg;(7) offers the potential for computational
savings in the evaluation of ﬁ (¢) as defined in Eq. (7.1) (e.g., see Egs. (2.43), (2.44) and (2.47)). In particular, the
expression in Eq. (7.9) involving two iterated integrals is replaced by the expression in Eq. (7.21) that involves only
one integral. Further, the evaluation of ®(x) has been extensively studied and efficient procedures for its numerical

evaluation are available.

Case (ii) is now considered. This case is effectively the same as Case (i) except for the use of In 7 and In T in

place of T and T in the definition of the set Sg in Eq. (7.19). In particular, the definition of Sp is now

SF ={[TF’ T]:TF ESFSLDTGSTSLI (T) and ln(TF/T)SO} (722)

Because In Tp~ N[In(mgg; 1), Brszil and In 7~ N{ln[myr (7)), Brsr1(7)}, it follows that In(Tx/T) ~ N{ln[mpg;,/

mysp (O [ Bésey + Bisry (D12}, In turn,
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CDFgy,(7) = prob(Sp)

0-In[mpgy) /mpgia (7)]

=® 5 5 172
[ﬂFSLl + Brsi1 (T)}

In{ mpspy (7)/mgs |

172
[ﬂ%su + sy (f)]

with ®(x) defined in Eq. (7.21).

Analogous representations hold for CDF gy 5(7) and CDFy;(7). In particular,

CDFg(7)=® Hrsio (7) = Hpsio

1/2
[0'127SL2 + O'%SLZ (f)]

for FSL2(T) ~ N(Wgsz1> OFsp1) and TSLT | z) ~ Npursza(7), o7s12(7)];

In[ mpsps (2)/mpses |

12
[ﬂI%SLZ + Bfsio (T)}

CDFg5(r) =@

for FSL2(T) ~ LN(mggy 3, Brso) and TSL2(T'|7) ~ LNImyspo(7),Brsa(7)];

CDFyy (7)=® Hrw (7) ~ Hrm

1/2
[O'I%"WL + GYZ"WL (T)]

for FWL(T) ~ Mppwy, opwr) and TWL(T |7) ~ Nlpgw(7), orw(7)]; and

In[ myyy (2)/mewy. |

[ﬂ%WL Al )]1/2

CDFWL (T) =@

for FWL(T) ~ LN(mpyy, Brpy) and TWL(T | ) ~ LN[mpyy(7).Brwr(7)]-

(7.23)

(7.24)

(7.25)

(7.26)

(7.27)

The final representation for p_F (#) in Eq. (7.1) is used in the determination of the probability of loss of assured

safety. The form of this representation in the program P-RACE developed by Bohn (App. II) uses calculated values
for the derivative dCDFy;(7)/dt based on the forms of CDFpy(7) in Eqgs. (7.26) and (7.27). Two options are al-
lowed for the specification of FWL(T) and TWL(T |7) in the input to P-RACE: (i) FWL(T) ~ N(ugwy, Spwr) and
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TWL(T |7) ~ Nppw(7), Covppyr wrwr(7)], where Covryy = 6y (7)/ wrmr(7) is a time independent coefficient of
variation for WL temperature, and (ii) FWL(T) ~ LN(mgyy, Brwr) and TWL(T |7) ~ LN[mry(7), Brwr]. Further,
wrwr(7) and myyy(7) are restricted to a limited number of simple algebraic forms. An important distinction be-
tween the two options, and the source of the error in P-RACE as described in conjunction with Egs. (7.42) and
(7.43) in Sect. 7.2, is that oy (7) = Covpyr nrwr(7) is time dependent in the specification of normal distributions
for WL temperature and By, is time independent in the specification of lognormal distributions for WL tempera-

ture. Analogous distribution options are allowed for the two SLs.

The determination of dCDFyy;(r)/dr for FWL(T) ~ N(upwr, Spwr) and TWL(T |t) ~ Nlupy(z), Covyyy

wrwr(7)] is considered first. Specifically,
dCDFyy (7)/dr = diq{F(r)]
T
_d| Fr) 2
= ;T.[ LD (1/\5;) exp(—v /Z)dv}

= (1/\/5) exp[—F2 (T)/z] dF(z)/dz,

(7.28)

F(z)= e (T) = Hewe

172
2 2 2 7.2
[O'FWL + Covyy iy (7 )] (7.29)

Further, from the derivative identity (f/g)' = (f'g — fg')/g2,

' 1/2
dF (z)/dz = U:/UTWL (2) = mpwr | [O'IZTWL +Coviyy Hiwr, (T)]

—{barwr (7) - pwr }{I:O-Iz’WL + Coviyr tiwy (T)]l/z } ']

-1
2 2 2
. (GFWL + Covryy i, (7 ))

' 12
= (/JTWL (T)[O-I%"WL +Coviyy i (T)]

-1/2 ,
—{ ez, ()= }{[O—}%‘WL + Coviyy iy, (T)] }COV%WL:UTWL (7) trwr (T)J

-
2 2 2
. (UFWL + Coviyy tirwr (7))
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-1
= (1 - [ﬂTWL (7)- ][O'IZTWL +Coviyy Ui (T)} Coviyy trm (T)J

)—1/2

. (012~“WL + COV%WLIUZ%WL (z) Hrw, (7)- (7.30)

The complicated form for dCDFy;(7)/d7 results from the time dependence of oy (7) = Covryr urwr(7) in the

denominator of the expression defining F(7).

The determination of dCDFy;(7)/dr for FWL(T) ~ LN(mgyy, Brwr) and TWL(T|7) ~ LNImpy(7), Brwyl is
now considered. In this case, the representation for dCDFyy(7)/dt is the same as in Eq. (7.28) with the change that

F(7) is now given by

1 (
F(r)= n[’:’TWL T)Z/mFVlV/L2]' .
[ﬂFWL + ﬁTWLJ (7.3D)
In turn,
aF (T) dr = MEwr, 2mTWL (72) o
My, (T)[ﬂFWL + :BTWL] (7.32)

This form for dF(z)/dzis simpler than the form in Eq. (7.30) because the denominator in the representation for F(r)

in Eq. (7.31) is a constant.

A summary of the representations used for p_F (9) in Bohn’s development for one WL and two SLs is provided
in Table 7.1. When ¢ and the associated rise in temperature are sufficiently large to assure that the WL has failed,
—ﬁ’. (¢) is equal to the expected value for probability of loss of assured safety. Although the distributions used with
a given link must be either normal or lognormal, different distribution types can be used for different links. An

analogous representation for ;F’ (?) holds for one WL and and arbitrary number of SLs.

7.2 Results for Bohn’s Test Problems

Bohn presents three test problems (Table 7.2). The corresponding failure probabilities ;]*:(80) at t = 80s are
calculated with the P-RACE program using the representation for p_F () in Table 7.1.

The representation for pF(f) in Sect. 2 can be used to evaluate the failure probabilities for the test problems that
involve one WL and one SL, and the representation in Sect. 4 can be used to evaluate the failure probabilities for
the test problems that involve one WL and two SLs. As developed in Sects. 2 and 4, pF(?) is for fixed time tem-

perature curves for the individual links. The Bohn development involves calculating an expected value p—F(t)
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Table 7.1. Summary of Representations Used for ;17(1) in Bohn’s Development for one WL and
two SLs

PF(t)= [ CDFg, () CDFyy, (¢)[ dCDEyy (¢)/dr ] dr

where
CDFg, (r)= 2 Hrsi1 (Z)‘ﬂzpsu -
[O'FSLI +Covrsry Hrsy (T)}
CDFg, (T) - : HTsL2 (ZT)*ﬂ:SLz =
[UFSLz +Covigrotisio (7)}
Hrw (7) ~[tarwr, ()= pwr ]2
dCDFWL (T)/dT: X

2
2z I:O'%WL + Coviyr 11 (r)]l/2 2[0 Fwr. + Coviw uiws (T)J
-
. {1 ~{ i (7) - ey :”:O'%WL + Coviyy tiwr (T)J Covigr terwr, (7 )}

for the specification of normal distributions (i.e., FWL(T) ~ N(Wgpr, Spwr)» TWL(T|7) ~ Nlprwr(7), Covyy
urwr (7)), and FSL1(T), FSL2(T), TSL1(T|7) and TSL2(T|7) are defined similarly), and

In[ mrgpy (7)/mps |

[ﬂ}zvsm + Bfsi ]1/2

CDFgyy () =@

In[ mrsp (7)/mEsys |

CDFSL2 (T)ZCD 1/2
[ﬁ}z?SLZ + B%SLZ}

for the specification of lognormal distributions (i.e., FWL(T) ~ LN(mgyy, Brwr), TWL(T|t) ~ LNImpp(7),
Brwil, and FSLI(T), FSL2(T), TSL1(T|r), and TSL2(T|t) are defined similarly).

for pF(¥) with this expectation taken over distributions for possible time-temperature curves characterized by the
density functions TWL(T|7), TSL1(T |7) and TSL2(T|r). The preceding density functions can be thought of as de-

fining (i) distributions of temperature curves of the form

TMPWL (T| }’lTWL) = Hrpr, (T) + nTWLCOVTWL/”TWL (T) (733)
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Table 7.2. Three Test Problems Developed by Bohn for Use with P-RACE Program for Determi-
nation of Probability of Loss of Assured Safety (App. I)

Problem 1

One WL, One SL:

FWI(T) ~ LN(mpwy, Brwr) = LN(350°F, 0.4)

FSLI(T) ~ LN(mggy 1, Brsr1) = LN(900°F, 0.4)

TWL(T|t) ~ LNImpyr(7),Brmr] = LN[(70°F/s)7, 03], 1 < r<80s
TSL1(T|7) ~ LNm7s1(7),Brsy 1] = LN[(60°F/s) 7, 0.3], 1 < <80 s
One WL, Two SLs:

FWL(T) ~ LN(mpwy, Brwr) = LN(350°F, 0.4)

FSLI(T) ~ LN(mggr 1, Brsr1) = LN(900°F, 0.4)

FSL2(T) ~ LN(mggy2, Brsro) = LN(900°F, 0.4)

TWL(T|7) ~ LNImqpr(7),Brwr] = LN[(70°F/8)7, 03], 1 < <80 s
TSLI(T\7) ~ LNIm7s11(7),Brsr1] = LNI(60°F/s) 7, 0.3], 1 < < 80s
TSL2(T|7) ~ LN[mpg;»(7),Brsr2] = LN[(60°F/s)7, 0.3], | < 7< 80 s

Correlation between SL failure temperatures: 0

Correlation between SL temperatures: 0

Problem 2

One WL, Two SLs:

Same as Problem 1 with one WL and two SLs but with a correlation of 1 between SL temperatures.

One WL, Two SLs:

Same as Problem 1 with one WL and two SLs but with a correlation of 1 between SL failure temperatures and a
correlation of 1 between SL temperatures

Problem 3

One WL, One SL:

FWL(T) ~ N(ugwr, orwr) = N(379.2°F, 146°F)

FSLI(T) ~ Nups; 1, Ops1) = NOT5°F, 375F)

TWL(T|7) ~ Nlupwr(7), opwr(7)] = NI(73.22°F/s) 7, 0.31(73.22°F/s)7],0 < < 80 s
TSLY(T|7) ~ Nlprsz1(7), orsr1(1)] = N[(62.76°F/s) 1, 0.31(62.76°F/s)7], 0 < r< 80 s
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Table 7.2. Three Test Problems Developed by Bohn for Use with P-RACE Program for Determi-
nation of Probability of Loss of Assured Safety (App. I) (Cont)

One WL, Two SLs:

FWL(T) ~ Ntz Opr) = N(379.2°F, 146°F)

FSLW(T) ~ Mugsei> 0rs1) = M975°F, 375°F)

FSL2(T) ~ Mugsro, Opsz2) = M975°F, 375°F)

TWL(T|7) ~ N[pgr(©), 5 ()] = NI(73.22°F/s)z, 0.31(73.22°F/s) ], 0 < z< 80 s
TSLI(T|7) ~ Mgy (7), 67511 (2)] = NI(62.76°F/s)z, 0.31(62.76°F/s) 7], 0 < 7< 80 s
TSL2(T|7) ~ Npyga(7), S752()] = NI(62.76°F/s), 0.31(62.76°F/s) ], 0 < 7< 80 s

Correlation between SL failure temperatures: 0

Correlation between SL temperatures: 0

TMPSL(z|npgpy ) = pyspa (7) + npspiCovrspi trsza (7) (7.34)
TMPSL2(t|npsp5 ) = pipsio (v) + npspoCovrsropirsya (7) (7.35)

when TWL(T |7), TSL1(T{7) and TSL2(T|7) correspond to normal distributions with nyp;, nygr) and nrg, being
standard normal variables (i.e., nyyy ~ N(0,1), nygr ) ~ N(O,1), nygro ~ N(0,1)) and (ii) distributions of temperature

curves of the form

TWWL(T| nTWL) = Myyr, (T)eXp(nTWL:BTWL) (736)
TMPSL(z|nysyy ) = mygp (%) exp(ngsp Prsir ) (7.37)
TMPSL2(z|ngsp; ) = mysy (7) exp(nrspa Prsea) (7.38)

when TWL(T|7), TSL1(T|7) and TSL2(T|7) correspond to lognormal distributions with ny;, nys1 and gy, again

being standard normal variables.
If one WL and one SL are under consideration, then ﬁ () can be approximated by
- n

PF(t)= ZPF(tlnTWL,ia nTSLL,i )/” (7.39)
i=1

where nry; ; and nrg ; are sampled randomly from N(0,1) and pF(¢|nyy ; nrsz1,:) corresponds to pFi (¢) evaluated
with the temperature curves associated with nzy; ; and nyg ; as indicated in Eqs. (7.33) — (7.38). If one WL and

two SLs are under consideration, then p_F (?) is given by the analogous approximation
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n

PF(t)= pF (t | nrwis nrsiis nrsia.i )/ n. (7.40)

i=1

Problem 2 (Table 7.2) involves unit correlations between failure temperatures and also between the time-dependent
temperatares for the two SLs. The implementation of these correlations is trivial and simply involves using the
same failure temperature for both SLs when a correlation of 1 is specified for the failure temperature and similarly
using the same time-dependent temperature curve for both SLs when a correlation of 1 is specified for time-

dependent temperature.

The results obtained from P-RACE with the representation for —137 (9 in Table 7.1 and the results obtained with
approximation procedures in Eqgs. (7.39) and (7.40) based on evaluating individual time temperature curves agree

for Problems 1 and 2 but disagree for Problem 3 (Table 7.3).

The reason for the disagreement for Problem 3 was not apparent initially. A checking of both implementations
did not reveal any errors. However, all four numerical procedures for the evatuation of pF(t|nywy, ;, Prsri i» 1812,
(i.e., two quadrature procedures and two sampling-based procedures) yielded the same results for Problem 3. This

suggested the problem might be in the implementation of the calculations to evaluate ;)F (?) as defined in Table 7.1.

Due to the complexity of dealing with normal and lognormal distributions, it is difficult to do hand calculations
to verify the correctness of a numerical result. However, a simple test to verify the presence of an error is possible.
In particular, if one WL and nSL SLs are involved, all links have the same failure temperature distributions (i.e.,
FWL(T), FSLI(T), FSL2(T), ... correspond to the same distribution) and also the same time-dependent temperature
distributions (i.e., TWL(T|7), TSLI(T|7), TSL2(T|7), ... correspond to the same distribution), and the properties of
the individual links are independent, then

ﬁ(oo) = lim j;[p(r) nSLp'(T) dr

[—>0

= lim [ p()]™ f(nsL+ 1)[)

= (nSL+1), (7.41)

where the problem is assumed to start at time 0 and p(t) is the probability that an individual link will fail by time ©
with p(0) = 0 and p(«) = 1. In particular, p(t) is the same for all links from the assumption that the individual links

have the same failure temperature distribution and the same time-dependent temperature distributions.

The indicated test with P-RACE did not yield the required convergence of pF (f) to 1/2, 1/3, 1/4, ... for nSL =
1,2, 3, .... Thus, there had to be a problem in P-RACE. Examination of P-RACE did not reveal any problems. At
this point, a rederivation of the results implemented in P-RACE was undertaken. The content of Sect 7.1 is the out-

come of this rederivation.
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Table 7.3. Comparison of pF(¢) Obtained for Test Problems with Different Computational Proce-
dures

p—F (#): Expected Value for Probability of Loss of Assured Safety
Test Problem?

Analytic Combination of Distributions? Sampling-Based Combination of Distributions®
Prob 1, Part 1 6.01 x 1072 6.01 x 1072
Prob 1, Part 2 1.58 x 102 1.58 x 1072
Prob 2, Part | 236 x 1072 2.36 x 1072
Prob 2, Part 2 6.01 x 102 6.00 x 1072
Prob 3, Part 1 1.51 x 1071 8.88 x 1072
Prob 3, Part 2 6.56 x 10~ 2.34x 1072

& Test problems described in Table 7.2.

b PF (9) calculated with P-RACE program (App. II) as indicated in Table 7.1.

¢ pF (9 calculated with CPLOAS program (App. III) as indicated in Egs. (7.39) and (7.40) with procedures described in Sects. 2 and 4. Same

results obtained with both quadrature approaches and sampling-based approaches to the evaluation of pF(t|nrwy, Arsz,) and pF(t g

ATSLLi> BTSL2,)-

What was discovered in this rederivation was that P-RACE was implemented with

dF (z)/dz = ppyy (T)/[O'I%“WL +0tyL (7)}]/2

' 1/2
= Hrwi (T)/ [U Fwe + Coviwy uiwy (z )} (7.42)

when TWL(T|t) ~ Nlpugwr(t), Covrpr wrwr(t)] rather than with the correct value for dF(t)/dr in Eq. (7.30). The

derivative

)1/ : (7.43)

dF(T)/dT = Urwi (T)/(O-IZTWL + GIZ’WL

is correct where Gy is a constant rather than a function of time (i.e., o y7(7) = Covpyr Wywr(7)). This is an easy
error to make. The defining relationship for dF(7)/dz was probably originaily and correctly derived with the as-
sumption of constant values for 6y and 67yy7; then at some later time it is likely that a decision was made to make
oy, @ function of time without recollection of the assumption of a constant value for o7, in the derivation of
dF(r)/dr. Once the correction to the definition of dF(7)/dr was made, P-RACE produced the same values for

p_F (¢) as given in Table 7.3 for the sampling-based approach.

The existence of a problem in P-RACE for calculations carried out with normal distributions had been sus-

pected for a long time. For this reason, decision-supporting calculations were not carried out with P~-RACE for nor-
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mal distributions. However, the exact nature of this problem was not recognized until after the derivations in Sect.

7.1 were developed.
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8. Summary

The probability of loss of assured safety (PLOAS) in WL/SL systems under fire conditions is investigated. The
indicated probability refers to the failure of the WL system to deactivate the overall systems before failure of the SL

system and derives from variability (i.e., aleatory uncertainty) in the temperatures at which the individual links will

fail.

Formal developments of the probability that the WL system fails to deactivate the overall system before failure
of the SL system (i.e., PLOAS) are presented for four WL/SL configurations: (i) one WL, one SL (Sect. 2), (ii)
multiple WLs, multiple SLs with failure of any SL before any WL constituting failure of the safety system (Sect. 3),
(iii) multiple WLs, multiple SLs with failure of all SLs before any WL constituting failure of the safety system
(Sect. 4), and (iv) multiple WLs, multiple SLs and multiple sublinks in each SL with failure of a sublink constituting
failure of the associated SL and failure of all SLs before failure of any WL constituting failure of the safety system
(Sect. 5). The indicated probabilities derive from time-dependent temperatures in the WL/SL system and variability
in the temperatures at which the individual components of this system fail and are formally defined as multidimen-

sional integrals.

Numerical procedures based on quadrature (i.e., trapezoidal rule, Simpson’s rule) and also on Monte Carlo
techniques (i.e., simple random sampling, importance sampling) are described and illustrated for the evaluation of
these integrals. Further, the FORTRAN program CPLOAS has been written to implement the indicated numerical
procedures for the calculation of PLOAS (App. IIl). The quadrature-based procedures are numerically much more
efficient (i.e., require fewer function evaluations) than the Monte Carlo techniques. However, the Monte Carlo
techniques are useful in that they provide an independent verification of the correctness of the conceptual and com-

putational implementation of the quadrature-based procedures.

Example uncertainty and sensitivity analyses for PLOAS involving the representation of uncertainty (i.e., epis-
temic uncertainty) with probability theory and also with evidence theory are presented (Sect. 6). A sampling-based
approach for the propagation of uncertainty is used for uncertainty representations based on probability and also for
uncertainty representations based on evidence theory. Further, a computationally efficient procedure for the deter-
mination of complementary cumulative belief functions and complementary cumulative plausibility functions is

introduced.

A careful derivation of a numerical procedure originally introduced by M.P. Bohn (App. 1) for the determina-
tion of PLOAS is presented (Sect. 7). This derivation facilitated the identification of an error in the P-RACE pro-
gram for the calculation PLOAS. The existence of some type of error in P-RACE had been previously suspected
but its exact nature was not known. The indicated derivation led to the identification of this error and also to a use-

ful result/procedure for use in the verification of PLOAS calculations (Eq. (7.41)). After correction of this error,
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P-RACE and CPLOAS produce the same values for PLOAS for three test problems defined by Bohn for use with
P-RACE.
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Appendix I:
An Integral Formulation for Calculating
Probabilities of Strong Link/Weak Link Cutsets

M.P. Bohn
May 10, 1996

This appendix contains a previously unpublished report by M.P. Bohn on the quantification of the probability of
failure of temperature-dependent weak link/strong link systems.

I-1



date

g
[=]

from

subject

Sandia National Laboratories

Albuquerqgue, New Mexico 87185-0405
May 10, 1996

David D. Carlson, MS-0405 (12333)

Michael P. Bohn, MS-0405 12333y V%7 1 Boﬁu,

An Integral Formulation for Race Cutset Quantification

* Attached is a draft report entitled “An Integral Formulation for Calculating
Probabilities of Strong Link/Weak Link Cutsets (Including Uncertainty and

Correlation)” which presents equations based on single quadrature for the calculation
of race cutset probabilities including random uncertainty, systematic (modeling)
uncertainty and arbitrary correlation between the strong link failures.

A computer code (P-RACE) was written to implement this integral formulation, and a
Users” Manual is included in the report. The code P-RACE computes either cutset
point estimate probabilities or (by manually including modeling uncertainty in the
input) the mean failure probability for the cutset.

Finally, this formulation is being extended to compute the full distribution of race
cutset failure probability {(an example of which is included in the report). The full
distributions can be used as input to the TEMAC code in order to calculate the
probability distribution of an accident sequence which models loss of assured nuclear
detonation safety.

MPB/jg

Distribution:

MS-0405 Brad S. Altman, 6413
MS-0405 Allan S. Benjamin, 6413
MS-0405 Roger J. Breeding, 12333
MS-0405 Michael A. Dvorack, 12333
MS-0405 Martin K. Fuentes, 12333
MS-0405 Todd R. Jones, 12333
MS-0405 Kevin J. Maloney, 12333
MS-0405 Keri B. Sobolik, 12333
MS-0557 Thomas L. Paez, 2741

Exceptional Service in the National Interest

1-2



David D. Carlson, MS-0405 (12333) -2- May 10, 1996

MS-0747 Gregory D. Wyss, 6412
MS-0835 Vicente J. Romero, 1513
MS-0633 Paul Demmie, 12333
MS-1175 Martin P. Sherman, 9364

Copy to:
MS-0405 M. P. Bohn, 12333

I-3



AN INTEGRAL FORMULATION
FOR CALCULATING PROBABILITIES
OF STRONG LINK/WEAK LINK CUTSETS

(Including Uncertainty and Correlation)

by
Michael P. Bohn

May 1996



1.0 Introduction

Certain systems are designed to withstand external environment challenges (loads and
temperatures) using a strong link/weak link philosophy to prevent electrical current from being
inadvertently passed through the system (the undesired top event). In this design approach, the
system employs a number of strong links designed to have a very high threshold of failure (given
the external environment challenge) in conjunction with a weak link which is intended to
predictably and reliably fail under the external environment challenge. The weak link element is
an element of the system which -- if failed -- renders the undesired top event impossible. Thus, if
a fault tree of the system is prepared and the minimal cutsets are obtained, one will have (in a
propetrly designed system) several strong link failure events and a single weak link success event
in each cutset. (Of course, each cutset may also have failure events not related to the external
challenge; e.g., component failures due to human error or unavailabilities due to test and
maintenance activities.)

In the following, we will focus on failures resulting from an external thermal environment, and
thus assume that temperature-time histories are available for each strong link and the weak link.
Further, we assume that a characterization of the failure temperature probability distribution of
each strong link and weak link is available. These are shown schematically in Figure 1.

One direct approach which has been used in calculating the probability of such strong link/weak
link cutsets is Monte Carlo sampling. In this approach, the temperature-time history of each
strong link (and weak link) is combined with the corresponding failure temperature distribution
to derive a probability distribution on the time to failure for each element (as shown
schematically in Figure 2.) Then, assuming the failure events are independent, random samples
of time to failure for each of the strong links and the weak link are generated, and for each set of
samples, the question is asked (assuming two strong links and one weak link):

Is tSLl < tWL and tSL2 < tWL ?
After multiple sample sets have been generated, the probability of the cutset is estimated as

P(SL1*SL2* WL—) - Number of sets in affirmative

Total number of sample sets
This approach is quite valid, and (with care) can be extended to consider a wide range of
alternative underlying assumptions However, in direct application, the approach has a number

of disadvantages:

1) Systematic incorporation of uncertainty in both the time histories
- and the failure temperatures is awkward.
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2) Separate consideration of random (irreducible) uncertainty and
systematic (reducible) modeling uncertainty requires a dual
(inner/outer) Monte Carlo sampling process which is
computationally inefficient.

3) Sampling uncertainty is introduced, and must be considered in
evaluating the precision of the quantification.

4) Consideration of interdependencies between the failures of the
strong links and weak links is awkward, and requires the
generation of appropriately correlated sets of sample members for
each Monte Carlo realization. (This is computationally time
consuming).

5) Commonly-used approximations (such as assuming linearity in
generating time to failure distributions for each strong and weak
link) may introduce errors in the final results.

This white paper presents an alternative integral formulation for the calculation of the probability
of such strong link/weak link cutsets. This formulation allows explicit incorporation of
uncertainties in both the temperature-time histories of each element as well as uncertainties in the
failure temperatures for each element. Being an integral formulation, the calculation is direct,
and no sampling uncertainty is introduced. It also allows direct incorporation of arbitrary
correlation between the strong link failures, as well as allowing for explicit propagation of both
random and systematic uncertainties throughout the calculational process. (However, the weak
link failures are considered independent of the strong link failures in this formulation.) Finally, it
does away with the necessity of directly evaluating the time to failure probability distributions,
and instead, requires only that temperature-time histories be available for each element.

This white paper is divided into three parts. In the first part (Section 2.0), background is
provided on the different types of uncertainty (random vs. systematic) and the rationale/value of
keeping these uncertainties separate during the calculational process. The second part (Section
3) presents a derivation of the applicable integral formulations, first in the time domain and then
in the temperature domain. Applications of the integral formulation are presented in Section 3
illustrating the eficcts of including uncertainty in both the calculated temperature responses as
well as in the failure temperatures, and the effects of correlation between strong link failures.
Use of the integral formulations to develop mean point estimates of the race cutset failure
probabilities is described briefly in Section 4. Appendix A gives a Users Manual for P-RACE, a
FORTRAN 77 code which evaluates race cutset point estimate probabilities using the integral
formulation presented in this white paper.
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2.0 Uncertainty and Correlation Considerations.

2.1 Single Component Failure

Consider a single component whose failure probability is specified by a single failure
temperature distribution as shown in Figure 3. This model assumes that the component fails only
as a function of peak temperature reached. The distribution implies that a group of nominally
identical components (denoted Group 1) was thermally heated and, as the temperature was
increased, the number of failures was counted. The components failed at different temperatures
due to (essentially) random variations in tolerances, material properties, solder thicknesses,
bubbles, etc. In effect, these small random variations are not measurable and hence not
knowable. No matter how many units are tested, they will always fail over a range of
temperatures.

Given a single component from this group of nominally identical components, we cannot predict
with certainty at what peak temperature it will fail, but the distribution of failure temperature
derived from the testing of multiple components allows us to estimate the probability that it will
fail as a function of peak temperature.

Consider now another group of nominally identical components (Group 2) which are nominally
identical to the first group (i.¢., built to the same specifications). But, assume the second group
was built by a different manufacturer, or was built using a different heat (batch) of material (glue,
solder, etc.) such that, when this second group is tested as before, a (statistically significant)
different distribution is obtained as shown in Figure 4. We could, if desired, test samples of glue,
solder, etc. to understand the cause of the systematic shift in failure characteristics. If we were
able to characterize the systematic shift, then the only uncertainty remaining would be that due to
randomness (present for both groups.) However, in performing an evaluation of the probability
of failure of a given component, we usually do not have the luxury of such experimentation, and
usually have (at best) failure data on only a single batch of components. But it is still important
to reflect both the randomness and the systematic uncertainty in our assessment, as the latter
provides confidence bounds on our results. Often, limited data in conjunction with expert
judgment (based on unquantified but applicable experience) is used to estimate the systematic
uncertainty.

Mathematically, this can be done by characterizing the failure probability of the (nominally
identical) components by a family of failure probability distributions. This can be a discrete
family of curves, or a family of known distributional form with prescribed uncertainty on the
defining parameters of the distribution. For example, an often-used family of distributions is the
log-normal family defined over (0, ) as shown in Figure 5. Each member of the family is
characterized by a median and a random uncertainty B , (i.e., the standard deviation of the
logarithms of the random variate.) The systematic uncertainty is characterized by uncertainty on
the median parameter, as specified by B,. This simple form is useful when little is known
about the systematic component of total uncertainty.
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If the peak temperature reached by a component is known exactly, and if there is no systematic
uncertainty, then the probability of failure is read directly off the (single) failure temperature
distribution. It is, of course, a single (point estimate) value, say 0.3 as shown in Figure 6.

If the peak temperature reached by a component is known exactly, but there is significant
systematic uncertainty, then as described above, the failure temperature is characterized by a
family of distributions [as in Figure 7(a)] and there is uncertainty in the predicted failure
probability as shown in Figure 7 (b). Now we can make statements such as:

(1) Taking into account both random and systematic uncertainties,
the mean (expected value) of the probability of failure of a
component heated to T, is 0.3.

(2) With 90% confidence the probability of failure of this
component heated to a temperature T, is between 0.2 and 0.4.

(3) There is some specific temperature T, for which we are 95%
confident that less than 5% of components tested to Tp,, Will
fail.

Further, we can determine how much the confidence bounds on the failure probability would
decrease if we perform additional testing to reduce the systematic component of uncertainty.

Consider now the case where the peak temperature reached by the component is not known
exactly. (The peak temperature could be either measured or predicted by a computer code.) It
may also have both random and systematic components of uncertainty. The randomness is due
to random variations in gap sizes, tolerances, surface roughnesses, etc. If a computer code was
used to predict the peak temperature, then multiple computer runs would have to be made (while
randomly varying the model parameters) to generate the randomness in the predicted
temperatures. There may also be systematic uncertainty due to the model, method of solution,
approximate equations in the code, etc., which -- in principle -- could be reduced or eliminated
by use of more accurate models, better calibration to data, etc.

Thus, the peak temperature may also be characterized by a family of distributions to reflect both
random and systematic uncertainty. In this case, we again generate a distribution on the
probability of failure given the uncertainty distributions on T,,,, and on Tgy. In general, the
failure probability distribution can be constructed by randomly sampling the systematic
uncertainty parameters of the temperature response and failure temperature distributions so as to
obtain a sample realization of one T,,, distribution and one Tj,; distribution, and then evaluating
the (single) failure probability value obtained by convolving these two sample distributions using
the well-known stress-strength interference equation:

Ppir= | Fa (DE(T)IT
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where Fg,y(T) is the CDF of the distribution of failure temperature and f(T) is the pdf of T ..
After multiple (random) realizations of Pg,; are obtained, the distribution on Pg,; may be plotted,
the associated statistics computed, and confidence bounds obtained.

2.2 Multiple Component Fajlures

When dealing with the simultaneous failure of multiple components, the possibility of correlation
(from several sources) must be considered. For example, if a computer code is used to predict
the temperature-time responses, and if multiple computer runs are made (systematically varying
the random model parameters) so as to characterize the random uncertainty in the output
temperature-time histories of the strong and weak links, then it is likely that the computed
temperature responses are highly correlated. That is, if (due to a specific set of random
variations in input parameters) one strong link temperature-time history is higher than average,
then the temperature-time history of another strong link is also somewhat higher than average.
The fact that this pair of temperature-time histories “shifts together” can have a profound impact
on the quantification of a cutset involving the simultaneous failure of these two strong links. The
result of neglecting this correlation is always non-conservative.

In a similar fashion, there can be correlation between the failure temperatures of two or more
components. This can, in principle, only be determined by pair-wise testing of multiple
components. However, when the randomness in failure temperature is due to small random
variations in gaps, dimensions, etc., the correlation between the failure temperatures of two
components would be expected to be small. However, if the failure modes of the two
components are due to failure of a common subcomponent (say, melting of a similar type of
electrical insulation) present in both components, then the failure temperatures of the two
components would be expected to be highly correlated.

Given that we know (or have estimated) correlations between the temperature-time histories of
the multiple components and between their failure temperatures, we can compute the joint
probability of failure of the components (at any instant of time) by constructing a multivariate
probability density function. This is not, in general, very easy for arbitrary distributions on the
failure temperatures and computed temperature responses. However, in the case where the
random uncertainties in the computed temperature histories and in the failure temperatures are
either normal or log normal, explicit representations are available. For example, if normal
distributions are assumed, then we can define

Zl :Tl' Fl'
ZZ=T1 'Fz.

where T; are the computed temperatures of the components (with associated random uncertainties
characterized by o ;) and F, are the failure temperatures for each of the components (with
associated random uncertainties characterized by o ;) Since T; and F; are assumed to be
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normal random variables, then the Z; are also normal random variables with known means and
standard deviations. In this case, the probability of the joint failure of the components at any
instant of time can be expressed as

P[Z,>0,2,>0, ..., Z,> 0] = [.. ”fZ(Zl, Zor, Z,) 42, dZ,.... dZ, (1)

where

mexp{o.xi—ﬁ,)’(z,)”(i—ﬁ,)} @

In this expression, Z and fi, are vectors given by

Z= (Z,Zy ... Z)
Bo=(n B B

and X, is the correlation matrix whose elements are given by
Z = COV(T;,T) + COV(F,F) - COV(T,F)) - COV(T;, Fy)
and COV denotes the covariance between two random variables, i.€.,

COV(xy) = E {[x-E@Ily-E(y)}}

The standardized measure of correlation between two random variables is the coefficient of
correlation defined by

COV(x,y)
Pxy B
G0,
where G ,, G ,, are the corresponding standard deviations of x and y. The correlation
coefficient between any two random variables can be estimated from pairwise sample data by
well-known equations analogous to the equations used for estimating sample standard deviations.

In general, the evaluation of the multivariate joint probability of simultaneous failure of a group
of components using Equations 1 and 2 is non-trivial due to the complex integrand and the need
to evaluate n integrals for consideration of n failures. For the case of two components, however,
standard IMSL (or other) subroutines are available.

To illustrate the importance of correlation in evaluating the strong link/weak link cutsets with
multiple strong links, consider the joint failure probability of two strong links (SL1 and SL.2) ata



particular instant in time. Assume that (at this instant of time) the distributions of temperature
response and failure temperature of the strong links are normal, and given by

T, =N (750°, 40°)
T, =N (800°, 40%)
F; =N (900°, 30°)
F, =N (900°, 30°
where N(p,o ) denotes a normal distribution with mean p and standard deviation o .

Then the Z ; ='T; — F; variables are also normal, with distributions given by

Z, =N (-150°, 50°
Z,=N (- 100°, 50°)

In this case, Equation (1) reduces to

P[Z2,>0,2,>0]= ”f, (21, Z,)dZ,dZ,

where
1
ffZ,2y) = —————*
o 216 ,6,4/1-p°
2 2
* exp -1 . (Zl_ulj _2P(Zl_P~1)(Zz_Hz)_l_(zz_MJ 3)
2(1-p7) o, 00, c,

or, for simplicity,
P[2,>0,Z,>0]=1-B[n,14,,6,,6,,p]

where B ] in the standard Binormal probability distribution. Figure 8 shows the probability of
simultaneous failure of both strong links (at this instant of time) as a function of the correlation
coefficient.
For p =0, the-two failure events are independent, and the joint failure probability is

P[Z,>0,Z,> 0] =P[Z, > 0}*P[Z, > 0]

= (1.35¢-3) (2.28e-2)

=3.07e-5
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where the numerical values for the independent failure probabilities are taken directly from the
known normal probability distributions for the Z,, that is,

Pz, >0]=1-@ 0-CIO _ 35,
‘ 50

Plz,>0]=1-@ 0=CLO _ ;08,5
’ 50

and @[ ]is the N(0,1) standard normal probability distribution.

By contrast, when the failure events are fully correlated (p = 1), then the probability of their
joint failure is

P[Z, >0, Z,> 0] = Min{P[Z, > 0], P[Z,> 0]}
=1.35e-3

which is a factor of 45 greater than the independent failure value. In effect, when the two failure
events are fully correlated, the probability of both elements failing simultaneously reduces to the
probability of failure of the strongest element.

Hence it can be seen that correlation can make a very significant difference when evaluating the
joint probability of two or more failure events. Thus it is, in general, non-conservative to neglect
correlation between two or more strong links when computing the probability of all strong links
failing before a weak link fails in a race cutset. In the following section, it will be shown how
correlation between strong link failures can be included as part of the integral formulations.

3.0 Integral Race Cutset Probability Formulations

In the following two sections, integral formulations for computing the (point estimate)
probability that all strong links fail before a weak link fails are derived. The first formulation is
in the time domain, and is the direct counterpart to the Monte Carlo approach described in
Section 1.0. As such, it suffers from many of the same limitations, although no sampling
uncertainty is introduced. However, it conceptually leads to a formulation in the temperature
domain, which is the subject of main interest in this white paper.

3.1. Integral Formulation in the Time Domain

With no loss in generality, we can consider two strong links (SL1 and SL2) and one weak link
(WL1). We assume that, using temperature-time histories and probability distributions on the
failure temperatures for each of the strong and weak links, we have previously derived (as
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discussed earlier in Section 1.0) probability distributions for the times to failure of each link,
denoted tg 1, tg; » and tyy,. We wish to evaluate

P(SL1*SL2* WLI) = P(tsy ;< tyys and t ;1< typ ;)
. This can equivalently be expressed as

“What is the probability that WL1 has failed in a certain increment of time
{to,—At/2, t, + At/ 2), and that the strong links have already failed?”

Thus we ask for the joint probability of three events:
Event A =ty <t,
Event B = tg,<t,
EventC=t, - At/2<t,, <t,+At/2

Hence in the time increment At,
P(SL1*SL2*WL1) = Pty <t Y*P(ty, <t )*P(t, - At/2 <ty <t ,+At/2)
= CDF, (t,)* CDF,,(t,)* PDF,, (t,)At
where
CDFg; ; = Cumulative probability distribution function for tgy ,
CDFgj, = Cumulative probability distribution function for tg; ,
PDFy; = Probability density function for ty;

Note that both events A and B are dependent on Event C (through the time t;). In multiplying
these three probabilities together, we are applying the chain rule for conditional probabilities,

P(A*B*C) = P(A/BCY*P(B/C)*P(C)
except that, in this case, we are (initially) assuming that tg; ; and tg; » are independent, so that
P(A/BC) =P(A/C)
Finally, we note that failure of WL1 in any given time increment A t implies that WL1 does not
fail in any other time increment A t. Hence, these joint failurés are mutually exclusive and thus

we can sum them to obtain the probability that tg < ty;; and tg 5 <ty inat least one time
increment A t. Thus we have
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P(SL1*SL2*WL1) = [ CDFy, (t,XCDFy,, (t,)PDF,,, (1, )dt, @

which is the desired integral formulation in the time domain.

To illustrate this in application, consider the uniform distributions of failure times (for two strong
links and one weak link) given by

tSLl = U[16, 30]
tgr, = U[14, 27]
twe = U8, 20]

where Ula,b] denotes a uniform distribution between the limits a and b. These distributions are
shown in Figure 9 (a). The corresponding cumulative distribution functions for the two strong
links [as required for the integrand of Equation (4)] are shown in Figure 9 (b). Using Equation (4),

P(SLI*SL2*WLI) = Plter< twr1, tsro< twr)

t-16 t-14
—j(———)( = (12>dt

=0.0171

As verification, Monte Carlo sampling (with 10° samples) gave the results 0.0170, 0.0172 and
0.0173 for three different initial seeds in the random sampling process.

Note that Equation 4 can be used with any distributional forms for tg; ;, tg;» and tyy;, and that
different distributions can be used for each. In general, in course, numerical integration would be
" used to evaluate the integral. However, if only one strong link is of interest, and if the
distributions are of one of a few well-known types, then the integral can be obtained from the
corresponding tabulated distributions. For example, assume tg;; and ty,; ; are both normal
distributions,

tgr; = N(23sec, 2.333 sec)
twr; = N(14 sec, 2.0 sec)

[Note that these are normal distributions approximating the uniform distributions of SL1 and
WL1 in Figure 9 (a), where the mean is taken as the midpoint of the uniform distributions and

the two end points are assumed to be +/- 6 points on the nermal distributions.] Then, since
the difference of two normally distributed random variables is also normally distributed,

P(ts < twr1) = Ptsp1 — twr1 <0)
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Probability Density
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_ q:{ 0-(23-14) ]
V2333 +20°

=1- ©[2.93]
=1.73 e-3
where again @[ ]is the N [0,1] standard Normal probability distribution function. This

probability is, of course, significantly smaller than derived from the corresponding uniform
distribution example, since the uncertainty in failure times is significantly smaller.

3.1.2. Extensions

Clearly, the incorporation of additional strong links in the formulation is straightforward.
Assuming that the strong link failure times are independent, one has

P(SL1*SL2*-—--*SLn* WL1) = | CDFg, (to) -+ CDFyy, (t) PPy (&) dig (5)

If one wishes to consider correlation between the strong link failure times, one would have to
construct a multivariate cumulative probability function for the n strong links, and Equation (5)
becomes

P(SL1*SL2* .. * SLn *WL1)= | CDF(tgy ;< torntspa< to) PDFys (to) dt

However, construction of such a multivariate CDF in the time domain is non-trivial. A more
straightforward way of doing this in the temperature domain is described in the next section.

3.2. Integral Formulation in the Temperature Domain

As before, we can consider (with no loss of generality) two strong links (SL1 and SL2) and one
weak link (WL1). We also assume that we know the temperature-time histories for each of these
links: '

Tspi(®) Tsr2(t) TwLi(®)

Again, we pose the problem in terms of the question:
“What is the probability that WL1 fails when it experiences a temperature in the

increment (T ,— AT /2, T ;+A T/2), and that the strong links SL1 and SL2 have
already failed?”
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This probability is given by

Pop i[Tsei(to)]*Psral T ot * Fwii [Twri(te)] A Twrato)

where, again, we initially assume independence between the strong link failures. In this
expression, '

Pg1.1[Ts1.1] = Probability that SL.1 has failed at or below temperature Tg; ; (t,)-
Pg;,5[Ts12] = Probability that SL2 has failed at or below temperature Tg;, (t,).

fwri[Twr1] AT w1 = Probability that WL1 fails in the temperature increment

AT AT,
{Twri(t) — — %, Twui(te) + 2W“ }

Note that Pg; ;( ) and Pg; , () are cumulative probability distribution functions , and fy,() is a
probability density function, and all three are conditional on time.

Multiplying and dividing by Af, and again recognizing the mutual exclusivity of failures in
different time increments, we obtain

P[SL1*SL2* WL1] = P(t5; ) <twy, and tgr,<tw,)
T . dT,
= I Popi[Tspi(0] * PsalTsia(0] * fwws [Twei(®] —FV;L'L dt (6
This is the desired expression for failure of the strong link-weak link race in terms of failure

temperature distributions. This can be seen by writing explicit expressions for the terms in the
integrand. For example,

Pspi[TsLi(®)] = Prob [Ty (> Tgs11]
= "ji CDF (Tg,s.)PDF [T g1()]d Ty,
where ’
Tgsp1 =random failure temperature of SL1
CDF(Tg 1) = cumulative probability distribution function for Ty 51
Tgr1(t) = random temperature of SL1 at time t

PDF[Tg; (t)] = probability density function of the
(calculated) temperature of SL1.
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It can be seen that P ;[ ] is nothing more than the probability that SL1 has failed before time t,
but it is expressed in terms of the well-known stress-strength interference equation which
involves only the (data-based) failure temperature distribution for SL1 and the uncertainty
distribution for the (computer code predicted) temperature of SL1 at time t. These two required
input distributions are shown schematically in Figure 10 (a). Similar expressions can be written
for Pg; 5 [Tp,(t)] as shown schematically in Figure 10 (b). The density function fyy(t) can be
computed as

a ©
fwri(®) = ——— ICDFWLI(TF,WLl) PDF[Ty,, ()] dT
0Ty
The same pair of input distributions is required for WL1, as shown in Figure 10 (c).
Note that these expressions are written in terms of arbitrary probability distribution functions,
and, in fact, all six required input distributions may have different forms. However, when the
input distributions are either normal or log normal distributions, then the integrand of Equation

(6) can be rapidly and efficiently calculated using the tabulated N(0,1) standard normal
probability distribution. For example, if all input distributions are normal, i.e.,

Tsei =N[ Ty, (©), 6 1501
Tes1 = N[ fp,su (), 6 511 ]
Ts, =N[ T rs2 (0 O 1512 ]
Trsi2 =N[ fp,m ®, o ks ]
Twu =N[ f‘WLl ®, o twL1 ]

TrwLr = N[ fp,wu ®), o pwit ]

then, utilizing the fact that the sum or difference of two normal random variables is also a normal
random variable, we can write the four terms in the integrand of Equation (6) as

Py, () = Prob [Tgy,; > Trgpi]

=Prob [Trgr;~ Ts1 <0]

@ Ty 511 — 7I;su(t)

2 2
VO rsn T O rsu
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Similarly,

_ fF,SLZ - 7AWSLz(l‘)
Pg() = @ \/ = =
VO Fsz2 T O 152

~ R )
— T _T
fwu('i) = L exp [ ZF JLL ZT,WLI]
O yuV2mn Ao e O T,WLI]

dlyy _ d
—2L = —[T,,(t
d ¢ dt [ WLl( )]
In the above @[ ] is again the standard N[0,1] normal probability distribution. Analogous
equations can be written for log normal input distributions.

Numerical integration is used to evaluate the point estimate probability of a race cutset using
Equation (6) with the integrand evaluated at each integration point using the above four
equations. The temperature-time histories for each of the components may be input either as
analytic functions or numerical data. The upper limit of integration for Equation (6) is chosen
sufficiently large that the integral converges.

A computer code P-RACE was written to evaluate Equation (6) for either normal or log normal
input probability distributions. As described above, input consists of the two defining parameters
for each of the input distributions, and the temperature-time histories for the strong and weak
links (which may be either analytic or numerical data). Up to eight strong links can be
considered in any cutset. The P-RACE input and output are described in detail in Appendix A.

3.2.1. Illustrative Examples
(a) Example: One Strong Linl_c and One Weak Link

Consider the case of one strong link (SL1) and one weak link (WL1). Assume that the
temperature-time histories were computed to be

T SLl(t) = 600 t
Ty (D =700t

and that these are median temperature-time histories. Further, assume that for any time t, the

uncertainty distributions of the computed temperature-time histories are log normal, and
characterized by log standard deviations of
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B T,SLL = 0.3
B T,WL1 = 0.3

(Note that the log standard deviation is one of the two defining parameters of a log normal
distribution, and is nearly equal to the C.0.V. = ¢ / p.. Thus specifying a log standard deviation
of 0.3 is equivalent to saying that the standard deviation in the computed response is about 0.3
times the average.)

Further, assume that the SL1 and WI.1 failure temperature distributions are also log normal, and
characterized by

Tps =LN (909)01:, Brsu =0.4)
TewL1 =LNGS0F, Bg wr; =0.4)

where LN (m, B ) denotes a log normal distribution with median m and log standard deviation
B . These input distributions are shown in Figure 11.

Then, inputting these parameters into P-RACE as described in Appendix A, one obtains the point
estimate race cutset probability

P(SL1*WL1) =P(tsy; <twy,)
=0.0601
This can be verified by hand calculation, due to the linearity of the temperature-time histories

and the fact that the uncertainties are assumed to be log normal for both the temperature
responses and the failure temperatures. To see this, note that

In 607 / 900
P[Tg ;> Tl = q)[___]
05
In70¢ /350
P[Ty.> Trwi] = q{“———o S ]

which imply that the distributions of times to failure for these links are also both log normal, and
given by

tSLl = LN[ISS, 05]

twr = LN[5s,0.5]
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Then

Pltes i <tpwr] =Pllntg; — Inty,; <0]

_ cD{ln(S/lS)}
0.707

= (0.0601

which is the same as computed by P-RACE using the more general formulation of Equation 6.
(b)  Example: Two Strong Links and One Weak Link
Consider a race cutset with two identical strong links (seeing the same temperature time
histories) and one weak link, with the strong and weak links having the same properties as in
Example (a) above, Thus the input to P~-RACE is

TSLI =LN (600t, 03)

TSLZ =LN (G0.0t, 0.3)

Twr =LN (70.0t, 0.3)
for the temperature-time histories and

TF,SL] =LN (9OOOF, 0.4)

Tes12 = LN (900°F, 0.4)

TF,WL =LN (3500F, 0.4)
for the failure temperature distributions.
Assuming the strong links are independent, P-RACE gives

P (SL1*SL2*/WL) = 0.0158

This cannot be hand checked directly. However, a Monte Carlo evaluation of this (independent)
case gives the results 0.0158, 0.0160, and 0.0161 for 10° trials and three initial seeds.

Similarly, assuming that the strong links temperature responses are fully correlated and that the
failure temperatures are also fully correlated, P-RACE gives

P (SL1*SL2*/WL) = 0.0601

which the same result as in Example (a) as it should be.
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The difference between the fully independent case and the fully dependent case varies with the
relative capacities of the strong links and the weak link (and, of course, the prescribed
uncertainties). For example, if the median failure temperature of the strong links is varied while
all other parameters are held fixed, the variation of the race cutset probability (independent
versus fully dependent) is as shown in Figure 12. As can be seen, the difference between the
independent and dependent cases tends to increase as the capacity of the strong links increases
(and hence as the race cutset probability decreases). The ratio between those two probabilities
will, in general, increase as shown on this figure. For the parameters chosen, the ratio increases
up to a factor of seven. Other parameters could increase the difference further.

By contrast, if one strong link capacity is held fixed at a median value of 900°F, and the capacity of
the second strong link is varied, the variation of race cutset probability is as shown in Figure 13.
When the capacity of SL1 is less than SL2, the fully dependent cutset probability is dominated by
(the strongest) SL2, and the cutset probability is constant. When the capacity of SL1 exceeds
900°F, then SL1 dominates, and the cutset probabilities in both the independent and fully
dependent cases decrease. The ratio between the two thus increases when the capacity of SL1 in
less than SL2, and decreases when the capacity of SL1 increases past the capacity of SL2, as
shown in Figure 13. Thus it can be seen that, in general, the greatest difference between the
independent and fully dependent cases occurs when the two strong links have the same median
capacities (and, of course, the same temperature-time histories). More generally, it can be seen
that the greatest difference between the independent and fully dependent cases occurs when two (or
more) strong links probability of failure versus time relations are the same. When either the
capacities or the temperature-time histories vary, the net effect is to reduce the difference between
the independent and fully dependent cases.

Finally, it is noted that P-RACE allows for input of arbitrary correlation between the strong link
time histories (through input parameter p,) and between the strong link failure temperatures
(through input parameter p , ). Both of these input parameters can have any value between 0 and
1. Thus if actual response or capacity correlations are known, they can be input directly. Of

course, for intermediate values of correlation, the cutset probability will be between the
independent and fully dependent cases discussed above.

3.2.2. Extensions

As can be seen from the derivation, any number of additional strong links may be included by
adding additional cumulative distribution functions to the integrand of Equation (6). As
currently configured, P-RACE allows up to eight strong links in any one cutset.

Correlation between strong link failures can also be considered in this formulation. As before, it
is only necessary to replace the independent strong link terms in the integrand of Equation (6) by

the joint probability function

CDF(T g1 <Tesii> == Tsin < Trsin)
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and this is exactly the same function given by Equation (1) earlier in the report. The initial
version of P-RACE allows only the first two strong links to be correlated.

4.0 Systematic Uncertainty, Race Cutset Failure Probability Distributions and Mean Point
Estimates.

As described in Section 2.0, the uncertainty in random variables can be separated into
components associated with random (irreducible) uncertainty and systematic (or reducible)
uncertainty, and the latter is associated with our “lack of knowledge” - which could be reduced
by additional testing, analyses, etc. The two integral formulations described in this report
calculate the point estimate probability of the occurrence of the race cutset considering the
random (irreducible) component of uncertainty in all the input random variables. Thus, for each
race cutset, a single (point estimate) value of probability is calculated by the P-RACE code.

In general, however, when both random and systematic uncertainties are included, one can
calculate the distribution of the race cutset, percentiles on the distribution, and determine
confidence bounds on the calculated race cutset probabilities. (For example, when the
distribution of a race cutset occurrence probability is calculated, one can make such statements as
“With 95% confidence, we are sure that the race cutset occurrence probability is less than 0.01”,
etc.) To compute such distributions, a Monte Carlo process can be used (at each step randomly
sampling the systematic uncertainties for both the computed temperature responses and the
failure temperatures and then evaluating the race cutset occurrence probability for each Monte
Carlo trial). From the accumulated Monte Carlo samples of race cutset probability, the
distribution and its associated statistics can be derived.

The P-RACE code described in this report does not calculate such uncertainty distributions
(although work is in progress to accomplish this). However, P-RACE can be used to calculate
the (point estimate) mean of the failure probability distribution - without computing the fuil
distribution. That is, it can be shown that the true mean cutset value (for normal or log normal
random failure events) can be obtained without constructing the full distribution by using the
total uncertainty in evaluating the race cutset occurrence probability, where the total uncertainty
is defined as

(Gwral)2 = (Cr) '+ (cu)2

and o ,, 6 , are the corresponding random and systematic components of uncertainty. Thus, to
compute the mean point estimate, it is only necessary for the user to input total uncertainty
values (in place of the random uncertainties) for each of the input distributions in the P-RACE
input.

To illustrate this, consider the two strong link example in Section 3.0. The input uncertainty
distributions were defined as
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TSLI =LN (1.0, 0.3)

TSL2 =LN (1.0, 0.3)

TWL =LN (1.0, 0.3)

TesL1 = LN (900°F, 0.4)

Tgsr2 = LN (900°F, 0.4)

TF,WL =LN (3500F, 0.4)
Let us assume that there is known systematic uncertainty in the median parameters of these
distributions, with this uncertainty (also assumed log normal) characterized by a log standard
deviation of 0.1 for both the computed temperature responses and for the failure temperatures.
To compute the mean point estimate (of the true failure probability distribution), we combine the
random and systematic uncertainties into the corresponding total uncertainties, and hence the
input distributions became

TsL; =LN (1.0, 0.316)

Tso =LN (1.0, 0.316)

Ty, =LN (1.0, 0.316)

TrsLi = LN (900°F, 0.412)

TF,SL2 =LN (9000F, 0.412)

TF,WL =LN (3500F, 0.412)

With these input values, P-RACE gives a mean point estimate failure probability of 0.0186 for
this race cutset. For comparison, manually performing a Monte Carlo analysis (varying the
median values of the six input distributions using the assumed systematic uncertainty
distributions) yields the distribution of cutset failure probability shown on Figure 14. The mean
of this distribution was 0.0188 (for the initial seed assumed and 5,000 trials). (The difference
between the two values is due only to sampling uncertainty in the Monte Carlo analysis.)

Thus it can be seen that the user can - if desired - use the P-RACE code as currently configured

to compute either point estimate failure probabilities (considering random uncertainties only) or
race cutset mean values (considering both random and systematic uncertainties). Development

of an extension of P-RACE to automatically compute the full distribution of failure probability

(which could be input to an accident sequence uncertainty quantification code such as TEMAC)
is in progress.
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5.0 Summary

The integral formulation presented in this white paper has several advantages over the Monte
Carlo formulation:

1. It allows direct and explicit incorporation of random uncertainties both in the
failure temperature distributions as well as the responses (i.e., in the code
predicted temperature-time histories.)

2. It does not require sampling, and does away with the need to consider sampling
uncertainty.
3. It does away with the need to separately derive and characterize the time to failure

distributions of the strong and weak links.

4, It can consider arbitrary correlation between the strong link failures (that is,
correlation between either the responses of two or more strong links or between
their failure temperature distributions.

5. It can still consider deterministic values for failure temperatures (if desired) with
no change in formalism.

6. It allows for arbitrary choice of distributions for Tg;, Twy, Tesp, Trwe and they
do not need to be of the same form.

The computer implementation of this formulation is (currently) limited to normal and log normal

input distributions, but is quite efficient. An extension to compute distributions of the race cutset
failure probabilities is under development.
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Appendix A

P-RACE USERS GUIDE
(Version 5/95)
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P-RACE Users Guide
(Version 5/95)

The code P-RACE computes the point estimate probability of a race cutset
involving several strong links and a single weak link of the form

P(SL1*SL2* ... */WL) = Prob( tsri < twL, tsL? < tyL,...)

that is, the probability that all the strong links (SLj) in the cutset fail
before the weak link (WL) fails. This probability is computed using an
integral formulation (Equation 6 of the accompanying report) and requires
as input the following information for each strong link and the weak link:

* A temperature-time history function (assumed to be
either a mean or median)

* An uncertainty distribution for the temperature-
time history

* An uncertainty distribution for the failure
temperature

One of several temperature-time functions (quadratic, power law,
exponential) can be selected by the user, with coefficients specified in
the input. (Each different link can have a different temperature-time
history function). An important limitation in this version is that all
temperature-time functions must be monotonically increasing. (This
limitation could be relaxed, if desired).

The input uncertainty distributions may be either normal or lognormal
probability distributions. (The formulation allows for arbitrary
distributions to be used and P-RACE could be modified to consider any
particular parametric or empirical form, but for most purposes, the normal
and lognormal forms will suffice.) Only the parameters of the
distributions need be input. An important limitation in this version of
P-RACE is that the distributional forms of the uncertainties for the
temperature response and the failure temperature for any particular link
must be the same. (That is, if strong link No. 1 has a normal distribution
for its failure temperature uncertainty, then it must also have a normal
distribution for its temperature response uncertainty distribution).
However, different links may have different uncertainty distributions.

Input is not free field, but all numerical input is in fields of 10.
* The input file must be named P-RACE.INP
* All integers must be right-justified

* Real numbers must have a decimal point somewhere in
the field
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The specific

lines of input (for each race cutset) are as described below:

Line 1 Title Information (Format 80Al)

Line 2 NSL,

where

NSL =

NDT =

tf =

Rho-r =

Rho-f =

NDT, tj, tg, Rho-r, Rho-f (Format 2I10, 4F10)

Integer number of gtrong links in cutset (note: one weak link
is always assumed, so total number of links in the cutset is
NSL + 1)

Integer number of numerical integration increments into which
the time interval of integration is divided. Typically,
NDT = 50 is more than adequate.

Initial time (lower limit) for the numerical integration.
Theoretically, the integration is from 0.0 to infinity., In
practice, any lower limit can be used as long as the
contribution to the integral for shorter times is negligible.
(A convergence check is included in the output as described
below). Provided all temperature-time history functions
specified by the user give positive temperatures for times >
0.0, tj = 0.0 may be used. (Real number > 0.0)

However, if one or more of the user specified temperature-time
history functions gives temperatures < 0.0 for times greater
than or equal to zero, then the user has two options:

(a) - Use only normal distributions for all links. Then
any tj greater than or equal to zero can be used.
This is because the normal distribution does not blow
up for temperatures £ 0.0 as does the lognormal
distribution.

(b) Choose any tj larger than the smallest time beyond
which all temperatures are > 0.0,

For any case where the user specifies a ty > 0.0, the user
must verify that tj selected has not omitted any significant
portion of the integral, as described below.

Final time (upper limit) for the numerical integration. This
can have any value, provided the user verifies that the value
is sufficiently large that the integral has converged. (Again,
a convergence check is included in the output as described
below). (Real, positive number and, of course, tf must be
greater than t)

Correlation coefficient between the temperature-time history
responses of the first two strong links input. (Real number
with 0.0 < pr £ 1.0) .

Correlation coefficient between the failure temperatures of
the first two strong links input. (Real number with
0.0<pr<1.0)
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Line(s) 3 THTYPE, A, B, ¢ (Format I10, 3F10)

where

THTYPE = Integer specifying type of temperature time history to be
used for each link.

THTYPE = 1 Temp(t) = A + B*t + C¥(t¥%2)
THTYPE = 2 Temp(t) = A + BX(t**(C)
THTYPE = 3 Temp(t) = A + B¥exp(C*t)

A,B,C = The (real number) coefficients in the selected temperature
time history function. The coefficients must be selected
such that the function is monotonically increasing.

As mentioned above, if a lognormal distribution is being used for any
of the strong links, its corresponding temperature-time history
function must give positive, non-zero temperatures for all times in
the range tj to tg.

Line 3 is repeated for each link, so a total of NSL + 1 of these lines
are required to specify the temperature-time history functions for all
the strong and weak links. THE INPUT FOR THE WEAK LINK MUST ALWAYS BE
LISTED FIRST!

Line(s) 4 RTYPE, My, Sig-r (Format 110, 2F10)

where

RTYPE = Type of uncertainty distribution specified for the input
temperature-time history response function. (Integer)

RTYPE = 2 Normal distribution
RTYPE = 3 Lognormal distribution

My = Always input as 1.0. This is to remind the user that the
uncertainty on the temperature-time history is a
multiplicative value, and is input as such below.

Sig-r = Multiplicative dispersion parameter of the distribution
(Real, positive number)

Sig-r denotes the coefficient of variation, (COV = oy/ur
where py is the mean and oy the standard deviation) if a
normal distribution has been specified (RTYPE = 2), or

Sig-r denotes the standard deviation of the logarithms (By)
if a lognormal distribution has been specified (RTYPE = 3)

Line 4 is repeated for each link, so a total of NSL + 1 of these lines
are required to specify the temperature-time history uncertainty
distributions for all the strong and weak links. THE INPUT FOR THE
WEAK LINK MUST ALWAYS BE LISTED FIRST! THE ORDER IN WHICH THE STRONG
LINK UNCERTAINTY DISTRIBUTIONS ARE INPUT MUST BE THE SAME AS WAS USED
IN THE LINE 3 INPUT!
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Line(s) 5 FTYPE, Mg, Sig-f (Format I10, 2F10)

where

FTYPE = Type of uncertainty distribution specified for the failure
temperature. (Integer)

FTYPE = 2 Normal distribution
FIYPE = 3 Lognormal distribution

Mg = The central value parameter of the distribution
(Real, positive number)

Mf denotes the the mean value pf (in units of temperature) if
a normal distribution has been specified (RTYPE = 2), or

Mg denotes the the median value mg (in units of temperature)
if a lognormal distribution has been specified (RTYPE = 3)

Sig-f = The dispersion parameter of the distribution
(Real, positive number)

Sig-f denotes the standard deviation of (in units of
temperature) if a normal distribution has been specified
(FTYPE = 2), or

Sig-r denotes the standard deviation of the logarithms Bf (a
dimensionless number) if a lognormal distribution has been
- specified (FTYPE = 3)

Line 5 is repeated for each link, so a total of NSL + 1 of these lines
are required to specify the failure temperature uncertainty
distributions for all the strong and weak links. THE INPUT FOR THE
WEAK LINK MUST ALWAYS BE LISTED FIRST! THE ORDER IN WHICH THE STRONG
LINK UNCERTAINTY DISTRIBUTIONS ARE INPUT MUST BE THE SAME AS WAS USED
IN THE LINE 3 AND LINE 4 INPUT!

NOTES ON INPUT

(a)

(b)

(¢)

Each block of data (Lines 1 through 5) applies to a single race
cutset, but multiple blocks of data may be input. Do not separate the
blocks‘of data with any blank lines.

At the end of the last block of data input, add a line of blanks
(columns 1 to 30) to signify the end of the input.

Remember: When normal uncertainty distributions are selected for one
or more of the links, the temperature-time history response
uncertainty distribution is specified (in Lines 4) in terms of the
(dimensionless) COV, while the failure temperature uncertainty
distribution is specified (in Lines 5) in terms of the actual standard
deviation (with dimensions of temperature)

(By contrast, when lognormal distributions are selected, both response

and failure temperature distributions are specified in terms of the
dimensionless log standard deviation.)
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(d) As described above, when correlation is specified between either the
responses and/or the failure temperatures, the correlation is applied
to only the first two strong link components listed in the input (in
this version of P-RACE). Usually, the user can tell from the time
histories and the capacity distributions which are the critical (i.e.,
the strongest) strong links which should be correlated (if there is a
basis for including correlation). However, the user can always
interchange the order in which the strong links are input to determine
which pair of strong links maximizes the cutset probability, given the
specified correlation.

Note that when correlation is included, the run time is substantially
increased, due to the additional integration which must be performed.
However, the run time is not increased if either py = pf = 0.0 (the
uncorrelated case) or py = pf = 1.0 (the fully correlated case).

Example No. 1: Input and Output

Figure A-1 illustrates the input file P-RACE.INP for the two example
problems given in Section 3.0 of the main report. (The line numbers in
parentheses were added to this figure to relate to the input descriptions
given above, and are not part of the input file.)

In the first block of input, the data for a race cutset
involving one strong link and one weak link is input. Line 1
gives the alphanumeric title information. Line 2 specifies
NSL = 1 (one strong link), NDT = 50 (fifty integration
intervals) and integration from tj = 1.0 sec to tf = 80.0
sec. Finally, on Line 2, zero correlation is specified

(py = 0.0 and pf = 0.0).

The first of Lines 3 specifies that the temperature-time
history for the weak link is quadratic (THTYPE = 1) with
coefficients A = 0.0, B = 70.0 and C = 0.0. That is,

Ty1(t) = 70*t. The second of Lines 3 specifies that the
temperature-time history for the strong link is quadratic
(THTYPE = 1) with coefficients A = 0.0, B = 60.0 and C = 0.0.
That is, Tg1(t) = 60*t, (Note that the weak link input is
always first in the list.)

The first of Lines 4 specifies that the temperature response
uncertainty for the weak link is log normal (RTYPE = 3) with
median of 1.0 (this is always input as 1.0 !) and a log
standard deviation of 0.3, while the second of Lines 4
specifies that the temperature response uncertainty for the
strong link is also log normal (RTYPE = 3) with the same log
standard deviation (0.3). (In general, of course, neither
the type nor the uncertainty parameter need be the same.)

The first of Lines 5 specifies that the failure temperature
uncertainty for the weak link is log normal (RTYPE = 3) with
median of 350°F and a log standard deviatien of 0.4, while
the second of Lines 4 specifies that the failure temperature
for the strong link is also log normal (RTYPE = 3) with a
median of 900CF and the same log standard deviation (0.4).
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Columns
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***One Strong Link Example Problem (Sect. 3.0 of Main Report)#¥%

1
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3
3
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3

***Two Strong Link Example
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900
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900.
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[eNeNoNoNoNoNeNoNe)

.0
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1.0 80.0 0.0 0.0
70.0 0.0

60.0 0.0

0.30
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0.40

Problem (Sect. 3.0 of Main Report)***
1.0 80.0 0.0 0.0
70.0 0.0

60.0 0.0

60.0 0.0

0.30
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0.30

0.40

0.40

0.40

Figure A-1 Input File P-RACE.INP for Example No. 1
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This completes the input for the first race cutset and P-RACE could be
executed with this input alone (with a line of blanks added to signify the
end of the input.) However, for illustrative purposes, the input for a
second race cutset has been added so that P-RACE will compute the race
cutset probabilities for both in one execution. (There is no limit to the
number of race cutset input datasets which may be input at one time.)

In the second block of input, the data for a race cutset
involving two strong links and one weak link is input. Line
1 gives the alphanumeric title information. Line 2 specifies
NSL = 2 (two strong links), NDT = 50 (fifty integration
intervals) and integration from t{ = 1.0 sec to tgf = 80.0
sec. Finally, on Line 2, zero correlation is specified

(pr = 0.0 and pf = 0.0).

The first of Lines 3 specifies that the temperature-time
history for the weak link is quadratic (THTYPE = 1) with
coefficients A = 0.0, B = 70.0 and C = 0.0. That is,

Ty1(t) = 70*%t. The next two (of Lines 3) specify that the
temperature-time histories for the two strong links are
quadratic (THTYPE = 1) with coefficients A = 0.0, B = 60.0
and C = 0.0. That is, Tg1(t) = 60*t for both strong links.
(In general, of course, they need not be the same.)

The first of Lines 4 specifies that the temperature response
uncertainty for the weak link is log normal (RTYPE = 3) with
median of 1.0 and a log standard deviation of 0.3, while the
next two (of Lines 4) specify that the temperature response
uncertainty for the strong links are also log normal

(RTYPE = 3) with the same log standard deviation (0.3). (In
general, of course, neither the type nor the uncertainty
parameter need be the same.)

The first of Lines 5 specifies that the failure temperature
uncertainty for the weak link is log normal (RTYPE = 3) with
median of 350°F and a log standard deviation of 0.4, while
the second two (of Lines 5) specify that the failure
temperature for both strong links is also log normal

(RTYPE = 3) with a median of 900°F and the same log standard
deviation (0.4).

This completes the input for the two race cutsets. One additional line of
blanks is added to signify the end of the input file.

The results (always output in file P-RACE.QUT) are shown in Figure A-2. The
first block of output is a header which identifies the P-RACE output (and

the code version date which was executed).

The next nine lines essentially echo the input for the first race cutset
dataset that was input. The input variables are identified by name.

The next block is denoted "Convergence Check" and forms the basis for
assuring that the selected values of ti and tf were adequate to capture the
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Feedrrt ko Sk dok kst ok
ks ekt k ook P-RACE Fkdkhddkdobktkk
Sk ek ke (2-20-96) = Fdkkdkdsdkiokksik
B L LT BY Fkk skt
Fhddkidekddddekkdk M. P, BOHN  dddsbsbbdkdddidkdkd
Sk sk ek kotobk Fkdkdkkk gk hkd Rk kokk

Skttt bbb et dnabbbat s s sk e sk kbbb ok ko ok

***0One Strong Link Example Problem (Sect. 3.0 of Main Report)¥*x

No. SLs 1 No. DTs = 50 t(initial) = 1.0 t(final) = 80.0

RHOr = 0.0 RHOf = 0.0

T/H No. 1 Quadratic Egn A = 0.000E-01 B = 7.000E+01 € = 0.000E-01

T/H No. 2 Quadratic Eqn A = 0.000E-01 B = 6.000E+01 C = 0.000E-01
Temp Dist No 1 Log Normal Dist Median-r = 1.00 Beta-r = 0.300
Temp Dist No 2 Log Normal Dist Median-r = 1.00 Beta-r = 0.300
Fail Dist No 1 Log Normal Dist Median-f = 350.00 Beta-f = 0.400
Fail Dist No 2 Log Normal Dist Median-f = 900.00 Beta-f = 0.400

Convergence Check

Time T-wl Cdf-SLS Pdf-wl d(Twl)/dt Del(Pf) Pf
1.790E+00 1.253E+02 1.073E-05 7.717E-04 7.000E+01 9.158E-07 9.158E-07
7.921E+01 5.545E+03 9.996E-01 3.378E-11 7.000E+01 3.735E-09 6.013E-02

P(RACE) = 6.01E-02

**%*Two Strong Link Example Problem (Sect. 3.0 of Main Report)*¥*
No. SLs 2 No. DTs = 50 t(initial) = 1.0 t(final) = 80.0
RHOr = 0.0 RHOf = 0.0

T/H No. 1 Quadratic Egqn A = 0.000E-01 B
T/H No. 2 Quadratic Eqn A = 0.000E-01 B =
T/H No. 3 Quadratic Eqn A = 0.000E-01 B
Temp Dist No Log Normal Dist Median-r =
Temp Dist No Log Normal Dist Median-r = .00 Beta-r = 0.300
Temp Dist No Log Normal Dist Median-r = .00 Beta-r = 0.300
Fail Dist No Log Normal Dist Median-f = 350.00 Beta-f = 0.400
Fail Dist No Log Normal Dist Median-f = 900.00 Beta-f = 0.400
Fail Dist No Log Normal Dist Median-f = 900.00 Beta-f = 0.400

.000E+01 C = 0.000E-01
.000E+01 C = 0.000E-01
.000E+01 C = 0.000E-01
.00 Beta-r = 0.300

H R oo

WNE=E W

Convergence Check

Time T-wl Cdf-SLS Pdf-wl d(Twl)/dt Del(Pf) Pf
1.790E+00 1.253E+02 1.151E-10 7.717E-04 7.000E+01 9.825E-12 9.825E-12
7.921E+01 5.545E+03 9,991E-01 3.378E-11 7.000E+01 3.733E-09 1.580E-02

P(RACE) = 1.58E-02

Figure A-2 Qutput File P-RACE.OUT for Example No. 1
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entire integral (which, in principle, is an integral over 0.0 to infinity).
Two lines of output are given, corresponding to the integrand quantities
evaluated at the midpoint of the first integration interval and of the last
integration interval. The times shown in the first column are these two
time points. For information and checking purposes, the temperature of the
weak link (denoted T-wl) is given in the second column. The next column
lists the combined cumulative distribution function value of all the strong
links (denoted as Cdf-Sls). The column denoted Pdf-wl gives the value of
the weak link probability density function, while d(Twl)/dt denotes the
value of the derivative of the weak link temperature-time history at the
two time points. ’

Del(Pf) is the increment added to the integral at each time increment, and
is the product

Del(Pf) = (CAf-Sls)*(PAf-wl)*[d(Twl)/dt]*(dt)

Pf is the value of the integral at the end of each time increment. Thus at
the end of the first time increment, Pf = Del(Pf). At the end of the last
time increment, Pf = P(RACE), the probability of the race cutset which is
listed on the last line of the output for each race input. The integral
converges (as tf gets large) because the term Cdf-Sls is a probability and
approaches 1.0 for large tf, while the term Pdf-wl is a probability density
function, which approaches zero as tf becomes large.

If the initial time (tj) specified by the user is sufficiently small, then
Pf = Del(Pf) for the first time increment should be very small relative to
the final value of the integral, P(RACE). If the final time (tf) specified
by the user is sufficiently large, Del(Pf) for the last time increment
should be very small relative to the final value of the integral,

Pf =P(RACE). Thus by examining the values of Del(Pf) at the end of the
first and last integration time increments as given in the "Convergence
Check" block of output, the user can be assured that appropriate values of
tj and tf were chosen.

The last line of output is, as noted above, the final point estimate value
of the probability of the race cutset, P(RACE), a (dimensionless) number
between 0.0 and 1.0.

The output for the next race cutset evaluated follows (in the same format),

with the addition of lines echoing the input for the additional strong
link.

Example No. 2: Input and Output

The same two strong link race cutset considered in Example No. 1 is used,
except that now two correlation cases will be considered. For the first
cutset, partial correlation consisting of 100% correlation between the
computed temperature responses but zero correlation between the failure
temperatures is input, i.e.,

pr = 1.0 and pf = 0.0

For the second cutset, both computed temperature responses and failure
temperatures are assumed to be fully correlated, i.e.,
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Pr = 1.0 and pg = 1.0

The input file for these two race cutset cases is shown in Figure A-3. The
only change from the Example No. 1 input (for the two strong link race
cutset shown in Figure A-1) is on Line 2, where the appropriate values of
pr and pf are input.

The output from these two calculations is shown in Figure A-4., It can be
seen the the cutset probability has increased from the fully uncorrelated
(Example No. 1) value of 1.58e-2 to a value 2.36e-02 for the partially
correlated case, and to a value of 6.0le-2 for the fully correlated case.

Example No. 3: Tnput and Output

Again we shall use the cutsets in Example No. 1, except that the
uncertainty distributions shall be specified as normal probability
distributions. For comparison purposes, the normal probability
distributions will be specified to have the same means and coefficients of
variation (c.o.v.) as the log normal distributions used in Example No. 1.
The mean and c.o.v. of a lognormal distribution are equal to

p = wrexp(82/2)
c.o.v = | exp(ﬁz) -1

Thus for the normal distributions, we will specify

Temperature Response u(WL)
Temperature Response u(SL1)
Temperature Response p(SL2)

73.22%t and c.o0.v.(WL) = 0.307
62.76%t and c.o.v.(SL1) = 0.307
62.76%t and c.o0.v.(SL2) = 0.307

and

Failure Temperature u(WL)
Failure Temperature u(SL1l)
Failure Temperature u(SL2)

379.20F and o(WL) = 146°F
975.0°F and o(SL1) = 375°F
975.0°F and o(SL2) = 375°F

The same temperature-time histories will be used, and no correlation. Note
that (as stated earlier) when a normal distribution is input, the
temperature response uncertainty is specified in terms of its c.o.v. while
the failure temperature distribution uncertainty is specified in terms of
the standard deviation. The input file is shown in Figure A-5, and the
corresponding output file in Figure A-6. The probabilities of the two race
cutsets (with normal probability distributions) are seen to be 1.56e-01 and
6.56e-02, respectively, and these values are somewhat larger than the
values for the lognormal input cases in Example No. 1 (which were 6.0le-02
and 1.58e-02, respectively). This is to be expected, since the normal
distribution is symmetric while the lognormal distribution is skewed with
longer tails for higher temperatures. Thus, the strong links are less
likely to fail before the weak link. (However, if the lognormal
uncertainty is small - say, f < 0.1 - the difference between results
obtained by using equivalent lognormal and normal distributions is small.)
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*%**Two Strong Link Example Problem (Sect. 3.0 of Main Report)¥#**
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*%*Two Strong Link Example Problem (Sect. 3.0 of Main Report)¥%*
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Figure A-3 Example No. 2 Input File P-RACE.INP
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***Two Strong Link Example Problem (Sect. 3.0 of Main Report)#***
0 t(final) =

"No. SLs 2

No. DTs =

RHOr = 1.0 RHOf = 0.0

T/H No. 1
T/H No. 2
T/H No. 3
Temp Dist
Temp Dist
Temp Dist
Fail Dist
Fail Dist
Fail Dist

Quadratic Eqn

Quadratic Eqn

Quadratic Eqn
No Log Normal
No Log Normal
No Log Normal
No Log Normal
No Log Normal
No Log Normal

W W

Convergence Check

T-wl Cdf-SLS
1.253E+02 3.514E-08 7.717E-04 7.000E+01 3.000E-09
5.545E+03 9.991E-01 3.378E-11 7.000E+01 3.733E-09

Time
1.790E+00
7.921E+01

P(RACE) =

2.36E-02

***Two Strong Link Example

No. SLs 2

No. DTs = 50

RHOr = 1.0 RHOf = 1.0

T/H No. 1
T/H No. 2
T/H No. 3
Temp Dist
Temp Dist
Temp Dist
Fail Dist
Fail Dist
Fail Dist

Quadratic Eqn
Quadratic Eqn
Quadratic Eqn
No Log Normal
No Log Normal
No Log Normal
No Log Normal
No Log Normal
No Log Normal

WRN WM

Convergence Check

T-wl Cdf-SLS
1.253E+02 1.073E-05 7.717E-04 7.000E+01 9.158E-07
5.545E+03 9.996E-01 3.378E-11 7.000E+01 3.735E-09

Time
1.790E+00
7.921E+01

P(RACE) =

6.01E-02

50 t(initial) =

A = 0.000E-01
A = 0.000E-01
A = 0.000E-01

Dist
Dist
Dist
Dist
Dist
Dist

Pdf-wl

Median-r
Median-r
Median-r
Median-f
Median-f
Median-f

1.

i
OO N

350.
900.
900.

00
00
00

Beta-r
Beta-r
Beta-r
Beta-f
Beta-f
Beta-f

d(Twl)/dt Del(Pf)

N W

80.0

.000E+01 C = 0.000E-01
.000E+01 C
.000E+01 C
.00
.00
.00

0.000E-01

0.000E-01
0.300
0.300
0.300
0.400
0.400
0.400

Pf
.000E-09
.363E-02

Problem (Sect. 3.0 of Main Report)*¥¥
t(initial) =

A = 0.000E-01
A = 0.000E-01
A = 0.000E-01

Dist
Dist
Dist
Dist
Dist
Dist

Pdf-wl

Median-r
Median-r
Median-r
Median-f
Median-f
Median-f

1

B
B
B

I
Ll i - - NN

350.
900.
900.

00
00
00

.0 t(final) =

Beta-r
Beta-r
Beta-r
Beta-f
Beta-f
Beta-f

d(Twl)/dt Del(Pf)

Figure A-4 Output file P-RACE.OUT for Example No. 2
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80.0

.000E4+01 C = 0.000E-01
.000E+01 C
.000E+01 C
.00
.00
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0.000E-01

0.000E-01
0.300
0.300
0.300
0.400
0.400
0.400

Pf
.158E-07
.013E-02
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1
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1.0 80.0 0.0 0.0
73.22 0.0
62.76 0.0
0.307
. 0.307
379.2 146 .0
975.0 375.0

w
(=]
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[=NeNeRel

**********************Examp Je 3¥xfdidbdbdiihtdtthbththbtiiitt

NN

50 1.0 80.0 0.0 0.0
73.22 0.0

62.76 0.0

62.76 0.0

0.307

0.307

0.307

146.0

375.0

375.0
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975.

Figure A-5 Example No. 3 Input File P-RACE.INP
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BT T L TR RN RS e TRtk kot
R R ) P-RACE ke
Kok ket k (2-20-96)  *kdkkdkkkkkkikk
Kk ks skt BY kb kbt
FXKRRIARFRARIRAR M, P, BOHN  Ftdskobssrboddttbt
Fkeddseskkdekk btk ek dededede koo ok ek ok

B s T T S L T

i o e D L T

No. SLs 1 No. DTs = 50 t(initial) = 1.0 t(final) =
RHOr = 0.0 RHOf = 0.0

T/H No. 1 Quadratic Eqn A = 0.000E-01L B = 7,322E+01 C
T/H No. 2 Quadratic Eqn A = 0.000E-01 B = 6.276E+01 C

Temp Dist No 1 Normal Dist Mean-r = 1.00 COV-r =
Temp Dist No 2 Normal Dist Mean-r = 1.00 CQV-r =
Fail Dist No 1 Normal Dist Mean-f = 379,20 Sigma-f =
Fail Dist No 2 Normal Dist Mean-f = 975.00 Sigma-f =

Convergence Check

Time T-wl Cdf-SLS Pdf-wl d(Twl)/dt Del(Pf)
1.790E+00 1.311E+02 1.100E-02 6.882E-04 7.322E+01 8.757E-04
7.921E+01 5.800E+03 9.945E-01 2.238E-06 7.322E+01 2.575E-04

P(RACE) = 1.56E-01

80.0

= 0,000E-01

= 0.000E-01
0.31
0.31
146.00
375.00

Pf
8.757E-04
1.564E-01

**********************Example Fkesk bt d b b b bbb e s ok

No. SLs 2 No. DTs = 50 t(initial) = 1.0 t(final) =
RHOr = 0.0 RHOf = 0.0

T/H No. 1 Quadratic Eqn A = 0.000E-01 B = 7.322E+01 C
T/H No. 2 Quadratic Eqn A = 0.000E-01 B = 6.276E+01 C
T/H No. 3 Quadratic Eqn A = 0.000E-01 B = 6.276E+01 C
Temp Dist No 1 Normal Dist Mean-r = 1.00 cov-r =
Temp Dist No 2 Normal Dist Mean-r = 1.00 CcovV-r =
Temp Dist No 3 Normal Dist Mean-r = 1.00 covV-r =
Fail Dist No 1 Normal Dist Mean-f = 379.20 Sigma-f =
Fail Dist No 2 Normal Dist Mean-f = 975.00 Sigma-f =
Fail Dist No 3 Normal Dist Mean-f = 975.00 Sigma-f =

Convergence Check

Time T-wl Cdf-SLS Pdf-wl  d(Twl)/dt Del(Pf)
1.790E+00 1.311E+02 1.210E-04 6.882E-04 7.322E+01 9.631E-06
7.921E+01 5.800E+03 9.890E-01 2.238E-06 7.322E+01 2.560E-04

P(RACE) = 6.56E-02

Figure A-6 Example No. 3 Output file P-RACE.OUT
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Pf
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6.555E-02



Appendix II:
P-RACE: A Program for Calculating
Probabilities of Strong Link/Weak Link Cutsets

by
M.P. Bohn
February 20, 1996

This appendix contains a previously unpublished program by M.P. Bohn for the quantification of the probabil-

ity of failure of temperature-dependent weak link/strong link systems.



PROGRAM PRACE

THIS PROGRAM COMPUTES THE POINT ESTIMATE PROBABILITY
OF MULTIPLE STRONG LINKS (SL’S) FAILING BEFORE THE
WEAK LINK (WL1l) FAILS GIVEN INPUT DISTRIBUTIONS OF
FAILURE TEMPERATURE FOR EACH LINK. A DIRECT INTEGRAL
FORMULATION IS USED, AND TEMPERATURE-TIME RELATIONS ARE
SPECIFIED BY THE USER (FOR EACH LINK). TWO PROBABILITY
DISTRIBUTIONS MUST BE INPUT FOR EACH LINK:

P (TEMPERATURE | TIME)
P (FAILURE TEMPERATURE)

IN ADDITION, RESPONSE AND FRAGILITY CORRELATIONS MAY BE
INPUT FOR THE FIRST TWO STRONG LINKS.
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REAL A(9),B(9),C(9),D(9) ,MR(9),SIGR(9) ,MF(9),SIGF(9),Z(9),
* PSL(9) , TEMP (9)

INTEGER THTYPE (9) ,ITYPER(9) ,ITYPEF (9)

DIMENSION TITLE (20)

OPEN(6,file="P-RACE.QUT’ , status='UNKNOWN')
OPEN(5,file="P-RACE.INP’ ,status=‘0OLD’)

C WRITE HEADER

WRITE (6,500)
500 FORMAT (1HO,13X,45H**kkkkkhhdkkhkhhkhhkkhhhhrhdkhhhkhhhkhkhhkhhhhhnn

* /, 14X, 45H**dkkkkkhkhkhkhkhhkhk Fkdekkkkkkkkhkdkhkhk
* /, 14X, 4BH**kkkdkkkhkhkhk P~-RACE Kkkkdkkkkdkhdkhkkk
* /, 14X, A5H**kdkkkdkdkdhkhkk (2-20-96) kkkkkhkkhkhkkhhrk
* /, 14X, A5H***kkkkkkkkhkk BY khkkkkkkhkhhdhhk
* /, 14X, 4S5H***kkkkkkkdkkkkkkx M. P, BOHN  h¥xkkkdhkdkkhhkkdkkk
* /, 14X, 45H**kkdkkkhkkhkkhhkhk *hkkkkkkkkhkhhkhkkkk
*

/, 14X, ASH**kkkhdkkkhhkhhhhhhdhkkhhkhrhkhrhhrkrkhhddkkhhdkkx )

C******INPUT FOR EACH NEW RACE
999  READ(5,1000) (TITLE(I),I=1,20)
WRITE (6,1001) (TITLE (I),I=1,20)
1000  FORMAT (20A4)
1001  FORMAT (1HO,4X,20A4)

C READ IN NUMBER OF INTEGRATION INCREMENTS AND
C UPPER LIMIT INTEGRATION TIME

READ (5,1005) NSL,NDT,TI,TF,RHOR,RHOF
1005 FORMAT (2I10,4F10.2)

IF(NSL .EQ. 0 ) GO TO 200

WRITE (6,1) NSL,NDT,TI,TF,RHOR,RHOF

1 FORMAT (5X,'No. SLs’,I2,2X,’No. DTs =‘,I5,2X,’t(initial) =",
* F7.1,2X,’t(final) =‘,F7.1,2X,/,5X,’RHOr =',F4.1,2X, RHOf =",
* F4.1)

c READ IN WL, SL’S, TEMPERATURE-TIME CURVES

c **NOTE** WL DATA IS ALWAYS INPUT FIRST***

READ (5,2) ( THTYPE (I),A(I),B(I),C(I),I=1,NSL+1)
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FORMAT (I10,3F10.2)

DO 36 I = 1,NSL+1

IF (THTYPE (I) .EQ. 1) WRITE(6,33) I,A(I),B(I),C(I)

IF (THTYPE (I) .EQ. 2) WRITE(6,34) I,A(I),B(I),C(I)

IF(THTYPE(I) .EQ. 3) WRITE(6,35) I,A(I),B(I)

FORMAT (5X,’T/H No.’ ,I2,2X,’Quadratic Eqn ‘,2X,’A =',1P E10.3,
2X,’B =',1P E10.3,2X,’C =',1P E10.3)

FORMAT (5X,’T/H No.’ ,12,2X,’Power Law Eqn ‘,2X,’A =‘,1P E10.3,
2X,’B =',1P E10.3,2X,’C =',1P E10.3)

FORMAT (5X,’T/H No.’ ,I2,2X,’Exponential Eqn’,2X,’A =‘,1P E10.3,
2X,’B =',1P E10.3)

CONTINUE

READ IN TEMPERATURE RESPONSE UNCERTAINTY DISTRIBUTIONS

READ(5,4) ( ITYPER(I),MR(I),SIGR(I),I=1,NSL+l )

FORMAT (I10,2F10.2)

DO 53 I = 1, NSL+1

IF( ITYPER(I).EQ. 1) WRITE(6,50) I,MR(I),SIGR(I)

FORMAT (5X,’ Temp Dist No’ ,I2,2X,’'Uniform Dist ‘',2X,
‘Tlower =',F8.2,2X,’  Tupper =',F8.2)

IF( ITYPER(I).EQ. 2) WRITE(6,51) I ,MR(I),SIGR(I)

FORMAT (5X, ' Temp Dist No’ ,I2,2X,’Normal Dist v, 2%,
‘Mean-r =',F8.2,2X, ' 'COV-r =',F8.2)

IF( ITYPER(I).EQ. 3) WRITE(6,52) I,MR(I),SIGR(I)

FORMAT (5X,’ Temp Dist No’,I2,2X,’Log Normal Dist’,2X,
‘Median-r =',F8.2,2X,’'Beta-r =" ,F9.3)

CONTINUE

READ IN FAILURE TEMPERATURE UNCERTAINTY DISTRIBUTIONS
READ (5,4) ( ITYPEF(I),MF(I),SIGF(I),I=1,NSL+1 )

DO 57 I = 1,NSL+1

IF( ITYPEF(I).EQ. 1) WRITE(6,54) I,MF(I),SIGF(I)

FORMAT (5X,’ Fail Dist No’,I2,2X,’Uniform Dist ‘',b2X,
‘Tlower =',F8.2,2X,’ Tupper =',F8.2)

IF( ITYPEF(I).EQ. 2) WRITE(6,55) I,MF(I),SIGF(I)

FORMAT (5X,’ Fail Dist No’,I2,2X,’Normal Dist V,2X%,
‘Mean-f =",F8.2,2X,’Sigma-f =",F8.2)

IF( ITYPEF(I).EQ. 3). WRITE(6,56) I,MF(I),SIGF(I)

FORMAT (5X,’Fail Dist No’,I2,2X,’Log Normal Dist’,2X,
‘Median-f =',F8.2,2X,’'Beta-f =',F9.3)

CONTINUE

MAKE SURE TEMP RESPONSE AND FAIL TEMP DISTRIBUTIONS
MATCH

DO 58 I = 1,NSL+1

IF( ITYPER(I) .NE.ITYPEF(I) ) WRITE(6,300)

IF( ITYPER(I).NE.ITYPEF(I) ) STOP

CONTINUE

hkhkhkhkkhkhkhkhkkkhkkhkhkhkhkkkkkk

INTEGRATE OVER 0 TO TF
hkkkhkkhkkhkhkhkhkhhhhkkhhkkk

PF = 0.0
RDT = NDT
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DT = (TF-TI)/RDT
T =TI - DT/2.0

SQ2PI 2.5066
DO 20 J = 1,NDT

T=T+ DT

DO 6 I=1,NSL+l

IF (THTYPE(I) .EQ. 1 ) TEMP(I)
IF (THTYPE (I) .EQ. 2 ) TEMP(I)
CONTINUE

khkhkkhkhkhkhkhkkkkhkhkkhhkik

EVALUATE INTEGRAND
e o e e e e e ok ek e e ek ok ke ke

COMPUTE WEAK LINK PDF ORDINATE

LOG NORMAL DISTRIBUTION

IF (ITYPER(1) .EQ. 3 .AND. ITYPEF(1l) .EQ. 3 ) THEN

BETA = SQRT (SIGR(1) **2+SIGF (1) **2)

ARG = -( (ALOG(TEMP(1)/MF (1)) )**2)/(2.0*BETA**2)
IF(ARG .GE. -25. ) PDFWL = EXP (ARG)/ (SQ2PI*BETA*TEMP (1))
IF(ARG .LT. -25. ) PDFWL = 0.0

ENDIF

NORMAL DISTRIBUTION

IF(ITYPER(1) .EQ. 2 .AND. ITYPEF(1l) .EQ. 2 ) THEN
SIGMA = SQRT (SIGF(1)**2+ (SIGR(1)*TEMP (1)) **2)

ARG = - ((TEMP (1) -MF (1)) **2)/(2.0*SIGMA**2)

IF(ARG .GE. -25. ) PDFWL = EXP (ARG)/ (SQ2PI*SIGMA)
IF (ARG .LT. -25. ) PDFWL = 0.0

ENDIF

COMPUTE WEAK LINK UNIFORM PDF ORDINATE
***T0O BE ADDED***

COMPUTE STRONG LINK PROBABILITIES
DO 10 I = 2,NSL+1

LOG NORMAL DISTRIBUTION

IF(ITYPER(I) .NE. 3 .AND. ITYPEF(I) .NE. 3 ) GO TO 7
NOTATION FOR LOG NORMAL INPUT

MF IS MEDIAN OF FAILURE DISTRIBUTION

SIGF IS BETA-FR OF FAILURE DISTRIBUTION

MR IS MEDIAN OF RESPONSE DISTRIBUTION (1.0)

SIGR IS BETA-RR OF RESPONSE DISTRIBUTION

COMPUTE STRONG LINK CDF FAILURE PROBABILITIES

114

A(I) + B(I)*T + C(I)*(T**2)
A(I) + B(I)*( (T-TI)**C(I))
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Z(I) = ALOG( TEMP (I)/MF(I) )/SQRT (SIGF (I)**2+SIGR(I)**2)
PSL(I) = FNO1(Z(I))

IF(I.EQ. 3) THEN
RHO = (RHOR*SIGR(2)*SIGR(3) + RHOF*SIGF (2)*SIGF(3))/

(SQRT (SIGR(2) **2+4SIGF (2) **2) *SQRT (SIGR(3) **2+SIGF (3) **2))

PSL12 = FBNOl1( Z(2),Z(3) ,RHO )
ENDIF

GO TO 10

NORMAL DISTRIBUTION

CONTINUE

IF(ITYPER(I) .NE. 2 .AND. ITYPEF(I) .NE. 2 ) GO TO 8
NOTATION FOR NORMAL INPUT

MF IS MEAN OF FAILURE DISTRIBUTION

SIGF IS SIGMA-FR OF SL FAILURE DISTRIBUTION

MR IS MEAN OF RESPONSE DISTRIBUTION (1.0)

SIGR IS C.0.V. OF SL RESPONSE DISTRIBUTION

COMPUTE STRONG LINK CDF FAILURE PROBABILITIES
Z(I) = (TEMP(I)-MF(I))/SQRT (SIGF(I)**2+(SIGR(I)*TEMP (I))**2)
PSL(I) = FN01(Z(I))

IF(I.EQ. 3) THEN
**THIS NOT RIGHT YET WITH SHIFT FACTORS !!!%*
RHO = (RHOR*SIGR(2)*TEMP (2)*SIGR (3) *TEMP (3)

+ RHOF*SIGF (2) *SIGF(3))/

( SQRT (SIGF(2)**2+ (SIGR(2) *TEMP (2) ) **2) *

SQRT (SIGF (3) **2+ (SIGR (3) *TEMP (3) ) **2) )
PSL12 = FBNO1(Z(2),Z(3),RHO)
ENDIF

GO TO 10

UNIFORM DISTRIBUTION

CONTINUE

IF(ITYPER(I) .NE. 1 .AND. ITYPEF(I) .NE. 1) WRITE(6,100)
IF(ITYPER(I) .NE. 1 .AND. ITYPEF(I) .NE. 1) STOP
*%%%%*TO BE ADDED****kkkk%*

CONTINUE
END OF LOOP OVER STRONGLINKS

QUADRATIC TIME HISTORY
IF(THTYPE (1) .EQ. 1 ) DTEMPDT = B(l) + 2.0*C(1)*TEMP(1)

POWER CURVE TIME HISTORY
IF (THTYPE (1) .EQ. 2 ) DTEMPDT=C(1)*B(1)*( (T-TI)**(C(1)-1.0))
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ADD INCREMENT OF INTEGRAND*DT TO INTEGRAL

PSLS IS CDF(SL1*SL2*....) TERM IN INTEGRAND

IF(NSL.EQ. 1)
IF(NSL.EQ. 2)
IF(NSL.EQ. 3)

IF(NSL.EQ. 1)
IF(NSL.EQ. 2)
IF(NSL.EQ. 3)

PSLS
PSLS
PSLS

PF + (PSL(2)*PDFWL*DTEMPDT*DT)
PF + (PSL12 *PDFWL*DTEMPDT*DT)
PF + (PSL12 *PSL(4) *PDFWL*DTEMPDT*DT)

PSL(2)
PSL12
PSL12*PSL(4)

IF(NSL .GT. 3) THEN

PSLS = PSL12
DO 11 I=3,NSL

PSLS = PSLS*PSL(I+1)

ENDIF

COMPUTE INCREMENT AND ADD TO INTEGRAL

DELPF = PSLS*PDFWL*DTEMPDT*DT

PF = PF + DELP

IF( J. EQ. 1)
FORMAT (1HO,2X,
IF( J. EQ. 1)
FORMAT (1H ,3X,’
Del (Pf) Pf

IF( J. EQ. 1)
DTEMPDT , DELPF,

F

WRITE (6,12)
' Convergence Check’ )
WRITE (6,13)
Time T-wl Cdf-SLS PAf-wl d(Twl) /dt

")

WRITE (6,14) T,TEMP(1),PSLS,PDFWL,

PF

IF( J. EQ. NDT) WRITE(6,14) T,TEMP(1),PSLS,PDFWL,

DTEMPDT , DELPF,

PF

FORMAT (1H ,3X,8(1P E10.3))

WRITE(6,15) T,TEMP(2),TEMP(1),PSL(2),PDFWL,DTEMPDT, PF
FORMAT (3X,8 (1P E10.3))

CONTINUE

END OF LOOP OVER INTEGRATION STEPS
dkkkkhkhkkdhhkdkhhkhhhkdkhhkkkkkkkkkkhkkhkhhd

WRITE (6,30) PF

FORMAT (1HO, 4X,’P(RACE) = ', 1P E9.2)

FORMAT (1HO,4X, ‘ERROR IN INPUT DISTRIBUTIONS’ )
GO TO 999

CONTINUE

FORMAT (5X, ' *ERROR** INPUT TEMP RESPONSE & FAILURE TEMP’,
1X,’DISTRIBUTIONS DO NOT MATCH')

STOP
END

FUNCTION FINO1l

(P)
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GIVEN A VALUE OF PROBABILITY ( O LE P LE 1.0 )

THIS ROUTINE RETURNS THE N(0,l1) DISTRIBUTION
STD. NORMAL VARIATE Z. THE POLYNOMIAL FIT
GIVEN IN ABRAMOWITZ AND STEGUN,1965, DOVER
ART. 26.2.23 IS USED. PROGRAMMED BY MP BOHN
SEPT. 1988.

CO = 2.515517

Cl = 0.802853

C2 = 0.010328

D1 = 1.432788

D2 = 0.189269

D3 = 0.001308

PP = P

IF ( P.GT. 0.5 ) PP = 1.0 - P

T = SQRT( ALOG(1.0/(PP*PP)) )

TOP = CO + (Cl + C2*T)*T

BOT = 1.0 + T*( D1 + T*( D2 + D3*T ))
FINO1 = T - (TOP/BOT)

IF(P.LT. 0.5 ) FINO1l = -FINO1l

RETURN

END

SUBROUTINE RNDNUM (XOLD,RV)

THIS ROUTINE RETURNS A RANDOM VARIABLE FROM
A UNIFORM DISTRIBUTION OVER (0,1) USING
ROUTINE AND CONSTANT VALUES DESCRIBED IN
ANG AND TANG,” PROBABILITY CONCEPTS IN
ENGINEERING PLANNING AND DESIGN “,VOL. 2,
1984, pp. 280,281. PROGRAMMED BY MP BOHN,
SEPT. 1988.

NOTE: 2**24 IS THE LARGEST VALUE OF “M”
THAT WILL WORK ON THE COMPAQ 386/20.

INPUT

XOLD (INTEGER,POS) THE SEED. THIS IS UPDATED
AFTER EACH CALL TO THE SUBROUTINE. CAN USE
ANY VALUE TO START, SAY 1.

INTEGER XOLD,XNEW,A,C

c=1
A =101
M = (2**24)

NUM = A*XOLD + C
XNEW = MOD (NUM,M)
RM = REAL (M)
RXNEW = REAL (XNEW)
RV = RXNEW/RM
XOLD = XNEW
RETURN

END

FUNCTION FNO1(Z)

THIS FUNCTION RETURNS THE CDF OF THE NORMAL N(0,1l) DISTRIBUTION
GIVEN THE STD. NORMAL VARIATE Z. THE POLYNOMIAL FIT
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GIVEN IN ABRAMOWITZ AND STEGUN, 1965, DOVER
ART. 26.2.16 IS USED. PROGRAMMED BY MP BOHN
SEPT. 1988.

Al = .4362

A2 =-.1202

A3 = .9373

P = .3327

Al = 0.4361836
A2 = -0.1201676
A3 = 0.9372980
P = 0.33267

TO PREVENT TOO SMALL ARGUMENT GOING INTO FUNCTION EXP
IF(Z .LT. -6.36 ) 2 = -6.36
IF(2 .GT. +6.36 ) Z = +6.36

T =1.0/( 1.0 + P*ABS(Z))

SQT2PI = 2.506628

ZZ = ( EXP(-Z*Z/2.0) )/ SQT2PI

FNO1 = 1.0-ZZ* (Al + A2*T +A3*T*T )*T
IF(Z.GE. 0.0 ) RETURN

FNOl1 = 1.0 - FNO1

RETURN

END

FUNCTION FBNO1 (RH,RK,RO)

THIS FUNCTION COMPUTES THE JOINT BI-VARIATE PROBABILITY
P (x<H,y<K,RO) USING THE T-INTEGRAL FORMULATION. RH AND
RK ARE THE STANDARD NORMAL VARIATES, AND RO IS THE
CORRELATION COEFFICIENT. THIS FUNCTION CALLS FUNCTIONS
T(H,AH) AND FNO1(Z).

FORMULATION IS GIVEN IN 2?77

PROGRAMMED BY MP BOHN, OCTOBER, 1988.

MODIFIED BY MP BOHN, FEBRUARY 1996.

WRITE (6,4) RH,RK,RO

FORMAT (20X, 3F10.3)

PUT LIMITS ON STANDARD VARIATES TO PREVENT
EXCESSIVELY LARGE ARGUMENTS IN FNOl() AND T().

IF(RH.LT.-6.36) RH = -6.36
IF(RK.LT.-6.36) RK = -6.36
IF(RH.GT. 6.36) RH = 6.36
IF(RK.GT. 6.36) RK = 6.36

CODE NOT CHECKED OUT FOR NEGATIVE CORRELATION COEFFICIENT
IF(RO .LT. 0.0) WRITE(6,1)

IF(RO .LT. 0.0) STOP

FORMAT (5X, ' ERROR - NEGATIVE CORRELATION COEFFICIENT')

LIMITING CASES
IF(RO .GT. 0.02 .AND. RO .LT. 0.98) GO TO 2
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IF(RO .LE. 0.02) FBNO1l
IF(RO .GE. 0.98) FBNO1
RETURN

FNO1 (RH) *FNO1 (RK)
AMIN1 (FNO1 (RH) , FNO1 (RK) )

CONTINUE
COMPUTE T(-) FUNCTION PARAMETERS

RH AND/OR RK CANNOT EQUAL 0.0 OR
AH,AK WILL BLOW UP.

IF(ABS(RH) .LT. 0.00001 ) RH
IF(ABS (RK) .LT. 0.00001 ) RK

0.00001*SIGN(1.0,RH)
0.00001*SIGN(1.0,RK)

THESE LIMITING VALUES DID NOT AFFECT ACCURACY OF RESULT
TO THREE SIGNIFICANT FIGURES IN CHECKOUT.

AH
AK

{ RK-RH*RO )/ ( RH*SQRT (1.0-RO*RO) )
( RH-RK*RO )/ ( RK*SQRT(1.0-RO*RO) )

APPROXIMATE CALCULATION OF BIVARIATE PROBABILITY
WHEN ONE OR MORE OF THE MARGINAL PROBABILITIES
IS LESS THAN 7E-4.

IF(RH .GT. -3.2 .AND. RK .GT. -3.2 ) GO TO 10

Pl
P2

FNO1 (RH)
FNO1 (RK)

IF( RO .LT. 0.25 ) FBNO1l = P1*P2

IF( RO .GE. 0.25 .and. RO .LT. 0.75 ) FBNOl = (P1*P2)**0.75
IF( RO .GE. 0.75 ) FBNOl1l = AMINI (P1,P2)

RETURN

CONTINUE

GENERAL EXPRESSION FOR BIVARIATE PROBABILITY
FUNCTION B (RH,RK,6RO)

CC = -0.5

IF(RH*RK .GT. 0.0 ) CC = 0.0

IF(RH*RK .EQ. 0.0 .AND. RH+RK .GE. 0.0 ) cC = 0.0

FBNOLl = ( FNO2(RH) + FNO2(RK) )/2.0
-T (RH,AH) -T (RK,AK) + CC

RETURN
END

FUNCTION T (H,3)

SIMPSON’S RULE FOR INTEGRATION IS USED TO EVALUATE INTEGRAL
FOR T(H,A) WITH M=301 INTEGRATION POINTS, BUT COULD USE
ANY ODD VALUE FOR M. PROGRAMMED BY MP BOHN, OCTOBER 1988.

11-9



[eNeNeNe] 0 [eNeNeNe]

Qa0

anNnaoao

(oM e]

QoOoO=aoNnOn

naoaoanon

M = 301

USE RELATIONS T(-H,A)=+T(H,A) AND T(H,-A)=-T(H,A)
AFTER T (HABS,AABS) HAS BEEN COMPUTED.

HABS
AABS

ABS (H)
ABS (A)

Al = AARS
Hl = HABS

IF A IS GREATER THAN 1.0, COMPUTE T(AH,1/A) INSTEAD OF
T(H,A) AND USE EQUATION RELATING T (H,A) AND T(AH,1/A).

IF(AABS.GT.1.0 ) Al
IF(AABS.GT.1.0 ) H1

1.0/a1
AABS*HABS

khkkhkkkhhhkkhkhkkkhhhhkhkhhdkhkrkhkhhhhhhkhkhhhdhdkkrkkdk
SIMPSON’S RULE NUMERICAL INTEGRATION BEGINS HERE

DX = Al/(REAL(M)-1.0)
SUM = 0.0
X = -DX

DO 10 I = 1 ,M
X =X+ DX

INTEGRAND DEFINED HERE

ARG = H1*H1*(1.0+X*X)/2.0
IF(ARG .GT. 50.) ARG = 50.0
F = EXP(-ARG)/ (1.0+X*X)

F = F/6.283185

END OF INTEGRAND DEFINITION

COMPUTE ALTERNATING COEFFICIENTS
IN SIMPSON’S RULE EQUATION
B=2.0

IC = MOD(I,2)

IF( IC.EQ. 0 ) B = 4.0

IF( I.EQ.1 .OR. I.EQ. M) B = 1.0

ADD IN SUCCESSIVE TERMS HERE
SUM = SUM + B*F

WRITE (6,2) SUM,DX,F,ARG
FORMAT( 4 (1P E12.3 ))

CONTINUE

NORMALIZE SUM BY DX/3
T = SUM*DX/3.0

END OF SIMPSON’S RULE INTEGRATION
hkhkhkhkhhkkhhhhrhhkhkkkkhkhkhhdkdhkhddkhhhhrk

WRITE(6,4) H1,Al,T
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IF ‘A’ IS GT 1.0, USE RELATION BETWEEN T(AH,1/A) AND T (H,A).

WHEN USING THIS EQUATION, ALL ARGUMENTS ARE POSITIVE
SINCE WE ARE WORKING WITH ABSOLUTE VALUES OF ARGUMENTS
OF T() AT THIS POINT, WITH SIGN OF T() TO BE
DETERMINED AT LAST STEP.

IF(AABS.GT. 1.0 ) T = ( FNO2(HABS)+FNO2(H1l) )/2.0
-FNO2 (HABS) *FNO2 (H1) - T

CORRECT SIGN OF T (HABS,AABS) IF A IS NEGATIVE
IF(A.LT. 0.0) T = -T

WRITE(6,4) H,A,T
FORMAT (20X ,E12. 3)
RETURN

END

FUNCTION FNO2(Z)

THIS FUNCTION COMPUTES THE N(0,1) PROBABILITY
GIVEN THE STANDARD NORMAIL VARIATE Z USING THE
INTEGRAL DEFINITION OF THE FUNCTION AND USING
TRAPEZOIDAL NUMERICAL INTEGRATION. PROGRAMMED

BY MP BOHN, JAN 1989. THIS MORE ACCURATE VERSION
IS NEEDED FOR FUNCTION FBNO1.

SHOULD PROBABLY BE IN REAL*8

M = 301
2% = 2
IF(Z.LT.0.0) ZZ = -Z

kkkhkhkhhhhhkhkhhhhhhhkhkkhhrhkrkkhhkrhhkkkkhkhkk
TRAPEZOIDAL RULE INTEGRATION BEGINS HERE

DX = ZZ/ (REAL(M)-1.0)
SUM = 0.0
X = -DX

DO 10 I = 1,M
X =X+ DX

FUNCTION TO BE INTEGRATED DEFINED HERE
ARG = X*X/2.0

IF(ARG.GT. 50.) ARG = 50.0

F = EXP (-ARG)

NOTE**SQRT 2*PI ADDED BELOW

END OF FUNCTION DEFINITION

COMPUTE COEFFICIENTS IN TRAPEZOIDAL RULE

B=1.0
IF( I.EQ.1 .OR. I.EQ. M ) B = 0.5
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C ADD IN SUCCESSIVE TERMS HERE
SUM = SUM + B*F

c
c WRITE (6,2) SUM,DX,F,ARG
2 FORMAT( 4 (1P E12.3 ))
c
10 CONTINUE
c
c NORMALIZE SUM BY DX
c HAVE ADDED SQRT (2*PI) HERE SO NOT COMPLETELY GENERAL

T = SUM*DX/2.50662827 + 0.500

c
c THIS IS END OF INTEGRATION
C I 222 X222 2222222222322 22222222 2
c
IF(Z.LT. 0.0) T = 1.00 - T
FNO2 = T
RETURN
END
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Appendix lll:

CPLOAS: A FORTRAN Program for the
Cailculation of the Probability of Loss of Assured Safety

This appendix contains a description of the FORTRAN program CPLOAS that provides a computational im-
plementation of the procedures described in this report for evaluating the probability of loss of assured safety (i.e.,
PF in the notation used in the main body of the report). Contents included: (i) Text summary of the algorithms, (ii)
Flow charts for the algorithms, (iii) Example input and output for the implementing program, and (iv) source code

for the implementing program.
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Overview

A system of links is defined as a set of links connected in series where each link is defined as either a strong link or
aweak link. The system must have at least one strong link and at least one weak link. A strong link is initially rep-
resented as an open circuit and a weak link is initially represented as a closed circuit. A failed strong link is repre-
sented as a closed (short) circuit and a failed weak link is represented as an open circuit. Each strong link is
composed of one or more internal components which are connected in parallel. Strong link internal components
have the same circuit definition as a strong link. Failure of any one of the internal components in a strong link re-
sults in a failure of that strong link. Failure of the system of links is defined as the failure of all strong links before
the failure of any weak link. Each link has an associated temperature failure distribution and an associated time-
temperature history. The failure probability of the system of links is determined by the interaction of the link fail-
ure distributions and associated link time-temperature histories. The failure temperature for each link is assumed to
be independent of the failure temperature for every other link.

Strong Link 1 (Strong Link n) Weak Link 1 (Weak Link m)

] . _ _r‘/*‘ﬂ o
Lo v Lo - -
|

I—__/.-__l L._-/.-—-l

Failure Probability Evaluation for System of Links

Two basic methods are used to estimate the failure probability of the system of links. The first method is based on
the integration of a function which defines the interaction of the link failure temperature distributions and associated
link temperature histories. The second method is based on Monte Carlo sampling of the link failure temperatures
and evaluation of the relative failure times of the system links.

System Failure Function Evaluation

Two different integration procedures can be used to integrate this system of links function over the temperature
range defined by the link temperature histories. Both integration procedures use successive evaluations of the over-
all system at different temperatures in order to a approximate the overall system failure probability. Initially, the
temperature range is a single interval where the failure probability is evaluated at the two endpoints and either a
linear (Trapezoid Method) fit or a quadratic (Simpson’s Method) fit is assumed for integrating the area between the
temperature interval endpoints. The failure probability at the temperature interval midpoint is then evaluated and
the area is integrated as the sum of the areas of the two subintervals. This process is repeated using subinterval mid-
points until successive failure probability evaluations are within a relative tolerance of each other.

Trapezoid Method for Function Integration

The Trapezoid Method evaluation begins with averaging evaluations of the system of links failure function at the
temperature integration limits. Successive steps in the solution process adjust the previous iteration result by aver-
aging in current iteration failure function evaluations. The next step in the evaluation process is to average in
evaluations of the failure function at the midpoint of each temperature subinterval created during the previous itera-
tion. The first iteration is the evaluation of the failure function at the midpoint of the overall temperature interval.
The second iteration is the evaluation of the failure function at the two midpoints of the two subintervals created by
the first midpoint evaluation. Successive iterations average in failure function evaluations at each of the subinterval
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midpoints. The number of midpoints used for failure function evaluations doubles with each iteration. This itera-
tive process terminates when evaluations for successive iterations differ by less than a predefined relative tolerance.

Simpson’s Method for Function Integration

The Simpson’s Method evaluation is identical to the Trapezoid Method evaluation except for the weighting of in-
termediate evaluations.

Monte Carlo Sampling Evaluation

Failure temperatures are sampled for each link according to the failure temperature distribution associated with the
link. The link failure temperatures are then converted to link failure times through interpolation of the associated
time-temperature history for each link. The link failure times are evaluated relative to each other according to the
defined system of links to determine whether the system fails for this set of sampled failure temperatures. This
process is repeated for a large number of sets of sampled link failure temperatures. The failure probability of the
system of links is the total number of failures divided by the total number of sets of sampled failure temperatures.

Importance-Weighted Monte Carlo Sampling Evaluation

Failure temperatures are sampled for each link according to a predefined sampling distribution assigned to the type
of failure temperature distribution associated with the link. A weight is calculated for the link failure temperature
based on the evaluation of the probability density function for the failure temperature distribution associated with
the link. The sample weight for a set of sampled link failure temperatures is the product of the weights for the indi-
vidual link failure temperatures. The link failure temperatures are then converted to link failure times through inter-
polation of the associated time-temperature history for each link. The link failure times are evaluated relative to
each other according to the defined system of links to determine whether the system fails for this set of sampled
failure temperatures. This process is repeated for a large number of sets of sampled failure temperatures. The fail-
ure probability of the system of links is the sum of the weights for sampled sets of link failure temperatures resulting
in system failure divided by the total number of sets of sampled link failure temperatures.

Evaluating System of Links for Monte Carlo Sampling and Importance-Weighted Monte Carlo Sampling

The failure time (tSLny,) for each strong link is evaluated as the minimum failure time of the internal components
that comprise the strong link. The failure time (tSL) of all strong links together is evaluated as the maximum
failure time across all strong links. The failure time (tWL,y,) of all weak links together is evaluated as the minimum
failure time across all weak links. If the maximum failure time (tSL,) for all strong links together is less than the
minimum failure time (tWL,,,) for all weak links together, the overall system of links has failed.
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SL/WL Input File Description

SLWL.INP--2WL and 1SL With 2 Internal Components

-10031 Random Number Generator Seed for Monte Carlo Sampling
TRAP SIMP MC IMC Solution Methods

100000 Number of Monte Carlo Samples

SLWLTH.DAT Time-Temperature History File Name

SL13 1 NORMAL 560. 18. Link TempHist FailDistr Mean SD

SL13 2 NORMAL 560. 18. Link TempHist FailDistr Mean SD

WL1 3 NORMAL 310. 8. Link TempHist FailDistr Mean SD

WL2 4 NORMAL 310. 8. Link TempHist FailDistr Mean SD

Format Description

All data read from input file are free (list-directed) format. Comments may be placed after the required input data
on any input record.

Record Type Description
1 Character  Title (Maximum = 100 characters)
2 Integer Random number generator seed for Monte Carlo sampling
3 Character  Solution methods (one or more of following uppercase abbreviations on single

line separated by at least one space)
TRAP--Trapezoid Method used for integration of system failure function
SIMP--Simpson’s Method used for integration of system failure function
MC--Monte Carlo sampling method
IMC--Importance-weighted Monte Carlo sampling method
4 Integer Number of Monte Carlo samples used for solution methods MC and IMC when
this value is positive. If this value is negative, the system failure probability is
evaluated from time zero through each of the time-temperature history
timesteps using specified integration solution methods (TRAP and/or SIMP).
The Monte Carlo sampling methods (MC and/or IMC) would not be used, even

if specified.
5 Character =~ Time-temperature history file name
6+ Link definitions:

Character  Link name (2-10 alphanumeric characters of which first two
characters must be either uppercase SL or uppercase WL. Additional
characters are case-sensitive. Strong links are identified by their internal
components. Each strong link must have a different name. Internal
components within a strong link must have identical names. Weak links have
no naming restrictions other than the first two characters)
Integer Index of link time-temperature history from time-temperature history file
Character  Failure temperature distribution (one of the following uppercase abbreviations;
failure temperature units must be same as temperature units on
time-temperature history):
UNIFORM = Uniform distribution
NORMAL = Normal distribution
LOGUNIFORM = Loguniform distribution
LOGNORMAL = Lognormal distribution
For uniform distribution:

Real Minimum value for uniform distribution

Real Maximum value for uniform distribution
For normal distribution:

Real Mean value for normal distribution

Real Standard deviation (sigma) for normal distribution
For loguniform distribution:

Real Minimum value for loguniform distribution
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Real Maximum value for loguniform distribution
For lognormal distribution:
Real Median value for lognormal distribution
Real Standard deviation (beta) for lognormal distribution

SL/WL Time-Temperature History File Description

Time Temperature Histories for 2WL and 1SL with Internal Components
0.0 61.53 64.67 44.98 42.77

10.0 413.13 439.46 264.81 226.94
20.0 701.01 733.40 517.81 402.38
30.0 867.29 891.94 697.01 560.15
40.0 950.48 965.56 819.31 687.31
50.0 989.11 997.37 898.84 784.66
60.0 1006.43 1010.68 948.14 856.32
70.0 1014.06 1016.18 977.83 907.55
80.0 1017.41 1018.44 995.41 943.42
90.0 1018.87 1019.36 1005.71 968.16
100.0 1019.51 1019.74 1011.72 985.05

Format Description

All data read from input file are free (list-directed) format. Comments may be placed after the required input data
on any input record.

Record Type Description
1 Character  Title (Maximum = 100 characters)
2+ Link temperatures versus time (each record corresponds to one time with

temperatures for each link at that time; times must be monotonically increasing
from record to record):

Real Time
Real Temperature for each link at this time (one or more separated by at least one
space)
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Overall Calculation Structure

Read input specifications defining system of links and
associated time-temperature histories

I

Validate system of links parameters and
associated time-temperature histories

Loop over time-temperature history timesteps (Opt)

Evaluate system failure probability through current
time-temperature history timestep using Trapezoid Method
for integrating link failure distributions (Opt)

!

Evaluate system failure probability through current
time-temperature history timestep using Simpson’s Method
for integrating link failure distributions (Opt)

y

Evaluate system failure probability using Monte Carlo
sampling of link failure distributions (Opt)

y

Evaluate system failure probability using
Importance-weighted Monte Carlo sampling of
link failure distributions (Opt)

v

Print system failure probability as evaluated by
one or more of the four methods above
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System Failure Function Structure

Interpolate failure time for current strong link internal component using
associated time-temperature history at current temperature

Loop over strong link internal components

Evaluate probability density function for current strong link
internal component at current temperature

!

Evaluate probability that each of the other strong link
internal components for current strong link has not failed at
current strong link internal component failure time

v

Evaluate probability that at least one internal component of
every other strong link has failed at current strong link internal
component failure time

v

Evaluate probability that each of the weak links has not failed at
current strong link internal component failure time

!

Evaluate contribution of current strong link internal component to
system failure probability at current temperature as the
product of the previous four probabilities

A 4

Evaluate system failure probability at current temperature as the sum of
the probability products over all strong link internal components
at current temperature
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Trapezoid Method Integration Structure

Initialize integrated system failure probability to a large negative value

!

Evaluate initial system failure probability by averaging evaluations of
the system failure function at the overall integration
temperature end points

Loop over solution iterations

Evaluate current system failure probability by averaging evaluations of
the system failure function at the ¢ urrent temperature subinterval
midpoints with the previous system failure probability

!

Define additional subinterval start and end points for next iteration as
the current temperature subinterval midpoints

’

Compare the absolute difference between the last two system failure
probability evaluations to the product of the relative tolerance and
the previous failure probability evaluation

h 4

Terminate integration of system failure probability based on
convergence test
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Simpson’s Method Integration Structure

Initialize integrated system failure probability to a large negative value

!

Evaluate initial system failure probability by averaging evaluations of
the system failure function at the overall integration
temperature end points

Loop over solution iterations

Evaluate current system failure probability by averaging evaluations of
the system failure function at the ¢ urrent temperature subinterval
midpoints with the previous system failure probability

'

Correct system failure probability for integration approximation error

'

Define additional subinterval start and end points for next iteration as
the current temperature subinterval midpoints

v

Compare the absolute difference between the last two system failure
probability evaluations to the product of the relative tolerance and
the previous failure probability evaluation

\ 4

Terminate integration of system failure probability based on
convergence test
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Monte Carlo Sampling Structure

Initialize number of system failures to zero

Loop over samples

Loop over links

Sample failure temperature for current link based on
associated temperature failure distribution

!

Interpolate failure time for current link using associated
time-temperature history at current temperature

v

Evaluate the failure time for each stron g link as the minimum
failure time of the internal components that comprise that strong link

!

Evaluate the failure time for all strong links together as the maximum
failure time across all stron g links

!

Evaluate the failure time for all weak links together as the minimum
failure time across all weak links

’

If the failure time for all strong links together is less than the failure time
for all weak links together, increment number of system failures by one

v

Evaluate system failure probability as the division of the number of
system failures by the number of samples
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Importance-Weighted Monte Carlo Sampling Structure

Initialize system failure weight to zero

Loop over samples

Loop over links

Sample failure temperature for current link based on predefined
sampling distribution for associated temperature failure distribution

v

Evaluate weight for current link by evaluating probability density
function for associated temperature failure distribution at
sampled failure temperature

v

Interpolate failure time for current link using associated
time-temperature history at current temperature

v

Evaluate current sample weight as product of weights for each link

v

Evaluate the failure time for each stron g link as the minimum
failure time of the internal components that comprise that strong link

v

Evaluate the failure time for all strong links together as the maximum
failure time across all stron g links

v

Evaluate the failure time for all weak links together as the minimum
failure time across all weak links

v

If the failure time for all strong links together is less than
the failure time for all weak links together, accumulate
the current sample weight into the system failure weight

\ A

Evaluate system failure probability as the division of the
system failure weight by the number of samples

II-11



Example Input File for Strong Link / Weak Link Failure Probability Calculation

SLWL.INP--2WL and 1SL With 2 Internal Components

-10031 Random Number Generator Seed for Monte Carlo Sampling
TRAP SIMP MC IMC Scolution Methods

1000000 Number of Monte Carlc Samples

SLWLTH.DAT Time-Temperature History File Name

SL4 2 NORMAL 600. 30. Link TempHist FailDistr Mean SD

SL4 1 NORMAL 600. 30. Link TempHist FailDistr Mean 8D

WL 4 NORMAL 270. 15. Link TempHist FailDistr Mean SD

WL 3 NORMAL 270. 15. Link TempHist FailDistr Mean SD

Example Time-Temperature History File for Strong Link / Weak Link Failure Probability Calculation

Time Temperature Histories for 2WL and 1SL with Internal Components

0.0 61.53 64.67 44 .98 42.77
10.0 413.13 439.46 264.81 226.94
20.0 701.01 733.40 517.81 402.38
30.0 867.29 891.94 697.01 560.15
40.0 950.48 965.56 819.31 687.31
50.0 989.11 997.37 898.84 784.66
60.0 1006.43 1010.68 948.14 856.32
70.0 1014.06 1016.18 977.83 907.55
80.0 1017.41 1018.44 995.41 943.42
90.0 1018.87 1019.36 1005.71 968.16

100.0 1019.51 1019.74 1011.72 985.05

Example Qutput File for Strong Link / Weak Link Failure Probability Calculation

CALCULATION OF PROBABILITY OF LOSS OF ASSURED SAFETY
CPLOAS_1.00

SLWL.INP--2WL and 1SL With 2 Internal Components

-10031 Random Number Generator Seed for Monte Carlo Sampling
TRAP SIMP MC IMC Solution Methods

1000000 Number of Monte Carlo Samples

SLWLTH.DAT Time-Temperature History File Name

SL4 2 ©NORMAL 600. 30. Link TempHist FailDistr Mean SD

SL4 1 NORMAL 600. 30. Link TempHist FailDistr Mean 8D

WL 4 NORMAL 270. 15. Link TempHist FailDistr Mean 3D

WL 3 NORMAL 270. 15. Link TempHist FailDistr Mean SD

SLWL.INP--2WL and 1SL With 2 Internal Components

RANDOM NUMBER GENERATOR SEED = -10031

NUMBER OF MONTE CARLO SAMPLES = 1000000
4 TEMPERATURE HISTORIES GENERATED EXTERNALLY (READ FROM FILE SLWLTH.DAT)
4 STRONG LINKS AND WEAK LINKS (TOTAL):

TEMP

LINK HIST DISTRB PAR1 PAR2

SL4 2 NORMAL 6.00E+02 3.00E+01

SL4 1 NORMAL 6.00E+02 3.00E+01

WL 4 NORMAL 2.70E+02 1.50E+01

WL 3 NORMAL 2.70E+02 1.50E+01
SIMPSON TRAPEZOID MONTE CARLO IMPORTANCE
P(FAIL) P (FAIL) P (FAIL) P (FAIL)

7.192E-06 7.192E-06 6.000E-06 6.937E-06
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PROGRAM CPLOAS
C*****CALCULATION OF PROBABILITY OF LOSS OF ASSURED SAFETY
C*****CALCULATE FAILURE PROBABILITY FOR SYSTEM COMPOSED OF STRONG LINKS
C*****AND WEAK LINKS HAVING SPECIFIED FAILURE DISTRIBUTION PARAMETERS AND
Cx***x*ASSOCIATED THERMAL HISTORIES
C***** (1) SERIES FAULTS--FAILURE OF ALL STRONG LINKS BEFORE ANY

Crrxx* WEAK LINK FAILURE RESULTS IN OVERALL FAILURE

C*¥***%(2) PARALLEL FAULTS~-FAILURE OF ANY STRONG LINK BEFORE ANY

CrAxx* WEAK LINK FAILURE RESULTS IN OVERALL FAILURE

Cx**%% (3) SERIES FAULTS WITH INTERNAL COMPONENTS--FAILURE OF ALL

CHrxxx STRONG LINKS BEFORE ANY WEAK LINK FAILURE RESULTS IN

CHxxxx OVERALL FAILURE. EACH STRONG LINK CAN BE COMPOSED OF ONE OR
CHHxx** MORE INTERNAL COMPONENTS WHERE ANY INTERNAL COMPONENT FAILURE
Chxxxk RESULTS IN FAILURE OF THAT STRONG LINK

IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
PARAMETER (MAXTIM=1000, MAXLNK=100, MAXDST=4, MAXFDP=10)
CHARACTER*10 CL, CFD
CHARACTER*10 VSN
CHARACTER*100 TITLE, FILINP, FILOUT, THFILE
LOGICAL TRAP, SIMP, MC, IMC
COMMON /FAILO/ TITLE, FILINP, FILOUT, THFILE, VSN, CL(MAXLNK),
1 CFD (MAXLNK)
COMMON /FAIL1/ ISEED, ILF, NLINK, NTH, NTIME, N,
ITHL (MAXLNK) , ITFD(MAXLNK), NPFD (MAXDST)
COMMON /FAIL2/ DUMMY, PFAILM, PFAILI, PFAILS,
PFAILT, THTIME, TMIN, TMAX,
T (0 :MAXTIM),
TH (0 :MAXTIM, MAXLNK) ,
THMAX (0 : MAXTIM, MAXLNK) ,
TED (MAXFDP, MAXLNK) ,
TFT (MAXFDP, MAXLNK)
COMMON /FAIL3/ TRAP, SIMP, MC, IMC
CHARACTER*200 REC1, REC2
DIMENSION PETMP (4)

-

Y U W N =

o
c
C*x****SET VERSION NUMBER
VSN='1.00"
C*****REQUEST INPUT FILE NAME
WRITE (6,*)  ENTER INPUT FILE NAME--'
C*****READ INPUT FILE NAME
READ(5,1001) FILINP
IC=INDEX (FILINP, ‘.’)
IF (IC .GT. 0) THEN
FILOUT=FILINP(1:IC) // ‘0OUT’
ELSE
IC=INDEX (FILINP, ' )
FILOUT=FILINP (1:IC) // ‘.OUT’
ENDIF
WRITE (6,1101) FILOUT (1:INDEX (FILOUT, Yy-1)
C*****OPEN OUTPUT FILE
OPEN (2, FILE=FILOUT, STATUS=‘UNKNOWN’)
WRITE (2,2001) VSN
C*****READ INPUT PARAMETERS
CALL READI
C*****VALIDATE INPUT PARAMETERS
CALL VALIDI
Cx****INITIALIZE PARAMETERS
CALL INIT
C*****READ LINK THERMAL HISTORIES
CALL RTH
C*x****SET STARTING TIMESTEP INDEX
NTIM=NTIME
IF (N .GE. 0) THEN
NTIMS=NTIME
ELSE
NTIMS=0
ENDIF
C*****{RITE COLUMN HEADINGS
REC1="
REC2="
NPF=1
IF (N .LT. 0) THEN
NC=10
REC2 (6:9)="TIME’
ELSE
NC=1
ENDIF
IF (TRAP) THEN
NPF=NPF + 1
RECI (NC+5:NC+13)=‘TRAPEZOID’

REC2 (NC+6:NC+12)=" PLOAS ‘'
NC=NC + 12
ENDIF

IF (SIMP) THEN
NPF=NPF + 1
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REC1 (NC+6:NC+12)="SIMPSON’
REC2 (NC+6:NC+12)="' PLOAS '
NC=NC + 12
ENDIF
IF (MC) THEN
IF (N .GT. 0) THEN
NPF=NPF + 1
REC1 (NC+4:NC+14) = ‘MONTE CARLO’
REC2 (NC+6 :NC+12)="' PLOAS '
NC=NC + 12
ENDIF
ENDIF
IF (IMC) THEN
IF (N .GT. 0) THEN
NPF=NPF + 1
REC1 (NC+5 :NC+14) = ' IMPORTANCE’
REC2 (NC+6:NC+12)=" PLOAS '
NC=NC + 12
ENDIF
ENDIF
WRITE (2,4001) RECL (1:NC+2), REC2(1:NC)
DO 4000 NTIME=NTIMS,NTIM
CH*******INITIALIZE NUMBER OF FAILURE PROBABILITY CALCULATIONS
NPF=0
C********PRAPEZOTD METHOD USED FOR FAILURE PROBABILITY INTEGRATION
IF (TRAP) THEN
CALL SWLTRP
NPF=NPF + 1
PFTMP (NPF) =PFAILT
ENDIF
CH*¥*%*%*%STMPSON METHOD USED FOR FAILURE PROBABILITY INTEGRATION
IF (SIMP) THEN
CALL SWLSMP
NPF=NPF + 1
PFTMP (NPF) =PFAILS
ENDIF
IF (N .GT. 0) THEN
CH*¥*** k%% **%*MONTE CARLO METHOD USED FOR FAILURE PROBABILITY INTEGRATION
IF (MC) THEN
CALL SWLMC
NPF=NPF + 1
PFTMP (NPF) =PFATLM
ENDIF
C*% % %K%k %4 % * IMPORTANCE-WEIGHTED MONTE CARLO METHOD USED FOR
CH** ¥k **x%%*FAILURE PROBABILITY INTEGRATION
IF (IMC) THEN
CALL SWLIMC
NPF=NPF + 1
PFTMP (NPF) =PFAILI
ENDIF
ENDIF
IF (N .LT. 0) THEN
WRITE (2,5001) T(NTIME), (PFTMP(I),I=1,NPF)
ELSE
WRITE(2,5002) (PFTMP(I),I=1,NPF)
ENDIF
4000 CONTINUE
CLOSE (1)
CLOSE (2)
sToP
C*****FORMAT STATEMENTS
1001 FORMAT ( (A))
1101 FORMAT (2X,’ RESULTS WRITTEN TO ‘',A)
2001 FORMAT (10X,’ CALCULATION OF PROBABILITY OF LOSS OF ASSURED ‘',
1 \SAFETY' ,
2 /30X,’ CPLOAS ‘,A)
4001 FORMAT(//A,/A)
5001 FORMAT (1X,0PF10.3,1P8E12.3E3)
5002 FORMAT (3X,1PS8E12.3E3)
END
FUNCTION FFAIL (TSLF)
C*****FATLURE PROBABILITY FUNCTION FOR CURRENT SET OF THERMAL HISTORY
C*****CURVES AND STRONG/WEAK LINK FAILURE PARAMETERS
C*****USING EITHER SIMPSON OR TRAPEZOID INTEGRATION METHODS
C#**%% (1) SERIES FAULTS--FAILURE OF ALL STRONG LINKS BEFORE ANY
Cedekns WEAK LINK FAILURE RESULTS IN OVERALL FAILURE
CH**%%(2) PARALLEL FAULTS--FAILURE OF ANY STRONG LINK BEFORE ANY
CHakxs WEAK LINK FAILURE RESULTS IN OVERALL FAILURE
CH%%%% (3) SERIES FAULTS WITH INTERNAL COMPONENTS--FAILURE OF ALL
CH¥kxx STRONG LINKS BEFORE ANY WEAK LINK FAILURE RESULTS IN
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Crxknk OVERALL FAILURE. EACH STRONG LINK CAN BE COMPOSED OF ONE OR
Chakrk MORE INTERNAL COMPONENTS WHERE ANY INTERNAL COMPONENT FAILURE
CHxkxx RESULTS IN FAILURE OF THAT STRONG LINK
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
PARAMETER (MAXTIM=1000, MAXLNK=100, MAXDST=4, MAXFDP=10)
CHARACTER*10 CL, CFD
CHARACTER*10 VSN
CHARACTER*100 TITLE, FILINP, FILOUT, THFILE
COMMON /FAILO/ TITLE, FILINP, FILOUT, THFILE, VSN, CL(MAXLNK),
1 CFD (MAXLNK)
COMMON /FAIL1/ ISEED, ILF, NLINK, NTH, NTIME, N,
ITHL (MAXLNK) , ITFD(MAXLNK), NPFD (MAXDST)
COMMON /FAIL2/ DUMMY, PFAILM, PFAILI, PFAILS,
PFAILT, THTIME, TMIN, TMAX,
T (0 :MAXTIM) ,
TH (0 : MAXTIM, MAXLNK) ,
THMAX (0 : MAXTIM, MAXLNK) ,
TFD (MAXFDP , MAXLNK) ,
TFT (MAXEDP , MAXLNK)
COMMON /FCALL/ NCALL
C**+**UNIFORM STATEMENT FUNCTION
FU (RMN,RMX)=1.0D0 / (RMX - RMN)
C*****LOGUNIFORM STATEMENT FUNCTION
FLU (RMN,RMX)=1.0D0 / TSLF / (RMX - RMN)
C*****NORMAL STATEMENT FUNCTION
FN (RMN, SD) =EXP (-0 . 5D0* ( (TSLF-RMN) /SD) **2) /
1 SD / SQRT(2.0D0*3.141592654D0)
C*****L,OGNORMAL STATEMENT FUNCTION
FLN (RMN, SD) =EXP (~0 . 5D0* ( (LOG (TSLF) -RMN) /SD) **2) /
1 SD / SQRT(2.0D0*3.141592654D0) / TSLF

fury

o awWwN =

c
c
C***+*INCREMENT NUMBER OF FUNCTION CALLS
NCALL=NCALL + 1
CH*****INITIALIZE FAILURE PROBABILITY
FFAIL=0.0DO
C*****[OOP OVER ALL LINKS
DO 4000 ILINK=1,NLINK
CH********DROCESS STRONG LINKS ONLY
IF (CL(ILINK) (1:2) .NE. ‘SL’) GO TO 4000
C********CHECK IF SL FAILURE TEMPERATURE OUTSIDE TABLE RANGE
IF (TSLF .LT. TH(O,ITHL(ILINK))) GO TO 4000
C*¥*******EVALUATE DISTRIBUTION DENSITY FUNCTION FOR CURRENT SL
IF (ITFD(ILINK) .EQ. 1) THEN
IF (TSLF .LT. TFT(l,ILINK)) THEN
PSLF=0.0D0
ELSEIF (TSLF .GT. TFT(2,ILINK)) THEN
PSLF=1.0D0
ELSE
PSLF=FU (TFT (1,ILINK), TFT(2,ILINK))
ENDIF
ELSEIF (ITFD(ILINK) .EQ. 2) THEN
PSLF=FN (TFT (1,ILINK), TFT(2,ILINK))
ELSEIF (ITFD(ILINK) .EQ. 3) THEN
IF (LOG(TSLF) .LT. TFT(1,ILINK)) THEN
PSLF=0.0D0
ELSEIF (LOG(TSLF) .GT. TFT(2,ILINK)) THEN
PSLF=1.0D0
ELSE
PSLF=FLU (TFT(1,ILINK), TFT(2,ILINK))
ENDIF
ELSEIF (ITFD(ILINK) .EQ. 4) THEN
PSLF=FLN (TFT(1,ILINK), TFT(2,ILINK))
ENDIF
C*¥***k**+*INTERPOLATE SL FAILURE TIME
DO 1000 ITIME=1,NTIME
IF (TH(ITIME,ITHL(ILINK)) .GT. TSLF) THEN
TIMSLF=T (ITIME-1) + (T(ITIME) - T(ITIME-1)) *

1 (TSLF - TH(ITIME-1,ITHL(ILINK))) /
2 (TH (ITIME, ITHL (ILINK)) -
3 TH (ITIME-1, ITHL (ILINK)))
GO TO 1100
ENDIF
1000 CONTINUE
C********DTSCONTINUE CURRENT FAILURE PROBABILITY ACCUMULATION
GO TO 4000
1100 CONTINUE

Cx*k***k**TRANSFER STRONG LINK FAILURE TIME TO LINK FAILURE TIME
TIMLF=TIMSLF
CH****x+*x*L,OOP OVER ALL LINKS EXCEPT CURRENT STRONG LINK
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DO 3000 ILINKl=1,NLINK
CH***%x*x*+*CHECK FOR CURRENT STRONG LINK
IF (ILINK1 .EQ. ILINK) GO TO 3000
CH*** %%k *x*CALCULATE SL OR WL FAILURE TEMPERATURE BASED ON
CH***xrxkxxx*SL, FAILURE TIME
TLF=0.0D0
DO 2000 ITIME=1,NTIME
IF (T(ITIME) .GT. TIMLF) THEN
TLF=TH (ITIME-1, ITHL (ILINK1)) +
. (TH (ITIME, ITHL (ILINK1)) -
TH(ITIME-1,ITHL(ILINK1))) *
(TIMLF -~ T(ITIME-1)) /
(T(ITIME) - T(ITIME-1))
TLF=MAX (TLF, THMAX(ITIME-1,ITHL(ILINK1)))
GO TO 2100
ENDIF
2000 CONTINUE
C***k****x***DISCONTINUE CURRENT FAILURE PROBABILITY ACCUMULATION
GO TO 4000
2100 CONTINUE
IF ((ITFD(ILINK1) .EQ. 1) .OR.
1 (ITFD (ILINK1) .EQ. 3)) THEN
CH¥* Xk X dk ¥ k%% *CONVERSION FOR LOGUNIFORM

IF (ITFD(ILINK1) .EQ. 3) TLF=LOG (TLF)

IF (TLF .GE. TFT(2,ILINK1)) THEN
Ch*dkkkkkrkk*kxk**MINIMUM FAILURE TEMPERATURE ABOVE UNIFORM INTERVAL SO
Cr**kakkkkkh k4% ***PROBABILITY IS 0.0 OF EXCEEDING FAILURE TEMPERATURE

PLF=0.0D0

ELSEIF (TLF .LE. TFT(1,ILINK1)) THEN
CHr*hhkkktkh******MINIMUM FAILURE TEMPERATURE BELOW UNIFORM INTERVAL SO
CH%¥xkxkxddk**x****DROBABILITY IS 1.0 OF EXCEEDING FAILURE TEMPERATURE

PLF=1.0D0

ELSE

Ch*k*xkrkddk******CALCULATE SL OR WL FAILURE PROBABILITY
PLF=(TFT (2,ILINK1) -TLF) /

W

1 (TFT(2,ILINK1)-TFT(1,ILINK1))
ENDIF
ELSEIF ((ITFD(ILINKl1l) .EQ. 2) .OR.
1 (ITFD(ILINK1l) .EQ. 4)) THEN

CHhHkkxkkkxkkk**CONVERSION FOR LOGNORMAL
IF (ITFD(ILINK1) .EQ. 4) TLF=LOG (TLF)
CH***¥kdk*x+***CALCULATE NUMBER OF STD DEV LINK FAILURE TEMPERATURE IS
CH**k¥k%k*k¥*¥**FROM MEAN FAILURE TEMPERATURE
SD=(TLF-TFT (1,ILINK1)) / TFT(2,ILINK1)
IF (ILF .EQ. 3) THEN
IF (CL(ILINKl) .EQ. CL(ILINK)) THEN
Crakkk* ¥k hkkk* X% %% ¥+ ¥*CATLCULATE NON-FAILURE PROBABILITY
PLF=ERFCC (SD/SQRT (2.0D0)) /2.0D0
ELSEIF (CL(ILINK1) (1:2) .EQ. ‘WL’) THEN
CHrkr Kk Nk kA kK *kk ¥k ¥k ¥CALCULATE NON-FAILURE PROBABILITY
PLF=ERFCC (SD/SQRT (2. 0D0) ) /2.0D0
ELSE
CHR*khkxkhhkk*k**k**¥CHECK FOR MULTI-COMPONENT SL ALREADY PROCESSED
C********************LOOP OVER PREVIOUS LINKS
DO 2200 ILINK2=1,ILINK1-1
IF (CL(ILINK2) .EQ. CL(ILINK1l)) GO TO 3000
2200 CONTINUE
CHxkkkkkhkkxk*hx+**¥*¥ALL, INTERNAL COMPONENTS FOR CURRENT SL
c********************PROCESSED AT ONE TID‘E
PFO=1.0D0
PLF=ERFCC (-SD/SQRT (2.0D0) ) /2.0D0
C********************LOOP OVER SU'BSEQU'ENT LINKS
DO 2800 ILINK2=ILINK1+1,NLINK
IF (CL(ILINK2) .EQ. CL(ILINK1)) THEN
CHE*ERIFRXARNI XK KA * XK * k% **CALCULATE SL COMPONENT FAILURE TEMPERATURE
c**************************BASED ON FAILURE TIME
TLF=0.0D0
DO 2400 ITIME=1,NTIME
IF (T(ITIME) .GT. TIMLF) THEN
TLF=TH (ITIME-1,ITHL (ILINK2)) +
(TH (ITIME, ITHL (ILINK2)) -
TH(ITIME-1,ITHL(ILINK2))) *
(TIMLF - T(ITIME-1)) /
(T(ITIME) - T(ITIME-1))
TLF=MAX (TLF,
THMAX (ITIME-1, ITHL (ILINK2)))
GO TO 2500
ENDIF
2400 CONTINUE
CHE*kA* xRk kA hk Rk k k4% X% ****DISCONTINUE CURRENT FAILURE PROBABILITY

o= W

-
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Chrhkkhdhkhhhkdkkkhkdkhkrkx**ACCUMULATION

GO TO 2800
2500 CONTINUE

PFO=PFO * ERFCC(SD/SQRT (2.0D0))/2.0D0
c**************************CONVERSION FOR LOGNORMAL

IF (ITFD(ILINK2) .EQ. 4) TLF=LOG(TLF)
Chxkdkkhdkhkkkkkdkhkkkkkkkk**¥**CALCULATE NUMBER OF STD DEV LINK FAILURE
ChkkkhkkkAX* XXX XXX ¥ X kXXX %X **TEMPERATURE IS FROM MEAN FAILURE TEMPERATURE

SD=(TLF-TFT (1,ILINK2)) / TFT(2,ILINK2)

PFN=ERFCC (-SD/SQRT (2.0D0) ) /2.0D0

PLF=PLF + PFN*PFO

ENDIF
2800 CONTINUE
ENDIF
ELSEIF ((ILF .EQ. 1) .AND.
1 (CL(ILINK1) (1:2) .EQ. ‘SL’)) THEN

Chrkakxkskkkkkh***CALCULATE FAILURE PROBABILITY
PLF=ERFCC (-SD/SQRT (2.0D0)) /2.0D0
ELSE
Cr¥kkkkkkk*kk*k*+**CALCULATE NON-FAILURE PROBABILITY
PLF=ERFCC (SD/SQRT (2.0D0) ) /2.0D0
ENDIF
ENDIF
Cr**k*k***x**xACCUMULATE PRODUCT OF FAILURE PROBABILITY
PSLF=PSLF * PLF
3000 CONTINUE
Ck*%**%***ACCUMULATE FAILURE PROBABILITY
FFAIL=FFAIL + PSLF
4000 CONTINUE
RETURN
END
SUBROUTINE SWLSMP
Ck****SIMPSONS RULE INTEGRATIONS
C****% (NUMERICAL RECIPES IN FORTRAN (2ND ED), P. 133, SUB QSIMP)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
PARAMETER (MAXTIM=1000, MAXLNK=100, MAXDST=4, MAXFDP=10)
PARAMETER (EPS=1.0D-6, JMAX=20)
COMMON /FAIL2/ DUMMY, PFAILM, PFAILI, PFAILS,
PFAILT, THTIME, TMIN, TMAX,
T (0 :MAXTIM) ,
TH (0 : MAXTIM, MAXLNK) ,
THMAX (0 : MAXTIM, MAXLNK) ,
TFD (MAXFDP ,MAXLNK) ,
TFT (MAXFDP ,MAXLNK)
COMMON /FCALL/ NCALL
EXTERNAL FFAIL

ok WwWwNE

Cc
c
C*****INITIALIZE VALUES
NCALL=0
0ST=-1.0D30
08=-1.0D30
DO 1000 J=1,JMAX
CALL TRAPZD (FFAIL, TMIN, TMAX, ST, J)
S=(4.0D0*ST-OST) / 3.0D0
IF (ABS(S-0S) .LT. EPS*ABS(0S)) THEN
PFAILS=S
RETURN
ENDIF
IF ((J .GT. 6) .AND. (S .EQ. 0.0D0) .AND. (0OS .EQ. 0.0D0)) THEN
PFAILS=S
RETURN
ENDIF
0S=8
OST=ST
1000 CONTINUE
PFAILS=S
RETURN
END
SUBROUTINE SWLTRP
C*****TRAPEZOIDAL RULE INTEGRATION
C***** (NUMERICAL RECIPES IN FORTRAN (2ND ED), P. 131, SUB QTRAP)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
PARAMETER (MAXTIM=1000, MAXLNK=100, MAXDST=4, MAXFDP=10)
PARAMETER (EPS=1.0D-6, JMAX=20)
COMMON /FATL2/ DUMMY, PFAILM, PFAILI, PFAILS,
PFAILT, THTIME, TMIN, TMAX,
T (0 :MAXTIM) ,
TH (0 : MAXTIM, MAXLNK) ,
THMAX (0 :MAXTIM, MAXLNK) ,

& WN =
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5 TFD (MAXFDP ,MAXLNK) ,
6 TFT (MAXFDP ,MAXLNK)
COMMON /FCALL/ NCALL
EXTERNAL FFAIL
[
[}
C*****INITIALIZE OLD VALUE FOR S
NCALL=0
08=-1.0D30
DO 1000 J=1,JMAX
CALL TRAPZD (FFAIL, TMIN, TMAX, S, J)
IF (ABS(S-0S) .LT. EPS*ABS(0S)) THEN
PFAILT=S
RETURN
ENDIF
IF ((J .GT. 6) .AND. (S .EQ. 0.0D0) .AND. (OS .EQ. 0.0D0)) THEN
PFAILT=S
RETURN
ENDIF
08=s
1000 CONTINUE
PFAILT=S
RETURN
END
SUBROUTINE TRAPZD (FUNC, A, B, §, N)
C*****COMPUTE NTH STAGE OF REFINEMENT OF EXTENDED TRAPEZOIDAL RULE
C*****FUNC IS THE NAME OF THE FUNCTION TO BE INTEGRATED OVER [A,B]
Cx**%*N=1]--CALCULATE S
C*****N>]1--IMPROVE ACCURACY OF S BY ADDING 2** (N-2) INTERIOR POINTS
C***%*g SHOULD NOT BE MODIFIED BETWEEN SEQUENTIAL CALLS
C***** (NUMERICAL RECIPES IN FORTRAN (2ND ED), P. 131, SUB TRAPZD)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
EXTERNAL FUNC
c
c
IF (N .EQ. 1) THEN
C********CALCULATE INTEGRAL S
S=0.5D0* (B-A) * (FUNC (A) + FUNC(B))
ELSE
IT=2%* (N-2)
TNM=FLOAT (IT)
DEL=(B-A) / TNM
X=A + 0.5DO*DEL
SUM=0.0D0
DO 1000 J=1,IT
SUM=SUM + FUNC(X)
X=X + DEL
1000 CONTINUE
C********CALCULATE INTEGRAL S
S=0.5D0 * (S+(B-A) *SUM/TNM)
ENDIF
RETURN
END
SUBROUTINE SWLIMC
C*****CALCULATE IMPORTANCE-WEIGHTED MONTE CARLO FAILURE PROBABILITY
C*****FOR CURRENT SET OF THERMAL HISTORY CURVES AND STRONG/WEAK LINK
C*****FATLURE PARAMETERS
IMPLICIT DOUBLE PRECISION (A-H, 0-2)
PARAMETER (MAXTIM=1000, MAXLNK=100, MAXDST=4, MAXFDP=10)
CHARACTER*10 CL, CFD
CHARACTER*10 VSN
CHARACTER*100 TITLE, FILINP, FILOUT, THFILE
COMMON /FAILO/ TITLE, FILINP, FILOUT, THFILE, VSN, CL(MAXLNK),
1 CFD (MAXLNK) )
COMMON /FAIL1/ ISEED, ILF, NLINK, NTH, NTIME, N,
ITHL (MAXLNK) , ITFD(MAXLNK), NPFD(MAXDST)
COMMON /FAIL2/ DUMMY, PFAILM, PFAILI, PFAILS,
PFAILT, THTIME, TMIN, TMAX,
T (0:MAXTIM) ,
TH (0 :MAXTIM,MAXLNK) ,
THMAX (0 :MAXTIM, MAXLNK) ,
TFD (MAXFDP ,MAXLNK) ,
TFT (MAXFDP , MAXLNK)
DIMENSION TFAIL (MAXLNK)
LOGICAL USED (MAXLNK)
DATA NSDI / 30 /

[
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Cc

[+

C*#****INITIALIZE OVERALL FATLURE PROBABILITY
PFAILI=0.0D0O
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C*****LOOP OVER NUMBER OF MONTE CARLO SAMPLES
DO 9000 I=1,N

C*x*xx***INITIALIZE MAXIMUM SL FAILURE TIME

TSLFMX=0.0D0
CH*x*x*x**INITIALIZE MINIMUM SL FAILURE TIME

TSLEMN=T (NTIME)
C#*******INITIALIZE MINIMUM WL FAILURE TIME

TWLEMN=T (NTIME)
C********INITIALIZE FAILURE PROBABILITY

PF=1.0D0
CH******+LOOP OVER ALL LINKS

DO 8000 ILINK=1,NLINK
CH**kx******SAMPLE FAILURE TEMPERATURE

IF ((ITFD(ILINK) .EQ. 1) .OR. (ITFD(ILINK) .EQ. 3)) THEN
CHx*kxkxkkkxx**UNIFORM AND LOGUNIFORM DISTRIBUTIONS
CH*kkxxkkkkrkr* (JPPER RIGHT TRIANGULAR SAMPLING FOR WL AND
CHxrkxktkrktrx* (LOWER RIGHT TRIANGULAR SAMPLING FOR SL)
IF (CL(ILINK)(1:2) .EQ. ‘SL’) THEN
TLF=TFT (2, ILINK) -

1 (RAN3M (1) * (TFT (2, ILINK) —-TFT (1, ILINK) ) **2) **0 . 5D0
PLF=(TFT (2, ILINK) -TFT (1, ILINK)) /
1 (2.0D0* (TFT (2, ILINK) -TLF) )
ELSE
TLF=TFT (1, ILINK) +
1 (RAN3M (1) * (TFT (2, ILINK) -TFT (1, ILINK) ) **2) **0, 5D0
PLF=(TFT (2, ILINK) -TFT (1, ILINK)) /
1 (2.0D0* (TLF-TFT (1, ILINK)))
ENDIF

Chrrdddkkh*xx**LOGUNIFORM CONVERSION
IF (ITFD(ILINK) .EQ. 3) TLF=EXP(TLF)
ELSEIF ((ITFD(ILINK) .EQ. 2) .OR. (ITFD(ILINK) .EQ. 4)) THEN
Chr ¥k kkkx*k**k***NORMAL AND LOGNORMAL DISTRIBUTIONS
Ch*kkkkkkkkk¥**x (JNIFORM SAMPLING ON STD DEV)
SD=FLOAT (-NSDI) + FLOAT (2*NSDI) *RAN3M(1)
TLF=TFT(1,ILINK) + SD*TFT(2,ILINK)
PLF=SNORM(SD) * FLOAT (2*NSDI)
CHkkkkdddkddk**+*LOGNORMAL CONVERSION
IF (ITFD(ILINK) .EQ. 4) TLF=EXP(TLF)
ENDIF
Cx******x****CALCULATE FAILURE TIME BASED ON FAILURE TEMPERATURE
Crxxxkx*k+*x*CHECK IF FAILURE TEMPERATURE OUTSIDE TABLE RANGE
IF (TLF .LT. TH(O0,ITHL(ILINK))) GO TO 9000
C****xk*xxx***INTERPOLATE FAILURE TIME
TIMLF=0.0D0
DO 7000 ITIME=1,NTIME
IF (TH(ITIME,ITHL(ILINK)) .GE. TLF) THEN
TIMLF=T (ITIME-1) + (T(ITIME) - T(ITIME-1)) *

1 (TLF - TH(ITIME-1,ITHL(ILINK))) /
2 (TH (ITIME, ITHL (ILINK) ) -
3 TH(ITIME-1, ITHL (ILINK)))
GO TO 7100
ENDIF
7000 CONTINUE
GO TO 9000
7100 CONTINUE

CH***kxkx***SAVE MINIMUM AND MAXIMUM FAILURE TIMES
IF (CL(ILINK) (1:2) .EQ. ‘SL’) THEN
CHrakkxkkk***k***SAVE SL FAILURE TIME
TFAIL (ILINK)=TIMLF
CH**kxkkk*xt***SAVE MINIMUM SL FAILURE TIME
TSLFMN=MIN (TSLFMN, TIMLF)
CHx*kxdkkkkxk**SAVE MAXIMUM SL FAILURE TIME
TSLFMX=MAX (TSLEMX, TIMLF)
ELSE
Crikxkkkkkx 4k **SAVE MINIMUM WL FAILURE TIME
TWLEMN=MIN (TWLEMN, TIMLF)
ENDIF
PF=PF * PLF
8000 CONTINUE
IF (ILF .EQ. 1) THEN
CHrrx k¥ k%x***COMPARE MAXIMUM SL FAILURE TIME TO MINIMUM WL FAILURE TIME
IF (TSLFMX .LE. TWLFMN) PFAILI=PFAILI + PF
ELSEIF (ILF .EQ. 2) THEN
CH****k%****COMPARE MINIMUM SL FAILURE TIME TO MINIMUM WL FAILURE TIME
IF (TSLFMN .LE. TWLFMN) PFAILI=PFAILI + PF
ELSEIF (ILF .EQ. 3) THEN
Cr#x*xxk*x**INITIALIZE USED FLAGS FOR EACH LINK
DO 8100 ILINK=1,NLINK
USED (ILINK)=.FALSE.
8100 CONTINUE
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TSLFMX=-1.0D30
DO 8300 ILINK=1,NLINK
IF (CL(ILINK)(1:2) .EQ. ‘SL’) THEN
IF (.NOT. USED(ILINK)) THEN
TSLFMN=TFAIL (ILINK)
DO 8200 ILINK1=ILINK+1,NLINK
IF (CL(ILINK) .EQ. CL(ILINK1)) THEN
TSLFMN=MIN (TSLFMN, TFAIL (ILINK1))
USED (ILINK)=.TRUE.

ENDIF
8200 CONTINUE
TSLFMX=MAX (TSLFMX, TSLFMN)
ENDIF
ENDIF
8300 CONTINUE
IF (TSLFMX .LE. TWLFMN) PFAILI=PFAILI + PF

ENDIF
9000 CONTINUE
C*****CALCULATE FATLURE PROBABILITY
PFAILI=PFAILI / FLOAT (N)
RETURN
END
SUBROUTINE READI
C*****READ INPUT PARAMETERS
IMPLICIT DOUBLE PRECISION (A-H, 0-2)
PARAMETER (MAXTIM=1000, MAXLNK=100, MAXDST=4, MAXFDP=10)
CHARACTER*10 CL, CFD
CHARACTER*10 VSN
CHARACTER*100 TITLE, FILINP, FILOUT, THFILE
LOGICAL TRAP, SIMP, MC, IMC
COMMON /FAILO/ TITLE, FILINP, FILOUT, THFILE, VSN, CL(MAXLNK),
1 CFD (MAXLNK)
COMMON /FAIL1/ ISEED, ILF, NLINK, NTH, NTIME, N,
ITHL (MAXLNK) , ITFD (MAXLNK), NPFD (MAXDST)
COMMON /FAIL2/ DUMMY, PFAIIM, PFAILI, PFAILS,
PFAILT, THTIME, TMIN, TMAX,
T (0:MAXTIM) ,
TH (0 :MAXTIM,MAXLNK) ,
THMAX (0 : MAXTIM, MAXINK) ,
TFD (MAXFDP , MAXLNK) ,
TFT (MAXFDP , MAXLNK)
COMMON /FAIL3/ TRAP, SIMP, MC, IMC
CHARACTER*130 REC

[

Uk wNh R

c
c
C*****OPEN INPUT FILE
OPEN (1, FILE=FILINP, STATUS='‘OLD', ERR=9100)
C*****NUMBER OF FAILURE DISTRIBUTION PARAMETERS (UNIFORM)
C*****MINIMUM, MAXIMUM
NPFD (1) =2
C*****NUMBER OF FAILURE DISTRIBUTION PARAMETERS (NORMAL)
C*****MEAN, SIGMA
NPFD (2) =2
C*****NUMBER OF FAILURE DISTRIBUTION PARAMETERS (LOGUNIFORM)
Cr** ¥ *MINIMUM, MAXIMUM
NPFD (3) =2
C*****NUMBER OF FAILURE DISTRIBUTION PARAMETERS (LOGNORMAL)
C*****MEDIAN, BETA
NPFD (4) =2
C*****READ AND WRITE INPUT PARAMETER FILE RECORDS TO OUTPUT FILE
WRITE (2,*)
WRITE (2,*)
1000 CONTINUE
READ (1,1001,END=3000) REC
DO 2000 IC=LEN(REC),1,-1

IF (REC(IC:IC) .NE. ‘' ‘) THEN
WRITE (2,1002) REC(1:IC)
GO TO 2100

ENDIF

2000 CONTINUE
WRITE (2,1002) REC(1:1)
2100 CONTINUE
GO TO 1000
3000 CONTINUE
REWIND 1
C*****READ TITLE RECORD
READ {1,1001,ERR=9200,END=9300) TITLE
C***+**READ RANDOM NUMER GENERATOR SEED
READ (1, *,ERR=9200, END=9300) ISEED
C*****READ SOLUTION OPTIONS
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READ (1,1001,ERR=9200,END=9300) REC
REC=" ‘//REC

IF (INDEX(REC,’ TRAP ‘) .GT. 0) THEN
TRAP=.TRUE.

ELSE
TRAP=.FALSE.

ENDIF

IF (INDEX(REC,’ SIMP ‘) .GT. 0) THEN
SIMP=.TRUE.

ELSE
SIMP=.FALSE.

ENDIF

IF (INDEX(REC,’ MC ‘) .GT. 0) THEN
MC=.TRUE.

ELSE
MC=.FALSE.

ENDIF

IF (INDEX(REC,’ IMC ‘') .GT. 0) THEN
IMC=.TRUE.

ELSE
IMC=.FALSE.

ENDIF

C*****READ NUMBER OF MONTE CARLO SAMPLES PER OBSERVATION
READ (1, *,ERR=9200,END=9300) N
C*****READ LINK FAILURE OPTION
READ (1,*,ERR=9200,END=9300) ILF
C*****READ LINK THERMAL HISTORY FILE NAME
READ (1, *,ERR=9200,END=9300) THFILE
Cx***x*INITIALIZE NUMBER OF LINKS
NLINK=0
4000 CONTINUE
C*****READ LINK PARAMETERS RECORD
READ(1,1001,ERR=9200,END=5000) REC
C*****CHECK FOR BLANK RECORD
IF (REC .NE. ‘' ‘) THEN
Ch**k*xk**INCREMENT NUMBER OF LINKS
NLINK=NLINK + 1
Ch**x4x*x*x*PARSE CURRENT LINK RECORD
Cx***xx**+LINK LABEL ( ‘SLxxxxxxxx’ OR ‘WLXXXXXXxx’),
Ch*dkxdx**],TNK THERMAL HISTORY INDEX,
C********FATLURE DISTRIBUTION LABEL,
Ch¥x*****FPATLURE DISTRIBUTION PARAMETERS
IC=0
4100 CONTINUE
Ic=IC + 1
IF (REC(IC:IC) .EQ. ' ‘) GO TO 4100
1Cl=IC
4200 CONTINUE
IC1=ICl + 1
IF (REC(IC1l:ICl) .NE. ' ‘) GO TO 4200
C********TRANSFER CURRENT LINK LABEL
CL (NLINK)=REC (IC:IC1l-1)
IC=ICl
4300 CONTINUE
IC=IC + 1
IF (REC(IC:IC) .EQ. ' ‘) GO TO 4300
IC1=IC
4400 CONTINUE
ICl=ICl + 1
IF (REC(IC1:ICl1l) .NE. ' ') GO TO 4400
CH*******TRANSFER THERMAL HISTORY INDEX
READ (REC (IC:IC1l),®,ERR=9200) ITHL (NLINK)
IC=ICl
4500 CONTINUE
IC=IC + 1
IF (REC(IC:IC) .EQ. ' ') GO TO 4500
ICl=IC
4600 CONTINUE
ICl=1ICl + 1
IF (REC(IC1l:ICl) .NE. ' ‘) GO TO 4600
CH**x**x**TRANSFER FAILURE DISTRIBUTION LABEL FOR CURRENT LINK
CFD (NLINK)=REC (IC:IC1l-1)
Chx**x%x*SET FATLURE DISTRIBUTION INDEX BASED ON LABEL
IF (CFD(NLINK) .EQ. ‘UNIFORM’) THEN
ITFD (NLINK)=1
ELSEIF (CFD(NLINK) .EQ. ‘NORMAL’') THEN
ITFD (NLINK)=2
ELSEIF (CFD(NLINK) .EQ. ‘LOGUNIFORM’') THEN
ITFD (NLINK)=3
ELSEIF (CFD(NLINK) .EQ. ‘LOGNORMAL’) THEN
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ITFD (NLINK)=4
ELSE
ITFD (NLINK)=0
ENDIF
C***++%**READ FAILURE DISTRIBUTION PARAMETERS FOR CURRENT LINK IF
C*%%*****VALTD FATLURE DISTRIBUTION HAS BEEN SPECIFIED
IF (ITFD(NLINK) .GT. 0) READ(REC(ICl:),*,ERR=09200)
1 (TFD (I,NLINK) ,I=1,NPFD (ITFD (NLINK)))
ENDIF
GO TO 4000
5000 CONTINUE
C*****CLOSE INPUT FILE
CLOSE (1)
C*****RESET RANDOM NUMBER GENERATOR SEED TO NEGATIVE VALUE SINCE
C*****CALL TO RAN3M() REQUIRES A NEGATIVE ARGUMENT FOR INITIALIZATION
IF (ISEED .GT. 0) ISEED=-ISEED
C*****INITIALIZE RANDOM NUMBER GENERATOR
DUMMY=RAN3M (ISEED)
RETURN
9100 CONTINUE
C*****UNABLE TO OPEN INPUT FILE
WRITE (2,9101) FILINP(1:INDEX(FILINP,” ‘))
WRITE (2,9001)
WRITE (6,9001)
sTOP
9200 CONTINUE
C***+**ERROR ENCOUNTERED WHILE ATTEMPTING TO READ INPUT FILE
WRITE (2,9201) FILINP(1:INDEX(FILINP,’ ‘))
WRITE (2, 9001)
WRITE (6,9001)
STOP
9300 CONTINUE
C*%***EOF ENCOUNTERED WHILE ATTEMPTING TO READ INPUT FILE
WRITE (2,9301) FILINP(1:INDEX(FILINP,’ ‘))
WRITE (2,9001)
WRITE (6,9001)
STOP
CH****FORMAT STATEMENTS
1001 FORMAT((A))
1002 FORMAT( (1X,A))
9001 FORMAT(/’ >>>>>EXECUTION TERMINATED DUE TO INPUT ERROR(S)’)
9101 FORMAT (® >>>>>UNABLE TO OPEN INPUT FILE--',A)
9201 FORMAT (' >>>>>ERROR ENCOUNTERED WHILE ATTEMPTING TO READ °,

1 ‘INPUT FILE--',3)

9301 FORMAT (‘ >>>>>EOF ENCOUNTERED WHILE ATTEMPTING TO READ °,
1 ‘INPUT FILE--',A)
END

SUBROUTINE VALIDI
C*****YALIDATE INPUT PARAMETERS
IMPLICIT DOUBLE PRECISION (A-H, 0-2)
PARAMETER (MAXTIM=1000, MAXLNK=100, MAXDST=4, MAXFDP=10)
CHARACTER*10 CL, CFD
CHARACTER*10 VSN
CHARACTER*100 TITLE, FILINP, FILOUT, THFILE
COMMON /FAILO/ TITLE, FILINP, FILOUT, THFILE, VSN, CL(MAXLNK),
1 CFD (MAXLNK)
COMMON /FAIL1l/ ISEED, ILF, NLINK, NTH, NTIME, N,
ITHL (MAXLNK) , ITFD (MAXLNK), NPFD (MAXDST)
COMMON /FAIL2/ DUMMY, PFAILM, PFAILI, PFAILS,
PFAILT, THTIME, TMIN, TMAX,
T(0:MAXTIM),
TH (0 :MAXTIM,MAXLNK) ,
THMAX (0 : MAXTIM,MAXLNK) ,
TFD (MAXFDP,MAXLNK) ,
TFT (MAXFDP , MAXT.NK)
CHARACTER*15 CLF(3)
CHARACTER*1000 REC
LOGICAL ERR

=
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DATA CLF / ‘SERIES FAULT', ‘PARALLEL FAULT’, ‘SERIES IC FAULT’' /
c
c
C***+*INITIALIZE ERROR FLAG
ERR=.FALSE.
C*****WRITE INPUT PARAMETERS TO OUTPUT FILE
WRITE (2, *)
WRITE (2, *)

C*****HRITE TITLE
WRITE (2,1002) TITLE

C*****WRITE RANDOM NUMBER GENERATOR SEED
WRITE (2,1003) ISEED
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C*****WRITE NUMBER OF MONTE CARLOS SAMPLES PER OBSERVATIONS
IF (N .LE. 0) THEN
WRITE (2,1011)
ELSE
WRITE (2,1012) N
ENDIF
C*****WRITE LINK FAILURE OPTION
IF ((ILF .GE. 1) .AND. (ILF .LE. 3)) THEN
WRITE (2,1005) ILF, CLF(ILF)

ELSE
WRITE(2,1201) ILF
ERR=.TRUE.

ENDIF

C***%*OPEN THERMAL HISTORY FILE
OPEN (1, FILE=THFILE, STATUS=‘OLD’, ERR=9100)
C*****READ TITLE RECORD
READ (1,1001) REC
C*****READ FIRST RECORD CONTAINING TIME VALUE AND
C*****LINK THERMAL HISTORY TEMPERATURE VALUES
READ (1,1001) REC
C*****INITTALIZE NUMBER OF THERMAL HISTORIES
CH*%%% (FIRST COLUMN ON THERMAL HISTORY FILE IS TIME)
NTH=-1
C*****INTTTALIZE CHARACTER INDEX
1C=0
4100 CONTINUE
IC=IC + 1
IF (IC .GT. LEN(REC)) GO TO 5000
IF (REC(IC:IC) .EQ. ' ') GO TO 4100
C**%**TNCREMENT NUMBER OF THERMAL HISTORIES
NTH=NTH + 1
4200 CONTINUE
IC=IC + 1
IF (REC(IC:IC) .NE. ‘' ‘) GO TO 4200
GO TO 4100
5000 CONTINUE
C*****REWIND LINK THERMAL HISTORY FILE
REWIND 1
C*****WRITE NUMBER OF LINK THERMAL HISTORIES AND
C*****LINK THERMAL HISTORIES FILE NAME
WRITE (2,1006) NTH, THFILE (1:INDEX(THFILE,’ Y)-1)
IF (NTH .LT. 1) THEN
WRITE (2,1301)
ERR=. TRUE.
ELSEIF (NTH .GT. MAXLNK) THEN
WRITE (2,1302) MAXLNK
ERR=. TRUE.
ENDIF
C*****{RITE TOTAL NUMBER OF LINKS
WRITE (2,1008) NLINK
IF (NLINK .GT. MAXLNK) THEN
WRITE (2,1401)
ERR=. TRUE.
ENDIF
C*****{RITE LINK PARAMETERS COLUMN HEADINGS
WRITE (2,1009)
C*****LOOP OVER ALL LINKS
DO 1000 ILINK=1,NLINK
Cr*x%*****WRITE LINK PARAMETERS
WRITE (2,1010) CL(ILINK), ITHL(ILINK), CFD(ILINK),
1 (TFD (I,ILINK) ,I=1,NPFD (ITFD (ILINK)))
CH*#%*#***VALIDATE STRONG LINK (SL) OR WEAK LINK (WL) LABEL
IF ((CL(ILINK) (1:2) .NE. ‘SL’) .AND.
1 (CL(ILINK) (1:2) .NE. ‘WL’)) THEN
WRITE (2,1501)
ERR=. TRUE.
ENDIF
C***%****VALIDATE LINK THERMAL HISTORY INDEX
IF ((ITHL(ILINK) .LT. 1) .OR. (ITHL(ILINK) .GT. NTH)) THEN
WRITE(2,1502) NTH
ERR=. TRUE.
ENDIF
C********VALIDATE DISTRIBUTION INDEX
IF ((ITFD(ILINK) .LT. 1) .OR. (ITFD(ILINK) .GT. 4)) THEN
WRITE (2,1503) MAXDST
ERR=.TRUE.
ENDIF
IF ((ITFD(ILINK) .EQ. 1) .OR. (ITFD(ILINK) .EQ. 3)) THEN
C***********VALIDATE FAILURE DISTRIBUTION PARAMETERS FOR UNIFORM DISTRIBUTION
IF (TFD(1,ILINK) .GT. TFD(2,ILINK)) THEN
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WRITE (2,1504)
ERR=.TRUE.
ENDIF
ENDIF
1000 CONTINUE
IF (.NOT. ERR) THEN
CH**x****CHECK THAT AT LEAST ONE STRONG LINK AND ONE WEAK LINK ARE SPECIFIED
Cx**xx*x***[,OOP OVER LINKS
DO 2000 ILINK=1,NLINK
Chkkkx*xkx***CHECK FOR STRONG LINK
IF (CL(ILINK) (1:2) .EQ. ‘SL’) GO TO 2100
2000 CONTINUE
WRITE (2,1601)
ERR=.TRUE.
2100 CONTINUE
Chk*x*x+**[,OOP OVER LINKS
DO 3000 ILINK=1,NLINK
Ch¥kkkkxkx k*CHECK FOR WEAK LINK
IF (CL(ILINK) (1:2) .EQ. ‘WL’) GO TO 3100
3000 CONTINUE
WRITE (2,1602)
ERR=.TRUE.
3100 CONTINUE
ENDIF
IF (ERR) THEN
WRITE (2,9001)
WRITE (6,9001)
STOP
ENDIF
RETURN
9100 CONTINUE
C*****UNABLE TO OPEN LINK THERMAL HISTORY FILE
WRITE (2,9101) THFILE (1:INDEX (THFILE,’ M)
WRITE (2,9001)
WRITE (6,9001)
STOP
Cx**%*FORMAT STATEMENTS
1001 FORMAT((A))
1002 FORMAT ( (1X,A))

1003 FORMAT (' RANDOM NUMBER GENERATOR SEED = ‘,Il12)
1004 FORMAT (' NUMBER OF OBSERVATIONS = ‘,I10)
1005 FORMAT (' LINK FAILURE OPTION = ‘,I2,’ = ‘,A)

1006 FORMAT (1X,I5,’ LINK THERMAL HISTORIES READ FROM ‘', 3)
1008 FORMAT (1X,I5,’ LINKS:')
1009 FORMAT (5X,’ THERM’' ,
1 /5X,’ LINK HIST DISTRB PARL PAR2')
1010 FORMAT (5X,A,1X,I3,3X,A,1P5E10.2)
1011 FORMAT (' NO MONTE CARLO SAMPLING’)
1012 FORMAT (' NUMBER OF MONTE CARLO SAMPLES = ‘',Il10)

1201 FORMAT (‘' LINK FAILURE OPTION = ‘,I2,
1 /' >>>>>INVALID LINK FAILURE OBTION °,
2 ‘(VALID OPTIONS = 1, 2, OR 3)')

1301 FORMAT (' >>>>>MUST BE AT LEAST ONE THERMAL HISTORY’)

1302 FORMAT (' >>>>>INCREASE VALUE OF PARAMETER MAXLNK TO AT LEAST °,
1 110,’ OR DECREASE NUMBER OF THERMAL HISTORIES’)

1303 FORMAT (' >>>>>INCREASE VALUE OF PARAMETER MAXTIM TO AT LEAST °,
1 I10,’ OR DECREASE NUMBER OF TIMESTEPS’)

1401 FORMAT (' >>>>>INCREASE VALUE OF PARAMETER MAXLNK TO AT LEAST ',
1 110,’ OR DECREASE TOTAL NUMBER OF LINKS’)

1501 FORMAT (' >>>>>LINK LABEL MUST BEGIN WITH EITHER SL OR WL')

1502 FORMAT (' >>>>>INVALID THERMAL HISTORY INDEX °,
1 ‘(VALID INDICES = 1 TO ‘,I3,’)’)

1503 FORMAT (' >>>>>INVALID FAILURE DISTRIBUTION’)

1504 FORMAT (‘' >>>>>INVALID SPECIFICATION FOR LOWER INTERVAL FOR °,
1 'UNIFORM DISTRIBUTION’)

1601 FORMAT (' >>>>>MUST BE AT LEAST ONE STRONG LINK')

1602 FORMAT (' >>>>>MUST BE AT LEAST ONE WEAK LINK')

9001 FORMAT (/' >>>>>EXECUTION TERMINATED DUE TO INPUT ERROR(S)’)

9101 FORMAT (' >>>>>UNABLE TO OPEN LINK THERMAL HISTORY FILE--’,A)

9201 FORMAT(' >>>>>ERROR ENCOUNTERED WHILE ATTEMPTING TO READ ',

1 ‘LINK THERMAL HISTORY FILE--’,A)

9301 FORMAT (' >>>>>EOF ENCOUNTERED WHILE ATTEMPTING TO READ °,
1 ‘LINK THERMAL HISTORY FILE--',A)
END

SUBROUTINE INIT
C*****INITIALIZE PARAMETERS
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
PARAMETER (MAXTIM=1000, MAXLNK=100, MAXDST=4, MAXFDP=10)
CHARACTER*10 CL, CFD
CHARACTER*10 VSN
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CHARACTER*100 TITLE, FILINP, FILOUT, THFILE
LOGICAL TRAP, SIMP, MC, IMC
COMMON /FAILO/ TITLE, FILINP, FILOUT, THFILE, VSN, CL(MAXLNK),
1 CFD (MAXLNK)
COMMON /FAIL1/ ISEED, ILF, NLINK, NTH, NTIME, N,
ITHL (MAXLNK) , ITFD (MAXLNK), NPFD (MAXDST)
COMMON /FAIL2/ DUMMY, PFAILM, PFAILI, PFAILS,
PFAILT, THTIME, TMIN, TMAX,
T (0:MAXTIM) ,
TH (0 : MAXTTIM, MAXLNK) ,
THMAX (0 : MAXTIM , MAXLNK) ,
TFD (MAXFDP ,MAXLNK) ,
TFT (MAXFDP , MAXLNK)
COMMON /FAIL3/ TRAP, SIMP, MC, IMC

[
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C*¥****LOOP OVER LINKS
DO 2000 ILINK=1,NLINK
CH**x*x*%+LOOP OVER FAILURE DISTRIBUTION PARAMETERS FOR CURRENT LINK
DO 1000 IPFD=1,NPFD (ITFD (ILINK))
CHr***k*x%%**TRANSFER FAILURE DISTRIBUTION PARAMETER VALUE
TFT (IPFD, ILINK)=TFD (IPFD, ILINK)
1000 CONTINUE
2000 CONTINUE
RETURN
END
SUBROUTINE RTH
C*****READ WEAK LINK AND STRONG LINK THERMAL HISTORIES
IMPLICIT DOUBLE PRECISION (A-H, 0-2)
PARAMETER (MAXTIM=1000, MAXLNK=100, MAXDST=4, MAXFDP=10)
CHARACTER*10 CL, CFD
CHARACTER*10 VSN
CHARACTER*100 TITLE, FILINP, FILOUT, THFILE
COMMON /FAILO/ TITLE, FILINP, FILOUT, THFILE, VSN, CL(MAXLNK),

1 CFD (MAXLNK)
COMMON /FATL1/ ISEED, ILF, NLINK, NTH, NTIME, N,
1 ITHL (MAXLNK) , ITFD (MAXLNK), NPED (MAXDST)

COMMON /FAIL2/ DUMMY, PFAILM, PFAILI, PFAILS,
PFAILT, THTIME, TMIN, TMAX,
T (0 :MAXTIM),
TH (0 :MAXTIM, MAXLNK) ,
THMAX (0 : MAXTIM, MAXLNK) ,
TFD (MAXFDP ,MAXLNK) ,
TFT (MAXFDP , MAXLNK)

oA WN R

Cc
Cc
C***x**INITIALIZE MINIMUM AND MAXIMUM TEMPERATURES
TMIN=1.0D30
TMAX=-1.0D30
C*****SKIP TITLE RECORD
READ (1, *)
C*****INITIALIZE NUMBER OF TIMESTEPS
NTIME=-1
1000 CONTINUE
C**x**INCREMENT NUMBER OF TIMESTEPS
NTIME=NTIME + 1
Cx****VALIDATE NUMBER OF TIMESTEPS AGAINST CURRENT PARAMETER DIMENSION
IF (NTIME .GT. MAXTIM) THEN
WRITE (2, *)
WRITE (2,*) ‘>>>>>NUMBER OF TIMESTEPS IN LINK THERMAL HISTORY ',
1 ‘FILE ‘, THFILE(1:INDEX(THFILE,’ ) -1)
WRITE (2,*) ‘>>>>>IS GREATER THAN CURRENT PARAMETER DIMENSION’
WRITE (2,*) ‘>>>>>INCREASE VALUE OF PARAMETER MAXTIM TO ',

1 ‘AT LEAST ', NTIME
WRITE (2,*) ‘>>>>>EXECUTION TERMINATED'
STOP
ENDIF

C*****READ TIME VALUE AND CORRESPONDING TEMPERATURES FOR EACH
C*****L,TNK THERMAL HISTORY
READ (1, * ,END=3000) T(NTIME), (TH(NTIME, ITH),K ITH=1,6NTH)
C*****LOOP OVER TIMESTEPS
DO 2000 ITH=1,NTH
C***%*x*+**RESET MINIMUM AND MAXIMUM TEMPERATURES
TMIN=MIN (TMIN, TH (NTIME, ITH))
TMAX=MAX (TMAX, TH (NTIME, ITH))
2000 CONTINUE
GO TO 1000
3000 CONTINUE
C*****DECREMENT NUMBER OF TIMESTEPS
NTIME=NTIME - 1
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CLOSE (1)
TMIN=MAX (TMIN, 1.0D-30)
C*****SET MAXIMUM LINK TEMPERATURE ENCOUNTERED THROUGH EACH TIME INTERVAL
DO 5000 ITH=1,NTH
THMAX (0, ITH) =TH (0, ITH)
DO 4000 ITIME=1,NTIME
THMAX (ITIME, ITH) =MAX (THMAX (ITIME-1,ITH) , TH(ITIME,ITH))
4000 CONTINUE
5000 CONTINUE
RETURN
END
SUBROUTINE SWLMC
C*****CALCULATE MONTE CARLO FAILURE PROBABILITY FOR CURRENT SET OF LINK
C*****THERMAL HISTORY CURVES AND STRONG/WEAK LINK FAILURE PARAMETERS
IMPLICIT DOUBLE PRECISION (A-H, 0-2)
PARAMETER (MAXTIM=1000, MAXLNK=100, MAXDST=4, MAXFDP=10)
CHARACTER*10 CL, CFD
CHARACTER*10 VSN
CHARACTER*100 TITLE, FILINP, FILOUT, THFILE
COMMON /FAILO/ TITLE, FILINP, FILOUT, THFILE, VSN, CL(MAXLNK),
1 CFD (MAXLNK)
COMMON /FAIL1/ ISEED, ILF, NLINK, NTH, NTIME, N,
ITHL (MAXLNK) , ITFD (MAXLNK), NPFD (MAXDST)
COMMON /FAIL2/ DUMMY, PFAILM, PFAILI, PFAILS,
PFAILT, THTIME, TMIN, TMAX,
T (0:MAXTIM) ,
TH (0 :MAXTIM, MAXLNK) ,
THMAX (0 : MAXTIM, MAXLNK) ,
TFD (MAXFDP , MAXLNK) ,
TFT (MAXFDP , MAXLNK)
DIMENSION TFAIL (MAXLNK)
LOGICAL USED (MAXLNK)

=
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c
c
C*****INITIALIZE NUMBER OF FAILURES
NFAIL=0
C*****LOOP OVER NUMBER OF MONTE CARLO SAMPLES
DO 9000 I=1,N
CH*******INITIALIZE MAXIMUM SL FAILURE TIME
TSLFMX=0.0D0
Cr*****%*INITIALIZE MINIMUM SL FAILURE TIME
TSLEMN=T (NTIME)
CH*******INITIALTZE MINIMUM WL FAILURE TIME
TWLFMN=T (NTIME)
C********LOOP OVER ALL LINKS
DO 8000 ILINK=1,NLINK
CH***%%*****SAMPLE FAILURE TEMPERATURE
IF ((ITFD(ILINK) .EQ. 1) .OR. (ITFD(ILINK) .EQ. 3)) THEN
CH**** %%k ¥ ***UNIFORM AND LOGUNIFORM DISTRIBUTIONS
TLF=TFT(1,ILINK) + (TFT(2,ILINK)-TFT(1,ILINK))*RAN3M (1)
CHx** kKK x k3 **¥**LOGUNIFORM CONVERSION
IF (ITFD(ILINK) .EQ. 3) TLF=EXP (TLF)
ELSEIF ((ITFD(ILINK) .EQ. 2) .OR. (ITFD(ILINK) .EQ. 4)) THEN
CH¥*****k%x*¥***NORMAL AND LOGNORMAL DISTRIBUTIONS
TLF=XNORM (TFT(1,ILINK), TFT(2,ILINK))
CH¥FHEH KKKk k% %+ LOGNORMAL CONVERSION
IF (ITFD(ILINK) .EQ. 4) TLF=EXP (TLF)
ENDIF
CH**** %+ %% **CALCULATE FAILURE TIME BASED ON FAILURE TEMPERATURE
C****#**%***CHECK IF FAILURE TEMPERATURE OUTSIDE TABLE RANGE
IF (TLF .LT. TH(O,ITHL(ILINK))) GO TO 9000
CH*** k%% ***INTERPOLATE FAILURE TIME
TIMLF=0.0D0
DO 1000 ITIME=1,NTIME
IF (TH(ITIME,ITHL(ILINK)) .GE. TLF) THEN
TIMLF=T (ITIME-1) + (T (ITIME) - T(ITIME-1)) *

1 (TLF - TH(ITIME-1,ITHL(ILINK))) /
2 (TH(ITIME, ITHL (ILINK)) -
3 TH (ITIME-1, ITHL (ILINK)))
GO TO 1100
ENDIF
1000 CONTINUE
GO TO 9000
1100 CONTINUE

Crxtkkxdx*x*SAVE MINIMUM AND MAXIMUM FAILURE TIMES
IF (CL(ILINK){(1:2) .EQ. ‘SL’) THEN
c**************sAvE SL FAILURE TIm
TFAIL (ILINK)=TIMLF
Cra*kxkx*kk****SAVE MINIMUM SI FAILURE TIME
TSLFMN=MIN (TSLEMN, TIMLF)
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Ch¥xkkkxkkskx***SAVE MAXIMUM SL FAILURE TIME
TSLFMX=MAX (TSLFMX, TIMLF)
ELSE
CH**kkk*kkk*¥**SAVE MINIMUM WL FAILURE TIME
TWLFMN=MIN (TWLFMN, TIMLF)
ENDIF
8000 CONTINUE
IF (ILF .EQ. 1) THEN
C*¥kdk* k%% % *COMPARE MAXIMUM SL FAILURE TIME TO MINIMUM WL FAILURE TIME
IF (TSLFMX .LE. TWLFMN) NFAIL=NFAIL + 1
ELSEIF (ILF .EQ. 2) THEN
Ch¥*xk* % %% **COMPARE MINIMUM SL FAILURE TIME TO MINIMUM WL FAILURE TIME
IF (TSLFMN .LE. TWLFMN) NFAIL=NFAIL + 1
ELSEIF (ILF .EQ. 3) THEN
C¥xxxkx%****INITIALIZE USED FLAGS FOR EACH LINK
DO 8100 ILINK=1,NLINK
USED (ILINK)=.FALSE.
8100 CONTINUE
TSLFMX=-1.0D30
DO 8300 ILINK=1,NLINK
IF (CL(ILINK)(1:2) .EQ. ‘SL’) THEN
IF (.NOT. USED(ILINK)) THEN
TSLFMN=TFAIL (ILINK)
DO 8200 ILINK1=ILINK+1,NLINK
IF (CL(ILINK) .EQ. CL(ILINK1)) THEN
TSLFMN=MIN (TSLFMN, TFAIL (ILINK1))
USED (ILINK)=.TRUE.

ENDIF
8200 CONTINUE
TSLFMX=MAX (TSLFMX , TSLFMN}
ENDIF
ENDIF
8300 CONTINUE
IF (TSLFMX .LE. TWLFMN) NFAIL=NFAIL + 1

ENDIF
9000 CONTINUE
C*x*+***CALCULATE FAILURE PROBABILITY
PFATIM=FLOAT (NFAIL) / FLOAT (N)
RETURN
END
FUNCTION SNORM (XV)
C*****STANDARD NORMAL FUNCTION EVALUATION
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
c
[
SNORM=EXP (-XV**2 / 2.0D0) / SQRT(6.283185307D0)
END
FUNCTION XNORM (PMU, SIG)
C*****GENERATE NORMAL DISTRIBUTION
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)

c
c
R=RAN3M (1)
XNORM=PMU + FINVNOR (R)*SIG
RETURN
END

FUNCTION FINVNOR (X)
C*****GENERATE NORMAL AND LOGNORMAL DISTRIBUTIONS
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
c
c
IF (X - 0.5D0) 2000, 1000, 3000
1000 CONTINUE
FINVNOR=0.0D0
RETURN
2000 CONTINUE
F=-1.0D0
¥=X
GO TO 4000
3000 CONTINUE
F=1.0D0
¥=1.0D0 - X
4000 CONTINUE
Y=MAX (Y, 7.0D-36)
Y=MIN(Y, 1.0D0)
FINVNOR=SQRT (2.0D0) * F * RIERFC1(2.0D0*Y)
RETURN
END

FUNCTION RIERFC1 (Y)
C****'A'***********'A"k**'A'***'A'**********************************************
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C FUNCTION RIERFCl1 IS USED IN GENERATING THE NORMAL AND
C LOGNORMAL DISTRIBUTIONS
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THIS IS THE SAME AS THE RIERFC ROUTINE IN THE DEAMOS LIBRARY
THE NAME MODIFICATION WAS TO PREVENT OUR LIBRARY FROM CALLING
ANOTHER LIBRARY. ELF OCTOBER 1980
WRITTEN BY D.E. AMOS AND S.L. DANIEL, SEPTEMBER, 1972.
REFERENCES
HASTINGS, C.JR., APPROXIMATIONS FOR DIGITAL COMPUTERS,
PRINCETON UNIVERSITY PRESS, PRINCETON, N.J., 1955
COMMUNICATION FROM L.F. SHAMPINE FOR CHEBYSHEV COEFFICIENTS.

ABSTRACT
RIERFC EVALUATES THE INVERSE COERROR FUNCTION DEFINED BY

¥= ERFC (X) 0 .LE. X .LT. INFINITY
WHERE O.LT.Y.LE.l. CHEBYSHEV APPROXIMATIONS ON
EXP(-81) .LE. Y .LT. 0.1, 0.1 .LE. Y .LT. 0.5, 0.5 .LE. Y .LE. 1.

ARE USED WITH A CHANGE OF VARIABLES
YY=C1*W+C2, W=SQRT (~LN(Y)), Y¥Y=5.*Y-1.5, YY=2.*(1.-Y)
RESPECTIVELY. THE INVERSE OF THE NORMAL DISTRIBUTION IS GIVEN
= SQRT (2) *RIERFC(2.*(1.~RN)) 0.5 .LE. RN .LT. 1.0

—-SQRT (2) *RIERFC (2. *RN) 0.0 .LT. RN .LT. 0.5

THE RELATIVE ERROR IN RIERFC DECREASES FROM 1.E-10 TO 3.E-13
AS Y INCREASES FROM EXP(-81) TO 1.0.

DESCRIPTION OF ARGUMENTS
INPUT
Y - Y, EXP(-81) .LE.Y.1LE.1.
OUTPUT
RIERFC -~ VALUE FOR THE INVERSE COERROR FUNCTION

ERROR CONDITIONS
Y.LT.EXP(-81) OR Y.GT.l ARE FATAL ERRORS

IhhhhkkhhhhdhkhhkhrAhRhhk kb h kb hhhA bk kdkddhkhhrhhrhdhhdtdhkhhhhhhhkhthhhhkhhd

IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
DIMENSION A(22,3), A1(22), A2{22), A3(22)
EQUIVALENCE (A(1,1),A1(1))

EQUIVALENCE (A(1,2),A2(1))

EQUIVALENCE (A(1l,3),A3(1))

DATA Al /

1 9.18725611735013p-01, 0.0D0, 1.68792878000327D-02, 0.0DO,
2 6.60337139058300D-04, 0.0DQ, 3.20203849839380D-05, 0.0DO,
3 1.72060607522481D~06, 0.0D0, 9.81965971588191D-08, 0.0DO,
4 5.83049613537653D-09, 0.0D0, 3.56019351836136D-10, 0.0DO,
5 2.21968915783128D-11, 0.0D0, 1.40639693109741D-12, 0.0DO,
6 9.02597345404862D~-14, 0.0D0 /

DATA A2 / 1.54701109458613D+00, -3.31460331083896D-01,

1 4.33001124090060D-02, -1.06564004165532D-02,
2 2.90613542304156D-03, -8.61872838022491D-04,
3 2.67933751795053D-04, -8.60838893942933D-05,
4 2.83232058814598D~-05, -9.48870819734494D-06,
5 3.22422655069385D-06, -1.10815778472076D-06,
6 3.84464770797987D-07, -1.34439275565208D-07,
7 4.73255976052393D-08, -1.67556011100019D-08,
8 5.96199003969093D-09, -2.13070503291886D-09,
9 7.64427040920545D-10, -2.75198005584737D-10,
A 9.93792246090789D-11, -3.59877382902119p-11 /
DATA A3 / 1.10642888011036D+01, 4.34299147561447D+00,
1 -2.33781774969295D-02, 4.23345215362947D-03,
2 8.68757084192089D-06, -5.98261113270881D-04,
3 4.50490139240298D-04, -2.54858131942102D-04,
4 1.27824189261340D-04, -5.97873878043957D-05,
5 2.66474012012582D~05, -1.14381836209267D-05,
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6 4.75393030377615D-06, -1.91759589929610D-06,
7 7.50806465594834D~07, -2.84791180387123D-07,
8 1.04187791696225D-07, -3.64567243689145D-08,
9 1.20129296139030D~08, -3.61030126779729D-09,
A 9.12356140081759D-10, -1.36851363400914D-10 /
DATA Cl, C2 / 2.35777520630369D-01, 1.35777520630369D+00 /
c
Cc

IF ((Y .LT. 6.63967719958073D-36) .OR. (Y .GT. 1.0D0)) GO TO 5000
IF (Y .GE. 0.5D0) GO TO 1000

IF (Y .GE. 0.1D0) GO TO 2000

J=3

W=SQRT (~LOG (Y))

D=Cl*W - C2

GO TO 3000

1000 CONTINUE

J=1

D=1.0D0 - Y

D=D + D

GO TO 3000

2000 CONTINUE
J=2

D=5.0D0*Y - 1.5D0
3000 CONTINUE
TD=D + D
VNP1=0.0DO
VN=0.0D0
DO 4000 L=1,21
K=22 - L + 1
TEMP=VN
VN=TD*VN - VNPl + A(K,J)
VNP1=TEMP
4000 CONTINUE
RIERFC1=D*VN - VNP1l + 0.5D0*A(1,J)
IF (J .EQ. 1) RIERFCl=D * RIERFC1l
RETURN
5000 CONTINUE
WRITE (6,9001)
STOP ‘Error in RIERFCl’
C*****FORMAT STATEMENTS
9001 FORMAT (' Y LESS THAN EXP(~81.) OR Y GREATER THAN 1.0’)
END
FUNCTION ERFCC (X)
C*****CALCULATE COMPLEMENTARY ERROR FUNCTION
C***** (NUMERICAL RECIPES IN FORTRAN (2ND ED), P. 214, FUNC ERFCC)
IMPLICIT DOUBLE PRECISION (A-H, 0-2)
c
[+
Z=ABS (X)
T=1.0D0 / (1.0D0+0.5D0*Z)
ERFCC=T*EXP (-Z*Z-1.26551223D0+T* (1.00002368D0+T*

1 (0.37409196D0+T* (0.09678418D0+T* (-0.18628806D0+T*

2 (0.27886807D0+T* (-1.13520398D0+T*

3 (1.48851587D0+T* (~0.82215223D0+T*0.17087277D0)))))))))
IF (X .LT. 0.0D0) ERFCC=2.0D0 - ERFCC

RETURN

END

FUNCTION RAN3 (ISEED)
C*****RETURNS A UNIFORM RANDOM DEVIATE BETWEEN 0.0 AND 1.0. SET ISEED
C*#****TO ANY NEGATIVE VALUE TO INITIALIZE OR RE-INITIALIZE THE SEQUENCE
C****% (NUMERICAL RECIPES IN FORTRAN (2ND ED), PP. 273-4, FUNC RAN3)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
PARAMETER (MBIG=1000000000, MSEED=161803398, MZ=0, FAC=1.0D0/MBIG)
DIMENSION MA (55)
DATA IFF / 0 /
c
C
C*****CHECK FOR INITIALIZATION
IF ((ISEED .LT. 0) .OR. (IFF .EQ. 0)) THEN
C***+*x**+*TNTTIALIZE OR RE-INITIALIZE SEQUENCE
IFF=1
MJ=MSEED - ABS (ISEED)
MJ=MOD (MJ,MBIG)
MA (55)=MJ
MK=1
DO 1000 I=1,54
II=MOD (21*I, 55)
MA(II)=MK
MK=MJ - MK
IF (MK .LT. MZ) MK=MK + MBIG
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MJ=MA(1I)
1000 CONTINUE
DO 3000 K=1,4
DO 2000 I=1,55
MA (I)=MA(I) - MA(1+MOD (I+30,55))
IF (MA(I) .LT. MZ) MA(I)=MA(I) + MBIG

2000 CONTINUE
3000 CONTINUE
INEXT=0
INEXTP=31
ENDIF

INEXT=INEXT + 1
IF (INEXT .EQ. 56) INEXT=1
INEXTP=INEXTP + 1
IF (INEXTP .EQ. 56) INEXTP=1
MJ=MA (INEXT) - MA(INEXTP)
IF (MJ .LT. MZ) MJ=MJ + MBIG
MA (INEXT) =MJ
RAN3=MJ * FAC
RETURN
END
FUNCTION RAN3M (ISEED)
C*****RETURNS A UNIFORM RANDOM DEVIATE BETWEEN 0.0 AND 1.0. SET ISEED
C*****TO ANY NEGATIVE VALUE TO INITIALIZE OR RE-INITIALIZE THE SEQUENCE
C***%* (NUMERICAL RECIPES IN FORTRAN (2ND ED), PP. 273-4, FUNC RAN3)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
PARAMETER (MBIG=1000000000, MSEED=161803398, Mz=0, FAC=1.0D0/MBIG)
DIMENSION MA (55)
DATA IFF / 0 /
c
c
C**%**CHECK FOR INITIALIZATION
IF ((ISEED .LT. 0) .OR. (IFF .EQ. 0)) THEN
Cx**#%***INITTALIZE OR RE-INITIALIZE SEQUENCE
IFF=1
MJ=MSEED - ABS (ISEED)
MJ=MOD (MJ ,MBIG)
MA (55)=MJ
MK=1
DO 1000 I=1,54
II=MOD (21*I, 55)
MA (II)=MK
MK=MJ - MK
IF (MK .LT. MZ) MK=MK + MBIG
MJ=MA (II)
1000 CONTINUE
DO 3000 K=1,4
DO 2000 I=1,55
MA(I)=MA(I) - MA(1+MOD (I+30,55))
IF (MA(I) .LT. M2) MA(I)=MA(I) + MBIG

2000 CONTINUE
3000 CONTINUE
INEXT=0
INEXTP=31
ENDIF

INEXT=INEXT + 1

IF (INEXT .EQ. 56) INEXT=1
INEXTP=INEXTP + 1

IF (INEXTP .EQ. 56) INEXTP=1
MJ=MA (INEXT) - MA(INEXTP)

IF (MJ .LT. MZ) MJ=MJ + MBIG
MA (INEXT)=MJ

RAN3M=MJ ® FAC

RETURN

END
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