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Abstract 

Relationships to determine the probability that a weak link (WL)/strong link (SL) safety system will fail 
to function as intended in a fire environment are investigated. In the systems under study, failure of the 
WL system before failure of the SL system is intended to render the overall system inoperational and thus 
prevent the possible occurrence of accidents with potentially serious consequences. Formal developments 
of the probability that the WL system fails to deactivate the overall system before failure of the SL system 
@e., the probability of loss of assured safety, PLOAS) are presented for several WWSL configurations: 
(i) one WL, one SL, (ii) multiple WLs, multiple SLs with failure of any SL before any WL constituting 
failure of the safety system, (iii) multiple WLs, multiple SLs with failure of all SLs before any WL consti- 
tuting failure of the safety system, and (iv) multiple WLs, multiple SLs and multiple sublinks in each SL 
with failure of any sublink constituting failure of the associated SL and failure of all SLs before failure of 
any WL constituting failure of the safety system. The indicated probabilities derive from time-dependent 
temperatures in the WL/SL system and variability (i.e., aleatory uncertainty) in the temperatures at which 
the individual components of this system fail and are formally defined as multidimensional integrals. 
Numerical procedures based on quadrature (i.e., trapezoidal rule, Simpson’s rule) and also on Monte 
Carlo techniques (i.e., simple random sampling, importance sampling) are described and illustrated for the 
evaluation of these integrals. Example uncertainty and sensitivity analyses for PLOAS involving the rep- 
resentation of uncertainty (i.e., epistemic uncertainty) with probability theory and also with evidence the- 
ory are presented. 
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1. Introduction 

Weak link (WL)/strong link (SL) systems constitute important parts of the operational design of high conse- 

quence systems. In such designs, the SL system is very robust and is intended to permit operation of the system 

under, and only under, intended conditions (e.g., by transmitting a command to activate the system). In contrast, the 

WL system is intended to fail in a predictable and irreversible manner under accident conditions (e.g., in the event 

of a fire) and render the entire system inoperational before an accidental operation of the SL system. 

A simple example of a WL/SL system with one WL and one SL is shown in Fig. 1.1. Under nonoperational 

conditions, the WL is closed (e.g., permits the passage of an electrical signal) and the SL is open (e.g., does not per- 

mit the passage of an electrical signal) (Fig. 1.la). For the entire system to operate, the SL must close and thereby 

allow the passage of an activating signal to the system (Fig. 1. lb). In the event of an accident, it is highly undesir- 

able for the SL to close and place the system in a configuration in which it can be accidentally activated (Fig. 1.1 b). 

To prevent the potential for such an accidental activation, the WL is designed to fail before the SL under accident 

conditions (Fig. 1 . 1 ~ )  and thus render impossible the passage of an activating signal should the SL fail at a subse- 

quent time (Fig. 1.ld). As an aside, the phrase “WL failure,” although widely used, is an oxymoron as such failure 

actually constitutes “WL success” in that the system has been deactivated by the intended @e., designed) operation 

of the WL. 

As another example, the term WL is often applied to a device or component such as a capacitor. In an abnor- 

mal thermal environment, the capacitor is designed to melt and thus fail to function as a capacitor. Hence, the term 

WL failure. The WL as a device has indeed failed. However, the safety function of the WL has been a success. 

System 

a: Nonoperational (i.e., Nominal) Condition 

System Actuation 

b: Operational Condition 
7f 

c: WL Failure before SL Closure 
7f 

System Actuation 
Source 

d: WL Failure with SL Closure 

Fig. 1 .I. Example WLlSL system with one WL and one SL. 



This presentation considers the behavior of WL/SL systems under fire conditions that arise from an accident. 

In particular, the overall system is assumed to be in a fire that causes heating of the WL and SL systems. The de- 

sired outcome in such an accident is for the WL system to fail before the SL system fails. The undesired outcome is 

for the SL system to fail before the WL system fails. The likelihood that the WL system fails to deactivate the en- 

tire system is referred to as the probability of loss of assured safety (PLOAS). The word “assured” appears in the 

preceding definition because failure of the WL system before the SL system renders the entire system inoperational 

but failure of the SL system before the WL system does not necessarily imply that the entire system will operate. 

Thus, PLOAS is not the probability that the system will operate; rather, it is the probability that the intended opera- 

tion of the WL system fails to deactivate the system. 

The determination of PLOAS falls within the broad area of study relating to the reliability of engineered sys- 

tems (e.g., Refs. [l-71). As developed in this presentation, the “probability” in PLOAS derives from variability in 

the temperatures at which individual WLs and SLs fail. The variability in WL and SL failure temperatures is as- 

sumed to be an aleatory uncertainty arising from manufacturing variability or some other source not explicitly in- 

cluded in the presented analyses (e.g., Refs. [8-111). Because individual WLs and SLs have different failure 

temperatures and experience different time-dependent temperature regimes, there is in effect a race through time 

that determines whether the WLs fail before the SLs or the SLs fail before the WLs. Thus, the determination of 

PLOAS falls in the subarea of reliability analysis generally known as competing risk analysis or competing failure 

analysis (e.g., Refs. [12-151). 

Formal developments of the probability that the WL system fails to deactivate the overall system before failure 

of the SL system (Le., PLOAS) are presented for several WWSL configurations: (i) one WL, one SL (Sect. 2), (ii) 

multiple WLs, multiple SLs with failure of any SL before any WL constituting failure of the safety system (Sect. 3), 

(iii) multiple WLs, multiple SLs with failure of all SLs before any WL constituting failure of the safety system 

(Sect. 4), and (iv) multiple WLs, multiple SLs and multiple sublinks in each SL with failure of a sublink constituting 

failure of the associated SL and failure of all SLs before failure of any WL constituting failure of the safety system 

(Sect. 5). The indicated probabilities derive from time-dependent temperatures in the WL/SL system and variability 

in the temperatures at which the individual components of this system fail and are formally defined as multidimen- 

sional integrals. Numerical procedures based on quadrature (i.e., trapezoidal rule, Simpson’s rule) and also on 

Monte Carlo techniques @e., simple random sampling, importance sampling) are described and illustrated for the 

evaluation of these integrals. Example uncertainty and sensitivity analyses for PLOAS involving the representation 

of uncertainty (Le., epistemic uncertainty) with probability theory and also with evidence theory are presented (Sect. 

6). A comparison with previous PLOAS results (Sect. 7) and a concluding discussion (Sect. 8) are also provided. 

Finally, appendices present an earlier approach to the determination of PLOAS (Apps. I, 11) and software for deter- 

mining PLOAS with the approaches developed in this presentation (App. 111). 



2. One WL, One SL 

The analysis of PLOAS for a system involving one WL and one SL is now presented. The following topics are 

considered: formal mathematical representation of PLOAS (Sect. 2. l), a simple illustrative example (Sect. 2.2), 

numerical evaluation of the defining integral for PLOAS with quadrature methods (Sect. 2.3), numerical evaluation 

of the defining integral for PLOAS with Monte Carlo methods (Sect. 2.4), a simple numerical example (Sect. 2.5), a 

more complex numerical example (Sect. 2.6), and comparison with an earlier representation for PLOAS developed 

by M.P. Bohn (Sect. 2.7, Apps. I, 11). 

2.1 Formal Representation 

The system is assumed to involve one WL and one SL. The temperatures of the links are time dependent (Fig. 

2.1) and are represented by 

TMPWL(t) = temperature ("C) of WL at time t (min), 

TMPSL(t) = temperature ("C) of SL at time t (min). 

(2.1) 

(2.2) 

Further, temperature of the SL is assumed to range from TMWL to T M S L ,  and time is assumed to range from 

t M N  to tAL4X. 

TMXSL 

2 .  
c 3 : = [TMPSL-'(Ti), TMPWL[TMPSL-'(Ti)]] 

I 

TMNSL 4 4 

TR04A062-1 at 
tMAX 

t: Time (sec) 
tMlN 

Fig. 2.1. Illustration of time dependent temperature curves for one WL and 
one SL. 



The preceding temperature functions are assumed to be strictly increasing with time (Le., TMPWL(t) < 

TMPWL( t" ) and TMPSL(t) < TMPSL( t ) for t < t" ). The following derivations are predicated on the assumption 

that the WL and the SL fail at the instant that they reach their failure temperatures. As a result, if TMPWL(t) or 

TMPSL(t) is non-increasing, then its value can be defined by linear interpolation between successive increasing 10- 

cal temperature maxima. This redefinition, if necessary, produces temperature functions with the appropriate in- 

creasing character. 

The failure temperatures TFWL and TFSL for the WL and SL, respectively, are assumed to be aleatory in the 

sense that the WL and SL are manufactured components and the exact failure temperature will vary from compo- 

nent to component. This variability is characterized by density functionsJWL andJSL, where 

pWL(T1, T2) =probability that TI 5 TFWL I T2 

pSL(T1, T2) = probability that TI 5 TFSL 4 T2 

The density functionsJWL andfsL define distributions on the ordinate of Fig. 2.1. 

The objective of this section is to determine the probability pF that the SL fails before the WL given 

TMPWL(t), TMPSL(t),fwL(TwL) andJSL(TsL). The sample space underlying this calculation is 

8 = (t : t = [tFSL, tFWL]}, (2.6) 

where tFSL and tFWL denote the failure times of the SL and WL, respectively. In particular, 

pF = prob ( e ) ,  

where E is the subset of 8 defined by 

E = {t : t = [tFSL, tFWL] E 8 and tFSL < tFWL} 

and prob denotes probability 

The probabilitypF will initially be obtained by an integration on time (i.e., on the abscissa of Fig. 2.1). Later, 

pF will also be obtained by an integration on temperature (i.e., on the ordinate of Fig. 2.1). The set E can be repre- 

sented by 



nTM 
E = u ( E j  u q, 

i=l 

where 

Ei = { t : t = [tFSL, tFWL] E E , ti-1 5 tFSL 5 ti, ti < tFWL} , 

I$ = {t : t = [tFSL, tFWL] E E ,  ti-] 5 tFSL 5 ti, tFSL 5 tFWL 5 t i } ,  

and t M N  = to < tl < . . . < tnTM' t M i s  a partition of [tMIN, tMAx] as indicated in Fig. 2.1. The equality 

i=l i=l 

holds because the sets E l ,  E 2 ,  ..., EnTM Z l ,  6,  ..., &TM are disjoint. 

The following relations hold for i = 1,2, . . . , nTM 

prob(%) 5 IITMPSL(tj-l), TMPSL(ti), f s L ]  I[TMPWL(ti-l), TMPWL(ti), f l L ]  

E [ [ TMPSL (ti ) - TMPSL (ti-] ) ]  jSL [ TMPSL (ti ) ] )  
{ [ TMPWL ( ti ) - TMP WL (ti-,)] JWL [ TMPWL ( t i ) ] )  

2 
5 B(At i )  

and 

(2.9) 

where the expression 

appearing in Eqs. (2.9) and (2.10) represents the integral of the functionffrom a to b, and the constant B appearing 

in Eq. (2.9) is independent of i and derives from properties of the functions involved (i.e., TMPSL(t) and TMPWL(t) 

are continuous and of bounded variation on [ tMN,  t m  andjSL(TsL) andJWL(TVL) are bounded on [TMNSL, 

TMXSL]). 

As a result, 



nTM 

where the first, second and third equalities follow from Eqs. (2.8), (2.9) and (2. lo), respectively. Evaluation of the 

final limit in Eq. (2.1 1) leads to the representation ofprob(4, and hencepF, by 

(2.12) 

where the first integral is a Riemann-Stieltjes integral (i.e., an integral of the form f ( t )dg( t )  ; see Sect. 29, Ref. 

[16]) and the second integral is the corresponding Riemann integral (Le., an integral of the form f f(t)g'(t)dt ; see 

Theorem 29.8, p. 220, Ref. [ 161). As indicated by the final summation in Eq. (2.1 l), the two integrals in Eq. (2.12) 

correspond to integrating along the abscissa (Le., the time axis) in Fig. 2.1. 

t 

The failure probabilitypF can also be obtained by integration on temperature. Similarly to Eq. (2.7), the set 

defined in conjunction with Eq. (2.6) can be represented by 

nTMP 

i=l 

where 

4 = (t : t = [ tFSL, tFWL] E E ,  TMPSL-' ( 2'-' ) I tFSL 5 TMPSL-' (q ) , TMPSL-' (q  ) < tFWL} , 

4 = (t : t = [tFSL, tFWL] E e ,  TMPSL-' (q-') 5 tFSL I TMPSL-' ( q ) ,  tFSL I tFWL 5 TMPSL-' (q)), 

and TMNSL = To < TI < . . . < TnTW = TMXSL is a partition of [TMNSL, TMXSL] as indicated in Fig. 2.1. 

(2.13) 

Now, with the same logic as used to produce Eq. (2.1 l), 



(2.14) 

where the first, second and third equalities follow from results analogous to those contained in Eqs. (2.8), (2.9) and 

(2.10). Evaluation of the final limit in Eq. (2.14) leads to the representation ofprob(E), and hencepF, by 

(2.15) 

where 

is used for notational compactness. As indicated by the final summation in Eq. (2.14), the integral in Eq. (2.15) 

corresponds to integrating along the ordinate (i.e., the temperature axis) in Fig. 2.1. 

The integrals in Eqs. (2.12) and (2.15) define the same probability pF and do not require independent deriva- 

tions. In particular, the integral in Eq. (2.15) can be obtained from the Riemann integral in Eq. (2.12) by a change 

of variables. As a reminder, the change of variables formula for integrals is 

(2.16) 

providedfis continuous on [g(a), g(b)] and dg(t)ldt is continuous on [a, b] (p. 558, Ref. [17]). Application of the 

preceding change of variables to Eq. (2.12) with g(t) = TMPSL(t) yields 

(2.17) 

where (i) the change of variables takes place at the third equality and (ii) the fourth equality is produced from the 

equalities 



g ( t M N )  = TMPSL ( tMiV) = TIWVSL, 

g ( t M A X )  = TMPSL ( t M A X )  = TMXSL, 

and the notational replacement of g by TsL within the integral. Thus, the integral defining pF in Eq. (2.15) can be 

obtained from the integral definingpF in Eq. (2.12) by a change of variables. 

The Riemann integral with respect to time that defines pF in Eq. (2.12) has the drawback that it requires the 

evaluation of the derivative of the function TMPSL(t). The Riemann integral with respect to temperature that de- 

finespF in Eq. (2.15) has the drawback that it requires the evaluation of the inverse function TMPSL-'(T). In prac- 

tice, the Riemann-Stieltjes integral with respect to time that defines pF in Eq. (2.12) may be the easiest of the three 

integrals to evaluate numerically. The assumption that the temperature functions are strictly increasing in time is 

made so that inverse functions such as TMPSL-l(T) will be single valued. The representations forpF in Eq. (2.12) 

do not involve inverse temperature functions and are valid under the weaker assumption that TMPWL(t) and 

TMPSL(t) are nondecreasing functions of time. 

2.2 Simple Example 

A simple, illustrative example is now presented. In this example, t M N  = 0 min, tMAx = 500 min, TMNSL = 

100°C, TMXSL = 1150°C, TFWL is uniform on [200, 600°C], TFSL is uniform on [500, 1000°C] and the tempera- 

ture functions for the WL and SL are defined by 

TMPWL(t) = 100+2 t (2.18) 

and 

for 0 5 t 5 500 min (see Fig. 2.2). 

Additionally, the inverse functions associated with TMPWL(t) and TMPSL(t) are given by 

and 

TMPSL-' ( T )  = (T - 100)/2.1, 

(2.19) 

(2.20) 

(2.21) 

and the density functions associated with TFWL and TFSL are given by 
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1 I400 for 200 2 TWL < 600°C 
otherwise 

and 

1100 - 

Is I- 700 - 
a, 

I- 

300 - 

100 

[t, TMPSL(t)] = [t, 100 + 2.lt] 

[TMPWL-’(T),T] = [(T - 100)/2, T] 

I I  I I I I I 

0 100 200 300 400 500 
t: Time (min) 

Fig. 2.2. Simple example illustrating calculation of failure probability pf for 
one WL and one SL. 

TR04A061-0 ai 

11500 for 500 2 TSL 5 1000°C 
otherwise. 

Finally, F( TsL) and F1( TWL) are defined by 

F(TSL)=TMPwL [ TMPSL-’(TSL)] 

= 100+2[(TsL -100)/2.1] 

= (10+2TSL)/2.1 

and 

F-’ ( T ~ ~  = TMPSL [ TMPWL-~ ( T ~ ~  )] 
= 100 + 2.1 [( TWL - 100)/2] 

=(2.1TuL -10)/2 

and are used in defining limits of integration (see Eq. (2.15)). 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

The determination o f p F  by integration on time as indicated in Eq. (2.12) is considered first. Specifically, 
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= 0.0372, (2.26) 

with the omitted steps involving elementary calculus manipulations. 

The determination of pF by integration on temperature as indicated in Eq. (2.17) is now considered. In this 

case, 

= 0.0372, (2.27) 

with the omitted steps again involving elementary calculus manipulations. Thus, as should be the case, integration 

on time with the representation forpF in Eq. (2.12) and integration on temperature with the representation forpF in 

Eq. (2.17) produce the same failure probabilities. 

2.3 Numerical Eva1 ua tion : Quadrature 

The preceding section (Sect. 2.2) provides a simple example in which it is possible to analytically carry out the 

integrations used in the definition of the failure probability pF. In practice, few problems are likely to be encoun- 

tered in which it is possible to determine pF in this manner. Rather, some type of numerical approximation will be 

required. This section considers approximations based on numerical integration (i.e., quadrature). Only integrals 

over temperature as in Eq. (2.17) will be considered; however, the same general ideas are applicable to integrals 

over time of the form in Eq. (2.12). 



The defining integral forpF in Eq. (2.17) can be viewed as being of the form 

where 

(2.28) 

(2.29) 

Thus, if G(TsL) can be defined or approximated in a reasonably simple manner, then the evaluation o f p F  only in- 

volves the approximation of an integral of a single variable. In particular, the goal is to design the analysis so that 

the integral designated by I[F(TsL), oo,JWL] does not require a complex numerical evaluation. Because I[F(T,L), ~ 0 ,  

fWL] involves the integral of a probability density function (i.e.,JWL), it is indeed possible to do this. 

Possibilities for the density functions jSL andfWL include correspondence to uniform distributions, loguniform 

distributions, normal distributions, and lognormal distributions. The density functions for such distributions are 

given by 

a )  f o r a I T  I b 
otherwise 

f, (T) = {y(b - 
for T uniform on [a, b] ,  

1/[ T In (b /a)]  for a < T 5 b 

otherwise 

for T loguniform on [a, b] with a > 0, 

for T normal with mean p and standard deviation o, and 

(2.30) 

(2.3 1) 

(2.32) 

(2.33) 

for T lognormal with T > 0, E(ln T )  = p, V(ln T )  = 02, and E and V used to represent expected value and variance, 

respectively. For the lognormal distribution, the expected value and variance of Tare given by 

E ( T I  = exp ( p + o2 /2) (2.34) 



and 

V(T) = [ exp( 0’) - 11 exp( 2p + o’), (2.35) 

where p and o2 are the corresponding mean and variance for In T appearing in Eq. (2.33). 

Determination of G(T~L) in Eq. (2.28) requires evaluation of the integral represented by I[F(T~L),  co, JWL], 

which equals the probability of having a WL failure temperature that exceeds F(TsL) and thus, in effect, defines the 

CCDF associated with the distribution defined by the density functionJWL. Significant computational savings can 

be achieved by precalculating the functional form of this integral, and then reusing this functional form rather than 

repeatedly evaluating the underlying integral. Specifically, 

for -co < c < 00. 

for -co < c < co, 

q c ,  co, ffl] = Jcrnffl (T)dT 

= ICm (l/o&) exp [ -( T - p)2 /202] dT 

for -m < c < co, and 

(2.36) 

(2.37) 

(2.38) 

(2.39) 
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Closed form representations for the integrals in Eqs. (2.38) and (2.39) do not exist. However, owing to the 

wide occurrence of such integrals, extensive effort has been devoted to developing compact approximations. For 

example, 

I [c ,  ..,.r;,]=l-P[(C-P)/G] (2.40) 

(2.41) 

for 0 < c < a, where P(x) denotes the Gaussian probability integral defined by 

P(x)=(l/&) f:mexp(-t2/2)dt 

= 1 - (1/&) exp ( -t2/2 1 dt. (2.42) 

Specifically, Eq. (2.40) is obtained from Eq. (2.38) and the change of variables formula in Eq. (2.16) with g(c) = (c 

-p)/o, and Eq. (2.41) is obtained similarly from Eq. (2.39) with g(c) = (lnc - p)/o. In turn, P(x) can be approxi- 

mated by 

P ( x )  E 1 -(l/&)exp( -x2/2)t({[(l.330274429 t - 1.821255978) t+  1.7814779371 t 

-0.356563782} t + 0.31938153) + E(x), 
(2.43) 

where t = (1 + 0.2316419 x)-' and Is(x)l 5 7.5 x lo-* (see Sect. 16.3, Ref. [18]). 

Another approximation is possible based on the relationships 

I [ C ,  -co> f n ]  = (1/2)erfc[(c-P)/d5] 

for -m < c < 00 and 

for o < c < a, where erfc(x) denotes the complementary error function defined by 

(2.44) 

(2.45) 

(2.46) 

In turn, erfc(x) can be approximated by 

erfc(x) z t exp(-x2 - 1.26551223 + t(1.00002368 + t(0.37409196 + t(0.09678418 + (-0.18628806 
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+ t(0.27886807 + t(-1.13520398 + t(1.48851587) + t(-0.82215223 + t 0.170872777))))))))), (2.47) 

for x 2 0 and t = 1/(1 + 0.5 x) and by 

e$c(x) = 2-erfc(IxI) (2.48) 

for x < 0 (p. 164, Ref. [ 191). The preceding approximation has a fractional (Le., relative) error everywhere less than 

1.2 10-7. 

Thus, G(TsL) can be approximated with expressions that are relatively easy to evaluate (Le., numerically, not by 

“hand”) for uniform, loguniform, normal and lognormal distributions. As a result, evaluation of pF is really just a 

problem in the numerical integration of a function of a single variable. The numerical evaluation of such integrals is 

a rich and well-studied field and many techniques are available (e.g., Refs [20, 211). The extended trapezoidal rule 

provides a simple but often adequate procedure for the numerical evaluation of integrals (pp. 107 - 115, Ref. [19]). 

With this procedure, the integral in Eq. (2.28) definingpF is approximated by 

N-1 

i=2 

T M S L  

TANSL 
I G(TSL)dTSL z h  G1/2+ Gj+GN/2 (2.49) 

where h = ( T M S L  - TMNSL)/(N- l), Ti = T m S L  + h(i - 1) for i = 1, 2, . . ., N, Gi = G(Tj) for i = 1,2, . . ., N, and 

the term O(l/N2) indicates that there exists a constant K such that the error in the approximation is bounded by 

K(lI$) = KIN2 for all sufficiently large values of N. A higher order approximation (i.e., O(l/I?) rather than 

O( 1/N2)) is provided by the extended Simpsons rule (p. 108, Ref. 19) With this procedure, 

5 TMSL G(TsL)dTsL gh[G1+4G2+2G3+4G4+...+2GN-2 + 4 G ~ - 1  + G N ] / ~ + O ( ~ / N ~ ) .  
TMNSL 

(2.50) 

where the 4,2 alteration continues throughout the interior of the summation and all other notation is the same as in 

Eq. (2.49). However, higher order does not necessarily imply higher accuracy. If neither of the preceding proce- 

dures is adequate, more sophisticated procedures are available.20> 21 

A relative error tolerance criterion can be used to terminate the approximation procedures indicated in Eqs. 

(2.49) and (2.50). Specifically, a relative error tolerance E > 0 is specified and the integration process is continued 

with increasing values of N obtained halfing h at each step (i.e., N = 3, 5 ,  9, 17, . . .). The approximation process is 

terminated when the absolute value of the difference between the last two approximations (i.e., the previous ap- 

proximation and the current approximation) is less than the product of the relative error tolerance E and the absolute 

value of the previous approximation. All quadrature results in this presentation are calculated with a relative error 

tolerance o f &  = 
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2.4 Numerical Evaluation: Monte Carlo 

A Monte Carlo procedure for the evaluation ofthe failure probabilitypF is now presented.21> 22 For this proce- 

dure, pF is represented by 

where integrals from -m to m are used for notational convenience, the indicator function 6(TWL, TSL) is defined by 

6 ( TWL, T’L ) = 1 if TsL < TMPSL ( t M N )  and either TMP WL (tlwN) I TWL or 

TsL < TWL < TMP WL (tMN) 

= 1 if TMPSL (tMZN) I TsL I TMPSL (tMAx) 

and TMPSL-’ ( TSL ) < TMP WL-’ ( TwL ) 
= 0 otherwise 

and the notational convention 

is adopted for use in Eq. (2.53). 

(2.52) 

(2.53) 
(2.54) 

(2.55) 

The role of the indicator function 6(TwL, TSL) defined in Eqs. (2.52) - (2.54) is to “pick out” the failure tem- 

perature pairs (TWL, TsL) in which the SL fails before the WL. In particular, (i) the assignment in Eq. (2.52) picks 

out the pairs in which the SL fails before the start of the analysis at time tMIN and, for the special case with the WL 

also failing before fMIN, in which TsL is less than TWL; (ii) the assignment in Eq. (2.53) picks out the pairs in which 

the SL fails between tMIN and t m b e f o r e  the failure of the WL; and (iii) the assignment in Eq. (2.54) removes the 

probability associated with pairs in which the SL does not fail before the WL from incorporation into pF. In prac- 

tice, the limits of integration in Eq. (2.51) are determined by the density functionsJWL(TwL) andJSL(TSL). 

The integral definingpF in Eq. (2.51) can be approximated by 

where 

(2.56) 

(2.57) 

is a random sample from the possible values of TWL and TsL generated in consistency with the distributions defined 

by the density functionsJSL(TWL) andJSL(TSL). The preceding approximation will converge to the same value of 
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pF as the approximations in Eqs. (2.49) and (2.50). However, the convergence will be slower as the order of the 

Monte Carlo approximation is O(l/&) and the orders of the approximations in Eqs. (2.49) and (2.50) are O(l/N2) 

and O( l/N4), respectively. 

Probably the greatest value of the Monte Carlo approximation to pF is that it provides an independent means of 

verifying the complex, but more numerically efficient, approximation procedures presented in Sect. 2.3. In particu- 

lar, procedures of the form described in Sect. 2.3 involving normal and lognormal distributions are essentially im- 

possible to check by hand. However, the Monte Carlo procedure provides an independent way to calculate pF and 

thus verify that the procedures of Sect. 2.3 are operating correctly. 

The Monte Carlo approximation of the integral in Eq. (2.51) is very inefficient whenpF is small. For example, 

approximately 1 out of every lo6 sample elements in Eq. (2.57) produces a nonzero result whenpF has a value in 

the vicinity of Thus, a very large sample would be required to produce a reasonably converged estimate to 

pF. In such situations, the efficiency of the Monte Carlo approximation can be increased by using an importance 

sampling p r ~ c e d u r e ~ ~ - ~ ~  that emphasizes subregions of the [TWL, TsL] space in which the failure of the SL before 

the WL is known to be likely (Le., regions that have large values of TWL and small values of TsL). 

With an importance sampling procedure, the integral in Eq. (2.51) definingpF is reformulated as 

(2.58) 

where frWL( TWL) and JSL( TsL) are the density functions that correspond to the distributions used for importance 

sampling on TWL and TSL, respectively. For example,JIWL(TwL) andfrSL(TsL) could be defined to emphasize large 

and small values of TWL and TSL, respectively. The resulting approximation to pF is given by 

(2.59) 

where [TwL,~, TsLJ, i = 1, 2, . . ., N, is now a random sample from the possible values of TwL and TsL generated in 

consistency with the distributions defined by the density hnctionsfrWL(TwL) andfrSL(TsL). 

The efficacy of importance sampling depends on the appropriate selection of the sampling distributions defined 

byfrWL(TwL) andJISL(TsL). A good choice for these distributions can accelerate a Monte Carlo estimate of pF 

relative to simple random sampling. However, a poor choice for the sampling distributions can result in a slower 

convergence to pF than would be obtained with random sampling. 



A single example of the use of importance sampling follows. For this example, it is assumed that the non-zero 

ranges for TWL and TsL are given by [TWL,, TWL,] and [TSLl, TSL,], respectively, which results in representation 

forpF in Eq. (2.51) having the form 

(2.60) 

Further, the importance sampling distributions for TWL and TsL on [TWL,, TWL,] and [TSLl, TSL,] are right triangu- 

lar and left triangular, respectively, which results in more emphasis on large values of TWL and small values of TsL 

than is likely to be the case for the original definitions offlL(TWL) andfSL(TsL) (e.g., if these distributions corre- 

spond to truncated normal distributions with ranges extending for many standard deviations on either side of their 

means). The resultant definitions forJIWL(TWL) andJISL(TsL) are 

and 

(2.62) 

In turn, the importance sampling approximation to pF is 

(2.63) 

where [TwL,~, TsL,J, i = 1, 2, ..., N, is sampled from [TWLl, TWL,] and [TSL,, TSL,] in consistency with the defini- 

tions offlWL(TWL) andflSL(TsL) in Eqs. (2.61) and (2.62). 

2.5 Numerical Evaluation: Simple Example 

The example of Sect. 2.2 is used to illustrate the numerical evaluation of the failure probability pF with both 

quadrature and Monte Carlo procedures. For the quadrature procedures, pF is given by 

(2.64) 



as indicated in Eqs. (2.28) and (2.29), withJwL(TWL),JsL(TSL), F(TSL) and IIF(TsL), oo,JwL] defined in Eqs. (2.22), 

(2.23), (2.24) and (2.36), respectively. For the Monte Carlo procedurespF is given by 

(2.65) 

as indicated in Eqs. (2.51) - (2.54), withJwL(TWL) andJsL(TSL) again defined in Eqs. (2.22) and (2.23). 

The representation for pF in Eq. (2.64) is evaluated with the trapezoidal rule (see Eq. (2.49)) and Simpson’s 

rule (see Eq. (2.50)), and the representation forpF in Eq. (2.65) is evaluated with simple random sampling (see Eq. 

(2.56)) and importance sampling based on right and left triangular distributions for TWL and TSL, respectively (see 

Eqs. (2.60) - (2.63)). All approximations converge to values for pF that are equal to, or very close to, the analyti- 

cally calculated value o f p F  = 3.720 x (Table 2.1). Further, the convergence behavior of the approximations 

with the trapezoidal rule and Simpson’s rule are similar, and the selected importance sampling procedure (i.e., right 

and left triangular for WL and WL failure temperature, respectively) shows little advantage over sampling directly 

from the assigned failure temperature distributions. Thus, the higher order Simpson’s rule does not necessarily out- 

perform the lower order trapezoidal rule, and the use of an intuitively posited importance sampling procedure does 

not necessarily outperform random sampling of the assigned failure temperature distributions. The numerical 

evaluation of pF with the trapezoidal rule and Simpson’s rule required significantly fewer function evaluations than 

the sampling-based evaluations (e.g., 16,385 versus 1,000,000). Further, the numerical results required more func- 

tion evaluations than may actually be the case in many calculations due to the discontinuities at the ends of the uni- 

form failure temperature distributions (e.g., see the sample results in Sects. 2.6, 3.4,4.4 and 5.4). 

2.6 Numerical Evaluation: More Complex Example 

An example is presented in which the WL and SL temperature curves are nonlinear hnctions of time and the 

failure temperatures for the WL and SL are characterized by normal distributions. The WL and SL temperatures are 

defined by 

T W W L  ( t )  = c1 + [ c2 + c3 e-c4t sin (cgt)] tanh ( c6t) 

TMPsL(t) =e1 +c2 tanh[c6 ( l + c 7 ) t ] ,  

where 

c1 = initial temperature (“C) of the WL and SL (10 “C), 

c2 = increase in temperature (“C) of the WL and SL at steady-state conditions (900 “C), 

c3 = peak amplitude (“C) of a temperature transient of the WL (-1000 “C), 
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Table 2.1. Approximations of Failure Probability pFfor System Defined in Sect. 2.2 with One 
WL, One SL and Uniform Distributions for WL and SL Failure Temperaturesa 

Random Importance 
Ne Samplingf Samplingg 

Trapezoidal Simpson’s 
RuleC Ruled Nb 

3 

5 

9 

17 

33 

65 

129 

257 

513 

1025 

2049 

4097 

8193 

16385 

32769 

65537 

131073 

262145 

524289 

O.OOOE+OO 

0.000E+00 

O.OOOE+OO 

2.05 1 E-02 

3.076E-02 

3.589E-02 

3.845E-02 

3.725E-02 

3.665E-02 

3.696E-02 

3.71 1E-02 

3.7 18E-02 

3.722E-02 

3.720E-02 

3.7 19E-02 

3.720E-02 

3.720502 

3.720E-02 

3.720E-02 

1,000 3.300E-02 3.998E-02 

O.OOOE+OO I0,OOO 3.950E-02 3.737E-02 

3.78 1E-02 3.700E-02 O.OOOE+OO 100,000 
1,000,000 3.734E-02 3.722E-02 2.734E-02 

3.418E-02 10,000,000 3.722E-02 3.7 19E-02 

3.760E-02 100,000,000 3.7 18E-02 3.72 1E-02 

3.93 1E-02 

3.685E-02 

3.645E-02 

3.7068-02 

0.000E+00 

3.7 16E-02 

3.72 1E-02 

3.724E-02 

3.720E-02 

3.7 19E-02 

3.720E-02 

3.720E-02 

3.720E-02 

3.720E-02 

a 

b Number of evaluations of G(TsL) (see Eq. (2.29)) with trapezoidal rule and Simpson’s rule, which corresponds to the interval [ T M S L ,  
Calculations performed with CPLOAS program (App. 111). 

T M S L ]  being divided into N-1 subintervals and a relative error tolerance of E = lo-’. 
Approximation t o p F  obtained with trapezoidal rule (see Eq. (2.49)) and a relative error tolerance of E = lo-’. 

Approximation t o p F  obtained with Simpson’s rule (see Eq. (2.50)) and a relative error tolerance of E = lo-’. 
e Number of evaluation of 6(TwL, TsL) (see Eqs. (2.52) - (2.54)) for random sampling and importance sampling. 

Approximation t o p F  obtained with random sampling (see Eq. (2.56)). 
g Approximation t o p F  obtained with importance sampling with right and left triangular distributions for T ~ L  and TSL, respectively (see Eqs 

(2.58) - (2.63)). 

e 4  = thermal heating time constant (min-l) of a temperature transient of the WL (0.30 min-’), 

c5 = frequency of response (min-l) of a temperature transient of the WL (0.17 min-l), 

c6 = time constant (min-’) determining rate at which WL attains steady-state temperature (0.03 min-’), 

c7 = additive time constant (dimensionless) that accounts for more rapid heating in the SL than in the WL (0.6). 

The values for c1, c2, . . . , e7 used in the following example are indicated in parentheses (see Sect. 4, Ref. [30]), and 

the resultant time-temperature curves are shown in Fig. 2.3. The time-temperature curves in Eqs. (2.66) and (2.67) 
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and the associated definitions of cl, c2, . . ., c7 were selected to mimic the time-dependent behavior of results ob- 

tained in actual analyses of WL/SL systems (i.e., through a numerically demanding solution of a system of nonlin- 

ear partial differential equations). As used, quantities such as c3 are not real physical properties of a system but 

rather devices employed in the emulation of results obtained with a mechanistic model. 

Use of the representations in Eqs. (2.66) and (2.67) simplifies the presentation of the example but does not fun- 

damentally deviate from the character of a real problem. In practice, the time-temperature results will be obtained 

as sequences of time-temperature pairs which would be smoothed or interpolated on in some way to obtain results 

corresponding to those in Eqs. (2.66) and (2.67) for use in determination of the failure probabilitypF. The quanti- 

ties c1, c2, . . ., c7 will be used later in this presentation in the illustration of uncertainty and sensitivity analysis pro- 

cedures applied topF  (see Sect. 6). 

The density functions for the normal distributions (see Eq. (2.32)) characterizing the WL and SL failure tem- 

peratures are given by 

(2.68) 

(2.69) 

where c8 and c9 are the mean and standard deviation for the WL failure temperature distribution and c10 and c11 are 

defined similarly for the SL failure temperature distribution. For the example, c8 = 310"C, c9 = 8"C, c10 = 560°C 

and c11 = 18°C (see Sect. 4, Ref. [30]). As for cl, c2, ..., c7, the quantities c8, c9, cl0, c11 will be used at a later 

point in the presentation in the illustration of uncertainty and sensitivity analysis procedures. 

I '  I I I  I I  I I  I 

1000 I- 4 

" 
0 20 40 60 80 100 

Time (min) TR04A0.36-0 ai 

Fig. 2.3. Time-temperature curves defined in Eqs. 
(2.66) and (2.67) and used to illustrate calculation of 
failure probability pF. 



Similarly to the example in Sect. 2.5, the failure probabilitypF can be calculated with the trapezoidal rule and 

Simpson's rule from the representation in Eq. (2.64), except that now TMPWL(t), TMPSL(t), JWL(T,L) and 

f l L ( T s ~ )  are defined in Eqs. (2.66) - (2.69). The function F(TsL) is defined in conjunction with Eq. (2.15), and 

f i F ( T s ~ ) ,  m, JWL) is defined by the approximation obtained by combining Eqs. (2.44), (2.47) and (2.48). Results 

obtained with the trapezoidal rule and Simpson's rule are given in Table 2.2. 

The failure probability pF can also be calculated with Monte Carlo procedures used in conjunction with the 

representation in Eq. (2.65). Both simple random sampling and importance sampling can be used. For this exam- 

ple, importance sampling is illustrated with uniform sampling on the failure temperatures, which is equivalent to 

sampling uniformly with respect to standard deviation (i.e., if the temperature intervals [a, b] and [c, aT] for one of 

the failure temperatures are both of length ko, where o is the corresponding standard deviation for that failure tem- 

perature, then both intervals will contain approximately the same number of sampled temperatures). For calcula- 

tion, the importance sampling distributions are defined over the intervals p f 15 o for each failure temperature 

distribution, which corresponds to [150, 390"Cl and [322.5, 877.5"CI for the WL and the SL, respectively. As a 

result, 

flWL(Tw~) = ((390°C-150°C) =4.167x "C-' (2.70) 

Table 2.2. Approximations of Failure Probability pFfor System Defined in Section 2.6 with One 
WL, One SL and Normal Distributions for WL and SL Failure Temperaturesa 

Random Importance 
s amplingf Samplingg N e  

Trapezoidal Simpson's 
RuleC Ruled N b  

3 1.83 1 E-06 2.441E-06 1,000 0.000E+00 3.386E-05 

5 9.155E-07 6.103E-07 10,000 O.OOOE+OO 1.744E-05 

9 4.577E-07 3.052E-07 100,000 4.000E-05 1.5 1 1E-05 

17 6.895E-07 7.667E-07 1,000,000 1.900E-05 1.474E-05 

33 1.865E-05 2.464E-05 10,000,000 1.540E-05 1.499E-05 

65 1.512E-05 1.394E-05 100,000,000 1.562E-05 1.511E-05 

129 1.5 12E-05 1.5 12E-05 

257 1.512E-05 1.512E-05 

513 1.5 12E-05 1.5 12E-05 

a Calculations performed with CPLOAS program (App. 111) 

Number of evaluations of G(TsL) (see Eq. (2.29)) with trapezoidal rule and Simpson's rule, which corresponds to the interval [TMNSL, 
TMYSL] being divided into N-1 subintervals. 
Approximation t o p F  obtained with trapezoidal rule (see Eq. (2.49)) and a relative error tolerance of E = lo-'. 
Approximation topFobtained with Simpson's rule (see Eq. (2.50)) and a relative error tolerance of E = 

Number of evaluation of 6(TwL, TsL) (see Eqs. (2.52) ~ (2.54)) for random sampling and importance sampling. 
Approximation to pF obtained with random sampling (see Eq. (2.56)). 

e 

g Approximation t o p F  obtained with importance sampling with right and left triangular distributions for Tw~.  and TSL, respectively (see Eqs. 
(2.58) - (2.63)). 
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JrSL(TsL) =1(877.5"C-322S0C) = 1 . 8 0 2 ~ 1 0 - ~  "C-', (2.71) 

and the resultant importance sampling approximation to pF is given as indicated in Eq. (2.59). Results obtained 

with simple random sampling and importance sampling are given in Table 2.2. 

The results obtained with importance sampling converge more rapidly than the results obtained with random 

sampling. As the sample size increases, the sampling-based results approach the quadrature-based results. How- 

ever, the quadrature-based results required far fewer function evaluations than the sampling-based results. 

2.7 Comparison with One WL, One SL Representation Developed by Bohn 

The competing temperature-dependent failure of a WL/SL system has been previously considered by Bohn 

(App. I). For one WL and one SL and with the notation used in his presentation, Bohn's representation for the 

probabilitypF that the SL fails before the WL for the system described in Sect. 2.1 is 

(2.72) 

where 

CDFsLl(t) = probability that SL fails before time t ,  

PDFwLl(t) = probability density function for time at which the WL fails (i.e., atl, t2, PDFwLl] is the probabil- 

ity that the WL fails between time tl and time t2), 

and [tMZN, tM4A'l is the time interval over which the calculation is carried out. This is the representation given in 

Eq. (4) of Bohn's report (App. I) with (i) one WL and one SL, (ii) the time interval [0, co] replaced by [t lwN, tlz.L1x] 

(note: in practice tMAxis always finite because calculations will never be carried out for tMAX= co in a real prob- 

lem), and (iii) to replaced by t for notational convenience. 

In the notation used in this presentation, the representation forpF in Eq. (2.72) becomes 

({flL[TMPWL(t)]){dTMPWL(t)/dt})dt, (2.73) 



The corresponding representations forpF given in Eqs. (2.12) and (2.15) of this presentation are 

(2.74) 

(2.75) 

where F(TSL) = TMPWL[TMPSL-l(TSL)] expresses the WL temperature as a function of the SL temperature. An 

unstated but underlying assumption with respect to Eqs. (2.72) - (2.75) is that the probability of either the WL or 

the SL failing at a time before t M N  or at a temperature below TA4NSL is either zero or negligibly small. 

Although they appear to be different, the representation for pF in Eq. (2.73) and the representations for pF in 

Eqs. (2.74) and (2.75) are effectively the same. This equivalence can be seen by using suitable changes of variable 

(see Eq. (2.16)) to reformulate the representation forpF in Eq. (2.73). Specifically, Eq. (2.73) can be rewritten as 

(2.76) 

where (i) the first equality results from the change of variables TSL = TMPSL(T) in the inner integral in Eq. (2.73), 

(ii) the second equality results from the change of variables T ,  = T W W L ( t )  in the outer integral in the first equal- 

ity and the use of F'(TwL),  TMNWL, and T'L to represent TMPSL[TMPWL-'(TwL)], TMPWL(tMIN) and 

TMPWL(tMAx), respectively and (iii) the third equality results from a rearrangement of the terms in the second 

equality. 

The functions F(TSL) and F'(TwL)  are defined by 

F ( TSL ) = TMP WL [ TMPSL-' ( TSL )] and F-' ( TSL ) = TMPSL [ TMP WL-' ( TwL )] , (2.77) 

with (i) F(T,L) providing the WL temperature associated with a SL temperature of TsL and (ii) F ' ( T W L )  providing 

the SL temperature associated with a WL temperature of T,. Thus, as anticipated by the notation selected for use, 

the functions F(TsL) and F1(TwL)  are inverses of each other (Fig. 2.4). Because of this inverse relationship, the 

double integrals in Eqs. (2.75) and (2.76) are effectively over the same area. Specifically, both integrals are over 

the cross-hatched area in Fig. 2.4, with (i) the outer integral in Eq. (2.76) along the abscissa (Le., the TwL axis) from 

TMPWL to T'L and the inner integral up to the curve [TwL, F ' (TWL)] ,  and (ii) the outer integral in Eq. (2.75) 

along the ordinate (Le., the TSL axis) from TMNSL and TMXSL and the inner integral starting at the curve [F(TsL), 
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TsL], which is the same as the curve [TwL, F ' (TWL)] ,  and moving to the right. In addition, the integral in Eq. (2.75) 

covers the area to the right of TMXWL on the abscissa. Geometrically, this is an infinite area. However, if the prob- 

ability of having a WL failure temperature greater than TMXWL is zero, then the part of the integral in Eq. (2.75) 

over this area will be zero and so the representations for pF in Eqs. (2.75) and (2.76) will produce the same value. 

Similarly, as long as the probability of a WL failure temperature larger than TMXWL is small, the representations 

forpF in Eqs. (2.75) and (2.76) will produce numerically similar results. In summary, the representations forpF in 

Eqs. (2.72) - (2.73) (i.e., in the Bohn development) and in Eqs. (2.74) - (2.75) (i.e., in the development of this pre- 

sentaiton) produce the same value for pF when the probability of the WL failing at a temperature greater than 

TMXWL = TMPWL(tM4X) is zero. However, if the probability of the WL failing at a temperature above TMXWL is 

greater than zero, then use of the representations in Eqs. (2.72) - (2.73) results in an underestimate ofpF. 

[Tw,, TMPSL [TMPWL-'(TWL)]] 
Region Integrated Over: 

Eq. (2.75) 
Region Integrated Over: 

Eq. (2.75) 

TMNWL T W ~  TMXWL 

TRMAffi3 2 ai 
TwL: WL Temperature 

Fig. 2.4. Illustration of regions integrated over to 
determine the failure probability pF with Eqs. 
(2.75) and (2.76) 
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3. Multiple WLs and SLs with Failure of One SL 
Before Any WL Constituting System Failure 

The analysis of PLOAS for a system involving multiple WLs and multiple SLs with failure of one SL before 

failure of any WL constituting system failure is now presented. The following topics are considered: formal mathe- 

matical representation of PLOAS (Sect. 3. l), numerical evaluation of defining integral for PLOAS with quadrature 

methods (Sect. 3.2), numerical evaluation of defining integral for PLOAS with Monte Carlo methods (Sect. 3.3), 

and an example of the numerical evaluation of PLOAS (Sect. 3.4). 

3.1 Formal Representation 

The system is now assumed to involve nWL WLs and nSL SLs. The system is assumed to fail if any SL fails 

before any of the WLs fail. The notation introduced in Sect. 2 is extended as follows: 

TMPWLj(t) = temperature ("C) of WL j ,  j = 1,2, . . ., n WL, at time t (min), (3.1) 

TMPSLk(t) = temperature ("c) of SL k, k = 1, 2, . . . , nSL, at time t (min), (3.2) 

fWLj = density function ("C-I) for failure temperature TFWLj of WL j ,  j = 1,2, . . ., n WL, (3.3) 

fSLk = density function ("C-l) for failure temperature TFSLk of SL k, k = 1, 2, . . ., nSL. (3.4) 

The bounding times (i.e., tMIN, thUX) remain as before; however, the individual SLs can have different minimum 

and maximum temperatures. 

The objective of this section is to determine the ProbabilitypF that a SL fails before any WL fails. The sample 

space underlying this calculation is 

8 = { t : t = [ tFSL1, tFSL2, . . . , tFSL,, , tF WL, , tF WL2, . . . , tFWL,sw 1) , (3.5) 

where tFSLk and tFWLj are the failure times of the kfh SL and jth WL, respectively. In particular, 

pF = prob ( E ) ,  

where E is the subset of Sdefined by 

E = { t : t = [tFSL1, tFSL2, . . . , tFSL,, , tFWLl, tFWL2,. . . , tFWLnSw] E S and there exists an integer k 

such that 1 I k I nSL and tFSLk < tFWLj for j = 1,. . .2, . . . , n WL) . (3.7) 

Specifically, Econtains the elements of S for which a SL fails before any WL fails. 



The determination o f p F  is based on the following decomposition of E : 

where 

Eik = ( t : t E t . , t j - l  ItFsLk <ti <tFSLl f o r I # k , t i  <tFwLj for j = 1 , 2 ,  ..., n w L } ,  

t.ik = { t : t E E ,  ti-l I tFSLk 5 ti, tFSLk I tFSLl for I # k, tFSLk I tFWLj for j = 1,2, . . ., n WL and either (i) there 
- 

exists at least one value of I such that tFSL, I ti or (ii) there exists at least one value o f j  such that tFWL, 

I til, 

and tMIN = to < t ,  < . . . < tnTM = tMRy is a partition of [ tMN,  tMAx] as indicated in Fig. 2.1. The set Ejk contains 

elements of E that have a SL failure time tFSLl, I # k, satisfying tFSLk I tFSLl I ti or a WL failure time tFWLj, j = 

1, 2,  . . ., n WL, satisfying tFsLk < tFWLj I ti. The equality 

i=l k=l i=l k=l 

holds because the sets involved are disjoint (or, to be more precise, have intersections with a probability of zero, to 

cover the situation that arises for f!& and GI when tFSLk = tFSLl, 1 I k < I I nSL). 

The equality 

(3.10) 

holds because the indicated probabilities involve products whose individual terms are proportional to Ati (see Eq. 

(2.9) for an analogous situation). Further, 

(3.11) 



where (i) flu, b,fl is defined in conjunction with Eqs. (2.9) and (2.10), (ii) the first term in the preceding products 

corresponds to the probability that SL k fails in the time interval [ti-l, ti], (iii) the second term corresponds to the 

probability that all SLs except SL k fail after ti, and (iv) the third term corresponds to the probability that all WLs 

fail after ti. 

As a result, 

where the first, second and third equalities follow from Eqs. (3.9), (3.10) and (3.1 l), respectively. Evaluation of the 

final limit of Eq. (3.12) leads to the representation ofprob( E ) ,  and hencepF, by 

n IITMPWLj (t),a, JwLj i"" j=1 
(3.13) 

where the first integral is a Riemann-Stieltjes integral and the second integral is the corresponding Riemann inte- 

gral. 

The Riemann integral defining pF in Eq. (3.13) is with respect to time. As discussed in conjunction with Eqs. 

(2.16) and (2.17), the definition of pF can be converted to an integral with respect to temperature by a suitable 

change of variable. In particular, pF can also be represented by 



where 

k=l 

= 0 otherwise, 

and all integrals are now on temperature. The simpler representation 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

for the first equality in Eq. (3.14) results when TIWVSL, = T W S L  and T&XSLk = TADLSL for k = 1,2, . . ., nSL. 
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3.2 Numerical Evaluation: Quadrature 

The same numerical procedures that were described in Sect. 2.3 for one WL and one SL are also appropriate for 

the configuration described in the preceding section (Sect. 3.1) for nWL WLs and nSL SLs. In particular, as the 

representation for pF in Eqs. (3.14) - (3.20) is the same as the representation described in Eqs. (2.28) and (2.29) 

except that the function G(TsL) is more complicated. However, the integrals in the definition of G(TsL) in Eqs. 

(3.19) and (3.20) can be approximated as described in Sect. 2.3. Thus, G(TsL) can be determined in an efficient 

manner, and as a result, pF defined in Eqs. (3.14) - (3.20) can be evaluated with the integral approximations in Eqs. 

(2.49) and (2.50). 

3.3 Numerical Calculation: Monte Carlo 

Monte Carlo procedures similar to those described in Sect. 2.4 for one WL and one SL can also be used for the 

WLJSL configuration described in Sect. 3.1. The determination of the failure probability p F  for the WLISL con- 

figuration in Sect. 3.1 is based on the representation o fpF  with the integral 

(3.22) 

where 

(3.23) 

= 0 otherwise, (3 .25)  

and the iterated integrals involve integration over TsL,k for k = 1,2, . . . , nSL and over TWLj for j  = 1,2, . . . , n WL. 



The role of the indicator function 6(TWL, TSL) defined in Eqs. (3.23) - (3.25) is to “pick out” the failure tem- 

perature pairs (TWL, TSL) in which at least one SL fails before any WL. In particular, (i) the assignment in Eq. 

(3.23) picks out the pairs in which at least one SL fails before the start of the analysis at time t M N  and, for the spe- 

cial case with one or more WLs also failing before tMIN, in which the minimum of the SL failure temperatures is 

less than the minimum of the WL failure temperatures for the links failing before tMN, (ii) the assignment in Eq. 

(3.24) picks out the pairs in which at least one SL fails between t M N  and t M  before the failure of any of the 

WLs; and (iii) the assignment in Eq. (3.25) removes the probability associated with pairs in which none of the SLs 

fail before any of the WLs from incorporation into pF. 

The integral definingpF in Eq. (3.22) can be approximated by 

(3.26) 

where 

is a random sample from the possible values of TWL and TsL generated in consistency with the distributions defined 

by the density functionsflLj(TwL),j = 1, 2, . . . , n WL, andflLk(TsL), k = 1,2, . . . , nSL. 

As previously indicated in conjunction with Eqs. (2.58) and (2.59) for one WL and one SL, importance sam- 

pling can be used to accelerate the convergence of Monte Carlo approximations to pF obtained from the integral in 

Eq. (3.17). In particular, the representation forpF defined by this integral can be reformulated as 

L j=l k=l 

nWL nSL nWL nSL *n flwLj ( % T , j )  n f l s L k  (%L,k) n dTWL,jndTSL,k 
j=l  k=l j=l k=l 

(3.28) 

whereJTWLj(TwLj), j = 1, 2, . . ., n WL, andflSL(TsL,k), k = 1, 2, . . ., nSL, are density functions that correspond to the 

distribution functions used for importance sampling on the WL and SL failure temperature distributions. 

The resulting importance sampling approximation of pF is given by 

nWL nSL 
8(TWL,i2 TSL,i) n fwLj (TWL,j,i) n f l L k  (%,k,i) 

j=l k=l 
pF G 51 n WL nSL n flwL(TWL,j,i) n f l S L ( % , k , i )  

i=l 

L j= l  k=l (3.29) 
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where [T,,, TSLJ, i = 1,2, . . ., N, is a sample of the form indicated in Eq. (3.27) but now generated in consistency 

with the distributions defined by JIWLj(TwLj) and j7SLk(TsL k) rather than the distributions defined by jW'L(TwLj) 

andflL(TSL,k). 

3.4 Numerical Evaluation: Example 

The following example involves two WLs and two SLs, with failure assumed to occur if either SL fails before 

either WL fails. For illustration, the WL and SL temperature curves are assumed to have the same general shapes as 

in Eqs. (2.66) and (2.67), with some modifications to the coefficients so that the individual links will have different 

temperature curves. In particular, 

(3.30) 

(3.3 1) 

where c1 and c2 are defined the same as in conjunction with Eqs. (2.66) and (2.67) (i.e., c1 = 10°C, c2 = 9OO0C), ~ 3 1  

= -900°C, ~ 3 2  = -1 100°C, ~ 4 1  = 0.25 min-l, ~ 4 2  = 0.30 rnin-l, ~ 5 1  = 0.12 min-', cS2 = 0.18 min-', c61 = 0.02 min-', 

c62 = 0.04 min-', C71 = 0.5 and C72 = 0.8 (Fig. 3.1). Use of the term ~ ~ ~ ( 1  + c7k) in the definition of ThfpSLk(t) in 

Eq. (3.26) results in the temperature behavior of the two SLs being related to the temperature behavior of WL2 but 

unrelated to the temperature behavior of WL1. 
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Fig. 3.1. Time-temperature curves defined in Eqs. 
(3.30) and (3.31) and used to illustrate calculation 
of failure probability pFfor two WLs and two SLs. 



Further, the density fimctionsJWL,(TwL) andfSL(TsL) for failure temperature are defined as in Eqs. (2.68) and 

(2.69), respectively. Specifically, c g  = 310°C and c9 = 8°C in the definition ofJWL1(TwL) andJWL2(TwL), and cl0 = 

560°C and c11 = 18°C in the definition ofJSLl(TsL) andfSL2(TsL). However, although the distributions defined by 

JWL,(Tw,) andJWL2(TwL) are the same, the failure temperatures for the two WLs are assumed to be independent; 

the same assumption is also made for the SL failure temperatures. The integral representations for pF developed in 

this presentation are predicated on the assumption that the failure temperatures are independent. The assumption of 

dependence would result in more complex integral representations for pF. However, it would be relatively easy to 

modify the Monte Carlo calculations o f p F  to incorporate correlations involving the failure temperatures. 

The failure probability example introduced in this section is evaluated with the trapezoidal rule, Simpson’s rule, 

simple random sampling and importance sampling (Table 3.1). The evaluations with the trapezoidal rule (see Eq. 

(2.49)) and Simpson’s rule (see Eq. (2.50)) use the representations for pF associated with Eqs. (3.14) and (3.20). 

The Monte Carlo evaluations based on simple random sampling and importance sampling use the representations 

for pF in Eqs. (3.22) and (3.28), respectively. Further, the importance sampling evaluation uses uniform distribu- 

tions with density functionsflWLj(TwL) andflSLk(TsL) defined the same asflWL(TwL) andflSL(TsL) in Eqs. (2.68) 

and (2.69), respectively. The four approaches produce similar values for pF, although the two sampling based ap- 

proaches require larger numbers of function evaluations. 



Table 3.1. Approximation of Failure Probability pF for System Defined in Sect. 3.4 with Two 
WLs, Two SLs, Normal Distributions for WL and SL Failure Temperatures, and Failure of a SL 
Before Either WL Constituting System Failure (i.e., the Failure Configuration Described in Sect. 
3.l)= 

Random Importance 
s amplingf S a m p l i n g g  

N e  
Trapezoidal Simpson’s 

RuleC Ruled N b  

3 

5 

9 

17 

33 

65 

129 

257 

513 

3.623E-06 

1.8 12E-06 

4.086E-04 

6.489E-02 

1.781E-01 

1.679E-01 

1.678E-0 1 

1.678E-01 
---- 

1.830E-0 1 2.629E-05 4.831E-06 1,000 
1.208E-06 10,000 1.690E-01 2.250E-01 

5.442E-04 100,000 1.668E-0 1 1.604E-01 

8.639E-02 1,000,000 1.679E-01 1.648E-01 

2.159E-0 1 10,000,000 1.679E-01 1.760E-01 

1.645E-01 100,000,000 1.679E-01 1.666E-01 

1.678E-01 

1.678E-01 

1.678E-01 

a Calculations performed with CPLOAS program (App. 111). 

Number of evaluations of G(TsL) (see Eq. (3.14)) with trapezoidal rule and Simpson’s rule, which corresponds to the interval [ T m s L ,  
TMXSL] being divided into N-1 subintervals. 
Approximation to pF obtained with trapezoidal rule (see Eq. (2.49)). 
Approximation topF obtained with Simpson’s rule (see Eq. (2.50)). 
Number of evaluation of G(TwL, TSL) = 

Approximation to pF obtained with random sampling (see Eq. (3.26)). 

(3.29), withJIWL,{TwLi) andJISLk(TsL k )  defined as indicated in Eqs. (2.70) and (2.71), respectively). 

e 
e TWL,*, TSL,,, TSL,z) (see Eqs. (3.23) - (3.25)) for random sampling and importance sampling. 

g Approximation topF obtained with importance sampling with uniform distributions for Twz.1, TWL,~,  TSLJ and TSLJ (see Eqs. (3.28) and 
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4. Multiple WLs and SLs with Failure of All SLs 
Before Any WL Constituting System Failure 

The analysis of PLOAS for a system involving multiple WLs and multiple SLs with failure of all SLs before 

failure of any WL constituting system failure is now presented. The following topics are considered: formal mathe- 

matical representation of PLOAS (Sect. 4. 1), numerical evaluation of defining integral for PLOAS with quadrature 

methods (Sect. 4.2), numerical evaluation of defining integral for PLOAS with Monte Carlo methods (Sect. 4.3), 

example of the numerical evaluation of PLOAS (Sect. 4.4), and comparison with a representation for PLOAS de- 

veloped by M.P. Bohn for one WL and two SLs (Sect. 4.5). 

4.1 Formal Representation 

The system is assumed to involve n WL WLs and nSL SLs as in Sect. 3. However, the system is now assumed to 

fail only if all SLs fail before any WL fails. The functions TMPWL) TMPSLk,fwLj andfSLk are the same as in Eqs. 

(3.1) - (3.4). 

The underlying sample space 8 is the same as defined in Eq. (3.5). However, the set E used in the definition 

ofpF is different. In particular, 

p F  = prob (e) ,  (4.1) 

where E is now the subset of 8 defined by 

= { t : t = [ tFSLl, tFSL2, . . . , tFSL,, , tF WLl , tF WL2 , . . . , tF WL, wL ] E 8 and tFSLk < tF WLj 

for k = l ,2,  .. ., nSL, j = 1,2,. . ., n WL}. 

Specifically, E contains the elements of 8 for which all SLs fail before any WL fails. 

The determination ofpF is based on the following decomposition of E : 

where 

(4.3) 

& = (t : t E E ,  tiPl I tFsLk S t i ,  tFSLl < ti-l for 1 # k ,  ti < tFWLj for j = 1, 2,. . ., n w L ) ,  

i i k  = {t : t E E ,  tiP1 I tFsLk i t i ,  tFSLl I tFsLk for I + k, tFSLk I tFWLj for j = 1,2, . . . , n WL and either (i) there 

exists at least one value of I such that tiP1 I tFSL, or (ii) there exists at least one value o f j  such that 
tFWLj I t i }  , 



- 
and tMIN = to < tl < . . . < tnTM = thlXY is a partition of [tMN, tkMXl as indicated in Fig. 2.1. The set Ezk contains 

elements of E that have a SL failure time tFSL,, I # k, satisfying t,_] 5 tFSLl I tFSLk or a WL failure time tFWLj, j = 

1, 2, . . . , n WL, satisfying tFSLk < tFWL] I t,. The equality 

i=l k=l i=l k=l 

holds because the sets involved are disjoint (see parenthetical remark following Eq. (3.9)). 

The equality 

holds because the indicated probabilities involve products whose individual terms are proportional to Ati (see Eq. 

(2.9) for an analogous situation). Further, similarly to Eq. (3.1 l), 

where (i) I[a, b ,A  is defined in conjunction with Eqs. (2.9) and (2.10), (ii) the first term in the preceding products 

corresponds to the probability that SL k will fail in the time interval [tiPl, ti], (iii) the second term corresponds to the 

probability that all SLs except SL k will fail before t i - l ,  and (iv) the third term corresponds to the probability that all 

WLs will fail after ti. 

As a result, 



nSL nWL 
HZ[-a, T2MPSL,(ti-l), f sL ,]  n I[TMpWLj (ti), a, m j ] ,  (4.7) 
1=1 j=l  
Izk 

where the first, second and third equalities follow from Eqs. (4.4), (4.5) and (4.6), respectively. Evaluation of the 

final limit in Eq. (4.7) leads to the representation ofprob( 9, and hencepF, by 

where the first integral is a Riemann-Stieltjes integral and the second integral is the corresponding Riemann inte- 

gral. 

The Riemann integral defining pF in Eq. (4.8) is with respect to time. As discussed in conjunction with Eqs. 

(2.16) and (2.17), the definition of pF can be converted to an integral with respect to temperature by a suitable 

change of variable. This change produces 

where notation is the same as in Eq. (3.14) except that now 
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= o  otherwise 

in the definition of G(TsL). The simpler representation 

TMXSL 

(4.10) 

(4.1 1) 

results for the first equality in Eq. (4.9) when TIw\rSLk = TlwvSL and TMYSLk = TMXSL for k = 1,2, . . . , nSL. 

4.2 Numerical Evaluation: Quadrature 

The same numerical procedures indicated in Sect. 3.2 (Le., the quadrature formulas in Eqs. (2.49) and (2.50)) 

can be used to determine the failure probabilitypF for the WLISL configuration described in the preceding section 

(Sect. 4.1). The only difference is a change in the definition of the function G(TSL) resulting from a changed defini- 

tion for Gk(TsL) (see Eqs. (3.19), (3.20), (4.10)). 

Evaluation of G ( T ~ L )  in conjunction with Eq. (4.19) involves integrals of both the forms qc ,  00 , f l  and 4-00, c, 

Jl, wherefis a probability density function (see definition of Gk(TSL) in Eq. (4.10)). The evaluation of I[c, 00, f l  is 

discussed in Eqs. (2.36) - (2.48) for uniform, loguniform, normal and lognormal distributions (Le., for the density 

functionsf,,Ji,,fn andJin in the notation used in conjunction with Eqs. (2.36) - (2.48)). Similar evaluations are also 

possible for 4-00, c,Jl. Specifically, 

i f c l a  
i f a l c l b  
i f c 2 b  (4.12) 

for -00 < c < 00 and the uniform density function f, defined in Eq. (2.30); 



i f c s a  

1[-00,c,Ji~] = ln(c/a)/ln(b/a) i f a  2 c 2 b 6 i f c 2 b  (4.13) 

for -a < c < 00 and the loguniform density functionfi, defined in Eq. (2.3 1); 

for -00 < c < 00 and the normal density functionf, defined in Eq. (2.32), and 

(4.14) 

0 i f c 5 0  

(l/T&) exp [ - (In T - p)2 /202] dT 

= ~ohc(l/o&)exp[-(y-p)2/202]dy i f c > 0  (4.15) 

for -a < c < 00 and the lognormal density functionA, defined in Eq. (2.33) withJi,(T) = 0 assumed for T 5 0. 

Similarly to 4c, 00,f,] and I[c, m,&] as discussed in conjunction with Eqs. (2.40) - ( 2.48), closed form repre- 

sentations for 4-00, c,fn] and 4-00, c,Ji,] do not exist. However, fl-00, c,fnl and 4-00, c,.&l can be represented by 

(4.16) z [-a, c, f, 1 = P [ ( c  - 4/01 

and 

(4.17) 

where P(x) denotes the Gaussian probability integral defined in Eq. (2.42). In turn, P(x) can be approximated by the 

relation in Eq. (2.43). 

An alternative approximation can be obtained from the representations 

and 

(4.18) 

that result from Eqs. (2.44) and (2.45). Then, approximations to Z[-a, c,fn] and 4-00, c,Jin] follow from the repre- 

sentations for erfc(x) in Eqs. (2.47) and (2.48). 



4.3 Numerical Evaluation: Monte Carlo 

The same Monte Carlo procedures indicated in Sect. 3.3 can be used to determine the failure probabilitypF for 

the WLISL configuration described in Sect. 4.1. The only difference is in the definition of the indicator function 

6(Tw~, TsL) in Eq. (3.22). For the WL/SL configuration described in Sect. 4.1, 6(TwL, TSL) is defined by 

= 1 if TsL,k < TMPSLk (tA47N) for k = 1, 2, . . . , nSL and max { TsL,k : k = 1,2, . . . , nSL) < 

min { TwL,j : 1 I j i n WL and T ~ L ,  < TMP WLj (MZN))  (4.20) 

= 0 otherwise. (4.22) 

With respect to the role of the indicator function 6(TwL, TsL), (i) the assignment in Eq. (4.20) picks out the pairs 

(TwL, TsL) in which all SLs fail before the start of the analysis at time tMN and any WL failing before the start of 

the analysis has a higher failure temperature than any SL, (ii) the assignment in Eq. (4.21) picks out the pairs in 

which all SLs fail before the end of the analysis at tMAx and also before the failure of any WL, and (iii) the assign- 

ment in Eq. (4.22) removes the probability associated with pairs in which one or more WLs fail before all of the SLs 

fail from incorporation into pF. 

With the definition of 6(TwL, TsL) in Eqs. (4.20) - (4.22), the Monte Carlo approximation to pF for the WL/SL 

configuration in Sect. 4.1 has the form in Eq. (3.26) when simple random sampling is used and the form in Eq. 

(3.29) when importance sampling is used. 

4.4 Numerical Example: Example 

The example introduced in Sect. 3.4 is also used to illustrate the WLISL configuration described in Sect. 4.1 

where all SLs are required to fail before any WL to produce a failure of the WL/SL system (Table 4.1). The only 

difference in the implementation of the numerical results is the use of the definition of Gk(TsL) in Eq. (4.10) instead 

of the definition in Eq. (3.20) in the generation of quadrature results (see Eqs. (2.49) - (2.50)) and the use of the 

definition 6(TwL, T s ~ )  in Eqs. (4.20) - (4.22) instead of the definition in Eqs. (3.23) - (3.25) in the generation of 
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Monte Carlo results with simple random sampling (see Eq. (3.26) and importance sampling (see Eq. (3.29)). The 

four approaches produce similar values for pF, with the two quadrature approaches requiring far fewer function 

evaluations than the two sampling approaches. Further, the requirement that both SLs fail before either WL fails 

results in a much smaller value forpF (i.e., pF r 1.6 x in Table 4.1) than is the case in the preceding section 

(Sect. 3) where only one SL is required to fail prior to the failure of either WL (i .e. ,pFr 1.7 x lo-’ in Table 3.1). 

4.5 Comparison with One WL, Two SL Representation Developed by Bohn 

For one WL and two SLs and with the notation used in his presentation, Bohn’s representation for the probabil- 

i typF that both SLs fail before the WL for the system described in Sect. 4.1 is 

(4.23) 

Table 4.1. Approximation of Failure Probability pF for System Defined in Sect. 3.4 with Two 
WLs, Two SLs, Normal Distributions for WL and SL Failure Temperatures, and Failure of Both 
SLs before Either WL Constituting System Failure (i.e., the Failure Configuration Described in 
Sect. 4.1)a 

Random Importance 
Ne Samplingf Samplingg 

Trapezoidal Simpson’s 
RuleC Ruled N b  

O.OOOE+OO 2.185E-13 3 8.273E-08 1.103E-07 1,000 
5 4.136E-08 2.758E-08 10,000 0.000E+00 5.52 1E-07 

9 2.076E-07 2.630E-07 100,000 0.000E+00 2.226E-06 

17 1.058E-07 7.183E-08 1,000,000 2.000E-06 1.968E-06 

33 2.052E-06 2.700E-06 10,000,000 1.500E-06 1.573E-06 

65 1.567E-06 1.405E-06 100,000,000 1.670E-01 1.594E-06 

129 1.557E-06 1.553E-06 

257 1.557E-06 1.557E-06 

513 1.557E-06 

1025 - 1.557E-06 

2049 - 1.557E-06 

- 

a Calculations performed with CPLOAS program (App. 111) 
Number of evaluations of G(TsL) (see Eq. (4.9)) with trapezoidal rule and Simpson’s rule, which corresponds to the interval [ T m s L ,  
TMXSL] being divided into N-1 subintervals. 
Approximation t o p F  obtained with trapezoidal rule (see Eq. (2.49)). 
Approximation t o p F  obtained with Simpson’s rule (see Eq. (2.50)). 
Number of evaluation of G(TwL, TSL) = F(TwL,,, TwL,*, TSL,,, TSL,*) (see Eqs. (4.20) - (4.22)) for random sampling and importance sampling. 
Approximation topF obtained with random sampling (see Eq. (3.26)). 

g Approximation topFobtained with importance sampling with uniform distributions for TwL,,, TwL,~ ,  TSLJ and TsL,~,  (see Eqs. (3.28) and 
(3.29), withflWLl(TwL,,) andf%SLk(TSL,k) defined as indicated in Eqs. (2.70) and (2.71), respectively). 



where (i) CDFSLl(t) and cDFs~2(t) are the probabilities that SLs 1 and 2, respectively, fail before time t, (ii) 

PDFwLl(t) is defined the same as in Eq. (2.72), and (iii) [tMN, tkL4Xl is the time interval over which the calcula- 

tion is carried out. This is the representation given in Eq. (4) of Bohn's report with the time interval [0, m] replaced 

by [tMN, tMAx] and to replaced by t for notational convenience. 

In the notation used in this presentation, the representation forpF in Eq. (4.23) becomes 

((JWL [TMP WL (t)]) { dTMPWL (t)/dt)) dt, (4.24) 

where (i) CDFsLl(t) and CDFsL2(t) are defined analogously to CDFSLl(t) in Eq. (2.73) with subscripts of k = 1, 2 

used OnflLk and TmsLk  to distinguish between the two SLs and (ii) PDFwLl(t) is defined the same as PDFwLl(t) 

in Eq. (2.73) with no subscripting needed onfWL and TMPWL as only one WL is involved. The corresponding 

representations forpF given in Eqs. (4.8) and (4.9) are 

(4.25) 

(4.27) 

expresses the temperature of SL k as a function of the temperature of SL I and 

FWLk ( TSL ) = Th@ WL [ Th@sLi' ( T ~ L  )] (4.28) 

expresses the temperature of the WL as a function of the temperature of SL k. 

The equivalence of the representation for pF in Eq. (4.24) and the representation for pF in Eqs. (4.25) and 

(4.26) will be established by using suitable changes of variable (see Eq. (2.16)) to reformulate the representation for 



pF in Eq. (4.24) into a form that can be shown to have the same value as the representation in Eq. (4.26). Specifi- 

cally, Eq. (4.24) can be rewritten as 

where 

TMNWL = TMP WL ( t M N ) ,  TMXWL = TMP WL ( tMAX) , (4.30) 

where 
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Si = {(TwL, TsLl, T s ~ 2 )  : FWLl (TsL1) I TwL I TMYWL, T m S h  I T s ~ l  I TMXSL,, TAdA'SL, 5 T s ~ 2  I FSb1 ( T s ~ 1 ) )  

= { (T'L, T s ~ l ,  T'L2) : TMPWL [ TMPSL;' (TsL1)] I TwL I TMXWL, 

TWSL1 i TsLl S TMKSL1, T W S k  I TsL2 I TMPSL, [ TMPSq' ( TsLl )]) , 
(4.34) 

$2 = {(TWL, TsLl, T'L2) : FWL2 (TsL2) 2 TwL I TMXWL, T W S L l  2 TsLl I F S h ,  (TSL2). TAdA'Sb i T s ~ 2  I T M S b }  

= { ( T w L , T ~ ~ 1 . T s L 2 ) : ~ M P W L [ T W S L ~ 1 ( T s L 2 ) ]  ITwL ITMYWL, 

TAdA'SL1 i T'L, I TMPSLl[ TMPSG' (TsL2 )] , TAdA'SL2 I T s ~ 2  i T M S h ) ,  

(4.35) 

andATwL, TsL1, TsL2) and dV are defined the same as in conjunction with Eq. (4.29). The approximation in Eq. 

(4.33) results from truncating infinite integrals at TMNSL,, TAdA'SL2 and TMXWL as appropriate. As long as prob- 

lems start and end at temperatures such that the probability of an SL failure temperature below the corresponding 

starting temperature (i.e., T W S L ,  or T W S L 2 )  is inconsequential and the probability of a WL failure temperature 

above TMXWL is inconsequential, the indicated approximation will have no significant effect on the calculated 

value for pF. The final equality in Eq. (4.33) is contingent on the intersection of 8, and $2 being a set of zero vol- 

ume (i.e., measure zero) in three-dimensional space; this is established in the following two paragraphs. 

The following inequalities are required by the definitions of Sl and S 2  in Eqs. (4.34) and (4.35) for a point 

(TWL, TSL1. TSL2) in Sl n $2: 

and 

Because TMPSG' (TsL2) and TMPSLT' (TsLl) are increasing functions, the preceding inequalities imply that 

and hence that 

In turn, the immediately preceding inequalities imply that 
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(4.36) 

(4.37) 

(4.38) 

(4.39) 

(4.40) 



(4.41) 

and hence that the equalities 

TsLl = TMPSL1[ TMPSG' ( T s ~ 2  )] 

hold for (TwL, TsL1, TsL2) in 8, n S2. Thus, TsLl and TsL2 fall on the line defined by the points 

or equivalently by the points 

Further, the relationships 

follows from the definition of Sl in Eq. (4.34) and the equality in Eq. (4.41). 

Together, the results in Eqs. (4.44) - (4.46) imply that 8, n s2 is the surface defined by 

for TMPWL[ TMPSG' (TsLl)] I TWL I TMXWL and TIWVSL, 2 TsLl 5 T M S L 1 ,  or equivalently, by 

(4.42) 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

for TMPWL[ TMPSG' (TsL2)] I TWL I TMXWL and TIWVSL, 2 TsL2 I TMSL,. Thus, SI n 82 is a surface and the 

equality in Eq. (4.33) is valid. 

The integrals definingpF in Eqs. (4.29) and (4.33) have the same general form and differ only in the sets S and 

8 v 8 2  being integrated over. The sets 8 and 8 v S2 will now be shown to be the same. As a result, the repre- 

sentations for pF developed by Bohn (i.e., Eqs. (4.23), (4.24) and the representations developed in this presentation 

(i.e., Eqs. (4.25), (4.26) are the same (conditional on the approximation introduced in Eq. (4.33)). The equality of 8 
and 8 u S2 is established by showing that S v S c S and that S c 8 v &. In establishing the preceding, 



the properties that TMPSL,, TMPSL, and TMPWL are nondecreasing functions of time and that TMSL;' , 

TMPSG' and TMPWL-' are nondecreasing functions of temperature play an important role. 

Let ( T ~ L ,  T s ~ 1 ,  T s ~ 2 )  E 81 u &. Then, either (TwL, TsL1, TsL2) E SI or (TwL, TsL1, TsL2) E &. First, assume 

(TWL, TsLl, TsL2) E 8,. Then, the following inequalities hold: 

TMNWL = F W h  (TMNSLI) I FWLl (TsL1) I TWL I T m L ,  (4.49) 

TMNSL1 I TsLl = FWG' [FWLl (Ts~l)] I FWL;' (TWL) = TMPSh [TMPWL-' (TwL)].  (4.50) 

Thus, (TWL, TsL1, TsL2) E 8(see definition of Sin Eq. (4.32)). Similarly, if (T,,, T s L ~ ,  T s L ~ )  E &, then 

TMNWL = FWL2 (TA4iVSk) I F W k  (TsL2) I TwL I TMXJFL, (4.52) 

which implies that (TwL, T ~ L ~ ,  TsL2) E S(see definition of Sin Eq. (4.32)). Hence, 81 u & c & 

(4.55) 

or 

If the inequality in Eq. (4.55) holds, then 

T M W L I T M P S G 1 ( T s ~ l ) ]  = FWLl (T'Ll) I F W h  [FWL;'(TWL)] = TVL I TMXWL, (4.57) 

TMNSL, I T~~~ I FWL;' ( T ~ ~ )  I FWL;' (TMXWL) = T M X S ~ ,  (4.58) 

and thus, (TwL, T s ~ 1 ,  T s ~ 2 )  E $1 (see definition of Sl in Eq. (4.34)). If the inequality in Eq. (4.56) holds, then 



TMPWLITMPSLil (TsLz)] = FWL, (TsL2) < FWL, [FWL;l (TWL)] = TWL I TMXWL, (4.60) 

and thus, (Tm, TsL1, TsL2) E & (see definition of & in Eq. (4.35)). Hence, (TWL, TsL1, T s ~ 2 )  E 81 u &, and as a 

result, S c  SI u S;. 

Given that Sl u 8,  c Sand 8 c S u S,, it follows that S = S u 8,. Hence, the integrals in Eqs. (4.29) 

and (4.33) are the same. As a result, the representations forpF in Eqs. (4.24) and (4.26) are the same. 

Although formally correct, the preceding derivation is not very intuitive. To help facilitate an understanding of 

the preceding derivation, an example follows. In this example, the time-temperature curves for the WL and the two 

SLs are defined by 

TMPWL(t)=l00+6t 

TMPSL1 ( t )  = 100 + 7t 

TMPSL, ( t )  = 100 + 8t 

(4.63) 

(4.64) 

(4.65) 

for 0 I t I 100 min. Then, 

TMNWL = TMNSL1 = TMNsL2 = lOO"C, 

TMXWL = 600"C, TMxSLi= 8OO"C, TMxsL2 = 900"C, 

and the set S defined in Eq. (4.32) corresponds to the three-dimensional region indicated in Fig. 4.la. 

(4.66) 

(4.67) 

The integral definingpF in Eq. (4.29) corresponds to integration (i) along the TWL axis from TlMNWL = 100°C 

to TMXWL = 600°C (i.e., along the line segment L1 in Fig. 4.la), (ii) then, for each value of TWL, along the T s ~ l  

axis from TMNSL1 = 100°C to TMPSL1[TMPWL-l(TWL)], (Le., along the line segment L2 in Fig. 4.la), and (iii) 

finally, for each value of TsL1, along the TsL2 axis from TMNSL, = 100°C to TMPSL2[ TMPSL;' (TsL1)] (Le., along 

the line segment L3 in Fig. 4.la). The line segments L1, L2 and L3 in Fig. 4.la are formally defined by 

L1 = { [ TWL, TMPSq ( 0 )  , TMPSL, (O)] : 100 I TWL I 600°C) 

= {[TWPWL(t),100"C,100"C]: O I t  IlOOmin), (4.68) 
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(4.69) 

(4.70) 

and collectively correspond to the set $(with appropriate recognition that L2 is conditional on Tp-L and that L3 is 

conditional on TWL and TsLI). 

The sets 8,  and S2 defined in Eqs. (4.34) and (4.35) correspond to the three-dimensional regions indicated in 

Figs. 4.lb and 4.lc, respectively. Further, S I  n s2 corresponds to the triangular planar region that forms the top 

surface of 8 1  in Fig. 4. l b  and the bottom surface of 8, in Fig. 4.1 c. 

The integral over SI in Eq. (4.33) corresponds to integrating (i) along the TsLl axis from TMNsL1 = 100°C to 

TMxsL1 = 800°C (Le., along the line segment L4 in Fig. 4.lb), (ii) then, for each value of T s L ~ ,  along the T s ~ 2  axis 

from TMNsL2 = 100°C to T W S L 2 [  TMPSLr' (TsLl)] (i.e., along the line segment L5 in Fig. 4.lb), and (iii) finally, 

for each value of TsL2, along the TwL axis from TMPWL[ TMPSL;' (TsLI)] to TMXWL = 600°C (i.e., along the line 

segments Lg in Fig. 4.1 b). The line segments L4, L5 and L6 in Fig. 4.1 b are formally defined by 

& = { [ TMPWL (0) , T s ~ l ,  TMPSL2 (O)] : 100 i TsLl 5 SOO"C} 

= { [ IOOOC, TWPSL' ( t )  , I  OOOC] : o i t i 100 min} , (4.7 1) 

(4.73) 

and collectively correspond to the set S ,  (with appropriate recognition that L5 is conditional on T S L ~  and that & 
is conditional on TsLl and TsL2). 

The integral over S2 in Eq. (4.33) corresponds to integrating (i) along the TsL2 axis from TMNsL2 = 100°C to 

TMxsL2 = 900°C (i.e., along the line segment L7 in Fig. 4.lc), (ii) then, for each value of TsL2, along the TsLl axis 

from TMNsLl = 100°C to T W S L , [  T W S G '  (TsL2)] (Le., along the line segment -& in Fig. 4.lc), and (iii) finally, 

for each value of TsL1, along the TwL axis from TMPWL[ TWSG' (TsL2)] to T'L = 600°C (i.e., along the line 

segment & in Fig. 4. IC). The line segments L7, & and L9 in Fig. 4. IC are formally defined by 



I. / 

TR04A110-O.ai 

Fig. 4.1. Three-dimensional failure temperature regions used in example comparison with compu- 
tational structure developed by M.P. Bohn (see App. I) for probability of loss of assured safety for 
system with one WL and two SLs. 

&7 = ([TMPWL(lOO), TMPSL1(0), TsL2] : 100 5 T S L ~  5 900°C) 

= { [ 1 OOT, 1 OOT, T M P S L ~  ( t  )] : 0 5 t 5 100 min) , (4.74) 

(4.76) 



and collectively correspond to the set S2 (with appropriate recognition that & is conditional on TSL~ and that Lg 
is conditional on TsL2 and TsLI). 

As illustrated in this example, the set 8 integrated over in Eq. (4.29) and set S1 LJ S2 integrated over in Eq. 

(4.33) are the same. Further, 8, n S2 is a surface. Thus, the integral of the function f in Eq. (4.31) over &is equal 

to the sum of the integrals off over S1 and S2, respectively. Hence, the representation for pF developed by Bohn 

for one WL and two SLs and the representation developed in this presentation are equivalent conditional on the 

truncation of the integrals over WL failure temperature at TMXWL in Eq. (4.33). This corresponds to truncating the 

integrals over WL failure temperature in the example at 600°C. As long as the probability of WL failure below this 

temperature is effectively one, this truncation has no effect on pF and so the two representations result in the same 

value for pF. 



5. Multiple WLs and SLs with Individual SLs 
Composed of Multiple Components 

The analysis of PLOAS for a system with the following properties is now presented: multiple WLs, multiple 

SLs, multiple components in each SL, failure of any component in a SL constitutes failure of that SL, and failure of 

all SLs before failure of any WL constitutes system failure. The following topics are considered: formal mathe- 

matical representation of PLOAS (Sect. 5. l), numerical evaluation of defining integral for PLOAS with quadrature 

methods (Sect. 5.2), numerical evaluation of defining integral for PLOAS with Monte Carlo methods (Sect. 5.3), 

and example of the numerical evaluation of PLOAS (Sect. 5.4). 

5.1 Formal Representation 

As in Sects. 3 and 4, the system is assumed to involve nWL WLs and nSL SLs. In addition, each SL is now as- 

sumed to be composed of multiple components, with a SL failing when any one of its components fails. System 

failure is assumed to occur if all SLs fail before any WL fails. 

The following additional notation is introduced: 

nC(k) = number of components associated with SL k, 

ThfpsLk,(f) = temperature (“c) of component c of with SL k at time t (min), 

JsLkc = density function (“C-l) for failure temperature TsL of component c of SL k. (5.3) 

As for the WLs and SLs in prior sections, a SL component is assumed to fail if its temperature reaches its failure 

temperature. The WL properties TMpWLj(t) andflLj remain as before. As forfWLj andfSLk in Sects. 3 and 4, 

JsLk, represents aleatory uncertainty. 

The objective of this section is to determine the probabilitypF that all SLs fail before any WL fails. The sam- 

ple space underlying this calculation is 

8 = {t : t = [tFSLI, tFSL2, ..., tFSL,,, tFWL1, tFWL2, ..., tFWL,W-]}, (5.4) 

where (i) 

for k = 1, 2, . . ., nSL, (ii) tFSL, is the failure time of component c of SL k, and (iii) tFWLj is the failure time of WL 

j .  In turn, pF is defined by 



pF = prob ( E )  , (5.5) 

where 

E = {t  : t = [tFSL1, tFSL2,  ..., tFSL,,, tFWL1, tFWL2, ..., tFWLnwL] €8  and tFSLk < tFWLJ 

for k = 1,2, ..., nSL, j = 1,2, ..., nWL} 

is the failure time of SL k. Specifically, E contains the elements of S for which all SLs fail before any WL fails. 

The determination o f p F  is based on the following decomposition of E : 

nTM 
E =  u 

i=l 

where 

$kc = {t: t E ti-1 I tFsLkc 2 ti, ti < tFSLM for d # c, tFSL, < ti-l for 1 # k, ti tFWLj f o r j  = 1, 2, . . ., 
n WL} 

Eik; {t: t E e ti-l I tFsLkc 5 ti, tFSLk, I tFSL, for d # C, tFSL, I tFsLkc for 1 # k, tFsLkc I tFWL, for j = 

1, 2, . . . , n WL and either (i) there exists at least one value of d such that tFSLM < ti or (ii) there ex- 

ists at least one value of I such that ti-l I tFSL, or (iii) there exists at least one value of j such that 

tFWLj < ti} 

and t M N  = to < t ,  < . . . < tnTM’ t M i s  a partition of [ tMN,  tMAx] as indicated in Fig. 2.1. The set Eik  contains 

elements of €that have a SL k component failure time tFsLkd, d # c, satisfying tFSLk, I tFSLkd I ti or a SL failure 

time tFSLl, 1 # k, satisfying ti-l 2 tFSL1 I tFsLkc or a WL failure time tFWLj, j = 1, 2,  .. ., nWL, Satisfying tFsLkc < 

tFWLj I ti. The equality 

i=l k=l c=l i=l k=l c=l 

holds because the sets involved are disjoint (see parenthetical remark following Eq. (3.9)). 

The equality 



holds because the indicated probabilities 

(5.10) 

involve products whose individual terms are proportional to Ati (see Eq. 

(2.9) for an analogous situation). Further, similarly to Eqs. (3.1 1) and (4.6), 

(5.1 1) 

where (i) the first term in the preceding product is the probability that all SLs except SL k have failed by t,-l (i.e., 

pSLX-a, t,-1) is the probability that SL 1 fails between -a and tzp1, and so the indicated product is the probability 

that all SLs except SL k fail by t,-]), (ii) the second term is the probability that component c of SL k fails in the time 

interval [t,-l, t,], (iii) the third term is the probability that all components of SL k except for component c fail after t,, 

and (iv) the fourth term is the probability that all WLs fail after t,. 

The SL failure probabilitypSL1(-a, ti-]) in Eq. (5.11) is given by 

(5.12) 

where (i) in the first equality, fl-co, T~SLl~ t j - l ) , fSL ld ]  is the probability that component d of SL 1 fails by t j - l ,  1 

- I [ - q  ThfPsL1dti-1),fSLld] is the probability that component d of SL 1 does not fail by tj-l, and so the entire ex- 

pression is the probability that at least one component of SL I has failed by ti-l, which is the probability that SL 1 

has failed by ti-l, (ii) in the second equality, use of the algebraic identity 

n n n n ( l -  Xd ) = - 

d=l d=l e=d+l 
xd n ( - x e )  (5.13) 

produces the indicated expression, and (iii) in the third equality, the final expression is based on the identity 1 - 

I ( - q  c,fi = I(c, m,fi  for -00 < c < co and f a density function. 



By using Eqs. (5.9) - (5.12), it follows that 

f 

ti-1 ) 

'I 

1 
(5.14) 

where (i) the first equality follows from Eq. (5.9), (ii) the second equality follows from Eq. (5.10), and (iii) the third 

equality follows from Eqs. (5.1 1) and (5.12). Evaluation of the final limit in Eq. (5.14) leads to the representation 

ofprob(E), and hencepF, by 

(5.15) 
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where (i) the first equality involves Riemann-Stieltjes integrals and (ii) the second equality involves the correspond- 

ing Riemann integral. 

The Riemann integral defining p F  in Eq. (5.15) is with respect to time. As discussed in conjunction with Eqs. 

(2.16) and (2.17), the definition of pF can be converted to an integral with respect to temperature by a suitable 

change of variable. This change produces 

(5.16) 

where the first equality results from moving the summations in Eq. (5.15) to outside the integration, the change of 

variables takes place at the second equality, and the following notation is used: 

TMNSL = min{TMNSLk, c = 1,2?.., n C ( k ) ,  k = 1,2, ..., nSL}, 

(5.17) 

(5.18) 

(5.19) 



k=l c=l 

= 0 otherwise. 

The simpler representation 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

for the first integral in Eq. (5.16) results when TMNSLkc = TMNSL and TMSLkc  = TMXSL for c = 1,2, . . ., nC(k), k 

= 1,2, ..., nSL. 

5.2 Numerical Evaluation: Quadrature 

The same numerical procedures indicated in Sect. 3.2 (i.e., the quadrature formulas in Eqs. (2.49) and (2.50)) 

can be used to determine the failure probability pF for the WLISL configuration described in the preceding section 
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(Sect. 5.1). The only difference is a change in the definition of the function G(TSL) resulting from the definitions 

for Gkc(TSL) (see Eqs. (3.19), (3.20), (5.21), (5.22)). Integrals of the form I[c, w,fl and a-w, c,fl appearing in the 

definition of Gkc(TsL) can be approximated as indicated in Sects. 2.3 and 4.2, respectively. 

5.3 Numerical Evaluation: Monte Carlo 

The same Monte Carlo procedures indicated in Sect. 3.3 can be used to determine the failure probability pF for 

the WLISL configuration described in Sect. 5.1. The only real difference is in the definition of the indicator func- 

tion ~ ( T w L ,  TSL) in Eq. (3.22). For the WL/SL configuration described in Sect. 5.1, 6 has the more complex form 

~ ( T w L ,  T,,J, TSL,,, . . ., TSL,nSL), where TwL is the same as defined in conjunction with Eq. (3.22), 

TSL,k =[TSL,k,12 TSL,k,2, ...? TSL,k,nC(k)] (5.24) 

for k = 1, 2, . . . , n, and TSL,k,c is the failure temperature ("C) of component c of SL k. 

More specifically, the failure probability pF for the WLISL configuration described in Sect. 5.1 can be repre- 

sented by 

(T : T = [ TwL, TsL,I, TsL,2, . . . , TsL,nsL] consistent with the distributions that define the WL 

and SL component failure temperatures}, 

density function defined on $consistent with the distributions that define the WL and SL compo- 
nent failure temperatures 

n f w L ,  (TWL.j) 

nWL 

j=l 
(5.26) 



and 

6(T) = ( TwL 3 Ts',l, T%,2 7 . . . j  TSL,d'L) 

= 1 if max {tFSLk : k = 1,2, . . ., nSL} = -a and max (TsL,k : k = 1,2,. . ., nSL} < 

min ( TwL,j : j E J'(TwL)) with S(TwL) = ( j  : TwL,j < ThPWLj (tMIN)} 

= 1 if -a<max{tFSLk : k = l , 2 ,  ..., nSL}< min(tFWLj :tFWLj =TMPWL;' 

(5.27) 

TMPWL;' ( T ~ ~ , ~ ) = - W  if T ~ , ~  IT"PWL~(~MIN),TMPWL;'(T~,~)=~ 

if TwL,j > TMPWLj ( t M ) ,  j = 1,2, ..., nWL) (5.28) 

= 0 otherwise. (5.29) 

With respect to the role of the indicator function 6(T), (i) the assignment in Eq. (5.27) picks out the T's in which all 

SLs fail before the start of the analysis at time t M N  and any WL failing before the start of the analysis has a higher 

failure temperature than any SL, (ii) the assignment in Eq. (5.28) picks out the T's in which all SLs fail before the 

end of the analysis at tMAXand also before the failure of any WL, and (iii) the assignment in Eq. (5.29) removes the 

probability associated with T's in which any of the WLs fail before all of the SLs from incorporation intopF. 

The integral definingpF in Eq. (5.25) can be approximated by 

where 

with 

(5.30) 

is randomly sampled from Sfor i = 1,2, . . ., N in consistency with the joint density functionfl(T) in Eq. (5.26). 

The approximation to pF in Eq. (5.30) is based on simple random sampling from the joint failure temperature 

distribution defined by fl(T). Importance sampling can also be used in the approximation of pF. In this case, the 

approximation to pF becomes 
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where Ti, i = 1,2, . . ., N, is a random sample from Sgenerated in consistency with a joint density function 

(5.32) 

and the individual density functions appearing in the definition offlT(T) (i.e., flWLj(TwLj), j = 1, 2, ..., nWL, 

fl&,(Ts~,k,,), c = 1, 2, ..., nC(k), k = 1, 2,  ..., nSL) define importance sampling distributions for the individual 

WLs and SL components. 

5.4 Numerical Evaluation: Example 

The example introduced in Sect. 3.4 is modified to illustrate the WL/SL configuration described in Sect. 5.1 

(Table 5.1). Specifically, a system involving two WLs (i.e., nWL = 2) ,  two SLs (i.e., nSL = 2), and two components 

in each SL @e., nC(1) = nC(2) = 2) is considered, with (i) the WL temperature curves TMPWLj(t) the same as in 

Eq. (3.30), (ii) the component temperature curves TMPSLk,(t), c = 1, 2, for SL k the same as the corresponding SL 

temperature curve TMPSLk(t) in Eq. (3.31) (i.e., TMPSLkc(t) = TMpsLk(t)), (iii) the WL failure temperature density 

functions JWLj(Tw~) the same as in Sect. 3.4, and (iv) the component failure temperature density functions 

JsLkc(Ts~), c = I ,  2, for SL k the same as the corresponding SL failure temperature density functionJsLk(TSL) in 

Sect. 3.4 (i.e.,fSLkc(TsL) =JsLk(TSL)). As in Sect. 3.4, the WL failure temperatures are assumed to be independent 

although the distributions defined byJWL1(TwL) andfWL2(TwL) are the same; the same assumption is also made for 

the four SL component failure temperature distributions. 

The system with internal SL components illustrated in this section has a higher failure probability than the cor- 

responding system in Sect. 4.4 with no internal SL components (i.e.,pFg 4.55 x lop6 in Table 5.1 versuspF E 1.56 

x in Table 4.1). This difference results because a SL is assumed to fail when either of its components fails. 

Thus, all other things being the same (which is indeed the case for the examples in Sects. 4.4 and 5.4), a SL with 

two components is more likely to fail by a given time than a SL with only one component, which is effectively the 

situation considered in Sect.4.4. In turn, this failure pattern and the assumption that the WLs in the two examples 

have the same properties leads to the indicated inequality involving the failure probability pF. 



Table 5.1. Approximation of Failure Probability pF for System Defined in Sect. 5.4 with Two 
WLs, Two SLs, Two Components in Each SL, Normal Distributions for WL and SL Component 
Failure Temperatures, Failure of Either Component in a SL Constituting Failure of That SL, and 
Failure of Both SLs before Either WL Constituting System Failure (i.e., the Failure Configuration 
Described in Sect. 5.1)a 

Random Importance 
Samplingf S a m p l i n g g  

N e  
Trapezoidal Simpson’ s 

RuleC Ruled N b  

3 

5 

9 

17 

33 

65 

129 

257 

513 

1025 

2049 

3.230E-07 

1.615E-07 

2.629E-07 

1.356E-07 

6.1 1 1E-06 

4.576E-06 

4.5 52E-06 

4.5 52E-06 

4.3 06E-07 1,000 0.000E+00 8.163E-14 

1.077E-07 10,000 0.000E+00 1.064E- 10 

2.967E-07 100,000 0.000E+00 1.374E-08 

9.316E-08 1,000,000 4.000E-06 1.4 16E-06 

8.102E-06 10,000,000 4.700E-06 3.45 1 E-06 

4.064E-06 100,000,000 4.700E-06 4.468E-06 

4.545E-06 

4.5 5 2E-06 

4.553E-06 

4.553E-06 

4.553E-06 

a Calculations performed with CPLOAS program (App. 111). 
Number of evaluations of G(Tsr) (see Eq. (5.16)) with trapezoidal rule and Simpson’s rule, which corresponds to the interval [TMVSL, 
T H S L ]  being divided into N-1 subintervals. 
Approximation t o p F  obtained with trapezoidal rule (see Eq. (2.49)) 
Approximation topFobtained with Simpson’s rule (see Eq. (2.50)). 
Number of evaluation of F(T) = G(Tm, T s ~ , ~ ,  TSL,*) = S(TWL,] TWL,*, TsL,l,,, TSL,I.Z, TSL,2,1, TSL,*,>) (see Eqs. (5.27) - (5.29)) for random sampling 
and importance sampling. 
Approximation t o p F  obtained with random sampling (see Eq. (5.30)). 

g Approximation t o p F  obtained with importance sampling with uniform distributions for TWL,I, TWL,Z, TSL,I,I, TsLI ,~ ,  TSL,Z,I, TSL,Z,Z (see Eqs. 
(5.3 1) and (5.32), withJIWL,(TWL,) andJISL&’SL,kc) defined as indicated in Eqs. (2.70) and (2.71), respectively). 
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6. Example Uncertainty and Sensitivity Analysis 

Substantial epistemic (i.e., state of knowledge) uncertaintiess-' are present in the analysis of WL/SL systems 

of the form described in this presentation. In particular, epistemic uncertainty is present in both the modeling of the 

temperature responses of the system and in the definition of the distributions that characterize the variability in WL 

and SL failure temperatures. In practice, these uncertainties can be both large and poorly characterized. As a result, 

a properly designed and implemented uncertainty and sensitivity analysis is an important part of a reliability analy- 

sis of a WL/SL system or any other complex ~ystem.3l-3~ In this section, two approaches to uncertainty and sensi- 

tivity analysis of the reliability of a WL/SL system are illustrated for a hypothetical WL/SL system involving 2 WLs 

and 2 SLs. The first approach is a traditional uncertainty analysis based on the use of probability to characterize 

epistemic ~ n c e r t a i n t y . ~ ~ - ~ ~  The second approach uses evidence theory to characterize epistemic ~ n c e r t a i n t y . ~ - ~  

Uncertainty analysis involves the investigation of a relationship of the form 

where x is a vector of imprecisely known analysis inputs and f is a function (i.e., a model) that produces an analysis 

result y for each possible value for x. In practice, f can be quite complicated and might correspond to the numerical 

solution of a nonlinear partial differential equation or possibly to the operation of several successively linked mod- 

els as is often the case in performance assessments for complex systems. For convenience, y is represented as being 

real (Le., scalar) valued, although in most analyses y is a vector of high dimension. In the example that follows, y 

corresponds to the probability pF that the WLs fail to deactivate a system composed of 2 WLs and 2 SLs in a fire 

environment, and f corresponds to the calculational model for pF described in Sect. 4. Uncertainty in x results in 

many possible values for y of varying levels of credence. The goal of uncertainty analysis is to provide a formal 

representation of the uncertainty in y that derives from the uncertainty in x. 

The following topics are considered: representation of uncertainty with probability theory (Sect.6. l), represen- 

tation of uncertainty with evidence theory (Sect. 6.2), numerical estimation complementary cumulative distribution, 

belief and plausibility functions (Sect. 6.3), an example problem for the illustration of uncertainty and sensitivity 

analysis (Sect. 6.4), an example uncertainty and sensitivity analysis (Sect. 6.5), and formal justification of a proce- 

dure used to construct uncertainty representations in the context of evidence theory (Sect. 6.6). 

6.1 Representation of Uncertainty with Probability Theory 

The traditional approach to uncertainty analysis is to use probability to characterize the uncertainty in the ele- 

ments xi, i = 1, 2, . . . , nX, of x and then to determine the resultant probability distribution for y .  With this approach, 

distributions 
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are defined to characterize the uncertainty in xl ,  x2, . . ., x, Specifically, Di is a probability distribution that pro- 

vides a mathematical characterization of the uncertainty in xi in the sense that Di is providing a degree of belief rep- 

resentation with respect to where the appropriate value of xi to use in the determination of y is located. Various 

correlations and other restrictions may also accompany the definition of D l ,  D2, ..., D ,  In practice, the Di are 

often determined through expert review p r o c e ~ s e s . ~ ~ - ~ ~  Collectively, all possible values for x constitute a set & 
with Xoften referred to as the sample space or the universal set for the X’S. When viewed formally, the distribu- 

tions in Eq. (6.2) define a probability space (& x, p a ,  where X i s  the sample space, X is the set of events, and 

p x  is the probability measure that assigns probabilities to elements of x (Ref. 64, Sect. IV.4); similarly, each indi- 

vidual distribution Di in Eq. (6.2) defines a probability space (Xi, xi, pi) for xi. For notational purposes, it is con- 

venient to represent the distribution of x over Xdefined by the individual distributions D,, D2, . . ., D,  and any 

additional correlations andlor restrictions by a density function ddx)  defined on X 

Once the uncertainty in x is characterized in a probabilistic format as indicated in the preceding paragraph, the 

corresponding uncertainty in y =Ax) can also be characterized in a probabilistic format. Specifically, the probabil- 

ityprobb > v) that a value y larger than v could result from the uncertainty in x is given by 

where 

1 i f y ( x ) > v  
6v [y(x)l = (0 otherwise. 

In effect, probb > v) defines the complementary cumulative distribution function (CCDF) for y that derives from 

the uncertainty in x characterized by the distribution D,, D2, . . ., Dnx Complementary cumulative distribution func- 

tions are a standard format for the representation of uncertainty because they answer the question “How likely is y 

to be this large or larger?”, which is usually the question of interest in risk and uncertainty assessments. 

6.2 Representation of Uncertainty with Evidence Theory 

The evidence theory approach to the representation of the uncertainty associated with the elements xi, i = 1, 2, 

. . ., nX, of x is to assign an uncertainty structure to each xi based on what are called basic probability assignments 

(BPAs). Specifically, (i) the set 4. of all possible values for xi is identified, (ii) a finite collection xi = { &pj = 1, 

2, . . ., nX(i)} of subsets of 4. is identified about which uncertainty information is available, and (iii) a set function 

mi is defined for subsets q o f  4. such that 
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{; > O  i f W = X i j E X i  
mi ( W) = 

otherwise 

and 

nX( i) 
m j ( X v ) = l .  

i=1 

The function m,( W) defines the BPA for the subset Wof 4, with the BPA for Wcorresponding to the amount of 

probability that can be assigned to W but for which there is no information or rationale to assign this probability to 

any proper subset of W Formally, an evidence space (4, x,, m,) is being defined for each xl, where 4 is the 

sample space or universal set (i.e., the set of all possible values for xJ, x, is the set of all subsets of 4 with non- 

zero BPAs, and m, is the function such that, if Wc a,, then m,( w) is the BPA for a 

Similarly to probability theory, the evidence theory representation (& x, mx) for the uncertainty in x is built 

up from the representations for the uncertainty in the elements xi of x. With the simplifying assumption that there 

are no correlations or other restrictions involving the elements of X, the BPA for a subset Wof x= XI x x . . . 
x K X i s  given by 

Further, x contains the subsets Wof X f o r  which mx(W) > 0. In turn, the evidence space (& x, mx) can be used 

to develop an evidence theory representation (J? y, my) for the uncertainty in y =AX). However, before this is 

done, it is useful to introduce the constructions used to represent uncertainty in conjunction with evidence theory. 

Unlike probability theory which uses probability as the only representation for uncertainty, evidence theory 

uses two representations for uncertainty. These representations are referred to as belief and plausibility. For a sub- 

set Wof a universal set X o n  which a function m( V )  defining BPAs for subsets Vof has been defined, the be- 

lief Bel( W) and plausibility PI( W) of w a r e  defined by 

Bel(W)= m ( V )  
PCW 

and 

Conceptually, Bel( W) is the smallest amount of probability that must be assigned to and Pl( W) is the largest 

amount of probability that could possibly be assigned to a Put another way, Bel( W) is the smallest probability 
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that can be assigned to W without violating the constraints imposed by the BPA assignments given by m, and 

PI( W) is the largest probability that can be assigned to Wwithout violating the constraints imposed by the BPA 

assignments given by m. 

In probability theory, the probability of a set and its complement are related by 

prob ( W) + prob ( WC ) = 1, (6.10) 

where (i) Wis a subset of the sample space under consideration (subject to the usual constraints with respect to W 
belonging to the o-algebra of subsets of the sample space associated with a conceptually complete development of 

probability) and (ii) 'TP is the complement of the set W Thus, the specification of the probability of a set also de- 

termines the probability of its complement. Less restrictive constraints hold for belief and plausibility. In particu- 

lar, 

Bel (W) + Bel ( Wc) 5 1 (6.1 1) 

PI (W) + PI ( WC ) 2 1 (6.12) 

Bel( W) + PI ( Wc) = 1. (6.13) 

As a result, the use of belief and plausibility allows finer gradations in the expression of uncertainty than is the case 

with the use of probability in that an expression of a lack of knowledge about Wdoes not necessarily imply knowl- 

edge about Wc. 

For notational convenience, let ydenote the set b: y =Ax), x E X}. In concept, BPAs could be developed 

for the subsets of J? In practice, the direct consideration of beliefs and plausibilities for subsets of 9 leads to more 

readily computed results. Specifically, the belief Beld W) and plausibility Ply( W) of a subset Wof  9 are given 

by 

Bel* ( W) = Belx [ f-' ( W)] = c mx ( V )  
vc f - y q  

and 

(6.14) 

(6.15) 

where Belx and PIX correspond to the set functions defining belief and plausibility for subsets of X o n  the basis of 

the set function mxdefined in Eq. (6.7) andf' denotes the inverse off(i.e.,fl( W) = {x: x E XandAx) E W}. 
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Just as CCDFs provide the standard representational format for uncertainty in the context of probability theory, 

complementary cumulative belief functions (CCBFs) and complementary cumulative plausibility functions (CCPFs) 

provide standard representational formats for uncertainty in the context of evidence theory. Specifically, the CCBF 

and the CCPF associated with the set y a r e  defined by 

and 

(6.16) 

(6.17) 

where yv = b: y > v, y E 9 } and BelyCv > v) and P l b  > v) designate the belief and plausibility, respectively, that 

a value ofy larger than v could occur (i.e., a value in the set 9,). 

The sets 

provide formal representations for the CCDF, CCPF and CCBF associated withy. 

6.3 Numerical Estimation of CCDFs, CCBFs and CCPFs 

(6.18) 

(6.19) 

(6.20) 

Numerical estimation of CCDFs, CCBFs and CCPFs is now considered. In practice, the CCDF for y is not ob- 

tained by a traditional numerical evaluation of integrals of the form appearing in Eq. (6.3). Rather, a Monte Carlo 

procedure is used. With such a procedure, a random or Latin hypercube sample xh k = 1, 2, . . ., nS, is generated 

from 3 in consistency with the distributions D1,  D,, . . . , D, for the elements of x and any associated restric- 

t i o n ~ . ~ ~ ,  66 Then, probb > v) is approximated by 

(6.21) 

where the indicator function 6, is defined in Eq. (6.4). 



A similar Monte Carlo procedure can also be used to estimate CCBFs and C C P F S . ~ ~ ~  67, 68 Again, a random or 

Latin hypercube sample xk, k = 1 ,  2, . . . , nS, is generated from X i n  consistency with distributions for the xi that will 

provide a dense sampling coverage of X a s  the sample size increases. The selected sampling distributions can af- 

fect the rate at which the resultant approximations converge to the corresponding beliefs and plausibilities but do 

not affect the limiting values except in special cases where sets of measure zero have nonzero BPAs. Once the indi- 

cated sample is generated, the exceedance plausibilities that define the CCPF can be estimated by 

(6.22) 

where & = {xk: Y k  =Kx~) > v}. The exceedance beliefs that define the CCBF cannot be estimated directly be- 

cause the subset relation used in the definition belief (see Eq. (6.8)) cannot be employed when the sets with nonzero 

BPAs have infinite numbers of elements and a finite sample is in use. Rather, the relationship between belief and 

plausibility indicated in Eq. (6.13) must be used to convert from a problem involving the estimation of belief to a 

problem involving the estimation of plausibility. Specifically, 

(6.23) 

where & is defined in conjunction with Eq. (6.22). 

6.4 Problem for Analysis 

The example uncertainty analyses are based on the hypothetical system of 2 WLs and 2 SLs described in Eqs. 

(3.30) - (3.31). The sixteen variables used to characterize this system are treated as being uncertain (Table 6.1). 

Each variable has an uncertainty range [ a, b] as indicated in Table 6.1. As this example is for illustration of ideas, 

it is assumed for simplicity that the uncertainty in each variable’s possible values is specified in the same manner by 

four independent experts (Table 6.2, Fig. 6.1). This is unlikely to be the case in a real analysis but providing differ- 

ent uncertainty specifications for each variable would complicate the presentation of this example while adding little 

to its illustrative value. The information indicated in Table 6.2 is encoded into a probability distribution for each 

variable in Table 6.1 for use in a probabilistic representation of the uncertainty in pF and into BPAs for use in an 

evidence theory representation of the uncertainty in pF. 
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Table 6.1. Uncertain Variables and Associated Uncertainty Ranges Considered in Example Un- 
certainty Analyses 

~ ~~ ~ ~~ ~ 

c1- Temperature ("C) of WLs and SLs before start of fire. Range: [-30,40°C]. 

c2 - Temperature increase ("C) above c1 at steady state. Range: [800, 1000°C]. 

c31 - Peak amplitude of temperature transient for WL 1. Range: [-2600, -lOO°C]. 

~ 3 2  - Peak amplitude of temperature transient for WL 2. Range: [-2600, -lOO°C]. 

~ 4 1 -  Thermal heating time constant (min-') for WL 1. Range: [0.2,0.4 min-'1. 

~ 4 2  - Thermal heating time constant (min-') for WL 2. Range: [0.2, 0.4 min-'1. 

~ 5 1  -Frequency response (min-') of temperature transient for WL 1. Range: [0.1, 0.2 min-'1. 

~ 5 2  - Frequency response (min-I) of temperature transient for WL 2. Range: [0.1, 0.2 min-'1. 

c61- Time constant (min-l) determining the rate at which WL 1 reaches steady state temperature. Range: [0.02, 
0.04 min-'1. 

c62 - Time constant (min-I) determining the rate at which WL 2 reaches steady state temperature. Range: [0.02, 
0.04 min-'1. 

~ 7 1  - Factor (dimensionless) used to account for more rapid heating in SL 1 than in the associated WL (i.e., WL 
2). Range: [ O S ,  0.81. 

~ 7 2  - Factor (dimensionless) used to account for more rapid heating in SL 2 than in the associated WL (i.e., WL 
2). Range: [0.5, 0.81. 

cg - Expected value ("C) of normal distribution for WL failure temperatures. Range: [255,285"C]. 

c9 - Standard deviation ("C) of normal distribution for WL failure temperatures. Range: [4, 12"CI. 

c10 - Expected value ("C) of normal distribution for SL failure temperature. Range: [590, 61O"C]. 

c11 - Standard deviation ("C) of normal distribution for SL failure temperature. Range: [ 15,22"C]. 

The construction of a probability distribution from the information in Table 6.2 is considered first. Expert 1 

only specifies an interval. The usual probabilistic encoding of this type of sparse information is to assume a uni- 

form distribution over the specified interval [Ref. 69, pp. 52-62]. That is, Expert 1 is assumed to have specified a 

probability distribution with a density function given by 

u )  i f a s v s b  
d l (v)={y(b-  otherwise. (6.24) 

Experts 2 and 3 have in essence specified quantiles on CDFs. Again, in consistency with common procedure, uni- 

form distributions are assumed for the variable between these quantiles. As a result, the density functions associ- 

ated with Experts 2 and 3 have the form 



Table 6.2. Illustrative Specification of Uncertainty Information Used in Example Uncertainty 
Analyses with Probability Theory and Evidence Theory for Variables in Table 6.1 (see Fig. 6.1 for 
a graphical representation of the indicated uncertainty specifications) 

Expert 1 : States appropriate value for variable is in the interval I1 = [a, b] but provides no information on uncer- 
tainty structure within [a, b]. 

Expert 2: Divides [a, b] into five nonoverlapping intervals of equal length (i.e., 
a)i/5) for i = 1 ,  2, 3 ,4  and 12 ,  = [a + (b  - a)(i - 1)/5,  a + ( b  - a)i/5] for i = 5)  and states that the appropriate value 
for the variable is equally likely to be in each of these intervals. 

Expert 3: Divides [a, b] into following five nonoverlapping intervals: I,, = [a, a + (b  - a)/10], 132 = [a + (b  - 

9(b - a)/10, b].  States that the probability (i.e., likelihood) that the appropriate value for the variable is contained 
in each of these intervals is 0.05,0.2,0.5,0.2 and 0.05, respectively. 

Expert 4: Divides [a, b] into following five nested intervals: 141 = [a + 4(b - a)/10, a + 6(b - a)/10), 142 = [a + 

[a, b]. States that amount of probability (i.e., likelihood) that can be assigned to the proposition that a given inter- 
val contains the appropriate value to use for the variable is 0.2. 

= [a + (b  - a)(i - 1)/5,  a + (b - 

~) /10 ,  u + 4(b - ~ ) / 1 0 ) ,  I33 = [a + 4(b - ~ ) / 1 0 ,  u + 6(b - a)/10), 134 = [a + 6(b - ~ ) / 1 0 ,  u + 9(b - a)/lO), 13, [U + 

3(b - a)/10, a + 7(b - a)/10), 143 [a + 2(b - ~ ) / 1 0 ,  u + 8(b - a)/10), 144 1 [a + (b  - a)/10, u + 9(b - a)/10), 145 = 

I 
1 .o 

Expert 1: I 
0 1 

0.2 0.2 0.2 0.2 0.2 
Expert 2: I I I I 

8 1 2 0 
10 10 10 10 

0.05 0.2 0.5 0.2 0.05 

- 6 - 4 - - 

Expert 3: I I I I I 

4 - 6 - 9 1  O L  - 
10 10 10 10 

Expert 4: 

0 1234 6 1 8 s  1 
10 10 10 10 10 10 10 10 

0.2 

I 0.2 

0.2 

0.2 

I 
I I 

I I 
A n  

I 

TR04A064-0 ai 
< I  

Fig. 6.1. Graphical illustration of uncertainty in- 
formation in Table 6.2 with variable range [a, 61 
normalized to [0, I ]  for notational convenience. 

(6.25) 

for i = 2, 3 ,  where probi(l,) denotes the probability for interval I ,  specified by Expert i and L(ly) denotes the 

length of interval 1,. Expert 4 specifies what is, in essence, a BPA assignment for the variable. This specification 
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can be converted to a probability distribution in a manner consistent in spirit with the handling of the information 

supplied by Experts 1, 2 and 3 by assuming a uniform distribution over each of the specified intervals and then 

weighting each of these distributions by the BPA assigned to the corresponding interval. The outcome of this proc- 

ess for the information supplied by Expert 4 is the density function 

(6.26) 

where 64j(v) = 1 if v E I ,  and 0 otherwise, prob4<I4i> denotes the amount of probability that can be assigned to IY 
but not to any particular subset of I,,., and L(14j) is the same as in Eq. (6.25). 

The distributions obtained from the individual experts can now be combined to obtain a single distribution that 

characterizes the uncertainty in the variable under consideration. Such “aggregation” of information from multiple 

sources is a much studied Here, the widely used approach of assigning equal weight (i.e., credibility) to 

each expert to produce a single distribution is used. Specifically, the resultant density function from this approach 

is given by 

(6.27) 
i=l 

where nE = 4 is the number of experts. The described approach results in each variable in Table 6.1 having an un- 

certainty distribution of the form shown in Fig. 6.2, with only the values of a and b and associated scaling between 

a and b changing from variable to variable. 

1.0 - 
- 

0.8 - 
- 

T 0.6 - 
V 

Q 
Y - 
E 0.4 - 

- 

0.2 - 
- 

0.0 t/ 
I I I  

a b 

Fig. 6.2. Distribution of a variable over the inter- 
val [a, 61 derived from the information in Table 
6.2. 
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The construction of BPAs from the information in Table 6.2 is now considered. The experts specify intervals 

and associated probabilities. These probabilities can be interpreted as BPAs for the corresponding intervals (i.e., 

11 1 for Expert 1, and j = 1,2, . . ., 5 for Expert i, i = 2, 3, 4). Specifically, the BPA mi associated with Expert i is 

given by 

mi (W) = {gplobi(W) i f W E M i  

otherwise (6.28) 

for an arbitrary set Wof points from [a, 61, where MI = {Ill} and Mi = {I*j = 1, 2, .. ., 5 }  for i = 2, 3,4.  Analo- 

gously to the weighting process implemented in Eq. (6.27) for density functions, the BPAs from the individual ex- 

perts can be equally weighted to produce a final BPA m. In particular, this final BPA is given by 

(6.29) 

where nE = 4 is the number of experts and Wis an arbitrary subset of points from [a, b]. The preceding procedure 

produces 13 sets with nonzero BPAs (Table 6.3). The indicated approach results in each variable in Table 6.1 hav- 

ing a BPA structure of the form indicated in Fig. 6.3. 

~~ ~ ~~~ 

Table 6.3. Basic Probability Assignments (BPAs) for a Variable on the Interval [a, 61 Derived 
from the Information in Table 6.2 

m ( w )  =3/10 

= 1/20 

= 1/20 

= 9/40 

= 1/20 

= 1/20 

= 1/80 

= 1/20 

= 1/20 

= 1/80 

= 1/20 

= 1/20 

= 1/20 

=o 
1 .o 

if W= I ,  = [a, b] 

if W= 1, = [a, a + (b  - a)/5) 

if cW= 1, = [a + (b - a)/5, a + 2(b - a)/5) 

if W= I, = [a + 2(b - a)/5, a + 3(b - a)/5) 

if W= 1, = [a  + 3(b - a)/5, a + 4(b - a)/5) 

if W= I, = [a + 4(b - a)/5, b] 

if W= I, = [a, a + (b  - a)/10) 

if W= Is = [a + (b  - a)/10, a + 4(b - a)/10) 

if W= 1, = [a + 6(b - a)/lO, a + 9(b - a)/10) 

if W= I,, = [a + 9(b - a)/10, b] 

if W= Ill = [a + 3(b - a)/10, a + 7(b - a)/10) 

if W= I,, = [a + 2(b - a)/10, a + 8(b - a)/10) 

if W= I,, = [a + (b  - a)/10, a + 9(b - a)/10) 

otherwise 
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Fig. 6.3. Graphical illustration of the 13 sets in Ta- 
ble 6.3 assigned nonzero BPAs with variable range 
[a, b] normalized to [0, I] for notational conven- 
ience. 

6.5 Example Uncertainty and Sensitivity Analysis Results 

The probabilistically-based uncertainty analysis procedures described in Sects. 6.1 and 6.3 are applied first. 

Specifically, a random sample of size 200 is generated from the 16 uncertain variables listed in Table 6.1 in consis- 

tency with the distributions indicated in Eq. (6.27). The sample elements are vectors of the form 

(6.30) 

for i = 1,2, . . ., 200, where each component xP j = 1,2, . . ., 16, of xi corresponds to one of the 16 variables in Table 

6.1. Each sample element results in four time-temperature curves (i.e., one curve for each of the two WLs and two 

SLs) as defined in Eqs. (3.30) - (3.31) and a corresponding failure probabilitypF as defined in Eq. (4.9) with nWL 

= nSL = 2 (Fig. 6.4). The 200 failure probabilities that result from the 200 sample elements indicated in Eq. (6.30) 

can be displayed as a CCDF (Fig. 6.5), which provides a representation of the epistemic uncertainty associated with 

the probability that both SLs fail before either WL fails. 

A natural adjunct to the uncertainty analysis results presented in Fig. 6.5 is a sensitivity analysis to determine 

the importance of the individual variables in Table 6.1 in determining the uncertainty in pF. In particular, the sam- 

pling-based uncertainty analysis in use has generated a mapping 

[ x j , p F ; ] , i =  1,2, ...) 200, (6.3 1) 
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Fig. 6.4. Example WLlSL temperature curves 
and associated failure probability for sample 
element xIu. 
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Fig. 6.5. Use of CCDF generated with a random 
sample of size 200 to display the epistemic un- 
certainty in the probability pF that both SLs fail 
before either WL fails. 

from the uncertain analysis inputs contained in xi to the corresponding failure probability pFi. A variety of sensitiv- 

ity analysis procedures exist that can be used in the exploration of this m a ~ p i n g . ~ ~ - ~ ~ .  75 As an example, stepwise 

regression procedures with log-transformed and rank-transformed data76. 77 are used to explore this mapping (Table 

6.4). In the analysis with log-transformed data, the dependent variable is log (pF) rather thanpF, and the independ- 

ent variables retain their original (i.e., raw or untransformed) values. 



Table 6.4. Stepwise Regression Analysis with Log-Transformed and Rank-Transformed Data 
for Probability pF that Both SLs Fail before Either WL Fails 

Log-Transformed Data Rank-Transformed Data 
Stepa 

Variableb SRCC R2d Variableb SRRCe R2d 

c11 

C8 

c9 

c10 

c7 1 

c72 

c62 

c42 

c 2  

0.77 
0.3 1 
0.24 
0.18 
0.18 
-0.15 
0.11 
-0.08 

0.07 

0.59 
0.69 
0.75 
0.78 
0.81 
0.84 
0.85 
0.85 
0.86 

0.84 
0.34 
0.26 
-0.16 
0.12 
0.12 
0.10 
-0.09 
-0.06 

a Steps in stepwise regression analysis with significance 
in a regression model, respectively. 

vels of a = 0.02 an x = 0.05 required of a variable for entry iI 

Variables listed in order of selection in regression analysis. 
Standardized regression coefficients (SRCs) in final regression model with log-transformed values for pF. 
Cumulative RZ value with entry of each variable into regression model. 

e Standardized rank regression coefficients (SRRCs) in final regression model with rank-transformed values for all variables. 

0.67 
0.79 
0.86 
0.89 
0.90 
0.91 
0.92 
0.93 
0.93 

, and retention 

The regression results with log-transformed and rank-transformed data are similar. In particular, both regres- 

sion approaches identify c1 (standard deviation of normal distribution for SL failure temperature), ~ 7 1  (factor used 

to account for more rapid heating in SL1 than in the associated WL), and c8 (expected value of normal distribution 

for WL failure temperature) as the most important variables with respect to the observed uncertainty in pF. The 

positive regression coefficients are consistent with patterns observed in the associated scatterplots (Fig. 6.6) and the 

known effects of these variables. In particular, (i) increasing c1 increases the number of low SL failure tempera- 

tures and thus increases pF, (ii) increasing ~ 7 1  increases the temperature of SL 1 relative to WL 1 and thus increases 

pF, and (iii) increasing c8 increases the number of high WL failure temperatures and thus increases pF. As is often 

the case due to the linearizing effects of the rank transformation, the analyses with rank-transformed data result in 

somewhat higher R2 values than is the case for the analyses with raw data. 

For perspective, the analysis was also performed for three samples of size 200, three samples of size 1000 and 

three samples of size 10,000 (Fig. 6.7). Except for getting better resolution with respect to the likelihood of obtain- 

ing very large values forpF (Le., close to lop3), the results for the different sample sizes are quite similar. Thus, as 

is usually the case, the sample size needed to determine where most of the uncertainty is located is not particularly 

large. Of course, this changes if the goal of the analysis is to identify high consequence but unlikely analysis out- 

comes. For example, if the goal of the analysis was to determine an epistemic (Le., degree of belief or subjective) 

probability that the value for pF exceeds lop6, then the same conclusion would be drawn from any of the nine 



CCDFs presented in Fig. 6.7. Specifically, and conditional on the assumptions of the hypothetical example under 

consideration, this probability is approximately 0.1. 
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Fig. 6.6. Scatterplots for 16 variables in Table 6.1 sampled in uncertainty analysis of the probabil- 
ity pF that both SLs fail before either WL. 

The representation of the epistemic uncertainty associated with pF in the context of evidence theory is now 

considered. This representation is based on the BPAs for the 16 elements of x defined in Eq. (6.29) and illustrated 

in Table 6.3 and Fig. 6.3. In concept, the CCPF and CCBF forpF can be constructed from the evidence space (& 

x, mx) defined in Sect. 6.4 with the Monte Carlo procedure defined in conjunction with Eqs. (6.22) and (6.23). 

Unfortunately, the large number of sets contained in x, (i.e., 1316 = 6.7 x 1017) makes direct use of this procedure 

with the evidence space (& x, mx) computationally impracticable. Specifically, it is not computationally possible 

to carry out an analysis with a sufficiently large sample to assure adequate coverage of all sets contained in x. 

82 



Thus, some approach other than a direct application of the procedures in Eqs. (6.22) and (6.23) with (& x, mx) 
must be sought to obtain the CCPF and CCBF forpF. 
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Fig. 6.7. Estimation of epistemic uncertainty in pF with three replicated random samples: (a) N = 
200, (b) N = 1000, (c) N = 10,000, and (d) one CCDF from each of the preceding frames. 

Fortunately, a computationally practicable approach can be based on the following two ideas. First, if a vari- 

able does not affect an analysis outcome of interest, then calculated beliefs and plausibilities are unaffected by the 

evidence theory structure assigned to this variable. Thus, any convenient structure can be assigned to this variable 

for use in the construction of CCBFs and CCPFs. Second, the uncertainty bounds represented by CCBFs and 

CCPFs narrow as the resolution in the evidence spaces assigned to the input variables increases. Intuitively, the 

resolution in an evidence space increases when its focal elements are subdivided to produce a new evidence space 

with an increased number of focal elements. Specifically, if the evidence space (&. , xi, mi) associated with xi is 

replaced by an evidence space (&., xi, h j )  with the properties that (i) all sets in xi are subsets of sets in xi, (ii) 
- 
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any set in xi can be obtained from a union of sets in xi, and (iii) the BPA for each set e in xi is apportioned over 

the sets in xi contained in then the CCBF and CCPF that result from the uncertainty characterization that de- 

rives from (xi, xi, Gj) will be inside the CCBF and CCPF that result from the uncertainty characterization that 

derives from (&., xi, mi). Thus, an uncertainty analysis of increasing resolution can be carried out by starting with 

relatively low resolution evidence spaces and then increasing resolution, and hence computational demands, until ac- 

ceptably converged CCBFs and CCPFs are obtained. In particular, resolution only needs to be added for the variables 

that actually affect the analysis outcome of interest. As indicated in conjunction with Table 6.4, sensitivity analysis can 

be used to identify such variables. The preceding ideas are elaborated on and applied to the example uncertainty analy- 

sis problem in the remainder of this section. A formal justification for the mathematical basis of this approach is given 

in Sect. 6.6. 

- 
- 

The approach to the construction of CCBFs and CCPFs when the cardinality of X i s  large can be represented 

as an algorithm of the form shown below, where x = [x,, x2, . . . , xn], (4 W, mx) is an evidence space constructed 

from evidence spaces (&., xi, mi) for the individual elements xi of x, and f is a function that produces the analysis 

outcome y =AX) under study: 

Step 0. Perform a sensitivity analysis to determine the most important variables Zl, Z2, . . . , Z n  with respect to 

the uncertainty iny, where Z1 is the most important variable, Z2 is the next most important variable, and so on. 

Step 1. Estimate a CCBF CC@& (see Eq. (6.23)) and a CCPF CC@& (see Eq. (6.22)) for y on the basis of 

the evidence space (& sl, mS1) obtained from the original evidence space for Z1 and degenerate evidence spaces 

for 22,23, . . . , 2 ,  in which the sample spaces are assigned BPAs of 1. 

Step 2. Estimate a CCBF CC@& and a CCPF CC@& for y on the basis of the evidence space (4 s2, mS2) 

obtained from the original evidence spaces for Z1 and Z2 and degenerate evidence spaces for 23, 24, . . . , 2, in 

which the sample spaces are assigned BPAs of 1. 

... 

Step s. Estimate a CCBF and a CCPF CC@& for y on the basis of the evidence space (& ss, mss) 

obtained from the original evidence spaces for i1 , Z2, . . . , Zs and degenerate evidence spaces for x,,~, xs+2, . . . , xn in 

which the sample spaces are assigned BPAs of 1. 

... 

Termination. End process when no significant difference exists between CC@dq-l and CC@& obtained at 

Step s-1 and Cc@& and CC@& obtained at Step s. 

The preceding approach is used in the construction of CCBFs and CCPFs for the failure probability pF. Step 0 

corresponds to the sensitivity analysis summarized in Table 6.4, which identified (in the rank regression) ~ 1 1 ,  ~ 7 1 ,  cg, 

c10 and c9 as the dominant variables with respect to the uncertainty inpF  (i.e., cll - Z1, ~ 7 1  - Z2, C8 - 23, c10 - 2 4 ,  
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cg - 2s). Steps 1 ,2 ,3 ,4  and 5 are then carried out with the successive full inclusion of cll  to produce Cc@& and 

cc@q, cll and ~ 7 1  to produce Cc@$ and c@$, cll ,  ~ 7 1  and c8 to produce and cc@& cll, ~ 7 1 ,  c8 

and c10 to produce cc@&, and cc@& and cll ,  ~ 7 1 ,  c8, cl0 and c9 to produce cc@& and cc@& (Fig. 6.8). 

The construction of the indicated CCBFs and CCPFs was carried out with a random sample of size N = lo6 

from the distributions defined by the density functions in Eq. (6.27) and the associated mapping from uncertain 

analysis inputs to analysis results (i.e., a mapping of the form indicated in Eq. (6.31) but generated with a sample 

size of 1 O6 rather than 200). 

As illustrated in Fig. 6.8, the CCBFs and CCPFs move closer together as the resolution increases in the evi- 

dence spaces for the elements of x. The CCPFs, which are shown in greater detail in Fig. 6.9, are probably close to 

being converged with the five variables under consideration. The addition of several more variables (i.e., steps in 

the construction algorithm) may be needed to converge the CCBFs. The CCDF in Figs. 6.8 and 6.9 is the CCDF 

that derives from sampling distribution used in the estimation of the CCBFs and CCPFs (i.e., the distribution de- 

fined by the density functions in Eq. (6.27)); specifically, this CCDF is constructed from the previously indicated 

sample of size N =  lo6 and associated mapping from uncertain analysis inputs to analysis results. As such, it is one 

of the many CCDFs for pF that are consistent with the evidence space for x under consideration (Le., the evidence 

space defined by the BPAs for the individual variables defined in Eq. (6.29)). 

N=l 06, NV = 1,2,3,4,5 

TR04A067 pF, Failure Probability -0 doc 

Fig. 6.8. Successive CCBFs (i.e., CC@$, s = 1, 2, 
..., 5, with s = 1,2 off scale) and CCPFs (Le., 
CC@&, s = 1, 2, ..., 5) estimated in application of 
algorithm described in Sect. 6.5 to develop an 
evidence theory representation of the epistemic 
uncertainty in the probability pF that both SLs fail 
before either WL fails. 
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Fig. 6.9. Successive CCPFs (i.e., s = 1, 2, 
3, 4, 5) appearing in Fig. 6.8 plotted with short- 
ened intervals on the axes. 

The evidence spaces for the individual elements of x are defined with 13 focal elements. Thus, as the number 

of steps in the construction algorithm for CCBFs and CCPFs increases, the number of focal elements in the evi- 

dence space (& &, mss) for x rapidly increases. For example, consideration of 5, 6 and 7 variables results in evi- 

dence spaces (& ss, mss), s = 5, 6, 7, for x with approximately 3.71 x lo5, 4.83 x lo6 and 6.27 x lo7 focal 

elements, respectively. Adequate sampling of this many focal elements is not possible except for models that are 

inexpensive to evaluate. A possible numerical solution in this situation is to replace the original evidence spaces for 

the elements of x with evidence spaces that have a similar structure but a smaller number of focal elements. For 

example, such a reduction can be carried out by (i) evaluating the CBF and CPF for a variable, (ii) determining in- 

tervals [aj, bi] of variable values associated with the CBF and CPF values of iln for i = 0, 1, . . . , n, and then (iii) as- 

signing a BPA of l/(n + 1) to each interval [aj, bj]  for i = 0, 1, . . ., n. 

6.6 Justification of Assumptions for Estimation of CCBFs and CCPFs 

Two key assumptions underlie the algorithm presented in Sect. 6.5 for the estimation of the CCBF and CCPF 

that results from the mapping of an evidence space (& X, mx) into an evidence space (J? u, my) by a functionf 

defined on X The first assumption is that, if a variable does not affect an analysis outcome of interest, then the 

calculated beliefs and plausibilities for this outcome are unaffected by the evidence theory structure assigned to the 

variable. The second assumption is that the uncertainty bounds represented by CCBFs and CCPFs narrow as the 

resolution in the evidence spaces assigned to input variables increases. These assumptions are now formalized and 



justified through a sequence of definitions and theorems. In particular, the first assumption is justified by Theorem 

6.3, and the second assumption is justified by Theorem 6.2. 

Intuitively, an evidence space ( 2 v, mV) refines an evidence space (q u, mu) provided (i) Wand Pare the 

same, (ii) the elements of v are obtained by subdividing (i.e., refining) the elements of u, (iii) the BPA for each 

element E of u is partitioned over the sets into which E is subdivided, and (iv) the BPA for each element of v is the 

sum of the values assigned to this set in the partitioning of the elements of u. The preceding summation is neces- 

sary when an element of appears in the partitioning of two or more elements of u. The following definition pro- 

vides a formal statement of the intuitive idea that ( p, v, mV) refines (q u, mu). 

Definition 6.1. An evidence space ( v, mV) is a refinement of an evidence space (q u, mu) provided: (i) 

W= 2 (ii) the sets u and are related by 

u = { W j : i = l , 2 ,  ..., m} (6.32) 

(6.33) 

and (iii) there exists an m x n matrix F = &] with nonnegative elements such that 

f & = O '  if Vk is not a subset of q, 

n 
z f i k  =I ,  i =I ,  2, ..., m, 
k=l 

and 

mu (Wi) if €= Pk E V 
my ( E )  = Z f i k  

l o  otherwise 

for each subset €of W 

(6.34) 

(6.35) 

(6.36) 

(6.37) 

Theorem 6.1. Suppose the evidence space ( v, mV) refines the evidence space (q u, mu) and E is a subset 

of W Then, 

Belu (e )  I BelV ( E )  I Plv (e )  I Plu ( E ) ,  (6.38) 



where the subscripts U and V designate beliefs and plausibilities defined with respect to (q u, mu) and ( l? v, 
mv), respectively. 

Proof. The inequality 

Belv ( E )  I PZv ( E )  (6.39) 

is a fundamental property of belief and plausibility and follows immediately from their definitions (see Eqs. (6.8) 

and (6.9)). Thus, the middle inequality in Eq. (6.38) is valid. Further, 

Thus, the left inequality in Eq. (6.38) is established. Finally, 

(6.40) 

(6.41) 

Thus, the right inequality in Eq. (6.38) is valid, which completes the proof. 

Theorem 6.2. Suppose the evidence space ( v, v, mv) refines the evidence space (q u, mu), f is a function 

defined on wwith range y(i.e., f maps Wonto 9, and (9, Yw, mw) and (y, Yn, mw) are the evidence spaces 

that derive from (q u, mu) and ( v, v, mv) and the mapping from w t o  defined by J;  and E is a subset of y 
Then, 



where the subscripts UY and W designate beliefs and plausibilities defined with respect to (3 yuy, mw) and (J? 
Ym, mw) ,  respectively. 

Proof. This result follows immediately from Theorem 6. I in the following manner: 

Belw ( E )  = Belu [ f -' ( E ) ]  

I Belv [ f - ' ( E ) ]  

= PlUY ( E )  7 (6.43) 

where the three inequalities follow from Theorem 6.9. 

Definition 6.2. Suppose xi are variables with evidence spaces (&, xi, mi) for i = 1,2, . . ., n, (& x, mx) is the 

corresponding evidence space for x = [xl, x2, . . ., xn], l i s  a set satisfying 4 # IC { 1,2, . . ., n} ,  and (&., xi, Gzi ) is 

an alternative evidence space for xi for i E 1 Then, the evidence space (8, s, ms) for x constructed from (&., xi, 
mi) for i E IC and (A,, xi, ki ) for i E I is called a substitution evidence space for X. 

- 

Definition 6.3. Suppose xi E &. for i = 1,2, . . ., n, x = [xl, x2, . . ., x,], f is a function defined on x= x 

x . . . x &, and I is a set satisfying 4 # IC { 1,2, . . . , n}  . Then, the following two statements are equivalent: (i) the 

variables xi, i E 4 are nonaffecting with respect tof, and (ii) if x E c7(; 2 E c7(; and xi = Zi for i E IC,  thenfTx) = 

AX 1. 

Theorem 6.3. Suppose xi are variables with evidence spaces (&., xi, mi) for i = 1,2,  . . ., n, (& x, mx) is the 

corresponding evidence space for x = [xl, x2, ..., x,], l i s  a set satisfying 4 # IC  { 1, 2, ..., n } ,  (&., xi, mi) is an 

alternative evidence space for xi for i E 1 (4 s, ms) is the substitution evidence space for x constructed from (A,, 
x, mi) for i E IC and (A, gi, ki ) for i E if is a function defined on & (J? ? ? ,  mm) and (J? ysy,  msy) are the 

evidence spaces that derive from (& x, mx) and (& s, ms) and the mapping from x o n t o  Jdefined byJ; the xi 

for i E Iare nonaffecting with respect tof, and €is a subset of 53 Then, 

BelH ( E )  = Belsy ( E )  Plsy ( E )  = pl,yy ( E ) ,  (6.44) 

where the subscripts XY and SY designate beliefs and plausibilities defined with respect to (J? ? ? ,  m m )  and (J? 
Y S ,  msy), respectively. 

Proof. For notational convenience, assume that the elements of x are reordered so that 
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I" ={1,2 ,..., m} andI={m+l ,m+l ,  ..., n } .  (6.45) 

Thus, the first m elements of x are assumed to potentially affect the value of y =Ax) and the remaining elements are 

(6.46) 

(6.47) 

(6.48) 

(6.49) 

(6.50) 

(6.5 1) 

(6.52) 

(6.53) 

(6.54) 

(6.55) 

(6.56) 

(6.57) 

(6.58) 

(6.59) 

(6.60) 

The preceding notation facilitates a distinction between the elements of x that affect and do not affect the value of 

Ax). 
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The equality B e Z d Q  = Belsr(q is considered first. The following sets are defined involvingf'( 9: 

I&X = (n : n =[a, b] E IS, W = da x &  c f - '  ( E ) ) ,  (6.61) 

@X = {a:n=[a,b]~I&X}, (6.62) 

@S = {a:n=[a,c]~IS}. (6.64) 

Further, the equality 

@X =@S (6.65) 

follows from the assumption that the variables associated with I(i.e., xrn+', x ~ + ~ ,  . . ., x,) are nonaffecting with re- 

spect to$ Specifically, if a E @&and n = [a, b] is an element of I= t h e n M  x &) c e however, because 

the variables associated with Iare nonaffecting,M x &) =fLa% x &) for any c E IC Hence,JCp% x &) c 
a E u s ,  and so @Sc @8. Similarly, @S c @S and so the equality in Eq. (6.65) is valid. The equalities 

I&X = UaEwz{n:n=[a,b],b~I@), (6.66) 

(6.67) IES = UaEMs{n : n =[a, c], c E IC} 

also derive from the assumption that the variables associated with Iare nonaffecting. 

From the underlying assumption of independence among the elements of x, 

mX ( d a  x & ) = mA (&a ) mg (% ) (6.68) 

for [a, b] E I& and 

for [a, c] E 18. Further, the equalities 

and 

(6.69) 

(6.70) 

(6.7 1) 

follow from the assumption that the elements of x associated with Iare nonaffecting with respect to$ 
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The belief B e Z A E )  is given by 

(6.72) 

where the second, third and fourth equalities follow from Eqs. (6.66), (6.68) and (6.70), respectively. Similarly, 

(6.73) 

where the second, third and fourth equalities follow from Eqs. (6.67), (6.69) and (6.71), respectively. The equality 

BeZAE)  = BeZSr(6 now follows from Eqs. (6.72) and (6.73) and the equality of M a a n d  @S indicated in Eq. 

(6.65). 

The equality P I A 6  = PZsr(6 follows by an argument analogous to the one used to establish the equality 

Belxr(E) = BelSr(6. The only difference is the consideration of sets that intersect Erather than sets that are con- 

tained in €. Further, the inequality BeZsr(6 I PlSr(6 is a basic property of belief and plausibility. Thus, theorem 

is established. 
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7. Comparison with Previous (Bohn) Analysis 

Bohn developed an approach to the treatment of uncertainty in WL/SL temperature curves (App. I) that is dif- 

ferent from the approaches presented in Sect. 6.  In Bohn’s approach, the uncertainty in the temperature curve for a 

given link and the variability in the failure temperature for that link are combined into a single distribution. The 

distributions that result from this combination procedure are then used in the calculation of 2 (i.e., the expected 

value for probability of loss of assured safety, with the indicated expectation being calculated over epistemic uncer- 

tainty in the time-dependent temperature curves for the individual links). Bohn also presents results for three test 

problems. Although Bohn’s procedure for determining 3 in the presence of uncertainty is less general than the 

sampling-based procedure for uncertainty analysis presented in Sect. 6, his solutions to the test problems can be 

used for an independent verification of the procedures developed in this presentation. 

In the following, a formal development of Bohn’s approach is presented (Sect. 7.1), and the results obtained 

with Bohn’s approach and the procedures introduced in earlier sections of this presentation are shown to be the 

same (Sect. 7.2). 

7.1 Bohn’s Presentation for 2 with Uncertainty in Temperature Curves 

A derivation for Bohn’s representation for with an incorporation of uncertainty in time-dependent tem- 

perature curves follows. This derivation is presented for two reasons. First, the original derivation by Bohn is in- 

complete and difficult to follow. Second, the original derivation contains an oversight that under certain conditions 

leads to erroneous values for 2. Without a careful derivation of the representation used for 2, this error is dif- 

ficult to identifl and explain. This error is manifested in the third of Bohn’s three test problems as will be discussed 

later. 

For simplicity, a system with two SLs and one WL is considered. The basic relationship used in Bohn’s devel- 

opment to define probability of loss of assured safety in the presence of time-dependent temperature uncertainty is 

3 ( t )  = probability that all links fail before time t with both SLs failing before the WL fails 

= p Y S L I  (r) CDFSL, (.) d[CDFWL (41 
= 1; CDF,,, ( r )  C D F ~ L ~  ( r )  [d CDFm (r)/dr] d r ,  (7.1) 

where the first integral is a Riemann-Stieltjes integral, the second integral is the corresponding Riemann integral, 

and CDFSLI(T), CDFsL2(r) and CDFWL(T) are defined by 

C D F ~ L ~  ( r )  = probability that SL 1 fails between time 0 and time T, 



CDFsL2 (T) = probability that SL 2 fails between time 0 and time z, 

and 

CDFWL ( T) = probability that WL fails between time 0 and time T, 

respectively. 

The integrals definingpF(t) in Eq. (7.1) are obtained from the approximating sums 

for 0 = zo < z1 < ... < z, = t ,  Azi = T~ - zi-l, and 

CDFsLl ( r ip] )  = probability that SLl fails between time 0 and time zi-l, 

CDFsL2 ( T ~ - ~ )  =probability that SL2 fails between time 0 and time zi-l, 

CDFwL ( ~ i ) -  CDFWL ( ~ ~ - 1 )  = probability that the WL fails between time zi-.l and time zi. 

The two integrals in Eq. (7.1) result in the limit as Azi goes to zero. The preceding derivation for 3 (t) is predi- 

cated on the assumption that the failures of the three links are independent. 

The next step in the development is to obtain representations for CDFSLl(z), CDFsL2(z) and CDFWL(7). These 

representations are based on the assumption that there is variability in the temperatures at which the individual links 

fail and also uncertainty in the temperatures of the individual links at each point in time. In particular, the following 

density functions are assumed to be known: 

FSLl( T) = density function for SL 1 failure temperature, 

FSL2(T) = density function for SL 2 failure temperature, 

FWL ( T )  = density function for WL failure temperature, 

TSLl(T1 T) = density function for SL 1 temperature at time z, 

TSL2 (TI T) = density function for SL 2 temperature at time z, 

TWL (TI T) = density function for WL temperature at time z. 
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In addition, the tacit assumptions are made that the possible time-temperature curves for the individual links are 

nondecreasing and that a link fails instantly if it reaches its failure temperature. The density function FWL corre- 

sponds to the density functionfWLl introduced in Eq. (3.3), and the density functions FSLl and FSL2 correspond to 

the density functionsfSLl andfSL, introduced in Eq. (3.4). 

Given the preceding density functions, CDFsLl(z), CDFsL2(z) and CDFwL(z) are defined by 

CDFsL1 ( r )  = rm[ fmFSLl (T~)  dTF TSLl(T1z)dT 1 
CDFsL, (z) = rm [ I', FSL2 ( TF ) dTF TSL2 (TI r ) dT I 

and 

CDFwL (z)= rm[ fmFWL(TF) dTF TWL(Tlr)dT, 1 

(7.9) 

(7.10) 

(7.1 1) 

respectively. In the preceding, -co and co are used as limits of integration for notational convenience, with the defi- 

nitions of the density functions effectively resulting in integrals over finite intervals. 

When a finite temperature interval [TMIN, TikGtXl is under consideration, the representation for cDFs~ l ( z )  is 

1 T u 4 x  T 
C D F ~ L ~  (z) = hmN [ bMN FSLl ( TF ) dTF TSLl (TI r )  dT 

z i[ [zNFSLl(TF) dTF TSL1(I;:-ll~) Aq, 
i=l 1 (7.12) 

where TMN = To < T1 < ... < T,, = TMAX in the approximation, ATi = Ti - Ti-.l, and the integral defining 

CDFSL~(T) is obtained in the limit as ATi goes to zero. In the preceding, 

fzN FSLl ( TF ) dTF (7.13) 

is the probability that SL 1 fails at a temperature less than Ti-l, and 

(7.14) TSL~ (q-, I T) AI;: 

is an approximation to the probability that SL 1 experiences a temperature between Ti-, and Ti at time 2. As a re- 

sult, the product 

(7.15) 



approximates the probability of the event “SL 1 fails at a temperature less than TzPl and also reaches a temperature 

between Ti-1 and Ti at time T.” Thus, the summation in Eq. (7.12) approximates the probability that SL 1 has failed 

by time T, and the corresponding integral is equal to this probability. The preceding derivation for CDFsLl(z) has 

two underlying assumptions. First, the possible time dependent temperature curves whose behavior is summarized 

in the density functions TSLl(T 17) are nondecreasing. Second, the failure temperatures characterized by FSLl(T) 

and the time dependent temperatures characterized by TSLl(T IT) are independent. The functions CDFsL2(~) and 

CDFWL(z) are obtained in an analogous manner. 

In concept, pF (t)  in Eq. (7.1) is now determined by the definitions of CDFsLl(z), CDFsL2(z) and CDFm(z) in 

Eqs. (7.9) - (7.1 1) once the density functions in Eqs. (7.3) - (7.8) are specified. In general, the evaluation of ?(t) 

requires a numerical integration because no simple forms for CDFsL1(z), CDFsL2(z) and CDFwL(z) will be avail- 

able for most potential specifications for the density functions in Eqs. (7.3) - (7.8). 

The numerical procedures used for the evaluation in 2 ( t )  in Bohn’s development are based on a simplifica- 

tion of the integrals defining CDFsLl(z), CDFsL2(z) and CDFwL(z) that is obtained by restricting the density func- 

tions in Eqs. (7.3) - (7.8) to either normal or lognonnal distributions. More specifically, the density functions 

FSLl(T) and TSLl(T1z) associated with SL 1 are required to be all normal or all lognormal. Similarly, the density 

functions FSL2(T) and TSL2(Tlz) are required to be all normal or all lognormal, and an analogous requirement 

holds for FWL(T) and TWL(TJz). As shown below, the indicated restrictions result in a simplification of the integral 

representations for CDFsLl(z), CDFsL2(7) and CDFwL(z). 

The simplification of CDFsL1(7) is considered first for the following two cases: (i) FSLl(T) corresponds to a 

normal distribution with mean p ~ s ~ ~  and standard deviation oFsLl (i.e., FSLl(T) - N(pFsL~, oFsL1)) and TSL~(T~T) 

corresponds to a normal distribution with mean pTsLl(z) and standard deviation ‘JT~L~(T) @e., TSL~(TIT) - 
w p ~ s ~ l ( z ) ,  o~sLl(z)]), and (ii) FSLl(T) corresponds to a lognormal distribution with median rnFsLl and standard 

deviation ljFsLl for In T (i.e., FSLl(T) - LN(rnFsLI, PFsL1)) and TSLl(T(z) corresponds to a lognormal distribution 

with median rnTsL1(.t) and standard deviation P T s L I ( ~ )  for In T (i.e., TSLl(T1z) - LN[rn,l(~), PTSL~(T)]). 

Case (i) is treated first. Determination of CDFsL1(7) involves consideration of two sets of temperatures: 

sFsLl = { TF : TF a possible failure temperature for SL 1) (7.16) 

and 

STsLl ( r )  = { T : T a possible temperature for SL 1 at time z} . , (7.17) 

By assumption, the temperatures in SFsLl and GsL1(z) have the distributions N(pFsL1, ‘ J F ~ L ~ )  and N[p~s~l(z), 

‘3TSLdT)I. In turn, 
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(7.18) 

where prob denotes probability and 

(7.19) 

2 Because TF-N(PFSLI, OFSLI) and T- N[PTsL~(z), OTSL~(Z)], it follows that TF- T- NPFSLI - PTSLI(Z), [ ~ F S L I  + 

&(r) ]112}. Thus, prob(SF) is simply the probability that a normally distributed variable (i.e., TF - r )  has a 

value less than or equal to zero, which can be obtained from the standard normal distribution. In particular, 

where 

@(x)=  [m(l/&)exp(-v2/2)dv 

is the cumulative distribution function for the standard normal distribution (i.e., @(x) is the probability that v has a 

value less than or equal to x when v - N(0, 1); see Eq. (1.21) in Ref. [2]). 

Use of the representation in Eq. (7.20) in the evaluation of CDFSLl(z) offers the potential for computational 

savings in the evaluation of 2 (t)  as defined in Eq. (7.1) (e.g., see Eqs. (2.43), (2.44) and (2.47)). In particular, the 

expression in Eq. (7.9) involving two iterated integrals is replaced by the expression in Eq. (7.21) that involves only 

one integral. Further, the evaluation of @(x) has been extensively studied and efficient procedures for its numerical 

evaluation are available. 

Case (ii) is now considered. This case is effectively the same as Case (i) except for the use of In TF and In Tin 

place of TF and Tin the definition of the set SF in Eq. (7.19). In particular, the definition of SF is now 

SF = { [TF, T ]  : TF E SFSLl, T E ( r )  and In ( T F / T )  2 0} . (7.22) 

(7.20) 

(7.21) 



=Q, 

= @  

with Q,(x) defined in Eq. (7.21). 

Analogous representations hold for CDFSL2( z) and CDFwL( z). In particular, 

(7.24) 

(7.25) 

(7.23) 

(7.26) 

(7.27) 

The final representation for 2 (t)  in Eq. (7.1) is used in the determination of the probability of loss of assured 

safety. The form of this representation in the program P-RACE developed by Bohn (App. 11) uses calculated values 

for the derivative dCDFwL( z)/dT based on the forms of CDFm( z) in Eqs. (7.26) and (7.27). Two options are al- 

lowed for the specification of FWL(T) and TWL(T l z) in the input to P-RACE: (i) FWL(T) - N ( ~ F w L ,  o ~ w ~ )  and 
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TWL(T I z) - N [ ~ T w L (  z), C O V ~ W ~  p ~ w ~ (  z)], where CovTWL = oTWL( z)/pTWL( z) is a time independent coefficient of 

variation for WL temperature, and (ii) FWL(T) - LN(rnFWL, PFWL) and TWL(T lz) - L N [ r n ~ w ~ ( z ) ,  PTWL]. Further, 

p~w~(z) and r n ~ ~ ~ ( z )  are restricted to a limited number of simple algebraic forms. An important distinction be- 

tween the two options, and the source of the error in P-RACE as described in conjunction with Eqs. (7.42) and 

(7.43) in Sect. 7.2, is that oTWL( z) = CovTWL pTWL( z) is time dependent in the specification of normal distributions 

for WL temperature and PTWL is time independent in the specification of lognormal distributions for WL tempera- 

ture. Analogous distribution options are allowed for the two SLs. 

The determination of dCDFWL(z)/dz for FWL(T) - N(pFWL, oFWL) and TWL(T1z) - A Q ~ w L ( z ) ,  COVTWL 

pTWL( z)] is considered first. Specifically, 

dCDFwL (r)/dz = - @ [ F ( z ) ]  d 
dz  =-[ d Lm F ( r )  (l/&) expi-v2/2)dv] 
dz 

= (l/&) exp [ -F2 (z)/2] dF (z)/dz , 

where 

(7.28) 

(7.29) 



The complicated form for dCDFwL(z)/dzresults from the time dependence of oTwL(z) = CovTwL pTwL(z) in the 

denominator of the expression defining F( z). 

The determination of dCDFwL( z)/dz for FWL(T) - LN(mFwL, PFwL) and TWL(T1 z) - LNmTwL( z), PTWL] is 

now considered. In this case, the representation for dCDFwL( z)/dT is the same as in Eq. (7.28) with the change that 

F( z) is now given by 

In turn, 

(7.3 1) 

(7.32) 

This form for dF( z)/dz is simpler than the form in Eq. (7.30) because the denominator in the representation for F( z) 

in Eq. (7.3 1) is a constant. 

A summary of the representations used for 2 (t)  in Bohn’s development for one WL and two SLs is provided 

in Table 7.1. When t and the associated rise in temperature are sufficiently large to assure that the WL has failed, 

pF (t)  is equal to the expected value for probability of loss of assured safety. Although the distributions used with 

a given link must be either normal or lognormal, different distribution types can be used for different links. An 

- 

analogous representation for pF ( t )  holds for one WL and and arbitrary number of SLs. 

7.2 Results for Bohn’s Test Problems 

Bohn presents three test problems (Table 7.2). The corresponding failure probabilities 2 (80) at t = 80s are 

calculated with the P-RACE program using the representation for 2 (t)  in Table 7.1. 

The representation forpF(t) in Sect. 2 can be used to evaluate the failure probabilities for the test problems that 

involve one WL and one SL, and the representation in Sect. 4 can be used to evaluate the failure probabilities for 

the test problems that involve one WL and two SLs. As developed in Sects. 2 and 4, pF(t) is for fixed time tem- 

perature curves for the individual links. The Bohn development involves calculating an expected value 2 ( t )  
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Table 7.1. Summary of Representations Used for ?(t) in Bohn’s Development for one WL and 
two SLS 

for the specification of normal distributions (i.e., FWL(T) - N(pFrn, CTFWL), TWL(T1 z) - N[pTw~(z) ,  COVTWL 
p ~ w ~ ( z ) ] ,  and FSLl(T), FSL2(T), TSLl(T1z) and TSL2(TIz) are defined similarly), and 

for the specification of lognormal distributions (Le., FWL(T) - LN(mFWL, PFWL), TWL(TI z) - LNT~TwL(z) ,  
PTWL], and FSLl(T), FSL2(T), TSLl(T/z), and TSL2(TIz) are defined similarly). 

for pF(t) with this expectation taken over distributions for possible time-temperature curves characterized by the 

density functions TWL(TIz), TSLl(T1z) and TSL2(TIz). The preceding density functions can be thought of as de- 

fining (i) distributions of temperature curves of the form 
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Table 7.2. Three Test Problems Developed by Bohn for Use with P-RACE Program for Determi- 
nation of Probability of Loss of Assured Safety (App. I) 

Problem 1 

One WL, Two SLs: 

FWL(T) - LN(mFwL, PFWL) = LN(350"F, 0.4) 

FSLI(T) - L N ( w z F , ~ L ~ ,  P~s,y) =LN(90O0F, 0.4) 

FsL2(T) "LN(mFs,l2, PF,'j',PJ) = LN(900"F, 0.4) 

T W L ( T I Z ) - L N [ ~ T ~ L ( Z ) , P T W ~ ]  =LN(~O"FIS)Z, 0.31, 1 I ZI 80 s 

TSLl(T1r) - L N [ ~ T , ~ , ~ ( z ) , P T , ~ L ~ ]  =LN[(~O"FIS)Z, 0.31, 1 5 ZI 80 s 

TSL~(T~Z) -LN[~T,~L,(z) ,PT~,~~] =LN[(~O"FIS)Z, 0.31, 1 I TI 80 s 

Correlation between SL failure temperatures: 0 

Correlation between SL temperatures: 0 

Problem 2 

One WL, Two SLs: 

Same as Problem 1 with one WL and two SLs but with a correlation of 1 between SL temperatures. 

One WL, Two SLs: 

Same as Problem 1 with one WL and two SLs but with a correlation of 1 between SL failure temperatures and a 
correlation of 1 between SL temperatures 

Problem 3 

One WL, One SL: 

FWL(T) - N(~FWL, G F W - )  = N(379.2"F, 146°F) 

FSL1(T) -N(p~,y,y,  G F ~ L ~ )  =N(975"F, 375°F) 

TWL(T~Z)  -A@TwL(z), GTW,~(Z)] =N[(73.22"F/s)~, 0.31(73.22"F/~)~], 0 I ZI 80 s 

TSL~(T)Z) - n J I p ~ , y , y ( ~ ) ,  O T ~ , ~ ( Z ) ]  =N[(62.76"F/~)~, 0.31(62.76"F/s)~], 0 I TI 80 s 
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Table 7.2. Three Test Problems Developed by Bohn for Use with P-RACE Program for Determi- 
nation of Probability of Loss of Assured Safety (App. I) (Cont) 

One WL, Two SLs: 

FWL(T) - N ( ~ F w L ,  O F ~ L )  =N(379.2"F, 146°F) 

FSLl(T) -N(p~,y,y,  O F S , ~ ~ )  =N(975"F, 375°F) 

FSL2(T) -N(pFsL2, o F S L ~ )  =N(975"F, 375°F) 

TWL(T1z) -N[~TwL(z), OTWL(Z)] =N[(73.22"Fl~)z, 0.31(73.22"F/~)z], 0 2 ZI 80 s 

TSLl(T1z) -N[pTs,rl(~>, oTSL~(Z)] =N[(62.76"Fl~)~, 0.31(62.76"F/~)z], 0 I ZI 80 s 

TSL2(Tlz) -N[~Ts,T~(z), O T S L ~ ( Z ) ]  =N[(62.76"Fl~)~, 0.31(62.76"F/~)~], 0 5 TI 80 s 

Correlation between SL failure temperatures: 0 

Correlation between SL temperatures: 0 

(7.34) 

(7.35) 

when TWL(T I z), TSLl(T1 z) and TSL2(T I z) correspond to normal distributions with nTwL, nTSL1 and n ~ s ~ 2  being 

standard normal variables (i.e., nTWL - N(O,l), nTSLl - N(O,l), nTSL2 - N(0,l)) and (ii) distributions of temperature 

curves of the form 

(7.36) 

(7.37) 

when TWL(T1 z), TSLl(T1 z) and TSL2(TI z) correspond to lognormal distributions with n ~ w ~ ,  n ~ s ~ l  and nTSL2 again 

being standard normal variables. 

If one WL and one SL are under consideration, then 2 (t)  can be approximated by 

(7.39) 

where nTWL,i and nTSLl,i are sampled randomly from N(0,l) andpF(t InTWL+ nTSLl,i) corresponds to pF(t) evaluated 

with the temperature curves associated with nTwL,i and nTSLl,i as indicated in Eqs. (7.33) - (7.38). If one WL and 

two SLs are under consideration, then 2 ( t )  is given by the analogous approximation 
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(7.40) 

Problem 2 (Table 7.2) involves unit correlations between failure temperatures and also between the time-dependent 

temperatures for the two SLs. The implementation of these correlations is trivial and simply involves using the 

same failure temperature for both SLs when a correlation of 1 is specified for the failure temperature and similarly 

using the same time-dependent temperature curve for both SLs when a correlation of 1 is specified for time- 

dependent temperature. 

The results obtained from P-RACE with the representation for F (t)  in Table 7.1 and the results obtained with 

approximation procedures in Eqs. (7.39) and (7.40) based on evaluating individual time temperature curves agree 

for Problems 1 and 2 but disagree for Problem 3 (Table 7.3). 

The reason for the disagreement for Problem 3 was not apparent initially. A checking of both implementations 

did not reveal any errors. However, all four numerical procedures for the evaluation ofpF(tInTwL,i, nTSLj,i, n ~ ~ ~ z , i )  

(i.e., two quadrature procedures and two sampling-based procedures) yielded the same results for Problem 3. This 

suggested the problem might be in the implementation of the calculations to evaluate 2 ( t )  as defined in Table 7.1. 

Due to the complexity of dealing with normal and lognormal distributions, it is difficult to do hand calculations 

to verify the correctness of a numerical result. However, a simple test to verify the presence of an error is possible. 

In particular, if one WL and nSL SLs are involved, all links have the same failure temperature distributions (Le., 

FWL(T), FSLl(T), FSL2(T), . .. correspond to the same distribution) and also the same time-dependent temperature 

distributions (Le., TWL(T(z), TSLl(T(z), TSL2(T(z), . . . correspond to the same distribution), and the properties of 

the individual links are independent, then 

= 1/( nSL + l), (7.41) 

where the problem is assumed to start at time 0 and p(z)  is the probability that an individual link will fail by time 'c 

with p(0) = 0 and p(00) = 1. In particular, p ( z )  is the same for all links from the assumption that the individual links 

have the same failure temperature distribution and the same time-dependent temperature distributions. 

The indicated test with P-RACE did not yield the required convergence of 3 (t)  to 112, 113, 114, . , . for nSL = 

1, 2, 3, . . . . Thus, there had to be a problem in P-RACE. Examination of P-RACE did not reveal any problems. At 

this point, a rederivation of the results implemented in P-RACE was undertaken. The content of Sect 7.1 is the out- 

come of this rederivation. 
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Table 7.3. Comparison of F(t) Obtained for Test Problems with Different Computational Proce- 
dures 

- 
pF (t): Expected Value for Probability of Loss of Assured Safety 

Test Problema 
Analytic Combination of Distributionsb Sampling-Based Combination of DistributionsC 

Prob 1, Part 1 6.01 x lop2 6.01 x 

Prob 1, Part 2 1.58 x 1.58 x 

Prob 2, Part 1 2.36 x lop2 2.36 x 

Prob 2, Part 2 6.01 x 6.00 x lop2 

Prob 3,  Part 1 1.51 x 10-I 8.88 x 

Prob 3, Part 2 6.56 x 10-1 2.34 x lop2 

a Test problems described in Table 7.2. 
- 
pF ( t )  calculated with P-RACE program (App. 11) as indicated in Table 7.1, 

pF (t) calculated with CPLOAS program (App. 111) as indicated in Eqs. (7.39) and (7.40) with procedures described in Sects. 2 and 4. Same 
results obtained with both quadrature approaches and sampling-based approaches to the evaluation ofpF(t lnTwL,I, nTSL,,J andpF(t IIZTWL,,, 

- 

nTSLI,a, nrYL2,~). 

What was discovered in this rederivation was that P-RACE was implemented with 

(7.42) 

when TWL(TI7) - N[~TwL(T), CovTWL pTWL(z)] rather than with the correct value for dF(z)/dz in Eq. (7.30). The 

derivative 

(7.43) 

is correct where oTwL is a constant rather than a function of time (i.e., oTWL( z) = COVTWL ~ T W L (  z)). This is an easy 

error to make. The defining relationship for dF(r)/dr was probably originally and correctly derived with the as- 

sumption of constant values for oFWL and oTwL; then at some later time it is likely that a decision was made to make 

OTWL a function of time without recollection of the assumption of a constant value for oTWL in the derivation of 

dF(z)/dz. Once the correction to the definition of dF(z)/dz was made, P-RACE produced the same values for 

pF ( t )  as given in Table 7.3 for the sampling-based approach. 
- 

The existence of a problem in P-RACE for calculations carried out with normal distributions had been sus- 

pected for a long time. For this reason, decision-supporting calculations were not carried out with P-RACE for nor- 
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mal distributions. However, the exact nature of this problem was not recognized until after the derivations in Sect. 

7.1 were developed. 
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8. Summary 

The probability of loss of assured safety (PLOAS) in WL/SL systems under fire conditions is investigated. The 

indicated probability refers to the failure of the WL system to deactivate the overall systems before failure of the SL 

system and derives from variability (Le., aleatory uncertainty) in the temperatures at which the individual links will 

fail. 

Formal developments of the probability that the WL system fails to deactivate the overall system before failure 

of the SL system @e., PLOAS) are presented for four WL/SL configurations: (i) one WL, one SL (Sect. 2), (ii) 

multiple WLs, multiple SLs with failure of any SL before any WL constituting failure of the safety system (Sect. 3), 

(iii) multiple WLs, multiple SLs with failure of all SLs before any WL constituting failure of the safety system 

(Sect. 4), and (iv) multiple WLs, multiple SLs and multiple sublinks in each SL with failure of a sublink constituting 

failure of the associated SL and failure of all SLs before failure of any WL constituting failure of the safety system 

(Sect. 5). The indicated probabilities derive from time-dependent temperatures in the WL/SL system and variability 

in the temperatures at which the individual components of this system fail and are formally defined as multidimen- 

sional integrals. 

Numerical procedures based on quadrature (i.e., trapezoidal rule, Simpson’s rule) and also on Monte Carlo 

techniques (i.e., simple random sampling, importance sampling) are described and illustrated for the evaluation of 

these integrals. Further, the FORTRAN program CPLOAS has been written to implement the indicated numerical 

procedures for the calculation of PLOAS (App. 111). The quadrature-based procedures are numerically much more 

efficient @e., require fewer function evaluations) than the Monte Carlo techniques. However, the Monte Carlo 

techniques are useful in that they provide an independent verification of the correctness of the conceptual and com- 

putational implementation of the quadrature-based procedures. 

Example uncertainty and sensitivity analyses for PLOAS involving the representation of uncertainty (Le., epis- 

temic uncertainty) with probability theory and also with evidence theory are presented (Sect. 6). A sampling-based 

approach for the propagation of uncertainty is used for uncertainty representations based on probability and also for 

uncertainty representations based on evidence theory. Further, a computationally efficient procedure for the deter- 

mination of complementary cumulative belief functions and complementary cumulative plausibility functions is 

introduced. 

A careful derivation of a numerical procedure originally introduced by M.P. Bohn (App. I) for the determina- 

tion of PLOAS is presented (Sect. 7). This derivation facilitated the identification of an error in the P-RACE pro- 

gram for the calculation PLOAS. The existence of some type of error in P-RACE had been previously suspected 

but its exact nature was not known. The indicated derivation led to the identification of this error and also to a use- 

ful resuWprocedure for use in the verification of PLOAS calculations (Eq. (7.41)). After correction of this error, 



P-RACE and CPLOAS produce the same values for PLOAS for three test problems defined by Bohn for use with 

P-RACE. 
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1.0 Introduction 

Certain systems are designed to withstand external environment challenges (loads and 
temperatures) using a strong link/weak link philosophy to prevent electrical current from being 
inadvertently passed through the system (the undesired top event). In this design approach, the 
system employs a number of strong links designed to have a very high threshold of failure (given 
the external environment challenge) in conjunction with a weak link which is intended to 
predictably and reliably fail under the external environment challenge. The weak link element is 
an element of the system which -- if failed -- renders the undesired top event impossible. Thus, if 
a fault tree of the system is prepared and the minimal cutsets are obtained, one will have (in a 
properly designed system) several strong link failure events and a single weak link success event 
in each cutset. (Of course, each cutset may also have failure events not related to the external 
challenge; e.g., component failures due to human error or unavailabilities due to test and 
maintenance activities.) 

In the following, we will focus on failures resulting from an external thermal environment, and 
thus assume that temperature-time histories are available for each strong link and the weak link. 
Further, we assume that a characterization of the failure temperature probability distribution of 
each strong link and weak link is available. These are shown schematically in Figure 1. 

One direct approach which has been used in calculating the probability of such strong link/weak 
link cutsets is Monte Carlo sampling. In this approach, the temperature-time history of each 
strong link (and weak link) is combined with the corresponding failure temperature distribution 
to derive a probability distribution on the time to failure for each element (as shown 
schematically in Figure 2.) Then, assuming the failure events are independent, random samples 
of time to failure for each of the strong links and the weak link are generated, and for each set of 
samples, the question is asked (assuming two strong links and one weak link): 

Is tsLl < tWL and tsLz < tWL ? 

After multiple sample sets have been generated, the probability of the cutset is estimated as 

Number of sets in affirmative 
Total number of sample sets 

P(SLl*SL2* E j  = 

This approach is quite valid, and (with care) can be extended to consider a wide range of 
alternative underlying assumptions However, in direct application, the approach has a number 
of disadvantages: 

1) Systematic incorporation of uncertainty in both the time histories 
and the failure temperatures is awkward. 
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Separate consideration of random (irreducible) uncertainty and 
systematic (reducible) modeling uncertainty requires a dual 
(inner/outer) Monte Carlo sampling process which is 
computationally inefficient. 

Sampling uncertainty is introduced, and must be considered in 
evaluating the precision of the quantification. 

Consideration of interdependencies between the failures of the 
strong links and weak links is awkward, and requires the 
generation of appropriately correlated sets of sample members for 
each Monte Carlo realization. (This is computationally time 
consuming). 

Commonly-used approximations (such as assuming linearity in 
generating time to failure distributions for each strong and weak 
link) may introduce errors in the final results. 

This white paper presents an alternative integral formulation for the calculation of the probability 
of such strong link/weak link cutsets. This formulation allows explicit incorporation of 
uncertainties in both the temperature-time histories of each element as well as uncertainties in the 
failure temperatures for each element. Being an integral formulation, the calculation is direct, 
and no sampling uncertainty is introduced. It also allows direct incorporation of arbitrary 
correlation between the strong link failures, as well as allowing for explicit propagation of both 
random and systematic uncertainties throughout the calculational process. (However, the weak 
link failures are considered independent of the strong link failures in this formulation.) Finally, it 
does away with the necessity of directly evaluating the time to failure probability distributions, 
and instead, requires only that temperature-time histories be available for each element. 

This white paper is divided into three parts. In the first part (Section 2.0), background is 
provided on the different types of uncertainty (random vs. systematic) and the rationale/value of 
keeping these uncertainties separate during the calculational process. The second part (Section 
3) presents a derivation of the applicable integral formulations, first in the time domain and then 
in the temperature domain. Applications of the integral formulation are presented in Section 3 
illustrating the effccts of including uncertainty in both the calculated temperature responses as 
well as in the failure temperatures, and the effects of correlation between strong link failures. 
Use of the integral formulations to develop mean point estimates of the race cutset failure 
probabilities is described briefly in Section 4. Appendix A gives a Users Manual for P-RACF, a 
FORTRAN 77 code which evaluates race cutset point estimate probabilities using the integral 
formulation presented in this white paper. 
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2.0 Uncertainty and Correlation Considerations. 

2.1 Sinele Comnonent Failure 

Consider a single component whose failure probability is specified by a single failure 
temperature distribution as shown in Figure 3. This model assumes that the component fails saaly 
as a function of peak temperature reached. The distribution implies that a group of nomina& 
i d e n W  components (denoted Group 1) was thermally heated and, as the temperature was 
increased, the number of failures was counted. The components failed at different temperatures 
due to (essentially) random variations in tolerances, material properties, solder thicknesses, 
bubbles, etc. In effect, these small random variations are not measurable and hence not 
knowable. No matter how many units are tested, they will always fail over a 
temperatures. 

of 

Given a single component from this group of nominally identical components, we cannot predict 
with certainty at what peak temperature it will fail, but the distribution of failure temperature 
derived from the testing of multiple components allows us to estimate the probability that it will 
fail as a function of peak temperature. 

Consider now another group of nominally identical components (Group 2) which are nominally 
identical to the first group (i.e,, built to the same specifications). But, assume the second group 
was built by a different manufacturer, or was built using a different heat (batch) of material (glue, 
solder, etc.) such that, when this second group is tested as before, a (statistically significant) 
different distribution is obtained as shown in Figure 4. We could, if desired, test samples of glue, 
solder, etc. to understand the cause of the systematic shift in failure characteristics. If we were 
able to characterize the systematic shift, then the only uncertainty remaining would be that due to 
randomness (present for both groups.) However, in performing an evaluation of the probability 
of failure of a given component, we usually do not have the luxury of such experimentation, and 
usually have (at best) failure data on only a single batch of components. But it is still important 
to reflect both the randomness and the systematic uncertainty in our assessment, as the latter 
provides confidence bounds on our results. Often, limited data in conjunction with expert 
judgment (based on unquantified but applicable experience) is used to estimate the systematic 
uncertainty. 

Mathematically, this can be done by characterizing the failure probability of the (nominally 
identical) components by a of failure probability distributions. This can be a discrete 
family of curves, or a family of known distributional form with prescribed uncertainty on the 
defining parameters of the distribution. For example, an often-used f d l y  of distributions is the 
log-normal family defined over (0, co) as shown in Figure 5. Each member of the family is 
characterized by a median and a random uncertainty p (i.e., the standard deviation of the 
logarithms of the random variate.) The systematic uncertainty is characterized by uncertainty on 
the median parameter, as specified by p . This simple form is useful when little is known 
about the systematic component of total uncertainty. 



1 .o 

0.5 

0.0 
Failure Temperature 

Figure 3 Example of failure temperature cumulative distribution function 

Failure Temperature 

Figure 4 Example of multiple failure temperature distribution functions 

1-10 



I .o 

0.5 

0.0 

Temperature 

Figure 5 Typical log normal family of failure temperature curves 

1-1 1 



If the peak temperature reached by a component is known exactly, and if there is m systematic 
uncertainty, then the probability of failure is read directly off the (single) failure temperature 
distribution. It is, of course, a single @oint estimate) value, say 0.3 as shown in Figure 6.  

If the peak temperature reached by a component is known exactly, but there is significant 
systematic uncertainty, then as described above, the failure temperature is characterized by a 
family of distributions [as in Figure 7(a)] and there is uncertaintv in the predicted failure 
probability as shown in Figure 7 (b). Now we can make statements such as: 

( 1 )  Taking into account both random and systematic uncertainties, 
the mean (expected value) of the probability of failure of a 
component heated to T,, is 0.3. 

(2) With 90% confidence the probability of failure of this 
component heated to a temperature T,, is between 0.2 and 0.4. 

(3) There is some specific temperature T,, for which we are 95% 
confident that less than 5% of components tested to T,, will 
fail. 

Further, we can determine how much the confidence bounds on the failure probability would 
decrease if we perform additional testing to reduce the systematic component of uncertainty. 

Consider now the case where the peak temperature reached by the component is not known 
exactly. (The peak temperature could be either measured or predicted by a computer code.) It 
may also have both random and systematic components of uncertainty. The randomness is due 
to random variations in gap sizes, tolerances, surface roughnesses, etc. If a computer code was 
used to predict the peak temperature, then multiple computer runs would have to be made (while 
randomly varying the model parameters) to generate the randomness in the predicted 
temperatures. There may also be systematic uncertainty due to the model, method of solution, 
approximate equations in the code, etc., which -- in principle -- could be reduced or eliminated 
by use of more accurate models, better calibration to data, etc. 

Thus, the peak temperature may also be characterized by a family of distributions to reflect both 
random and systematic uncertainty. In this case, we again generate a distribution on the 
probability of failure given the uncertainty distributions on T,, and on Tfail. In general, the 
failure probability distribution can be constructed by randomly sampling the systematic 
uncertainty parameters of the temperature response and failure temperature distributions so as to 
obtain a sample realization of one T,, distribution and one Tfail distribution, and then evaluating 
the (single) failure probability value obtained by convolving these two sample distributions using 
the well-known stress-strength interference equation: 
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where Ffail(T) is the CDF of the distribution of failure temperature and fT(T) is the pdf of Tmu. 
After multiple (random) realizations of Pfail are obtained, the distribution on Pfail may be plotted, 
the associated statistics computed, and confidence bounds obtained. 

2.2 

When dealing with the simultaneous failure of multiple components, the possibility of correlation 
(from several sources) must be considered. For example, if a computer code is used to predict 
the temperature-time responses, and if multiple computer runs are made (systematically varying 
the random model parameters) so as to characterize the random uncertainty in the output 
temperature-time histories of the strong and weak links, then it is likely that the computed 
temperature responses are highly correlated. That is, if (due to a specific set of random 
variations in input parameters) one strong link temperature-time history is higher than average, 
then the temperature-time history of another strong link is also somewhat higher than average. 
The fact that this pair of temperature-time histories ‘‘shifts together” can have a profound impact 
on the quantification of a cutset involving the simultaneous failure of these two strong links. The 
result of neglecting this correlation is always non-conservative. 

In a similar fashion, there can be correlation between the failure temperatures of two or more 
components. This can, in principle, only be determined by pair-wise testing of multiple 
components. However, when the randomness in failure temperature is due to small random 
variations in gaps, dimensions, etc., the correlation between the failure temperatures of two 
components would be expected to be small. However, if the failure modes of the two 
components are due to failure of a common subcomponent (say, melting of a similar type of 
electrical insulation) present in both components, then the failure temperatures of the two 
components would be expected to be highly correlated. 

Given that we know (or have estimated) correlations between the temperature-time histories of 
the multiple components and between their failure temperatures, we can compute the joint 
probability of failure of the components (at any instant of time) by constructing a multivariate 
probability density function. This is not, in general, very easy for arbitrary distributions on the 
failure temperatures and computed temperature responses. However, in the case where the 
random uncertainties in the computed temperature histories and in the failure temperatures are 
either normal or log normal, explicit representations are available. For example, if normal 
distributions are assumed, then we can define 

where Ti are the computed temperatures of the components (with associated random uncertainties 
characterized bycs T,i) and Fi are the failure temperatures for each of the components (with 
associated random uncertainties characterized by o F.i.) Since Ti and Fi are assumed to be 



normal random variables, then the Zi are also normal random variables with known means and 
standard deviations. In this case, the probability of the joint failure of the components at any 
instant of time can be expressed as 

where 

In this expression, 2 and p, are vectors given by 

and C is the correlation matrix whose elements are given by 

ij = COV(Ti,Tj) + COV(Fi,Fj) - COV(Ti,Fj) - COV(Tj, Fi) 

and COV denotes the covariance between two random variables, Le., 

The standardized measure of correlation between two random variables is the coefficient of 
correlation defined by 

where (3 xx, c yy are the corresponding standard deviations of x and y. The correlation 
coefficient between any two random variables can be estimated from painvise sample data by 
well-known equations analogous to the equations used for estimating sample standard deviations. 

In general, the evaluation of the multivariate joint probability of simultaneous failure of a group 
of components using Equations 1 and 2 is non-trivial due to the complex integrand and the need 
to evaluate n integrals for consideration of n failures. For the case of two components, however, 
standard IMSL (or other) subroutines are available. 

To illustrate the importance of correlation in evaluating the strong linldweak link cutsets with 
multiple strong links, consider the joint failure probability of two strong links (SL1 and SL2) at a 



particular instant in time. Assume that (at this instant of time) the distributions of temperature 
response and failure temperature of the strong links are normal, and given by 

T, = N (750', 40') 
T2 = N (SOO', 40') 
Fl = N (900', 30') 
F2 = N (900', 30") 

where N( p , ~  ) denotes a normal distribution with mean p and standard deviation 0 . 

Then the Z = Ti - Fi variables are also normal, with distributions given by 

Zl = N  ( - 150°, 50') 
Z2 = N  ( - loo', 50') 

In this case, Equation (1) reduces to 

or, for simplicity, 

where B[ ] in the standard Binormal probability distribution. Figure 8 shows the probability of 
simultaneous failure of both strong links (at this instant of time) as a function of the correlation 
coefficient. 

For p = 0, the two failure events are independent, and the joint failure probability is 

= (1.35e-3) (2.28e-2) 

= 3.07e-5 
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Figure 8 Probability of joint failure of two strong links as a function of correlation 
coefficient 
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where the numerical values for the independent failure probabilities are taken directly from the 
known normal probability distributions for the Zi, that is, 

P[Z, > O ]  = 1-@ { O - g 5 O ) }  = 1.35e-3 

{o-$ioo)} = 2.28e-2 
P[Z2 > O ]  = 1 - 0  

and @ [ ] is the N(0,l) standard normal probability distribution. 

By contrast, when the failure events are fully correlated ( p = l), then the probability of their 
joint failure is 

P[ Z, > 0, Z2 > 01 = Min{P[Z, > 01, P[Z2 > O]} 

= 1.35e-3 

which is a factor of 45 greater than the independent failure value. In effect, when the two failure 
events are fully correlated, the probability of both elements failing simultaneously reduces to the 
probability of failure of the strongest element. 

Hence it can be seen that correlation can make a very significant difference when evaluating the 
joint probability of two or more failure events. Thus it is, in general, non-conservative to neglect 
correlation between two or more strong links when computing the probability of all strong links 
failing before a weak link fails in a race cutset. In the following section, it will be shown how 
correlation between strong link failures can be included as part of the integral formulations. 

3.0 Integral Race Cutset Probability Formulations 

In the following two sections, integral formulations for computing the (point estimate) 
probability that all strong links fail before a weak link fails are derived. The first formulation is 
in the time domain, and is the direct counterpart to the Monte Carlo approach described in 
Section 1 .O. As such, it suffers from many of the same limitations, although no sampling 
uncertainty is introduced. However, it conceptually leads to a formulation in the temperature 
domain, which is the subject of main interest in this white paper. 

3.1. Integral Formulation in the Time Domain 

With no loss in generality, we can consider two strong links (SL1 and SL2) and one weak link 
(WL 1). We assume that, using temperature-time histones and probability distributions on the 
failure temperatures for each of the strong and weak links, we have previously derived (as 



discussed earlier in Section 1 .O) probability distributions for the times to failure of each link, 
denoted tSL1, tsL2 and twLI. We wish to evaluate 

P(SLI*SL2* E) = P(tsL1< twLl and t sL2< twLl) 

This can equivalently be expressed as 

“What is the probability that WL1 has failed in a certain increment of time 
(to -At I 2, t ,  + At I 2), and that the strong links have already failed?” 

Thus we ask for the joint probability of three events: 

Event A = tsL1< to 
Event B = tsL2< t, 
EventC=to-  At/2<t,, < t , + A t l 2  

Hence in the time increment At, 

P(SLI*SL2* E) = P(t,, < to) * P(t,, < t o )  * P(t, - At I 2 < t,, < t, + At 12) 

where 

CDFsLl = Cumulative probability distribution function for tsLl 

CDFSL, = Cumulative probability distribution function for tsL2 

PDF,,, = Probability density function for twLl 

Note that both events A and B are dependent on Event C (through the time to). In multiplying 
these three probabilities together, we are applying the chain rule for conditional probabilities, 

P(A*B*C) = P(A/BC)*P(B/C)*P(C) 

except that, in this case, we are (initially) assuming that tsLl and tSL2 are independent, so that 

P(A/BC) = P(A1C) 

Finally, we note that failure of WLI in any given time increment A t implies that WLI does not 
fail in any other time increment A t. Hence, these joint failures are mutually exclusive and thus 
we can sum them to obtain the probability that t,,,< tWLl and tsL2 < twL, in at least one time 
increment A t. Thus we have 



m 

P(SL1 *SL2* a) = jCDFsLl (t,~DFLz(t,)pDF,,,(t,)dt, 
0 

(4) 

which is the desired integral formulation in the time domain. 

To illustrate this in application, consider the uniform distributions of failure times (for two strong 
links and one weak link) given by 

where U[a,b] denotes a uniform distribution between the limits a and b. These distributions are 
shown in Figure 9 (a). The corresponding cumulative distribution functions for the two strong 
links [as required for the integrand of Equation (4)] are shown in Figure 9 (b). Using Equation (4), 

= 0.0171 

As verification, Monte Carlo sampling (with lo6 samples) gave the results 0.0170,0.0172 and 
0.0173 for three different initial seeds in the random sampling process. 

Note that Equation 4 can be used with any distributional forms for tSL1, tSL2 and tWL1, and that 
different distributions can be used for each. In general, in course, numerical integration would be 
used to evaluate the integral. However, if onlv one s trong link is of interest, and if the 
distributions are of one of a few well-known types, then the integral can be obtained from the 
corresponding tabulated distributions. For example, assume tsLl and t,,, are both normal 
distributions, 

tsLl = N(23sec, 2.333 sec) 
t,,, = N( 14 sec, 2.0 sec) 

[Note that these are normal distributions approximating the uniform dis ibution of SL1 and 
WL1 in Figure 9 (a), where the mean is taken as the midpoint of the uniform distributions and 
the two end points are assumed to be +I- 6 0  points on the normal distributions.] Then, since 
the difference of two normally distributed random variables is also normally distributed, 
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= 0 -(23 -14) 

@[&3ZTl 
= 1 - @ [2.93] 

= 1.73 e-3 

where again @ [ ] is the N [0,1] standard Normal probability distribution function. This 
probability is, of course, significantly smaller than derived from the corresponding uniform 
distribution example, since the uncertainty in failure times is significantly smaller. 

3.1.2. Extens ions 

Clearly, the incorporation of additional strong links in the formulation is straightforward. 
Assuming that the strong link failure times are independent, one has 

P(SLl*SL2*------*SLn*m) = 1 CDFSLI (to) ---- CDFsL,(to) PDFWLI (to) dt, ( 5 )  

If one wishes to consider correlation between the strong link failure times, one would have to 
construct a multivariate cumulative probability function for the n strong links, and Equation ( 5 )  
becomes 

P(SL1 * SL2 * ... * SLn *WLI) = CDF(tsLI< to, ...,. tSLn< to) PDFWLI (to) dt, 

However, construction of such a multivariate CDF in the time domain is non-trivial. A more 
straightforward way of doing this in the temperature domain is described in the next section. 

3.2.  Integral Formulation in the Temperature Domain 

AS before, we can consider (with no loss of generality) two strong links (SL1 and SL2) and one 
weak link ( W l ) .  We also assume that we know the temperature-time histories for each of these 
links: 

TSLdt) TSL20) TWLl(t) 

Again, we pose the problem in terms of the question: 

“What is the probability that WL1 fails when it experiences a temperature in the 
increment ( T ,, - AT / 2, To+ A T/2), and that the strong links SLl and SL2 have 
already failed?’ 
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This probability is given by 

where, again, we initially assume independence between the strong link failures. In this 
expression, 

PsL1[TsLl] = Probability that SL1 has failed at or below temperature TsLl (to). 

PSL2[TSL2] = Probability that SL2 has failed at or below temperature TsL2 (to). 

fwLl[Tml] AT wLl = Probability that WLl fails in the temperature increment 
AT ATWL, UWLl(f0) - -$% TWLl(f0) +-> 2 

Note that PsLl( ) and PsL2 ( ) are cumulative probability distribution functions , and fwLI( ) is a 
probability density function, and all three are conditional on time. 

Multiplying and dividing by At, and again recognizing the mutual exclusivity of failures in 
different time increments, we obtain 

P[SLl*SL2* m] = P(tsLl<twL1 and tSL2<tWLl) 

This is the desired expression for failure of the strong link-weak link race in terms of failure 
temperature distributions. This can be seen by writing explicit expressions for the terms in the 
integrand. For example, 

TF,sLI = random failure temperature of SLl 

CDF(T,,SLi) = cumulative probability distribution function for TF,sLI 

TSLl(t) = random temperature of SL1 at time t 

PDF[TsL, (t)] = probability density function of the 
(calculated) temperature of SL 1. 
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It can be seen that PsLl[ ] is nothing more than the probability that SLl has failed before time t, 
but it is expressed in terms of the well-known stress-strength interference equation which 
involves only the (data-based) failure temperature distribution for SL1 and the uncertainty 
distribution for the (computer code predicted) temperature of SL1 at timet. These two required 
input distributions are shown schematically in Figure 10 (a). Similar expressions can be written 
for PsL2 [TSL2(t)] as shown schematically in Figure 10 (b). The density function fwLl(t) can be 
computed as 

The same pair of input distributions is required for WL 1, as shown in Figure 10 (c). 

Note that these expressions are written in terms of arbitrary probability distribution functions, 
and, in fact, all six required input distributions may have different forms. However, when the 
input distributions are either normal or log normal distributions, then the integrand of Equation 
(6) can be rapidly and efficiently calculated using the tabulated N(0,l) standard normal 
probability distribution. For example, if all input distributions are normal, i.e., 

.. 
TF,SL2 =N[ T ~ , s L 2  (t), F,SL2 1 

then, utilizing the fact that the sum or difference of two normal random variables is also a normal 
random variable, we can write the four terms in the integrand of Equation (6) as 
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Similarly, 

In the above CD [ ] is again the standard N[0,1] normal probability distribution. Analogous 
equations can be written for log normal input distributions. 

Numerical integration is used to evaluate the point estimate probability of a race cutset using 
Equation (6)  with the integrand evaluated at each integration point using the above four 
equations. The temperature-time histories for each of the components may be input either as 
analytic functions or numerical data, The upper limit of integration for Equation (6)  is chosen 
sufficiently large that the integral converges. 

A computer code P-RACE was written to evaluate Equation (6) for either normal or log normal 
input probability distributions. As described above, input consists of the two defining parameters 
for each of the input distributions, and the temperature-time histories for the strong and weak 
links (which may be either analytic or numerical data). Up to eight strong links can be 
considered in any cutset. The P-RACE input and output are described in detail in Appendix A. 

3.2.1. Illustrative Examples 

(a) Example: One Strong Link and One Weak Link 

Consider the case of one strong link (SL1) and one weak link (WL1). Assume that the 
temperature-time histories were computed to be 

? sLl(t) = 60.0 t 
? wLl(t) = 70.0 t 

and that these are median temperature-time histories. Further, assume that for any time t, the 
uncertainty distributions of the computed temperature-time histories are log normal, and 
characterized by log standard deviations of 



P T,SL1 = O a 3  

P T,WLI = O m 3  

(Note that the log standard deviation is one of the two defining parameters of a log normal 
distribution, and is nearly equal to the C.O.V. = cr / p . Thus specifying a log standard deviation 
of 0.3 is equivalent to saying that the standard deviation in the computed response is about 0.3 
times the average.) 

Further, assume that the SL1 and WL1 failure temperature distributions are also log normal, and 
characterized by 

where LN (my P ) denotes a log normal distribution with median m and log standard deviation 
P . These input distributions are shown in Figure 1 1. 

Then, inputting these parameters into P-RACE as described in Appendix A, one obtains the point 
estimate race cutset probability 

- 
P(SLl* WL1) = P(tSL1 < tWL,) 

= 0.0601 

This can be verified by hand calculation, due to the linearity of the temperature-time histories 
and the fact that the uncertainties are assumed to be log normal for both the temperature 
responses and the failure temperatures. To see this, note that 

In 60t I 900 
PITSLl ’ TF,SLll = @[ o.5 ] 

In 70t 1350 
PITWL’TF,WLI @[ o.5 ] 

which imply that the distributions of times to failure for these links are also both log normal, and 
given by 

tsLl = LN[15s, 0.51 

tWL = LN[5~,0.5] 
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Then 

ln(5 115) 
= cD [ 0.707 ] 
= 0.0601 

which is the same as computed by P-RACE using the more general formulation of Equation 6. 

(b) Example: Two Strong Links and One Weak Link 

Consider a race cutset with two identical strong links (seeing the same temperature time 
histories) and one weak link, with the strong and weak links having the same properties as in 
Example (a) above. Thus the input to P-RACE is 

TsLl = LN (60.0tY 0.3) 
TSLZ = LN (60.0tY 0.3) 
TWL = LN (70.0t, 0.3) 

for the temperature-time histories and 

TF,sLI = LN (900°F, 0.4) 
TF,sLz = LN (900°F, 0.4) 
T,,wL = LN (350°F, 0.4) 

for the failure temperature distributions. 

Assuming the strong links are independent, P-RACE gives 

P (SLl*SL2*/WL) = 0.0158 

This cannot be hand checked directly. However, a Monte Carlo evaluation of this (independent) 
case gives the results 0.0158,0.0160, and 0.0161 for lo6 trials and three initial seeds. 

Similarly, assuming that the strong links temperature responses are fully correlated and that the 
failure temperatures are also fully correlated, P-RACE gives 

P (SLl*SL2*/WL) = 0.0601 

which the same result as in Example (a) as it should be. 



The difference between the fully independent case and the fully dependent case varies with the 
relative capacities of the strong links and the weak link (and, of course, the prescribed 
uncertainties). For example, if the median failure temperature of the strong links is varied while 
all other parameters are held fixed, the variation of the race cutset probability (independent 
versus fhlly dependent) is as shown in Figure 12. As can be seen, the difference between the 
independent and dependent cases tends to increase as the capacity of the strong links increases 
(and hence as the race cutset probability decreases). The ratio between those two probabilities 
will, in general, increase as shown on this figure. For the parameters chosen, the ratio increases 
up to a factor of seven. Other parameters could increase the difference further. 

By contrast, if one strong link capacity is held fixed at a median value of 900°F, and the capacity of 
the second strong link is varied, the variation of race cutset probability is as shown in Figure 13. 
When the capacity of SL1 is less than SL2, the fully dependent cutset probability is dominated by 
(the strongest) SL2, and the cutset probability is constant. When the capacity of SL1 exceeds 
900°F, then SL 1 dominates, and the cutset probabilities in both the independent and fully 
dependent cases decrease. The ratio between the two thus increases when the capacity of SLl in 
less than SL2, and decreases when the capacity of SLl increases past the capacity of SL2, as 
shown in Figure 13. Thus it can be seen that, in general, the greatest difference between the 
independent and fully dependent cases occurs when the two strong links have the same median 
capacities (and, of course, the same temperature-time histories). More generally, it can be seen 
that the greatest difference between the independent and fully dependent cases occurs when two (or 
more) strong links probability of failure versus time relations are the same. When either the 
capacities or the temperature-time histories vary, the net effect is to reduce the difference between 
the independent and fully dependent cases. 

Finally, it is noted that P-RACE allows for input of arbitrary correlation between the strong link 
time histories (through input parameter p, ) and between the strong link failure temperatures 
(through input parameter pf ). Both of these input parameters can have any value between 0 and 
1. Thus if actual response or capacity correlations are known, they can be input directly. Of 
course, for intermediate values of correlation, the cutset probability will be between the 
independent and fully dependent cases discussed above. 

3.2.2. Extensions 

As can be seen from the derivation, any number of additional strong links may be included by 
adding additional cumulative distribution functions to the integrand of Equation (6). As 
currently configured, P-RACE allows up to eight strong links in any one cutset. 

Correlation between strong link failures can also be considered in this formulation. As before, it 
is only necessary to replace the independent strong link terms in the integrand of Equation (6) by 
the joint probability function 
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and this is exactly the same function given by Equation (1) earlier in the report. The initial 
version of P-RACE allows only the first two strong links to be correlated. 

4.0 Systematic Uncertainty, Race Cutset Failure Probability Distributions and Mean Point 
Estimates. 

As described in Section 2.0, the uncertainty in random variables can be separated into 
components associated with random (irreducible) uncertainty and systematic (or reducible) 
uncertainty, and the latter is associated with our “lack of knowledge” - which could be reduced 
by additional testing, analyses, etc. The two integral formulations described in this report 
calculate the point estimate probability of the occurrence of the race cutset considering the 
random (irreducible) component of uncertainty in all the input random variables. Thus, for each 
race cutset, a single (point estimate) value of probability is calculated by the P-RACE code. 

In general, however, when both random and systematic uncertainties are included, one can 
calculate the distribution of the race cutset, percentiles on the distribution, and determine 
confidence bounds on the calculated race cutset probabilities. (For example, when the 
distribution of a race cutset occurrence probability is calculated, one can make such statements as 
“With 95% confidence, we are sure that the race cutset occurrence probability is less than 0.01”, 
etc.) To compute such distributions, a Monte Carlo process can be used (at each step randomly 
sampling the systematic uncertainties for both the computed temperature responses and the 
failure temperatures and then evaluating the race cutset occurrence probability for each Monte 
Carlo trial). From the accumulated Monte Carlo samples of race cutset probability, the 
distribution and its associated statistics can be derived. 

The P-RACE code described in this report does not calculate such uncertainty distributions 
(although work is in progress to accomplish this). However, P-RACE can be used to calculate 
the (point estimate) mean of the failure probability distribution - without computing the full 
distribution. That is, it can be shown that the true mean cutset value (for normal or log normal 
random failure events) can be obtained without constructing the full distribution by using the 
k&d uncertainty in evaluating the race cutset occurrence probability, where the total uncertainty 
is defined as 

and ci ,., CT are the corresponding random and systematic components of uncertainty. Thus, to 
compute the mean point estimate, it is only necessary for the user to input total uncertainty 
values (in place of the random uncertainties) for each of the input distributions in the P-RACE 
input. 

To illustrate this, consider the two strong link example in Section 3.0. The input uncertainty 
distributions were defined as 



TsL, =LN (1.0,0.3) 

TsL2 = LN (1 .O, 0.3) 

TWL = LN (1 .O, 0.3) 

TF,sLI = LN (900°F, 0.4) 

TF,SL;! = LN (900°F, 0.4) 

TF,wL = LN (350°F, 0.4) 

Let us assume that there is known systematic uncertainty in the median parameters of these 
distributions, with this uncertainty (also assumed log normal) characterized by a log standard 
deviation of 0.1 for both the computed temperature responses and for the failure temperatures. 
To compute the mean point estimate (of the true failure probability distribution), we combine the 
random and systematic uncertainties into the corresponding total uncertainties, and hence the 
input distributions became 

TsLl =LN (1.0,0.316) 

TSL2 =LN (1.0, 0.316) 

TWL = LN (1 .O, 0.3 16) 

T,,,,, = LN (900°F, 0.412) 

TF,SLZ = LN (900°F, 0.412) 

TF,WL = LN (350°F, 0.412) 

With these input values, P-RACE gives a mean point estimate failure probability of 0.01 86 for 
this race cutset. For comparison, manually performing a Monte Carlo analysis (varying the 
median values of the six input distributions using the assumed systematic uncertainty 
distributions) yields the distribution of cutset failure probability shown on Figure 14. The mean 
of this distribution was 0.0188 (for the initial seed assumed and 5,000 trials). (The difference 
between the two values is due only to sampling uncertainty in the Monte Carlo analysis.) 

Thus it can be seen that the user can - if desired - use the P-RACE code as currently configured 
to compute either point estimate failure probabilities (considering random uncertainties only) or 
race cutset mean values (considering both random and systematic uncertainties). Development 
of an extension of P-RACE to automatically compute the fill distribution of failure probability 
(which could be input to an accident sequence uncertainty quantification code such as TEMAC) 
is in progress. 
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5.0 Summary 

The integral formulation presented in this white paper has several advantages over the Monte 
Carlo formulation: 

1. It allows direct and explicit incorporation of random uncertainties both in the 
failure temperature distributions as well as the responses (i.e., in the code 
predicted temperature-time histories.) 

2. It does not require sampling, and does away with the need to consider sampling 
uncertainty. 

3. It does away with the need to separately derive and characterize the time to failure 
distributions of the strong and weak links. 

4. It can consider arbitrary correlation between the strong link failures (that is, 
correlation between either the responses of two or more strong links or between 
their failure temperature distributions. 

5 .  It can still consider deterministic values for failure temperatures (if desired) with 
no change in formalism. 

6. It allows for arbitrary choice of distributions for TSL, TwL, TF,SL, TF,WL and they 
do not need to be of the same form. 

The computer implementation of this formulation is (currently) limited to normal and log normal 
input distributions, but is quite efficient. An extension to compute distributions of the race cutset 
failure probabilities is under development. 



Appendix A 

P-RACE USERS GUIDE 

(Version 5/95) 
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P-RACE Users Guide 
(Version 5/95) 

The code P-RACE computes the point estimate probability of a race cutset 
involving several strong links and a single weak link of the form 

P(SLl*SL2* . . . */WL) = Prob( tSLl < t m ,  t ~ ~ 2  < twL,. . . ) 

that is, the probability that all the strong links (SLi) in the cutset fail 
before the weak link (WL) fails. This probability is computed using an 
integral formulation (Equation 6 of the accompanying report) and requires 
as input the following information for each strong link and the weak link: 

* A temperature-time history function (assumed to be 
either a mean or median) 

* An uncertainty distribution for the temperature- 
time history 

* An uncertainty distribution for the failure 
temperature 

One of several temperature-time functions (quadratic, power law, 
exponential) can be selected by the user, with coefficients specified in 
the input. (Each different link can have a different temperature-time 
history function). An important limitation in this version is that all 
temperature-time functions must be monotonically increasing. (This 
limitation could be relaxed, if desired). 

The input uncertainty distributions may be either normal or lognormal 
probability distributions. (The formulation allows for arbitrary 
distributions to be used and P-RACE could be modified to consider any 
particular parametric or empirical form, but for most purposes, the normal 
and lognormal forms will suffice.) Only the parameters of the 
distributions need be input. 
P-RACE is that the distributional forms of the uncertainties for the 
temperature response and the failure temperature for any particular link 
must be the same. (That is, if strong link No. 1 has a normal distribution 
for its failure temperature uncertainty, then it must also have a normal 
distribution for its temperature response uncertainty distribution). 
However, different links may have different uncertainty distributions. 

Input is not free field, but numerical input is in fields of 10. 

An important limitation in this version of 

* The input file must be named P-RACE.INP 
* All integers must be right-justified 
* Real numbers must have a decimal point somewhere in 
the field 
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The specific lines of input (for each race cutset) are as described below: 

Line 1 Title Information (Format 80A1) 

Line 2 NSL, NDT, ti, tf, Rho-r, Rho-f (Format 2110, 4F10) 

where 

NSL - Integer number of strong links in cutset (note: one weak link 
is always assumed, so total number of links in the cutset is 
NSL + 1) 

NDT - Integer number of numerical integration increments into which 
the time interval of integration is divided. 
NDT = 50 is more than adequate. 

Typically, 

ti = Initial time (lower limit) for the numerical integration. 
Theoretically, the integration is from 0.0 to infinity. In 
practice, any lower limit can be used as long as the 
contribution to the integral €or shorter times is negligible. 
(A convergence check is included in the output as described 
below). Provided all temperature-time history functions 
specified by the user give positive temperatures for times 2 
0.0, ti - 0.0 may be used. (Real number 2 0.0) 
However, if one or more of the user specified temperature-time 
history functions gives temperatures 5 0.0 for times greater 
than or equal to zero, then the user has two options: 

(a) Use only normal distributions for links. Then 
any ti greater than or equal to zero can be used. 
This is because the normal distribution does not blow 
up for temperatures 5 0.0 as does the lognormal 
distribution. 

(b) Choose any ti larger than the smallest time beyond 
which temperatures are > 0.0. 

For any case where the user specifies a ti > 0.0, the user 
must verify that ti selected has not omitted any significant 
portion of the integral, as described below. 

tf = Final time (upper limit) for the numerical integration. This 
can have any value, provided the user verifies that the value 
is sufficiently large that the integral has converged. (Again, 
a convergence check is included in the output as described 
below). (Real, positive number and, of course, tf must be 
greater than t) 

Rho-r .= Correlation coefficient between the temperature-time history 
responses of the first two strong links input. (Real number 
with 0.0 5 Pr 5 1.0) 

Rho-f = Correlation coefficient between the failure temperatures of 
the first two strong links input. (Real number with 
0.0 I Pf 51.0 ) 
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Line(s) 3 THTYPE. A, B, C (Format 110, 3F10) 

where 

THTYPE = Integer specifying type of temperature time history to be 
used for each link. 

THTYPE - 1 Temp(t) - A + B*t + C*(t**2) 

THTYPE .. 2 Temp(t) - A + B*(t**C) 

THTYPE = 3 Temp(t) - A + B*exp(C*t) 
A,B,C = The (real number) coefficients in the selected temperature 

time history function. The coefficients must be selected 
such that the function is monotonically increasing. 

As mentioned above, if a lognormal distribution is being used for any 
of the strong links, its corresponding temperature-time history 
function must give positive, non-zero temperatures for all times in 
the range ti to tf. 

Line 3 is repeated for each link, so a total of NSL + 1 of these lines 
are required to specify the temperature-time history functions for all 
the strong and weak links. THE INPUT FOR THE WEAK LINK MUST ALWAYS BE 
LISTED FIRST! 

Line(s) 4 RTYPE, M,, Sig-r (Format 110, 2F10) 

where 

RTYPE - Type of uncertainty distribution specified for the input 
temperature-time history response function. (Integer) 

RTYPE = 2 Normal distribution 

RTYPE = 3 Lognormal distribution 

Mr - Always input as 1.0. This is to remind the user that the 
uncertainty on the temperature-time history is a 
multiplicative value, and is input as such below. 

Multiplicative dispersion parameter of the distribution 
(Real, positive number) 

Sig-r - 
Sig-r denotes the coefficient of variation, (COV = Ur-pr 
where pr is the mean and ur the standard deviation) if a 
normal distribution has been specified (RTYPE = 2 ) ,  or 

Sig-r denotes the standard deviation of the logarithms (Pr) 
if a lognormal distribution has been specified (RTYPE = 3)  

Line 4 is repeated for each link, so a total of NSL + 1 of these lines 
are required to specify the temperature-time history uncertainty 
distributions for all the strong and weak links. THE INPUT FOR THE 
WEAK LINK MUST ALWAYS BE LISTED FIRST! THE ORDER IN WHICH THE STRONG 
LINK UNCERTAINTY DISTRIBUTIONS ARE INPUT MUST BE THE SAME AS WAS USED 
IN THE LINE 3 INPUT! 
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Line(s) 5 FTYPE, Mf, Sig-f (Format 110, 2F10) 

where 

FTYPE - Type of uncertainty distribution specified for the failure 
temperature. (Integer) 

FTYPE - 2 Normal distribution 

FTYPE - 3 Lognormal distribution 

Mf = The central value parameter of the distribution 
(Real, positive number) 

Mf denotes the the mean value pf (in units of temperature) if 
a normal distribution has been specified (RTYPE - 2), or 

Mf denotes the the median value mf (in units of temperature) 
if a lognormal distribution has been specified (RTYPE - 3 )  

The dispersion parameter of the distribution 
(Real, positive number) 

Sig-f = 

Sig-f denotes the standard deviation af (in units of 
temperature) if a normal distribution has been specified 
(FTYPE - 2), or 

Sig-r denotes the standard deviation of the logarithms & (a 
dimensionless number) if a lognormal distribution has been 
specified (FTYPE = 3 )  

Line 5 is repeated for each link, so a total of NSL + 1 of these lines 
are required to specify the failure temperature uncertainty 
distributions for all the strong and weak links. THE INPUT FOR THE 
WEAK LINK MUST ALWAYS BE LISTED FIRST! THE ORDER IN WHICH THE STRONG 
LINK UNCERTAINTY DISTRIBUTIONS ARE INPUT MUST BE THE SAME AS WAS USED 
IN THE LINE 3 AND LINE 4 INPUT! 

NOTES ON INPUT 

(a) Each block of data (Lines 1 through 5) applies to a single race 
Do not separate the cutset, but multiple blocks of data may be input. 

blocks of data with any blank lines. 

(b) At the end of the last block of data input, add a line of blanks 
(columns 1 to 30) to signify the end of the input. 

(c) Remember: When normal uncertainty distributions are selected for one 
or more of the links, the temperature-time history response 
uncertainty distribution is specified (in Lines 4 )  in terms of the 
(dimensionless) COV, while the failure temperature uncertainty 
distribution is specified (in Lines 5) in terms of the actual standard 
deviation (with dimensions of temperature) 

(By contrast, when lognormal distributions are selected, both response 
and failure temperature distributions are specified in terms of the 
dimensionless l o g  standard deviation.) 
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(d) As described above, when correlation is specified between either the 
responses and/or the failure temperatures, the correlation is applied 
to only the first two strong link components listed in the input (in 
this version of P-RACE). Usually, the user can tell from the time 
histories and the capacity distributions which are the critical (i.e., 
the strongest) strong links which should be correlated (if there is a 
basis for including correlation). However, the user can always 
interchange the order in which the strong links are input to determine 
which pair of strong links maximizes the cutset probability, given the 
specified correlation. 

Note that when correlation is included, the run time is substantially 
increased, due to the additional integration which must be performed. 
However, the run time is not increased if either Pr - pf - 0.0 (the 
uncorrelated case) or pr .. 

Example No. 1: InDut and OutDut 

Figure A-1 illustrates the input file P-RACE.INP for the two example 
problems given in Section 3.0 of the main report. (The line numbers in 
parentheses were added to this figure to relate to the input descriptions 
given above, and are not part of the input file.) 

pf - 1.0 (the fully correlated case). 

In the first block of input, the data for a race cutset 
involving one strong link and one weak link is input. Line 1 
gives the alphanumeric title information. Line 2 specifies 
NSL - 1 (one strong link), NDT - 50 (fifty integration 
intervals) and integration from ti = 1.0 sec to tf = 80.0 
sec. Finally, on Line 2, zero correlation is specified 
(Pr = 0 .0  and pf = 0 . 0 ) .  

The first of Lines 3 specifies that the temperature-time 
history for the weak link is quadratic (THTYPE - 1) with 
coefficients A = 0 . 0 ,  B - 70.0 and C = 0 . 0 .  That is, 
Twl(t) - 70*t. The second of Lines 3 specifies that the 
temperature-time history for the strong link is quadratic 
(THTYPE - 1) with coefficients A = 0 . 0 ,  B = 60.0  and C - 0 . 0 .  
That is, Tsl(t) = 60*t. (Note that the weak link input is 
alwavs first in the list.) 

The first of Lines 4 specifies that the temperature response 
uncertainty for the weak link is log normal (RTYPE = 3 )  with 
median of 1.0 (this is always input as 1.0 ! )  and a log 
standard deviation of 0.3, while the second of Lines 4 
specifies that the temperature response uncertainty for the 
strong link is also log normal (RTYPE = 3 )  with the same log 
standard deviation (0.3). (In general, of course, neither 
the type nor the uncertainty parameter need be the same.) 

The first of Lines 5 specifies that the failure temperature 
uncertainty for the weak link is log normal (RTYPE = 3 )  with 
median of 3500F and a log standard deviation of 0 . 4 ,  while 
the second of Lines 4 specifies that the failure temperature 
for the strong link is also log normal (RTYPE = 3) with a 
median of 900°F and the same log standard deviation ( 0 . 4 ) .  
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Columns 
1 10 20 30  40 50 60 * - - - - - - - - - * - - - - - - - - - * - - - - - - - - * - - - - - - - - - - - - * - - - - - - - - - * - - - - - - - - - * - - -  

***One Strong Link Example Problem (Sect. 3 . 0  of Main Report)*** 
1 50 1.0 80.0 0.0 0.0 
1 0 . 0  70 .0  0 . 0  
1 0 . 0  60 .0  0 . 0  
3 1 . 0  0 . 3 0  
3 1 .0  0 .30  
3 3 5 0 . 0  0.40 
3 900.0 0.40 

***Two Strong Link Example Problem (Sect. 3 . 0  of Main Report)*** 
2 5 0  1.0 80.0 0.0 0.0 
1 0 . 0  70.0 0.0 
1 0.0  60.0 0 .0  
1 0 . 0  60 .0  0 . 0  
3 1 . 0  0 . 3 0  
3 1 . 0  0 . 3 0  
3 1 . 0  0 . 3 0  
3 3 5 0 . 0  0.40 
3 900.0 0.40 
3 900.0 0.40 

(Line 1) 
(Line 2) 
(Line 3 WL) 
(Line 3 SL1) 
(Line 4 WL) 
(Line 4 SL1) 
(Line 5 WL) 
(Line 5 SL1) 
(Line 1) 
(Line 2) 
(Line 3 WL) 
(Line 3 SL1) 
(Line 3 SL2) 
(Line 4 WL) 
(Line 4 SL1) 
(Line 4 SL2) 
(Line 5 WL) 
(Line 5 SL1) 
(Line 5 SL2) 

Figure A-1 Input File P-RACE.INP for Example No. 1 



This completes the input for the first race cutset and P-RACE could be 
executed with this input alone (with a line of blanks added to signify the 
end of the input.) However, for illustrative purposes, the input for a 
second race cutset has been added so that P-RACE will compute the race 
cutset probabilities for both in one execution. (There is no limit to the 
number of race cutset input datasets which may be input at one time.) 

In the second block of input, the data for a race cutset 
involving two strong links and one weak link is input. Line 
1 gives the alphanumeric title information. Line 2 specifies 
NSL - 2 (two strong links), NDT = 50 (fifty integration 
intervals) and integration from tf - 1.0 sec to tf = 80.0 
sec. Finally, on Line 2, zero correlation is specified 
(Pr - 0 . 0  and pf = 0 . 0 ) .  

The first of Lines 3 specifies that the temperature-time 
history for the weak link is quadratic (THTYPE - 1) with 
coefficients A = 0 . 0 ,  B = 70.0 and C - 0 . 0 .  
Twl(t) - 70*t. The next two (of Lines 3)  specify that the 
temperature-time histories for the two strong links are 
quadratic (THTYPE - 1) with coefficients A = 0 . 0 ,  B = 60.0 
and C = 0 . 0 .  That is, Tsl(t) = 60*t for both strong links. 
(In general, of course, they need not be the same.) 

The first of Lines 4 specifies that the temperature response 
uncertainty for the weak link is log normal (RTYPE - 3 )  with 
median of 1.0 and a log standard deviation of 0 . 3 ,  while the 
next two (of Lines 4 )  specify that the temperature response 
uncertainty for the strong links are also log normal 
(RTYPE - 3 )  with the same log standard deviation (0.3). (In 
general, of course, neither the type nor the uncertainty 
parameter need be the same.) 

That is, 

The first of Lines 5 specifies that the failure temperature 
uncertainty for the weak link is l og  normal (RTYPE - 3 )  with 
median of 3500F and a log standard deviation of 0.4, while 
the second two (of Lines 5 )  specify that the failure 
temperature for both strong links is also log normal 
(RTYPE - 3 )  with a median of 9000F and the same log standard 
deviation (0.4). 

This completes the input for the two race cutsets. 
blanks is added to signify the end of the input file. 

The results (always output in file P-RACE.OUT) are shown in Figure A-2. The 
first block of output is a header which identifies the P-RACE output (and 
the code version date which was executed). 

One additional line of 

The next nine lines essentially echo the input for the first race cutset 
dataset that was.input. 

The next block is denoted "Convergence Check" and forms the basis for 
assuring that the selected values of ti and tf were adequate to capture the 

The input variables are identified by name. 



........................................... 
****************** ******************* 
I************* P-RACE *************** 
************* (2-20-96) *************** 
************** BY ************** 
**************** M.P. BOHN *e************** 
****************** ******************* 
............................................. 

***One Strong Link Example Problem (Sect. 3.0 of Main Report)*** 
No. SLs 1 No. DTs = 50 t(initia1) = 1.0 t(fina1) - 80.0 
RHOr - 0.0 RHOf - 0 . 0  
T/H No. 1 Quadratic Eqn A - 0.000E-01 B - 7.000E+01 C = 0.000E-01 
T/H No. 2 Quadratic Eqn A = 0.000E-01 B = 6.000E+01 C - 0.000E-01 
Temp Dist No 1 Log Normal Dist MedLan-r = 1.00 Beta-r * 0.300 
Temp Dist No 2 Log Normal Dist Median-r - 1.00 Beta-r - 0.300 
Fail Dist No 1 Log Normal Dist Median-f - 350.00 Beta-f - 0.400 
Fail Dist No 2 Log Normal Dist Median-f = 900.00 Beta-f - 0.400 

Convergence Check 
Time T-wl Cdf-SLS Pdf-wl d(Twl)/dt Del(Pf) Pf 

1.7903+00 1.2533+02 1.0733-05 7.7173-04 7.000E+01 9.1583-07 9.1583-07 
7.921E+01 5.5453+03 9.996E-01 3.3783-11 7.000E+01 3.7353-09 6.0133-02 

P(RACE) 3 6.01E-02 

***Two Strong Link Example Problem (Sect. 3.0 of Main Report)*** 
No. SLs 2 No. DTs = 50 t(initia1) = 1.0 t(fina1) - 80.0 
RHOr = 0.0 RHOf = 0 . 0  
T/H No. 1 Quadratic Eqn A = 0.000E-01 B - 7.000E+01 C = 0.000E-01 
T/H No. 2 Quadratic Eqn A = 0.000E-01 B - 6.000E+01 C = 0.000E-01 
T/H No. 3 Quadratic Eqn A - 0.000E-01 B = 6.000E+01 C = 0.000E-01 
Temp Dist No 1 Log Normal Dist Median-r - 1.00 Beta-r = 0.300 
Temp Dist No 2 Log Normal Dist Median-r = 1.00 Beta-r - 0.300 
Temp Dist No 3 Log Normal Dist Median-r = 1.00 Beta-r = 0.300 
Fail Dist No 1 Log Normal Dist Median-f = 350.00 Beta-f = 0.400 
Fail Dist No 2 Log Normal Dist Median-f = 900.00 Beta-f = 0.400 
Fail Dist No 3 Log Normal Dist Median-f = 900.00 Beta-f = 0.400 

Convergence Check 
Time T-wl Cdf-SLS Pdf-wl d 

1.790E+00 1.2533+02 1.151E-10 7.7173-04 7 
7.9213+01 5.5453+03 9.9913-01 3.3783-11 7 

P(R4CE) = 1.583-02 

Twl) /dt Del (Pf) Pf 
000E+01 9.8253-12 9.8253-12 
OOOE+Ol 3.7333-09 1.5803-02 

Figure A - 2  Output File P-RACE.OUT for Example No. 1 



entire integral (which, in principle, is an integral over 0.0 to infinity). 
Two lines of output are given, corresponding to the integrand quantities 
evaluated at the midpoint of the first integration interval and of the last 
integration interval. The times shown in the first column are these two 
time points. For information and checking purposes, the temperature of the 
weak link (denoted T-wl) is given in the second column. The next column 
lists the combined cumulative distribution function value of all the strong 
links (denoted as Cdf-Sls). The column denoted Pdf-wl gives the value of 
the weak link probability density function, while d(Twl)/dt denotes the 
value of the derivative of the weak link temperature-time history at the 
two time points. 

Del(Pf) is the increment added to the integral at each time increment, and 
is the product 

Del(Pf) = (Cdf-Sls)*(Pdf-wl)*[d(Twl)/dt]*(dt) 

Pf is the value of the integral at the end of each time increment. Thus at 
the end of the first time increment, Pf - Del(Pf). At the end of the last 
time increment, Pf = P(RACE) , the probability of the race cutset which is 
listed on the last line of the output for each race input. The integral 
converges (as tf gets large) because the term Cdf-Sls is a probability and 
approaches 1.0 for large tf, while the term Pdf-wl is a probability density 
function, which approaches zero as tf becomes large. 

If the initial time (ti) specified by the user is sufficiently small, then 
Pf - Del(Pf) for the first time increment should be very small relative to 
the final value of the integral, P(RACE). If the final time (tf) specified 
by the user is sufficiently larpe, Del(Pf) for the last time increment 
should be very small relative to the final value of the integral, 
Pf =P(RACE). Thus by examining the values of Del(Pf) at the end of the 
first and last integration time increments as given in the "Convergence 
Check" block of output, the user can be assured that appropriate values of 
ti and tf were chosen. 

The last line of output is, as noted above, the final point estimate value 
of the probability of the race cutset, P(RACE), a (dimensionless) number 
between 0.0 and 1.0. 

The output for the next race cutset evaluated follows (in the same format), 
with the addition of lines echoing the input for the additional strong 
link. 

ExamDle No. 2: InDut and Outout 

The same two strong link race cutset considered in Example No. 1 is used, 
except that now two correlation cases will be considered. For the first 
cutset, partial correlation consisting of 100% correlation between the 
computed temperature responses but zero correlation between the failure 
temperatures is input, i. e. , 

pr - 1.0 and pf = 0 . 0  

For the second cutset, both computed temperature responses and failure 
temperatures are assumed to be fully correlated, i.e., 
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Pr = 1.0 and pf = 1.0 

The input file for these two race cutset cases is shown in Figure A-3. The 
only change from the Example No. 1 input (for the two strong link race 
cutset shown in Figure A-1) is on Line 2, where the appropriate values of 
Pr and pf are input. 

The output from these two calculations is shown in Figure A-4. It can be 
seen the the cutset probability has increased from the fully uncorrelated 
(Example No. 1) value of 1.58e-2 to a value 2.36e-02 for the partially 
correlated case, and to a value of 6.01e-2 for the fully correlated case. 

ExamDle No. 3: InDut and Output 

Again we shall use the cutsets in Example No. 1, except that the 
uncertainty distributions shall be specified as normal probability 
distributions. For comparison purposes, the normal probability 
distributions will be specified to have the same means and coefficients of 
variation (c.o.v.) as the log normal distributions used in Example No. 1. 
The mean and C.O.V. of a lognormal distribution are equal to 

Thus for the normal distributions, we will specify 

Temperature Response p(WL)  = 73.22*t and c.o.v.(WL) = 0.307 
Temperature Response p(SL1) = 62.76*t and c.o.v.(SLl) = 0.307 
Temperature Response p(SL2) = 62.76*t and c.o.v.(SL2) - 0.307 

and 

Failure Temperature p(WL) = 379.20F and a(WL) = 1460F 
Failure Temperature p(SL1) = 975.00F and a(SL1) = 375OF 
Failure Temperature p(SL2) = 975.00F and a(SL2) - 375OF 

The same temperature-time histories will be used, and no correlation. Note 
that (as stated earlier) when a normal distribution is input, the 
temperature response uncertainty is specified in terms of its C.O.V. while 
the failure temperature distribution uncertainty is specified in terms of 
the standard deviation. The input file is shown in Figure A-5, and the 
corresponding output file in Figure A-6. The probabilities of the two race 
cutsets (with normal probability distributions) are seen to be 1.56e-01 and 
6.56e-02, respectively, and these values are somewhat larger than the 
values for the lognormal input cases in Example No. 1 (which were 6.01e-02 
and 1.58e-02, respectively). This is to be expected, since the normal 
distribution is symmetric while the lognormal distribution is skewed with 
longer tails for higher temperatures. Thus, the strong links are less 
likely to fail before the weak link. (However, if the lognormal 
uncertainty is small - say, f i  < 0.1 - the difference between results 
obtained by using equivalent lognormal and normal distributions is small.) 
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***Two Strong Link Example Problem (Sect. 3.0 of Main Report)*** 
2 50 1.0 80.0 1.0 0.0 
1 0.0 70.0 0.0 
1 0.0 60.0 0.0 
1 0.0 60.0 0.0 
3 1.0 0.30 
3 1.0 0.30 
3 1.0 0.30 
3 350.0 0.40 
3 900.0 0.40 
3 900.0 0.40 

***Two Strong Link Example Problem (Sect. 3.0 of Main Report)*** 
2 50 1.0 80.0 1.0 1.0 
1 0.0 70 .0  0.0 
1 0.0 60.0 0.0 
1 0.0 60.0 0.0 
3 1.0 0.30 
3 1.0 0.30 
3 1.0 0.30 
3 350.0 0.40 
3 900.0 0.40 
3 900.0 0.40 

(Line 1) 
(Line 2) 
(Line 3 WL) 
(Line 3 SL1) 
(Line 3 SL2) 
(Line 4 WL) 
(Line 4 SL1) 
(Line 4 SL2) 
(Line 5 WL) 
(Line 5 SL1) 
(Line 5 SL2) 
(Line 1) 
(Line 2) 
(Line 3 WL) 
(Line 3 SL1) 
(Line 3 SL2) 
(Line 4 WL) 
(Line 4 SL1) 
(Line 4 SL2) 
(Line 5 WL) 
(Line 5 SL1) 
(Line 5 SL2) 

Figure A-3 Example No. 2 Input File P-RACE.INP 



............................................. 
****************** ******************* 
************** P-RACE *************** 
************* (2-20-96) ************st** 
************** BY ************** 
**************** M.P. BOHN ***-k************ 

****************** ******************* 
............................................. 

***TWO Strong Link Example Problem (Sect. 3.0 of Main Report)*** 
No. SLs 2 No. DTs - 50 t(initia1) 1.0 t(fina1) - 80.0 
RHOr - 1.0 RHOf = 0 .0  
T/H No. 1 Quadratic Eqn A = 0.000E-01 B - 7.000E+01 C - 0.000E-01 
T/H No. 2 Quadratic Eqn A = 0.000E-01 B - 6.000E+01 C = 0.000E-01 
T/H No. 3 Quadratic Eqn A - 0.000E-01 B = 6.000E+01 C - 0.000E-01 
Temp Dist No 1 Log Normal Dist Median-r - 1.00 Beta-r - 0.300 
Temp Dist No 2 Log Normal Dist Median-r - 1.00 Beta-r - 0.300 
Temp Dist No 3 Log Normal Dist Median-r = 1.00 Beta-r = 0.300 
Fail Dist No 1 Log Normal Dist Median-f - 350.00 Beta-f - 0,400 
Fail Dist No 2 Log Normal Dist Median-f = 900.00 Beta-f = 0.400 
Fail Dist No 3 Log Normal Dist Median-f - 900.00 Beta-f - 0.400 

Convergence Check 
Time T-wl Cdf-SLS Pdf-wl d(Twl)/dt Del(Pf) Pf 

1.790E+00 1.2533+02 3.5143-08 7.7173-04 7.000E+01 3.000E-0.9 3.000E-09 
7.9213+01 5.5453+03 9.991E-01 3.378E-11 7.000E+01 3.7333-09 2.3633-02 

P(RACE) = 2.36E-02 
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***Two Strong Link Example Problem (Sect. 3.0 of Main Report)*** 
No. SLs 2 No. DTs = 50 t(initia1) - 1.0 t(fina1) - 80.0 
RHOr - 1.0 RHOf = 1.0 
T/H No. 1 Quadratic Eqn A - 0.000E-01 B = 7.000E+01 C = 0.000E-01 
T/H No. 2 Quadratic Eqn A = 0.000E-01 B - 6.000E+01 C - 0.000E-01 
T/H No. 3 Quadratic Eqn A = 0.000E-01 B = 6.000E+01 C = 0.000E-01 
Temp Dist No 1 Log Normal Dist Median-r - 1.00 Beta-r - 0.300 
Temp Dist No 2 Log Normal Dist Median-r = 1.00 Beta-r = 0.300 
Temp Dist No 3 Log Normal Dist Median-r - 1.00 Beta-r = 0.300 
Fail Dist No 1 Log Normal Dist Median-f - 350.00 Beta-f - 0.400 
Fail Dist No 2 Log Normal Dist Median-f - 900.00 Beta-f = 0.400 
Fail Dist No 3 Log Normal Dist Median-f = 900.00 Beta-f = 0.400 

Convergence Check 
Time T-wl Cdf-SLS Pdf-wl d(Twl)/dt Del(Pf) Pf 

1.790E+00 1.2533+02 1.073E-05 7.7173-04 7.000E+01 9.158E-07 9.158E-07 
7.9213+01 5.545E+03 9.9963-01 3.3783-11 7.000E+01 3.7353-09 6.0133-02 

P(RACE) = 6.013-02 

Figure A-4 Output file P-RACE.OUT for Example No. 2 



( L i n e  1) 
( L i n e  2 )  
( L i n e  3 WL) 
( L i n e  3 SL1) 
( L i n e  4 WL) 
( L i n e  4 SL1) 
( L i n e  5 WL) 
( L i n e  5 SL1) 
( L i n e  1) 
( L i n e  2 )  
( L i n e  3 WL) 
( L i n e  3 SL1) 
( L i n e  3 SL2) 
( L i n e  4 WL) 
( L i n e  4 SL1) 
( L i n e  4 SL2) 
( L i n e  5 WL) 
( L i n e  5 SL1) 
( L i n e  5 SL2) 

F i g u r e  A-5 Example N o .  3 Input  F i l e  P-RACE.INP 



............................................. 
****************** ******************* 
************** P - RACE *************** 
************* (2-20-96) *************** 
************** BY ************** 
**************e* M.P. **************** 
****************** ******************* 
............................................. 

**********************Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
No. SLs 1 No. DTs = 50 t(initia1) - 1.0 t(fina1) = 80.0 
RHOr = 0.0 RHOf = 0.0 
T/H No. 1 Quadratic Eqn A = 0.0003-01 B - 7.3223+01 C = 0.000E-01 
T/H No. 2 Quadratic Eqn A - 0.000E-01 B - 6.2763+01 C - 0.000E-01 
Temp Dist No 1 Normal Dist Mean-r 5 1.00 COV-r 0.31 
Temp Dist No 2 Normal Dist Mean-r = 1.00 COV-r = 0.31 
Fail Dist No 1 Normal Dist Mean-f = 379.20 Sigma-f - 146.00 
Fail Dist No 2 Normal Dist Mean-f - 975.00 Sigma-f - 375.00 

Convergence Check 
Time T-wl Cdf-SLS Pdf-wl d(Twl)/dt Del(Pf) Pf 

1.790E+00 1.311E+02 1.100E-02 6.8823-04 7.3223+01 8.7573-04 8.7573-04 
7.9213+01 5.800E+03 9.945E-01 2.2383-06 7.3223+01 2.5753-04 1.5643-01 

P(RACE) == 1.56E-01 

*****dr********d.****.xExample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
No. SLs 2 No. DTs = 30 t(initia1) - 1.0 t(fina1) 5 80.0 
RHOr = 0.0 RHOf = 0.0 
T/H No. 1 Quadratic Eqn A - 0.000E-01 B = 7.3223+01 C = 0.000E-01 
T/H No. 2 Quadratic Eqn A = 0.000E-01 B = 6.2763+01 C = 0.000E-01 
T/H No. 3 Quadratic Eqn A - 0.000E-01 B - 6.2763+01 C = 0.000E-01 
Temp Dist No 1 Normal Dist Mean-r 3 1.00 COV-r = 0.31 
Temp Dist No 2 Normal Dist Mean-r 5 1.00 COV-r - 0.31 
Temp Dist No 3 Normal Dist Mean-r 5 1.00 COV-r = 0.31 
Fail Dist No 1 Normal Dist Mean-f = 379.20 Sigma-f = 146.00 
Fail Dist No 2 Normal Dist Mean-f - 975.00 Sigma-f = 375.00 
Fail Dist No 3 Normal Dist Mean-f - 975.00 Sigma-f - 375.00 

Convergence Check 
Time T-wl Cdf-SLS Pdf-wl d(Twl)/dt Del(Pf) Pf 

1.790E+00 1.3113+02 1.2103-04 6.8823-04 7.322E+01 9.631E-06 9.6313-06 
7.921E+01 5.8003+03 9.8903-01 2,2383-06 7.3223+01 2.5603-04 6.5553-02 

P(RACE) - 6.563-02 

Figure A-6 Example No. 3 Output file P-RACE.OUT 
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Appendix II: 
P-RACE: A Program for Calculating 

Probabilities of Strong L inWeak Link Cutsets 

by 

M.P. Bohn 

February 20,1996 

This appendix contains a previously unpublished program by M.P. Bohn for the quantification of the probabil- 

ity of failure of temperature-dependent weak linklstrong link systems. 
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PROGRAM PRACE 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

THIS PROGRAM COMPUTES THE POINT ESTIMATE PROBABILITY 
OF MULTIPLE STRONG LINKS (SL’S) FAILING BEFORE THE 
WEAK LINK (WL1) FAILS GIVEN INPUT DISTRIBUTIONS OF 
FAILURE TEMPERATURE FOR EACH LINK. A DIRECT INTEGRAL 
FORMULATION IS USED, AND TEMPERATURE-TIME RELATIONS ARE 
SPECIFIED BY THE USER (FOR EACH LINK). TWO PROBABILITY 
DISTRIBUTIONS MUST BE INPUT FOR EACH LINK: 

P (TEMPERATURE I TIME) 
P (FAILURE TEMPERATURE) 

IN ADDITION, RESPONSE AND FRAGILITY CORRELATIONS MAY BE 
INPUT FOR THE FIRST TWO STRONG LINKS. 

REAL A(9) ,B(9) ,C(9) ,D(9) ,MR(9) ,SIGR(9) ,MF(9) ,SIGF(9) ,Z(9) I 
* PSL(9) ,TEMP(9) 

INTEGER THTYPE (9) , ITYPER (9) I ITYPEF (9) 
DIMENSION TITLE (20) 

OPEN(6,file=’P-RACE.0UT‘,status=’UNKNOWNr) 
OPEN(5,file=’P-RACE.INP’,status=’OLD’) 

C******INPUT FOR EACH NEW RACE 
999 READ(5,lOOO) (TITLE(1) ,I=1,20) 

WRITE (6,1001) (TITLE (I) I 1=1 ,20) 
1000 FORMAT (20A4) 
1001 FORMAT (1HO,4X, 2 OA4) 

C READ IN NUMBER OF INTEGRATION INCREMENTS AND 
C UPPER LIMIT INTEGRATION TIME 

READ(5,1005) NSL,NDT,TI,TF,RHOR,RHOF 

IF(NSL .EQ. 0 ) GO TO 200 
WRITE(6,l) NSL,NDT,TI,TF,RHOR,RHOF 

1005 FORMAT (2110,4F10. 2) 

1 FORMAT (5X, ’No. SLs’ , I2 I 2X, ‘No. DTs = ‘ I I5 I 2X, t (initial) = ‘ I 
F7.1,2X, t (final) = ’ ,F7.1 I 2X, / I 5X, RHOr = ‘ , F4.1 I 2X, ’ RHOf = ‘ I * 

* F4.1) 

C READ IN W L ,  SL‘S, TEMPERATURE-TIME CURVES 
C **NOTE** WL DATA IS ALWAYS INPUT FIRST*** 

READ(5,2) ( THTYPE(1) ,A(I) ,B(I) ,C(I) ,1=1,NSL+1) 
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2 

3 

33 

34 

35 

36 

C 

4 

50 

51 

52 

53 

C 

54 

55 

56 

57 

C 
C 

58 

C 
C 
C 

FORMAT (11013F10. 2) 

DO 36 I = l,NSL+l 
IF(THTYPE(1) .EQ. 1) WRITE(6,33) I,A(I) ,B(I) ,C(I) 
IF(THTYPE(1) .EQ. 2) WRITE(6,34) I,A(I) ,B(I) ,C(I) 
IF(THTYPE(1) .EQ. 3) WRITE(6’35) I,A(I) ,B(I) 
FORMAT (5X, T/H No. ,I2,2X, ‘Quadratic Eqn ‘ ,2X, ’A = ’ ,1P E10.3, 

FORMAT(5X,’T/H No.’,I2,2X,’Power Law Eqn ‘,2X,‘A =’,1P E10.3, 

FORMAT(5X,‘T/H No.’,I2,2X,’Exponential Eqn‘,2X,’A =‘,1P E10.3, 

CONTINUE 

2X,’B =‘,lP E10.3,2X,‘C =‘,1P E10.3) 

2X,’B =’,1P E10.3,2X,’C =‘,1P E10.3) 

2X,‘B =‘,1P E10.3) 

READ IN TEMPERATURE RESPONSE UNCERTAINTY DISTRIBUTIONS 
READ(5,4) ( ITYPER(1) ,MR(I) ,SIGR(I) ,I=l,NSL+l ) 
FORMAT (11012F10. 2) 
DO 53 I = 1, NSL+1 
IF( ITYPER(1) .EQ. 1) WRITE(6’50) I,MR(I) ,SIGR(I) 
FORMAT (5X, ’ Temp Dist No’ ,I2,2X, ‘Uniform Dist 

IF( ITYPER(1) .EQ. 2) WRITE(6‘51) I,MR(I) ,SIGR(I) 
FORMAT(5X,‘Temp Dist No’ ,12,2X,’Normal Dist 

IF ( ITYPER (I) .EQ. 3) WRITE (6’52) I ,MR (I) , SIGR (I) 
FORMAT(5X,’Temp Dist No’ ,12,2X,‘Log Normal Dist’ ,2X, 

CONTINUE 

’ ,2X, 
’Tlower =’,F8.2,2X,‘Tupper =‘,F8.2) 

’,2X, 
’Mean-r =‘,F8.2,2X,‘COV-r =‘,F8.2) 

‘Median-r =‘,F8.2,2X, ‘Beta-r =‘,F9.3) 

READ IN FAILURE TEMPERATURE UNCERTAINTY DISTRIBUTIONS 
READ(5,4) ( ITYPEF(1) ,ME’(I) ,SIGF(I) ,I=1,NSL+1 ) 

DO 57 I = l,NSL+l 
IF( ITYPEF(1) .EQ. 1) WRITE(6’54) I,MF(I) ,SIGF(I) 
FORMAT (5X, ‘Fail Dist No’ ,I2,2X, ’Uniform Dist ’ ,2X, 

IF ( ITYPEF (I) .EQ. 2) WRITE (6’55) I ,ME’ (I) , SIGF (I) 
FORMAT (5X, ’ Fail Dist No’ ,I2,2X, ’ Normal Dist 

IF( ITYPEF(1) .EQ. 3) WRITE(6,56) I,MF(I) ,SIGF(I) 
FORMAT(5X,’Fail Dist No‘ ,12,2X,’Log Normal Dist’ ,2X, 

CONTINUE 

‘Tlower =‘,F8.2,2X,‘Tupper =‘,F8.2) 

‘ ,2X, 
’Mean-f =‘,F8.2,2X,’Sigma-f =‘,F8.2) 

’Median-f =‘,F8.2,2X,‘Beta-f =’,F9.3) 

MAKE SURE TEMP RESPONSE AND FAIL TEMP DISTRIBUTIONS 
MATCH 
DO 58 I = l,NSL+l 
IF ( ITYPER (I) .NE. ITYPEF (I) ) WRITE (6,300) 
IF ( ITYPER (I) .NE. ITYPEF (I) ) STOP 
CONTINUE 

. . . . . . . . . . . . . . . . . . . . . .  
INTEGRATE OVER 0 TO TF 

PF = 0.0 
RDT = NDT 

. . . . . . . . . . . . . . . . . . . . . .  



DT = (TF-TI)/RDT 
T = TI - DT/2.0 

SQ2PI = 2.5066 

DO 20 J = 1,NDT 

C 
C 
C 

6 

C 
C 
C 

C 

C 

C 

C 
C 

C 

C 

C 

T = T + D T  

DO 6 I=l,NSL+l 
IF(THTYPE(1) .EQ. 1 ) TEMP(1) = A(1) + B(I)*T + C(I)*(T**2) 
IF(THTYPE(1) .EQ. 2 ) TEMP(1) = A(1) + B(I)*( (T-TI)**C(I)) 
CONTINUE 

******************* 
EVALUATE INTEGRAND 
******************* 

COMPUTE WEAK LINK PDF ORDINATE 

LOG NORMAL DISTRIBUTION 
IF(ITYPER(l).EQ. 3 .AND. ITYPEF(1) .EQ. 3 ) THEN 
BETA = SQRT(SIGR(1) **2+SIGF(l) **2) 
ARG = - ( (ALOG (TEMP (1) /ME' (1) ) ) **2) / (2.O*BETA**2) 
IF (ARG . GE . -25. ) PDFWL = EXP (ARG) / (SQ2PI*BETA*TEMP (1) ) 
IF(ARG .LT. -25. ) PDFWL = 0.0 
ENDIF 

NORMAL DISTRIBUTION 
IF(ITYPER(l).EQ. 2 .AND. ITYPEF(1) .EQ. 2 ) THEN 
SIGMA = SQRT ( SIGF ( 1 ) * *2 + ( SIGR ( 1 ) *TEMP ( 1 ) ) * *2 ) 
ARG = - ( (TEMP(1) -MF(l) ) **2) / (2.0*SIGMA**2) 
IF(ARG .GE. -25. ) PDFWL = EXP(ARG)/(SQ2PI*SIGMA) 
IF(ARG .LT. -25. ) PDFWL = 0.0 
ENDIF 

COMPUTE WEAK LINK UNIFORM PDF ORDINATE 
***TO BE ADDED*** 

COMPUTE STRONG LINK PROBABILITIES 
DO 10 I = 2,NSL+1 

LOG NORMAL DISTRIBUTION 
IF(ITYPER(I).NE. 3 .AND. ITYPEF(1) .NE. 3 ) GO TO 7 
NOTATION FOR LOG NORMAL INPUT 
ME' IS MEDIAN OF FAILURE DISTRIBUTION 
SIGF IS BETA-FR OF FAILURE DISTRIBUTION 
MR IS MEDIAN OF RESPONSE DISTRIBUTION 
SIGR IS BETA-RR OF RESPONSE DISTRIBUTION 

(1.0) 

COMPUTE STRONG LINK CDF FAILURE PROBABILITIES 
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C 

C 
7 

C 

Z(1) = ALOG( TEMP(I)/MF(I) )/SQRT(SIGF(I)**2+SIGR(I)**2) 
PSL(1) = FNOl(Z(1)) 

IF(I.EQ. 3) THEN 
RHO = (RHOR*SIGR(2) *SIGR(3) + RHOF*SIGF(2) *SIGF(3)) / 
PSL12 = FBNOl( Z(2) ,2(3) ,RHO ) 
ENDIF 

* (SQRT(SIGR(2) **2+SIGF(2) **2) *SQRT(SIGR(3) **2+SIGF(3) **2)) 

GO TO 10 

NORMAL DISTRIBUTION 
CONTINUE 
IF(ITYPER(1) .NE. 2 .AND. ITYPEF(1) .NE. 2 ) GO TO 8 
NOTATION FOR NORMAL INPUT 
MF IS MEAN OF FAILURE DISTRIBUTION 
SIGF IS SIGMA-FR OF SL FAILURE DISTRIBUTION 
MR IS MEAN OF RESPONSE DISTRIBUTION (1.0) 
SIGR IS C.O.V. OF SL RESPONSE DISTRIBUTION 

COMPUTE STRONG LINK CDF FAILURE PROBABILITIES 
Z ( I) = (TEMP (I) -MF (I) ) /SQRT (SIGF ( I) **2+ (SIGR ( I) *TEMP . . . 
PSL(1) = FNOl(Z(1)) 

IF(I.EQ. 3) THEN 

RHO = (RHOR*SIGR(2) fTEMP(2) *SIGR(3) *TEMP(3) 
C **THIS NOT RIGHT YET WITH SHIFT FACTORS ! ! ! * *  

* 
* ( SQRT(SIGF(2)**2+(SIGR(2)*TEMP(2))**2)* 
* 

+ RHOF*SIGF (2) *SIGF (3) ) / 
SQRT (SIGF ( 3) * *2+ (SIGR (3) *TEMP (3) ) * *2) ) 

PSL12 = FBNOl(2 (2) ,Z (3) ,RHO) 
ENDIF 

GO TO 10 

C 
8 

C 

UNIFORM DISTRIBUTION 
CONTINUE 
IF(ITYPER(1) .NE. 1 .AND. ITYPEF 
IF(ITYPER(1) .NE. 1 .AND. ITYPEF 
******TO BE ADDED********* 

10 
C 

C 
C 
C 

C 

C 

C 

I) .NE. 1) WRITE 6,100) 
I) .NE. 1) STOP 

CONTINUE 
END OF LOOP OVER STRONGLINKS 

QUADRATIC TIME HISTORY 
IF(THTYPE(1) .EQ. 1 ) DTEMPDT = B(l) + 2.0*C(l)*TEMP(l) 

2 

POWER CURVE TIME HISTORY 
IF (THTYPE (1) . EQ . 2 ) DTEMPDTzC ( 1) *B ( 1) * ( (T-TI ) * * (C (1) - 1 . 0 ) ) 
____________________--------------------- 
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C ADD INCREMENT OF INTEGRAND*DT TO INTEGRAL 
C 
C PSLS IS CDF(SLl*SLP*. . . . )  TERM IN INTEGRAND 
C IF(NSL.EQ. 1) PF = PF + (PSL (2) *PDFWL*DTEMPDT*DT) 
C IF(NSL.EQ. 2) PF = PF + (PSL12 *PDFWL*DTEMPDT*DT) 
C IF (NSL-EQ. 3) PF = PF + (PSL12 *PSL (4) *PDFWL*DTEMPDT*DT) 

__-__--__---__--__-_____________________- 

IF(NSL.EQ. 1) PSLS = PSL(2) 
IF(NSL.EQ. 2) PSLS = PSL12 
IF(NSL.EQ. 3) PSLS = PSL12*PSL(4) 

IF(NSL .GT. 3) THEN 
PSLS = PSL12 
DO 11 I=3,NSL 

ENDIF 
11 PSLS = PSLS*PSL (I+1) 

C COMPUTE INCREMENT AND ADD TO INTEGRAL 

DELPF = PSLS*PDFWL*DTEMPDT*DT 
PF = PF + DELPF 

IF( J. EQ. 1) WRITE(6,12) 

IF( J. EQ. 1) WRITE(6,13) 
12 FORMAT (1H0,2X,' Convergence Check' ) 

13 FORMAT(1H ,3X,' Time T-wl Cdf -SLS Pdf -wl d (Twl) /dt 
* Del(Pf) Pf' ) 

IF( J. EQ. 1) WRITE(6,14) T,TEMP(l) ,PSLS,PDFWL, 
* DTEMPDT,DELPF,PF 

IF( J. EQ. NDT) WRITE(6,14) T'TEMP(1) ,PSLSrPDFWLr 
* DTEMPDT,DELPF,PF 

14 FORMAT(1H ,3Xr8(1P E10.3)) 

C 
15 

WRITE (6,lS) T, TEMP (2) ,TEMP (1) , PSL (2) , PDFWL,DTEMPDT, PF 
FORMAT (3X I 8 ( 1P E10 .3) ) 

20 CONTINUE 
C END OF LOOP OVER INTEGRATION STEPS 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

30 
100 

200 
300 

* 

WRITE (6,30) PF 
FORMAT(lHO,4X,'P(RACE) = I ,  1P E9.2) 
FORMAT(lHO,IX, 'ERROR IN INPUT DISTRIBUTIONS' ) 
GO TO 999 
CONTINUE 
FORMAT(SX,'*ERROR** INPUT TEMP RESPONSE C FAILURE TEMP', 
lX,'DISTRIBUTIONS DO NOT MATCH') 
STOP 
END 

C 
C 
C 

FUNCTION FINO1 (P) 
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C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 
C 

GIVEN A VALUE OF PROBABILITY ( 0 LE P LE 1.0 ) 
THIS ROUTINE RETURNS THE N(0,l) DISTRIBUTION 
STD. NORMAL VARIATE 2. THE POLYNOMIAL FIT 
GIVEN IN ABRAMOWITZ AND STEGUN,1965, DOVER 
ART. 26.2.23 IS USED. PROGRAMMED BY M P  BOHN 
SEPT. 1988. 
CO = 2.515517 
C1 = 0.802853 
C2 = 0.010328 
D1 = 1.432788 
D2 = 0.189269 
D3 = 0.001308 
PP = P 
IF ( P.GT. 0.5 ) PP = 1.0 - P 
T = SQRT( ALOG(l.O/(PP*PP)) ) 
TOP = CO + (C1 + C2*T)*T 
BOT = 1.0 + T*( D1 + T*( D2 + D3*T ) )  
FINO1 = T - (TOP/BOT) 
IF(P.LT. 0.5 ) FINO1 = -FINO1 
RETURN 
END 

SUBROUTINE RNDNUM (XOLD , RV) 
THIS ROUTINE RETURNS A RANDOM VARIABLE FROM 
A UNIFORM DISTRIBUTION OVER (0,l) USING 
ROUTINE AND CONSTANT VALUES DESCRIBED IN 
ANG AND TANG,” PROBABILITY CONCEPTS IN 
ENGINEERING PLANNING AND DESIGN ”,VOL. 2, 
1984, pp. 280,281. PROGRAMMED BY MP BOHN, 
SEPT. 1988. 

NOTE: 2**24 IS THE LARGEST VALUE OF “M” 
THAT WILL WORK ON THE COMPAQ 386/20. 

INPUT 
XOLD(INTEGER,POS) THE SEED. THIS IS UPDATED 
AFTER EACH CALL TO THE SUBROUTINE. CAN USE 
ANY VALUE TO START, SAY 1. 
INTEGER XOLD,XNEW,A,C 
C = l  
A = 101 
M = (2**24) 
NUM = A*XOLD + C 
XNEW = MOD(NUM,M) 
RM = REAL(M) 

RV = RXNEW/RM 
XOLD = XNEW 
RETURN 
END 

RXNEW = REAL(XNEW) 

FUNCTION FNOl(2) 
THIS FUNCTION RETURNS THE CDF OF THE NORMAL N(0,l) 
GIVEN THE STD. NORMAL VARIATE 2. THE POLYNOMIAL FIT 

DISTRIBUTION 
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C 
C 
C 

C 
C 
C 
C 
C 
C 

C 

C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
4 
C 
C 

C 

1 

C 

GIVEN IN ABRAMOWITZ AND STEGUN,1965, DOVER 
ART. 26.2.16 IS USED. PROGRAMMED BY MP BOHN 
SEPT. 1988. 

A1 = .4362 
A2 =-.1202 
A3 = .9373 
P = ,3327 

A1 = 0.4361836 

A3 = 0.9372980 
P = 0.33267 

A2 = -0.1201676 

TO PREVENT TOO SMALL A R G W N T  GOING INTO FUNCTION EXP 
IF(2 .LT. -6.36 ) 2 = -6.36 
IF(Z .GT. +6.36 ) Z = +6.36 

T = l.O/( 1.0 + P*ABS(Z)) 
SQT2PI = 2.506628 
22 = ( EXP(-Z*Z/2.0) ) /  SQT2PI 
FNol = l.O-ZZ*(Al + A2*T +A3*T*T )*T 
IF(Z.GE. 0.0 ) RETURN 
FNo1 = 1.0 - mol 
RETURN I 
END 

FUNCTION FBNO1 (RH,RK,RO) 

I THIS FUNCTION COMPUTES THE JOINT BI-VARIATE PROBABILITY 
P(x<H,y<K,RO) USING THE T-INTEGRAL FORMULATION. RH AND 
RK ARE THE STANDARD NORMAL VARIATES, AND RO IS THE 
CORRELATION COEFFICIENT. THIS FUNCTION CALLS FUNCTIONS 
T(H,AH) AND FNol(2). 
FORMULATION IS GIVEN IN ??? 
PROGRAMMED BY M P  BOHN, OCTOBER, 1988. 
MODIFIED BY MP BOHN, FEBRUARY 1996. 

WRITE(6,4) RH,RK,RO 
FORMAT (20X, 3F10.3) 
PUT LIMITS ON STANDARD VARIATES TO PREVENT 
EXCESSIVELY LARGE ARGUMENTS IN FNOl ( )  AND T ( )  

IF(RH.LT.-6.36) RH = -6.36 
IF(RK.LT.-6.36) RK = -6.36 
IF(RH.GT. 6.36) RH = 6.36 
IF(RK.GT. 6.36) RK = 6.36 

CODE NOT CHECKED OUT FOR NEGATIVE CORRELATION COEFFICIENT 
IF(R0 .LT. 0.0) WRITE(6,l) 
IF(R0 .LT. 0.0) STOP 
FORMAT (5X, ' ERROR - NEGATIVE CORRELATION COEFFICIENT' ) 

LIMITING CASES 
IF(R0 .GT. 0.02 .AND. RO .LT. 0.98) GO TO 2 
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2 
C 
C 

C 
C 

C 
C 

IF(R0 .LE. 0.02) FBNOl = FNO1 (RH) *FNOl (RK) 
IF(R0 .GE. 0.98) FBNO1 = AMINl(FNOl(RH) ,FNOl(RK)) 
RETURN 

CONTINUE 

COMPUTE T(-) FUNCTION PARAMETERS 

RH AND/OR RK CANNOT EQUAL 0.0 OR 
AH,AK WILL BLOW UP. 

IF(ABS(RH) .LT. 0.00001 ) RH = 0.00001*SIGN(1.0,RH) 
IF(ABS(RK) .LT. 0.00001 ) RK = 0.00001*SIGN(1.0,RK) 

THESE LIMITING VALUES DID NOT AFFECT ACCURACY OF RESULT 
TO THREE SIGNIFICANT FIGURES IN CHECKOUT. 

AH = ( RK-RH*RO ) / ( RH*SQRT (1.0-RO*RO) ) 
AK = ( RH-RK*RO ) / ( RK*SQRT (1.0-RO*RO) ) 

APPROXIMATE CALCULATION OF BIVARIATE PROBABILITY 
WHEN ONE OR MORE OF THE MARGINAL PROBABILITIES 
IS LESS THAN 7E-4. 

IF(RH .GT. -3.2 .AND. RK .GT. -3.2 ) GO TO 10 
C 

P1 = FNOl(RH) 
P2 = FNOl(RK) 

C 

C 
C 
10 
C 
C 

IF( RO .LT. 0.25 ) FBNOl = P1*P2 
IF( RO .GE. 0.25 .and. RO .LT. 0.75 ) FBNo1 = (Pl*P2)**0.75 
IF( RO .GE. 0.75 ) FBNO1 = AMINl(Pl,P2) 
RETURN 

CONTINUE 
GENERAL EXPRESSION FOR BIVARIATE PROBABILITY 
FUNCTION B(RH,RK,RO) 
cc = -0.5 
IF(RH*RK .GT. 0.0 ) CC = 0.0 
IF(RH*RK .EQ. 0.0 .AND. RH+RK .GE. 0.0 ) CC = 0.0 

FBNO1 = ( FN02(RH) + FN02(RK) )/2.0 
* -T(RH,AH)-T(RK,AK) + CC 
RETURN 
END 

C 
C 

C 
C 
C 
C 

FUNCTION T (H,A) 
SIMPSON’S RULE FOR INTEGRATION IS USED TO EVALUATE INTEGRAL 
FOR T(H,A) WITH M=301 INTEGRATION POINTS, BUT COULD USE 
ANY ODD VALUE FOR M. PROGRAMMED BY MP BOHN, OCTOBER 1988. 



M = 301 
C 
C 
C 
C 

USE RELATIONS T (-H ,A) =+T (H ,A) 
AFTER T(HABS,AABS) HAS BEEN COMPUTED. 

AND T (H , -A) =-T (H ,A) 

HABS = ABS(H) 
AABS = ABS(A) 

C 
A1 = AABS 
H 1 =  HABS 

C 
C 
C 
C 

C 
C 
C 
C 

IF A IS GREATER THAN 1.0, COMPUTE T(AH,l/A) INSTEAD OF 
T(H,A) AND USE EQUATION RELATING T(H,A) AND T(AH,l/A). 

IF(AABS.GT.1.0 ) A1 = l.O/Al 
IF(AABS.GT.1.0 ) H1 = AABS*HABS 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SIMPSON’S RULE NUMERICAL INTEGRATION BEGINS HERE 

DX = Al/(REAL(M)-1.0) 
SUM = 0.0 
X = -DX 

C 
DO 10 I = l,M 
X = X + D X  

C 
C 

C 
C 
C 
C 

C 
C 

C 
C 
2 
C 
10 
C 
C 

INTEGRAND DEFINED HERE 
ARG = Hl*Hl*(l.O+X*X)/2.0 
IF(ARG .GT. 50.) ARG = 50.0 
F = EXP (-ARG) / (l.O+X*X) 
F = F/6.283185 
END OF INTEGRAND DEFINITION 

COMPUTE ALTERNATING COEFFICIENTS 
IN SIMPSON’S RULE EQUATION 
B = 2.0 
IC = MOD(I,2) 
IF( 1C.EQ. 0 ) B = 4.0 
IF( I.EQ.1 .OR. I.EQ. M ) B = 1.0 

ADD IN SUCCESSIVE TERMS HERE 
SUM = SUM + B*F 
WRITE ( 6,2) 
FORMAT( 4(1P E12.3 ) )  

SUM, DX , F , ARG 

CONTINUE 

NORMALIZE SUM BY DX/3 
T = SUM*DX/3.0 

END OF SIMPSON’S RULE INTEGRATION 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

WRITE (6,4) H1 ,A1 , T 
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C 
C 
C 
C 
C 
C 
C 

C 
C 

C 
C 
4 

C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 
C 
C 

C 

C 
C 

C 
C 
C 
C 
C 

IF 'A' IS GT 1.0, USE RELATION BETWEEN T(AH,l/A) AND T(H,A) . 
WHEN USING THIS EQUATION, ALL ARGUMENTS ARE POSITIVE 
SINCE WE ARE WORKING WITH ABSOLUTE VALUES OF ARGUMENTS 
OF T ( )  AT THIS POINT, WITH SIGN OF T ( )  TO BE 
DETERMINED AT LAST STEP. 

IF(AABS.GT. 1.0 ) T = ( FN02(HABS)+FN02(Hl) )/2.0 
* -FN02 (HABS) *FN02 (Hl) - T 

CORRECT SIGN OF T(HABS,AABS) IF A IS NEGATIVE 
IF(A.LT. 0.0) T = -T 

WRITE(6,4) H,A,T 
FORMAT (20X,E12.3) 
RETURN 
END 

FUNCTION FNO2 (2) 
THIS FUNCTION COMPUTES THE N(0,l) PROBABILITY 
GIVEN THE STANDARD NORMAL VARIATE Z USING THE 
INTEGRAL DEFINITION OF THE FUNCTION AND USING 
TRAPEZOIDAL NUMERICAL INTEGRATION. PROGRAMMED 
BY MP BOHN, JAN 1989. THIS MORE ACCURATE VERSION 
IS NEEDED FOR FUNCTION FBNO1. 

SHOULD PROBABLY BE IN REAL*8 

M = 301 

zz = z 
IF(Z.LT.O.0) ZZ = -Z 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TRAPEZOIDAL RULE INTEGRATION BEGINS HERE 

DX = ZZ/(REAL(M)-l.O) 
SUM = 0.0 
X = -DX 

DO 10 I = l,M 
X = X + D X  

FUNCTION TO BE INTEGRATED DEFINED HERE 
ARG = X*X/2.0 
IF(ARG.GT. 50.) ARG = 50.0 
F = EXP(-ARG) 
NOTE**SQRT 2*PI ADDED BELOW 
END OF FUNCTION DEFINITION 

COMPUTE COEFFICIENTS IN TRAPEZOIDAL RULE 

B = 1.0 
IF( I.EQ.l .OR. I.EQ. M ) B = 0.5 
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C 
C 

C 
C 

C 
10 
C 
C 
C 

2 

C 
C 
C 
C 

ADD IN SUCCESSIVE TERMS HERE 
SUM = SUM + B*F 
WRITE(6,2) SUM,DX,F,ARG 
FORMAT( 4(1P E12.3 ) )  

CONTINUE 

NORMALIZE SUM BY DX 
HAVE ADDED SQRT(2*PI) HERE SO NOT COMPLETELY GENERAL 
T = SUM*DX/2.50662827 + 0.500 
THIS IS END OF INTEGRATION 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

IF(Z.LT. 0.0) T = 1.00 - T 
EN02 = T 
RETURN 
END 
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Appendix 111: 

CPLOAS: A FORTRAN Program for the 
Calculation of the Probability of Loss of Assured Safety 

This appendix contains a description of the FORTRAN program CPLOAS that provides a computational im- 

plementation of the procedures described in this report for evaluating the probability of loss of assured safety (i.e., 

pF in the notation used in the main body of the report). Contents included: (i) Text summary of the algorithms, (ii) 

Flow charts for the algorithms, (iii) Example input and output for the implementing program, and (iv) source code 

for the implementing program. 



Overview 

A system of links is defined as a set of links connected in series where each link is defined as either a strong link or 
a weak link. The system must have at least one strong link and at least one weak link. A strong link is initially rep- 
resented as an open circuit and a weak link is initially represented as a closed circuit. A failed strong link is repre- 
sented as a closed (short) circuit and a failed weak link is represented as an open circuit. Each strong link is 
composed of one or more internal components which are connected in parallel. Strong link internal components 
have the same circuit definition as a strong link. Failure of any one of the internal components in a strong link re- 
sults in a failure of that strong link. Failure of the system of links is defined as the failure of all strong links before 
the failure of any weak link. Each link has an associated temperature failure distribution and an associated time- 
temperature history. The failure probability of the system of links is determined by the interaction of the link fail- 
ure distributions and associated link time-temperature histories. The failure temperature for each link is assumed to 
be independent of the failure temperature for every other link. 

Strong Link 1 (Strong Link n) Weak Link 1 (Weak Link m) 

r -  l+-T 

I I I 
I I I 

Failure Probability Evaluation for System of Links 

Two basic methods are used to estimate the failure probability of the system of links. The first method is based on 
the integration of a function which defines the interaction of the link failure temperature distributions and associated 
link temperature histories. The second method is based on Monte Carlo sampling of the link failure temperatures 
and evaluation of the relative failure times of the system links. 

System Failure Function Evaluation 

Two different integration procedures can be used to integrate this system of links function over the temperature 
range defined by the link temperature histories. Both integration procedures use successive evaluations of the over- 
all system at different temperatures in order to a approximate the overall system failure probability. Initially, the 
temperature range is a single interval where the failure probability is evaluated at the two endpoints and either a 
linear (Trapezoid Method) fit or a quadratic (Simpson’s Method) fit is assumed for integrating the area between the 
temperature interval endpoints. The failure probability at the temperature interval midpoint is then evaluated and 
the area is integrated as the sum of the areas of the two subintervals. This process is repeated using subinterval mid- 
points until successive failure probability evaluations are within a relative tolerance of each other. 

Trapezoid Method for Function Integration 

The Trapezoid Method evaluation begins with averaging evaluations of the system of links failure function at the 
temperature integration limits. Successive steps in the solution process adjust the previous iteration result by aver- 
aging in current iteration failure function evaluations. The next step in the evaluation process is to average in 
evaluations of the failure function at the midpoint of each temperature subinterval created during the previous itera- 
tion. The first iteration is the evaluation of the failure function at the midpoint of the overall temperature interval. 
The second iteration is the evaluation of the failure function at the two midpoints of the two subintervals created by 
the first midpoint evaluation. Successive iterations average in failure function evaluations at each of the subinterval 
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midpoints. The number of midpoints used for failure function evaluations doubles with each iteration. This itera- 
tive process terminates when evaluations for successive iterations differ by less than a predefined relative tolerance. 

Simpson’s Method for Function Integration 

The Simpson’s Method evaluation is identical to the Trapezoid Method evaluation except for the weighting of in- 
termediate evaluations. 

Monte Carlo Sampling Evaluation 

Failure temperatures are sampled for each link according to the failure temperature distribution associated with the 
link. The link failure temperatures are then converted to link failure times through interpolation of the associated 
time-temperature history for each link. The link failure times are evaluated relative to each other according to the 
defined system of links to determine whether the system fails for this set of sampled failure temperatures. This 
process is repeated for a large number of sets of sampled link failure temperatures. The failure probability of the 
system of links is the total number of failures divided by the total number of sets of sampled failure temperatures. 

Importance-Weighted Monte Carlo Sampling Evaluation 

Failure temperatures are sampled for each link according to a predefined sampling distribution assigned to the type 
of failure temperature distribution associated with the link. A weight is calculated for the link failure temperature 
based on the evaluation of the probability density function for the failure temperature distribution associated with 
the link. The sample weight for a set of sampled link failure temperatures is the product of the weights for the indi- 
vidual link failure temperatures. The link failure temperatures are then converted to link failure times through inter- 
polation of the associated time-temperature history for each link. The link failure times are evaluated relative to 
each other according to the defined system of links to determine whether the system fails for this set of sampled 
failure temperatures. This process is repeated for a large number of sets of sampled failure temperatures. The fail- 
ure probability of the system of links is the sum of the weights for sampled sets of link failure temperatures resulting 
in system failure divided by the total number of sets of sampled link failure temperatures. 

Evaluating System of Links for Monte Carlo Sampling and Importance-Weighted Monte Carlo Sampling 

The failure time (tSLn,,,) for each strong link is evaluated as the minimum failure time of the internal components 
that comprise the strong link. The failure time (tSL,,) of all strong links together is evaluated as the maximum 
failure time across all strong links. The failure time (tWL,,,) of all weak links together is evaluated as the minimum 
failure time across all weak links. If the maximum failure time (tSL,,,) for all strong links together is less than the 
minimum failure time (tWL,,,) for all weak links together, the overall system of links has failed. 
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SL/WL Input File Description 

SLWL.INP--2WL and 1SL 
-10031 
TRAP SIMP MC IMC 
100000 
SLWLTH.DAT 
SL13 1 NORMAL 560. 
SL13 2 NORMAL 560. 
WL1 3 NORMAL 310. 
WL2 4 NORMAL 310. 

With 2 Internal Components 
Random Number Generator Seed for Monte Carlo Sampling 
Solution Methods 
Number of Monte Carlo Samples 
Time-Temperature History File Name 

18. Link TempHist FailDistr Mean SD 
18. Link TempHist FailDistr Mean SD 
8. Link TempHist FailDistr Mean SD 
8. Link TempHist FailDistr Mean SD 

Format Description 

All data read from input file are free (list-directed) format. Comments may be placed after the required input data 
on any input record. 

Record Type 
1 Character 
2 Integer 
3 Character 

4 Integer 

5 Character 
6+ 

Character 

Integer 
Character 

Real 
Real 

Real 
Real 

Real 

Description 
Title (Maximum = 100 characters) 
Random number generator seed for Monte Carlo sampling 
Solution methods (one or more of following uppercase abbreviations on single 
line separated by at least one space) 

TRAP--Trapezoid Method used for integration of system failure function 
SIMP--Simpson’s Method used for integration of system failure function 
MC--Monte Carlo sampling method 
IMC--Importance-weighted Monte Carlo sampling method 

Number of Monte Carlo samples used for solution methods MC and IMC when 
this value is positive. If this value is negative, the system failure probability is 
evaluated from time zero through each of the time-temperature history 
timesteps using specified integration solution methods (TRAP and/or SIMP). 
The Monte Carlo sampling methods (MC and/or IMC) would not be used, even 
if specified. 
Time-temperature history file name 
Link definitions: 
Link name (2-10 alphanumeric characters of which first two 
characters must be either uppercase SL or uppercase WL. Additional 
characters are case-sensitive. Strong links are identified by their internal 
components. Each strong link must have a different name. Internal 
components within a strong link must have identical names. Weak links have 
no naming restrictions other than the first two characters) 
Index of link time-temperature history from time-temperature history file 
Failure temperature distribution (one of the following uppercase abbreviations; 
failure temperature units must be same as temperature units on 
time-temperature history): 

UNIFORM = Uniform distribution 
NORMAL = Normal distribution 
LOGUNIFORM = Loguniform distribution 
LOGNORMAL = Lognormal distribution 

Minimum value for uniform distribution 
Maximum value for uniform distribution 

Mean value for normal distribution 
Standard deviation (sigma) for normal distribution 

Minimum value for loguniform distribution 

For uniform distribution: 

For normal distribution: 

For loguniform distribution: 
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Real 

Real 
Real 

Maximum value for loguniform distribution 

Median value for lognormal distribution 
Standard deviation (beta) for lognormal distribution 

For lognormal distribution: 

SL/WL Time-Temperature Histon, File Description 

Time Temperature Histories for 2WL and 1SL 
0.0 61.53 64.67 44.98 
10.0 413.13 439.46 264.81 
20.0 701.01 733.40 517.81 
30.0 867.29 891.94 697.01 
40.0 950.48 965.56 819.31 
50.0 989.11 997.37 898.84 
60.0 1006.43 1010.68 948.14 
70.0 1014.06 1016.18 977.83 
80.0 1017.41 1018.44 995.41 
90.0 1018.87 1019.36 1005.71 

100.0 1019.51 1019.74 1011.72 

with Internal Components 
42.77 

226.94 
402.38 
560.15 
687.31 
784.66 
856.32 
907.55 
943.42 
968.16 
985.05 

Format Description 

All data read from input file are free (list-directed) format. Comments may be placed after the required input data 
on any input record. 

Record Type Description 
1 Character Title (Maximum = 100 characters) 

2+ Link temperatures versus time (each record corresponds to one time with 
temperatures for each link at that time; times must be monotonically increasing 
from record to record): 

Temperature for each link at this time (one or more separated by at least one 
space) 

Real Time 
Real 
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Overall Calculation Structure 

* 
I 1 I Read input specifications defining system of links and I 
I associated time-temperature histories 

i 
Validate system of links parameters and 

associated time-temperature histories 
I 

Loop over time-temperature history timesteps (Opt) 
b * 

Evaluate system failure probability through current 
time-temperature history timestep using Trapezoid Method 

for integrating link failure distributions (Opt) 

Evaluate system failure probability through current 
time-temperature history timestep using Simpson’s Method 

for integrating link failure distributions (Opt) 

I I 
Evaluate system failure probability using Monte Carlo 

sampling of link failure distributions (Opt) 

1 
Evaluate system failure probability using 

Importance-weighted Monte Carlo sampling of 
link failure distributions (Opt) 

I 

1 
Print system failure probability as evaluated by 

one or more of the four methods above 
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System Failure Function Structure 

Loop over strong link internal components 
b 

~ 

Evaluate probability density function for current strong link 
internal component at current temperature 

~ 

Evaluate probability that each of the other strong link 
internal components for current strong link has not failed at 

current strong link internal component failure time 

1 
Evaluate probability that at least one internal component of 

every other strong link has failed at current strong link internal 
component failure time 

Evaluate probability that each of the weak links has not failed at 
current strong link internal component failure time 

Evaluate contribution of current strong link internal component to 
system failure probability at current temperature as the 

product of the previous four probabilities 
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Trapezoid Method Integration Structure 

Initialize integrated system failure probability to a large negative value 

1 
~~ 

Evaluate initial system failure probability by averaging evaluations of 
the system failure function at the overall integration 

temperature end points 

Loop over solution iterations 
b 
v 

Evaluate current system failure probability by averaging evaluations of 
the system failure function at the c urrent temperature subinterval 

midpoints with the previous system failure probability 

Define additional subinterval start and end points for next iteration as 
the current temperature subinterval midpoints 

Compare the absolute difference between the last two system failure 
probability evaluations to the product of the relative tolerance and 

the previous failure probability evaluation 

v 
Terminate integration of system failure probability based on 

convergence test 
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Simpson’s Method Integration Structure 

Lo 

I Initialize integrated system failure probability to a large negative value I 
1 

Evaluate initial system failure probability by averaging evaluations of 
the system failure function at the overall integration 

temperature end points 

1 over solution iterations 
b 
* 

~~ ~ ~ 

Evaluate current system failure probability by averaging evaluations of 
the system failure function at the c urrent temperature subinterval 

midpoints with the previous system failure probability 

Correct system failure probability for integration approximation error 

Define additional subinterval start and end points for next iteration as 
the current temperature subinterval midpoints 

Compare the absolute difference between the last two system failure 
probability evaluations to the product of the relative tolerance and 

the previous failure probability evaluation 

I 
1 v 

Terminate integration of system failure probability based on 
convergence test 
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Monte Carlo Sampling Structure 

Initialize number of system failures to zero 

F 

b 

Loop over samples 

Loop over links 

v 
Sample failure temperature for current link based on 

associated temperature failure distribution 

I 
Interpolate failure time for current link using associated 

time-temperature history at current temperature 

v 
Evaluate the failure time for each stron g link as the minimum 

failure time of the internal components that comprise that strong link 

Evaluate the failure time for all strong links together as the maximum 
failure time across all stron g links 

Evaluate the failure time for all weak links together as the minimum 
failure time across all weak links 

I I I 

1 
If the failure time for all strong links together is less than the failure time 
for all weak links together, increment number of system failures by one 

I 

v 
Evaluate system failure probability as the division of the number of 

system failures by the number of samples 
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Importance-Weighted Monte Carlo Sampling Structure 

Initialize system failure weight to zero 

Loop over samples 
b 

b 
Loop over links 

v 
Sample failure temperature for current link based on predefined 

sampling distribution for associated temperature failure distribution 

Evaluate weight for current link by evaluating probability density 
hnction for associated temperature failure distribution at 

sampled failure temperature 

Interpolate failure time for current link using associated 
time-temperature history at current temperature 

~~ 

I Evaluate current sample weight as product of weights for each link 1 
Evaluate the failure time for each stron g link as the minimum 

failure time of the internal components that comprise that strong link 

Evaluate the failure time for all strong links together as the maximum 
failure time across all stron g links 

~ ~ 

Evaluate the failure time for all weak links together as the minimum 
failure time across all weak links 

~ ~ ~~ ~ 

If the failure time for all strong links together is less than 
I the failure time for all weak links together, accumulate I 
1 the current sample weight into the system failure weight 

I 

Evaluate system failure probability as the division of the 
system failure weight by the number of samples 
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Example Input File for Strong Link / Weak Link Failure Probability Calculation 

SLWL.INP--2WL and 1SL With 2 Internal Components 
-10031 Random Number Generator Seed for Monte Carlo Sampling 
TRAP SIMP MC IMC Solution Methods 
10 0 0 0 0 0 Number of Monte Carlo Samples 
SLWLTH.DAT Time-Temperature History File Name 
SL4 2 NORMAL 600. 30. Link TempHist FailDistr Mean SD 
SL4 1 NORMAL 600. 30. Link TempHist FailDistr Mean SD 
WL 4 NORMAL 270. 15. Link TempHist FailDistr Mean SD 
WL 3 NORMAL 270. 15. Link TempHist FailDistr Mean SD 

Example Time-Temperature History File for Strong Link / Weak Link Failure Probability Calculation 

Time Temperature Histories for 2WL and 1SL 
0.0 61.53 64.67 44.98 
10.0 413.13 439.46 264.81 
20.0 701.01 733.40 517.81 
30.0 867.29 891.94 697.01 
40.0 950.48 965.56 819.31 
50.0 989.11 997.37 898.84 
60.0 1006.43 1010.68 948.14 
70.0 1014.06 1016.18 977.83 
80.0 1017.41 1018.44 995.41 
90.0 1018.87 1019.36 1005.71 
100.0 1019.51 1019.74 1011.72 

with Internal Components 
42.77 
226.94 
402.38 
560.15 
687.31 
784.66 
856.32 
907.55 
943.42 
968.16 
985.05 

Example Output File for Strong Link / Weak Link Failure Probability Calculation 

CALCULATION OF PROBABILITY OF LOSS OF ASSURED SAFETY 
CPLOAS-1.00 

SLWL.INP--2WL and 1SL 
-10031 
TRAP SIMP MC IMC 
1000000 
SLWLTH.DAT 
SL4 2 NORMAL 600. 
SL4 1 NORMAL 600. 
WL 4 NORMAL 270. 
WL 3 NORMAL 270. 

With 2 Internal Components 
Random Number Generator Seed for Monte Carlo Sampling 
Solution Methods 
Number of Monte Carlo Samples 
Time-Temperature History File Name 

30. Link TempHist FailDistr Mean SD 
30. Link TempHist FailDistr Mean SD 
15. Link TempHist FailDistr Mean SD 
15. Link TempHist FailDistr Mean SD 

SLWL.INP--2WL and 1SL With 2 Internal Components 
RANDOM NUMBER GENERATOR SEED = -10031 
NUMBER OF MONTE CARLO SAMPLES = 1000000 

4 TEMPERATURE HISTORIES GENERATED EXTERNALLY (READ FROM FILE SLWLTH.DAT) 
4 STRONG LINKS AND WEAK LINKS (TOTAL): 

LINK HIST DISTRB PAR1 PAR2 
SL4 2 NORMAL 6.00Et02 3.00Et01 
SL4 1 NORMAL 6.00E+02 3.00ES01 
WL 4 NORMAL 2.70E+02 1.50E+01 
WL 3 NORMAL 2.70E+02 1.50Et01 

TEMP 

SIMPSON TRAPEZOID MONTE CARLO IMPORTANCE 
P (FAIL) P (FAIL) P (FAIL) P (FAIL) 
7.1923-06 7.192E-06 6.000E-06 6.937E-06 
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PROGRAM CPLOAS 
C*****CALCULATION OF PROBABILITY OF LOSS OF ASSURED SAFETY 
C*****CALCULATE FAILURE PROBABILITY FOR SYSTEM COMPOSED OF STRONG LINKS 
C*****AND WEAK LINKS HAVING SPECIFIED FAILURE DISTRIBUTION PARAMETERS AND 
C*****ASSOCIATED THERMAL HISTORIES 
C*****(l) SERIES FAULTS--FAILURE OF ALL STRONG LINKS BEFORE ANY 
C***** WEAK LINK FAILURE RESULTS IN OVERALL FAILURE 
C*****(2) PARALLEL FAULTS--FAILURE OF ANY STRONG LINK BEFORE ANY 
C***** WEAK LINK FAILURE RESULTS IN OVERALL FAILURE 
C*****(3) SERIES FAULTS WITH INTERNAL COMPONENTS--FAILURE OF ALL 
C***** STRONG LINKS BEFORE ANY WEAK LINK FAILURE RESULTS IN 
C***** OVERALL FAILURE. EACH STRONG LINK CAN BE COMPOSED OF ONE OR 
C***** MORE INTERNAL COMPONENTS WHERE ANY INTERNAL COMPONENT FAILURE 
C***** RESULTS IN FAILURE OF THAT STRONG LINK 

IMPLICIT DOUBLE PRECISION (A-H, 0-Z) 
PARAMETER (MAXTIM=1000, MAXLNK=100, MAXDST=4, MAXFDP=10) 
CHARACTER*lO CL, CFD 
CHARACTER*10 VSN 
CHARACTER*100 TITLE, FILINP, FILOUT, THFILE 
LOGICAL TRAP, SIMP, MC, IMC 
COMMON /FAILO/ 

i 

COMMON /FAILl/ 

COMMON /FAIL2/ 
1 
2 
3 
4 
5 
6 
COMMON /FAIL3/ 

TITLE, FILINP, FILOUT, THFILE, VSN, CL (MAXLNK) , 
CFD (MAXLNK) 
ISEED, ILF, NLINK, NTH, NTIME, N, 
ITHL (MAXLNK) , ITFD (MAXLNK) , NPFD (MAXDST) 
DUMMY, PFAILM, PFAILI, PFAILS, 
PFAILT, THTIME, TMIN, TMAX, 
T(O:MAXTIM), 
TH ( 0 : MAXTIM, MAXLNK) , 
THMAX (0 : MAXTIM, MAXLNK) , 
TFD (MAXFDP, MAXLNK) , 
TFT (MAXFDP,MAXLNK) 
TRAP, SIMP, MC, IMC 

CHARACTER*200 REC1, REC2 
DIMENSION PFTMP(4) 

C 
C 
C*****SET VERSION NUMBER 

C*****REQUEST INPUT FILE NAME 

C*****READ INPUT FILE NAME 

VSN= 1.00' 

WRITE (6, * )  ' ENTER INPUT FILE NAME--' 

READ(5,lOOl) FILINP 
IC=INDEX(FILINP, I . ' )  

IF (IC .GT. 0) THEN 

ELSE 
FILOUT=FILINP(l:IC) / /  'OUT' 

IC=INDEX(FILINP, ' ' )  
FILOUT=FILINP(l:IC) / /  '.OUT' 

ENDIF 
WRITE (6,1101) FILOUT (1 : INDEX (FILOUT, ' ' )  -1) 

OPEN (2, FILE=FILOUT, STATUS='UNKNOWN') 
WRITE(2,2001) VSN 

CALL READ1 

CALL VALID1 

CALL INIT 

CALL RTH 

NTIM=NTIME 
IF (N .GE. 0) THEN 

ELSE 

ENDIF 

RECl=' ' 
REC2=' ' 
NPF=1 
IF (N .LT. 0) THEN 

C*****OPEN OUTPUT FILE 

C*****READ INPUT PARAMETERS 

C*****VALIDATE INPUT PARAMETERS 

C*****INITIALIZE PARAMETERS 

C*****READ LINK THERMAL HISTORIES 

C*****SET STARTING TIMESTEP INDEX 

NTIMS=NTIME 

NTIMS=O 

C*****WRITE COLUMN HEADINGS 

NC=lO 
REC2 (6: 9)='TIME' 

NC=1 
ELSE 

ENDIF 
IF (TRAP) THEN 

NPF=NPF + 1 
RECl (NC+5:NC+13)='TRAPEZOID' 
REC2 (NC+6:NC+12)=' PLOAS ' 
NC=NC + 12 

ENDIF 
IF (SIMP) THEN 

NPF=NPF t 1 
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RECl (NC+G:NCtl2) = 'SIMPSON' 
REC2 (NC+6:NC+12)=' PLOAS ' 
NC=NC + 12 

ENDIF 
IF (MC) THEN 

IF (N .GT. 0) THEN 
NPF=NPF + 1 
RECl (NC+4 :NC+14) = 'MONTE CARLO' 
REC2 (NC+6:NC+12)=' PLOAS ' 
NC=NC + 12 

ENDIF 
ENDIF 
IF (IMC) THEN 

IF (N .GT. 0) THEN 
NPF=NPF + 1 
RECl (NC+5 : NC+14 ) = ' IMPORTANCE ' 
REC2(NC+6:NC+12)=' PLOAS ' 
NC=NC + 12 

ENDIF 
ENDIF 
WRITE(2,4001) RECl(l:NC+2), RECP(1:NC) 
DO 4000 NTIME=NTIMS,NTIM 

C********INITIALIZE NUMBER OF FAILURE PROBABILITY CALCULATIONS 

C********TRAPEZOID METHOD USED FOR FAILURE PROBABILITY INTEGRATION 
NPF=O 

IF (TRAP) THEN 
CALL SWLTRP 
NPF=NPF + 1 
PFTMP (NPF) =PFAILT 

ENDIF 

IF (SIMP) THEN 
CALL SWLSMP 
NPF=NPF + 1 
PFTMP (NPF) =PFAILS 

C********SIMPSON METHOD USED FOR FAILURE PROBABILITY INTEGRATION 

ENDIF 
IF (N .GT. 0) THEN 

IF (MC) THEN 
C***********MONTE CARLO METHOD USED FOR FAILURE PROBABILITY INTEGRATION 

CALL SWLMC 
NPF=NPF + 1 
PFTMP (NPF) =PFAILM 

ENDIF 
C***********IMPORTANCE-WEIGHTED MONTE CARLO METHOD USED FOR 
C***********FAILURE PROBABILITY INTEGRATION 

IF (IMC) THEN 
CALL SWLIMC 
NPF=NPF + 1 
PFTMP (NPF) =PFAILI 

ENDIF 
ENDIF 
IF (N .LT. 0) THEN 

ELSE 

ENDIF 
4000 CONTINUE 

WRITE(2,5001) T(NT1ME) , (PFTMP(1) ,I=l,NPF) 

WRITE (2,5002) (PFTMP (I) ,I=l ,NPF) 

CLOSE (1) 
CLOSE (2) 
STOP 

C*****FORMAT STATEMENTS 
1001 FORMAT ( (A) ) 
1101 FORMnT(2X,'RESULTS WRITTEN TO ',A) 
2001 FORMnT(lOX,'CALCULATION OF PROBABILITY OF LOSS OF ASSURED I ,  

1 'SAFETY ' , 
2 /3OX,'CPLOAS ',A) 

4001 FORMAT(//A,/A) 
5001 FORMnT(lX,OPF10.3,1P8E12.3E3) 
5002 FORMAT (3X, 1PEE12.333) 

END 
FUNCTION FFAIL (TSLF) 

C*****FAILURE PROBABILITY FUNCTION FOR CURRENT SET OF THERMAL HISTORY 
C*****CURVES AND STRONG/WEAK LINK FAILURE PARAMETERS 
C*****USING EITHER SIMPSON OR TRAPEZOID INTEGRATION METHODS 
C*****(l) SERIES FAULTS--FAILURE OF ALL STRONG LINKS BEFORE ANY 
C***** WEAK LINK FAILURE RESULTS IN OVERALL FAILURE 
C*****(2) PARALLEL FAULTS--FAILURE OF ANY STRONG LINK BEFORE ANY 
C***** WEAK LINK FAILURE RESULTS IN OVERALL FAILURE 
C*****(3) SERIES FAULTS WITH INTERNAL COMPONENTS--FAILURE OF ALL 
C***** STRONG LINKS BEFORE ANY WEAK LINK FAILURE RESULTS IN 

111- 14 



C***** OVERALL FAILURE. EACH STRONG LINK CAN BE COMPOSED OF ONE OR 
C***** MORE INTERNAL COMPONENTS WHERE ANY INTERNAL COMPONENT FAILURE 
C***** RESULTS IN FAILURE OF THAT STRONG LINK 

IMPLICIT DOUBLE PRECISION (A-H, 0-2) 
PARAMETER (M?+XTIM=lOOO, MAXLNK=lOO, MAXDST=I, MAxFDP=lO) 
CHARACTER*lO CL, CFD 
CHARACTER*lO VSN 
CHARACTER*100 TITLE, FILINP, FILOUT, THFILE 
COMMON /FAILO/ TITLE, FILINP, FILOUT, THFILE, VSN, CL(MAXLNK), 

COMMON /FAILl/ ISEED, ILF, NLINK, NTH, NTIME, N, 

COMMON /FAIL2/ D M ,  PFAILM, PFAILI, PFAILS, 

1 CFD (-) 

1 ITHL (MAXLNK) , ITFD (MAXLNK) , NPFD (MAXDST) 

1 PFAILT, THTIME, TMIN, TMAX, 
2 T(O:MAXTIM), 
3 TH(O:MAXTIM,MAXLNK), 
4 THMAX(O:MAXTIM,MAXLNK), 
5 TFD (MAXEDP,MAXLNK), 
6 TIT (MAXFDP ,MAXLNK) 
COMMON /FCALL/ NCALL 

C*****UNIFORM STATEMENT FUNCTION 
FU(RMN,RMX)=l.ODO / (RMX - RMN) 

C*****LOGUNIFORM STATEMENT FUNCTION 
FLU(RMN,RMX)=l.ODO / TSLF / (RMX - RMN) 

C*****NORMAL STATEMENT FUNCTION 
FN (RMN, SD) =EXP (-0.5DO* ( (TSLF-RMN) /SD) **2) / 
1 SD / SQRT(2.ODO*3.141592654DO) 

C*****LOGNORMAL STATEMENT FUNCTION 
FLN(RMN,SD)=EXP(-0.5DO*( (LOG(TSLF)-RMN)/SD)**2) / 
1 SD / SQRT(2.0DO*3.141592654DO) / TSLF 

C 
C 
C*****INCREMENT NUMBER OF FUNCTION CALLS 

C*****INITIALIZE FAILURE PROBABILITY 
NCALL=NCALL + 1 
FFAIL=O.ODO 

C*****LOOP OVER ALL LINKS 
DO 4000 ILINK=l,NLINK 

C********PROCESS STRONG LINKS ONLY 

C********CHECK IF SL FAILURE TEMPERATURE OUTSIDE TABLE RANGE 

C********EVALUATE DISTRIBUTION DENSITY FUNCTION FOR CURRENT SL 

IF (CL(1LINK) (1:2) .NE. ‘SL’) GO TO 4000 

IF (TSLF .LT. TH(O,ITHL(ILINK))) GO TO 4000 

IF (ITFD(IL1NK) .EQ. 1) THEN 
IF (TSLF .LT. TFT(1,ILINK)) THEN 

ELSEIF (TSLF . GT. TFT (2, ILINK) ) THEN 

ELSE 

ENDIF 

PSLF=FN (TFT(l,ILINK), TFT(2,ILINK)) 

IF (LOG(TSLF) .LT. TFT(1,ILINK)) THEN 

ELSEIF (LOG (TSLF) . GT. TFT (2, ILINK) ) THEN 

ELSE 

ENDIF 

PSLF=FLN (TFT (1, ILINK) , TFT (2, ILINK) ) 

PSLF=O . OD0 

PSLF=l. OD0 

PSLF=FU (TFT (1, ILINK) , TFT (2, ILINK) ) 

ELSEIF (ITFD(IL1NK) .EQ. 2) THEN 

ELSEIF (ITFD(IL1NK) .EQ. 3) THEN 

PSLF=O.ODO 

PSLF=l.ODO 

PSLF=FLU (TFT ( 1, ILINK) , TFT (2, ILINK) ) 

ELSEIF (ITFD(IL1NK) .EQ. 4 )  THEN 

ENDIF 

DO 1000 ITIME=l,NTIME 
C********INTERPOLATE SL FAILURE TIME 

IF (TH(ITIME,ITHL(ILINK)) .GT. TSLF) THEN 
TIMSLF=T(ITIME-1) + (T(IT1ME) - T(IT1ME-1)) * 

1 (TSLF - TH(IT1ME-l,ITHL(ILINK))) / 
2 (TH(ITIME,ITHL(ILINK)) - 
3 TH (ITIME-1, ITHL (ILINK) ) ) 

GO TO 1100 
ENDIF 

1000 CONTINUE 
C********DISCONTINUE CURRENT FAILURE PROBABILITY ACCUMULATION 

GO TO 4000 
1100 CONTINUE 

C********TRANSE’ER STRONG LINK FAILURE TIME TO LINK FAILURE TIME 

C********LOOP OVER ALL LINKS EXCEPT CURRENT STRONG LINK 
TIMLF=TIMSLF 
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DO 3000 ILINKl=l,NLINK 
C***********CHECK FOR CURRENT STRONG LINK 

C***********CALCULATE SL OR WL FAILURE TEMPERATURE BASED ON 
C***********SL FAILURE TIME 

IF (ILINK1 .EQ. ILINK) GO TO 3000 

TLF=O . OD0 
DO 2000 ITIME=l,NTIME 

IF (T(IT1ME) .GT. TIMLF) THEN 
TL-TH (ITIME-1, ITHL (ILINK1) ) 

1 (TH(ITIME,ITHL(ILINK1)) - 
2 TH(ITIME-l,ITHL(ILINK1))) * 
3 (TIMLF - T(IT1ME-1)) / 
4 (T(IT1ME) - T(IT1ME-1)) 

TLF=MAX(TLF, 
GO TO 2100 

+ 

THMAX (ITIME-1, ITHL (ILINK1) ) ) 

ENDIF 
2000 CONTINUE 
C***********DISCONTINUE CURRENT FAILURE PROBABILITY ACCUMlLATION 

GO TO 4000 

IF ((ITFD(ILINK1) .EQ. 1) .OR. 
2100 CONTINUE 

1 (ITFD(ILINK1) .EQ. 3)) THEN 
C**************CONVERSION FOR LOGUNIFORM 

IF (ITFD(ILINK1) .EQ. 3) TLPLOG(TLF) 
IF (TLF .GE. TFT(2,ILINKl)) THEN 

C*****************MINIMUM FAILURE TEMPERATURE ABOVE UNIFORM INTERVAL SO 
C*****************PROBABILITY IS 0.0 OF EXCEEDING FAILURE TEMPERATURE 

PL-0 . OD0 
ELSEIF (TLF .LE. TFT(1,ILINKl)) THEN 

C*****************MINIMUM FAILURE TEMPERATURE BELOW UNIFORM INTERVAL SO 
C*****************PROBABILITY IS 1.0 OF EXCEEDING FAILURE TEMPERATURE 

PLF=l. OD0 
ELSE 

C*****************CCULATE SL OR WL FAILURE PROBABILITY 

1 (TFT(2,1LINKl)-TFT(l,ILINKl)) 
PLF= (TFT (2, ILINKl) -TLF) / 

ENDIF 
ELSEIF ((ITFD(ILINK1) .EQ. 2) .OR. 

1 (ITFD(ILINK1) .EQ. 4)) THEN 
C**************CONVERSION FOR LOGNORMAL 

C**************CALCULATE NUMBER OF STD DEV LINK FAILURE TEMPERATURE IS 
C**************FROM MEAN FAILURE TEMPERATURE 

IF (ITFD(ILINK1) .EQ. 4) TLF=LOG(TLF) 

SD= (TLF-TFT (1, ILINKl) ) / TFT (2, ILINKl) 
IF (ILF .EQ. 3) THEN 

IF (CL(ILINK1) .EQ. CL(IL1NK)) THEN 
C********************CCULATE NON-FAILURE PROBABILITY 

PLPERFCC (SD/SQRT (2. ODO) ) /2.ODO 
ELSEIF (CL(ILINK1) (1:2) .EQ. ' W L ' )  THEN 

C********************CALCULATE NON-FAILURE PROBABILITY 
PLPERFCC (SD/SQRT (2. ODO) ) /2.ODO 

ELSE 
C********************CHECK FOR MULTI-COMPONENT SL ALREADY PROCESSED 
C**********f*********LOOP OVER PREVIOUS LINKS 

DO 2200 ILINK2=1,ILINK1-1 
IF (CL(ILINK2) .EQ. CL(ILINK1)) GO TO 3000 

2200 CONTINUE 
C********************ALL INTERNAL COMPONENTS FOR CURRENT SL 
C********************pR~ESSED AT ONE TIME 

PFO=l. OD0 
PLPERFCC (-SD/SQRT (2. ODO) ) /2.ODO 

DO 2800 ILINK2=1LINKl+l,NLINK 
C********************Loop OVER SWsEQUENT LINKS 

IF (CL(ILINK2) .EQ. CL(ILINK1)) THEN 
C**************************CALCULA~ SL COMPONENT FAILURE TEMPERATURE 
C****************f*********BASED ON FAILURE TIME 

TLWO . OD0 
DO 2400 ITIME=I,NTIME 

IF (T(IT1ME) .GT. TIMLF) THEN 
TLPTH (ITIME-1, ITHL (ILINK2) ) 

1 (TH(ITIME,ITHL(ILINKP)) - 
2 TH(ITIME-l,ITHL(ILINK2))) * 
3 (TIMLF - T(IT1ME-1)) / 
4 (T(IT1ME) - T(IT1ME-1)) 
1 THMAX(ITIME-l,ITHL(ILINK2))) 

+ 

TLF=MAX (TLF, 

GO TO 2500 
ENDIF 

2400 CONTINUE 
C**************************DISCONTINUE CURRENT FAILURE PROBABILITY 

111- 16 



C**************************ACCUMULATION 
GO TO 2800 

PFO=PFO * ERFCC (SD/SQRT (2. ODO) ) /2.ODO 

IF (ITFD(ILINK2) .EQ. 4) TLF=LOG(TLF) 

2500 CONTINUE 

C*****f********************CONVERSION FOR LOGNORMAL 

C**************************CALCULATE NUMBER OF STD DEV LINK FAILURE 
C**************************TEMPERATURE 1s FROM MEAN FAIL- TEMPERATURE 

SD= (TLF-TFT (1, ILINK2) ) 
PFN=ERFCC(-SD/SQRT(2.OD0))/2.ODO 

/ TFT (2, ILINK2) 

PLF=PLF + PFN*PFO 
ENDIF 

2800 CONTINUE 
ENDIF 

ELSEIF ((ILF .EQ. 1) .AND. 
1 (CL(ILINK1) (1:2) .EQ. ‘SL’)) THEN 

C*****************CALCULATE FAILURE PROBABILITY 
PLF=ERFCC(-SD/SQRT(2.OD0))/2.ODO 

ELSE 
C*****************CALCULAm NON-FAILURE PROBABILITY 

PLF=ERFCC(SD/SQRT(2.OD0))/2.ODO 
ENDIF 

ENDIF 
C***********ACCUMUIATE PRODUCT OF FAILURE PROBABILITY 

PSLF=PSLF * PLF 
C********ACCUMULATE FAILURE PROBABILITY 
3000 CONTINUE 

FFAIL=FFAIL + PSLF 
4000 CONTINUE 

RETURN 
END 
SUBROUTINE SWLSMP 

C*****SIMPSONS RULE INTEGRATIONS 
C*****(NUMERICAL RECIPES IN FORTRAN (2ND ED), P. 133, SUB QSIMP) 

IMPLICIT DOUBLE PRECISION (A-H, 0-2) 
PARAMETER (MAXTIM=lOOO, MAXLM(=lOO, MAXDST=4, MAXFDP=lo) 
PARAMETER (EPS=l.OD-6, JMAX=20) 
COMMON /FAIL2/ DUMMY, PFAILM, PFAILI, PFAILS, 
1 PFAILT, THTIME, TMIN, T M A X ,  
2 T(O:MAXTIM), 
3 TH(O:MAXTIM,MAXLNK) , 
4 THMAX(O:MAXTIM,MAXLNK), 
5 TFD (MAxFDP,MAXLNK), 
6 TFT (MAXFDP ,MAXLNK) 
COMMON /FCALL/ NCALL 
EXTERNAL FFAIL 

C 
C 
C*****INITIALIZE VALUES 

OST=-l.OD30 
OS=-l.OD30 

NCALL=O 

DO 1000 J=l,JMAX 
CALL TRAPZD (FFAIL, TMIN, TMAX, ST, J) 
S= (4.ODO*ST-OST) / 3.ODO 
IF (ABS(S-OS) .LT. EPS*ABS(OS)) THEN 

PFAILS=S 
RETURN 

ENDIF 
IF ((J .GT. 6) .AND. (S .EQ. O.ODO) .AND. (OS .EQ. O.OD0)) THEN 

PFAILS=S 
RETURN 

ENDIF 
os=s 
OST=ST 

1000 CONTINUE 
PFAILS=S 
RETURN 
END 
SUBROUTINE SWLTRP 

C*****TRAPEZOIDAL RULE INTEGRATION 
C*****(NUMERICAL RECIPES IN FORTRAN (2ND ED), P. 131, SUB Q W )  

IMPLICIT DOUBLE PRECISION (A-H, 0-2) 
PARAMETER (MAXTIM=1000, MAXLNK=lOO, MAXDSTz4, MAXFDP=lO) 
PARAMETER (EPS=l.OD-6, JMAXz20) 
COMMON /FAIL2/ DUMMY, PFAILM, PFAILI, PFAILS, 
1 PFAILT, THTIME, TMIN, TMAX, 
2 T(O:MAXTIM), 
3 TH(O:MAXTIM,MAXLNK), 
4 THMnX(O:MAXTIM,MAXLNK), 
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5 TFD (MAXFDP 
6 TFT (MAXFDP ,MAXLNK) 
COMMON /FCALL/ NCALL 
EXTERNAL FFAIL 

C 
C 
C*****INITIALIZE OLD VALUE FOR S 

NCALL=O 
OS=-l.OD30 
DO 1000 J=l,JMAX 

CALL TRAPZD (FFAIL, TMIN, TMAX, S, J) 
IF (ABS(S-OS) .LT. EPS*ABS(OS)) THEN 

PFAILT=S 
RETURN 

ENDIF 
IF ((J .GT. 6) .AND. (S .EQ. O.ODO) .AND. (OS .EQ. O.OD0)) THEN 

PFAILT=S 
RETURN 

ENDIF 
os=s 

1000 CONTINUE 
PFAILT=S 
RETURN 
END 
SUBROUTINE TRAPZD (FUNC, A, B, S, N) 

C*****COMPUTE NTH STAGE OF REFINEMENT OF EXTENDED TRAPEZOIDAL RULE 
C*****FUNC IS THE NAME OF THE FUNCTION TO BE INTEGRATED OVER [A,B] 
C*****N=l---TE S 
C*****N>l--IMPROVE ACCURACY OF S BY ADDING 2**(N-2) INTERIOR POINTS 
C*****S SHOULD NOT BE MODIFIED BETWEEN SEQUENTIAL CALLS 
C*****(NUMERICAL RECIPES IN FORTRAN (2ND ED), P. 131, SUB TRAPZD) 

IMPLICIT DOUBLE PRECISION (A-H, 0-2 )  
EXTERNAL FUNC 

C 
C 

C********CALCULATE INTEGRAL S 
IF (N .EQ. 1) THEN 

SsO. 5DO* (B-A) * (FUNC (A) + FUNC (B) ) 

IT=2** (N-2) 
-=FLOAT (IT) 
DEL=(B-A) / TNM 
X=A + 0.5DO*DEL 
SUM=O . OD0 
DO 1000 J=l,IT 

X=X i DEL 

ELSE 

suM=suM + FUNC(X) 
1000 CONTINUE 

C********CALCULATE INTEGRAL S 
SsO. 5DO * (S+ (B-A) *SUM./TNM) 

ENDIF 
RETURN 
END 
SUBROUTINE SWLIMC! 

C*****CALCULATE IMPORTANCE-WEIGHTED MONTE CARLO FAILURE PROBABILITY 
C*****FOR CURRENT SET OF THERMAL HISTORY CURVES AND STRONG/- LINK 
C*****FAILURE PARAMETERS 

IMPLICIT DOUBLE PRECISION (A-H, 0 - 2 )  
PARAMETER (MAXTIM=1000, MAxLNK=lOO, MAXDST=4, MAXFDP=lO) 
CIIARACTER*lO CL, CFD 
CHARACTER*lO VSN 
CHARACTER*100 TITLE, FILINP, FILOUT, THFILE 
COMMON /FAILO/ TITLE, FILINP, FILOUT, THFILE, VSN, CL(MAXLNK), 

COMMON /FAILl/ ISEED, ILF, NLINK, NTH, NTIME, N, 

C O W N  /FAIL2/ DUMMY, PFAILM, PFAILI, PFAILS, 

1 CFD (-1 

1 ITHL (MAXLNK) , ITFD (MAXLNK) , NPFD (MAXDST) 

1 PFAILT, THTIME, TMIN, TMAX, 
2 T(O:MAXTIM), 
3 TH(O:MAXTIM,MAXLM(), 
4 TIIMAX(O:MAXTIM,MAXLNK), 
5 TFD (mpt-) r 

6 TFT(MAXFDP,MAXLNK) 
DIMENSION TFAIL (MAXLNK) 
LOGICAL USED(MAXLNK) 
DATA NSDI / 30 / 

C 
C 
C*****INITIALIZE OVERALL FAILURE PROaABILITY 

PFAILI=O.ODO 
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C*****LOOP OVER NUMBER OF MONTE CARLO SAMPLES 

C********INITIALIZE MAXIMUM SL FAILURE TIME 
TSLFMX=O.ODO 

C********INITIALIZE MINIMUM SL FAILURE TIME 
TSLFMN=T (NTIME) 

C********INITIALIZE MINIMUM WL FAILURE TIME 
TWLFMN=T (NTIME) 

C********INITIALIZE FAILURE PROBABILITY 
PF=l. OD0 

C********LOOP OVER ALL LINKS 
DO 8000 ILINK=l,NLINK 

C***********SAMPLE FAILURE TEMPERATURE 

C**************UNIFORM AND LOGUNIFORM DISTRIBUTIONS 
C**************(UPPER RIGHT TRIANGULAR SAMPLING FOR WL AND 

DO 9000 I=l,N 

IF ((ITFD(IL1NK) .EQ. 1) .OR. (ITFD(IL1NK) .EQ. 3)) THEN 

C**************(LOWER RIGHT TRIANGULAR SAMPLING FOR SL) 

TLF=TFT (2, ILINK) - 
PLF= (TFT (2, ILINK) -TFT (1, ILINK) ) 

IF (CL(IL1NK) (1:2) .EQ. ‘SL’) THEN 

1 (RAN3M(1)* (TFT(2,ILINK) -TFT(l,ILINK) 

1 
/ 

(2.ODO* (TFT (2 ,ILINK) -TLF) ) 
ELSE 

TLF=TFT (1, ILINK) + 
PLF= (TFT (2, ILINK) -TFT (1, ILINK) ) 

1 (RAN3M(1) *(TFT(2,ILINK)-TFT(l,ILINK) 

1 
/ 

(2.ODO* (TLF-TFT (1, ILINK) ) ) 
ENDIF 

IF fITFDfILINK) .EO. 3) TLF=EXPfTLF) 
C**************LOGUNIFORM CONVERSION 

**2) * * O .  5D0 

**2) * * O .  5D0 

. .  
ELSEIF ((ITFD(IL1NK) .EQ. 2) .OR. (ITFD(IL1NK) .EQ. 4)) THEN 

C**************NORMAL AND LOGNORMAL DISTRIBUTIONS 
C**************(UNIFORM SAMPLING ON STD DEV) 

SD=FLOAT(-NSDI) + FLOAT (2*NSDI) *RAN3M(1) 
TLF=TFT(l,ILINK) + SD*TFT(2,ILINK) 
PLF=SNORM(SD) * FLOAT(2*NSDI) 

IF (ITFD (ILINK) . EQ. 4) TLF=EXP (TLF) 
C**************LOGNORMAL CONVERSION 

ENDIF 
C***********CALCULATE FAILURE TIME BASED ON FAILURE TEMPERATURE 
C***********CHECK IF FAILURE TEMPERATURE OUTSIDE TABLE RANGE 

IF (TLF .LT. TH(O,ITHL(ILINK))) GO TO 9000 
C***********INTERPOLATE FAILURE TIME 

TIML-0 . OD0 
DO 7000 ITIME=l,NTIME 

IF (TH(ITIME,ITHL(ILINK)) .GE. TLF) THEN 
TIMLF=T(ITIME-1) + (T(IT1ME) - T(IT1ME-1)) * 

1 (TLF - TH(IT1ME-l,ITHL(ILINK))) / 
2 (TH(ITIME,ITHL(ILINK)) - 
3 TH(1TIME-l,ITHL(ILINK) ) )  

GO TO 7100 
ENDIF 

7000 CONTINUE 
GO TO 9000 

7100 CONTINUE 
C***********SAVE MINIMUM AND MAXIMUM FAILURE TIMES 

C**************SAVE SL FAILURE TIME 

C**************SAVE MINIMUM SL FAILURE TIME 

C**************SAVE MAXIMUM SL FAILURE TIME 

IF (CL(IL1NK) (1:2) .EQ. ‘SL’) THEN 

TFAIL (ILINK) =TIMLF 

TSLFMN=MIN (TSLFMN , TIMLF) 

TSLFMX=MAX (TSLFMX , TIMLF) 
ELSE 

C**************SAVE MINIMUM WL FAILURE TIME 
TWLM=MIN (TWLFMN, TIMLF) 

ENDIF 
P-PF * PLF 

8000 CONTINUE 
IF (ILF .EQ. 1) THEN 

C***********CWARE MAXIMUM SL FAILURE TIME TO MINIMUM WL FAILURE TIME 
IF (TSLFMX .LE. TWLFMN) PFAILI=PFAILI + PF 

ELSEIF (ILF .EQ. 2) THEN 
C***********CWARE MINIMUM SL FAILURE TIME TO MINIMUM W L  FAILURE TIME 

IF (TSLFMN .LE. TWLFMN) PFAILI=PFAILI + PF 
ELSEIF (ILF .EQ. 3) THEN 

DO 8100 ILINK=l,NLINK 
C***********INITIALIZE USED FLAGS FOR EACH LINK 

USED (ILINK) = . FALSE. 
8100 CONTINUE 
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TSLFMX=-l,OD30 
DO 8300 ILINK=l,NLINK 

IF (CL(ILINK)(1:2) .EQ. ‘SL’) THEN 
IF ( .NOT. USED (ILINK) ) THEN 

TSLFMN=TFAIL (ILINK) 
DO 8200 ILINKl=ILINK+1,NLINK 

IF (CL(IL1NK) .EQ. CL(ILINK1)) THEN 
TSLFMNEMIN (TSLFMN , TFAIL ( ILINKl ) ) 
USED (ILINK) = . TRUE. 

ENDIF 
8200 CONTINUE 

TSLFMX=MAX (TSLFMX,TSLFMN) 
ENDIF 

ENDIF 
8300 CONTINUE 

IF (TSLFMX .LE. TWLFMN) PFAILI=PFAILI + PF 
ENDIF 

9000 CONTINUE 
C*****CALCULATE FAILURE PROBABILITY 

PFAILI=PFAILI / FLOAT(N) 
RETURN 
END 
SUBROUTINE READ1 

IMPLICIT DOUBLE PRECISION (A-H, 0-2) 
PARAMETER (MAXTIM=1000, MAXLNK=lOO, MAXDST=4, MAXFDP=lO) 
CHARACTER*lO CL, CFD 
CHARACTER*lO VSN 
CHARACTER*100 TITLE, FILINP, FILOUT, THFILE 
LOGICAL TRAP, SIMP, MC, IMC 
COMMON /FAILO/ TITLE, FILINP, FILOUT, THFILE, VSN, CL(MAXLNK), 

COMMON /FAILl/ ISEED, ILF, NLINK, NTH, NTIME, N, 

COMMON /FAIL2/ DUMMY, PFAILM, PFAILI, PFAILS, 

C*****READ INPUT PARAMETERS 

1 CFD (-) 

1 ITBL (MAXLNK) , ITFD (MAXLNK) , NPFD (MAXDST) 

1 PFAILT, THTIME, TMIN, TMAX, 
2 T(O:MAXTIM), 
3 TH(O:MAXTIM,MAXLNK), 
4 THMAX(O:MAXTIM,MAXLNK) , 
5 TFD(MAXFDP,MAXLNK), 
6 TFT(MAXFDP,MAXLNK) 
COMMON /FAIL3/ TRAP, SIMP, MC, IMC 
CHARACTER*130 REC 

C 
C 
C*****OPEN INPUT FILE 

OPEN (1, FILE=FILINP, STATUS=’OLD‘, ERR=9100) 
C*****NUMBER OF FAILURE DISTRIBUTION PARAMETERS (UNIFORM) 
C*****MINIMUM, MAXIMUM 

C*****NUMBER OF FAILURE DISTRIBUTION PARAMETERS (NORMAL) 
NPFD (1) =2 

c*****MEAN, SIGMA 
NPFD (2) =2 

C*****NUMBER OF FAILURE DISTRIBUTION PARAMETERS (LOGUNIFORM) 
C*****MINIMUM, MAXIMUM 

C*****NUMBER OF FAILURE DISTRIBUTION PARAMETERS (LOGNORMU) 
C*****MEDIAN, BETA 

C*****READ AND WRITE INPUT PARAMETER FILE RECORDS TO OUTPUT FILE 

NPFD(3)=2 

NPFD (4) =2 

WRITE (2, *) 
WRITE (2, *) 

READ (1,1001 ,END=3000) REC 
DO 2000 IC=LEN(REC) ,l,-1 

1000 CONTINUE 

IF (REC(1C:IC) .NE. ’ ‘) THEN 
WRITE (2,1002) REC (1: IC) 
GO TO 2100 

ENDIF 
2000 CONTINUE 

WRITE (2,1002) REC(1: 1) 
2100 CONTINUE 

GO TO 1000 
3000 CONTINUE 

REWIND 1 
C*****READ TITLE RECORD 

READ(1,1001,ERR=9200,END=9300) TITLE 
C*****READ RANDOM NUMER GENERATOR SEED 

READ (1, * ,ERR=9200 ,END=9300) ISEED 
C*****READ SOLUTION OPTIONS 
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READ(l,1001,ERR=9200,END=9300) REC 

IF (INDEX(REC,' TRAP ' )  .GT. 0) THEN 

ELSE 

ENDIF 
IF (INDEX(REC,' SIMP I )  .GT. 0) THEN 

ELSE 

ENDIF 
IF (INDEX(REC,' MC ' )  .GT. 0) THEN 

ELSE 

ENDIF 
IF (INDEX(REC,' IMC ') .GT. 0) THEN 

ELSE 

REC=' '//REC 

TRAP=. TRUE. 

TRAP=. FALSE. 

SIMP=. TRUE. 

SIMP=.FALSE. 

MC= . TRUE. 

MC=. FALSE. 

IMC= . TRUE. 

IMC=.FALSE. 
ENDIF 

READ (1 ,*,ERR=9200,END=9300) N 

READ(l,*,ERR=920O,END=9300) ILF 

READ (1, * ,ERR=9200 ,END=9300) THFILE 

NLINK=O 

C*****READ NUMBER OF MONTE CARLO SAMPLES PER OBSERVATION 

C*****READ LINK FAILURE OPTION 

C*****READ LINK THERMAL HISTORY FILE NAME 

C*****INITIALIZE NUMBER OF LINKS 

4000 CONTINUE 
C*****READ LINK PARAMETERS RECORD 

READ(1,1001,ERR=9200,END=5000) REC 
C*****CHECK FOR BLANK RECORD 

IF (REC .NE. ' I )  THEN 
C********INCREMENT NUMBER OF LINKS 

NLINK=NLINK + 1 
C********PARSE CURRENT LINK RECORD 
C********LINK LABEL ( 'SLxxxxxxxx' OR 'WLxxxxxxxx' ) , 
C********LINK THERMAL HISTORY INDEX, 
C********FAILURE DISTRIBUTION LABEL, 
C********FAILURE DISTRIBUTION PARAMETERS 

1c=o 

IC=IC + 1 
IF (REC(1C:IC) .EQ. ' I )  GO TO 4100 
ICl=IC 

ICl=ICl + 1 
IF (REC(IC1:ICl) .NE. ' ') GO TO 4200 

CL(NLINK)=REC(IC:ICl-1) 
IC=ICl 

IC=IC + 1 
IF (REC(1C:IC) .EQ. ' ') GO TO 4300 
ICl=IC 

ICl=ICl + 1 
IF (REC(IC1:ICl) .NE. ' ') GO TO 4400 

READ (REC (IC: IC1) , ,ERR=9200) 
IC=ICl 

Ic=Ic + 1 
IF (REC(1C:IC) .EQ. ' ') GO TO 4500 
ICl=IC 

1Cl=ICl + 1 
IF (REC(IC1:ICl) .NE. ' ') GO TO 4600 

4100 CONTINUE 

4200 CONTINUE 

C********TRANSFF,R CURRENT LINK LABEL 

4300 CONTINUE 

4400 CONTINUE 

C********TRANSFER THERMAL HISTORY INDEX 
ITHL (NLINK) 

4500 CONTINUE 

4600 CONTINUE 

C********TRANSFER FAILURE DISTRIBUTION LABEL FOR CURRENT LINK 

C********SET FAILURE DISTRIBUTION INDEX BASED ON LABEL 
IF (CFD(NL1NK) .EQ. 'UNIFORM') THEN 

ELSEIF (CFD(NL1NK) .EQ. 'NORMAL') THEN 

ELSEIF (CFD (NLINK) . EQ. 'LOGUNIFORM' ) THEN 

ELSEIF (CFD (NLINK) .EQ. 'LOGNORMAL') THEN 

CFD(NLINK)=REC(IC:IC1-1) 

ITFD (NLINK) =1 

ITFD (NLINK) =2 

ITFD (NLINK) =3 
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ITFD (NLINK) =4 

ITFD (NLINX) =O 
ELSE 

ENDIF 
C********READ FAILURE DISTRIBUTION PARAMETERS FOR CURRENT LINK IF 
C********VALID FAILURE DISTRIBUTION HAS BEEN SPECIFIED 

IF (ITFD(NL1NK) .GT. 0) READ(REC(IC1:) ,*,ERR=9200) 
1 (TFD(1,NLINK) ,I=l,NPFD(ITFD(NLINK))) 
ENDIF 
GO TO 4000 

C*****CLOSE INPUT FILE 

C*****RESET RANDOM NUMBER GENERATOR SEED TO NEGATIVE VALUE SINCE 
C*****CALL TO RAN3M() REQUIRES A NEGATIVE ARGUMENT FOR INITIALIZATION 

C*****INITIALIZE RANDOM NUMBER GENERATOR 

5000 CONTINUE 

CLOSE (1) 

IF (ISEED .GT. 0) ISEEDz-ISEED 

DUMMY=RAN3M(ISEED) 
RETURN 

9100 CONTINUE 
C*****UNABLE TO OPEN INPUT FILE 

WRITE(2,9101) FILINP(l:INDEX(FILINP,’ ’ ) )  
WRITE (2,9001) 
WRITE(6,9001) 
STOP 

9200 CONTINUE 
C*****ERROR ENCOUNTERED WHILE ATTEMPTING TO READ INPUT FILE 

WRITE (2,9201) FILINP (1: INDEX(FILINP, ’ I )  ) 
WRITE (2,9001) 
WRITE(6,9001) 
STOP 

9300 CONTINUE 
C*****EOF ENCOUNTERED WHILE ATTEMPTING TO READ INPUT FILE 

WRITE(2,9301) FILINP(l:INDEX(FILINP,’ I ) )  

WRITE (2,9001) 
WRITE(6,9001) 
STOP 

C*****FORMAT STATEMENTS 
1001 FORMAT ( (A) ) 
1002 FORMAT( (lX,A) ) 
9001 FORMAT(/‘ >>>>>EXECUTION TERMINATED DUE TO INPUT ERROR(S)’) 
9101 FORMAT(’ >>>>>UNABLE TO OPEN INPUT FILE--’,A) 
9201 FORMAT(‘ >>>>>ERROR ENCOUNTERED WHILE ATTEMPTING TO READ ’, 

9301 FORMAT(‘ >>>>>EOF ENCOUNTERED WHILE ATTEMPTING TO READ ‘, 
1 ‘INPUT FILE--’ ,A) 

1 ‘INPUT FILE--‘ ,A) 
END 
SUBROUTINE VALID1 

IMPLICIT DOUBLE PRECISION (A-H, 0-2) 
PARAMETER (MAXTIM=1000, MAXLNKslOO, MAXDST=4, MAXFDP=lO) 
CHARACTER*10 CL, CFD 
CHARACTER*lO VSN 
CHARACTER*100 TITLE, FILINP, FILOUT, THFILE 
COMMON /FAILO/ TITLE, FILINP, FILOUT, THFILE, VSN, CL(MAXLNK), 

COMMON /E’AILl/ ISEED, ILF, NLINK, NTH, NTIME, N, 

COMMON /FAIL2/ DUMMY, PFAILM, PFAILI, PFAILS, 

C*****VALIDATE INPUT PARAMETERS 

1 CFD (-1 

1 ITHL (MAXLNK) , ITFD (MAXLNK) , NPFD (MAWST) 

1 PFAILT, THTIME, TMIN, TM?X, 
2 T(O:MAXTIM), 
3 TH(O:MAXTIM,MAXLNK), 
4 THMAX(O:MAXTIM,MAXLNK) , 
5 TFD (MAXFDP,MAXLNK) I 
6 TFT(MAXFDP,MAXLNK) 
CHARACTER*15 CLF(3) 
CHARACTER*1000 REC 
LOGICAL ERR 
DATA CLF / ‘SERIES FAULT’, ‘PARALLEL FAULT’, ‘SERIES IC FAULT‘ / 

C 
C 
C*****INITIALIZE ERROR FLAG 

C*****WRITE INPUT PARAMETERS TO OUTPUT FILE 
ERR=. FALSE. 

WRITE (2, *) 
WRITE (2, *) 

WRITE (2,1002) TITLE 

WRITE (2,1003) ISEED 

C*****WRITE TITLE 

C*****WRITE RANDOM NUMBER GENERATOR SEED 
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C*****WRITE NUMBER OF MONTE CARLOS SAMPLES PER OBSERVATIONS 
IF (N .LE. 0) THEN 

WRITE (2,1011) 
ELSE 

WRITE (2,1012) N 
ENDIF 

IF ((ILF .GE. 1) .AND. (ILF .LE. 3)) THEN 

ELSE 

C*****WRITE LINK FAILURE OPTION 

WRITE(2,1005) ILF, CLF(1LF) 

WRITE(2,lZOl) ILF 
ERR=. TRUE. 

ENDIF 

OPEN (1, FILE=THFILE, STATUS='OLD', ERR=9100) 
C*****OPEN THERMAL HISTORY FILE 

C*****READ TITLE RECORD 

C*****READ FIRST RECORD CONTAINING TIME VALUE AND 
C*****LINK THERMAL HISTORY TEMPERATURE VALUES 

C*****INITIALIZE NUMBER OF THERMAL HISTORIES 
C*****(FIRST COLUMN ON THERMAL HISTORY FILE IS TIME) 

C*****INITIALIZE CHARACTER INDEX 

REnn(1,lOOl) REC 

READ(1,lOOl) REC 

NTH=-1 

IC=O 
4100 CONTINUE 

IC=IC + 1 
IF (IC .GT. LEN(REC)) GO TO 5000 
IF (REC(1C:IC) .EQ. ' I )  GO TO 4100 

C*****INCREMENT NUMBER OF THERMAL HISTORIES 
NTH=NTH + 1 
Ic=Ic + 1 
IF (REC(1C:IC) .NE. \ )  GO TO 4200 
GO TO 4100 

4200 CONTINUE 

5000 CONTINUE 

REWIND 1 
C*****REWIND LINK THERMAL HISTORY FILE 

C*****WRITE NUMBER OF LINK THERMAL HISTORIES AND 
C*****LINK THERMAL HISTORIES FILE NAME 

WRITE (2,1006) NTH, THFILE (1: INDEX(THFILE, ' ') -1) 
IF (NTH .LT. 1) THEN 

WRITE (2,1301) 
ERR=. TRUE. 

WRITE (2,1302) MAXLNK 
ERR=. TRUE. 

ELSEIF (NTH .GT. MAXLNK) THEN 

ENDIF 
C*****WRITE TOTAL NUMBER OF LINKS 

WRITE (2,1008) NLINK 
IF (NLINK .GT. MAXLNK) THEN 

WRITE(2,1401) 
ERR=. TRUE. 

ENDIF 
C*****WRITE LINK PARAMETERS COLUMN HEADINGS 

WRITE (2,1009) 
C*****LOOP OVER ALL LINKS 

DO 1000 ILINK=l,NLINK 
C********WRITE LINK PARAMETERS 

WRITE (2,1010) CL (ILINK) , ITHL (ILINK) , CFD (ILINK) , 
1 (TFD(1,ILINK) ,I=l,NPFD(ITFD(ILINK))) 

C********VALIDATE STRONG LINK (SL) OR WEAK LINK (WL) LABEL 
IF ((CL(IL1NK) (1:2) .NE. 'SL') .AND. 

1 (CL(IL1NK) (1:2) .NE. ' W L ' ) )  THEN 
WRITE(2,1501) 
ERR=. TRUE. 

ENDIF 

IF ((ITHL(IL1NK) .LT. 1) .OR. (ITHL(IL1NK) .GT. N T H ) )  THEN 
C********VALIDATE LINK THERMAL HISTORY INDEX 

WRITE(2,1502) NTH 
ERR=. TRUE. 

ENDIF 

IF ((ITFD(IL1NK) .LT. 1) .OR. (ITFD(IL1NK) .GT. 4)) THEN 
C********VALIDATE DISTRIBUTION INDEX 

WRITE (2,1503) MAXDST 
ERR=. TRUE. 

ENDIF 
IF ((ITFD(IL1NK) .EQ. 1) .OR. (ITFD(IL1NK) .EQ. 3)) THEN 

C***********VALIDATE FAILURE DISTRIBUTION PARAMETERS FOR UNIFORM DISTRIBUTION 
IF (TFD(1,ILINK) .GT. TFD(2,ILINK)) THEN 
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WRITE (2,1504) 
ERR=, TRUE. 

ENDIF 
ENDIF 

1000 CONTINUE 
IF ( .NOT. ERR) THEN 

C********CHECK THAT AT LEAST ONE STRONG LINK AND ONE WEAK LINK ARE SPECIFIED 
C********LOOP OVER LINKS 

C***********CHECK FOR STRONG LINK 
DO 2000 ILINK=l,NLINK 

IF (CL(IL1NK) (1:2) .EQ. ‘SL’) GO TO 2100 
2000 CONTINUE 

WRITE(2,1601) 
ERR=. TRUE. 

2100 CONTINUE 
C********LOOP OVER LINKS 

C***********CHECK FOR WEAK LINK 
DO 3000 ILINK=l,NLINK 

IF (CL(IL1NK) (1:2) .EQ. ‘WL’) GO TO 3100 
3000 CONTINUE 

WRITE (2,1602) 
ERR=. TRUE. 

3100 CONTINUE 
ENDIF 
IF (ERR) THEN 

WRITE(2,9001) 
WRITE(6,9001) 
STOP 

ENDIF 
RETURN 

9100 CONTINUE 
C*****UNABLE TO OPEN LINK THERMAL HISTORY FILE 

WRITE (2,9101) THFILE (1 :INDEX(THFILE, ‘ ‘) ) 
WRITE(2,9001) 
WRITE(6,9001) 
STOP 

C*****FORMAT STATEMENTS 
1001 FORMAT ( (A) ) 
1002 FORMAT( (lX,A) ) 
1003 FORMAT(’ RANDOM NUMBER GENERATOR SEED = ‘,112) 
1004 FORMAT ( ’ NUMBER OF OBSERVATIONS = ‘ ,110) 
1005 FORMAT(‘ LINK FAILURE OPTION = ‘,12,’ = ‘,A) 
1006 FORMAT (lX, 15, ’ LINK THERMAL HISTORIES READ FROM ,A) 
1008 FORMAT(lX,I5,’ LINKS:’) 
1009 FORMAT(5X,’ THERM’, 

1010 FORMAT(5X,A,lX,I3,3X,A,lP5ElO.2) 
1011 FORMAT(‘ NO MONTE CARLO SAMPLING‘) 
1012 FORMAT(‘ NUMBER OF MONTE CARLO SAMPLES = ‘,IlO) 
1201 FORMAT(’ LINK FAILURE OPTION = ‘,12, 

1 /5x, ‘ LINK HIST DISTRB PAR1 PAR2‘) 

1 /’ >>>>>INVALID LINK FAILURE OBTION ‘ , 
2 ‘(VALID OPTIONS = 1, 2, OR 3)‘) 

1301 FORMAT(’ >>>>>MUST BE AT LEAST ONE THERMAL HISTORY‘) 
1302 FORMAT(’ >>>>>INCREASE VALUE OF PARAMETER MAXLNK TO AT LEAST ’, 

1303 FORMAT(‘ >>>>>INCREASE VALUE OF PARAMETER MAXTIM TO AT LEAST ‘, 

1401 FORMAT(‘ >>>>>INCREASE VALUE OF PARAMETER MAXLNK TO AT LEAST ’, 

1501 FORMAT(’ >>>>>LINK LABEL MUST BEGIN WITH EITHER SL OR WL’) 
1502 FORMAT(‘ >>>>>INVALID THERMAL HISTORY INDEX ‘, 

1 ‘(VALID INDICES = 1 TO ’,13,’)‘) 
1503 FORMAT(‘ >>>>>INVALID FAILURE DISTRIBUTION’) 
1504 FORMAT(‘ >>>>>INVALID SPECIFICATION FOR LOWER INTERVAL FOR I ,  

1601 FORMAT(‘ >>>>>MUST BE AT LEAST ONE STRONG LINK’) 
1602 FORMAT(’ >>>>>MUST BE AT LEAST ONE WEAK LINK’) 
9001 FORMAT(/’ >>>>>EXECUTION TERMINATED DUE TO INPUT ERROR(S)’) 
9101 FORMAT(’ >>>>>UNABLE TO OPEN LINK THERMAL HISTORY FILE--‘,A) 
9201 FORMAT(‘ >>>>>ERROR ENCOUNTERED WHILE ATTEMPTING TO READ ‘, 

9301 FORMAT(’ >>>>>EOF ENCOUNTERED WHILE ATTEMPTING TO READ ‘, 

1 110,’ OR DECREASE NUMBER OF THE- HISTORIES‘) 

1 110, ’ OR DECREASE NUMBER OF TIMESTEPS’ ) 

1 110,’ OR DECREASE TOTAL NUMBER OF LINKS’) 

1 ’UNIFORM DISTRIBUTION’) 

1 ‘LINK THERMAL HISTORY FILE--’ ,A) 

1 ‘LINK THERMAL HISTORY FILE--’,A) 
END 
SUBROUTINE INIT 

C*****INITIALIZE PARAMETERS 
IMPLICIT DOUBLE PRECISION (A-H, 0-2) 
PARAMETER (MAXTIM=1000, MAXLNK=lOO, MAXDST=4, MAXFDP=lO) 
CHARACTER*lO CL, CFD 
CHARACTER*10 VSN 
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CHARACTER*100 TITLE, FILINP, FILOUT, THFILE 
LOGICAL TRAP, SIMP, MC, IMC 
COMMON /FAILO/ TITLE, FILINP, FILOUT, THFILE, VSN, CL(MAXINK), 

COMMON /FAILl/ ISEED, ILF, NLINK, NTH, NTIME, N, 

COMMON /FAIL2/ DUMMY, PFAILM, PFAILI, PFAILS, 

1 CFD (MAXINK) 

1 ITHL (MAXLNK) , ITFD (MAXLNK) , NPFD (MAXDST) 

1 PFAILT, THTIME, TMIN, TMAX, 
2 T(O:MAXTIM), 
3 TH(O:MAXTIM,MAXLNK), 
4 THMAX(O:MAXTIM,MAXLNK) , 
5 TFD ( m p  ,-) 
6 TFT (MAXFDP ,MAXLNK) 
COMMON /FAIL3/ TRAP, SIMP, MC, IMC 

C 
C 
C*****LOOP OVER LINKS 

C********LOOP OVER FAILURE DISTRIBUTION PARAMETERS FOR CURRENT LINK 

C***********TRANSFER FAILURE DISTRIBUTION PARAMETER VALUE 

DO 2000 ILINK=l,NLINK 

DO 1000 IPFD=l,NPFD(ITFD(ILINK)) 

TFT (IPFD, ILINK) =TFD (IPFD, ILINK) 
1000 CONTINUE 
2000 CONTINUE 

RETURN 
END 
SUBROUTINE RTH 

IMPLICIT DOUBLE PRECISION (A-H, 0-2) 
PARAMETER (MAXTIM=1000, MAXLNK=lOO, MAXDST=4, MAXFDP=lO) 
CHARACTER*lO CL, CFD 
CHARACTER*lO VSN 
CHARACTER*100 TITLE, FILINP, FILOUT, THFILE 
COMMON /FAILO/ TITLE, FILINP, FILOUT, THFILE, VSN, CL(MAXLNK), 

COMMON /FAILl/ ISEED, ILF, NLINK, NTH, NTIME, N, 

COMMON /FAIL2/ DUMMY, PFAILM, PFAILI, PFAILS, 

C*****READ WEAK LINK AND STRONG LINK THERMAL HISTORIES 

1 CFD (-) 

1 ITHL (MAXLNK) , ITFD (MAXINK) , NPFD (MAXDST) 

1 PFAILT, THTIME, TMIN, TMAX, 
2 T(O:MAXTIM), 
3 TH(O:MAXTIM,MAXLNK), 
4 THMAX(O:MAXTIM,MAXLNK), 
5 TFD (MAXFDP,MAXLNK) , 
6 TFT (MAXFDP,MAXLNK) 

c 

C*****INITIALIZE MINIMUM AND MAXIMUM TEMPERATURES 
TMIN=l.OD30 
TMAX=-l. OD30 

C*****SKIP TITLE RECORD 

C*****INITIALIZE NUMBER OF TIMESTEPS 
-(I,*) 

NTIMEZ-1 
1000 CONTINUE 
C*****INCREMENT NUMBER OF TIMESTEPS 

C*****VALIDATE NUMBER OF TIMESTEPS AGAINST CURRENT PARAMETER DIMENSION 
NTIME=NTIME + 1 

IF (NTIME .GT. MAXTIM) THEN 
WRITE (2, *) 
WRITE(2,*) '>>>>>NUMBER OF TIMESTEPS IN LINK THERMAL HISTORY ', 

WRITE(2,*) '>>>>>IS GREATER THAN CURRENT PARAMETER DIMENSION' 
WRITE (2, *) '>>>>>INCREASE VALUE OF PARAMETER MAXTIM TO ' , 

WRITE (2, *) '>>>>>EXECUTION TERMINATED' 
STOP 

1 'FILE ', THFILE(l:INDEX(THFILE,' ')-I) 

1 'AT LEAST ', NTIME 

ENDIF 
C*****READ TIME VALUE AND CORRESPONDING TEMPERATURES FOR EACH 
C*****LINK THERMAL HISTORY 

C*****LOOP OVER TIMESTEPS 

C********RESET MINIMUM AND MAXIMUM TEMPERATURES 

READ (1, *,END=3000) T (NTIME) , 

DO 2000 ITH=l,NTH 

(TH (NTIME, ITH) , ITH=l ,NTH) 

TMIN=MIN(TMIN,TH(NTIME,ITH)) 
TMAX=MAX (TMAX, TH (NTIME, ITH) ) 

2000 CONTINUE 

3000 CONTINUE 
GO TO 1000 

C*****DECREMENT NUMBER OF TIMESTEPS 
NTIME=NTIME - 1 
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CLOSE (1) 
TMINxMAX (TMIN, 1.OD-30) 

C*****SET MAXIMUM LINK TEMPERATURE ENCOUNTERED THROUGH EACH TIME INTERVAL 
DO 5000 ITH=l,NTH 

THNAX (0 ,ITH) =TH (0, ITH) 
DO 4000 ITIME=l,NTIME 

THMAX(ITIME,ITH)=MAX(THMAX(ITIME-l,ITH) , TH(ITIME,ITH)) 
4000 CONTINUE 
5000 CONTINUE 

RETURN 
END 
SUBROUTINE SWLMC 

C*****CALCULATE MONTE CARLO FAILURE PROBABILITY FOR CURRENT SET OF LINK 
C*****THERMAL HISTORY CURVES AND STRONG/WEAK LINK FAILURE PARlMETERS 

IMPLICIT DOUBLE PRECISION (A-H, 0-Z) 
PARAMETER (MAXTIM=lOOO , MAXLNK=lOO, MAWST=4, MAXFDP=lO) 
CHARACTER*lO CL, CFD 
CHARACTER*lO VSN 
CHARACTER*100 TITLE, FILINP, FILOUT, THFILE 
COMMON /FAILO/ TITLE, FILINP, FILOUT, THFILE, VSN, CL(MAXLNK), 

COMMON /FAILl/ ISEED, ILF, NLINK, NTH, NTIME, N, 

COMMON /FAIL2/ DUMMY, PFAILM, PFAILI, PFAILS, 

1 CFD (-) 

1 ITHL (MAXLNK) , ITFD (MAXLNK) , NPFD (MAXDST) 

1 PFAILT, THTIME, TMIN, TMAX, 
2 T(O:MAXTIM), 
3 TH(O:MAXTIM,MAXLNK) , 
4 THMAX(O:MAXTIM,MAXLNK), 
5 TFD (MAXFDP ,MAXLNK) , 
6 TFT (MAXFDP ,MAXLNK) 
DIMENSION TFAIL (MAXLNK) 
LOGICAL USED (MAXLNK) 

C 
C 
C*****INITIALIZE NUMBER OF FAILURES 

C*****LOOP OVER NUMBER OF MONTE CARLO SAMPLES 

C********INITIALIZE MAXIMUM SL FAILURE TIME 

C********INITIALIZE MINIMUM SL FAILURE TIME 

C********INITIALIZE MINIMUM WL FAILURE TIME 

C********LOOP OVER ALL LINKS 

C***********SAMPLE FAILURE TEMPERATURE 

C**************UNIFORM AND LOGUNIFORM DISTRIBUTIONS 

C**************LOGUNIFORM CONVERSION 

NFAIL-0 

DO 9000 I=l,N 

TSLFMX=O.ODO 

TSLFMN=T (NTIME) 

TWLFMN=T (NTIME) 

DO 8000 ILINK=l,NLINK 

IF ((ITFD(IL1NK) .EQ. 1) .OR. (ITFD(IL1NK) .EQ. 3)) THEN 

TLF=TFT(l,ILINK) + (TFT(2,ILINK) -TFT(l,ILINK)) *RAN3M(1) 

IF (ITFD(IL1NK) .EQ. 3) TLF=EXP(TLF) 
ELSEIF ((ITFD(IL1NK) .EQ. 2) .OR. (ITFD(IL1NK) .EQ. 4)) THEN 

C**************NORMAL AND LOGNORMAL DISTRIBUTIONS 

C**************LOGNORMAL CONVERSION 
TLF=XNORM (TFT (1, ILINK) , TFT (2, ILINK) ) 

IF (ITFD(IL1NK) .EQ. 4) TLF=EXP(TLF) 
ENDIF 

C***********CALCULATE FAILURE TIME BASED ON FAILURE TEMPERATURE 
C***********CHECK IF FAILURE TEMPERATURE OUTSIDE TABLE RANGE 

C***********INTERPOLATE FAILURE TIME 
IF (TLF .LT. TH(O,ITHL(ILINK))) GO TO 9000 

TIML-0 . OD0 
DO 1000 ITIME=l,NTIME 

IF (TH (ITIME, ITHL (ILINK) ) .GE. TLF) THEN 
TIMLF=T(ITIME-1) + (T(IT1ME) - T(IT1ME-1)) * 

1 (TLF - TH(IT1ME-l,ITHL(ILINK))) / 
2 (TH(ITIME,ITHL(ILINK)) - 
3 TH(IT1ME-l,ITHL(ILINK) ) )  

GO TO 1100 
ENDIF 

1000 CONTINUE 

1100 CONTINUE 
GO TO 9000 

C***********SAVE MINIMUM AND MAXIMUM FAILURE TIMES 

C**************SAVE SL FAILURE TIME 

C**************SAVE MINIMUM SL FAILURE TIME 

IF (CL(IL1NK) (1:2) .EQ. 'SL') THEN 

TFAIL (ILINK) =TIMLF 

TSLFMN=MIN (TSLEMN, TIMLF) 
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C**************SAVE MAXIMUM SL FAILURE TIME 
TSLEMX=MAX (TSLFMX, TIMLF) 

ELSE 
C**************SAVE MINIMUM WL FAILURE TIME 

TWLFMN=MIN(TWLFMN, TIMLF) 
ENDIF 

8000 CONTINUE 
IF (ILF .EQ. 1) THEN 

C***********COMPARE MAXIMUM SL FAILURE TIME TO MINIMUM WL FAILURE TIME 
IF (TSLFMX .LE. TWLFMN) NFAIL=NFAIL + 1 

ELSEIF (ILF .EQ. 2) THEN 
C***********COMPARE MINIMUM SL FAILURE TIME TO MINIMUM WL FAILURE TIME 

IF (TSLFMN .LE. TWLFMN) NFAIL=NFAIL + 1 
ELSEIF (ILF .EQ. 3) THEN 

DO 8100 ILINK=l,NLINK 
C***********INITIALIZE USED FLAGS FOR EACH LINK 

USED (ILINK) =. FALSE. 
8100 CONTINUE 

TSLFMX=-l,OD30 
DO 8300 ILINK=l,NLINK 

IF (CL(ILINK)(1:2) .EQ. 'SL') THEN 
IF (.NOT. USED(IL1NK)) THEN 

TSLFMN=TFAIL (ILINK) 
DO 8200 ILINKl=ILINK+l,NLINK 

IF (CL(IL1NK) .EQ. CL(ILINK1)) THEN 
TSLFMN=MIN (TSLFMN,TFAIL (ILINK1) ) 
USED (ILINK) = . TRUE. 

ENDIF 
8200 CONTINUE 

TSLFMX=MAX(TSLFMX,TSLFMN) 
ENDIF 

ENDIF 
8300 CONTINUE 

IF (TSLFMX .LE. TWLFMN) NFAIL=NFAIL + 1 
ENDIF 

9000 CONTINUE 
C*****CALCULATE FAILURE PROBABILITY 

PFAILM=FLOAT (NFAIL) / FLOAT (N) 
RETURN 
END 
FUNCTION SNORM ( X V )  

IMPLICIT DOUBLE PRECISION (A-H, 0-Z) 
C*****STANDARD NORMAL FUNCTION EVALUATION 

C 
C 

SNORM=EXP(-XV**2 / 2.ODO) / SQRT(6.283185307DO) 
END 
FUNCTION XNORM (PMU, SIG) 

IMPLICIT DOUBLE PRECISION (A-H, 0-Z) 
C*****GENERATE NORMAL DISTRIBUTION 

C 
C 

R=RAN3M (1) 
XNORM=PMU + FINVNOR(R) *SIG 
RETURN 
END 
FUNCTION FINVNOR (X) 

IMPLICIT DOUBLE PRECISION (A-H, 0-Z) 
C*****GENERATE NORMAL AND LOGNORMAL DISTRIBUTIONS 

C 
C 

IF (X - 0.5DO) 2000, 1000, 3000 
1000 CONTINUE 

FINVNOR=O.ODO 
RETURN 

2000 CONTINUE 
F=-1 .OD0 
Y=X 
GO TO 4000 

3000 CONTINUE 
F=l . OD0 
Y=l.ODO - X 

4000 CONTINUE 
Y=MAX (Y, 7.OD-36) 
Y=MIN (Y, 1. ODO) 
FINVNOR=SQRT(2.ODO) * F * RIERl?C1(2.ODO*Y) 
RETURN 
END 
FUNCTION RIERFCl (Y) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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C FUNCTION RIERFCl IS USED IN GENERATING THE NORMAL AND 
C LOGNORMAL DISTRIBUTIONS 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
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C 
C 
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THIS IS THE SAME AS THE RIERFC ROUTINE IN THE DEAMOS LIBRARY 
THE NAME MODIFICATION WAS TO PREVENT OUR LIBRARY FROM CALLING 
ANOTHER LIBRARY. ELF OCTOBER 1980 

WRITTEN BY D.E. AMOS AND S.L. DANIEL, SEPTEMBER, 1972. 

REFERENCES 
HASTINGS, C.JR., APPROXIMATIONS FOR DIGITAL COMPUTERS, 
PRINCETON UNIVERSITY PRESS, PRINCETON, N.J., 1955 

COMMUNICATION FROM L.F. SHAMPINE FOR CHEBYSHEV COEFFICIENTS. 

ABSTRACT 
RIERFC EVALUATES THE INVERSE COERROR FUNCTION DEFINED BY 

Y= ERFC(X) 0 .LE. X .LT. INFINITY 

WHERE O.LT.Y.LE.1. CHEBYSHEV APPROXIMATIONS ON 

EXP(-81) .LE. Y .LT. 0.1, 0.1 .LE. Y .LT. 0.5, 0.5 .LE. Y .LE. 1. 

ARE USED WITH A CHANGE OF VARIABLES 

YY=Cl*W+C2, W=SQRT(-LN(Y)), YY=5.*Y-1.5, YY=2.*(1.-Y) 

RESPECTIVELY. THE INVERSE OF THE NORMAL DISTRIBUTION IS GIVEN 
BY 

SQRT(2)*RIERFC(2.*(1.-RN)) 0.5 .LE. RN .LT. 1.0 

-SQRT (2) *RIERFC (2, *RN) 0.0 .LT. RN .LT. 0.5 
X= 

THE RELATIVE ERROR IN RIERFC DECREASES FROM l.E-10 TO 3.E-13 
AS Y INCREASES FROM EXP(-8l) TO 1.0. 

DESCRIPTION OF ARGUMENTS 

INPUT 

Y - Y, EXP(-81) .LE.Y.LE.l. 

OUTPUT 

RIERFC - VALUE FOR THE INVERSE COERROR FUNCTION 

ERROR CONDITIONS 
Y.LT.EXP(-81) OR Y.GT.l ARE FATAL ERRORS 

........................................................................ 
IMPLICIT DOUBLE PRECISION (A-H, 0-Z) 
DIMENSION A(22,3), A1(22), A2(22), A3(22) 
EQUIVALENCE (A(1,l) ,Al(l)) 
EQUIVALENCE (A(1,2) ,A2(1)) 
EQUIVALENCE (A(1,3) ,A3(1)) 
DATA A1 / 
1 9.18725611735013D-01, O.ODO, 1.68792878000327D-02, O.ODO, 
2 6.60337139058300D-04, O.OD0, 3.20203849839380D-05, O.OD0, 
3 1.72060607522481D-06, O.ODO, 9.81965971588191D-08, O.ODO, 
4 5.83049613537653D-09, O.ODO, 3.56019351836136D-10, O.ODO, 
5 2.21968915783128D-11, O.ODO, 1.40639693109741D-12, O.ODO, 
6 9.02597345404862D-14, O.ODO / 
DATA A2 / 1.54701109458613D+OO, -3.31460331083896D-01, 
1 4.33001124090060D-02, -1.06564004165532D-02, 
2 2.90613542304156D-03, -8.61872838022491D-04, 
3 2.67933751795053D-04, -8.60838893942933D-05, 
4 2.83232058814598D-05, -9.48870819734494D-06, 
5 3.22422655069385D-06, -1.10815778472076D-06, 
6 3.84464770797987D-07, -1.34439275565208D-07, 
7 4.73255976052393D-08, -1.67556011100019D-08, 
8 5.96199003969093D-09, -2.13070503291886D-09, 
9 7.64427040920545D-10, -2.75198005584737D-10, 
A 9.93792246090789D-11, -3.59877382902119D-11 / 
DATA A3 / 1.10642888011036D+01, 4.34299147561447D+OO, 
1 -2.33781774969295D-02, 4.23345215362947D-03, 
2 8.68757084192089D-06, -5.98261113270881D-04, 
3 4.50490139240298D-04, -2.54858131942102D-04, 
4 1.27824189261340D-04, -5.97873878043957D-05, 
5 2.66474012012582D-05, -1.14381836209267D-05, 
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6 4.75393030377615D-06, -1.91759589929610D-06, 
7 7.50806465594834D-07, -2.84791180387123D-07, 
8 1.04187791696225D-07, -3.64567243689145D-08, 
9 1.20129296139030D-08, -3.61030126779729D-09, 
A 9.12356140081759D-10, -1.36851363400914D-10 / 
DATA C1, C2 / 2.35777520630369D-01, 1.35777520630369D+00 / 

C 
C 

IF ((Y .LT. 6.63967719958073D-36) .OR. (Y .GT. 1.ODO)) GO TO 5000 
IF (Y .GE. 0.5D0) GO TO 1000 
IF (Y .GE. 0.1DO) GO TO 2000 
J=3 
W=SQRT(-LOG(Y)) 
D=Cl*W - C2 
GO TO 3000 

1000 CONTINUE 
J=l 
D=l.ODO - Y 
D=D + D 
GO TO 3000 

2000 CONTINUE 
J=2 
D=5.0DO*Y - 1.5DO 

3000 CONTINUE 
TD=D + D 
VNPl=O . OD0 
VN=O . OD0 
DO 4000 L=1,21 

K=22 - L + 1 
TEMP=VN 
VN=TD*VN - VNPl + A(K,J) 
VNPl=TEMP 

4000 CONTINUE 
RIERFCl=D*VN - VNPl + 0.5DO*A(l,J) 
IF (J .EQ. 1) RIERFCl=D * RIERFCl 
RETURN 

WRITE(6,9001) 
STOP ‘Error in RIERFCl’ 

5000 CONTINUE 

C*****FORMAT STATEMENTS 
9001 FORMAT(’ Y LESS THAN EXP(-81.) OR Y GREATER THAN 1.0’) 

END 
FUNCTION ERFCC (X) 

C*****CALCULATE COMPLEMENTARY ERROR FUNCTION 
C*****(NUMERICAL RECIPES IN FORTRAN (2ND ED), P. 214, FUNC ERFCC) 

C 
C 

IMPLICIT DOUBLE PRECISION (A-H, 0-2) 

z=ABs (X) 
T=l. OD0 / (1 . ODO+O .5DO*Z) 
ERFCC=T*EXP(-Z*Z-1.26551223D0+T*(1.00002368DO+T* 
1 (0.37409196D0+T*(0.09678418DO+T*(-O.l8628806DO+T* 
2 (0.27886807DO+T*(-l.l3520398DO+T* 
3 (1.48851587D0+T*(-0.82215223D0+T*0.17087277D0)))))~~~~ 
IF (X .LT. O.ODO) ERFCC=P.ODO - ERFCC 
RETURN 
END 
FUNCTION RAN3 (ISEED) 

C*****RETURNS A UNIFORM RANDOM DEVIATE BETWEEN 0.0 AND 1.0. SET ISEED 
C*****TO ANY NEGATIVE VALUE TO INITIALIZE OR RE-INITIALIZE THE SEQUENCE 
C*****(NUMERICAL RECIPES IN FORTRAN (2ND ED), PP. 273-4, FUNC RAN3) 

IMPLICIT DOUBLE PRECISION (A-H, 0-2) 
PARAMETER (MBIG=1OOOOOOOOO, MSEED=161803398, MZ=O, FAC=l.ODO/MBIG) 
DIMENSION MA(55) 
DATA IFF / 0 / 

C 
C 
C*****CHECK FOR INITIALIZATION 

C********INITIALIZE OR RE-INITIALIZE SEQUENCE 
IF ((ISEED .LT. 0) .OR. (IFF .EQ. 0)) THEN 

IFF=l 
MJ=MSEED - ABS (ISEED) 
MJ=MOD (MJ,MBIG) 
MA(55)=MJ 
MK=1 
DO 1000 I=1,54 

II=MOD (21*I, 55) 
MA(II)=MK 
MK=MJ - MK 
IF (MK .LT. MZ) MK=MK + MBIG 
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MJ=MA(II) 
1000 CONTINUE 

DO 3000 K=1,4 
DO 2000 I=1,55 

MA (I) =MA (I) 
IF (MA(1) .LT. MZ) MA(I)=MA(I) + MBIG 

- MA (1+MOD (I+30,55) ) 

2000 CONTINUE 
3000 CONTINUE 

INEXT=O 
INEXTP=31 

ENDIF 
INEXT=INEXT + 1 
IF (INEXT .EQ. 56) INEXT=l 
INEXTP=INEXTP + 1 
IF (INEXTP .EQ. 56) INEXTP=l 
MJ=MA (INEXT) - MA (INEXTP) 
IF ( M J  .LT. M Z )  MJ=MJ + MBIG 
MA (INEXT) =MJ 
RAN3=MJ * FAC 
RETURN 
END 
FUNCTION RAN3M (ISEED) 

C*****RE"UFUiS A UNIFORM RANDOM DEVIATE BETWEEN 0.0 AND 1.0. 
C*****TO ANY NEGATIVE VALUE TO INITIALIZE OR RE-INITIALIZE THE SEQUENCE 
C*****(NUMERICAL RECIPES IN FORTRAN (2ND ED), PP. 273-4, FUNC -3) 

SET ISEED 

IMPLICIT DOUBLE PRECISION (A-H, 0-Z) 
PARAMETER (MB101000000000, MSEED=161803398, MZ=O, FAC=l.ODO/MBIG) 
DIMENSION MA(55) 
DATA IFF / 0 / 

C 
C 
C*****CHECK FOR INITIALIZATION 

C********INITIALIZE OR RE-INITIALIZE SEQUENCE 
IF ((ISEED .LT. 0) .OR. (IFF .EQ. 0)) THEN 

IFF=l 
MJ=MSEED - ABS (ISEED) 
MJ=MOD (MJ,MBIG) 
MA(55)=MJ 
MK=1 
DO 1000 I=1,54 

II=MOD (21*I, 55) 
MA(II)=MK 
MK=MJ - MK 
IF (MK .LT. MZ) MK=MK + MBIG 
MJ=MA(II) 

1000 CONTINUE 
DO 3000 K=1,4 

DO 2000 I=1,55 
MA(I)=MA(I) - MA(l+MOD(I+30,55)) 
IF (MA(1) .LT. MZ) MA(I)=MA(I) + MBIG 

2000 CONTINUE 
3000 CONTINUE 

INEXT=O 
INEXTP=31 

ENDIF 
INEXT=INEXT + 1 
IF (INEXT .EQ. 56) INEXT=l 
INEXTP=INEXTP + 1 
IF (INEXTP .EQ. 56) INEXTP=l 
MJ=MA(INEXT) - MA(1NEXTP) 
IF (MJ .LT. MZ) MJ=MJ + MBIG 
RAN3M=MJ FAC 
RETURN 
END 

MA (INEXT) =MJ 
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