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Abstract

Mathematical models are developed and used to study the properties of
complex systems and/or modify these systems to satisfy some performance
requirements in just about every area of applied science and engineering. A
particular reason for developing a model, e.g., performance assessment or de-
sign, is referred to as the model use. Our objective is the development of a
methodology for selecting a model that is sufficiently accurate for an intended
use.

Information on the system being modeled is, in general, incomplete, so that
there may be two or more models consistent with the available information.
The collection of these models is called the class of candidate models. Methods
are developed for selecting the optimal member from a class of candidate models
for the system. The optimal model depends on the available information, the
selected class of candidate models, and the model use.

Classical methods for model selection, including the method of maximum
likelihood and Bayesian methods, as well as a method employing a decision-
theoretic approach, are formulated to select the optimal model for numerous
applications. There is no requirement that the candidate models be random.
Classical methods for model selection ignore model use and require data to be
available. Examples are used to show that these methods can be unreliable
when data is limited. The decision-theoretic approach to model selection does
not have these limitations, and model use is included through an appropriate
utility function. This is especially important when modeling high risk systems,
where the consequences of using an inappropriate model for the system can be
disastrous.
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The decision-theoretic method for model selection is developed and applied
for a series of complex and diverse applications. These include the selection of
the: (1) optimal order of the polynomial chaos approximation for non-Gaussian
random variables and stationary stochastic processes, (2) optimal pressure load
model to be applied to a spacecraft during atmospheric re-entry, and (3) optimal
design of a distributed sensor network for the purpose of vehicle tracking and
identification.
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Chapter 1

Introduction

Essentials of the model selection problem are presented. The mathematical modeling
process is discussed in Section 1.1. The construction of one or more mathematical
models, where each model is consistent with all available information on the system
being modeled, is considered in Section 1.2. Methods for model selection are outlined
in Section 1.3.

1.1 Mathematical modeling

Consider an object or collection of objects, herein called a system, whose properties
we wish to study. If the system already exists, we may be able to perform experi-
ments to study the system properties. If the system does not exist, or cost and/or
safety concerns prohibit experimentation, we need another method of study. A math-
ematical model for a system, defined to be a collection of mathematical equations
approximating the system properties, can be used in this case.

A mathematical model can be developed based on any information we have regard-
ing the behavior of the system; available information on the system is, in general, of
two types: (1) data, and (2) prior knowledge. The former consists of a finite number
of observations (measurements) of the system and/or experiments on the system. The
latter is knowledge, other than data, that we have about the system. It is made up
of the opinions and theories of experts, as well as any literature on the subject. Most
often, the prior knowledge is expressed as a set of mathematical relations; qualitative
knowledge may also be used. To illustrate these concepts, consider a model for the
structural properties of aluminum. Any experimental measurements of the stiffness
of the material is one example of data. Further, prior knowledge tells us that: (1) a
linear, elastic model form may be appropriate, and (2) stiffness is nonnegative; the
mathematical model for aluminum must reflect this.
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The available information is, in general, incomplete; the amount of data is finite,
and the prior knowledge may be underdeveloped and/or deficient. Even in the case
of complete information, where we would understand precisely the behavior of the
system, it is likely that the behavior may be too complicated to describe exactly, and
simplified mathematical models for the system, e.g., response surface approximations,
must be used.

A mathematical model is developed for one or more reasons, what we refer to as
the model use. There are many examples of model use, a few are (from [61], p. 8):
description, insight, optimization, prediction, and design. For example, consider the
case of a mathematical model for a cantilever beam made from the linear, elastic
material discussed above. We may use this model to select the optimal beam cross
section (optimization), to assess the natural frequencies of the beam (prediction), or
to select the cross section so that the tip deflection due to a prescribed load is less that
some critical value (design). In general, our objective is to develop a mathematical
model for the system that is sufficiently accurate for the intended model use.

Kapur [61], pp. 9-13, presents some interesting characteristics of mathematical
models.

• Realism: we want mathematical models to be as realistic as possible, but this
may prove mathematically intractable.

• Model use: we may need different models for explaining different aspects of the
same system.

• Non-uniqueness: a system need not have only one mathematical model.

• Complexity: a complex mathematical model does not necessarily provide a
superior understanding of the system.

• Cost of modeling: every model can be improved, but not every improvement is
worth the time and effort.

Mathematical models are developed and used to study the properties of complex
systems in just about every area of applied science and engineering. The mathemat-
ical modeling procedure involves three elements: (1) the system for study, (2) the
mathematical model or models for the system, and (3) the mathematical solution.
Figure 1.1 illustrates the procedure, where elements (1)-(3) are enclosed by ellipses.
Similar diagrams are discussed in p. 15 of [23], [69], and [87].

There are four steps to the mathematical modeling procedure; the steps are en-
closed by the rectangles in Fig. 1.1. As indicated by the circular structure in Fig. 1.1,
mathematical modeling is an iterative process. Construction and calculation, steps
(1) and (2), are performed repeatedly until the mathematical model for the system
is deemed valid by step (3). Only then may we proceed to step (4). The steps in the
procedure are:
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Figure 1.1: The mathematical modeling procedure.

1. Construction of the mathematical model or models

Here, real quantities and processes of the system are replaced by a set of math-
ematical equations that describe the behavior of the system. The construction
of a mathematical model typically includes various idealizations and approxi-
mations and, according to [69], may not be well-defined and frequently involves
a high degree of creativity. The mathematical formulation should be consistent
with the model use, meaning that any idealizations or approximations used
are a consequence of the reasons for which the model is being developed. Be-
cause information is limited, the mathematical model for the system may not
be unique, and more than one model may be considered.

2. Calculation of the mathematical solution

Using analytical and/or numerical techniques, a set of equations is solved to find
an approximation to the system properties. Unlike the previous step, rigorous
procedures exist to do this, though some level of approximation may be required.
This step may involve the creation of a computer model, e.g., a finite element
model. In the case of an approximate solution, a bound on the approximation
error can usually be attained. We note that the mathematical solution may or
may not be unique. Non-uniqueness may arise, for example, due to a collection
of partial differential equations with no unique solution, or from inadequate
solution techniques.

3. Validation of the model results
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As defined by [75], p. 11, validation is the process of determining the degree
to which the mathematical model is an accurate representation of the system.
Data is required, and validation must include experimental observations of the
system that were not used in model construction. There are rigorous validation
procedures for a few applications under ideal conditions; attempts to generalize
the validation process are underway [89].

4. Prediction of the system properties

The validated mathematical model is used to make predictions about the prop-
erties of the system; these predictions are consistent with model use. For exam-
ple, if the model use is design, we may use the predictions to assign values to
certain design variables, based on the properties of the mathematical solution.
Note that a prediction is made only after the validation step is complete.

Steps (2)-(4) have been, and continue to be, areas of active research; see [4, 75]
for an extensive list of references on step (3). Model construction, step (1), has
yet to be addressed in a rigorous manner and, as a result, is largely a subjective
discipline; Kapur [61], p. 13, states that constructing models “is an art.” Herein,
we attempt to replace some of the subjective nature of model construction through
the use of model selection, a rigorous mathematical procedure to select the optimal
model from a collection of candidate models for the system. The elements of model
construction are summarized in Section 1.2; model selection will be discussed in detail
in Section 1.3.

1.2 Model construction

There are three philosophies for model construction (see Fig. 1.2):

1. Observation-based

In this method, only data, the first type of available information, is used for
model construction. Observations of the system are used to fit the properties of
the model to those of the system, i.e., curve-fitting procedures are used. This
is typical of so-called nontechnical systems (biological, economic, sociological,
etc.) where cause and effect relationships are unknown.

2. Physics-based

In this method, only prior knowledge, the second type of available information,
is used for model construction. The properties of the system are decomposed
into subsystems whose behavior is assumed to follow known mathematical re-
lations [68], p. 16. The dependencies among subsystems are then modeled and,
in this manner, the cause and effect relationships of the system are quantified.
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Figure 1.2: Philosophies for model construction.

3. Mixture

Here, both data and prior knowledge on the system are utilized, and a mix-
ture of the observation-based and physics-based approaches are used for model
construction. This philosophy is typical of systems in engineering and applied
science.

Example 1.1: We illustrate first the observation-based philosophy for model con-
struction. Assume n ≥ 1 observations of random variable Y are available. Based
on the observations, we postulate a functional form (or a collection of possible func-
tional forms) for the probability law for Y . Each functional form may contain a set of
unknown parameters. We apply methods of parameter estimation (e.g., the method
of maximum likelihood [63]) to define the values of the parameters for each possible
model form.

We next illustrate the physics-based philosophy for model construction. Assume
that prior knowledge suggests Y is given by Y = exp (X), a continuous and hence
measurable function of Gaussian random variable X. It can be shown that, under
these assumptions, Y follows a lognormal distribution. ♦

As discussed in [67], there are three steps in the model construction process:

1. Identify important variables
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All important variables to be included in the mathematical model are identified,
i.e., those variables supported by the available information, and pertinent to the
intended model use. Because the available information is limited, some impor-
tant variables can be overlooked, and other supercilious variables deemed im-
portant. The identification of important variables is often a subjective process;
it is unrealistic to expect a general method for identifying important variables
for all types of systems.

2. Define the functional form

Our objective is to define a functional form for the equations that expresses
how the variables interact to produce the effect or effects of interest. Examples
include forms that are linear or nonlinear, discrete or continuous, and static
or dynamic [37], p. 2. The functional form will most likely include some pa-
rameters. According to [18], p. 7, this process may also be subjective, which
is why scientists and engineers must be trained, educated, and experienced in
their discipline. In general, more than one set of equations will be consistent
with the available information, meaning that the functional form for the model
may not be unique.

3. Specify values for each model parameter

Once a functional form for the model has been defined, the value for each
model parameter must be specified. Parameters may be deterministic and/or
stochastic. Because the available information is limited, more than one set
of parameter values may be consistent with what is known, meaning that the
values for the parameters may also be non-unique.

Regardless of the philosophy used to construct a mathematical model, the steps
in the model construction process outlined above remain the same. Because the
available information on a system is incomplete, in general there can be no unique
mathematical model for the system.

Example 1.2: Let X be a random variable. Assume that the only available infor-
mation on X are the second-moment properties: X has a mean of 3 and a standard
deviation of 1/9. This is insufficient to uniquely define the probability law for X.
Figure 1.3 illustrates four models for X, each consistent with the available informa-
tion. In each case, histograms were generated with 10,000 independent samples. ♦

While hundreds of books and countless journal papers deal with estimation of
model parameters (step (3)), relatively little has appeared concerning the specification
of the mathematical form of the model [18], p. 5. This motivates model selection,
a procedure to select the optimal model for the system from a class of candidate
mathematical models.
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Figure 1.3: Four models for X, each with mean 3, standard deviation 1/9.

1.3 Model selection

The model selection process is illustrated by Fig. 1.4. As discussed, limited informa-
tion about the system implies that the mathematical model for the system may not
be unique. We therefore consider a class of candidate models for the system, where
each model in the class is consistent with the available information. The objective
is to select one model from the class of candidate models; we call this the optimal
model. The optimal model depends on the available information, and the class of
candidate models. The dashed line in Fig. 1.4 indicates that certain methods for
model selection include the model use, while others do not. In the case of the former,
the optimal model also depends on model use.

A model is a simplification of, or approximation for, reality (nature); a model is
not truth by definition. It follows that, in general, none of the candidate models are
an exact representation for nature. It is therefore a mistake to believe that there is a
perfect model for the system that will somehow be uncovered in the model selection
process [18], p. 11; we can only hope to select a model that provides an accurate
approximation for nature. The model selection process attempts to rank models in
the set of candidate models relative to each other; whether the optimal model is
actually “good” depends on the quality of the science and a priori thinking that
went into constructing each candidate model.

Methods for model selection can be applied to problems in one of two categories.
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• Category I: given a mathematical model for the system with a known func-
tional form and a collection of unknown model parameters, we use methods for
model selection to determine optimal values for the model parameters. Prob-
lems in this category are similar to problems in classical parameter estimation.

• Category II: given a collection of mathematical models for the system, where
each is (possibly) of a different functional form with a collection of unknown
parameters, we use methods for model selection to determine the optimal func-
tional form for the model, as well as values for the model parameters.

Model selection is not a new concept; numerous methods exist (see [18], pp. 27-29)
including, but not limited to:

1. Method of maximum likelihood ([35] and [63], Chapter 6)

This technique was originally developed to provide point estimates for any un-
known parameters of a given model form, i.e., Category I problems; these esti-
mates maximize a particular objective function, called the likelihood function.
The method of maximum likelihood has since been extended for use with Cat-
egory II problems to provide estimates of the likelihood of each model in a
collection of candidate models. The candidate model with the largest likeli-
hood is selected.
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2. Bayesian methods [11, 98]

As method (1), this method was originally developed for Category I problems.
Given data from an experiment, a model with fixed functional form, and prior
knowledge of a set of unknown parameters, this technique provides updated
or posterior knowledge of the model parameters. It also has been extended to
consider the more general Category II problems, where a collection of candidate
models, each with a different functional form and a set of unknown parameters,
is considered. In this case, the posterior knowledge gained from the Bayesian
method includes a collection of posterior model probabilities, as well as pos-
terior knowledge of the model parameters for each functional form; the model
with the largest posterior model probability is then selected to study the sys-
tem properties. A technique called Bayesian model averaging [80] may also be
used, where the system properties are estimated not by one model, but by the
average of a subclass of all models considered, weighted by the posterior model
probabilities. We refer to methods (1) and (2) as classical methods for model
selection.

3. Decision theory [81, 84]

The decision-theoretic method includes a representation for possible models of
the system, usually referred to as the possible states of nature, a set of options
for action, and a utility function that quantifies the decision maker’s preferences
for each action taken, under each possible nature state. This method for model
selection can be used to estimate model parameters, as well as to select the
optimal functional form for a mathematical model from a collection of candidate
models, i.e., Category I and II problems, respectively. The decision-theoretic
approach is more general than the classical methods since, with a special choice
of utility function, the classical solution can be recovered.

The form of the utility function is consistent with the model use. For example,
consider two mathematical models for a system, A and B, where the models are
to be used to design the system (model use). Suppose the consequences of using
model A is preferential to the consequences of using model B for the purpose
of design. We quantify this preference via an appropriate utility function; note
that the form of the utility function may change under a different model use.

There are several advantages to the decision-theoretic method for model selection
(see Table 1.1). First, classical methods for model selection, i.e., methods (1) and
(2), cannot be used unless data is available. In addition, these methods can be
unreliable when data exists, but is limited [34]. The decision-theoretic approach
does not have these limitations. Second, classical methods for model selection ignore
model use, meaning that for a given set of data, the selected model for the system does
not change under a different model use. In contrast, as we have seen, model use is
included in the decision-theoretic approach to model selection through an appropriate
utility function. This is especially important when constructing mathematical models
for systems where the consequences of using an incorrect model can be disastrous,
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Table 1.1. Methods for model selection.

Method Data Model use Philosophy

Classical Required Ignored Observation-based
Decision theory Not required Included Any

e.g., the collapse of a bridge during an earthquake or the structural failure of a
spacecraft during atmospheric re-entry. Herein, we refer to such systems as high
risk. Third, classical methods for model selection are typically compatible only with
the observation-based philosophy for model construction; this makes sense since it
is under this philosophy that the methods were developed. The decision-theoretic
approach, which makes use of both data and model use, is compatible with all three
of the philosophies for model construction discussed in Section 1.2.

One criticism of the decision-theoretic approach to model selection is the possible
subjectivity to the definition of the utility function. For example, consider a commit-
tee comprised of several experts; it is often the case that they differ on their definition
of the utility function [84], p. 83. Hence, it is crucial to the decision-theoretic ap-
proach for model selection that we understand the behavior of the system, as well as
the consequences of system failure, well enough to construct an appropriate utility
function. For the applications considered here, we assume this is the case.

Model selection has been studied extensively in numerous applications in the areas
of biology [18], meteorology [57], Section 7.3, finance [22, 70, 74], and geology [26].
Model construction for these types of systems typically follows the observation-based
philosophy and is applied to Category I problems. Category II problems have been
considered in a limited way, e.g., linear regression with unknown order (functional
form) and unknown coefficients (model parameters). With the exception of finance,
applications are typically limited to simple models, e.g., random variables or vectors.
Methods (1)-(3) for model selection are routinely used for calculations.

There have been relatively few applications of model selection in applied science
and engineering. Model construction for these types of systems typically follows a
physics-based or mixed philosophy, and complex stochastic behavior is often present.
Most of the applications in these fields use classical methods for calculation, require
that data be abundantly available, and study is limited to simple models, e.g., random
variables or vectors. Applications include Bayesian model updating for structural dy-
namics and structural reliability [7, 8, 62, 76, 90, 97], Bayesian analysis of model
form uncertainty [3], Appendix D, [58], and structural fatigue [101]. Very few appli-
cations use the decision-theoretic approach; applications include structural reliability
[38, 46, 51], and engineering materials [92].

Herein, we use the decision-theoretic approach for model selection for systems:
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(1) with little or no available data, and (2) that involve complex stochastic behavior,
i.e., non-Gaussian random vectors and stochastic processes. Special attention is given
to the high risk system, where the consequences of using an inappropriate model
can be disastrous. The applications considered are diverse; examples include the
prediction of the response of an internal component in a spacecraft during atmospheric
re-entry, and the design of a distributed sensor network for vehicle surveillance.

The model selection problem is defined in Chapter 2; methods for analysis are
also discussed. Simple applications are used to illustrate many aspects of the model
selection problem in Chapter 3. One class of stochastic model, the polynomial chaos
approximation, is defined and studied under the context of model selection in Chapter
4. Two high risk applications, namely the atmospheric re-entry of a spacecraft and
the design and analysis of a distributed sensor network for vehicle surveillance, are
discussed in Chapters 5 and 6, respectively. Conclusions are discussed in Chapter 7.
Several appendices are included.
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Chapter 2

The model selection problem

Generalities and essentials of the model selection problem are presented. A definition
of the problem is presented in Section 2.1. The method of maximum likelihood and
Bayesian methods, herein referred to as classical methods for model selection, are
discussed in Section 2.2, while the decision-theoretic approach to model selection is
discussed in Section 2.3. A series of related examples is used for illustration. A
sensitivity analysis of these methods for model selection in discussed in Section 2.4.

2.1 Problem definition

A framework for mathematical modeling is presented in Section 2.1.1, and the steps
of the model selection process, first introduced in Section 1.3, are discussed in detail
in Section 2.1.2.

2.1.1 Framework for mathematical modeling

Most systems in science and engineering can be described by an input/output rela-
tionship of the type shown in Fig. 2.1, where input Z and operator D are, in general,
vector-valued. Typically, D is defined by a collection of differential, integral, and/or
algebraic equations with (possibly) random coefficients. The objective is to estimate
properties of an output vector, Y. For example, D can be a finite element model of
a spacecraft that maps an applied pressure field, Z, to the displacement response, Y,
of an internal component. Properties of Y, e.g., the maximum in time, can then be
estimated. Note that our definition of a system includes Z, D, and Y, as illustrated
by the dashed lines in Fig. 2.1.

Models for Z, and/or D may be random or deterministic and, in general, are
defined by: (1) a functional form, and (2) a collection of parameters. Often, the
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System

Input Operator Output

Z D Y

Figure 2.1: Model for a system as an input/output relationship.

information on the system is limited, meaning that the functional form for Z and/or
D, as well as their parameters, may not be known precisely. In this case, we can
define a collection of candidate models for Z, and/or D, and use methods of model
selection to choose the optimal members from the collection.

2.1.2 Steps of model selection process

The model selection process requires four steps:

1. gather the available information on the system,

2. define a class of candidate models for the system,

3. consider the model use, and

4. calculate the optimal model.

Each of these steps is discussed in detail in the following sections.

2.1.2.1 Available information

Denote by I the available information on Z and/or D. As discussed in Section 1.1,
I is of two types: (1) data and/or (2) prior knowledge. If nothing is known about
the system behavior, we say the amount of available information is zero; if we have
complete understanding of the system behavior, we say the amount of available infor-
mation is complete. For applications, the amount of available information is nonzero,
but less than complete; we call this limited or incomplete information.
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2.1.2.2 Class of candidate models

Define

M = {all models for Z and/or D consistent with I} . (2.1)

M has the following properties: (1) it is nonempty and may contain an uncount-
able number of models, and (2) the number of models in M is nonincreasing with
increasing I. A member, m, of M is a candidate model for (Z,D); each m ∈ M
is consistent with I.

2.1.2.3 Model use

Model use refers to the purpose for which estimates of the properties of Y are consid-
ered. Several examples were discussed in Section 1.1. Herein, we study two different
types of model use in detail: (1) for design, i.e., select m ∈ M so that the proper-
ties of Y satisfy some constraints, and (2) for performance prediction, i.e., select
m ∈ M to predict system performance. Note that in general, the estimates of the
properties of Y are dependent on I, M, and model use.

2.1.2.4 Optimal model

Denote by m� ∈ M, the optimal model for Z and D. Three methods to select m�

will be discussed. Classical methods for model selection, which includes the method
of maximum likelihood and Bayesian methods, will be discussed in Section 2.2; as will
be shown, these methods are independent of model use. A decision-theoretic approach
to model selection is presented in Section 2.3. Note that, in general, m� ∈ M depends
on the:

1. available information, I,

2. class of candidate models, M, and

3. model use (decision-theoretic approach only).

The sensitivity of m� to changes in (1), (2), and/or (3) is discussed in Section 2.4.

Because I is, in general, incomplete, there may be additional models for the
system, not in M, that are superior to all candidate models considered. This is
consistent with Section 1.3, where we remark that it is a mistake to believe that
there is a perfect model for the system that will somehow be uncovered in the model
selection process. In fact, the use of m� to model the system does not imply belief
that the optimal model represents reality exactly; it implies only that under particular

35



Available information, I
• data
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Class of candidate
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properties

of Y

Figure 2.2: The model selection process.

circumstances (available information, resources, etc.) m� is pragmatically optimal
[51].

The model selection process is illustrated by Fig. 2.2; the dashed line is used to
indicate that model use may or may not be considered. We next present an example
to illustrate these definitions.

Example 2.1: Consider the following input/output relationship:

Y = D(Z; x) = Z + x, (2.2)

where x is a deterministic parameter, and Z is a random variable. Assume the
information on the probability law for Z is incomplete, and we are interested in the
following property of Y

P (Y ≤ d) , (2.3)

where d is a specified critical value for Y . We consider two cases of model use:
(1) design, and (2) performance prediction. For (1), x is a design parameter and
we set its value to achieve some design constraint, i.e., P (Y ≤ d) = q̄, where q̄ is a
specified level of reliability. For (2), the value for x is known and fixed.

The available information on Z is limited.

• Data: n ≥ 1 measurements of Z, {z1, z2, . . . , zn}.
• Prior knowledge: the probability law (CDF) for Z is one of Fi(z; θi), where θi

is a vector of unknown parameters, i = 1, 2, . . .
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Accordingly, let

M = {Fi(z; θi)}, i = 1, 2, . . . , (2.4)

be the class of all candidate models for Z. As discussed in Section 1.3, this is a
Category II model selection problem. The objective is to select an optimal model,
m� ∈ M, for random variable Z; note that m� under use (1) may be different than
m� under use (2). ♦

2.2 Classical methods for model selection

In this section, we discuss the classical methods for model selection. This includes
the method of maximum likelihood, defined in Section 2.2.1 and Bayesian methods,
defined in Section 2.2.2. As discussed in Chapter 1, classical methods for model
selection typically ignore model use, require data, and can be unreliable when data
is limited.

Define the available information, I, to be given by independent samples of Z and
D, denoted {z1, z2, . . . , zn}, and {x1,x2, . . . ,xq}, respectively, as well as any prior
knowledge on Z and D. We make two assumptions: (1) Z and D are independent,
and (2) the prior knowledge on Z and D is sufficient to define a collection of absolutely
continuous probability laws for Z and D.

Let F
(i)
Z (z; θi), i = 1, 2, . . ., be a collection of candidate probability laws (CDFs)

for Z with unknown parameter vector θi. Conditional on the functional form for D,
the remaining uncertainty in the operator relates to its coefficients. Accordingly, let
F

(j)
D (x; φj), j = 1, 2, . . ., be the collection of candidate CDFs for the coefficients of D,

for all possible functional forms for D; φj is the corresponding unknown parameter
vector. For example, consider the case of two candidate functional forms for the
operator, D1(X) and D2(X), and three candidate CDFs for the random coefficient,

X. In this case, we consider the collection F
(j)
D , j = 1, 2, . . . , 6. Let f

(i)
Z (z; θi),

i = 1, 2, . . ., and f
(j)
D (x; φj), j = 1, 2, . . ., denote the corresponding candidate PDFs

for Z and D, respectively. Then

M = {mij} =
{
f

(ij)
Z,D(z,x; θi, φj) = f

(i)
Z (z; θi) × f

(j)
D (x; φj)

}
, i, j = 1, 2, . . . (2.5)

is a collection of candidate models for Z and D, where f
(ij)
Z,D is the joint PDF of Z and

D.

It remains to define the procedure to select the optimal model, m� ∈ M. Classical
methods for model selection are one way to do this. Using the method of maximum
likelihood, discussed in Section 2.2.1, m� is a single joint PDF for Z and D, with point
estimates for parameters θ and φ. With Bayes’ method, discussed in Section 2.2.2,
m� is a single joint PDF for Z and D, but the parameters θ and φ are treated as
random vectors. Examples are presented to illustrate concepts.
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2.2.1 The method of maximum likelihood

Recall the likelihood function for Z and D [63, 98]

l
(i)
Z (θi) =

n∏
k=1

f
(i)
Z (zk; θi), i = 1, 2, . . .

l
(j)
D (φj) =

q∏
r=1

f
(j)
D (xr; φj), j = 1, 2, . . . , (2.6)

where zk, k = 1, 2, . . . , n, and xr, r = 1, 2, . . . , q, denote the available data. By
assumption (1), we define

lij(θi, φj) = l
(i)
Z (θi) l

(j)
D (φj), i, j = 1, 2, . . . (2.7)

to be the joint likelihood function for Z and D. We interpret lij to be the likelihood
that model mij is true. Note that lij < ∞, for i, j ≥ 1 since it is the product of a
finite number of PDFs. We can therefore define a collection of normalized likelihood
functions, given by

l̄ij =
lij∑∞

i,j=1 lij
(2.8)

where each l̄ij takes values in [0, 1].

To select m� ∈ M, we follow a two-step process:

1. select optimal values for parameter vectors θ and φ, and

2. select optimal functional forms for PDFs fZ and fD.

For step (1), the maximum likelihood point estimates, θ̂i and φ̂j , of parameter vectors
θi and φj, i, j = 1, 2, . . ., are the values for θi and φj that maximize Eq. (2.7).

Assuming vectors θi and φj have lengths ri and sj, respectively, i, j = 1, 2, . . ., θ̂i and

φ̂j solve

∂lij(θi, φj)

∂θi,k
= 0, k = 1, 2, . . . , ri,

∂lij(θi, φj)

∂φj,k

= 0, k = 1, 2, . . . , sj, (2.9)

such that

∂2lij(θi, φj)

∂θ2
i,k

< 0, k = 1, 2, . . . , ri,

∂2lij(θi, φj)

∂φ2
j,k

< 0, k = 1, 2, . . . , sj. (2.10)
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For step (2), we select m� =
(
f

(i)
Z (z; θ̂i), f

(j)
D (x; φ̂j)

)
∈ M such that

l̄ij(θ̂i, φ̂j) ≥ l̄kr(θ̂k, φ̂r), k, r = 1, 2, . . . (2.11)

To illustrate the method of maximum likelihood for model selection, we consider
two examples. In the first, the probability law for random variable Z is known and
we seek optimal values for parameter vector θ; this is a Category I problem. In the
second example, a Category II problem, the probability law for random variable Z
is known to be one of a collection of candidate probability laws, each with unknown
parameters; we seek the optimal probability law and its associated parameter vector.

Example 2.2: Assume the following information on random variable Z is available.

• Data: n independent samples of random variable Z, {z1, z2, . . . , zn}.
• Prior knowledge: Z is a Gaussian random variable.

By Eq. (2.6), the likelihood function is

l(µ, σ) =

n∏
k=1

f(zk; µ, σ) =
1

(2πσ2)n/2
exp

[
−

n∑
k=1

(zk − µ)2

2σ2

]
, (2.12)

where

f(z; µ, σ) =
1√
2πσ

exp

[
−1

2

(
z − µ

σ

)2
]

(2.13)

is the PDF of a Gaussian random variable, and θ = (µ, σ)T are unknown parameters.
By Eq. (2.9), we have

∂(ln l)

∂µ
= − 1

σ2

n∑
k=1

(zk − µ) = 0, and

∂(ln l)

∂σ
= −n

σ
+

1

σ3

n∑
k=1

(zk − µ)2 = 0. (2.14)

The solution to Eq. (2.14) gives θ̂ = (µ̂, σ̂)T , the maximum likelihood estimate of θ,
i.e., [63], p. 124

µ̂ =
1

n

n∑
k=1

zk, and

σ̂2 =
1

n

n∑
k=1

(zk − µ̂)2. (2.15)

The solution can be interpreted as the optimal model over the space of parameters
(µ, σ > 0). ♦
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Example 2.3: Next assume the available information on random variable Z is given
by the following.

• Data: n independent samples of random variable Z, {z1, z2, . . . , zn}.
• Prior knowledge: Z is either a Gaussian or exponential random variable.

The candidate models for Z are M = {f (i)(z; θ̂i)}, i = 1, 2, where f (1) is f from
Eq. (2.13), and

f (2)(z; α, ν) = ν exp [−ν(z − α)], z ≥ α. (2.16)

is the PDF for an exponential random variable. θ̂1 and θ̂2 are maximum likelihood
point estimates of the unknown parameter vectors θ1 = (µ, σ)T , and θ2 = (α, ν)T .

By step (1), we need to calculate θ̂i, i = 1, 2; Eq. (2.15) gives θ̂1. Using Eq. (2.9),
we have

α̂ = min
j

zj , and

ν̂ =
n∑n

k=1(zk − α̂)
. (2.17)

Equation (2.6) then gives values for li(θ̂i), i = 1, 2.

Step (2) is to select m� = f (i)(z; θ̂i), i = 1 or 2. Consider the case where n = 5
samples are available, i.e.,

{z1, z2, . . . , z5} = {4.14, 3.37, 4.50, 3.01, 5.66}.
The maximum likelihood point estimates for the parameters are µ̂ = 4.14, σ̂2 = 0.860,
α̂ = 3.01, and ν̂ = 0.887; by Eq. (2.8), l̄1 = 0.234 and l̄2 = 0.766. Hence, by
Eq. (2.11), m� = f (2)(z; α̂, ν̂). ♦

2.2.2 Bayesian methods

Consider a collection of mutually exclusive events H1, H2, . . . , Hr ∈ F , defined on
probability space (Ω,F , P ), where ∪r

i=1Hi = Ω and Hi ∩ Hj = ∅ for i 
= j. In this
case, we say {Hi}, i = 1, 2, . . . , r, forms a partition of Ω. For event E ∈ F , Bayes’
theorem states [31], p. 124

P (Hj | E) =
P (E | Hj)P (Hj)∑r
i=1 P (E | Hi)P (Hi)

, j = 1, 2, . . . , r. (2.18)

Often, we write Eq. (2.18) as a relation of proportionality, i.e.,

P (Hj | E) ∝ P (E | Hj)P (Hj), j = 1, 2, . . . , r. (2.19)
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If we interpret H1, H2, . . . , Hr as possible hypotheses, and E as evidence gained from
performing an experiment, then Eq. (2.18) dictates how opinions on these hypotheses
held before the experiment should be modified after the experiment takes place [85],
p. 80.

In terms of the available information on the system, I, the experimental evidence
is the collection of independent samples {z1, z2, . . . , zn}, and {x1,x2, . . . ,xq}. The
hypotheses, Hj, j = 1, 2, . . . , r, are any prior knowledge on Z and D; this prior
knowledge is quantified by:

1. prior probabilities, p′ij , i, j = 1, 2, . . ., that mij ∈ M is the correct model for
the system, and

2. prior PDFs f
′ (ij)
Θ,Φ (θi, φj), i, j = 1, 2, . . ., of the parameter vectors, Θ and Φ.

We require the prior knowledge to satisfy the following conditions:

∞∑
i,j=1

p′ij = 1, and (2.20a)

∫
Dθi

∫
Dφj

f
′ (ij)
Θ,Φ (θi, φj) dφj dθi = 1, i, j = 1, 2, . . . , (2.20b)

where Dθi
and Dφj

denote the domain of vectors θi and φj, respectively.

Direct application of Bayes’ theorem, Eq. (2.19), gives

f
′′ (ij)
Θ,Φ (θi, φj) ∝ f

′ (ij)
Θ,Φ (θi, φj)lij(θi, φj), i, j = 1, 2, . . . , (2.21)

where f
′′ (ij)
Θ,Φ (θi, φj), i, j = 1, 2, . . ., is a collection of posterior PDFs for Θ and Φ,

and lij(θi, φj) is the joint likelihood function defined by Eq. (2.7). The posterior
probability, p′′ij, that mij ∈ M is the correct model for the system can be computed
[51]

p′′ij ∝ p′ij

∫
Dθi

∫
Dφj

f
′ (ij)
Θ,Φ (θi, φj)lij(θi, φj) dφj dθi, i, j = 1, 2, . . . (2.22)

The posterior knowledge must also satisfy some conditions. First, the posterior prob-
abilities are normalized, i.e., Eq. (2.20a) with p′ij replaced by p′′ij . Second, each

posterior PDF is scaled to integrate to one, i.e., Eq. (2.20b) with f
′ (ij)
Θ,Φ replaced by

f
′′ (ij)
Θ,Φ .

Under the Bayesian method, the optimal model is then m� = mij ∈ M such that

p′′ij ≥ p′′kr, k, r = 1, 2, . . . (2.23)
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Note that with the Bayesian method, we do not approximate the unknown param-
eter vectors Θ and Φ using point estimates; we instead model them as absolutely
continuous random vectors.

To illustrate the Bayesian method for model selection, we consider the same two
examples from Section 2.2.1, but here we use the Bayesian method to select optimal
models for random variable Z. In the first example, the probability law for random
variable Z is known and we seek an optimal model for parameter vector θ; this is a
Category I problem. In the second example, a Category II problem, the probability
law for random variable Z is known to be one of a collection of candidate probability
laws, each with unknown parameters; we seek the optimal probability law and a model
for its associated parameter vector.

Example 2.4: This example is taken from [98], pp. 14-17. Assume the following
information is available on random variable Z.

• Data: n independent samples of random variable Z, {z1, z2, . . . , zn}.
• Prior knowledge: (1) Z is Gaussian, (2) Var[Z] = σ2, and (3) Z has unknown

mean µ, with prior PDF f ′(µ), where

f ′(µ) =
1√

2πσ1

exp

[
−1

2

(
µ − µ1

σ1

)2
]
, (2.24)

and parameters µ1 and σ2
1 are known and fixed.

By Eq. (2.21), the posterior PDF for the mean of Z is given by

f ′′(µ) ∝ f ′(µ)l(µ)

∝ exp

[
−1

2

(
1

σ2

n∑
k=1

(zk − µ)2

)
+

(
µ − µ1

σ1

)2
]
, (2.25)

where the likelihood function, l(µ) given by Eq. (2.12), is written as a function
of µ alone since here the value for σ is known. We then scale f ′′(µ) such that∫∞
−∞ f ′′(µ) dµ = 1. The solution can be interpreted as the optimal model over the

space of parameter µ. ♦

Example 2.5: Next assume the available information on Z is given by the following.

• Data: n independent samples taken from random variable Z.

• Prior knowledge: (1) Var[Z] = 2, (2) Z is either a Gaussian or exponential
random variable with equal probability, i.e., p′1 = p′2 = 1/2, (3) if Z is Gaussian,
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Figure 2.3: Prior and posterior PDFs for µ (left) and α (right).

parameter σ2 is known; the unknown parameter µ, has prior PDF, f ′(1)(µ), given
by Eq. (2.24), and (4) if Z is exponential, parameter ν is known; the unknown
parameter α, has prior PDF, f ′(2)(α), given by

f ′(2)(α) =
1√

2πσ2

exp

[
−1

2

(
α − µ2

σ2

)2
]
, (2.26)

where parameters µ2 and σ2
2 are known and fixed.

The candidate models for Z are M = {f (i)(z; Θi)}, i = 1, 2, where f (1) is the PDF of
a Gaussian random variable, given by Eq. (2.13), with Θ1 = µ, and f (2) is the PDF
of an exponential random variable, given by Eq. (2.16), with Θ2 = α.

The posterior PDF for µ is given by Eq. (2.25); the posterior PDF for α can be
computed via

f ′′(2)(α) ∝ f ′(2)(α)l2(α)

∝ exp

[
−ν

n∑
k=1

(zk − α) − 1

2

(
α − µ2

σ2

)2
]
. (2.27)

We then scale f ′′(i), i = 1, 2, such that
∫∞
−∞ f ′′(i)(θi) dθi = 1. Equation (2.22) gives

the posterior probability that Z is Gaussian or exponential. With parameters σ2 = 2,
ν =

√
2/2, µ1 = µ̂, σ2

1 = 2, µ2 = α̂, σ2
2 = 1, and the samples from Example 2.3, we

have p′′1 = 0.993 and p′′2 = 0.007; thus the Gaussian model is optimal. The prior and
posterior PDFs for µ and α are shown in Fig. 2.3. ♦

2.3 Decision-theoretic method for model selection

Modeling in applied science and engineering involves the making of decisions [51]. It
is therefore natural to consider the model selection process outlined in Section 2.1 as
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a problem in decision theory, herein referred to as the decision-theoretic method
for model selection. In contrast to the classical methods for model selection studied
in Section 2.2, the decision-theoretic method for model selection includes model use,
does not require data and is reliable when data is limited, and allows us to quantify
the consequences of choosing one model of the system over another. We present
an overview of decision theory in Section 2.3.1, then formulate the model selection
problem as a problem in decision theory in Section 2.3.2.

2.3.1 Decision theory

Consider an event for which we have incomplete information, called the state of
nature; because the information on the state of nature is limited, it is uncertain.
Suppose further we must choose an action to take, but the consequences of taking
an action depend on the state of nature. For example, consider the problem of
deciding whether or not to bring an umbrella to school, given that the state of nature
for the day (the weather) is uncertain. Decision theory is a rigorous mathematical
framework for making the optimal decision from a collection of candidate choices,
under the uncertainty in the state of nature. It is a special case of Game theory
[13, 93], where the game is played against nature [21], p. 16. We begin the discussion
with a general framework for problems in decision theory, and then present a simple
example to illustrate concepts.

The general problem in decision theory has four ingredients [21], p. 10:

1. the collection of candidate actions, A,

2. the collection of all possible states of nature, M,

3. the utility function, U , and

4. the optimal action, a� ∈ A.

Each of these ingredients is discussed in detail in the following sections.

2.3.1.1 Candidate actions

A decision problem exists when there is a choice of candidate actions to take; the
consequence of these actions must depend on the state of nature [21], p. 10. Define

A = {all candidate actions} = {ai}, i = 1, 2, . . . (2.28)

to be the collection of candidate actions. By construction, A is countable.
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2.3.1.2 Possible states of nature

Recall that I denotes any information on the state of nature. Define

M = {all possible states of nature consistent with I} = {mj}, j ∈ J, (2.29)

where J is an index set that, in general, is uncountable. Note that mj ∈ M, j ∈ J ,
is consistent with the available information, I.

Let pj denote the probability that mj is true. We require
∑

j∈J pj = 1. Note that
pj = 1 implies the state of nature is known to be mj , i.e., I is complete, and pj = 0
implies mj is not a possible state of nature. Hence, without loss of generality we
consider the case where pj ∈ (0, 1), ∀j ∈ J .

2.3.1.3 Utility

Let the mapping

(ai, mj) → cij, i = 1, 2, . . . , ∀j ∈ J, (2.30)

define the consequence for action, ai, assuming the state of nature is mj . Let U de-
note the utility function; U takes nonnegative values and quantifies the consequences
of each action, under each state of nature, i.e., U : A×M → [0,∞).

For some problems, it is possible to define U directly; in the general case, we
use the consequences, cij, to assign properties for U . Assume the consequences can
be ordered according to their preference ([27], Chapter 12, and [93]). To illustrate,
consider, for consequences cij , ckl, cpq, and crs, the following preference ordering:

cij ≺ ckl � cpq ∼ crs. (2.31)

We say consequence ckl is preferred to consequence cij, consequence cpq is preferred
or equivalent to consequence ckl, and consequence crs is strictly equivalent to
consequence cpq. We assume the preference ordering is transitive, i.e.,

cij ≺ ckl ≺ cpq =⇒ cij ≺ cpq. (2.32)

The utility is defined such that it satisfies the following conditions:

U(ai, mj) < U(ai′ , mj′) ⇐⇒ cij � ci′j′,

U(ai, mj) ≤ U(ai′ , mj′) ⇐⇒ cij � ci′j′, and

U(ai, mj) = U(ai′ , mj′) ⇐⇒ cij ∼ ci′j′. (2.33)

Note that, with this construction, U has the property of scale indifference [54], p. 159,
i.e.,

U(ai, mj) ≤ U(ai′ , mj′), i = 1, 2, . . . , ∀j ∈ J =⇒
Û(ai, mj) ≤ Û(ai′, mj′), i = 1, 2, . . . , ∀j ∈ J, (2.34)
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where Û = αU + β, and α > 0, β are deterministic constants. Further, the utility
function may not be unique.

In the literature, it is usual to: (1) construct U such that the complement of the
LHS of Eq. (2.33) is true, i.e., U(ai, mj) > U(ai′ , mj′) ⇐⇒ cij � ci′j′, etc., (2) define
the opportunity loss as L = −U , and (3) use L for calculations [84], p. 60. With our
construction, we have avoided this step.

2.3.1.4 Optimal action

By definition, the utility, U , is a random variable; we define the expected utility of
action ai

u(ai) = E[U(ai,M)] =
∑
j∈J

U(ai, mj) pj , i = 1, 2, . . . , (2.35)

where pj, defined in Section 2.3.1.2, is the probability that state of nature mj is true.
Action ak is optimal if and only if u(ai) is a minimum for i = k [46]; in this case, we
denote ak by a�, where

u(a�) ≤ u(ai), i = 1, 2, . . . (2.36)

It follows that a� is the most preferable action, i.e., a� � ai, i = 1, 2, . . ..

Example 2.6: Given that it may rain today in Ithaca, should Tyler: (1) bring an
umbrella to school today, or (2) leave it at home? The possible states of nature are

m1 = {it rains today}, and

m2 = {it doesn’t rain today}. (2.37)

Tyler can estimate pj , j = 1, 2, in one of several ways. First, by using data, e.g.,
he can build a time series model from weather observations in Ithaca over the last
50 years and use it to forecast the weather for today. Second, he can use any prior
knowledge, e.g., from watching the Weather Channel. Third, he can use “expert”
opinion, e.g., he can ask his dad.

Tyler’s candidate actions are

a1 = {bring the umbrella}, and

a2 = {don’t bring the umbrella}, (2.38)

and his preferences define the ordering of the consequences, cij, of action ai, under
state of nature mj . Assume he assigns the following ordering

c21 ≺ c12 ≺ c11 ≺ c22, (2.39)
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Nature
m1 m2

Action a1 1 2
a2 5 0

Figure 2.4: Utility function, U(ai, mj), for example decision problem.

meaning that the consequence of leaving the umbrella at home and it rains, c21, is
least preferable because he has to sit in class all day with wet clothes; by Eq. (2.39),
all other consequences are preferable to this one.

Using Eq. (2.33), Tyler can define values for the utility of action ai, when the state
of nature is mj ; this will not uniquely define U . Suppose he decides on the values
listed in Fig. 2.4; the expected utility of each action can be calculated by Eq. (2.35)

u(ai) = E[U(ai,M)] = U(ai, m1) p1 + U(ai, m2) p2, i = 1, 2. (2.40)

With p1 = 2/3 and p2 = 1/3, Eq. (2.40) gives u(a1) = 4/3, u(a2) = 10/3. The
optimal action for Tyler is therefore a� = a1 by Eq. (2.36). ♦

2.3.1.5 Model selection uncertainty

Consider the scenario when the form of the utility function is uncertain; this can
occur, for example, if a committee comprised of several experts with differing opinions
is asked to define the utility. In addition, recall Fig. 2.4 used in Example 2.6. The
values for U were assigned from an adult point of view; most likely a child is not as
concerned with having wet clothes and would select a different utility.

We assume: (1) we can express the utility function in a general functional form,
e.g., a Fourier expansion, with a vector of coefficients given by β; in this case we
write U(A,M; β), and (2) the uncertainty in the utility can be completely described
by allowing the coefficients, β, to be a random vector with known probability law,
F . Under these assumptions, Eq. (2.35) is a conditional expected utility; it follows
that [84], p. 83

u(ai) =

∫
Dβ

∑
j∈J

U(ai, mj; β) pj F (dβ), i = 1, 2, . . . (2.41)

is the unconditional expected utility of action ai ∈ A, where Dβ denotes the domain
of vector β.

2.3.2 Application of decision theory to model selection

Recall Fig. 2.1, where the objective is to select models for input, Z, and/or operator,
D, to estimate properties of output, Y, for a particular model use. As we have seen,
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in general the available information on the system we wish to model is incomplete.
As a result, models for Z and/or D will exhibit some degree of inconsistency with the
true behavior of the system, and estimates of the properties of Y will be incorrect.
We seek a procedure by which to choose models for Z and/or D such that we achieve
conservative estimates of the properties of Y; our definition of “conservative” will
depend on the model use. The decision-theoretic method for model selection is one
way to achieve this. We present a general formulation of the method in Section 2.3.2.1,
and then apply the method for two types of model use: (1) for design, discussed in
Section 2.3.2.2, and (2) for performance prediction, discussed in Section 2.3.2.3.

2.3.2.1 General formulation

Let A = {a1, a2, . . . , aq} denote the collection of candidate actions; practical limita-
tions require A to be finite. The character of the objects contained in A reflect the
model use. For example, if the model use is design, each ai ∈ A is a candidate design
for the system (or some collection of subsystems); if the model use is performance
prediction, each ai ∈ A is a candidate model for the system (or some collection of
subsystems).

M is the complete, i.e., exhaustive, uncountable collection of models for the
system, where each m ∈ M is consistent with the available information on the system.
For calculations, we consider a finite subcollection

M′ = {m1, m2, . . . , mn} ⊆ M, (2.42)

with corresponding probabilities pi, i = 1, 2, . . . , n, that mi is true. The collections
A and M′ do not coincide, in general; A = M′ is a special case.

It is desirable, for some ε > 0 small, to have

n∑
j=1

pj > 1 − ε, (2.43)

meaning that the probability of any model being true in M \ M′ is small. In the
general case, there is no way to verify the models in M′ satisfy Eq. (2.43). Further,
we normalize pi such that

∑n
i=1 pi = 1. For each i = 1, 2, . . . , n, pi can be estimated by:

(1) the likelihood of model mi (Section 2.2.1), (2) the Bayesian posterior probability
of mi (Section 2.2.2), or (3) in the absence of data, non-informative prior probabilities
or “expert” opinion.

A utility function is used to quantify the consequences of taking action ai, if model
mj is true. Define U : A×M′ → [0,∞) as

U(ai, mj) = γ(ai) + ψ(ai, mj), i = 1, 2, . . . , q, j = 1, 2, . . . , n, (2.44)
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Model, M′ ⊆ M
mj

Action, A ai U(ai, mj)

Figure 2.5: Utility function, U(ai, mj), for model selection problem.

where γ(ai) ≥ 0 is the cost of action ai, and ψ(ai, mj) ≥ 0 is the penalty of action
ai, if model mj is true. It follows that the expected utility of each ai ∈ A is given by

u(ai) =
n∑

j=1

U(ai, mj) pj = γ(ai) +
n∑

j=1

ψ(ai, mj) pj , i = 1, 2, . . . , q. (2.45)

The optimal action, a� ∈ A, minimizes Eq. (2.45). The concept of utility is further
illustrated for the general case by the array in Fig. 2.5. Note that if we choose not
quantify the consequences of taking a particular action, it is equivalent to assessing
U for a single cell in the array.

To illustrate the cost, γ, and penalty, ψ, recall the values for the utility function
from Example 2.6, listed in Fig. 2.4. The cost of bringing the umbrella is one, and
the cost of leaving the umbrella at home is zero. Hence, γ(a1) = 1 and γ(a2) = 0.
The diagonal elements of the array in Fig. 2.4 are assigned zero penalty since, for
these cases, Tyler guesses correctly, i.e., he brings the umbrella if it rains, and leaves
it at home if it does not. The off-diagonal elements of the array correspond to an
incorrect guess; penalties ψ(a1, m2) = 2 and ψ(a2, m1) = 4 are assigned accordingly.
In the general case, the functional form for γ and ψ depend on model use; we will
define both for the cases of design and performance prediction in Sections 2.3.2.2
and 2.3.2.3, respectively.

Example 2.7: Consider the special case, discussed in [46], p. 23, where:

1. A = M′, and

2. U(ai, mj) = 1 − δij , where δij = 1 for i = j and zero otherwise.

The expected utility of each candidate action is given by

u(ai) =

n∑
j=1

(1 − δij) pj = 1 − pi, i = 1, 2, . . . , q, (2.46)

so that a� = mk if pk ≥ pi, i = 1, 2, . . . , n. Hence, the optimal model under the
decision-theoretic method for model selection is identical to the optimal model under
the classical methods for model selection discussed in Section 2.2; if we assign pj to
be the likelihood of mj , the maximum likelihood solution is recovered, while if we
assign pj to be the posterior probability of mj , the Bayesian solution is recovered. ♦
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2.3.2.2 Model use: design

Suppose the objective is to construct a mathematical model for the system so that
the properties of the output, Y, satisfy some constraints; we call this a design
problem. We first develop a general formulation for the utility function introduced
in Section 2.3.2.1 assuming the model use is design, then present an example for
illustration.

Consider the case when r ≥ 1 properties of Y ∈ R
d′ are of interest. Denote by

gk(Y), k = 1, 2, . . . , r, the properties of Y, where each gk : R
d′ → R

r is a deterministic,
measurable mapping. For example, g1(Y) = maxj Yj and g2(Y) =

∑
j Yj define

two properties of Y, where Yj denotes the j-th coordinate of Y. The objective
is then to select a design for the system such that, for k = 1, 2, . . . , r, we have
P (gk(Y) ≤ dk) = q̄k, where dk and q̄k, are deterministic parameters that define the
design constraints. However, the probability law for Y is not known because, in the
general case, information on Y is incomplete.

In the case of model use for design, each member of A is a candidate design for the
system. The objective of the design problem can be stated as follows: select design
ai ∈ A such that, for j = 1, 2, . . . , n, and k = 1, 2, . . . , r, we have

P (gk(Y) ≤ dk | ai, mj) = q̄k. (2.47)

Note that the probability law for Y under design ai and model mj is perfectly known,
so that P (gk(Y) ≤ dk | ai, mj) can be calculated. Further, the condition in Eq. (2.47)
may not be satisfied, i.e.,

P (gk(Y) ≤ dk | ai, mj) 
= q̄k, some k ∈ {1, 2, . . . , r}. (2.48)

Recall the definition of the utility function, given by Eq. (2.44), where γ(ai)
denotes the cost of design ai, and ψ(ai, mj) denotes the penalty associated with
design ai, if model mj is true. Let

γ(ai) = cost of implementing design ai. (2.49)

For example, we set γ(ai) > γ(aj) ≥ 0 if design ai requires more material, funds,
development time, etc., than design aj .

Consistent with Eq. (2.30), we need a method to order the consequences of design
ai, assuming mj is true, for each i = 1, 2, . . . , q and j = 1, 2, . . . , n, in order to define
the penalty function, ψ(ai, mj). Let vector ξij ∈ R

r be such that

P (gk(Y) ≤ ξij,k | ai, mj) = q̄k, k = 1, 2, . . . , r, (2.50)

where ξij,k denotes the k-th coordinate of ξij . It follows that

ξij,k ≤ dk ⇐⇒ P (gk(Y) ≤ dk | ai, mj) ≥ q̄k, and (2.51a)

ξij,k > dk ⇐⇒ P (gk(Y) ≤ dk | ai, mj) < q̄k. (2.51b)
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Figure 2.6: Example penalty function for design.

If ai satisfies Eq. (2.51a), we say it is a conservative design with respect to property
k, while if ai satisfies Eq. (2.51b), we say it is a non-conservative design with
respect to property k. A conservative design is preferable to a non-conservative
design; we use Eqs. (2.51) to order the consequences of each (ai, mj) pair.

For example, consider the case where the objective is to constrain one property of
scalar random variable, Y , i.e., r = d′ = 1; Eq. (2.51) reduces to

ξij ≤ d ⇐⇒ P (g(Y ) ≤ d | ai, mj) ≥ q̄, and

ξij > d ⇐⇒ P (g(Y ) ≤ d | ai, mj) < q̄. (2.52)

An appropriate penalty function is given by

ψ(ai, mj) = ψ̃(ξij, d) =

{
β1(ξij − d)2 if ξij ≤ d, and

β2(ξij − d)2 if ξij > d,
(2.53)

where β1, β2 ≥ 0 are deterministic parameters, and we replace ψ with ψ̃ to denote
that the penalty assigned to design ai when model mj is true can be expressed as
a function of ξij and d alone. We require β2 > β1 since {ξij ≤ d} is preferable to
{ξij > d}. ψ̃ is illustrated by Fig. 2.6, where it is evident that non-conservative
designs are heavily penalized; note that a design that is overly conservative is also
subject to a penalty.

The generalization to the case of d′, r > 1 is straightforward. Define

ψ(ai, mj) = ψ̃(ξij ,d) = s(ξij,d) ‖ξij − d‖2, (2.54)

where ‖y‖ denotes the 2-norm of vector y, d ∈ R
r is a vector with coordinates dk,
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k = 1, 2, . . . , r, and s(ξij,d) is a scaling function, given by

s(ξij,d) =

2r∑
k=1

βk 1 (ξij ∈ Ck(d)) . (2.55)

Each βk ≥ 0, k = 1, 2, . . . , 2r, is a deterministic parameter, and the collection Ck(d) ⊆
R

r, k = 1, 2, . . . , 2r, is given by

C1(d) =
r×

l=1
(−∞, dl]

C2(d) =


 r×

l=1
l �=r

(−∞, dl]


×


 r×

l=1
l �=1,2,...,r−1

(dl,∞)




C3(d) =


 r×

l=1
l �=r−1

(−∞, dl]


×


 r×

l=1
l �=1,2,...,r−2,r

(dl,∞)




...

C2r(d) =
r×

l=1
(dl,∞) (2.56)

For example, with r = 1, Eq. (2.54) gives Eq. (2.53). With r = 2, Eq. (2.54) gives

ψ̃(ξij,d) = [β11 (ξij ∈ C1(d)) + β21 (ξij ∈ C2(d))+

β31 (ξij ∈ C3(d)) + β41 (ξij ∈ C4(d))] ‖ξij − d‖2, (2.57)

where

C1(d) = (−∞, d1] × (−∞, d2],

C2(d) = (−∞, d1] × (d2,∞),

C3(d) = (d1,∞) × (−∞, d2],

C4(d) = (d1,∞) × (d2,∞). (2.58)

If ξij ∈ C1(d), then design ai under model mj is conservative with respect to both
g1(Y) and g2(Y), while if ξij ∈ C4(d), ai under model mj is non-conservative with
respect to both properties. Suppose ξij ∈ C2(d) is preferable to ξij ∈ C3(d); we
therefore select values for the coefficients of Eq. (2.57) such that β1 < β2 < β3 < β4.
The scaling function, s(ξij,d), is shown in Fig. 2.7, for β1 = 1, β2 = 2, β3 = 3, and
β4 = 5.

The functional form of the utility used in this section, Eq. (2.54), provides the
desired effect, i.e., penalizes non-conservative designs, but it is not unique; alternative
forms can be used. Regardless, the utility defined by Eq. (2.54) is sufficient for all
design problems considered herein.
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Figure 2.7: The function s(ξij ,d) for r = 2.

Example 2.8: Recall Example 2.1, where Y = Z + x. The objective is to select the
value for x such that

P (Y ≤ d) = q̄, (2.59)

under limited information on Z, where q̄ ∈ [0, 1] is the required reliability of the
design, and d is a specified critical value for Y . Note that, in this case, the property
of interest is Y itself, i.e., g(Y ) = Y .

Assume the available information on Z is given by the following.

• Data: n independent samples of random variable Z.

• Prior knowledge: Z is either a Gaussian or lognormal random variable.

The candidate models for Z are given by M′ = {F1(z; θ̂1), F2(z; θ̂2)}, where F1 is the
CDF of a Gaussian random variable, F2, given by

F2(z; θ2) =

∫ z

0

1√
2πζs

exp

[
−1

2

(
ln s − η

ζ

)2
]
ds, (2.60)

is the CDF of a lognormal random variable, and θ̂1 and θ̂2 are the maximum likelihood
estimates of parameter vectors θ1 = (µ, σ)T and θ2 = (η, ζ)T , respectively.
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We consider two candidate designs, denoted by A = {x1, x2}, where

xi = d − F−1
i (q̄; θ̂i), i = 1, 2. (2.61)

Let the cost of design xi be quantified by

γ(xi) = γ0x
2
i , (2.62)

where γ0 ≥ 0 is a deterministic parameter. For design xi under model mj , the LHS
of Eq. (2.59) is

P (Y ≤ d | ai, mj) = P (Z ≤ d − xi | mj) = Fj(d − xi; θ̂j), (2.63)

illustrating that, for i 
= j, the design constraint, Eq. (2.59), is violated. An
appropriate penalty is Eq. (2.53), where we define ξij such that

Fj(ξij − xi; θ̂j) = q̄. (2.64)

To illustrate, consider the identical n = 5 samples from Example 2.3, and let
parameters d = 6, q̄ = 0.99, β1 = 1, β2 = 10, and γ0 = 1. By Eq. (2.61),
x1 = −0.296 and x2 = −0.756. Under (x1, F2), ξ12 = x1 + F−1

2 (q̄; θ̂2) = 6.46, so
design x1 is non-conservative if model F2 is true by Eq. (2.51b). Likewise, under
(x2, F1), ξ21 = x2 + F−1

1 (q̄; θ̂1) = 5.54, so design x2 is conservative if model F1 is
true by Eq. (2.51a). Note that, by Eqs. (2.61) and (2.64), ξ11 = ξ22 = d. Using
p1 = l̄1 = 0.453 and p2 = l̄2 = 0.547, by Eq. (2.45) we have

u(x1) = γ0x
2
1 + 0 · p1 + β2(ξ12 − d)2p2 = 1.25, and

u(x2) = γ0x
2
2 + β1(ξ21 − d)2p1 + 0 · p2 = 0.667, (2.65)

so that design x2 is optimal. ♦

2.3.2.3 Model use: predict performance

Next suppose the objective is to construct a mathematical model to assess the perfor-
mance of the system; we call this a prediction problem. We first develop a general
formulation for the utility function assuming the model use is performance prediction,
then present an example for illustration.

Recall from Section 2.3.2.1 that M is the collection of all possible models for
the system, and M′ = {m1, m2, . . . , mn} ⊆ M is a finite subcollection. In the case
of model use for performance prediction, A = {a1, a2, . . . , aq} ⊆ M, so that each
member of A is also a candidate model for the system. Most often, we have A = M′;
in general, A and M′ do not coincide. To illustrate the latter, consider the case where
each member of A is an approximation for a member of M′. This is one example
where A and M′ do not coincide, and is considered in Chapter 4.
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As in Section 2.3.2.2, let gk(Y), k = 1, 2, . . . , r, denote the properties of Y that
are of interest, and let dk, k = 1, 2, . . . , r, be a collection of deterministic parameters.
The objective is to assess the performance of the system, which we assume can be
quantified by calculating, for all k = 1, 2, . . . , r, values for P (gk(Y) ≤ dk). Because
information on Y is incomplete, the probability law for Y is not known.

Every ai ∈ A and every mj ∈ M′ define a probability law for Y. Let

P (gk(Y) ≤ dk | ai) , i = 1, 2, . . . , q, k = 1, 2, . . . , r, (2.66)

denote a prediction of system performance using model ai, and let

P (gk(Y) ≤ dk | mj) , j = 1, 2, . . . , n, k = 1, 2, . . . , r, (2.67)

denote the system performance assuming mj is true. Note that the probability law for
Y under models ai or mj is perfectly known, so that the probabilities in Eqs. (2.66)
and (2.67) can be calculated for i = 1, 2, . . . , q, j = 1, 2, . . . , n; this is true for the
general case where A and M′ do not coincide.

Assuming model mj is true, if ai 
= mj, the prediction of system performance by
Eq. (2.66) is inconsistent with Eq. (2.67). If model ai ∈ A is such that

P (gk(Y) ≤ dk | ai) ≤ P (gk(Y) ≤ dk | mj) , (2.68)

we say that model ai results in a conservative prediction of performance with
respect to property k; ai results in a non-conservative prediction of performance
with respect to property k if the complement of Eq. (2.68) is true. A conservative
prediction is preferable to a non-conservative prediction; we use Eq. (2.68) to order
the consequences of each (ai, mj) pair.

As defined by Eq. (2.44), the utility function has two parts: (1) the cost func-
tion, γ, and (2) the penalty function, ψ. In the case of model use for performance
prediction, we have

γ(ai) = cost of using model ai for prediction. (2.69)

For example, we set γ(ai) > γ(aj) ≥ 0 if a prediction with model ai requires additional
effort, e.g., CPU time, than a prediction with model aj . We use ψ(ai, mj) to penalize
all ai ∈ A that give non-conservative predictions of performance, i.e., those models
that violate Eq. (2.68). Let vi ∈ R

r be a vector with coordinates given by Eq. (2.66),
and hj ∈ R

r be a vector with coordinates given by Eq. (2.67). Then

ψ(ai, mj) = ψ̃(vi,hj) = s(vi,hj) ‖vi − hj‖2, (2.70)

where s(vi,hj) is defined by Eq. (2.55) with ξij and d replaced by vi and hj ,
respectively. As in Eq. (2.54), we replace ψ with ψ̃ to denote that the penalty
assigned to prediction under model ai when model mj is true can be expressed as a
function of vi and hj alone. The penalty function defined by Eq. (2.70) is illustrated
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Figure 2.8: Example penalty function for prediction.

by Fig. 2.8 for the case of r = 1. Non-conservative predictions are heavily penalized;
note that a prediction that is overly conservative is also subject to a penalty. For the
special case when A = M′, we have vi = hi, i = 1, 2, . . . , n, so that ψ(mi, mj) =
ψ̃(hi,hj).

The functional form of the utility used in this section, Eq. (2.70), provides
the desired effect, i.e., penalizes non-conservative predictions, but it is not unique;
alternative forms can be used. Regardless, the utility defined by Eq. (2.70) is
sufficient for all prediction problems considered herein.

Example 2.9: Recall Example 2.8, where we now assume the design to be fixed
such that Y = Z a.s., i.e., x = 0. The objective is to predict P (Y ≤ d) under
the same limited information on Z, where d is a specified critical value for Y . Let
A = M′, where M′ is the same as in Example 2.8, and denote by m1 and m2 the
members M′. The cost of a prediction with either model in M′ is identical, so we
set γ(m1) = γ(m2) = 0.

A prediction with model mi is given by

hi = P (Y ≤ d | mi) = Fi(d; θ̂i), (2.71)

and the performance, assuming model mj is true, is given by

hj = P (Y ≤ d | mj) = Fj(d; θ̂j), (2.72)

where, because A = M′, we have hj = vj , j = 1, 2. Assuming model mj is true,

model mi gives a conservative prediction of P (Y ≤ d) if Fi(d; θ̂i) ≤ Fj(d; θ̂j), and
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a non-conservative prediction otherwise. Accordingly, we use the following penalty
function

ψ(mi, mj) = ψ̃(hi, hj) =

{
β1(hi − hj)

2 if hi ≤ hj, and

β2(hi − hj)
2 if hi > hj .

(2.73)

To illustrate, consider the identical n = 5 samples from Example 2.3, and let
parameters d = 6, β1 = 100 and β2 = 1000. By Eq. (2.71), h1 = 0.978 and h2 =
0.963, so that, by Eq. (2.68), model m2 is conservative with respect to m1. Using
p1 = l̄1 = 0.453, p2 = l̄2 = 0.547, by Eq. (2.45), we have

u(m1) = 0 · p1 + β2(h1 − h2)
2p2 = 0.123

u(m2) = β1(h2 − h1)
2p1 + 0 · p2 = 0.0102 (2.74)

so that model m2 is optimal. ♦

2.4 Sensitivity analysis

As discussed in Section 2.1.2.4, m� ∈ M depends on the: (1) available information,
I, (2) class of candidate models, M, and in the case of the decision-theoretic method
for model selection, (3) model use. Changes in any or all of these items may result
in a different m�. To illustrate, we consider the following example.

Example 2.10: Recall Example 2.8, where the objective was to select the optimal
model for random variable Z that was consistent with the model use (design).

• M1 = {F1(z; θ̂1), F2(z; θ̂2)}, where F1 and F2 denote the CDFs for a Gaussian
and lognormal random variable, respectively.

• l̄1 = 0.453 and l̄2 = 0.547 with n = 5 samples of Z.

• The expected utilities were u(a1) = 2.67 and u(a2) = .594; parameters p1 = l̄1,
p2 = l̄2, β1 = 100, β2 = 1000, and γ0 = 1 were used for calculations.

Under both the method of maximum likelihood and the decision-theoretic method,
model m� = m2. We next consider three cases, corresponding to changes in M1,
I, and model use, respectively. Case #1: suppose we add model F3(z; θ̂3) to the
collection of competing models, where F3 is the CDF for an exponential random
variable, i.e., Eq. (2.16), and θ̂3 is the maximum likelihood estimate for θ3 = (α, ν)T .
The new class of candidate models is a superset of the original class, i.e.,

M1 ⊂ M2 = {F1(z; θ̂1), F2(z; θ̂2), F3(z; θ̂3)}. (2.75)
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Table 2.1. Sensitivity of optimal model.

Case #1 Case #2 Case #3

m1 m2 m3 m1 m2 m3 m1 m2 m3

l̄i 0.188 0.228 0.584 0.473 0.386 0.141 0.473 0.386 0.141
u(ai) 115 44.0 4.85 200 78.3 17.2 30.1 12.8 17.2

Case #2: suppose that, in addition to Case #1, more information on Z becomes
available, e.g., we have n + n′ total samples for Z, where n′ ≥ 1. Case #3: suppose
that, in addition to Cases #1 and #2, the model use is modified, e.g., parameter β2

is replaced by β ′
2 
= β2.

The likelihoods and expected utilities for each case are shown in Table 2.1. When
the collection of candidate models is augmented by one (Case #1), both the method
of maximum likelihood and the decision-theoretic method select the newest model,
m3. Under increasing data (Case #2), the method of maximum likelihood selects a
different model, m1, than in Case #1; parameter n′ = 5 was used for calculations. The
expected utilities also change under the added data but, under the decision-theoretic
method, the optimal model remains the same as in Case #1. For Case #3, let β ′

2 =
150, meaning that we assign less penalty for non-conservative designs than with β2 =
1000. As shown in Table 2.1, a different model, m2, is selected under the decision-
theoretic approach; the optimal model under the method of maximum likelihood is
unchanged from Case #2 since this method for model selection is independent of
model use. ♦
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Chapter 3

Applications of model selection

Consider, as in Section 2.1.1, the input/output relationship given by

Y = D(Z; X), (3.1)

where Z and Y are real-valued stochastic processes, respectively, and D is defined by
a functional form and a single coefficient, denoted by X. Information on Z, X, and
the functional form for D is limited. Three cases are considered. First, in Section 3.1
we assume complete information on input Z and functional form for D, and apply
methods for model selection to choose optimal models for coefficient X. Second, in
Section 3.2 we assume complete information on X and D, and apply methods for
model selection to choose optimal models for Z. The design of a cantilever beam is
used for illustration in Sections 3.1 and 3.2. Third, in Section 3.3 we assume complete
information on X and Z, and apply methods for model selection to choose optimal
models for the functional form for D; the performance of a two degree-of-freedom
oscillator is used for illustration. The organization of the ensuing discussion is fur-
ther illustrated by Table 3.1; more general combinations of complete and incomplete
information are possible.

Table 3.1. Organization of Chapter 3.

Available information
Section

X Z D
3.1 Incomplete Complete Complete
3.2 Complete Incomplete Complete
3.3 Complete Complete Incomplete
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Figure 3.1: Design of cantilever beam.

3.1 Incomplete information on random variable

Consider the cantilever beam shown in Fig. 3.1, having fixed length and square cross
section of dimension, c > 0. The flexibility of the beam is denoted by X, the applied
tip load is denoted by Z, and the tip deflection of the beam is denoted by Y ; c is
a deterministic design variable. The information on X is incomplete. We assume:
(1) X can be modeled as a random variable with unknown probability law, (2) Z is
perfectly known and equal to one, (3) the functional form for D is given by

Y = D(Z; X) =
1

c4
X, (3.2)

which is consistent with Euler-Bernoulli beam theory [56], and (4) the design con-
straint for the beam is given by

P (g(Y ) ≤ d) = q̄, (3.3)

where g(Y ) = Y is the property of interest, and d ≥ 0 and q̄ ∈ [0, 1] are the maximum
tip displacement and required reliability of the design, respectively. By Eq. (3.3),
we note that the model use is design. The objectives of this study are: (i) to select
optimal models for the random flexibility, X, and (ii) to design the beam cross section,
c, to satisfy Eq. (3.3).

3.1.1 Available information

It is assumed that the information on X is limited to n independent samples, denoted
by {x1, x2, . . . , xn}. In addition, because X is a flexibility, prior knowledge requires
that X must be real and nonnegative almost surely, i.e.,

P (X ≥ 0) = 1. (3.4)
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3.1.2 Candidate models

Consider the following collection of candidate models for X,

M′ = {m1, m2, m3} = {F1(x; θ̂1), F2(x; θ̂2), F3(x; θ̂3)}, (3.5)

where we have used M′ to denote that this is a finite subcollection of M, the class
of all candidate models for X that is consistent with the available information. The
elements of M′ are given by

F1(x; θ1) =

∫ x

−∞

1√
2πσ

exp

[
−1

2

(
s − µ

σ

)2
]
ds,

F2(x; θ2) =

∫ x

0

1√
2πζs

exp

[
−1

2

(
ln s − η

ζ

)2
]
ds, and

F3(x; θ3) =

∫ x

α

ν exp [−ν(s − α)]ds. (3.6)

where θ1 = (µ, σ)T , θ2 = (η, ζ)T , and θ3 = (α, ν)T denote the model parameters.
By Eq. (3.6), F1 is the probability law for a Gaussian random variable, F2 is the
probability law for a lognormal random variable, and F3 is the probability law for an
exponential random variable. The Gaussian model, m1, is commonly used and will
be included in this study. However, because it violates Eq. (3.4), it is inconsistent
with the available information.

For calculations, the samples, {xi}, i = 1, 2, . . . , n, are generated from a lognormal
random variable with E[X] = 5, Var[X] = 2. Because of this, we refer to m2 as the
“true model”. Multiple data sets of different lengths are to be considered. For each
candidate model, mi, and each data set, the parameter vector θi, is a maximum
likelihood point estimate, θ̂i (see Section 2.2.1). Figure 3.2 illustrates the PDFs
of the three models, denoted by fi(x; θ̂i), i = 1, 2, 3, for n = 5 and two different
data sets; the data are also shown. Note that the models for X are sensitive to the
particular data set used, as indicated by the differences between the plots on the left
and right in Fig. 3.2.

If mi ∈ M′ is used as the model for X, we assume the design of the beam cross
section to satisfy

Fi

(
c4
i d; θ̂i

)
= q̄. (3.7)

By Eqs. (3.3) and (3.7) and the behavior of the right-hand tails of the models, it
can be shown that m3 always yields a conservative design of the beam, while m1 a
non-conservative design.
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Figure 3.2: Candidate models for flexibility, X, when n = 5.

3.1.3 Model selection

The method of maximum likelihood and the decision-theoretic method for model
selection developed in Chapter 2 are applied to: (1) select a model for X, and
(2) select a value for the design parameter, c. Different models for X and values for c
will be selected under the two methods for analysis; only the decision-theoretic method
accounts for model use and, hence, the consequences of selecting an inappropriate
model for X.

3.1.3.1 Method of maximum likelihood

Table 3.2 lists the normalized likelihoods, l̄i, i = 1, 2, 3, of each of the three models
in M′ under ten different data sets, each of size n = 5. As in Section 3.1.2, all data
were sampled from a lognormal random variable. For each data set, the likelihood
of the optimal model is in bold. Results show that if n is small, the optimal model
depends strongly on the particular data set used for calculations. Model m1, which is
inconsistent with the available information, is selected three times. Further, the true
model, m2, is not chosen for all ten data sets.

The results in Table 3.2 are for limited information (n = 5). Figure 3.3 shows
how increasing sample size affects the model selection process for four of the ten data
sets from Table 3.2. In each plot, the likelihood of the true model is a solid line; the
likelihoods of the others are shown with dashed lines. For small n, any candidate
model in M′ can be chosen. The true model is selected for data sets #2, #5, and
#8 when n > 30, but the inconsistent model, m1, is selected for data set #1 when
n = 100. This illustrates that even with a large sample, an inappropriate model can
be selected. As n increases beyond 100, m2 is selected for all data sets considered.
However, for finite n, this method of model selection does not guarantee that the
design will satisfy the performance requirement of Eq. (3.3).
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Table 3.2. Normalized likelihoods, l̄i, of models for X with
n = 5.

Data set m1 m2 m3

1 0.1814 0.2317 0.5869
2 0.4206 0.2988 0.2806
3 0.4157 0.3671 0.2172
4 0.2273 0.2722 0.5006
5 0.2374 0.2164 0.5462
6 0.0876 0.1353 0.7771
7 0.1392 0.1826 0.6782
8 0.4269 0.3143 0.2588
9 0.3093 0.3062 0.3844
10 0.2102 0.2442 0.5456
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Figure 3.3: Normalized likelihoods, l̄i, of models for X vs. sample size, n.
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3.1.3.2 Decision-theoretic method

The decision-theoretic method for model selection is now applied to the beam design
problem. The collection of possible models for X is given by Eq. (3.5); the collection
of candidate designs is given by

A = {a1, a2, a3} = {c1, c2, c3}, (3.8)

where ci, given by Eq. (3.7), is the value for the beam cross section under model
mi ∈ M′, i = 1, 2, 3.

For design ai under model mj , we have

P (g(Y ) ≤ d | ai, mj) = Fj(c
4
i d; θ̂j). (3.9)

By Eqs. (3.7) and (3.9), the design constraint, Eq. (3.3), is satisfied if i = j and
violated otherwise. Accordingly, define ξij such that

Fj(c
4
i ξij; θ̂j) = q̄. (3.10)

It follows that

ξij ≤ d ⇐⇒ P (g(Y ) ≤ d | ai, mj) ≥ q̄, and (3.11a)

ξij > d ⇐⇒ P (g(Y ) ≤ d | ai, mj) < q̄. (3.11b)

If ai satisfies Eq. (3.11a), it is a conservative design for the beam, while if ai satisfies
Eq. (3.11b), it is a non-conservative design of the beam.

Recall that the utility function, Eq. (2.44), has two parts: (1) the cost function,
γ, and (2) the penalty function, ψ. Because the model use is design (see Eq. (3.3)),
the utility formulation of Section 2.3.2.2 applies. Let

γ(ci) = γ0c
2
i , i = 1, 2, 3, (3.12)

where γ0 > 0 is a deterministic scaling parameter, define the cost of design ai. By
Eq. (3.12), a model for X that requires a large beam cross section has a high cost.
An appropriate penalty function is given by

ψ(ai, mj) = ψ̃(ξij, d) =

{
β1(ξij − d)2 if ξij ≤ d, and

β2(ξij − d)2 if ξij > d,
(3.13)

where β2 > β1 ≥ 0 are deterministic parameters; ψ is identical to Eq. (2.53) discussed
in Section 2.3.2.2. By Eq. (3.13), a non-conservative design is heavily penalized, as
is a design that is overly conservative.

The expected utility of each design is given by Eq. (2.45), where pi = l̄i is the
probability that mi is true, i = 1, 2, 3; the optimal design minimizes Eq. (2.45).
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Table 3.3. Expected utilities, u(ai), with n = 5.

Data set a1 a2 a3

1 2,299 1,124 1.239
2 3,792 1,426 2.481
3 1,074 814.6 1.648
4 4,041 1,213 1.618
5 4,397 783.5 1.644
6 1,197 499.9 1.075
7 2,025 804.8 1.183
8 2,747 1,365 2.301
9 3,280 1,501 1.853
10 2,659 1,199 1.449

Shown in Table 3.3 are the expected utilities of each design for the identical 10 data
sets, each of size n = 5, that were used in Table 3.2. By Eq. (3.7), there is a one-to-
one mapping between the members of M′ and the members of A. Hence if ai ∈ A
is the optimal design, we say that mi ∈ M′ is the optimal model for X. This allows
a direct comparison between the results using the method of maximum likelihood,
discussed in Section 3.1.3.1, and the results using the decision-theoretic method.
With such a small data set, one cannot hope to select the true model, m2. However,
unlike the results of Section 3.1.3.1, the optimal model is insensitive to the particular
data set used; model m3 is selected every time, and the non-conservative model, m1,
was never chosen. Parameters d = 9.2, q̄ = 0.99, γ0 = 1, β1 = 1/5, and β2 = 500 were
used for calculations.

Shown in Fig. 3.4 are the expected utilities for the data sets from Fig. 3.3. In
each case, the expected utility corresponding to the true model is plotted with a
solid line; the expected utility corresponding to the others is shown with dashed
lines. As illustrated, the selection process is less sensitive to data set and sample
size than the results in Fig. 3.3. As n increases, the true model is selected for any
data set. Further, when an incorrect model is chosen it is consistently m3, which is
conservative as defined by Eq. (3.11a). This conservatism is further illustrated by
Fig. 3.5, which shows the value for the design parameter, c, under the optimal model
using the method of maximum likelihood, cML, and the decision-theoretic approach,
cDT. Note that cDT ≥ cML for all data sets and all n because a conservative beam
design has a larger cross section. As n → ∞, cDT and cML coincide.
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Figure 3.4: Expected utilities, u(ai), vs. sample size, n.
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3.2 Incomplete information on stochastic process

Consider again the cantilever beam shown in Fig. 3.1, where now the information on
Z is incomplete. We assume: (1) Z is time-varying and can be modeled as a stochastic
process with unknown probability law, (2) X is perfectly known, deterministic, and
equal to one, (3) the functional form for D is perfectly known, and (4) the design
constraint for the beam is given by Eq. (3.3), where

g(Y ) = max
t∈T

| Y (t) | =
1

c4
max
t∈T

| Z(t) | (3.14)

is the property of Y of interest, and T is an arbitrary index set. The objectives of
this study are: (i) to select optimal models for the stochastic tip load, Z, and (ii) to
design the beam cross section, c, to satisfy Eq. (3.3). We consider discrete-time and
continuous-time models for Z in Sections 3.2.1 and 3.2.2, respectively.

3.2.1 Discrete-time models

We first consider a class of discrete-time models for Z, so that index set T =
{1, 2, . . . , n} is finite. Let

Zi(t) = θi,0 +

i∑
j=1

θi,jZi(t − j) + Wi(t), t = 1, 2, . . . , n, (3.15)

where θi = (θi,0, θi,1, . . . , θi,i)
T denotes a vector of deterministic parameters, and

Wi(t) ∼ iid N(0, 1/ζi) is zero mean, Gaussian white noise with variance 1/ζi. By
Eq. (3.15), Zi(t) is an autoregressive stochastic process of order i [16], abbreviated
as AR(i). Models of this form are also referred to as time series models. Vector
Z0 = {Zi(0), Zi(−1), . . . , Zi(1 − i)} are the initial conditions to the model. Process
Zi is stationary if Z0 ∼ N(0, ci), where ci denotes the stationary covariance function
of an AR(i) process.

3.2.1.1 Available information

We assume two samples of Z(t), denoted by {zk(1), . . . , zk(n)}, k = 1, 2, are available;
the collection {zk(1), . . . , zk(n)}, k = 1, 2, defines a data set. For calculations, the
data set is taken from a stationary AR(3) process with θ3 = (0, 0.7,−0.5,−0.3)T ,
ζ3 = 0.65. To enforce stationarity, the data set was generated with initial conditions
Z0 ∼ N(0, c3). However, the only knowledge of Z comes from the data set; the
parameter vector and order of Eq. (3.15) are unknown.

Prior knowledge on the collection of candidate models for Z is quantified by:
(1) r, the order of the largest model considered in the analysis, (2) f ′(θi, ζi), the
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joint prior PDFs for the unknown parameters of each candidate model in M′, and
(3) p′i, the prior probability that each mi ∈ M′ is true. For calculations, r = 4 and
non-informative prior probabilities are used, i.e., p′i = 1/r, i = 1, 2, 3, 4. Any further
knowledge on the physics of Z can be applied through appropriate choice of f ′(θi, ζi).

3.2.1.2 Candidate models

Consider the following collection of candidate models for Z,

M′ = {m1, m2, m3, m4}
= {Z1(t; θ1, ζ1), Z2(t; θ2, ζ2), Z3(t; θ3, ζ3), Z4(t; θ4, ζ4)}, (3.16)

where M′ is used to denote that the class of models defined by Eq. (3.16) is a finite
subcollection of M, the class of all models for Z that are consistent with the available
information. By Eq. (3.15), model mi ∈ M′ is an AR(i) process; we refer to m3 as the
“true model” because the available information was generated by an AR(3) process.
The data set, {zk(1), . . . , zk(n)}, k = 1, 2, is not known to come from a stationary
source. Hence, in the calculations that follow, the initial conditions, Z0, are set to
zero for each model in M′.

We calculate

g(Y ) | mi = max
t∈[1,n]

| Zi(t) |, i = 1, 2, 3, 4, (3.17)

which gives estimates of Eq. (3.14) under each candidate model. If mi ∈ M′ is used
as the model for Z, we assume the design of the beam cross section to be given by
Eq. (3.7) where Fi denotes the CDF of g(Y )|mi.

3.2.1.3 Model selection

Bayes’ method and the decision-theoretic method for model selection developed in
Chapter 2 are applied to: (1) select a model for Z, and (2) select a value for the
design parameter, c. Different models for Z and values for c will be selected under
the two methods for analysis.

3.2.1.3.1 Bayes’ method The prior joint PDF of (θi, ζi) is assumed to have a
Normal-Gamma distribution [81], pp. 226-227, with parameters (φ′

i, σ
′
i, η

′
i, ν

′
i), i.e.,

θi | ζi ∼ N(φ′
i, σ

′
i | ζi), (3.18)

where N denotes the probability law for a Gaussian random vector, and

f ′
ζi
(y; η′

i, ν
′
i) =

(η′
iν

′
i)

ν′
i/2

Γ(ν ′
i/2)

yν′
i/2−1 exp

(
−η′

iν
′
iy

2

)
(3.19)
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is the prior PDF for ζi. This is a conjugate prior density (see [81], pp. 318-319);
assuming σ′

i has full rank, i = 1, 2, . . . , r, the posterior density is also Normal-Gamma
with parameters (φ′′

i , σ
′′
i , η

′′
i , ν

′′
i ), where zi = (z(i + 1), . . . , z(n))T ,

(σ′′
i )−1 = (σ′

i)
−1 + vT

i vi,

φ′′
i = σ′′

i

[
(σ′

i)
−1φ′

i + vT
i zi

]
,

η′′
i ν

′′
i = η′

iν
′
i + (φ′

i)
T (σ′

i)
−1φ′

i − (φ′′
i )

T (σ′′
i )−1φ′′

i + zT
i zi, and

ν ′′
i = ν ′

i + n − i, (3.20)

and

vi =




1 z(i) . . . z(1)
1 z(i + 1) . . . z(2)
...

...
. . .

...
1 z(n − 1) . . . z(n − i)


 (3.21)

Estimates θ̂i = E[θi] and ζ̂i = E[ζi] are then used to create samples of Zi(t), i =
1, 2, 3, 4, via Eq. (3.15). The posterior probability that mi ∈ M′ is true is given by
(see [50], pp. 752-753)

p′′i = κp′ifi(zi), i = 1, 2, . . . , r, (3.22)

where

κ−1 =
r∑

j=1

p′jfj(zj), (3.23)

Γ( · ) denotes the gamma function, and

fi(zi) = (2π)−(ν′′
i −ν′

i)/2 | σ′′
i |1/2

| σ′
i |1/2

(η′
iν

′
i/2)ν′

i/2

(η′′
i ν

′′
i /2)ν′′

i /2

Γ(ν ′′
i /2)

Γ(ν ′
i/2)

(3.24)

Table 3.4 lists the posterior probabilities, p′′i , i = 1, 2, 3, 4, of each of the four
models in M′ with n = 34; the probability of the optimal model is in bold. The
probabilities are tabulated for five independent data sets, i.e., five independent col-
lections of {zk(1), . . . , zk(n)}, k = 1, 2. Results indicate that the selection process is
again sensitive to the particular data set used. As in Section 3.1.3.1, under Bayes’
method for model selection, there is no guarantee that the design will satisfy the
performance requirement of Eq. (3.3).

This sensitivity to data set is high when data is limited, but decreases for increas-
ing sample size, n. This is illustrated by Fig. 3.6 for four of the five data sets. In
each plot, the posterior probability of the true model, m3, is a solid line; the posterior
probabilities of the others are shown with dashed lines. In data sets #1, #2, and
#4, there is no clear winner among models m2, m3, and m4 for n < 50. Model m1

is inappropriate in all cases for any n. As n increases, the true model is selected in
every case. The AR(4) model is chosen for data set #2; it can be shown that this is
a degenerate AR(3) model because, as n grows large, θ̂4 = E[θ4] approaches zero.

69



Table 3.4. Posterior probabilities, p′′i , of models for Z with
n = 34.

Data set m1 m2 m3 m4

1 5.075 × 10−3 0.5497 0.3987 4.654 × 10−2

2 3.036 × 10−6 1.030 × 10−2 0.6040 0.3857
3 2.468 × 10−5 0.2357 0.7620 2.248 × 10−3

4 3.132 × 10−6 0.5526 0.4470 3.371 × 10−4

5 1.010 × 10−4 2.641 × 10−2 0.8632 0.1103
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Figure 3.6: Posterior probabilities, p′′i , of models for Z vs. sample size, n.
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Figure 3.7: Expected utilities, u(ai), vs. sample size, n.

3.2.1.3.2 Decision-theoretic method We next apply the decision-theoretic
method for model selection to choose the optimal design of the beam. The deriva-
tion of the utility function is identical to that of Section 3.1.3.2, with X everywhere
replaced by g(Y )|mi = maxt∈[1,n] |Zi(t)|; wherever the CDF of g(Y )|mi is required,
e.g., Eq. (3.10), it is estimated via Monte Carlo simulation using 500 samples. The
expected utility of each design is computed by Eq. (2.45), with pi = p′′i .

Shown in Fig. 3.7 are the expected utilities of each design for the data sets from
Fig. 3.6. As before, by Eq. (3.7) there is a one-to-one mapping between the members
of M′ and the members of A. Hence if ai ∈ A is the optimal design, we say that
mi ∈ M′ is the optimal model for X. For each data set shown in Fig. 3.7, the
expected utility corresponding to the true model is shown with a solid line, while the
expected utility corresponding to the others is shown with dashed lines. The optimal
model changes from data set to data set and for different values of n. This is due to
the fact that, contrary to the class of candidate models for X defined by Eq. (3.5),
here all members of M′ are consistent with the physics of the problem and have the
same functional form. The same behavior is still observed: for small n, a conservative
model is selected; as n grows, the true model is eventually selected.

Because of the form for the utility function, the decision-theoretic method for
model selection will favor a conservative design of the beam. This is illustrated by
Fig. 3.8, which shows the value for the design parameter, c, under the optimal model
using Bayes’ method, denoted by cB, and the decision-theoretic approach, denoted
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Figure 3.8: Beam cross section, c, under both methods for model selection.

by cDT. Note that cDT ≥ cB for all data sets and all n because a conservative design
has a larger cross section; as n → ∞, cDT and cB coincide.

3.2.1.4 Model use

In this section we emphasize that, under the decision-theoretic method for model
selection, a model is optimal for a given model use; if the model use changes, a
different model may be selected. To illustrate consider, for t = 1, 2, . . . , n, the AR(1)
and AR(2) time series models for Z defined by Eq. (3.15), i.e.,

m1 : Z1(t) = θ1,0 + θ1,1Z1(t − 1) + W1(t),

m2 : Z2(t) = θ2,0 + θ2,1Z2(t − 1) + θ2,2Z2(t − 2) + W2(t), (3.25)

where W1 and W2 are zero-mean, Gaussian white noise with variances 1/ζ1 and 1/ζ2,
respectively. Suppose further we are interested in the following two design constraints
on output Y

P (g1(Y ) ≤ d1) = q̄, and

P (g2(Y ) ≤ d2) = q̄, (3.26)
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Figure 3.9: Histograms of extremes (top) and sums (bottom) of Y .

where d1, d2, and q̄ ∈ [0, 1] are deterministic parameters, and

g1(Y ) = max
t∈[1,n]

| Y (t) |, and

g2(Y ) =
1

n

n∑
t=1

Y (t) (3.27)

define two properties of Y . Property g1(Y ) is based on the extremes of Y and is
identical to Eq. (3.14); property g2(Y ) is based on the sum of Y and may be used,
for example, to quantify damage accumulation in a structural system.

Histograms of g1(Y )|mi, i = 1, 2, are shown in the top two plots of Fig. 3.9, and
histograms of g2(Y )|mi, i = 1, 2, are shown in the bottom two plots of Fig. 3.9;
the results are estimates using 500 Monte Carlo simulations. In all cases, we assume
c = 1 so that, by Eq. (3.14), maxt∈T |Y (t)| = maxt∈T |Z(t)|. It is evident that while
the distribution of the extremes are similar, the distribution of the sums are not.
Parameters θ1 = (0, 0.8201)T , θ2 = (0, 0.5, 0.4)T , 1/ζ1 = 1.223, 1/ζ2 = 1, and n =
1,000 are used for calculations.

Estimates of the two constraints defined by Eq. (3.26) are listed in Table 3.5;
parameters d1 = 6.9, d2 = 0.27, and q̄ = 0.9 were used for calculations. Note that
estimates of P (g1(Y ) ≤ d1) are identical under models m1 and m2, meaning that,
assuming zero cost, if the utility function is based on values for P (g1(Y ) ≤ d1|mi),
there will be no preference of one model over the other, i.e., m1 ∼ m2. However,
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m1 � m2, i.e., m1 is superior to m2, if we use values for P (g2(Y ) ≤ d2|mi) in the
utility function since, as shown in Table 3.5, P (g2(Y ) ≤ d2|m1) > q̄ and P (g2(Y ) ≤
d2|m2) < q̄.

3.2.2 Continuous-time models

We next consider a class of continuous-time models for Z(t). The design of the beam
shown in Fig. 3.1 is then considered under the constraint given by Eq. (3.3), where
the property of Y , denoted by g(Y ), is defined by Eq. (3.14) with T = {t : t ≥ 0}.

3.2.2.1 Available information

No samples of the input are available; instead, we assume: (1) the second-moment
properties of Z are given by

E[Z(t)] = 0,

E[Z(t)Z(t + τ)] = exp (−θ | τ |), (3.28)

where θ > 0 is a deterministic constant, and (2) the marginal CDF of Z is lognormal,
i.e.,

F (z) = Φ

[
ln (z − α)

λ

]
, z > α, (3.29)

where Φ denotes the standard normal CDF, and α, λ > 0 are deterministic constants.
The corresponding marginal PDF for Z is

f(z) =
dF (z)

dz
=

1

λ(z − α)
φ

[
ln (z − α)

λ

]
, z > α, (3.30)

where φ denotes the standard normal PDF. By Eqs. (3.28) and (3.29), the probability
law for Z(t) is partially known.

Table 3.5. Design performance under different model use.

P (g1(Y ) ≤ d1 | mi) P (g2(Y ) ≤ d2 | mi)

m1 0.90 0.91
m2 0.90 0.78
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3.2.2.2 Candidate models

We consider the following class of candidate models for Z,

M′ = {m1, m2} = {Z1(t), Z2(t)}, (3.31)

where model m1 is a translation process and model m2 is a diffusion process. It is
shown in Sections 3.2.2.2.1 and 3.2.2.2.2 that if certain requirements are met, both
processes are consistent with the available information on Z.

3.2.2.2.1 Translation model Let

Z1(t) = F−1 ◦ Φ[G(t)] = α + exp [δG(t)], (3.32)

where G(t) ∼ N(0, 1, cG(τ)) is a zero-mean, unit variance, stationary Gaussian pro-
cess with covariance function, cG(τ). By Eq. (3.32), Z1 is a monotonic, memoryless
transformation of G, meaning that it is a translation process [47]. The parameters
α and δ can be chosen so that Z1(t) has the target mean and variance from Eq. (3.28),
i.e., α and δ solve

exp (δ2/2) + α = 0

exp (2δ2) − α2 = 1. (3.33)

The covariance of Z1(t) is given by (see [48], p. 49)

cZ1(τ) = E[Z1(t)Z1(t + τ)] = exp [δ2(1 + cG(τ))] − α2. (3.34)

For positive correlations, it can be shown that cZ1(τ) ≈ cG(τ); this is further
demonstrated by Fig. 3.10. Hence, we set cG(τ) = exp (−θ|τ |). The marginal
distribution for Z1(t) is identical to the target CDF from Eq. (3.29) since

P (Z1(t) ≤ d) = P
(
F−1 ◦ Φ[G(t)] ≤ d

)
= P

(
G(t) ≤ Φ−1[F (d)]

)
= F (d). (3.35)

3.2.2.2.2 Diffusion model Let Z2 satisfy the following stochastic differential
equation

dZ2(t) = −θZ2(t)dt + h [Z2(t)] dB(t), (3.36)

where h is the diffusion term, and B(t) is the Brownian motion. By Eq. (3.36), Z2 is
a diffusion process [88]. To enforce stationarity, the initial condition, Z2(t = 0), is
a random variable with CDF F . Using Itô’s formula (see [48], Appendix H), it can be
shown that the linear drift term in Eq. (3.36) guarantees an exponential correlation
function, i.e.,

E[Z2(t)Z2(s)] = E
[
Z2(t)

2
]
exp [−θ(s − t)], s ≥ t. (3.37)
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Assuming stationarity, the Fokker-Planck equation (see [50], p. 269) can be used to
define h in terms of the target PDF, f ,

h2(z) = − 2θ

f(z)

∫ z

−∞
vf(v)dv. (3.38)

Because Z2(t) follows the target marginal CDF, F , it can be shown that it also has
the target mean and variance of Eq. (3.28).

3.2.2.3 Model selection using decision-theoretic method

We apply methods for model selection to: (1) choose a continuous-time model for Z,
and (2) select a value for the design parameter, c, that satisfies the design require-
ment, i.e., Eq. (3.3). Note that because data is unavailable, classical methods for
model selection cannot be used (see Section 2.2). The decision-theoretic method for
model selection is applied to choose the optimal design of the beam. Non-informative
prior probabilities are assumed, so that models m1 and m2 are equally likely. The
utility function is identical to the case of discrete-time models for Z considered in
Section 3.2.1.3.2.

One sample of models m1 and m2 are shown in Fig. 3.11 for the case of θ = 1.
The samples look similar. Estimates of the PDF of the response of interest, g(Y ) =
maxt≥0 |Y (t)|, are shown in Fig. 3.12 under models m1 and m2, where it is evident
that the translation model exhibits a slightly heavier tail. 1,000 Monte Carlo samples
were generated for the analysis. The plot illustrates that even though the two models
are equivalent in the second-moment sense, the distribution of g(Y ) is quite different.
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Figure 3.11: One sample of translation model, Z1, and diffusion model, Z2.
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Table 3.6 shows the optimal model for three values of the model parameter, θ,
and three values of the penalty function parameter, β̄ = β2/β1. The optimal model
is sensitive to changes in both. For small values for β̄, m2 is optimal; as β̄ increases,
model m1 is optimal. Note that for β̄ = 1, the penalty function, defined by Eq. (3.13),
is symmetric so models for Z that result in conservative or non-conservative designs
are penalized equally. As β̄ increases, the asymmetry of ψ increases and models for
Z that give a non-conservative design are assigned a large penalty. With a short
correlation length (large θ), m1 is optimal; as the correlation length increases, m2

becomes optimal.

Table 3.6. Sensitivity of optimal model to changes in θ and
β̄.

θ β̄ = 5
2

β̄ = 25

0.3 m2 m2

1.0 m2 m1

2.5 m1 m1

3.3 Incomplete information on operator

Recall Eq. (3.1), where operator D with coefficient X maps input Z to output Y . We
next consider the case where information on the functional form for D is incomplete.
A new example is used for illustration since the functional form for D studied in
Sections 3.1 and 3.2 is trivial.

Consider an oscillator with q ≥ 1 degrees-of-freedom. The case of q = 2 is shown
in Fig. 3.13, where z(t) denotes the input, X denotes the value for a spring constant,
and w(t, X) denotes the relative displacement of the two masses. We assume: (i) the
values for the two masses and one of the spring constants are known and fixed, (ii) X
is a random variable uniformly distributed in [α, β], and (iii) input z(t) is a perfectly
known and deterministic function of time, t. Let random variable

Y = max
t≥0

| w(t, X) | (3.39)

be the output of interest; the objective is to assess two metrics for performance:
(1) P (Y ≤ d), where d ≥ 0 is a deterministic parameter, and (2) E[Y ]. We refer to
these as performance metrics #1 and #2, respectively.

Recall Eq. (3.1), where D : (z(t), X) → Y . To estimate performance metrics #1
and #2, it is convenient to approximate D; approximation may become necessary
when we consider nonlinear systems or linear systems with many degrees-of-freedom,

78



z(t)

w(t, X)

X 20
100 1

Figure 3.13: Two degree-of-freedom oscillator.

i.e., q � 2. A response surface (RS) model [64] for D is one viable approach. Herein,
the decision-theoretic method for model selection is applied to: (i) select an opti-
mal approximation for D from a class of candidate RS models, and (ii) assess the
performance of the oscillator using metrics #1 and #2. By (ii), the model use is
performance prediction.

3.3.1 Available information

Consider a fixed value for the stiffness, x ∈ [α, β], and let m, d, and k denote the
2×2 mass, damping, and stiffness matrices, respectively, of the two degree-of-freedom
oscillator shown in Fig. 3.13, i.e.,

m =

(
100 0
0 1

)
and k =

(
x + 20 −20
−20 20

)
(3.40)

For calculations, we assume classical damping with a constant damping ratio of 4%.
The relative displacement of the two masses, assuming zero initial conditions, is given
by [88], p. 167,

w(t, x) = c

∫ t

0

exp [a(t − τ)]bz(τ)dτ, (3.41)

where

a =

(
0 i

−m−1k −m−1d

)
b =

(
0 0 −100 −1

)T
c =

(−1 1 0 0
)

(3.42)

and i denotes the 2 × 2 identity matrix. We solve Eq. (3.41) for 2 ≤ n < ∞ values
for x ∈ [α, β], denoted by xi, i = 1, 2, . . . , n. In general, the accuracy of the RS
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Figure 3.14: Values for x used to construct RS models for D.

models depends on the values for xi, i = 1, 2, . . . , n. The points used here are shown
in Fig. 3.14 for n ≤ 17; the ordering of the points is also shown. For example,
x3 = (α + β)/2. More general methods are discussed in [15].

For clarity, we define

vi = max
t≥0

| w(t, xi) |, i = 1, 2, . . . , n. (3.43)

The available information on D is given by (xi, vi), i = 1, 2, . . . , n. The amount of
available information increases with increasing n; the information on D is complete
only when we solve Eq. (3.41) for each x ∈ [α, β].

3.3.2 Candidate models

Consider the following class of candidate models for D

M′ = {m1, m2, m3, m4}
= {y1(x; θ̂1), y2(x; θ̂2), y3(x; θ̂3), y4(x; θ̂4)}, (3.44)

where

yj(x; θ̂j) =

j∑
i=0

θ̂j,ix
i, j = 1, 2, 3, 4. (3.45)

Each member of M′ is a RS model for D; by Eq. (3.45), y1, y2, y3, and y4 are
polynomials in x of degree one, two, three, and four, respectively. Note that M′ is
a function of n, i.e., for n = 2 candidate models m2, m3, and m4 are undefined, for
n = 3, candidate models m3 and m4 are undefined, etc.; all candidate models are
defined for n ≥ 5. Under the available information, (xi, vi), i = 1, 2, . . . , n, estimates
of the model parameters, θ̂j, j = 1, 2, 3, 4, are calculated using the method of least
squares [36]. We restrict the analysis to polynomial approximations for D; more
general functional forms are possible, e.g., nonlinear regression and kriging [44].

The collection of candidate models is shown in Fig. 3.15 for the case of n = 5
(left) and n = 9 (right). The data, (xi, vi), i = 1, 2, . . . , n, is also shown. Parameters
α = 1,500 and β = 2,500 were used for calculations; input z(t) is one sample of zero
mean Gaussian white noise. As shown, for n = 5 information is limited and the
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Figure 3.15: Candidate models for n = 5 and n = 9.

candidate models are very different; model m4 passes thru all data points. For n = 9,
m2 and m3 are similar, but no candidate model passes thru all data points.

We assume each member of M′ can be expressed as a regression on the available
information (see [1], Chapter 2):

Vij = yj(xi; θ̂j) + Eij , i = 1, 2, . . . , n, j = 1, 2, 3, 4, (3.46)

where, for each j, {Eij} is a sequence of zero-mean iid Gaussian random variables
with variance σ2

j . The likelihood of each candidate model is given by (see [98], p. 58)

lj ∝ exp

[
− 1

2σ̂2
j

n∑
k=1

(
vk − yj(xk; θ̂j)

)2
]
, j = 1, 2, 3, 4, (3.47)

where σ̂2
j denotes an estimate for σ2

j . The probability that model mj is true, denoted
by pj, is the normalized likelihood of mj given by Eq. (2.8). Recall that under the
method of maximum likelihood, model mi is optimal if pi ≥ pj, j = 1, 2, 3, 4.

3.3.3 Model selection

The method of maximum likelihood and the decision-theoretic method for model
selection developed in Chapter 2 are applied to: (i) select a model for D, and (ii) assess
the performance of the oscillator under metric #1, P (Y ≤ d), and metric #2, E[Y ].
In general, different models for D will be selected for different methods of analysis
and different metrics of performance.

The model use is performance prediction, so the formulation of Section 2.3.2.3
applies. Further, we consider the case where the collection of candidate actions, A,
coincides with the collection of candidate models, given by Eq. (3.44). The elements
of A are therefore the candidate models, mi, i = 1, 2, 3, 4. By Eq. (3.44), each
mi ∈ M′ is deterministic, which illustrates that, as mentioned in Chapter 2, the
decision-theoretic method for model selection does not require that the candidate
models be random.
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By Eq. (2.44), the utility is defined by the cost function, γ, and the penalty func-
tion, ψ. The cost of using each candidate model for prediction is identical, so without
loss of generality we set γ(mi) = 0, i = 1, 2, 3, 4. Under model mj , a prediction of
metric #1 is given by

h1,j = P (Y ≤ d | mj) =
1

β − α

∫ β

α

1
(
yj(x; θ̂j) ≤ d

)
dx, (3.48)

and a prediction of metric #2 is given by

h2,j = E [Y | mj ] =
1

β − α

∫ β

α

yj(x; θ̂j)dx

=
1

β − α

j∑
i=0

θ̂j,i

i + 1

(
βi+1 − αi+1

)
, (3.49)

where the last step follows since each mi ∈ M′ is a polynomial in x. For metric k,
k = 1, 2, the penalty assigned to a prediction made under model mi, if model mj is
true, is given by

ψ(mi, mj) = ψ̃(hk,i, hk,j) =

{
β1(hk,i − hk,j)

2 if hk,i ≤ hk,j, and

β2(hk,i − hk,j)
2 if hk,i > hk,j,

(3.50)

where β2 > β1 ≥ 0 are deterministic parameters. Equation (3.50) is identical to
Eq. (2.73) defined in Section 2.3.2.3.

The expected utility of each candidate model is given by Eq. (2.45); the optimal
model, denoted by m�, minimizes Eq. (2.45). Optimal models under various values
for n are shown in Fig. 3.16. Shown at the top of Fig. 3.16 is m� under the method of
maximum likelihood. Results using the decision-theoretic method for model selection
are shown at the bottom of Fig. 3.16, illustrating that the optimal model depends
on the model use; m� for performance metric #1 is shown on the left, while m� for
performance metric #1 is shown on the right. The method of maximum likelihood
is independent of model use. In each case, for 1 < n ≤ 5, we have m� = mn−1; for
n > 5, different models are selected in the three plots. Under the method of maximum
likelihood, m� = m4 for n ≥ 5, indicating that the highest-order RS approximation is
always optimal. However, predictions of performance metrics #1 and #2 using model
m4 are non-conservative for certain values for n ≥ 5; the decision-theoretic method
for model selection accounts for this.
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Chapter 4

The polynomial chaos
approximation

Polynomial chaos (PC) representations [43, 60, 94] for non-Gaussian random vari-
ables and stochastic processes are infinite series of Hermite polynomials of standard
Gaussian random variables with deterministic coefficients. These series converge in
mean square to the functions they replace, provided these functions are in L2. PC
representations are a topic of continued research because, among other features, they
provide a framework suitable for computational simulation.

For calculations, the PC representations are truncated, creating what is herein re-
ferred to as PC approximations. The use of PC approximations is widespread. Appli-
cations include structural fatigue [95], structural reliability [100], structural mechan-
ics [41, 43], linear structural dynamics [82], nonlinear random vibration [42], solution
of stochastic differential equations [6], soil mechanics [40], soil-structure interaction
[72], and simulation of non-Gaussian random fields [39, 77, 78, 86]. Generally, the
PC approximations used in applications have ten or fewer terms [39, 41, 42, 86].

Features and limitations of the PC approximation are discussed in Section 4.1,
where it is shown that the accuracy of the PC approximation depends on the number
of terms retained in the truncated series. The decision-theoretic method for model
selection is used to determine the optimal number of terms to retain in Section 4.2.

4.1 Features and limitations of polynomial chaos

Properties of PC approximations are explored by using simple but relevant examples.
It is shown that: (1) the rate of convergence of PC approximations may be slow,
(2) PC approximations may not improve by adding terms, (3) moments of order
three and higher calculated for PC approximations may be inaccurate, and (4) PC
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approximations for stationary, non-Gaussian processes may not be stationary. These
observations raise questions about the use of PC approximations, particularly for
problems requiring accurate tail probabilities, e.g., reliability analysis. With all these
limitations, PC approximations can still provide useful results in many applications,
as demonstrated by some of the above references.

4.1.1 Random vectors

Consider the class of non-Gaussian, R
d-valued random variables, Y, that can be

written as a function of a standard Gaussian random vector, i.e.,

Y = g(W), (4.1)

where g : R
k → R

d is a deterministic, measurable mapping, W ∼ N(0, i) is an R
k-

valued vector of independent, identically distributed (iid), zero mean, unit variance
Gaussian random variables, and i denotes the (k, k) identity matrix. It is assumed
that Y is in L2, so that all coordinates of Y have finite second moment. For example,
in the case of scalar random variables Y and W , Y = F−1

Y ◦ Φ(W ) = g(W ) follows
the distribution FY , where Φ( · ) denotes the standard normal cumulative distribution
function (CDF) and E[g(W )2] exists and is finite.

4.1.1.1 PC representation for random vectors

Under the assumption that the jth coordinate of Y has finite variance, the series
[43, 60]

Yj = gj(W) =
∑

i1,i2,...,ik≥0

y
(j)
i1,i2,...,ik

hi1,i2,...,ik(W), j = 1, 2, . . . , d, (4.2)

is convergent in L2 and constitutes the polynomial chaos (PC) representation for Yj.

Here, y
(j)
i1,i2,...,ik

, j = 1, 2, . . . , d, are deterministic coefficients that must be determined,
and hi1,i2,...,ik are k-dimensional orthogonal Hermite polynomials given by [48], p. 420

hα,...,ω(W) = e
1
2
WT W

(
− ∂

∂Wα

)
· · ·
(
− ∂

∂Wω

)
e−

1
2
WT W, (4.3)

where W = [W1W2 . . .Wk]
T and α, . . . , ω are indices in {0, . . . , k} that need not be

different. The Hermite polynomials have the properties

E
[
hαi,...,ωi

(W)hαj ,...,ωj
(W)

]
= E

[
hαi,...,ωi

(W)2
]
δij,

E [hαi,...,ωi
(W)] =

{
1, i = 0,

0, ∀i ≥ 1,
(4.4)
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and define an orthogonal basis in L2 [41]. The coefficients of the series in Eq. (4.2)
can be calculated by exploiting the properties of Eq. (4.4). For example, the PC
representation in Eq. (4.2) simplifies to

Y = g(W1, W2) =

∞∑
i1,i2=0

yi1,i2hi1,i2(W1, W2) (4.5)

for d = 1, k = 2, where y
(1)
i1,i2

= yi1,i2 , and the first few Hermite polynomials of Eq. (4.3)
are

h0,0(W1, W2) = 1,

h1,0(W1, W2) = W1,

h0,1(W1, W2) = W2,

h2,0(W1, W2) = W 2
1 − 1,

h1,1(W1, W2) = W1W2, and

h0,2(W1, W2) = W 2
2 − 1. (4.6)

The coefficients of the series in Eq. (4.5) result from

E [Y hj1,j2(W1, W2)] = E

[ ∞∑
i1,i2=0

yi1,i2hi1,i2(W1, W2)hj1,j2(W1, W2)

]

=
∞∑

i1,i2=0

yi1,i2E [hi1,i2(W1, W2)hj1,j2(W1, W2)]

= yj1,j2E
[
hj1,j2(W1, W2)

2
]
, (4.7)

provided that the expectation can be calculated term by term. Under this condition,
the coefficients in Eq. (4.2) are given by

y
(j)
i1,i2,...,ik

=
E [Yjhj1,j2,...,jk

(W)]

E [hj1,j2,...,jk
(W)2]

, j = 1, 2, . . . , d. (4.8)

4.1.1.2 PC approximation for random vectors

Let

Y
(p)
j = g

(p)
j (W) =

∑
i1,i2,...,ik≥0

i1+i2+···+ik≤q

ỹ
(j)
i1,i2,...,ik

hi1,i2,...,ik(W), j = 1, 2, . . . , d, (4.9)

be the PC approximation for Yj in Eq. (4.2), which consists of Hermite polynomials
up to and including order q. The PC approximation has p + 1 terms, where [43]

p =

q∑
s=1

1

s!

{
s−1∏
r=0

(k + r)

}
. (4.10)
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The coefficients ỹ
(j)
i1,i2,...,ik

of the PC approximation in Eq. (4.9) are taken to be

equal to the coefficients y
(j)
i1,i2,...,ik

of the PC representation in Eq. (4.2). For example,
the PC approximation for the series in Eq. (4.5) is

Y (p) =
∑

i1,i2≥0
i1+i2≤q

yi1,i2hi1,i2(W1, W2). (4.11)

The PC approximation has two useful properties: (1) E[Y (p)] = E[Y ] for any p,

and (2) Y
(p)
j

L2−→
p→∞

Yj. The latter is useful since it guarantees that the PC approxima-

tion of Eq. (4.9) approaches the PC representation of Eq. (4.2) in mean square as the
number of terms retained, p, increases. However, this property is of limited use for
applications since, generally, p is small [39, 41, 42, 86] so that asymptotic properties

of Y
(p)
j do not apply.

An additional approximation in applications arises because, in general, g(W)
is not known explicitly. In such cases, the right-hand side of Eq. (4.8) must be
estimated, causing a further layer of approximation [32]. For example, consider Y to
be the output from a finite element model. In this case, only realizations of g(W) are
available in the form of runs of the finite element code; the functional form of g(W)
is not known and, therefore, the numerator of the right-hand side of Eq. (4.8) cannot
be solved in closed-form. These issues are not addressed here.

The accuracy of the PC approximation in Eq. (4.9) is assessed by three examples
in which d = k = 1, the map Y = g(W ) is known explicitly, and the right-hand side
of Eq. (4.8) can be solved in closed-form. Hence, only the error associated with the
truncation of the infinite series at p terms remains.

4.1.1.3 Accuracy of PC approximation

Seven metrics are used to evaluate the accuracy of the PC approximation. These
metrics are listed in Table 4.1. The first metric is the difference between the exact and
approximate mappings of W used to define Y and Y (p); this difference is calculated
at W = 0 and W = 4. Metric two is the scaled mean-square error of the PC
approximation. The probability that the absolute value of the difference between Y
and Y (p) exceeds a specified ε > 0 is the third metric, where Ω denotes the sample
space of Y and Y (p). The metric can be interpreted as a measure of the order,
p, required for Y (p) to equal Y in probability. Metric four can be viewed as the
probability that Y (p) takes values that are not physically acceptable, while µ5(p)
provides a measure for the difference between the tails of Y and Y (p) at the 1%
upper fractile. Metrics µ6(p) and µ7(p) compare the variance and kurtosis, denoted
by Var[ · ] and Kur[ · ] respectively, of Y (p) to Y . Each of these metrics is computed
for 1 ≤ p ≤ 20, the upper limit on p being more terms than is typically used for
applications.
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Table 4.1. Metrics used to assess the accuracy of the PC
approximation.

Metric

µ1(p)

{
Y −Y (p)

Y
, if Y 
= 0;

Y − Y (p), otherwise,

µ2(p)
E
[
(Y − Y (p))2

]
E [Y 2]

µ3(p) P (G) , G = {ω ∈ Ω: |Y (ω) − Y (p)(ω)| > ε}, ε > 0

µ4(p) P
({

Y (p) ≤ infω∈Ω Y
} ∪ {Y (p) ≥ supω∈Ω Y

})

µ5(p) P
(
Y (p) > F−1

Y (0.99)
)

µ6(p)
Var
[
Y (p)(W )

]
Var [Y (W )]

µ7(p)
Kur

[
Y (p)(W )

]
Kur [Y (W )]
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Table 4.2. Random variable examples: (1) lognormal, (2)
uniform on [α, β], and (3) reflected Gaussian.

Example Mapping, g( · ) / CDF, FY ( · ) Coefficients, yi

(1) Y1 = α + exp (βW )

y0 = α + eβ2/2

yj =
βj

j!
eβ2/2, j = 1, 2, . . .

(2)

Y2 = F−1
Y2

◦ Φ(W ), where

FY2(y) =




0, y < α;
y−α
β−α

, y ∈ [α, β);

1, y ≥ β.

y0 = (α + β)/2

y2j = 0

y2j+1 =
(−1)j+1(α − β)

2j+1
√

π(2j + 1)!
η(j), j = 0, 1, . . .

η(j) = | − 1 · 1 · 3 · · · (2j − 1)|

(3) Y3 = |W | y2j =
2√
2π

{
2jj!

(2j)!
+

j∑
i=1

(−1)i 2
j−2i(j − i)!

i!(2j − 2i)!

}

y2j+1 = 0, j = 0, 1, . . .

4.1.1.4 Examples

Let Y1 = α + exp (βW ), Y2 = F−1
Y2

◦ Φ(W ), and Y3 = |W | be three random variables,
where W ∼ N(0, 1), α, β > 0 are deterministic constants, and FY2 is the CDF of a
random variable uniformly distributed in [α, β]. Table 4.2 lists the definitions of Y1,
Y2, and Y3, as well as the PC coefficients given by Eq. (4.8). The derivation of the
PC coefficients for Y3 is included as Appendix A.

The PC coefficients for random variables Y1, with (α = 0, β = 1), Y2, with (α =
−1, β = 1), and Y3 are plotted in Fig. 4.1, showing they all approach zero for increasing
p. These coefficients decrease monotonically with p only for Y1. The coefficients y2k

for Y2 and y2k+1 for Y3, k = 0, 1, 2, . . ., are zero.

Shown in Figs. 4.2-4.4 are the true maps, gi(W ), and approximate maps, g
(p)
i (W ),

for Yi, i = 1, 2, 3, and p = 1, 2, . . . , 9. In general, as more terms are retained in
Eq. (4.9), each approximation improves. For Y

(p)
1 , the map is accurate near W = 0

with p = 3, but p > 5 terms are needed for g
(p)
1 to approximate g1 satisfactorily for

all W ∈ [−4, 4]. For p = 9, it is difficult to distinguish g
(p)
1 (W ) from g1(W ). The

mapping g
(p)
2 approximates g2 satisfactorily at W = 0 with few terms, but is less

satisfactory in the vicinity of W = ±4, even for large p. The mapping g
(p)
3 requires

more terms than g
(p)
1 (W ) or g

(p)
2 (W ) to be satisfactory in [−4, 4]. It has notable

oscillations in a vicinity of W = ±4 and approaches zero slowly at W = 0.

90



0 1 2 3 4 5 6 7
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

p

yi

Y1

Y2

Y3

Figure 4.1: PC coefficients for Y1, Y2, and Y3.
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Figure 4.5: Metric #1: PC maps at W = 0 (top) and W = 4 (bottom).

The accuracy of the approximate maps is further illustrated in Fig. 4.5, showing
plots of µ1(p) for each example. For g

(p)
1 , µ1(p) is small for both W = 0 and W = 4

when p ≥ 6. g
(p)
2 is accurate at W = 0 for all p, but exhibits oscillatory behavior

at W = 4. The oscillations are negligible for p > 13. At W = 0, g
(p)
3 with p = 20

exhibits a 20% error, while at W = 4, g
(p)
3 exhibits significant oscillatory behavior at

p = 20. Using the PC approximation for the lognormal random variable, g
(p)
1 (W ),

as a baseline for comparison, the approximation for the uniform random variable,
g

(p)
2 (W ), exhibited slower convergence and noise in the tails. The approximation for

the reflected Gaussian g
(p)
3 (W ) is unsatisfactory.

Figure 4.6 shows µ2(p), the error defined in the second row of Table 4.1, as a
function of p. Results have been obtained by Monte Carlo simulation using 100,000
samples. The mean square error decays most rapidly for Y

(p)
1 , followed by the mean

square errors for Y
(p)
2 and Y

(p)
3 . Estimates of µ3(p) are plotted in Fig. 4.7, where

a similar pattern is observed. Y1 and Y
(p)
1 can be viewed as equal in probability for

p ≥ 10, while Y2 and Y
(p)
2 for p ≥ 18. The tails of Y

(p)
3 and Y3 differ significantly, even

for p = 20. The calculations were performed with εi = 0.001 ·√Var[Yi], i = 1, 2, 3.

The random variables Y1 with (α = 0, β = 1), Y2 with (α = −1, β = 1), and Y3

are such that

Y1, Y3 ≥ 0, Y2 ∈ [−1, 1] (4.12)

93



0 5 10 15 20
10

-25

10
-20

10
-15

10
-10

10
-5

10
0

p

Y
(p)
1

Y
(p)
2

Y
(p)
3

Figure 4.6: Metric #2: estimates of relative mean-square error.
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Figure 4.7: Metric #3: estimates of P (G).
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almost surely. Estimates of P (Y
(p)
1 ≤ 0), P ({Y (p)

2 ≤ −1}∪{Y (p)
2 ≥ 1}), and P (Y

(p)
3 ≤

0) are shown in Fig. 4.8; results have been obtained using 100,000 samples. While

P (Y
(p)
1 ≤ 0) is initially high, it rapidly decays to near zero. P (Y

(p)
2 ≤ −1) ∪ {Y (p)

2 ≥
1}) is initially lower, but decays less rapidly; it remains at 0.001 for p = 20. P (Y

(p)
3 ≤

0) = 0 for all p because, as shown by the coefficients of Table 4.2, all odd coefficients
(odd powers of W ) in the PC approximation are zero.

Shown in Fig. 4.9 is µ5(p), the 1%-upper fractile estimates for Y
(p)
1 , Y

(p)
2 , and

Y
(p)
3 ; results have been obtained using 100,000 samples. The PC approximation for

the lognormal random variable is satisfactory for small p, while the PC approxima-
tion to the uniform random variable requires all terms considered before satisfactory
performance is achieved. The PC approximation to the reflected Gaussian random
variable exhibits a large error at p = 20.

The two remaining deterministic metrics, the normalized variance and kurtosis
of the PC approximations, are shown in Figs. 4.10 and 4.11, respectively. The
normalized variance of Y

(p)
1 and Y

(p)
2 are nearly one for p ≥ 7. The normalized

variance of Y
(p)
3 is in error by less than 1% at p = 20. The kurtosis coefficient of

Y
(p)
1 and Y1 practically coincide for p ≥ 10, but the kurtosis of Y

(p)
3 diverges from the

kurtosis of Y3 as p increases. It is not clear whether µ7(p) for Y
(p)
2 converges to one or

not as p increases. Note that µ6(p) and µ7(p) can be calculated directly; no sampling
is required.
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Figure 4.9: Metric #5: Estimates of 1%-upper fractile.
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The rate of convergence of the PC approximation is a function of the variance of
the true random variable. To illustrate, consider the lognormal random variable, Y1

of Table 4.2, with α = 0. A decrease in β will decrease the variance of Y1, allowing
an accurate PC approximation, Y

(p)
1 , with fewer terms. This is depicted in Fig. 4.12,

which shows plots of the normalized variance and kurtosis of the PC approximation,
Y

(p)
1 , for different values of β. Note that β = 0.05, 0.5, 1.0, correspond to Var[Y1] =

0.00251, 0.365, 4.67, respectively. The dependence of the the rate of convergence of
Y

(p)
1 on the variance of Y1 is further illustrated by Fig. 4.13. Plotted is the number of

terms, p, required to achieve less than 1% error in variance, skewness, and kurtosis of
the PC approximation, Y

(p)
1 . For example, with Var[Y1] = 4.67 (β = 1), the variance

of Y
(p)
1 is within 1% of the variance of Y1 for p ≥ 6, while the kurtosis of Y

(p)
1 is within

1% of the kurtosis of Y1 for p ≥ 13.

4.1.2 Stationary stochastic processes

Consider a non-Gaussian, R
d′-valued, stochastic process, Y(t), t ∈ D, that can be

written as a memoryless transformation of a Gaussian vector process, i.e.,

Y(t) = g [S(t)] , (4.13)

where g : R
k′ → R

d′ is a deterministic, measurable mapping, and S(t) is an R
k′

-valued
zero mean, unit variance, stationary Gaussian stochastic process. It is assumed that
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Y(t) is in L2, so that all coordinates of Y(t) have finite second moment. Because
Y(t) is a memoryless transformation of S(t), it is stationary in the strict sense [48].

4.1.2.1 PC representation for stationary processes

Suppose that the coordinates of S(t) are independent of each other. Then Eq. (4.2),
applied at a fixed time t ∈ D, gives [86, 95]

Yj(t) = gj [S(t)] =
∑

i1,i2,...,ik′≥0

y
(j)
i1,i2,...,ik′

hi1,i2,...,ik′ [S(t)] , j = 1, 2, . . . , d′, (4.14)

where y
(j)
i1,i2,...,ik′

are deterministic, time-invariant coefficients and hi1,i2,...,ik′ denote the
orthogonal Hermite polynomials (Eq. (4.3)). Equation (4.14) is the PC representation
of the jth coordinate of stationary process Y(t).

4.1.2.2 PC approximation for stationary processes

Let

Y
(p)
j (t) = g

(p)
j [S(t)]

=
∑

i1,i2,...,ik′≥0
i1+i2+···+ik′≤q

y
(j)
i1,i2,...,ik′

hi1,i2,...,ik′ [S(t)] , j = 1, 2, . . . , d′, (4.15)

be the PC approximation for the random variable Yj(t), t fixed in D, which consists
of Hermite polynomials up to and including order q. The coefficients in Eq. (4.15)
can be estimated at any fixed t using orthogonality arguments. Generally, these
coefficients must be computed numerically; as previously stated, numerical errors are
not considered in this study.

The PC representation and approximation in Eqs. (4.14) and (4.15) for a fixed t
coincide with the corresponding formulas for random vectors (Eqs. (4.2) and (4.9)).
The extension of Eqs. (4.14) and (4.15) to consider all times t ∈ D is not direct since
the process S(t) generally consists of an uncountable number of Gaussian random
variables. It is therefore necessary to approximate S(t) by a parametric process, i.e.,
a finite sum of deterministic functions of time with random coefficients. The following
two sections consider the mapping Y (t) = g[S(t)] with d′ = k′ = 1, for the cases in
which S(t) is a parametric and an arbitrary Gaussian process, respectively. The errors
caused by the PC approximation and the parametric approximation for S(t) can then
be examined separately.
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4.1.2.2.1 Transformations of parametric processes Consider the class of
real-valued stationary Gaussian processes with parametric representation given by

S(t) =
k∑

j=1

fj(t)Wj , (4.16)

where fj(t) are deterministic functions of time, and Wj are independent N(0, 1) ran-
dom variables. The functions fj(t) cannot be arbitrary if S(t) is to be stationary [48].
Using Eq. (4.15), the PC approximation for Y (t) = g[S(t)] is then

Y (p)(t) =

q∑
i=0

yihi

(
k∑

j=1

fj(t)Wj

)
, ∀t ∈ D. (4.17)

This can be rewritten as

Y (p)(t) = g(p)(W, t) =
∑

i1,i2,...,ik≥0
i1+i2+···+ik≤q

bi1,i2,...,ik(t)hi1,i2,...,ik(W), ∀t ∈ D, (4.18)

where W = [W1 . . .Wk]
T , and p is given by Eq. (4.10). The time-dependent coef-

ficients of Eq. (4.18), bi1,i2,...,ik(t), are defined by collecting like powers of Wj from
Eq. (4.17) [86]. This is identical to the PC approximation for random vectors of
Eq. (4.9) with t in place of j. Since Y (p)(t) in Eq. (4.17) is a memoryless transfor-
mation of a stationary Gaussian process, the PC approximation in Eq. (4.18) is a
stationary, non-Gaussian process.

Consider for illustration the process

Y (t) = F−1
Y ◦ Φ [S(t)] = g [S(t)] = exp [S(t)], (4.19)

where FY is the CDF of the lognormal random variable in the first row of Table 4.2,
with (α = 0, β = 1). Further, S(t) is a zero-mean, unit variance, stationary Gaussian
process defined as

S(t) =

√
2

2
[cos (πt)W1 + sin (πt)W2 + cos (2πt)W3 + sin (2πt)W4] , (4.20)

so that k = 4 in Eq. (4.16). The lognormal process, Y (t) = exp [S(t)], is strictly
stationary, E[Y (t)] = exp (1/2), and has a covariance function given by [48]

cY (τ) = exp

[
1 +

cos (πτ)

2
+

cos (2πτ)

2

]
− exp (1). (4.21)

Consider the PC approximation for Y (t) in Eq. (4.18) with q = 2. Elementary
calculations show that Y (p)(t) has mean exp (1/2) and covariance function

cY (p)(τ) = y2
0 +

y2
1

2
[cos (πτ) + cos (2πτ)] +

y2
2

2
[cos (πτ) + cos (2πτ)]2 , (4.22)
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Figure 4.14: Covariance of Y (t) = g[S(t)] and Y (p)(t) for q = 2, 4, 6; S(t) is paramet-
ric.

where the yi are the PC coefficients from the lognormal random variable example, Y
(p)
1 ,

in Table 4.2. The variance of Y (p)(t) approaches Var[Y (t)] for every t. The covariance
function, cY (p)(τ), is plotted in Fig. 4.14 for q = 2, 4, 6. It shows good agreement
for all τ and q ≥ 6. However, the PC approximation for the stochastic process
Y (t) involves more terms than for the lognormal random variable, Y1, considered
previously. By Eq. (4.10), the PC approximations for Y (t) with q = 2, 4, and 6
involves p = 14, 69, and 209 terms, respectively.

4.1.2.2.2 Transformations of general processes Next let S(t), t ∈ [a′, a′], be
a general zero-mean, stationary Gaussian stochastic process with covariance function
cS(τ). The Karhunen-Loève (K-L) representation

S(t) =
∞∑

j=1

√
λjφj(t)Wj, (4.23)

can be used to obtain a parametric approximation for S(t) [43]. In this representation,
{λj, φj(t)} are the eigenvalues and eigenfunctions, respectively, of cS(τ), and satisfy
the integral equation∫ a′

−a′
cS(t, u)φj(u)du = λjφj(t), j = 1, 2, . . . (4.24)
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The random variables Wj of Eq. (4.23) are given by

Wj =
1√
λj

∫ a′

−a′
S(t)φj(t)dt, j = 1, 2, . . . , (4.25)

showing that Wj are iid N(0, 1) random variables if S(t) is a Gaussian process [42].

In practice, the infinite series of Eq. (4.23) must be truncated, yielding the K-L
approximation for S(t), defined as

S(k)(t) =

k∑
j=1

√
λjφj(t)Wj, t ∈ [−a′, a′]. (4.26)

The variance of S(k)(t) satisfies the condition

Var
[
S(k)(t)

]
=

k∑
j=1

(
√

λj φj(t))
2 ≤

∞∑
j=1

(
√

λj φj(t))
2 = Var [S(t)] . (4.27)

By Eq. (4.27) it is evident that: (1) Var[S(t)] is underestimated, and (2) S(k)(t) is
not stationary.

There are alternative methods for obtaining parametric approximations for sta-
tionary Gaussian processes (see Appendix B). Let w(ν), having non-zero ordinate in
the frequency band [0, ν̄], 0 < ν̄ < ∞, denote the one-sided spectral density function of
the process S(t) in Eq. (4.23). Consider a partition (uj−1, uj), j = 1, 2, . . . , n, of [0, ν̄],
where u0 = 0 and un = ν̄. Denote by νj the mid point of (uj−1, uj), j = 1, 2, . . . , n,
and let

σ2
j =

∫ uj

uj−1

w(ν)dν. (4.28)

The process

S(n)(t) =

n∑
j=1

σj [Aj cos (νjt) + Bj sin (νjt)] , (4.29)

with {Aj, Bj} iid N(0, 1), j = 1, 2, . . . , n, (1) provides a parametric approximation
for S(t), (2) is stationary, Gaussian with mean zero and covariance function

cS(n)(τ) =

n∑
j=1

σ2
j cos (νjτ) (4.30)

for any partition of [0, ν̄] and value of n, and (3) becomes a version (i.e., has an
identical finite dimensional distribution) of S(t) as the partition of [0, ν̄] is refined
[49, 50].
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To assess the accuracy of the parametric approximations in Eqs. (4.26) and
(4.29), consider a Gaussian stochastic process, S(t), t ∈ [−a′, a′], with second-moment
properties

E [S(t)] = 0, cS(τ) = E [S(t)S(t + τ)] = exp (− | τ |). (4.31)

The eigenvalues of the prescribed covariance function are given by [91],

λj =
2

θ2
j + 1

, j = 1, 2, . . . , (4.32)

where the θj come from the solution to the following characteristic equation,

1 − θ2j tan (a′θ2j) = 0,

θ2j−1 + tan (a′θ2j−1) = 0. (4.33)

The eigenfunctions are then given by

φ2j(t) =
cos (θ2jt)√

a′ + sin (2a′θ2j)

2θ2j

, and

φ2j−1(t) =
sin (θ2j−1t)√

a′ − sin (2a′θ2j−1)

2θ2j−1

, j = 1, 2, . . . (4.34)

Using Eqs. (4.32) and (4.34), the K-L approximation in Eq. (4.26) provides a para-
metric approximation for S(t), t ∈ [−a′, a′].

The variance of S(k)(t) is illustrated in Fig. 4.15 for a′ = 5 and three values
of k. As k increases, Var[S(k)(t)] fluctuates less and approaches one. The rate of
convergence is relatively slow, e.g., Var[S(k)(t)] is in error by 20% for k = 10. The
scaled K-L approximation [86], S(k)(t)/

√
Var[S(k)(t)], has unit variance at all times,

t ∈ [−a′, a′], but is not a stationary process [33].

Consider now the parametric approximation in Eq. (4.29) with n = 10, 20, 30 and
ν̄ = 20. The covariance function of S(n)(t) is shown in Fig. 4.16 for n = 10, 20, 30,
along with the covariance of S(t). For n = 20, the variance of the approximation,
shown at τ = 0, is within 3% of the true variance. All second moment properties of
S(n)(t) are accurate for n ≥ 30.

Regardless of the method used to parameterize S(t), the error introduced by the
approximation in Eq. (4.26) or Eq. (4.29) is then propagated to the PC approxi-
mation for Y (t) = g[S(t)]. To illustrate, consider the process defined in Eq. (4.19),
where FY is the CDF of the lognormal random variable listed in Table 4.2 with (α = 0,
β = 1), and S(t) is a Gaussian process with second moment properties in Eq. (4.31).
In this example, the K-L approximation in Eq. (4.26) is used when calculating the
PC approximation, Y (p)(t).
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Figure 4.15: Variance of S(k)(t), the K-L approximation of S(t).

-5 0 5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

τ

Exact

n = 10

n = 20

n = 30

Figure 4.16: Covariance of S(n)(t), the approximation of S(t) by the method of
Eq. (4.29).

104



-5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V
ar

[Y
(p

) (
t)

]/
V

ar
[Y

(t
)]

t

q = 2, k = 2

q = 4, k = 4

q = 6, k = 6

Figure 4.17: Normalized variance of Y (p)(t), with S(t) defined by Eq. (4.31).

-5

0

5

-5

0

5
-1

0

1

2

3

4

s t

Figure 4.18: Covariance of Y (p)(t) with (q = 6, k = 6) and S(t) defined by Eq. (4.31).
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Figures 4.17 and 4.18 show the scaled variance and the covariance of the PC
approximation. As more terms from Eq. (4.18) are retained, Var

[
Y (p)(t)

]
/Var [Y (t)]

approaches one as expected. The rate of convergence slows with increasing terms,
and even with (q = 6, k = 6), the process remains nonstationary and there is a 40%
relative error in the variance of the process.

The probability that Y (p)(t) is negative at t = 0 and t = 2 is plotted in Fig. 4.19.
This probability is high for small p, but becomes nearly zero for large values of
p. There is little difference in the two time points. Shown in Fig. 4.20 are the
predictions of the 1%- upper fractile at t = 0 and t = 2. The difference of the marginal
distributions at t = 0 and t = 2 is further evidence of the nonstationarity of Y (p)(t).
For both figures, results were obtained using 50,000 samples. These results are very
similar to that of the lognormal random variable (Figs. 4.8 and 4.9), except that here
p grows exponentially. For k = q, where k denotes the number of terms retained in
the K-L expansion and q is the order of the polynomial chaos, this relationship is
approximately

p = exp (1.3256q − 1.0156). (4.35)

For example, p is 20, 70, 252, and 924 for k = q = 3, 4, 5 and 6, respectively. Hence,
adding more terms to the PC approximation requires significant additional computa-
tional effort.

The practical use of the polynomial chaos (PC) representation of non-Gaussian
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random variables and stationary stochastic processes involved several approximations.
Each approximation contributed to the total error of the PC approximation. The
objective of this section was to identify and quantify some of these errors by simple,
relevant example problems. These errors may or may not be significant, depending
on the application. In either case, their consequences must be well understood and
quantified before using the PC approximation in applications.

The PC approximation converges to the PC representation in mean square for
L2 random variables and stationary stochastic processes. However, this asymptotic
property is largely irrelevant for applications since, generally, the PC approxima-
tion consists of a small number of terms. We examined the PC approximation for
three non-Gaussian random variables and two non-Gaussian, stationary stochastic
processes to assess errors of the PC approximation. It was shown that: (1) the
accuracy of the PC approximation did not necessarily improve as additional terms
were retained, (2) PC approximations for stationary, non-Gaussian stochastic pro-
cesses may be nonstationary, and (3) the development of PC approximations may be
computationally demanding for realistic applications because of the large number of
coefficients that need to be calculated.
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4.2 Model selection for polynomial chaos

As shown in the previous section, (1) the accuracy of the PC approximation depends
on the number of terms, p, retained in the series, and (2) the accuracy does not
necessarily improve with increasing p. It is therefore desirable to develop a method
to select the optimal order of the PC approximation. In this section, we present
an approach to do this that uses the decision-theoretic method for model selection
introduced in Chapter 2. The general formulation of the problem is discussed in
Section 4.2.1; examples are used to illustrate the method in Section 4.2.2.

4.2.1 General formulation

Recall the non-Gaussian R
d′-valued stationary stochastic processes discussed in Sec-

tion 4.1.2, i.e.,

Y(t) = g[S(t)], t ∈ D, (4.36)

where g : R
k′ → R

d′ is a deterministic, measurable mapping, Y(t) ∈ L2, and S(t) is
a R

k′
-valued Gaussian stationary stochastic process with independent coordinates of

mean zero and variance one. In the general case, the information on g is incomplete,
so that the probability law for Y is only partially defined. In this case, we consider
a finite collection of possible mappings, given by

M = {g1, g2, . . . , gn} , (4.37)

where, for i = 1, 2, . . . , n, each gi : R
k′ → R

d′ in M is consistent with the available
information on Y. Let pi be the probability that gi is true; as noted in Chapter 2,
each pi can be estimated by: (1) the method of maximum likelihood, (2) Bayesian
methods, or, (3) if no data is available, noninformative priors.

The objective is to construct the optimal PC approximation for Y. Denote by gi,k,
k = 1, 2, . . . , d′, the coordinates of gi. Consistent with Eq. (4.15) from Section 4.1.2.2,

denote by g
(j)
i,k [S(t)] the j-term PC approximation for gi,k[S(t)], and let p ≥ 1 be the

maximum order of the PC approximation for Y. The collection

A =
{
g

(1)
1 [S(t)], g

(2)
1 [S(t)], . . . , g

(p)
1 [S(t)], . . . ,

g(1)
n [S(t)], g(2)

n [S(t)], . . . , g(p)
n [S(t)], t ∈ D

}
(4.38)

is the space of candidate actions, where g
(j)
i [S(t)] ∈ A has coordinates g

(j)
i,k [S(t)],

k = 1, 2, . . . , d′. Each element of A is a candidate PC approximation for Y; in
general, M and A do not coincide.

The utility, U : A×M → [0,∞) and consistent with the definition in Section 2.3.2,
is given by

U
(
g

(j)
i , gk

)
= γ
(
g

(j)
i

)
+ ψ

(
g

(j)
i , gk

)
, j = 1, . . . , p, (4.39)
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for each i, k ∈ {1, 2, . . . , n}, where γ(g
(j)
i ) ≥ 0 denotes the cost of model g

(j)
i , and

ψ(g
(j)
i , gk) ≥ 0 denotes the penalty of model g

(j)
i , if gk is true. It follows that the

expected utility of each candidate PC approximation for Y is given by Eq. (2.45).
The optimal action, a� ∈ A, minimizes Eq. (2.45); we refer to a� as the optimal PC
approximation for Y.

4.2.2 Examples

Consider the scalar random variable case, i.e., d = k′ = 1 and t ∈ D is fixed. Under
these constraints, Eq. (4.36) reduces to

Y = g(W ) = F−1 ◦ Φ(W ), (4.40)

where W ∼ N(0, 1) is a standard Gaussian random variable, and F and Φ denote
CDFs for Y and W , respectively. Further, M and A reduce to

M = {g1, g2, . . . , gn}, (4.41)

and

A =
{
g

(1)
1 (W ), g

(2)
1 (W ), . . . , g

(p)
1 (W ), . . . ,

g(1)
n (W ), g(2)

n (W ), . . . , g(p)
n (W )

}
, (4.42)

respectively where, for i = 1, 2, . . . , n and j = 1, 2, . . . , p, Eq. (4.9) gives

g
(j)
i (W ) =

j∑
l=0

yi,lhl(W ). (4.43)

The coefficients of Eq. (4.43) follow from Eq. (4.8), i.e.,

yi,l =
1√
2πl!

∫ ∞

−∞
gi(u)hl(u) exp

(−u2/2
)
du, l = 0, 1, . . . , j. (4.44)

We consider the case where the model use is to predict P (Y ≤ d), where d denotes
a specified critical value for Y . The objective is then to determine the optimal PC
approximation for Y that is consistent with the model use.

The model use is prediction, so the utility formulation of Section 2.3.2.3 applies.
Let the cost of model g

(j)
i ∈ A be given by

γ
(
g

(j)
i

)
= γ0j, i = 1, 2, . . . , n, j = 1, 2, . . . , p, (4.45)

so that PC approximations for Y with a large number of terms have a high cost.
Denote by Fk and Fi,j the probability laws for gk(W ) ∈ M and g

(j)
i (W ) ∈ A, respec-

tively, and define

ψ
(
g

(j)
i , gk

)
= ψ̃ (Fi,j(d), Fk(d))

=

{
β1 [Fi,j(d) − Fk(d)]2 if Fi,j(d) ≤ Fk(d),

β2 [Fi,j(d) − Fk(d)]2 if Fi,j(d) > Fk(d),
(4.46)
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to be the penalty assigned under model g
(j)
i ∈ A, if gk ∈ M is true, where 0 ≤ β1 < β2

are deterministic parameters. By Eq. (4.46), non-conservative predictions of P (Y ≤
d) are assigned a penalty; overly conservative predictions are also penalized.

Three cases will be considered in the following sections: (1) the information on Y
is complete, (2) the information on Y is limited to a collection of possible probability
laws for Y , and (3) only the second-moment properties of Y are known. The decision-
theoretic method for model selection will be used in all cases to select the optimal
PC approximation for Y .

4.2.2.1 Case #1: complete information on random variable

We assume the probability law for Y , denoted by F , is known and fixed. Hence,

M = {g}, (4.47)

where g = F−1 ◦ Φ is the only possible model for Y , i.e., model g is true with
probability one. By Eq. (4.42), we have the following collection of candidate actions

A = {g(1)(W ), g(2)(W ), . . . , g(p)(W )}, (4.48)

where g(i) denotes g
(i)
1 from Eq. (4.43). By Eq. (4.39), U(g(i), g) = γ(g(i))+ψ(g(i), g)

is the utility of model g(i) ∈ A; because the information on Y is complete, the utility
is a deterministic function. It follows that

u
(
g(i)
)

= γ
(
g(i)
)

+ ψ
(
g(i), g

)
, i = 1, 2, . . . , p (4.49)

is the expected utility of model g(i) ∈ A.

The expected utility of each PC approximation in A is computed for the case of Y
uniformly distributed in [0, 2], i.e., Example (2) from Table 4.2. Parameters d = 1.99,
p = 20, β1 = 100, and β2 = 500 were used for calculations, and results from 50,000
Monte Carlo samples were used to estimate Fi(d), i = 1, 2, . . . , p. Results are shown
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Figure 4.21: Optimal order of PC approximation for case #1.
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in Fig. 4.21. For the case of γ0 = 0.01, shown at the left of Fig. 4.21, the optimal
order of the PC approximation for Y is 5, denoted by a solid circle. The plot on the
right is for the case of γ0 = 0, meaning that we assess zero cost when adding terms to
the PC approximation; the optimal order in this case is 19. Hence, for this example,
ensuring that the PC approximation does not provide non-conservative predictions
of P (Y ≤ d) requires that many terms be retained.

4.2.2.2 Case #2: information on random variable limited to a collection
of CDFs

We next assume the information on Y = g(W ) is limited such that g has one of three
possible functional forms, i.e.,

M = {g1(W ), g2(W ), g3(W )}, (4.50)

where

g1(W ) = exp (αW ),

g2(W ) = F−1
2 ◦ Φ(W ), and

g3(W ) = |W |, (4.51)

α is a deterministic parameter, and F2 is the CDF of a random variable distributed
uniformly in [a, b]. Note that random variables g1(W ), g2(W ), and g3(W ) are identical
to those listed in Table 4.2; the probability laws of each, denoted by F1, F2, and F3,
are shown in Fig. 4.22 for the case of α = 1/3, a = 0, and b = 2. No further prior
knowledge is available, so each member of M is assumed equally likely. The collection
of PC approximations for the elements of M defines the space of candidate actions,
i.e., Eq. (4.42) with n = 3. The utility, U(g

(j)
i , gk), is given by Eq. (4.39), where the

cost of g
(j)
i ∈ A is given by Eq. (4.45), and the penalty associated with g

(j)
i ∈ A if

gk ∈ M is true is given by Eq. (4.46).
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The expected utility of each PC approximation in A is computed by Eq. (2.45);
parameters γ0 = 0 and β1 = 100 were used for calculations. The results from three
analyses are listed in Table 4.3. For analyses (1) and (2), β2/β1 = 1.1, while for
analysis (3), β2/β1 = 11, so that non-conservative predictions of P (Y ≤ d) are
penalized more in analysis (3) than in (1) and (2); analysis (3) corresponds to a case
of high risk, as defined in Section 1.3. By Table 4.3, it is evident that the 5-term
PC approximation for g1(W ) is the optimal model for analysis (1). If we increase the
value for d, the 3-term PC approximation for a lognormal random variable is optimal
(analysis (2)). The 16-term PC approximation for g3(W ) is optimal for the high risk
case, i.e., analysis (3).

4.2.2.3 Case #3: information on random variable limited to mean and
variance

We next assume information on Y is limited to E[Y ] = µ < ∞ and Var[Y ] = σ2 < ∞.
Under these assumptions, the collection of all possible models for Y is

M =

{
g = F−1 ◦ Φ:

∫ ∞

−∞
s dF (s) = µ,

∫ ∞

−∞
(s − µ)2 dF (s) = σ2

}
. (4.52)

This is an uncountable collection; consider a finite subcollection

M′ =
{

g
(p)
i (W ), i = 1, 2, . . . , n

}
⊂ M, (4.53)

where the coefficients satisfy

yi,0 = µ and

p∑
j=1

y2
i,jj! = σ2. i = 1, 2, . . . , n, (4.54)

By Eq. (4.54), M′ is a finite collection of p-term PC approximations for Y , where
each approximation has mean µ and variance σ2. No further information is available,
so we assume each g

(p)
i ∈ M′ is equally likely. We will consider the special case where

A = M′.

Table 4.3. Optimal PC approximation for case #2.

Analysis d β2 a� ∈ A
(1) 1.95 110 g

(5)
2

(2) 1.995 110 g
(3)
1

(3) 1.999 1100 g
(16)
3
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Figure 4.23: Histograms of PC approximations for case #3.

For illustration, let p = 2, n = 21, and impose the additional constraint

yi,2 =
σ(i − 1)√
2(n − 1)

, i = 1, 2, . . . , n. (4.55)

By Eq. (4.55) the first model in A, g
(2)
1 (W ) = µ+σW , is a Gaussian random variable;

likewise, g
(2)
n = µ+σ/

√
2(W 2−1) follows a χ2 distribution with one degree of freedom

[5], pp. 172-173. While each g
(2)
i ∈ A have identical second-moment properties, their

probability laws are very different. Histograms of four of the candidate models in A
are shown in Fig. 4.23 for the case of µ = 1 and σ2 = 1/3; 50,000 Monte Carlo
samples were used.

Because each g
(2)
i ∈ A has the same number of terms (p + 1), we assign zero cost

to every member of A. The utility is given by Eq. (4.46) with g
(j)
i and gk replaced

by g
(2)
i and g

(2)
k , respectively. The expected utility of each PC approximation for Y

is given by Eq. (2.45); parameters d = 1.99 and β1 = 100 were used for calculations.
The results are shown in Fig. 4.24 for two cases: (1) β2 = 110 (left) and (2) β2 = 1100

(right). As β2 increases, the optimal model changes from g
(2)
6 to g

(2)
15 .
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Chapter 5

Performance of spacecraft during
atmospheric re-entry

Atmospheric re-entry is concerned primarily with the passage of ballistic objects
through the Earth’s atmosphere [71]. This is one example of a high risk system,
as defined in Chapter 1. All space vehicles that are required to return to Earth
must endure the extreme environment associated with atmospheric re-entry. This
environment includes the effects of aerodynamic heating, large rates of deceleration,
radiation effects, and loads due to shock and vibration [30]. While all of these effects
must be considered in typical spacecraft design, the work presented herein will be
concerned only with the vibrational effects of the re-entry environment; if necessary,
the remaining effects can be incorporated into the framework. In this chapter, we
use the decision-theoretic method for model selection to select optimal models for the
vibration environment to a spacecraft during atmospheric re-entry.

5.1 Motivation

At high speeds encountered during atmospheric re-entry, the in-flight vibration re-
sponse of a spacecraft is due primarily to external fluctuating pressure loads, which
result from unsteady aerodynamic flows over the vehicle [24]. The role of the struc-
tural engineer is to ensure that all internal components of the spacecraft, e.g., elec-
tronics, astronauts, etc., survive atmospheric re-entry. Typically, this means that
the internal components must continue to operate normally with a prescribed level
of reliability. To do this requires models of the spacecraft and the re-entry environ-
ment, where the latter is a characterization of the applied pressure loads in space
and time. Due to the severity of this environment, it is nearly impossible to attain
experimental data, and the characteristics of the excitation remain largely undefined.
Usually, assumptions are made about the missing information so an analysis can be
completed; the consequences of these assumptions are, in general, difficult to quantify.
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As discussed in Section 1.3, this can be classified as a high risk system because the
consequences of using an inappropriate model for the re-entry environment can be
disastrous. The decision-theoretic method for model selection is therefore a suitable
technique to select models for the re-entry environment.

In general, information on the applied pressure field during atmospheric re-entry
is incomplete. In this chapter, we model the pressure field as a stochastic process in
space and time, and examine the effects of two missing pieces of information: (1) the
spatial correlation of the process, and (2) the marginal distribution function of the
process. The methods for model selection developed in Chapter 2 are used to select
the optimal model, from a class of candidate models, for the spatial correlation and
marginal distribution of the applied pressure field.

Typically, the assessment of the structural response of a spacecraft during atmo-
spheric re-entry is limited to second-moment analysis [17, 24, 29] and [28], Chapter
10. For structural reliability calculations, this requires one to assume the marginal
distribution function of the applied pressure field to be Gaussian. Consider Fig. 5.1,
which shows actual accelerometer data recorded during the initial portions of the
re-entry phase of mission STS-62 of the NASA Space Shuttle Orbiter [14]. Shown are
the accelerations of the center of mass of the Orbiter in three directions as a function
of time. The sample functions shown in Fig. 5.1 clearly do not come from a Gaussian
process. In addition, wind tunnel pressure measurements on an aircraft fuselage are
shown in Fig. 5.2; similar non-Gaussian behavior is noted. Non-Gaussian response
(Fig. 5.1) and non-Gaussian applied pressures (Fig. 5.2) together suggest that the
applied load during atmospheric re-entry may be non-Gaussian as well.

5.2 Problem description

Consider the spacecraft depicted schematically in Fig. 5.3, where the random vector
pressure field, Z(x; t), models the loading during atmospheric re-entry in space, x,
and time, t. The spacecraft, shown here as a perfect cone, has several stiffening ribs
oriented in the hoop direction; a base ring is located at the aft end of the spacecraft
to provide added stiffness. An internal component, depicted by a solid circle in the
figure, is connected to the skin of the spacecraft via several supports, each having
structural properties, kc.

Two response quantities are of interest: the vector displacement response of the
skin of the spacecraft, D(x; t), and the vector acceleration response of the internal
component, Ÿ(t). Models of the spacecraft and the applied pressure field can be
developed based on the available information. The objective is to use these models to
assess the performance of the spacecraft during atmospheric re-entry from properties
of D(x; t) and Ÿ(t).

The remainder of the chapter is as follows. In Section 5.3, we develop a model
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Figure 5.3: Spacecraft during atmospheric re-entry.

for the spacecraft; it is assumed all required information is available to construct
the spacecraft model. In Section 5.4, the model for the applied pressure field is
developed. Model use is discussed in Section 5.5. The available information on
Z(x; t) is incomplete and we apply methods of model selection to choose optimal
models for the input that are consistent with the model use. Because the applied
pressure field is a stochastic process in both space and time, the spatial and temporal
correlation functions, as well as the marginal distribution function, are necessary to
define Z(x; t). Three cases are considered for illustration: (1) Z(x; t) is assumed to be
a Gaussian process with perfectly known temporal correlation function and spatial
correlation function of specified functional form, but with an unknown parameter
value, (2) Z(x; t) is assumed to be a Gaussian process with perfectly known temporal
correlation function and spatial correlation function of unspecified functional form
with unknown parameters, and (3) Z(x; t) is assumed to be completely defined in the
second-moment sense, but with unknown marginal distribution function. Table 5.1
shows the analysis scenarios to be studied in the remainder of the chapter; the sections
corresponding to each scenario are also listed. Methods of model selection are used
to select optimal models for Z under each scenario.

Table 5.1. Analysis scenarios for spacecraft re-entry prob-
lem.

Spacecraft model
Input model

Case (i) Case (ii)

Case (1) Section 5.6 -
Case (2) Section 5.7 -
Case (3) - Section 5.8
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5.3 Spacecraft model

In this section, we develop the model for the spacecraft shown in Fig. 5.3. This
model defines the operator, D as defined in Chapter 2, for the re-entry analysis.
Two cases are considered: (i) the dynamics of spacecraft and internal component
are fully coupled, and (ii) the dynamics of spacecraft and internal component are
independent of each other and can be decoupled. Methods for analysis under both
case are discussed; cases (i) and (ii) are also shown in Table 5.1. The available
information, discussed in Section 5.3.1, is assumed complete. Hence, D is completely
known, fixed, and deterministic. Sections 5.3.2 and 5.3.3 discuss the mathematical
model and methods for response analysis, respectively.

5.3.1 Available information

It is assumed that: (1) the spacecraft is made of a single, linear elastic material with
known, deterministic modulus of elasticity, e, and mass density, µ, (2) the spacecraft
geometry is a perfect cone with cone angle, α, (3) away from the stiffening ribs and
base ring, the skin of the spacecraft has constant thickness, c, (4) the component can
be modeled as a point mass with value mc, and (5) its supports behave as simple
springs with known, deterministic spring constant, kc.

Because of the symmetry of the spacecraft, an axial section of the cone, having
width s(x1) = s0x1, where s0 > 0 is a constant, can be formulated as a beam on
elastic foundation [55]. This conical section is shown in the top of Fig. 5.4; shown at
the bottom is α, the cone angle, and c, the skin thickness. The corresponding picture
of the spacecraft is a function of a single dimension, x1 = x, and is shown in Fig. 5.5,
where Z(x; t) = Z(x; t) denotes the applied scalar pressure field, and D(x; t) = D(x; t)
denotes the scalar displacement response of the beam. The quantities, Z and D are
no longer in bold to denote they are now scalar quantities. The component and its
support behave as a single degree-of-freedom oscillator located a distance b from the
front of the beam, with mass, mc, and stiffness, kc = kc. The beam has total length
l. The quantity Y (t) represents the scalar displacement response of the component
with respect to an inertial frame of reference.

5.3.2 Mathematical model

The one-dimensional representation of the spacecraft is a beam on elastic founda-
tion with attached oscillator. The foundation stiffness of the beam is given by
(see [55], p. 120)

k(x) =
s0 e c

x sin2 α cos α
, 0 < x ≤ l, (5.1)
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Table 5.2. Spacecraft model parameters.

Parameter Value Units

α 15 deg
κ 50 -
s0 0.267 rad/in
µ 0.1 lbm/in3

c 0.025 in
e 10.0 × 106 psi
kl 2.0 × 105 lb/in
l 50 in

where the non-uniformity of k(x) is due to the conical geometry of the spacecraft. At
x = 0, corresponding to the nose of the spacecraft, the stiffness is infinite; the beam
is therefore constrained in the vertical direction at x = 0. The beam is tapered, with
cross sectional area

a(x) =
s0 κ c

cos3 α
x, (5.2)

and bending moment of inertia

i(x) =
s0 (κ c)3

12 cos3 α
x, (5.3)

where parameter κ ≥ 1 is used to represent the effective thickness of the skin due to
the stiffening ribs (refer to Fig. 5.4). The spring at the right end of the beam with
stiffness kl > 0 is used to represent the added stiffness of the base ring.

Let q and qc denote viscous damping coefficients for the beam and component
support, respectively. The equations of motion governing the beam deflection and
position of the mass are given by [10]

e [i(x) D′′(x; t)]
′′

+ µa(x)D̈(x; t) + qḊ(x; t) − k(x)D(x; t) − klD(l; t)δ(x − l) =

− mcŸ (t)δ(x − b) − xs(x)

2
Z(x; t),

mcŸ (t) + qcẎ (t) + kcY (t) = qcḊ(b; t) + kcD(b; t), (5.4)

with appropriate boundary and initial conditions. Here, δ(x) denotes the Dirac delta
function, xs(x)/2 is the area of the top of the beam, used to convert the applied

pressure, Z(x; t), to a force, and ( )′ and ˙( ) denote differentiation with respect to x
and t, respectively.

Table 5.2 lists the values of the parameters of the spacecraft model. Parameters e
and µ are consistent with the properties of aluminum. The base ring stiffness is five
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times the foundation stiffness at the right end of the beam, i.e., kl = 5k(l), and s0 was
selected so that s(l) = 1 radian. Parameters c and κ were selected to give adequate
separation between the stiffness of the beam and the stiffness of the foundation.

5.3.3 Response analysis

Equation (5.4) cannot be solved for D(x; t) or Ÿ (t) in closed-form, even for the case
of deterministic excitation. An alternative is to discretize the beam in the spatial
dimension. Define 0 = x1 < x2 < · · · < xn = l to be a partition of [0, l] and let

Di(t) = D(xi; t), i = 1, 2, . . . , n,

D(t) = (D1(t) D2(t) . . . Dn(t))T (5.5)

An approximation to Eq. (5.4) is then given by

m

(
D̈(t)

Ÿ (t)

)
+ q

(
Ḋ(t)

Ẏ (t)

)
+ k

(
D(t)
Y (t)

)
= bZ(t), (5.6)

where m, q, and k are (n + 1) × (n + 1) matrices representing the mass, damping,
and stiffness of the beam with attached oscillator, respectively, b is a (n + 1) × n′

matrix, and

Zi(t) = Z(xi; t), i = 1, 2, . . . , n′,

Z(t) = (Z1(t) Z2(t) . . . Zn′(t))T , (5.7)

is the input, Z(x; t), discretized in the spatial dimension via partition 0 = x1 < x2 <
· · · < xn′ = l.

Figure 5.6 shows the first nine mode shapes, wi, and the corresponding modal
frequencies, νi, i = 1, 2, . . . , 9, of the one-dimensional model of the spacecraft, i.e.,
the solution to

kw = mwν, (5.8)

where w = (w1,w2, . . . ,wn+1), and ν is a diagonal matrix such that νii = νi, i =
1, 2, . . . , n+1. Parameters b = 37.5 in, mc = 24 lbm, and kc = 2.5×105 lb/in were used
for calculations. In each plot, the solid circle represents the displacement of the mass.
The system is assumed classically damped with constant damping ratio, ζ = 0.02,
i.e., q = w−T q̃w−1, where the wi are assumed mass normalized and q̃ii = 2ζνi,
i = 1, 2, . . . , n + 1 [25].

If the mass and the beam can be assumed to be uncoupled, Eq. (5.6) can be
simplified to

m′D̈(t) + q′Ḋ(t) + k′D(t) = b′Z(t), (5.9a)

Ÿ (t) + 2ζcωcẎ (t) + ω2
cY (t) = 2ζcωcḊj(t) + ω2

cDj(t), (5.9b)
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where m′, q′, and k′ are m, q, and k, respectively, with the (n+1) row and column re-
moved, b′ is b with the (n+1) row removed, and xj = b. Parameters ζc = qc/

√
4kcmc

and ωc =
√

mc/kc are the damping ratio and natural frequency, respectively, of the
oscillator. The natural frequencies and mode shapes of the beam without the oscilla-
tor, the eigensolution to Eq. (5.9a), are shown in Fig. 5.7. Equations (5.6) and (5.9)
can both be converted into a system of 2(n + 1) linear ordinary differential equations
and solved using a state-space approach. In the analyses that follow, n = n′ = 20.

5.4 Input model

In this section, we develop the model of the input to the spacecraft, Z(x; t). As will
be shown in Section 5.4.1, the available information on Z is incomplete. Hence, the
model for the input is not completely defined.

5.4.1 Available information

It is assumed that the applied pressure field can be written as

Z(x; t) = σZ(x)Q(x; t), t ∈ [0, t′], (5.10)

where σZ(x) is a known, non-negative, deterministic function of x shown on the right
of Fig. 5.8, Q(x; t) is a weakly stationary stochastic process with partially defined
second-moment properties, and t′ ≥ 0 denotes the duration of the re-entry event. By
Eq. (5.10), the properties of Q imply that: (1) Z has zero mean (2) the variance of
Z is σ2

Z(x), and (3) the temporal and spatial correlation functions of Z are

E[Z(x0; t)Z(x0; t + τ)] = σZ(x0)E[Q(x0; t)Q(x0; t + τ)], (5.11)

and

E[Z(x; t0)Z(x + η; t0)] = σZ(x)σZ(x + η)E[Q(x; t0)Q(x + η; t0)], (5.12)

respectively, for any fixed x0 ∈ [0, l], and any fixed t0 ∈ [0, t′].

The available information on Q is given by:

1. E[Q(x; t)] = 0, ∀x ∈ [0, l], ∀t ∈ [0, t′],

2. Var[Q(x; t)] = 1, ∀x ∈ [0, l], ∀t ∈ [0, t′], and

3. the temporal correlation function of Q is given by

E[Q(x0; t)Q(x0; t + τ)] = cQ(τ) =




sin(ω̄τ)

ω̄τ
τ 
= 0,

1 τ = 0,
(5.13)
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for any fixed x0 ∈ [0, l], where ω̄ > 0 is a deterministic parameter, so that Q is
a band limited white noise process [88] with cut-off frequency ω̄.

The Fourier transform of Eq. (5.13) gives the power spectral density (PSD) of Q;
the one-sided PSD, gQ(ω), is shown on the left of Fig. 5.8 for ω̄ = 20,000 Hz. The
properties for Z and Q are consistent with results from both empirical studies [66]
and theoretical models [53]. Information on the spatial correlation function of Q,

E[Q(x; t0)Q(x + η; t0)] = φ(η; θ), (5.14)

for any fixed t0 ∈ [0, t′], is unavailable. Hence, the spatial correlation function, φ,
depending on spatial lag, η, and unknown parameter, θ, has unknown functional
form.

5.4.2 Mathematical model

As illustrated in the previous section, the second-moment properties of the input, Z,
are not completely defined. Information on the spatial correlation of Q and, hence,
the spatial correlation of Z, is not available. In addition, nothing is known about the
probability laws of Q or Z.

We consider three cases for the missing information on Z, and apply the decision-
theoretic method for model selection under each. Case #1: Q = G, where G is a
Gaussian process with spatial correlation function given by

φ(η; θ) = e−θ|η|, (5.15)

and θ ≥ 0. Here, the functional form for φ is known, but the value for θ is not. Case
#2: Q = G, where G is a Gaussian process with spatial correlation function φ(η; θ)
of unknown functional form; the value for the parameter θ is also unknown. Case
#3: Q is a non-Gaussian process with completely defined second-moment properties.
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Figure 5.8: Available information on Z.
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In this case, we set φ(η) = 1, ∀η ∈ [0, l]. This corresponds to the limiting case of
θ → 0 in Eq. (5.15).

In sections 5.6, 5.7, and 5.8, we employ the model selection techniques developed
in Chapter 2 to choose optimal models for cases #1, #2, and #3, respectively. In
each section, we first define a class of candidate models, where each member of the
class is consistent with all available information on Z. Second, we illustrate that
different models from the class of candidate models may have a significant impact on
the properties of the response of interest. Third, we develop an appropriate utility
function and use it to select the optimal model from the class of candidate models.
In addition, for case #1, we study the sensitivity of the optimal model to changes in
the utility function.

5.5 Model use

The objective is to use the mathematical models for the spacecraft and the applied
pressure field to assess performance. In particular, suppose

g(Y ) = max
t∈[0,3t′]

| Ÿ (t) | (5.16)

is the property of interest, where Ÿ (t) = d2Y (t)/dt2 and t′ ≥ 0 denotes the duration
of the re-entry event. The performance of the system is then assessed via predictions
of

P (g(Y ) ≤ d) , (5.17)

where d denotes a critical value of Ÿ . This is a prediction problem, so the utility
formulation of Section 2.3.2.3 applies.

5.6 Case #1: model selection for spatial correla-

tion parameter

In this section, we employ the model selection techniques to select the optimal value
for parameter θ of the spatial correlation function of the applied pressure field, Z,
defined by Eq. (5.15).

5.6.1 Candidate models

Let

M = {θ ≥ 0: φ(η; θ) = exp (−θ | η |)}. (5.18)
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be a collection of candidate models. This collection is uncountably infinite; we instead
consider a finite subcollection M′ ⊂ M, where

M′ = {mi(θi)} = {θi ≥ 0: φ(η; θi) = exp (−θi | η |), i = 1, 2, . . . , 4}. (5.19)

The four candidate models are shown in Fig. 5.9. By Eq. (5.15), for large θ G(x; t)
is nearly uncorrelated in the spatial dimension; as θ approaches zero, the process
becomes perfectly correlated in space. Note that the correlation structure in time for
each member of M′, i.e., E[G(x0; t)G(x0; t + τ)] for fixed x0 ∈ [0, l], is equal to that
of Eq. (5.13).

One sample of G(x; t) is shown in Fig. 5.10 for each of the four values for θ
considered and t′ = 0.03 sec; methods from Appendix B were used to generate the
samples, where ckl(τ) of Eq. (B.1) is replaced by cQ(τ)φ(xk − xl; θ). Each plot shows
G(x; t) at x = 10 in (solid line) and x = 37.5 in (dashed line), the latter being the
attachment point for the oscillator. Note that as θ approaches zero, the processes
G(x1; t) and G(x2; t), x1, x2 ∈ [0, l], become scaled versions of each other [50]. The
corresponding samples of input Z(x; t) via Eq. (5.10) are shown in Fig. 5.11. The
magnitude of Z(x = 10 in; t) is larger than that of Z(x = 37.5 in; t) because of the
scaling by σZ(x) (Fig. 5.8).
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Figure 5.12: One sample of beam response process, D(x; t), in units of in.

5.6.2 Sensitivity of model output

One sample of the displacement response of the beam at the attachment point, D(x =
37.5 in; t), is shown in Fig. 5.12, for t ∈ [0, 3t′]. The shaded area indicates the time
interval when the load is applied, t ∈ [0, t′]; the unshaded area corresponds to free
vibration. It is evident that the displacement response at the attachment point is very
sensitive to the degree of spatial correlation on the input: as the spatial correlation
increases (decreasing θ), the magnitude of the response increases.

Estimates of (maxx |D(x; t)|, maxt |D(x; t)|), x ∈ [0, l], t ∈ [0, 3t′], the joint dis-
tribution of the location and magnitude of the maximum displacement of the beam,
using results from 2,000 Monte Carlo samples, are shown in Fig. 5.13. For large θ
(nearly uncorrelated in space), the range of observed values for maxx |D(x; t)| is large
and they occur most frequently at the right end of the beam; the range of observed
values for maxt |D(x; t)| is small in comparison. As θ decreases, the pattern is re-
versed. The range of observed values for maxx |D(x; t)| is small and they occur most
frequently near the attachment point; the range of observed values for maxt |D(x; t)|
is large in comparison.
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Similar patterns are observed for the acceleration response of the component,
Ÿ (t). One sample of Ÿ (t) is shown in Fig. 5.14. As the degree of spatial correlation
increases, so does the magnitude of the acceleration of the attached mass. Estimates
of the variance of Ÿ (t) using results from 2,000 Monte Carlo samples are shown in
Fig. 5.15 for t ∈ [0, t′]. As t → t′, the variance approaches a constant value for each
of the four cases; this value increases with increasing spatial correlation.

Estimates of the distribution of g(Y ) defined by Eq. (5.16), using results from
2,000 Monte Carlo samples, are shown in Fig. 5.16. It is evident from the figure that
assuming the input to be uncorrelated in space, which corresponds to the case where
θ = 5.0 (model m1), is non-conservative, since the probability of exceeding a critical
level of acceleration increases with decreasing θ.

For this one-dimensional model of the spacecraft, it has been demonstrated that
predictions of beam displacement, D(x; t), and acceleration of the mass, Ÿ (t), are
sensitive to the degree of spatial correlation of the input, Z(x; t). Specifically, as
the degree of spatial correlation increases, the maximum in time of D(x; t) and Ÿ (t)
increase. In the general three-dimensional case, the input process Z(x; t) exhibits
spatial correlation in two directions (axial and hoop); the sensitivity of model output
demonstrated will likely increase. It is therefore crucial to select optimal models for
the spatial correlation of the input.
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0 5 10 15 20
0

0.2

0.4

0.6

0 5 10 15 20
0

0.2

0.4

0.6

0 5 10 15 20
0

0.2

0.4

0.6

0 5 10 15 20
0

0.2

0.4

0.6

g(Y )|m1 g(Y )|m2

g(Y )|m3 g(Y )|m4

Figure 5.16: Histograms of g(Y ).

132



Table 5.3. Expected utilities of each mi ∈ M′.

Expected utilities
d (g)

u(m1) u(m2) u(m3) u(m4)

2 7.935 × 10−4 1.323 × 10−4 1.323 × 10−4 1.323 × 10−4

5 1.114 1.670 × 10−1 2.057 × 10−1 2.223 × 10−1

10 3.203 × 10−2 2.615 × 10−2 1.108 × 10−2 2.287 × 10−2

5.6.3 Optimal model

The decision-theoretic method for model selection developed in Chapter 2 is used
here to select an optimal value for the spatial correlation parameter, θ. We begin
with an analysis on the smaller class of candidate models, M′ defined by Eq. (5.19),
then use the results to approximate the optimal member from the larger, uncountable
class, M defined by Eq. (5.18).

The objective is to assess the performance of the spacecraft in the re-entry envi-
ronment via Eq. (5.17). Hence, the model use is prediction and the utility formulation
of Section 2.3.2.3 applies. We consider the special case where the collections of can-
didate actions and candidate models coincide, i.e., A = M′, and define the elements
of the utility function as follows. The cost of taking action mi ∈ M′ is related to
the computational effort required to generate samples of each model for the input
process; the effort required is identical for each model so, without loss of generality,
we set the cost of each model to zero, i.e., γ(mi) = 0, i = 1, 2, 3, 4. Let

hi = P (g(Y ) ≤ d | mi) , i = 1, 2, 3, 4, (5.20)

denote the prediction of performance under model mi, where d is the specified critical
value for the acceleration of the mass, Ÿ . The consequences of prediction under model
mi when mj is true is quantified by the penalty function, ψ(mi, mj), given by

ψ(mi, mj) = ψ̃(hi, hj) =

{
β1 [hi − hj]

2 if hi ≤ hj , and

β2 [hi − hj]
2 if hi > hj ,

(5.21)

which is identical to Eq. (2.73). The expected utility of each model in M′ is then
calculated via Eq. (2.35).

The expected utilities of the four models in M′ are listed in Table 5.3 for three
values of the critical acceleration, d; in each case, the optimal model, m�, is in bold.
Parameters β1 = 1 and β2 = 2 were used for calculations, and each mi ∈ M′ is
assumed equally likely, i.e., pi = 1/4, i = 1, 2, 3, 4. For d = 5 g and d = 10 g, models
m2 and m3 are selected, corresponding to θ2 = 0.1 and θ3 = 0.02, respectively. Model
m1, corresponding to the case where the spatial correlation is nearly white noise, is
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Figure 5.17: Estimates of P (g(Y ) ≤ d|θ) for θ ∈ M.

never selected since the assumption that the input is uncorrelated in space leads to
non-conservative predictions of system performance (see Fig. 5.16). For d = 2 g,
models m2, m3, and m4 give identical estimates of the performance metric, so there
is no preference of one model over another, i.e., m2 ∼ m3 ∼ m4 (see Section 2.3.1.3).

Estimates of P (g(Y ) ≤ d|θ) are plotted in Fig. 5.17 for d ∈ [1, 14] and θ ∈
[0.0005, 5.0]; the range for θ corresponds to M defined by Eq. (5.18). The estimates
for the four models in M′ are shown with a bold line; interpolation has been used
to estimate P (g(Y ) ≤ d|θ) elsewhere. A surface defining the expected utility of each
model can be defined over the values for θ and d considered; this surface is shown
in Fig. 5.18, where the natural logarithm of the expected utilities are plotted to
emphasize the results. The minimum of the surface for each d gives an estimate of
the optimal θ ∈ M. As d increases, the optimal model corresponds to an increasing
degree of spatial correlation.

5.6.4 Sensitivity of optimal model

We study the sensitivity of the optimal model to changes in the parameters of the
penalty function, Eq. (5.21). To do so, define a normalized penalty function param-
eter β̄ = β2/β1. For β̄ � 1, non-conservative predictions of system performance are
highly penalized with respect to conservative predictions; as β̄ → 1, the penalty for
conservative and non-conservative models is identical.
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The optimal models from M are plotted in Fig. 5.19 for various values of d.
Four lines are plotted, which correspond to four different values for β̄. The solid line
(β̄ = 2) corresponds to the results of the previous section. In general, changing β̄
shifts the curve up or down. As β̄ increases, the penalty function defined by Eq. (5.21)
becomes highly asymmetrical, and models with more spatial correlation (smaller θ)
are favored. The dotted lines correspond to the four models from M′. In all cases,
the optimal spatial correlation parameter satisfies 0.005 ≤ θ ≤ 0.5, meaning that
the limiting cases of perfect or zero spatial correlation are unfavorable, even for large
changes in β̄.

5.7 Case #2: model selection for form of spatial

correlation function

In this section, we again consider the input pressure field defined by Eq. (5.10), where
Q = G is a stationary Gaussian process with zero mean, unit variance, and temporal
correlation function given by Eq. (5.13). Instead of the fixed functional form for the
spatial correlation function studied in the previous section, here we consider models
for φ(η; θ) with different functional forms. The spatial correlation parameter for each
of these models, θ, is also unknown.

5.7.1 Candidate models

The functional form of φ, as well as the spatial correlation parameter, θ, are unknown.
The class of candidate models is thus much larger than for the case of φ with known,
fixed functional form given by Eq. (5.18). In general, the class of candidate models
for this problem is

M = {Mi}, i ∈ I, (5.22)

where each Mi = {θi : φi(η; θi)}, and I is an uncountable index set. With I = {1}
and φ1 = exp (−θ1|η|), Eq. (5.22) reduces to the class of models considered in the
previous section, Eq. (5.18). In this section, we consider the special case I = {1, 2, 3},
so that M = {M1,M2,M3}, where

M1 = {θ1 : φ1(η; θ1) = exp (−θ1 | η |)} ,

M2 = {θ2 : φ2(η; θ2) = exp
[−(θ2η)2

]},
M3 = {θ3 : φ3(η; θ3) = exp (−θ3 | η |) cos (2θ3η)}. (5.23)

The three functional forms of Eq. (5.23) are plotted in Fig. 5.20 for θ1 = θ2 = θ3 = 0.1.
Note that φ1 was used in the previous section; functional forms φ2 and φ3 have been
used extensively to represent, among other phenomena, the spatial correlation of
seismic ground motions [99].
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5.7.2 Optimal model

We next summarize the procedure to select the optimal model in M defined by
Eq. (5.22). First, we use the techniques described in the previous section to estimate
the optimal parameter, θ1, of φ1; this is simply the model selection problem applied
to M1 defined by Eq. (5.23) and is identical to the analysis of Section 5.6. We then
repeat this process to estimate optimal parameters θ2 and θ3 of functional forms φ2

and φ3, respectively. At this point, the problem simplifies to choosing the optimal
member from

M = {mi} = {φi(η; θi)}, i = 1, 2, 3, (5.24)

where each θi is known and fixed. Methods of model selection can be applied one
final time to choose the optimal mi ∈ M. A schematic of this procedure is shown in
Fig. 5.21.
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5.8 Case #3: model selection for marginal PDF of

input

Recall Figs. 5.1 and 5.2, which showed measured accelerations during the re-entry
of the Space Shuttle Orbiter, and wind-tunnel pressure measurements on an aircraft
fuselage, respectively. In both plots, non-Gaussian behavior is clearly evident. In
this section, we consider non-Gaussian models for the input, Z; methods of model
selection are used to select the optimal member from a class of candidate models for
Z.

Two assumptions are made in this section: (1) φ is perfectly known and equal to
one, and (2) the dynamics of the beam and oscillator can be decoupled. Assumption
(1) implies that Eq. (5.10) reduces to

Z(x; t) = σZ(x)Q(t), t ∈ [0, t′], (5.25)

where the dependence of Q on x is removed because it exhibits perfect spatial corre-
lation. As a result, the second-moment properties of Z are now completely defined.
All candidate models considered in this section are equivalent in the second-moment
sense, but have different marginal distributions. Because of assumption (2), the
method for analysis is given by Eq. (5.9). This allows us to study the effects of
the distribution of Z on Ÿ for various values of b, the location of the oscillator (see
Fig. 5.5), and ωc, the natural frequency of the oscillator.

Table 5.4 lists the values of the oscillator parameters used in the analyses that
follow. The damping ratio of the oscillator, ζc = 0.02, as well as the parameters of
the beam from Table 5.2, remain fixed. Note that one of the resonant frequencies of
the oscillator considered, ωc = 2,000 Hz, coincides with a resonant frequency, ν7, of
the beam from Fig. 5.7.

In Section 5.8.1, we define a collection of candidate models for Z. We illustrate the
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Table 5.4. Oscillator parameters.

Parameter Values Units

b 12.5, 22.5, 37.5 in
ωc 2000, 2250, 5000 Hz

sensitivity of the acceleration of the mass to different models for Z in Section 5.8.2.
The optimal model for Z, denoted by m�, as well as the sensitivity of m� to changes
in the utility function are discussed in Sections 5.8.3 and 5.8.4, respectively.

5.8.1 Candidate models

Let

M′ = {mi} = {Zi(x; t)}, i = 1, 2, 3, 4, (5.26)

be the class of candidate models to be considered for the applied pressure field, where

Zi(x; t) = σZ(x)Qi(t). (5.27)

Define Q1 = G, where G is a zero mean, unit variance, stationary Gaussian process
with correlation function given by Eq. (5.13). This model is identical to the model
considered in Section 5.6 for θ = 0. Model m1 is Gaussian.

Let Q2 be a translation process with target marginal CDF, F , i.e.,

Q2(t) = F−1 ◦ Φ[G(t)]. (5.28)

Here, F is taken to be the student-t distribution with (r − 1) degrees-of-freedom [5],
i.e.,

F (z; r) =
Γ
(

r+1
2

)
√

πr Γ
(

r
2

) ∫
√

r
r−2

z

−∞

[
1 +

t2

r

]−1/2(r+1)

dt, (5.29)

where Γ( · ) denotes the Gamma function. A random variable with the distribution
given by Eq. (5.29) has zero mean and unit variance; the process Z2(x; t) = σZ(x)Q2(t)
is therefore equivalent in the second-moment sense to Z1(x; t) for any r. Z2(x; t) can
be assigned any coefficient of kurtosis greater than 3 without altering the second-
moment properties via [59]

Kur[Z2] =
3(r − 2)

r − 4
, r > 4. (5.30)
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Figure 5.22: PDFs (left) and tails (right) of Gaussian and student-t distributions.

The PDF of the student-t distribution with a coefficient of kurtosis of 7 (r = 11/2),
is plotted along with the Gaussian PDF in the left-hand side of Fig. 5.22. This
distribution has heavier tails that that of the Gaussian distribution, as illustrated
further by the right-hand side of the figure; the Gaussian distribution has a coefficient
of kurtosis of 3.

The third and fourth models considered for the applied pressure field are Q3(t) =
V (t; λ3) and Q4(t) = V (t; λ4), respectively, where

V (t; λ) =




0 N(t) = 0
N(t;λ)∑
k=1

Wkf(t − Tk) N(t) > 0.
(5.31)

The process V (t) is a type of filtered Poisson process, a process characterized by
pulses of deterministic shape and random magnitude, occurring at (random) Poisson
times. V (t) depends on {N(t; λ), t ≥ 0}, a homogeneous Poisson counting process
of intensity λ > 0, iid random variables {Wk, k ≥ 1}, with mean zero and variance
σ2, the random times, {Tk, k ≥ 1}, at which the Poisson events occur, and the
deterministic shape function, f(t), t ≥ 0 [48]. The process N(t) has the property
that E[N(t)] = λt so that λ = E[N(t)]/t represents the average number of pulses per
unit time [83]. With proper choice of f(t), σ2, and λ, models Z3(x; t) and Z4(x; t) are
equivalent to Z1(x; t) and Z2(x; t) in the second-moment sense (see Appendix C). For
small λ, the pulses have large magnitudes and occur infrequently. As λ increases, the
pulses occur more frequently, but with smaller magnitude; as λ → ∞, the marginal
distribution of V (t) becomes Gaussian [48].

One sample of the Gaussian process, Q1(t) = G(t), the translation process,
Q2(t) = F−1 ◦ Φ[G(t)], and the two filtered Poisson processes, Q3(t) = V (t; λ3)
and Q4(t) = V (t; λ4) with λ3 = 10,000 and λ4 = 100,000, respectively, are plotted in
Fig. 5.23. Samples from the four models look quite different, but each is consistent
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Figure 5.23: One sample of the four models for Q.

with all available information. Estimates of the marginal PDFs of Q3 and Q4 using
500 samples are shown in Fig. 5.24. Also shown is the marginal PDF of Q1.

5.8.2 Sensitivity of model output

One sample of the acceleration of the mass, Ÿ (t), is shown in Fig. 5.25; the four plots
correspond to the four models of the applied pressure field for the case of b = 12.5
in and ωc = 5,000 Hz. The shaded area indicates the time interval when the load
is applied, t ∈ [0, t′ = 0.05 sec]; the unshaded area corresponds to free vibration,
t ∈ [t′, 3t′].

Ÿ , is the output from a linear filter. Because of this, and the fact that all inputs
considered are equivalent in the second-moment sense, the outputs will have identical
second-moment properties [48]. This is further illustrated by Fig. 5.26, which shows
estimates of the variance of Ÿ (t), t ∈ [0, t′], using 1,000 samples, for the case of
b = 12.5 in, ωc = 5,000 Hz. The variance of Ÿ is computed assuming each of the four
models in M′ are the input.

As previously discussed, the probability laws for mi ∈ M′ are different; the result-
ing probability laws for Ÿ (t), and hence the performance metric defined by Eq. (5.17)
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Figure 5.26: Estimates of Var[Ÿ (t)], t ∈ [0, t′].

will therefore also differ. To illustrate, we define

hi(σ̂d) = P (g(Y ) ≤ σ̂d | mi) , i = 1, 2, 3, 4. (5.32)

The quantity σ̂ is the estimated steady-state standard deviation of Ÿ taken from
Fig. 5.26, and is used to normalize the tail estimates; g(Y ) is defined by Eq. (5.16).
Estimates of Eq. (5.32) are illustrated by Fig. 5.27 for two cases: (1) b = 37.5
in, ωc = 2,000 Hz (left), and (2) b = 12.5 in, ωc = 5,000 Hz (right). As shown
by the plot on the right, models m2, m3, and m4, in general, provide conservative
estimates of Eq. (5.32) with respect to the Gaussian model, m1. Model m3 is the most
conservative, due to the fact that Z3 exhibits the heaviest tail. For ωc = 2,000 Hz, a
resonant frequency of the beam, the tail estimates are nearly identical, as shown in
the left-hand side of Fig. 5.27. The response of the oscillator is insensitive to the
tails of Z(x; t) when ωc coincides with a resonant frequency of the beam.

The magnitude of the difference between the tails of the distributions shown in
Fig. 5.27 is sensitive to changes in parameters b and ωc. To illustrate, we define

ρ(σ̂d) = max
i

|h1(σ̂d) − hi(σ̂d)| , i = 2, 3, 4. (5.33)

Equation (5.33) is plotted on the left-hand side of Fig. 5.28 for the case of σ̂d = 4 and
different values for b and ωc. The color of the bars denotes which model maximizes ρ;
in seven of the nine cases considered, it is m3 (white), while it is m2 in the remaining
two cases (gray). In general, for increasing b, ρ may increase or decrease. As the
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frequency of the oscillator is increased, ρ increases; for ωc = 2,000 Hz, a resonant
frequency of the beam, ρ is near zero. Hence, the sensitivity to the tails of Z can be
minimized by placing ωc near a resonant frequency of the beam. Of course, this has
the undesirable effect of increasing the variance of the response, as depicted by the
right-hand side of Fig. 5.28.

It has been demonstrated that predictions of component acceleration, Ÿ , are sen-
sitive to the tails of the marginal distribution of the input, Z, when the oscillator
natural frequency, ωc, does not coincide with a resonant frequency of the beam. As
the tail of the marginal PDF of the input model becomes heavier, the maximum in
time of Ÿ (t) increases. A Gaussian model for Z can therefore give non-conservative
predictions of system performance.
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Figure 5.28: Estimates of ρ and σ̂ for different values for b and ωc.

144



Table 5.5. Average CPU times and costs.

Model CPU time (sec) Cost, γ(mi)

m1 0.6558 γ0

m2 1.025 1.563γ0

m3 0.6886 1.050γ0

m4 6.114 9.323γ0

5.8.3 Optimal model

In this section, we use the decision-theoretic method for model selection developed in
Chapter 2 to select the optimal marginal distribution of the input pressure field from
the class of candidate models defined by Eq. (5.26).

The penalty function used in the analysis is unchanged from the previous section,
i.e., Eq. (5.21). However, the computational effort associated with each model in M′

is no longer identical; the costs, γ(mi), i = 1, 2, 3, 4, must reflect this. Table 5.5 lists
the average CPU times required to calculate one sample of each of the four models
in M′. Samples of the Gaussian process, m1, can be calculated most rapidly; the
filtered Poisson process with λ3 = 10,000, m3, requires slightly longer. Samples of the
filtered Poisson process with λ4 = 100,000, m4, take approximately ten times longer
to generate than either m1 or m3. The corresponding costs, scaled by deterministic
parameter γ0 > 0, are listed in Table 5.5. In each case, γ(mi)/γ0 is the average CPU
time of mi, normalized by the CPU time of m1 (the fastest).

Table 5.6 lists the expected utilities of each mi ∈ M′ using Eq. (2.35). Results for
the different values of b, the location of the oscillator, and ωc, the resonant frequency
of the oscillator, are shown for σ̂d = 4. Parameters β1 = 1, β2 = 2, and γ0 = 0.05
were used for calculations. The translation process, m2, is selected most often; the
cost of m2 is not significantly greater than that of m1, and it, in general, provides
slightly conservative estimates of P (g(Y ) ≤ d). The filtered Poisson process with λ =
10,000, m3, is selected only twice; it provides overly conservative estimates of system
performance in many cases. The Gaussian model, m1, is selected only for the case
when ωc = 2,000 Hz, i.e., when the oscillator frequency coincides with a resonant
frequency of the beam. This is because the tail estimates nearly coincide here (see
Fig. 5.27), and the cost term dominates the utility. Model m4 provides slightly
conservative estimates of system performance, but is never selected due to its large
computational cost (see Table 5.5).
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Table 5.6. Expected utilities of each mi ∈ M.

b (in) ωc (Hz) u(m1) u(m2) u(m3) u(m4)

12.5 2,000 5.109 × 10−3 7.924 × 10−3 5.344 × 10−3 4.666 × 10−2

12.5 2,250 1.854 × 10−2 1.800 × 10−2 2.182 × 10−2 5.667 × 10−2

12.5 5,000 2.507 × 10−2 2.108 × 10−2 2.560 × 10−2 5.706 × 10−2

22.5 2,000 5.013 × 10−3 7.830 × 10−3 5.265 × 10−3 4.667 × 10−2

22.5 2,250 8.294 × 10−3 1.006 × 10−2 8.209 × 10−3 4.796 × 10−2

22.5 5,000 4.013 × 10−2 3.061 × 10−2 4.317 × 10−2 6.811 × 10−2

37.5 2,000 5.003 × 10−3 7.819 × 10−3 5.254 × 10−3 4.664 × 10−2

37.5 2,250 7.085 × 10−3 9.276 × 10−3 7.060 × 10−3 4.742 × 10−2

37.5 5,000 5.810 × 10−2 3.972 × 10−2 6.699 × 10−2 9.117 × 10−2

5.8.4 Sensitivity of optimal model

We consider the sensitivity of the optimal model to changes in parameter γ0, the
weight on the cost. For γ0 = 0, the computational costs of the models are ignored
in the model selection process; as γ0 → ∞, the cost dominates the model selection
process. Figure 5.29 shows the optimal model, denoted by m�, for each value of b and
ωc considered, for changing γ0. The case where γ0 = 0.005 corresponds to the results
of Table 5.6. For γ0 = 0, computational cost is ignored, and model m4 is selected
most often. As γ0 increases, the Gaussian model, m1, is optimal for any b and ωc.
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Chapter 6

Design of sensor networks for
vehicle tracking and identification

The tracking and identification of real-world moving objects for the purpose of surveil-
lance is a widespread application [19, 20, 96]. Examples include air traffic control,
fleet tracking, habitat monitoring, mobile telephony, and military battle planning
[9]. There are numerous types of sensing devices that can be used for surveillance;
examples include those that measure acoustic, seismic, and/or electromagnetic dis-
turbances [65]. For surveillance, a network of one or more of these sensing devices,
herein called a sensor network, is used to survey the environment. Observations by
the sensor network are then used to make decisions regarding the identity of objects,
as well as the trajectories these objects may take.

In a typical application, the sensor network is designed to: (1) detect any real-
world objects, (2) classify which objects are of interest, and (3) monitor the loca-
tions of these objects. However, several factors exist that can complicate the design
problem; three are discussed here. First, each sensor in the network reports measure-
ments from diverse sources including, but not limited to, objects of interest, objects of
little or no interest, background noise sources such as clutter, or measurement error
sources such as thermal noise [12]; these ancillary sources may confuse the sensor.
Second, each sensor in the network has a finite range or field of view, making it im-
possible to monitor all objects at all times. Third, the design of the network is subject
to cost constraints, which limits both the number of sensors that can be included in
the design, as well as the accuracy of each sensor. Due to these complicating factors,
objects may be misclassified, e.g., an object may be classified to be of interest when it
is not, or even go undetected; the ability of the sensor network to adequately monitor
objects may also be adversely affected by these factors.

Available information on the complicating factors listed above is typically limited,
and we are forced to make assumptions about what is unknown in order to design the
sensor network. The implications of this can be severe. For example, consider the
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Figure 6.1: One-dimensional roadway for vehicle detection and classification.

case where there is sufficient information to model the sensor measurement error as a
sequence of zero-mean iid random variables; the available information on the variance
of this sequence, however, is incomplete. The design of the sensor network, and hence
the ability to detect, classify, and monitor any objects of interest, may be sensitive
to any assumption on the variance of the measurement error. If a poor assumption
is made, the conclusions made by the network about the identity and trajectory of
objects may be highly inaccurate. For this reason, the application discussed in this
chapter is also classified as a high risk system.

We use the decision-theoretic method for model selection developed in Chapter 2
to choose the optimal design of a sensor network for vehicle surveillance. The three
elements of the design, namely the detection, classification, and monitoring of objects,
are treated independently; the extension to the general case where all elements are
treated simultaneously is straightforward. In Section 6.1, we choose the optimal level
of sensitivity for a single sensor to detect and classify vehicles. The design of a network
with two or more sensors to monitor the movement of vehicles in a given region is
discussed in Section 6.2; the objective is to select the optimal number of sensors,
their locations, and the range of each.

6.1 Vehicle detection and classification

Consider the one-dimensional roadway illustrated by Fig. 6.1, where vehicles move
from left to right, passing a single sensor. It is assumed that: (1) there is a single
sensor located in a fixed position on the roadway, (2) all vehicles travel with constant,
known velocity in the same direction, and (3) each vehicle can be characterized as
one of two possible types: g (good) or b (bad). The objective is to design the sensor
to activate if/when, and only if/when, a type b vehicle passes.

In reality, the sensor cannot function perfectly, e.g., the sensor will be activated
by some type g vehicles, and/or some type b vehicles will pass without activating the
sensor. The presence of background noise and/or measurement error will increase the
frequency of occurrence these imperfections. In general, four events can occur; these
are described by the array in Table 6.1. The (1, 1) element of the array is a success,
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Table 6.1. Possible scenarios for vehicle detection and clas-
sification.

Type b vehicle
Sensor is

does pass does not pass

activated detection false alarm
not activated miss -

we define it as

detection = { sensor is activated | type b vehicle does pass}. (6.1)

Two types of failure are possible; they are defined as

false alarm = { sensor is activated | type b vehicle does not pass}, and

miss = { sensor is not activated | type b does pass}, (6.2)

which correspond to the the (1, 2) and (2, 1) elements of the array in Table 6.1,
respectively. The objective of the sensor design problem can be re-stated as follows:
design the sensor such that the events defined by Eqs. (6.1) and (6.2) satisfy some
performance requirements.

Mathematical models for both the vehicle traffic and sensor are developed in
Section 6.1.1, where the model of the latter may include effects of measurement error.
Metrics that define sensor performance are developed in Section 6.1.2. The design and
analysis of the sensor, using methods of model selection, is then considered with and
without the presence of measurement error; the results are discussed in Sections 6.1.3
and 6.1.4, respectively. The design and analysis of the sensor in the presence of
background noise is discussed in Section 6.1.5.

6.1.1 Model development

In this section, we formulate the mathematical model for the vehicle traffic and for
the sensor. This includes models for: (1) the vehicle arrival times and attributes, and
(2) the sensor output and classification rule.

6.1.1.1 Vehicle model

Let N(t) be a stochastic process that governs the total number of vehicles that pass
the sensor in the time interval [0, t], and let T1, T2, . . . , TN(t) be the random times at
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which the vehicles arrive at the sensor. Here, we assume N(t) to be a homogeneous
Poisson counting process with parameter λ > 0 [50], i.e.,

N(t) =
∑
n≥1

1(t ≥ Tn), t ≥ 0, (6.3)

where

P (N(t) = n) =
(λt)n

n!
e−λt, n = 0, 1, 2, . . . , (6.4)

is the probability law of the random variable N(t). Note that E[N(t)] = λt, so that
the average number of vehicles passing the sensor in [0, t] can be controlled via the
parameter λ, called the intensity of N(t).

It is assumed that each vehicle has a characteristic, Z, that can be measured
by the sensor to determine whether the vehicle is of type g or b. In addition, we
assume: (1) the attribute of vehicle k is Zk, where the Zk, k = 1, 2, . . . , N(t), are
independent copies of random variable Z, and (2) Z can be modeled as a mixture of
two distributions, each having the form of a beta random variable. The PDF of Z is

fZ(z; p, µ) =

{
pf(z; 0, 1) + (1 − p)f(z; µ + 1, µ + 3), 0 ≤ z ≤ µ + 3,

0, otherwise,
(6.5)

where f( · ; α, β) denotes the PDF of a beta random variable, assumed symmetric on
interval [α, β], i.e.,

f(z; α, β) =




30

(β − α)5
(z − α)2(z − β)2, α ≤ z ≤ β,

0, otherwise,
(6.6)

p ∈ [0, 1] denotes the percentage of type g vehicles that pass the sensor in [0, t], and
µ ≥ −1 is a parameter that quantifies the separation between the attributes of type
g and type b vehicles. By Eq. (6.5), the percentage of type b vehicles that pass
the sensor in [0, t] is (1 − p), the attribute of type g vehicles satisfies 0 ≤ Z ≤ 1
almost surely (a.s.), and the attribute of type b vehicles satisfies µ + 1 ≤ Z ≤ µ + 3
a.s. Further, with µ < 0, the attributes of type g and type b vehicles overlap; for
µ ≥ 0 they do not. The PDF of Z is plotted in Fig. 6.2 for the case of p = 3/4
and µ = −1/2. The generalization of fZ to the case of three or more vehicle types is
straightforward using, for example, higher-order mixtures of beta random variables.

6.1.1.2 Sensor model

Measurement error and/or background noise is present in typical sensor applications
[12, 45, 79]. In this section, we construct a mathematical model for the sensor that
includes measurement error; the effects of background noise will be discussed in Sec-
tion 6.1.5.
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It is assumed that the output from the sensor can be described via

Y (t) =

N(t)∑
k=1

(Zk + Ek)h(t, Tk; r), t ≥ 0, (6.7)

where Tk are the jump times of N(t) in Eq. (6.3), Zk are the attributes of the vehicles,
{Ek} is a collection of zero-mean iid Gaussian random variables with variance σ2

modeling measurement errors, r ≥ 0 is a deterministic parameter, and

h(t, Tk, r) =




1(t = Tk) r = 0,
1

r4
(t + r − Tk)

2(t − r − Tk)
2 1(t ∈ [Tk − r, Tk + r]) r > 0.

(6.8)

Further, we assume the value for σ2 can be specified, i.e., used as a design variable;
for the special case when σ2 = 0, the measurement error is zero. By Eq. (6.8), h(t)
is a symmetric pulse, centered at arrival time Tk, with unit height and width 2r. We
use parameter r to model the sensor range. For example, consider a sample of Y
with one jump in [0, t]. If r > 0 and the sensor activates at time T1, then Y (t) > 0,
t ∈ [T1 − r, T1 + r]; if r = 0, the sensor has zero range, meaning that Y (t) > 0 for
t = T1 only. We consider the special case where r = 0 in the analyses that follow;
r > 0 will be considered in Section 6.1.5.

The sensor classifies vehicles using the following rule:

if

{
Y (t) ≥ δ ⇒ a type b vehicle passed at time t,

Y (t) < δ ⇒ no type b vehicle passed at time t,
(6.9)

where δ ≥ 0 is a deterministic parameter that defines the sensitivity of the sensor.
With r = 0, it is sufficient to evaluate Eq. (6.9) at Y (Tk), k = 1, 2, . . . , N(t), since
Y (t) = 0 for t /∈ {T1, T2, . . . , TN(t)}. Note that a misclassification may result if type
b vehicles mask (µ < 0), and/or if measurement error exists (σ2 > 0).

One sample of Y (t) from Eq. (6.7) is shown in Fig. 6.3 for the case of t = 20,
µ = −3/4, δ = 3/4, σ2 = 1/100, and r = 0; the underlying sample of N(t) exhibits
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Figure 6.3: One sample of sensor measurement, Y .

17 jumps. Type g vehicles are denoted with thin lines and type b vehicles with thick
lines. The sensitivity, δ, is also shown using a dashed line. By Eq. (6.9), 4 vehicles
activate the sensor; one of them is a type g. Likewise, 13 vehicles do not activate the
sensor; one of them is a type b. Hence, for this sample, there are 3 detections and 2
failures: one false alarm and one miss, as defined in Eq. (6.2).

6.1.2 Sensor performance

Metrics are defined to assess the performance of the sensor, and then used as the
basis for the design problem. Let {Wk}, k = 1, 2, . . . , N(t), be a sequence of random
variables such that

Wk =

{
1 if kth vehicle is type b,

0 else,
(6.10)

and define

X(t) =

N(t)∑
k=1

Wk 1(t = Tk). (6.11)

The possible outcomes from Table 6.1 can be reformulated in terms of Y (t) in
Eq. (6.7) and X(t) in Eq. (6.11) for fixed time, t, as shown in Table 6.2. It follows
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Table 6.2. Sensor performance at time, t.

Type b vehicle
Sensor is

does pass does not pass

activated X(t) = 1 and Y (t) ≥ δ X(t) = 0 and Y (t) ≥ δ
not activated X(t) = 1 and Y (t) < δ X(t) = 0 and Y (t) < δ

that the number of detections occurring in [0, t], as defined by Eq. (6.1), can be
written as

D(t) =

∫ t

0

1 [(X(τ) = 1) ∩ (Y (τ) ≥ δ)] dτ

=




0 if N(t) = 0,
N(t)∑
k=1

1[(Wk = 1) ∩ (Y (Tk) ≥ δ)] if N(t) > 0,
(6.12)

where the integral reduces to a discrete summation since r = 0 in Eq. (6.8). The
two types of failures defined in Eq. (6.2), i.e., the off-diagonal terms from Table 6.2,
can be written as

A(t) =

∫ t

0

1 [(X(τ) = 0) ∩ (Y (τ) ≥ δ)] dτ

=




0 if N(t) = 0,
N(t)∑
k=1

1[(Wk = 0) ∩ (Y (Tk) ≥ δ)] if N(t) > 0,
(6.13)

and

M(t) =

∫ t

0

1 [(X(τ) = 1) ∩ (Y (τ) < δ)] dτ

=




0 if N(t) = 0,
N(t)∑
k=1

1[(Wk = 1) ∩ (Y (Tk) < δ)] if N(t) > 0,
(6.14)

where A(t) and M(t) are the number of false alarms and misses, respectively, occurring
in [0, t].

Alternative definitions for Eqs. (6.12) - (6.14) can be used. Define the number of
type b and type g vehicles in [0, t] to be

Nb(t) =

N(t)∑
k=1

Wk, and

Ng(t) = N(t) − Nb(t), (6.15)
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respectively. Then

D̄(t) =




1 if N(t) = 0,

1 if N(t) > 0 and Nb(t) = 0,
D(t)

Nb(t)
if N(t) > 0 and Nb(t) > 0,

Ā(t) =




0 if N(t) = 0,

0 if N(t) > 0 and Ng(t) = 0,
A(t)

Ng(t)
if N(t) > 0 and Ng(t) > 0, and

M̄(t) =




0 if N(t) = 0,

0 if N(t) > 0 and Nb(t) = 0,
M(t)

Nb(t)
if N(t) > 0 and Nb(t) > 0,

(6.16)

are the corresponding number of detections, false alarms, and misses occurring in
[0, t], normalized by Ng(t) or Nb(t). Note that D̄(t), Ā(t), and M̄(t) take values in
[0, 1]; we refer to D̄(t), Ā(t), and M̄(t) as the detection rate, false alarm rate,
and miss rate, respectively.

Consider a fixed time, t, and let Ā and M̄ denote Ā(t) and M̄(t). Let d1 and d2 be
the maximum allowable false alarm and miss rates, respectively, in [0, t]. The design
objective for the sensor is given by

P (Ā ≤ d1) = q̄1, and (6.17a)

P (M̄ ≤ d2) = q̄2, (6.17b)

where q̄1 and q̄2 are required reliabilities, and 0 ≤ d1, d2, q̄1, q̄2 ≤ 1. If both require-
ments from Eq. (6.17) cannot be met, we assume the requirement on M̄ is more
important that the requirement on Ā. The design of the sensor does not depend on
the detection rate, D̄(t); a third requirement can be added to Eq. (6.17) if necessary.

Table 6.3 lists the parameters used in the analyses that follow. Two cases will be
considered and discussed in Sections 6.1.3 and 6.1.4, respectively: (1) σ2 = 0, and
(2) σ2 > 0. For Case #1, measurement error is zero and the sensitivity of the sensor,
δ, is the design variable; we select its value so as to satisfy Eq. (6.17). The value for µ
is unknown; we cannot know how type b vehicles will mask. The design of the sensor
under nonzero measurement error is considered in Case #2, where both δ and the
variance of the measurement error, σ2, are design variables, while µ is the unknown.
These cases are summarized in Table 6.4.
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Table 6.3. Parameters used in detection and classification
problem.

Description Parameter Value

Traffic intensity λ 1
Pulse width r 0
Maximum allowable false alarm rate d1 p/2
Maximum allowable miss rate d2 (1 − p)/2
Proportion of type g vehicles p 0.9
Required reliability for Ā q̄1 0.9
Required reliability for M̄ q̄2 0.9
Length of time interval t 20

Table 6.4. Design cases for vehicle detection and classifi-
cation.

Section Design variables Unknown

Case #1 6.1.3 δ µ
Case #2 6.1.4 δ, σ2 µ

6.1.3 Case #1: model selection for optimal sensitivity

In this section, we employ the decision-theoretic method for model selection developed
in Chapter 2 to choose the optimal sensitivity level of the sensor, δ, for the case of
zero measurement error, σ2 = 0. The model use is design, so the utility formulation
of Section 2.3.2.2 applies.

6.1.3.1 Sensor design

The top-half of Fig. 6.4 shows estimates of the probability laws for Ā (left) and M̄
(right), for different values of both µ and δ, using 1,000 samples. We assume µ takes
values in [−1, 0). This is sufficient because for µ ≥ 0, the attributes of type b and type
g vehicles do not overlap (see Fig. 6.2) and, with δ = 1, P (Ā ≤ d1) = P (M̄ ≤ d2) = 0
for any d1, d2 ∈ [0, 1], i.e., there is zero probability of a false alarm or miss in [0, t].
Note that the false alarm rate, Ā, is independent of the masking parameter, µ, since
changing µ only effects the attribute of type b vehicles.

The top-half of Fig. 6.4 is a surface plot of P (Ā ≤ d1) and P (M̄ ≤ d2) as a function
of µ and δ; the bottom-half of Fig. 6.4 shows the curves defined by the intersection of
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Figure 6.4: Sensor performance for different values of µ and δ.

these two surfaces with the planes P (Ā ≤ d1) = q̄1 and P (M̄ ≤ d2) = q̄2, respectively,
where it is evident that both requirements of Eq. (6.17) can be satisfied only at a single
pair of (µ, δ), denoted by the solid circle. For arbitrary µ, both design requirements
cannot be met. This makes intuitive sense because we have two design constraints,
but one design parameter, δ.

Assuming a false alarm is preferable to a miss, we design the sensor to satisfy the
requirement on M̄ alone, Eq. (6.17b). The design equation is then

δ = µ + 1.379, (6.18)

which is the equation to the line P (M̄ ≤ d2) = q̄2 shown at the bottom of Fig. 6.4,
for the values of d2 and q̄2 listed in Table 6.3. Equation (6.18) gives the value for
the design variable, δ, assuming we know µ. However, we do not know µ perfectly;
methods of model selection can be used to select the optimal value for δ.

6.1.3.2 Candidate designs

The possible states of nature are M = {µ : µ ∈ [−1, 0)}, the values of the unknown
masking parameter. This collection is uncountable; we instead consider a finite sub-
collection, M′ ⊂ M, where

M′ = {mi} =

{
µi : µi =

i − 1

q
− 1

}
, i = 1, 2, . . . , q. (6.19)
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We use q = 10 for calculations, so M′ = {−1,−0.9, . . . ,−0.1}; as q increases, M′ is
an improved approximation for M. The space of candidate designs is

A = {ai} = {δi : δi = µi + 1.379}, i = 1, 2, . . . , q, (6.20)

which are the values for sensor sensitivity, δ, required to achieve Eq. (6.17b), assuming
µ = µi ∈ M′.

Consider the case of design ai under state of nature mj . Because the state of
nature is unknown, in general the action taken will be incorrect, i.e., for i 
= j

P (Ā ≤ d1 | ai, mj) 
= q̄1, and

P (M̄ ≤ d2 | ai, mj) 
= q̄2. (6.21)

This is further illustrated by Fig. 6.5, which shows the two-dimensional space, ξij =
(ξij,1, ξij,2)

T , where the coordinates of ξij are defined via

P (Ā ≤ ξij,1 | ai, mj) = q̄1, and

P (M̄ ≤ ξij,2 | ai, mj) = q̄2. (6.22)

Also plotted are the lines ξij,1 = d1 and ξij,2 = d2; their intersection is the point that
achieves both design objectives, ξij = d = (d1, d2)

T .
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6.1.3.3 Optimal design

The design objectives are not satisfied for any arbitrary point, ξij , that is not coinci-
dent with d. Four scenarios are possible, denoted by the four quadrants in Fig. 6.5:
(I) the design is conservative with respect to both Eqs. (6.17a) and (6.17b), (II) the
design is non-conservative with respect to Eq. (6.17a), but conservative with respect
to Eq. (6.17b), (III) the design is conservative with respect to Eq. (6.17a), but non-
conservative with respect to Eq. (6.17b), and (IV) the design is non-conservative with
respect to both Eqs. (6.17a) and (6.17b). The degree to which the design objectives
of Eq. (6.17) are not satisfied can be quantified by

‖ξij − d‖2 = (ξij,1 − d1)
2 + (ξij,2 − d2)

2, (6.23)

the square of the distance from ξij to d.

Recall the formulation for the expected utility of design ai ∈ A from Section 2.3.2,

u(ai) = γ(ai) +

q∑
j=1

ψ(ai, mj)pj, i = 1, 2, . . . , q, (6.24)

where γ(ai) is the cost of design ai ∈ A, ψ(ai, mj) is the penalty associated with
design ai, if mj ∈ M′ is true, and pj denotes the probability that mj is true. We
define zero cost for each design and assume each state of nature is equally likely,
i.e., γ(ai) = 0, i = 1, 2, . . . , q, and pj = 1/q, j = 1, 2, . . . , q. The penalty function,
consistent with Section 2.3.2.2, is given by

ψ(ai, mj) = ψ̃(ξij ,d) = s(ξij,d) ‖ξij − d‖2, (6.25)

where

s(ξij,d) =




1 if ξij,1 ≤ d1 and ξij,2 ≤ d2,

10 + 90β if ξij,1 > d1 and ξij,2 ≤ d2,

100 − 90β if ξij,1 ≤ d1 and ξij,2 > d2,

110 if ξij,1 > d1 and ξij,2 > d2,

(6.26)

and β ∈ [0, 1] is a deterministic parameter. Note that s = 1 and s = 110 correspond to
the cases where the design is conservative and non-conservative with respect to both
design objectives, i.e., quadrants I and IV in Fig. 6.5, respectively. The remaining
two cases are a function of β, which can be used to adjust the relative penalty for
failure to satisfy the requirements on Ā or M̄ . For example, with β = 0 failure to
meet the requirements on M̄ is penalized ten times greater than failure to meet the
requirements on Ā; with β = 1, the reverse is true.

The expected utilities of each design, ai, i = 1, 2, . . . , q, are computed using
Eq. (6.24); the optimal design minimizes Eq, (6.24). Results are shown in Fig. 6.6
as a function of β. The optimal design as a function of β is illustrated with a thick

160



0
0.5

1
1.5

0

0.5

1
0

20

40

60

80

δ
β

Figure 6.6: Expected utilities, u(ai; β), as a function of β.

line. For β near zero, the formulation heavily penalizes designs that don’t satisfy the
requirements on the miss rate, M̄ . Hence it is preferable to have a smaller value of
δ to avoid potential misses. As β → 1, designs that result in a high false alarm rate
are highly penalized; it is therefore preferable to have a larger value of δ to minimize
potential false alarms. With β near zero, the optimal sensitivity is δ = 0.38; as β
approaches one, the optimal sensitivity increases to δ = 0.68.

6.1.4 Case #2: model selection for optimal sensitivity and
accuracy

In this section, we employ model selection techniques to select the optimal design of
the sensor in the presence of measurement error. The probability law for the detection
rate of the sensor is also calculated.

6.1.4.1 Sensor design

To design the sensor in the presence of measurement error, we must specify values
for: (1) the sensitivity, δ, and (2) the variance of the measurement error, σ2. Recall
the model for sensor measurement error, {Ek}, a sequence of iid random variables,
where E1 is zero-mean, Gaussian with variance σ2. Consider the case where there
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Table 6.5. The accuracy of five sensor types considered for
design.

Sensor type y σ2

1 0.05 4.62 × 10−4

2 0.1 1.85 × 10−3

3 0.5 4.62 × 10−2

4 1 0.185
5 1.5 0.416

are five types of sensors available for use, each with a different, but known, level of
accuracy; the accuracy of each sensor type is quantified via

P (E1 ≤ y) = 0.99. (6.27)

Five values for y are listed in Table 6.5, corresponding to the accuracy of the five
sensor types. The variance of E1 for each sensor type, given by

σ2 =

[
y

Φ−1(0.99)

]2

(6.28)

where Φ denotes the standard Gaussian CDF, is also listed. By Eqs. (6.27) and
(6.28), the type #1 sensor is the most accurate since 4.62×10−4 is the smallest of the
values for σ2 considered, while the type #5 sensor is the least accurate since 0.416 is
the largest. The corresponding PDFs of the five candidate models considered for E1

are shown in Fig. 6.7.

Figure 6.8 shows values for µ and δ that satisfy Eq. (6.17) for fixed σ2. We assume
µ takes values in [−1, 0.2]; unlike Case #1, there is a nonzero probability of a false
alarm or a miss in [0, t] for µ ≥ 0 due to the presence of measurement error. The
horizontal lines in Fig. 6.8 define the µ and δ that satisfy Eq. (6.17a) for fixed σ2;
the lines with nonzero slope define the µ and δ that satisfy Eq. (6.17b) for fixed σ2.
Five different line types are plotted, which correspond to the five values for σ2. A
solid circle is used to indicate the triple (µ, δ, σ2) where both design objectives can
be satisfied simultaneously; there are five such triples. Hence, unlike the design in
Section 6.1.3.1, there are multiple points in the design space where Eq. (6.17) is
satisfied; the values for δ and σ2 at these points define the candidate sensor designs.

6.1.4.2 Candidate designs

The possible states of nature are M = {µ : µ ∈ [−1, 0.2]}, the values of the un-
known masking parameter. This collection is uncountable; we instead consider a
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Table 6.6. Candidate designs for case #2.

Design δ σ2

a1 0.602 4.62 × 10−4

a2 0.612 1.85 × 10−3

a3 0.662 4.62 × 10−2

a4 0.750 0.185
a5 0.857 0.416

finite subcollection, M′ ⊂ M, where

M′ = {mi} =

{
µi : µi =

6(i − 1)

5(q − 1)
− 1

}
, i = 1, 2, . . . , q. (6.29)

We use q = 13 for calculations, so M′ = {−1,−0.9, . . . , 0.2}. The space of candidate
designs is

A = {ai} = {(δi, σ
2
i )}, i = 1, 2, . . . , 5, (6.30)

which are the values for δ and σ2 from the five triples shown in Fig. 6.8; the elements
of A are listed in Table 6.6.

6.1.4.3 Optimal design

The procedure to select the optimal ai ∈ A is identical to the case of zero measurement
error, i.e., Section 6.1.3.3, with one exception: the cost for each candidate design is
no longer zero. Instead, define

γ(ai) = γ̃(σi) =
γ0

σ2
i

, i = 1, 2, 3, 4, 5, (6.31)

where γ0 > 0 is a deterministic parameter, σ2
i > 0 denotes the variance of the mea-

surement error under design ai, i.e., row i from Table 6.6, and we replace γ with γ̃
to denote that the cost of design ai can be expressed as a function of σi alone. By
Eq. (6.31), designs that require a very accurate sensor (small σ2) have a high cost.

The expected utility for each ai ∈ A is shown in Fig. 6.9; parameter β = 1 in
Eq. (6.26) was used for calculations. Three lines are plotted, corresponding to three
values for γ0; in each case, the optimal design, denoted by a�, is indicated with a solid
circle. With γ0 = 1/100, design a3 = (δ3, σ

2
3) = (0.662, 4.62 × 10−2) is optimal. For

small γ0, accurate sensors (small σ2) have little cost when compared to inaccurate
sensors (large σ2), so the more accurate sensor is optimal. As γ0 → 0, the results
from Section 6.1.3.3 are recovered. For γ0 = 1, design a5 = (δ5, σ

2
5) = (0.857, 0.416)

is optimal. In this case, accurate sensors have considerable cost, and a less accurate
sensor is optimal; the optimal value for δ is significantly larger than for the case with
zero measurement error.
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6.1.4.4 Probability of detection

The probability law for the detection rate of the sensor is a third metric for perfor-
mance defined in Section 6.1.2; it was not included in the design process, but may
be useful to study. Consider a fixed time, t, and let D̄ denote D̄(t) from Eq. (6.12).
Estimates of P (D̄ > v) using 1,000 samples are shown in Fig. 6.10 for the case of
v = 0.9. The plot shows values for the two design variables, δ and σ2, such that the
probability of detection is greater than 90% in [0, t], for four values of the unknown µ.
In all cases, as δ increases, P (D̄ > v) → 0, and as σ2 increases, P (D̄ > v) decreases.
Further, for fixed µ, the probability of detection is a maximum for δ = σ2 = 0; this
maximum is one for µ > −1. The results for zero measurement error are denoted
by a dark line; this corresponds to the probability of detection for the sensor design
considered in Section 6.1.3.

6.1.5 Sensor design with background noise

In the presence of background noise, we assume: (1) the output of the sensor is given
by

Ỹ (t) = Y (t) + S(t), t ≥ 0, (6.32)
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where Y (t) is given by Eq. (6.7), and S(t) is a continuous-time, stationary stochastic
process modeling background noise, (2) S(t) > 0 a.s., ∀t ≥ 0, and (3) the magnitude
of the noise is small when compared to the magnitude of the signal, i.e., S(t) � Y (t)
a.s., ∀t ≥ 0. By (2), we have Ỹ (t) > Y (t) a.s., ∀t ≥ 0, meaning that when compared
to the case with zero background noise there is, for fixed δ and σ2: (a) no change or
an increase in the number of detections, D(t), (b) no change or an increase in the
number of false alarms, A(t), and (c) no change or a decrease in the number of misses,
M(t). Assumption (3) implies good signal-to-noise ratio; if instead S ∼ Y , it will be
impossible to achieve a satisfactory design of the sensor.

Because S is a continuous-time process, we set r > 0 in Eq. (6.8); if r = 0, Y
takes a finite number of nonzero values in [0, t], and the events defined by Eqs. (6.1)
and (6.2) have zero measure. Figure 6.11 shows Y (t), t ∈ [0, 3], for r = 0 (left) and
r = 1/4 (right). Note that with r = 1/4, Y is nonzero everywhere between the second
and third peaks; for larger r this effect is amplified, making it difficult or impossible
to distinguish between two or more vehicles. Small, nonzero, values for r are therefore
optimal.

For calculations, Ỹ (t) is treated as a discrete-time stochastic process. Consider
the partition 0 = t0 < t1 < · · · < tn−1 < tn = t of [0, t]; Eq. (6.32) can be written for
every point in the partition, i.e.,

Ỹ (tj) = Y (tj) + S(tj), j = 0, 1, . . . , n. (6.33)
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Define

ρ =
1

min
j∈{1,2,...,n}

(tj − tj−1)
(6.34)

to be the sample rate of the sensor. We assume ρ is a controllable parameter; if ρ is
not large enough, aliasing will occur, which may adversely affect the performance of
the sensor.

For illustration, consider S to be a translation process, i.e.,

S(t) = F−1 ◦ Φ[G(t)], t ≥ 0, (6.35)

where G(t) is a zero-mean, unit variance, stationary Gaussian white noise process,
and F is given by

F (x; α, ζ) =

∫ x

0

1√
2πζu

exp

[
−1

2

(
lnu − α

ζ

)2
]
du, x > 0, (6.36)

where α and ζ > 0 are deterministic parameters. By Eqs. (6.35) and (6.36), S(t) is a
lognormal random variable for any fixed t. One sample of Ỹ is shown in the bottom
of Fig. 6.12 for the case of α = −5 and ζ2 = 3/2; the underlying samples of Y and
S are shown at the top-left and top-right of Fig. 6.12, respectively. Note that the
sample for Y is identical to the one shown in Fig. 6.3, with r = 1/4 instead of r = 0.
By Eq. (6.9), the sensor is activated 6 times: twice due to a type g vehicle, three
times due to type b vehicles, and once more due to background noise. One type b
vehicle is missed. Hence for this sample, the number of false alarms has increased by
two because of the noise; the number of detections and misses remain unchanged.

To design the sensor in the case of nonzero background noise, the formulation of
Sections 6.1.3 and 6.1.4 can be used. Parameters r and ρ are design variables and
can be included in the space of candidate designs, A. Similarly, the properties of the
noise are unknown; the parameters α and ζ , as well as the probability law for S, can
be included in M.
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6.2 Vehicle monitoring

Consider the general domain, Ω ⊆ R
2, with multiple points of attraction, called trea-

sures, shown in Fig. 6.13. There are numerous entry points into Ω, and multiple
paths from each entry point to each treasure. We wish to monitor the movement of
objects within Ω along all possible paths. Objects may enter Ω at one of the entry
points and take one path to a single treasure. We assume a limited number of sensors
can be placed at arbitrary locations inside the domain to monitor the objects inside
Ω. Each sensor has finite field of view or range, meaning it is possible to monitor
only those objects that pass within a disc, centered at the sensor location, with finite
radius; the sensor range is denoted by the gray regions in Fig. 6.13. The objective is
to design a network of sensors to estimate the path of each object through Ω, under
some set of constraints.

One application of this general framework is vehicle surveillance, where the objects
of interest are vehicles that are constrained to operate within some network of roads;
the objective is to observe the movement of vehicles throughout a given region. The
roads form paths from one city to another; the treasures are then a subcollection of
these cities. The boundary of the observed region defines Ω for this application, and
any road crossing this boundary is an entry point into Ω.

For illustration, we consider Ω to be the road network in New York state, shown in
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Fig. 6.14, where many of the major highways and cities have been included. The level
of detail is chosen arbitrarily; additional cities and roads can be added if necessary.
We assume a single treasure, the city of Ithaca, and a single type of vehicle, and
wish to monitor the movement of all vehicles inside Ω. A limited number of sensors
to monitor the passage of a vehicle may be placed directly on a road, or at some
location in between roads, where each sensor has a finite range. The objective is to
find the optimal placement and range of these sensors, under some set of constraints.

Mathematical models for both the vehicles and sensor network are developed
in Section 6.2.1. Metrics that define sensor network performance are developed in
Section 6.2.2, and the design of the sensor network is discussed in Section 6.2.3.
The sensitivity of the output of interest to certain assumptions on the model of the
sensor network is discussed in Section 6.2.4. Methods of model selection, discussed
in Section 6.2.5, are then used to compute the optimal design of the sensor network.
Possible extensions to this work are presented in Section 6.2.6.

6.2.1 Model development

In this section, we formulate the mathematical models for: (1) the possible paths
through the domain, Ω, (2) the vehicle movement on paths within Ω, and (3) the
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sensor network.

6.2.1.1 Model for possible paths

Methods from graph theory [73] are used to formulate a model for paths in Ω. We
define the intersection of two or more roads as a node, and the line segment connect-
ing any two nodes as an edge. A collection of nodes and edges defines a graph. The
number of edges at node i is called the degree of node i. Two nodes connected via
an edge are called adjacent. The adjacency matrix, c, is a square matrix used to
define the connectivity of the graph; the elements of c satisfy

cij =

{
1, if nodes i and j are adjacent,

0, else,
(6.37)

where i, j are defined for all integers in {1, 2, . . . , number of nodes}. The process of
moving between two adjacent nodes is called a step. A path through Ω is then a
sequence of steps; it can be defined via a list of nodes or, equivalently, a list of edges.
In the analyses that follow, we will use the node list to define each path.

To illustrate these definitions, consider the graph of Ω shown in Fig. 6.15. The
nodes are numbered sequentially from 1 to 21; there are 28 edges in the graph of
Ω. The treasure is the city of Ithaca, denoted by the � and labeled node #1, while
Albany is node #12, Cortland is node #8, Syracuse is node #9, etc. There are 8
nodes of degree one in the graph of Ω; these are the entry nodes into the domain. For
example, node #18 represents entering Ω from near Buffalo (the west); node #14,
from New York City (the south). Further, nodes #11 and #12 are adjacent, while
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nodes #8 and #11 are not. The path from Ithaca to Syracuse by way of Cortland
involves 2 steps, and the path is defined as {#1, #8, #9}.

6.2.1.2 Model for vehicle movement

To construct a mathematical model for vehicle movement within Ω, we assume each
vehicle travels at constant, known velocity on a path in Ω. In addition, we assume the
vehicle can take any path in Ω, provided: (1) the path is nonintersecting, meaning the
vehicle can pass over any node only once, (2) the path starts at any of the entry nodes,
and ends at the treasure, and (3) the path taken is independent of sensor locations.
Under assumptions (1)-(3), the number of paths a vehicle can take through Ω can
be calculated; the procedure to do so is discussed in Appendix D. It can be shown
that there are 213 paths through Ω. Note that if we relax any or all of assumptions
(1)-(3), the number of paths through Ω will change. However, the procedure that
follows remains unchanged.
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Figure 6.16: The possible paths in Ω, {Pj}, j = 1, 2, . . . , n.
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For calculations, we consider a subset of n = 12 of the 213 paths. Only those
paths that originate from entry nodes #14, #15, #17, or #18 were retained, which
corresponds to paths originating from the south, east, north, or west, respectively.
From this collection, those paths with the minimum, maximum, and nearest to aver-
age length for each entry node were retained. The subset considered, denoted {Pj},
j = 1, 2, . . . , n, is called the collection of prior or possible paths, and is shown in
Fig. 6.16. Paths are denoted with solid lines, with arrows to indicate the direction of
travel. We denote the actual path of a vehicle by P �, where P � ∈ {P1, P2, . . . , Pn}.
Note that our choice of {Pj} is arbitrary; the subset is used to reduce the amount of
calculations required in the analyses that follow.

6.2.1.3 Sensor network model

The mathematical model for the sensor network has three elements: (1) the number
of sensors, q, (2) the location of each sensor, and (3) the range of each sensor. We
make the following assumptions: (a) q is strictly less than 28, the number of edges in
the graph of Ω, (b) the q sensors are arranged in Ω at fixed locations x1,x2, . . . ,xq,
(c) all sensors have the same properties, with adjustable range, r ∈ [r1, r2], where
r1, r2 ≥ 0 are deterministic parameters, and (d) if a vehicle passes within range of a
sensor, it is detected with probability one. By assumption (a), note that if q is equal
to or greater than the number of edges in the graph of Ω, the design of the sensor
network is trivial. In this case, we can place one sensor on each edge, and adjust the
range small enough so the range of no two sensors overlap; any path P � ∈ {Pj} can
therefore be identified with probability one. Assumption (a) is not restrictive, since
it would be impractical to place a sensor on every road segment in New York state. If
we remove assumption (d), the models developed in Section 6.1 for vehicle detection
can be included in the analyses.

Four sensor layouts are considered, shown in Figs. 6.17-6.20, respectively. The
layouts are defined as follows.

• layout #1: a rectangular grid with q = 9 sensors.

• layout #2: q = 9 sensors placed on q distinct edges.

• layout #3: a rectangular grid with q = 12 sensors.

• layout #4: q = 12 sensors placed on q distinct edges.

For layouts #2 and #4, the edges chosen were those most commonly used by the n
possible paths.
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Let {wi}, i = 1, 2, . . . , q, be a sequence such that

wi =

{
1 if sensor i activates

0 else.
(6.38)

Note that wi depends on the range of sensor i, as well as the true path of the vehicle,
P �. Refer again to Figs. 6.17-6.20, where a square denotes the location of a sensor.
The symbol � denotes activated sensors (wi = 1), while a � indicates those sensors
that were not activated (wi = 0), due to a vehicle taking path P �. Figures 6.17 and
6.19 are for the case of P � = P9, while Figs. 6.18 and 6.20 are for the case P � = P1.

The only knowledge of the actual path of the vehicle, P �, comes from: (1) the
sequence {wi}, i = 1, 2, . . . , q, and (2) the collection of all possible paths, {Pj},
j = 1, 2, . . . , n. Accordingly, define the following metric for each path

yj =
1

q

q∑
i=1

1(ηi,j < r) wi, j = 1, 2, . . . , n, (6.39)

where

ηi,j = distance between sensor i and point of closest approach

by path Pj to sensor i, (6.40)

is illustrated by Fig. 6.21. For any path Pj , yj has the following properties: (1) 0 ≤
yj ≤ 1, (2) as r → 0, yj → 0, and (3) as r → ∞, yj → 1. In addition, for path
Pj = P �, yj is a maximum.

Note that Eq. (6.39) implies perfect communication between sensors, i.e., if one
sensor detects a vehicle, it is perfectly communicated to all sensors in the network.
Models for imperfect communication between sensors is a topic of much research [52];
this issue is not considered here.
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Figure 6.22: The number of posterior paths in Ω, Q(r), for layout #1.

6.2.2 Sensor network performance

Let ȳ = max
j

yj, j = 1, 2, . . . , n, and define

P̃ = {Pj : yj = ȳ, j = 1, 2, . . . , n}. (6.41)

The collection P̃ ⊂ {P1, P2, . . . , Pn} defines the set of posterior paths, i.e., the
collection of paths that cannot be excluded from {P1, P2, . . . , Pn} using the sequence
{wi}, i = 1, 2, . . . , q, the available information from the sensor network. Note that P̃
consists of one or more members of {P1, P2, . . . , Pn}, in general, and P̃ coincides with
{P1, P2, . . . , Pn} if r → ∞.

Let

Q = the number of members in P̃ . (6.42)

P̃ and Q have the following properties: (1) if n = 1, P̃ = {P �} and Q = 1, (2) if
n > 1, Q(r) ∈ {1, 2, . . . , n}, and (3) for any n, P � ∈ P̃ . We see by (2) that the set of
posterior paths may not be unique. Q is plotted in Fig. 6.22, as a function of r, for
P � = Pj, j = 1, 2, . . . , n, and sensor layout #1. A similar plot for layout #2 is shown
in Fig. 6.23.
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Figure 6.23: The number of posterior paths in Ω, Q(r), for layout #2.

6.2.3 Sensor network design

The design of the sensor network includes: (1) the sensor layout, i.e., the number of
sensors and their locations, and (2) the sensor range. It is desirable to design the
sensor network so that number of posterior paths in Ω is small, i.e.,

choose sensor layout and r ∈ [r1, r2] such that Q(r) ≤ d, (6.43)

where integer d ≥ 1 is a specified critical number of paths. However, as illustrated
by Figs. 6.22 and 6.23, Q(r) depends on P �; we cannot know the value of P � since it
is the true path taken by the vehicle.

We assume P � is a random variable that takes values in {Pj}, j = 1, 2, . . . , n.
Under this assumption, Eq. (6.43) can be written as a probability statement, i.e.,

choose sensor layout and r ∈ [r1, r2] such that P (Q(r) ≤ d) = q̄, (6.44)

where q̄ ∈ [0, 1] is a specified level of reliability. Note that Q(r) is a stochastic process
since, for any fixed r, Q is a random variable. The probability law for P � is unknown;
four probability laws for P � are considered in the following section. Equation (6.44)
defines the performance requirement for the sensor network design; the parameters
used for calculations are listed in Table 6.7.
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Table 6.7. Parameters used in vehicle monitoring problem.

Description Parameter Value

Number of possible paths n 12
Critical number of paths d 3
Reliability q̄ 0.6
Sensor range lower bound r1 1
Sensor range upper bound r2 15

6.2.4 Sensitivity of model output

The properties of Q, the number of posterior paths in Ω, are sensitive to the properties
of P �, the actual path of the vehicle. To illustrate, consider four possible probability
laws for P �:

m1 : P (P � = Pk) = 1/12, k = 1, 2, . . . , 12,

m2 : P (P � = Pk) =

{
1/8, k = 1, 2, 3, 4,

1/16, k = 5, 6, . . . , 12,

m3 : P (P � = Pk) =

{
1/6, k = 1, 5, 9,

1/18, k = 2, 3, 4, 6, 7, 8, 10, 11, 12, and

m4 : P (P � = Pk) =

{
1/6, k = 2, 6, 10,

1/18, k = 1, 3, 4, 5, 7, 8, 9, 11, 12.
(6.45)

By Eq. (6.45) and Fig. 6.16, law m1 assumes each path is equally likely, law m2

assumes shorter paths are more likely than longer paths, and laws m3 and m4 assume
paths originating from the south and east, respectively, are more likely than paths
originating from the north or west. It follows that the mean, variance, and marginal
CDF of Q are given by

E[Q(r)] =

n∑
j=1

Q(r|P � = Pj)P (P � = Pj),

Var[Q(r)] =
n∑

j=1

[Q(r|P � = Pj) − E[Q(r)]]2 P (P � = Pj), and

P (Q(r) = k) =

n∑
j=1

1 [Q(r|P � = Pj) = k] P (P � = Pj), k = 1, 2, . . . , n. (6.46)

These properties are calculated assuming laws m1, m2, m3, and m4 for layouts #1
and #2; results are shown in Figs. 6.24 and 6.25, respectively. Note that in each
case, as r increases, E[Q(r)] → n and Var[Q(r)] → 0. Also, with the exception of
layout #1 and r = 5, P (Q(r) ≤ k) < 1 for k < n.
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The performance of layouts #1 and #2, as defined by Eq. (6.44), is shown in
Fig. 6.26 under each mi, i = 1, 2, 3, 4. Under laws m1 and m4, layout #2, with r = 1,
outperforms layout #1 for any r. Likewise, under laws m2 and m3, layout #1 with
r ≈ 2.5 outperforms layout #2 for any r. In general, the range, r, needed to satisfy
Eq. (6.44) is sensitive to both sensor layout and the probability law of P �.

6.2.5 Model selection

In this section, we use the decision-theoretic method for model selection to select
the optimal design of the sensor network, i.e., optimal sensor layout and range. The
model use is design, so the formulation of Section 2.3.2.2 applies. The candidate
designs of the sensor network are presented in Section 6.2.5.1; the optimal design is
selected in Section 6.2.5.2.

6.2.5.1 Candidate designs

The possible states of nature are the possible probability laws for P �, i.e.,

M = {m1, m2, m3, m4}, (6.47)
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where mi, i = 1, 2, 3, 4, is defined by Eq. (6.45). We assume noninformative prior
information, meaning that pi = 1/4, i = 1, 2, 3, 4, where pi denotes the probability
that mi is true. The choice of candidate probability laws for P � in Eq. (6.45) is
arbitrary in this example; additional models can be considered without altering the
procedure that follows. However, there may be a rational means to assign these laws
using, for example, the populations of the cities that lie to the south and east of
Ithaca.

The space of possible actions, A, is the space of possible designs of the sensor
network. Each design, ai, includes one of the four sensor layouts shown in Figs.
6.17-6.20, as well as a range, r, for each sensor. Define

A1 =

{
layout #1, ri =

i − 1

20
+ 1, i = 1, 2, . . . , 281

}
,

A2 =

{
layout #2, ri =

i − 1

20
+ 1, i = 1, 2, . . . , 281

}
,

A3 =

{
layout #3, ri =

i − 1

20
+ 1, i = 1, 2, . . . , 281

}
,

A4 =

{
layout #4, ri =

i − 1

20
+ 1, i = 1, 2, . . . , 281

}
, (6.48)

where each Ai, i = 1, 2, 3, 4, contains 281 elements due to the discretization of r ∈
[r1, r2]. Three cases are then considered; case (i): A = {A1,A2}, case (ii): A =
{A1,A3}, and case (iii): A = {A2,A4}. For case (i), we assume the number of
sensors is fixed at q = 9 due to cost constraints; methods of model selection can
be used to determine the optimal sensor layout and range. For case (ii), we assume
the sensors cannot be placed on any edge in the graph of Ω, i.e., any of the roads
in New York state; a rectangular arrangement of sensors is considered and methods
of model selection are used to select the optimal number of sensors, q, and optimal
sensor range, r. Likewise, for case (iii), we assume the sensors must be placed on the
edges of the graph of Ω and use model selection techniques to determine the optimal
q and r.

6.2.5.2 Optimal design

To select the optimal design for the sensor network, we use the formulation of Sec-
tion 2.3.2.2. The utility function, defined for each design, ai ∈ A, and each state of
nature, mj ∈ M, is given by

U(ai, mj) = γ(ai) + ψ(ai, mj), (6.49)

where γ(ai) ≥ 0 denotes the cost of design ai, and ψ(ai, mj) ≥ 0 denotes the penalty
associated with design ai, if mj is true.
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Table 6.8. Optimal sensor network design for cases (i), (ii),
and (iii).

Optimal design, a�

Case
Number of sensors Sensor layout Sensor range

(i) q = 9 #2 r = 1
(ii) q = 12 #3 r = 5.15
(iii) q = 9 #2 r = 1

Let qi and ri be the number of sensors and sensor range, respectively, under design
ai. The cost function is given by

γ(ai) = γ̃(qi) = γ0 qi, (6.50)

where γ0 ≥ 0 is a deterministic parameter. By Eq. (6.50), designs with a large
number of sensors (layouts #3 and #4) have a high cost. Consider the case of design
ai and model mj. We define ξij such that

P (Q(ri) ≤ ξij | mj) = q̄. (6.51)

The penalty function is given by

ψ(ai, mj) = ψ̃(ξij, d) =

{
β1(ξij − d)2 if ξij ≤ d, and

β2(ξij − d)2 if ξij > d,
(6.52)

where β2 ≥ β1 > 0 are deterministic parameters; Eq. (6.52) is identical to Eq. (2.53)
in Section 2.3.2.2. Parameters γ0 = 1/10, β1 = 0, and β2 = 1 are used for calculations.

The expected utility of design ai is given by Eq. (2.45), i.e.,

u(ai) = γ(ai) +

4∑
j=1

ψ(ai, mj) pj , i = 1, 2, . . . , 562. (6.53)

The expected utility of each design was calculated for each of the three cases con-
sidered; results are shown in Fig. 6.27. For each case, the optimal design, a�,
minimizes Eq. (6.53); results are listed in Table 6.8. Note that the values for u(ai),
i = 1, 2, . . . , 281, coincide for cases (i) and (ii) because A = {A1,A2} and A =
{A1,A3} for cases (i) and (ii), respectively.

When possible, it was advantageous to place sensors on the edges of the graph
of Ω rather than in a rectangular grid. In this case, the smallest possible value for
r was optimal, and additional sensors did not significantly improve the design. For
the case when the sensors were restricted from being on any edge (case (ii)), it was
advantageous to add more sensors to the network, and use a larger range.

183



0 100 200 300 400 500 600
10

0

10
1

10
2

i

case (i)
case (ii)
case (iii)

Figure 6.27: Expected utilities, u(ai), for cases (i), (ii), and (iii).

6.2.6 Future work

Possible extensions to the vehicle monitoring problem are discussed. In Section 6.2.1.1,
we assumed there was a single treasure in Ω, the city of Ithaca. Further, we assumed
the vehicle paths to be independent of the sensor locations in Section 6.2.1.2. These
assumptions were made to simplify the calculations; if they are relaxed or removed,
the models for the possible paths and vehicle movement within Ω will be more com-
plicated. The benefits are numerous; we may construct a mathematical model to
describe, for example, the movement of vehicles that have some device to detect the
presence of a sensor on their intended route of travel, e.g., radar detectors.

By Eqs. (6.38) and (6.39), it is clear that no information on the time a vehicle
passes the sensor is available; the sensor is either activated or it is not. If time is
included in the model, we may achieve: (1) knowledge of vehicle location at any
time, and (2) improved monitoring performance. To illustrate the latter, consider
Fig. 6.28, which shows three possible paths through Ω, labeled P1, P2, and P3. Three
sensors, labeled A, B, and C, are positioned to monitor vehicle traffic in Ω; the
ranges of sensors A, B, and C intersect. P1, P2, and P3 pass through the range of
each sensor and will therefore activate all three sensors. The time-invariant sensor
model developed in Section 6.2.1.3 is unable to distinguish among the three possible
paths because the path metric defined by Eq. (6.39) is identical for paths P1, P2,
and P3. However, we note that P1 is the only path that activates sensors A and B
simultaneously, P2 is the only path that activates sensors B and C simultaneously,
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Figure 6.28: Scenario to illustrate time-varying sensor model.

and P3 is the only path that activates all sensors simultaneously. A time-varying
model for the sensor can utilize this information; improvements in vehicle monitoring
will result.
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Chapter 7

Conclusions

Mathematical models are developed and used to study the properties of complex
systems and/or modify these systems to satisfy some performance requirements in
just about every area of applied science and engineering. A particular reason for
which a model is developed, e.g., performance assessment or design, was referred to
as the model use. As discussed in Chapter 1, information on the system being modeled
is, in general, incomplete, so that there may be two or more models consistent with
the available information. The collection of these models was called the class of
candidate models. Our objective was the development of a methodology for selecting
the optimal member from a class of candidate models for the system that is sufficiently
accurate for an intended use.

In Chapter 2, generalities and essentials of the model selection problem were
presented. Three methods for analysis were discussed: (1) the method of maximum
likelihood, (2) Bayesian methods, and (3) a decision-theoretic method. Classical tech-
niques for model selection include methods (1) and (2); these techniques ignore model
use and require data to be available. Method (3) requires elements from decision the-
ory, most notably the concept of a utility function, which allowed the consequences
of using an inappropriate model for the system to be quantified. General utility
functions, for the case of model use for design and performance prediction, were
developed. It was shown that the optimal model depended on the: (i) available infor-
mation, (ii) collection of candidate models, and in the case of the decision-theoretic
method for model selection, (iii) model use. Further, the methods for model selection
considered did not require that the candidate models be random.

Methods for model selection were applied to simple, relevant example problems
in Chapter 3. It was shown that, for the examples considered, classical methods
for model selection were unreliable when data was limited. The decision-theoretic
approach to model selection did not have this limitation, and model use was included
in the selection process through an appropriate utility function. This feature was
especially important when modeling high risk systems, where the consequences of
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using an inappropriate model could be disastrous.

One class of candidate model, the polynomial chaos (PC) approximation, was de-
fined and studied in Chapter 4 for the case of non-Gaussian random variables and
stationary stochastic processes. It was shown that: (1) the accuracy of the PC ap-
proximation depended on the number of terms retained in the series, (2) the accuracy
did not necessarily improve when more terms were retained, and (3) the L2 conver-
gence properties of the PC approximation were largely irrelevant for applications
since, generally, the PC approximation was defined by a small number of terms. The
decision-theoretic method for model selection was developed to select the optimal
number of terms for the PC approximation. For illustration, a collection of PC ap-
proximations for a non-Gaussian random variable was considered. A utility function
was used to assign a penalty to those PC approximations that were inaccurate and/or
required a large number of terms.

The decision-theoretic method for model selection was applied to select optimal
pressure load models acting on a spacecraft during atmospheric re-entry in Chapter 5.
This is one example of a high risk system. The collection of candidate models formed
a class of stationary stochastic processes in space and time with partially known prob-
ability laws. Utility functions were formulated based on properties of the response
of an internal component. Three cases were considered: (1) each candidate model
was assumed Gaussian with perfectly known temporal correlation function and spa-
tial correlation function of specified functional form, but with an unknown parameter
value, (2) each candidate model was assumed Gaussian with perfectly known tem-
poral correlation function and spatial correlation function of unspecified functional
form with unknown parameters, and (3) each candidate model was assumed to be
completely defined in the second-moment sense, but with unknown marginal PDF.
It was shown that the internal component response is sensitive to the degree of spa-
tial correlation on the input for cases (1) and (2), and to the marginal PDF of the
input for case (3). Further, the Gaussian model that is uncorrelated in the spatial
dimension, a model that is often applied for this problem, is not optimal.

In Chapter 6, another high risk system, namely the design of a distributed sensor
network, was considered. The detection and classification of vehicles by a single sensor
was addressed in Section 6.1, while the monitoring of vehicles by a collection of sensors
within a two-dimensional domain was address in Section 6.2. In both cases, models
for vehicle movement and the sensor network, as well as metrics of performance,
were developed; the information on vehicle movement was incomplete. The decision-
theoretic method for model selection was then applied to select the optimal design
of the sensor network. A collection of candidate designs for the sensor network was
defined, and postulated utility functions were used to penalize any candidate design
that failed to achieve the required levels of performance.
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Appendix A

Derivation of polynomial chaos
coefficients

Consider the reflected Gaussian random variable of Table 4.2, given by g3(W ) = |W |.
Let

|W | =

∞∑
i=0

yihi(W ) (A.1)

be the PC representation of this random variable in terms of the Hermite polynomials,
hi(W ). The even and odd Hermite polynomials can be written explicitly [2]

h2k(s) =

k∑
j=0

ajs
2(k−j)

h2k+1(s) =
k∑

j=0

bjs
2(k−j)+1, k = 0, 1, 2, . . . , (A.2)

where a0 = b0 = 1 and, for j = 1, 2, . . . , k,

aj = (−1)j (2k)!

j!2j(2k − 2j)!

bj = (−1)j (2k + 1)!

j!2j(2k − 2j + 1)!
(A.3)

The coefficients, {yi}, of the PC approximation for Eq. (A.1) are given by Eq.
(4.8), i.e.,

yi =
E [|W |hi(W )]

E [hi(W )2]
=

1

i!
E [|W |hi(W )]

=
1

i!
√

2π

∫ ∞

−∞
|s|hi(s)e

−s2/2ds, i = 0, 1, 2, . . . , p. (A.4)
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Hence, the even PC coefficients are given by

y2k =
1√

2π(2k)!

∫ ∞

−∞
|s|h2k(s)e

−s2/2ds

=
1√

2π(2k)!

{
k∑

j=0

aj

∫ ∞

−∞
|s|s2(k−j)e−s2/2ds

}

=
2√

2π(2k)!

{
k∑

j=0

aj

∫ ∞

0

s2(k−j)+1e−s2/2ds

}
, k = 0, 1, 2, . . . (A.5)

Let t = s2/2; Eq. (A.5) is rewritten as

y2k =
2√

2π(2k)!

{
k∑

j=0

aj

∫ ∞

0

(2t)k−je−tdt

}

=
2√

2π(2k)!

{
k∑

j=0

2k−jajΓ(k − j + 1)

}

=
2√
2π

{
2kk!

(2k)!
+

k∑
j=1

(−1)j 2k−2j(k − j)!

j!(2k − 2j)!

}
, k = 0, 1, 2, . . . (A.6)

Likewise, the odd PC coefficients are given by

y2k+1 =
1√

2π(2k + 1)!

∫ ∞

−∞
|s|h2k+1(s)e

−s2/2ds

=
1√

2π(2k + 1)!

{
k∑

j=0

bj

∫ ∞

−∞
|s|s2(k−j)+1e−s2/2ds

}

=
1√

2π(2k + 1)!

{
k∑

j=0

bj

∫ ∞

0

s2(k−j)+2e−s2/2ds +

∫ 0

−∞
−s2(k−j)+2e−s2/2ds

}

= 0, k = 0, 1, 2, . . . (A.7)
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Appendix B

Simulation of Gaussian vector
processes

Let G(t) be an n-dimensional stationary Gaussian process such that the coordinates
of G(t) have zero mean and covariance functions

ckl(τ) = E[Gk(t)Gl(t + τ)], k, l = 1, 2, . . . , n. (B.1)

The spectral density of G(t), denoted by s(ν), has coordinates ([88], p. 28),

skl(τ) =
1

2π

∫ ∞

−∞
ckl(τ)e−iντdν, k, l = 1, 2, . . . , n, (B.2)

where i =
√−1. By the spectral representation theorem ([50], pp. 154-155), G(t) can

be expressed as

G(t) =

∫ ∞

0

[cos(νt)dU(ν) + sin(νt)dV(ν)] , (B.3)

where U and V are zero mean Gaussian processes with orthogonal increments such
that, for k, l = 1, 2, . . . , n,

E[dUk(ν)dUl(ν
′)] = E[dVk(ν)dVl(ν

′)] = δ(ν − ν ′)gkl(ν)d(ν),

E[dUk(ν)dVl(ν
′)] = −E[dVk(ν)dUl(ν

′)] = δ(ν − ν ′)hkl(ν)d(ν), (B.4)

where δ(ξ) = 1 for ξ = 0 and zero otherwise, and

gkl(ν) = skl(ν) + skl(−ν)

hkl(ν) = −i [skl(ν) − skl(−ν)] . (B.5)

By Eq. (B.3), G(t) can be viewed as a superposition of harmonics with random
(Gaussian) amplitudes.
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Define, for each k = 1, 2, . . . , n, a cut-off frequency ν�
k , such that∫ ν�

k

−ν�
k

skk(ν)dν ≈
∫ ∞

−∞
skk(ν)dν, (B.6)

and let ν� = max1≤k≤n ν�
k . Let (uj−1, uj), j = 1, 2, . . . , q, with u0 = 0 and uq = ν�, be

a partition of (0, ν�) in q nonoverlapping intervals of length ∆νj = uj − uj−1. Denote
by νj the midpoint of (uj−1, uj), j = 1, 2, . . . , q. The following is an approximation
for G(t) of order q (see [48], p. 174):

Gq(t) =

q∑
j=1

[Aj cos(νjt) + Bj sin(νjt)] , (B.7)

where {Aj,Bj}, j = 1, 2, . . . , q, is a zero-mean Gaussian random vector such that

E[Ai,kAj,l] = E[Bi,kBj,l] = δij

∫ ui

ui−1

gkl(ν)dν ≈ δijgkl(νi)∆νi,

E[Ai,kBj,l] = −E[Bi,kAj,l] = δij

∫ ui

ui−1

hkl(ν)dν ≈ δijhkl(νi)∆νi, (B.8)

and δij = 1 if i = j and zero otherwise, i, j = 1, 2, . . . , q. By Eq. (B.7), Gq is a zero-
mean, stationary Gaussian process for any q ≥ 1. It can be shown that, as q → ∞:
(1) Gq approaches G in the mean-square sense, (2) the covariance functions of Gq

approach the covariance functions of G, and (3) Gq becomes a version (i.e., has an
identical finite dimensional distribution) of G.

The generation of samples of Gq involves two steps. First, we generate samples of
the zero-mean Gaussian vector, {Aj,Bj}, j = 1, 2, . . . , q, with covariances defined by
Eq. (B.8); methods from [48], Section 4.2, can be used for sample generation. Second,
we apply Eq. (B.7), where we replace {Aj,Bj} by the samples generated in step one.

Consider the case of sample generation of a zero-mean scalar (i.e., n = 1) Gaussian
process, denoted by G, with covariance function c(τ) = E[G(t)G(t+τ)]. By Eqs. (B.7)
and (B.8),

Gq(t) =

q∑
j=1

[Aj cos(νjt) + Bj sin(νjt)] , (B.9)

is an approximation for G, and {Aj, Bj}, j = 1, 2, . . . , q, is a zero-mean Gaussian
random vector such that, for i, j = 1, 2, . . . , q,

E[AiBj ] = 0,

E[AiAj ] = E[BiBj] = δij

∫ ui

ui−1

g(ν)dν ≈ δijg(νi)∆νi, (B.10)

where, by Eq. (B.5),

g(ν) = s11(ν) + s11(−ν) (B.11)
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Figure B.1: One sample of Gq (left) and estimates of cq(τ) (right).

is the one-sided PSD of G. Note that s11(ν) is an even function of ν so that, by
Eq. (B.5), h11(ν) = 0 and, by Eq. (B.8), E[AiBj] = 0, i, j = 1, 2, . . . , q.

For illustration, let

c(τ) =
sin(ν̄τ)

ν̄τ
and g(ν) =

1

ν̄
1(ν ≤ ν̄). (B.12)

Shown in Fig. B.1 is one sample of Gq(t) for the case of q = ν̄ = 200. Also shown are
estimates of cq(τ) = E[Gq(t)Gq(t + τ)], for the case of q = 50, q = 100, and q = 200
using 1,000 Monte Carlo samples. By Fig. B.1, we note that as q increases, cq(τ)
approaches c(τ) for all τ .
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Appendix C

Second-moment properties of
filtered Poisson processes

Recall the definition of the filtered Poisson process from Section 5.8.1

V (t; λ) =




0 N(t) = 0
N(t;λ)∑
k=1

Wkf(t − Tk) N(t) > 0,
(C.1)

where N(t; λ) is the counting process with jump times {Tk, k ≥ 1} and intensity
λ > 0, the iid random variables {Wk, k ≥ 1} have zero mean and variance σ2, and
f is a known, deterministic shape function. Here, we consider the special case of
homogenous N(t), i.e., λ is constant, and stationary V . Under these assumptions,
the mean of V is given by (see [48], p. 82)

E[V (t; λ)] =

∫ t

−∞
E [W1f(t − s)λ] ds

= λ E[W1]

∫ t

−∞
f(t − s)ds

= λ E[W1]

∫ ∞

0

f(u)du, (C.2)

where the last step follows with substitution u = t−s. Likewise, the variance is given
by

Var[V (t; λ)] =

∫ t

−∞
E
[
(W1f(t − s))2 λ

]
ds

= λ E
[
W 2

1

] ∫ t

−∞
[f(t − s)]2 ds

= λ σ2

∫ ∞

0

f(u)2du. (C.3)
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Assuming τ ≥ 0, the covariance of V (t; λ) is

E[V (t; λ)V (t + τ ; λ)] =

∫ t

−∞
E [W1f(t − s)W1f(t + τ − s)λ] ds

= λ E
[
W 2

1

] ∫ t

−∞
f(t − s)f(t + τ − s)ds

= λ σ2

∫ ∞

0

f(u)f(u + τ)du. (C.4)

The target mean, variance, and covariance of V (t; λ) are zero, one, and c(τ) given
by Eq. (5.13), respectively. The filtered Poisson process, V (t; λ), will satisfy these
requirements provided: (1) E[W1] = 0, (2) a f(t) ∈ L2 can be found such that

1

γ̄

∫ ∞

0

f(u)f(u + τ)du = c(τ), (C.5)

where

γ̄ =

∫ ∞

0

f(u)2du < ∞, (C.6)

and (3) λσ2γ̄ = 1.

The integral equation of Eq. (C.5) cannot be solved in closed-form. Let f̂ ∈ L2

be an approximation to f where, for u′ > 0, we define f̂(u) = 0, ∀u /∈ [0, u′]. The
following procedure is used to calculate f̂ :

1. choose τ ′ > 0 such that |c(τ)| < ε for all τ ≥ τ ′,

2. let 0 = τ0 < τ1 < · · · < τn−1 < τn = τ ′ form a partition for τ ∈ [0, τ ′] ,

3. let 0 = u0 < u1 < · · · < un−1 < un = u′ form a partition for u ∈ [0, u′],

4. define

(a) ti =
τi + τi−1

2
, i = 1, 2, . . . , n,

(b) ∆ui = ui − ui−1, i = 1, 2, . . . , n,

(c) f̂i = f̂

[
ui + ui−1

2

]
, i = 1, 2, . . . , n,

5. the integral in Eq. (C.5), for τ = tj, is approximated as:

∫ ∞

0

f̂(u)f̂(u + tj)du ≈
n−j+1∑

i=1

f̂if̂i+j−1∆ui, j = 1, 2, . . . , n, (C.7)
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Figure C.1: Approximate solution, f̂ , (left) and corresponding covariance function
for V (right).

6. Equation (C.6) is approximated as:

∫ ∞

0

f̂(u)2du ≈
n∑

i=1

f̂ 2
i ∆ui, (C.8)

7. define the residual at tj, for j = 1, 2, . . . , n, as:

rj =

n−j+1∑
i=1

f̂if̂i+j−1∆ui −
n∑

i=1

f̂ 2
i ∆uic(tj), (C.9)

and

8. find f̂i, i = 1, 2, . . . , n, such that
∑n

j=1 r2
j is a minimum.

Parameters τ ′ = u′ = 4 × 10−4, ε = 0.02, and n = 4000 were used for calculations.
The solution for f̂ is shown on the left side of Fig. C.1; shown on the right are ĉ(τ),
the solution to Eq. (C.5) with f replaced by f̂ , and the required covariance, c(τ).
The errors are negligible for τ ∈ [0, τ ′].
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Appendix D

Algorithm to compute all paths
through Ω

Recall the graph of Ω shown in Fig. 6.15. The collection of paths through Ω can be
calculated by following the algorithm GetPaths, shown in Fig. D.1. Each path is
consistent with the assumptions made in Section 6.2.1.2. The inputs to the algorithm
are:

• the adjacency matrix (c) for the graph,

• the node number for the treasure (treasure), and

• the node numbers for all entry nodes into Ω (entrynodes).

Output are:

• the number of paths (np), and

• a node list defining each path (paths).

The algorithm calculates each path in reverse order, i.e., the paths begin at the
treasure and end at one of the entry nodes; each path is then ordered from entry
node to treasure at the end of the algorithm.
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input : treasure, c, entrynodes

output: np, paths

localnode = treasure
localpath = treasure
npr = # paths remaining in localpath

while npr > 0 do

for j = 1 to npr do
find all nodes one step away from localnode(j) using c
append these nodes to localpath

remove any repeated paths from localpath

put paths that end at any entrynodes in paths and remove from
localpath

npr = # paths remaining in localpath

localnode = last node in each remaining path

re-order each path in paths from one entrynodes to treasure
np = # paths in paths

Figure D.1: Algorithm GetPaths.
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P. Wilson, 9120

1 MS 0847
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1 MS 0893
J. Pott, 9123
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M. McDonald, 15221

1 MS 1004
F. Oppel, 15221

1 MS 1138
S. Deland, 6222

1 MS 1351
R. Carlson, 5517

1 MS 9004
R. Stulen, 8100

3 MS 9018
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8945-1

2 MS 0899
Technical Library, 9616

1 MS 0612
Review & Approval Desk,
9612
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