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Abstract

Fires pose the dominant risk to the safety and security of nuclear weapons, nuclear transport
containers, and DOE and DoD facilities. The thermal hazard from these fires primarily results
from radiant emission from high-temperature flame soot. Therefore, it is necessary to understand
the local transport and chemical phenomena that determine the distributions of soot
concentration, optical properties, and temperature in order to develop and validate constitutive
models for large-scale, high-fidelity fire simulations. This report summarizes the findings of a
Laboratory Directed Research and Development (LDRD) project devoted to obtaining the critical
experimental information needed to develop such constitutive models. A combination of laser
diagnostics and extractive measurement techniques have been employed in both steady and
pulsed laminar diffusion flames of methane, ethylene, and JP-8 surrogate burning in air. For
methane and ethylene, both slot and coannular flame geometries were investigated, as well as
normal and inverse diffusion flame geometries. For the JP-8 surrogate, coannular normal
diffusion flames were investigated. Soot concentrations, polycyclic aromatic hydrocarbon (PAH)
laser-induced fluorescence (LIF) signals, hydroxyl radical (OH) LIF, acetylene and water vapor
concentrations, soot zone temperatures, and the velocity field were all successfully measured in
both steady and unsteady versions of these various flames. In addition, measurements were made
of the soot microstructure, soot dimensionless extinction coefficient (K.), and the local radiant
heat flux. Taken together, these measurements comprise a unique, extensive database for future
development and validation of models of soot formation, transport, and radiation.
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Introduction

This report documents the results of a Laboratory Directed Research and Development (LDRD)
project with the aim of compiling a unique, comprehensive database of measurements associated
with soot formation, transport, and radiation in a series of steady and pulsed laminar buoyant
diffusion flames. A combination of laser-based nonintrusive measurements and extractive
measurements of soot microstructure and optical properties was proposed, utilizing the expertise
of several investigators at Sandia’s Combustion Research Facility (CRF) as well as investigators
in the Fire Science and Technology (FS&T) and Thermal/Fluids Experimental Sciences groups.

This project was motivated by the need to develop improved constitutive models for soot
formation and radiation in large pool fires. Fires pose the dominant source of risk to the safety
and security of nuclear weapons, nuclear transport containers and DOE and DoD facilities.
Because of the relatively low velocities (especially near the pool surface), high temperatures, and
high soot loadings in pool fires of practical transportation fuels, the predominant mode of heat
transfer to significantly sized objects that are engulfed or adjacent to these fires is thermal
radiation from soot (Gritzo et al., 1998). The magnitude of this radiant emission is linearly
dependent on soot concentration and emissivity and is dependent on soot temperature to the
fourth power. It is therefore necessary to understand the local transport and chemical phenomena
that determine the distributions of soot concentration, its optical properties, and its temperature,
to develop constitutive models required for high-fidelity fire simulations. This information is also
critical for the validation of any such models that are developed.

Overview of Soot and Radiation Modeling

Soot formation has been a topic of significant interest to the combustion research field for
decades, because soot is a pollutant emission from some combustion systems (such as diesel
engines and gas turbines), it hinders safe egress during accidental fires, and thermal radiation
from soot is an important contributor to the heat transfer from many combustion systems and
from fires. In recognition of the important role of soot in many practical combustion applications,
a large number of studies have been performed on soot formation, and occasionally on soot
oxidation, in laminar, steady flames burning simple aliphatic hydrocarbon fuels, such as methane,
ethylene, and propane. A limited number of studies have included practical transportation fuels
such as diesel or kerosene, or have investigated soot formation in steady turbulent or laminar
time-varying diffusion flames. Existing experimental databases in moderately and strongly
sooting flames have employed a severely limited set of diagnostics, because of the cost of the
necessary equipment and the difficulty in applying most diagnostic techniques in sooty
environments. Several models describing the evolution of soot particle number density and soot
volume fraction have been developed that include the effects of soot particle inception, surface
growth, agglomeration, and oxidation (Kennedy, 1997). These reduced chemical models for soot
formation have all have shown limited success outside of the steady, laminar diffusion flames in
which they were originally calibrated, presumably as a consequence of the limited experimental
measurements and thus limited understanding of the key factors influencing soot formation and
oxidation rates.

At the level of fundamental physics, the radiant exchange associated with soot is dependent on its
overall position within the flowfield, its concentration, its optical properties, and its temperature.

12



These properties are, to a large extent, determined by the temporal history of the soot formation
and oxidation processes. The local soot concentration evolves over time with contributions from
convection, molecular transport (principally thermophoresis), local production, and local
oxidation. Current soot models focus on the production and oxidation terms and are fit to data
employing average temperatures. Transport effects are implicitly included and the exact
temperature of soot particles in or near the flame fronts (which largely determines the emission)
is not known. Models are therefore only strictly applicable at the conditions for which the data
were acquired. It is perhaps for this reason that these models have not generally been successful
in making predictions outside of the data acquisition flowfield from which they were generated.
For application to large fire simulations, these same soot formation models are used and will
likely find similar limitations. To the extent that molecular transport of soot influences its
production and oxidation rates, as well as temperature, the contribution of molecular transport
needs to be fully understood and measured. The expectation is that thermophoresis has an
especially important effect on the magnitude of soot radiation, because of the strong dependence
of soot radiation on temperature and because the high-temperature edge of the soot layer is
typically located in the region of strongest temperature gradient. Therefore, there is an immediate
need to gain a more fundamental understanding of the relevant processes and physics of soot
formation in flames, and to obtain the data necessary to develop and validate models for soot
formation and radiation that are applicable to large-scale fire simulations.

Measurement Approach

Sandia, with its extensive experimental capabilities and its expertise in fire science and soot
diagnostics, is in a unique position to develop the database that is required to generate predictive
soot and radiation models applicable to pool fires. The approach developed in this project was to
use the pulsed laser capabilities of the CRF’s Turbulent Combustion Laboratory (TCL) for a
variety of planar imaging diagnostics, in combination with low-power tunable diode laser (TDL)
measurements of gas species concentrations, local heat flux measurements, and extractive
measurements of soot microstructure and dimensionless extinction coefficient. The list of
properties to be measured and the associated diagnostic technique(s) is shown as Table 1.

The measurement properties and the associated diagnostic techniques listed in Table 1 were
selected on the basis of the importance of the measured property to an understanding of soot
formation, transport, or radiation and on the availability of the appropriate measurement
technique at Sandia. Measurements of the hydroxyl radical (OH) are important both as a marker
of the high temperature reaction zone and because OH is the predominant oxidizer of soot in
flames. Qualitative measurements of total PAH, as provided by their broadband LIF signal, are
important in demarking the molecular growth region of flames and also because it is believed
that PAH are involved in soot particle nucleation and that they contribute to soot mass growth.
Acetylene measurements, provided by tunable diode laser absorption spectroscopy (TDLAS),
provide important information on the spatial distribution and the concentration of this important
gas species for soot inception and soot mass growth. Acetylene measurements have only rarely
been reported in sooty flames, and only when using an extractive probe with analysis by mass
spectrometry. The TDLAS technique also is used to measure the water vapor distribution, which
is useful for comparing with model predictions of the variation in mixture fraction through the
flame. Temperature measurements are obviously important through the soot layer for predicting
the soot radiant emission, but full-field temperature measurements are also important for
comparing with model calculations of the flame shape and for calculation of the thermophoretic
transport of soot. In this project, two-dimensional 2-color pyrometry of the soot layer was
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performed, and the recently developed technique of filtered Rayleigh scattering (FRS) was
attempted for full-field measurements. The velocity field in these flames is important for
understanding of the overall fluid dynamics, including local flame stretch, and also provides the
temporal coordinate associated with soot formation and growth. Particle image velocimetry (PIV)
is the technique utilized here to measure the instantaneous velocity field. Soot volume fraction, a
measure of soot concentration, is important to defining the rate of soot production and
destruction and also for interpretation of the soot radiant emission intensity. Laser-induced
incandescence (LII) is the pulsed laser technique that is used to provide instantaneous, two-
dimensional soot volume fraction. The LII measurements are calibrated by laser extinction
measurements. In order to perform this calibration, the dimensionless extinction coefficient (K.)
of the soot in question must be assumed or measured. In this project, we use a transmission cell
reciprocal nephelometer (TCRN) to measure K. Calculation of the surface-specific soot
formation and oxidation rates are dependent on realistic assessments of the soot primary particle
size as a function of position in the flames. This quantity, in addition to the overall aggregate
structure of the soot particles, is provided by thermophoretic sampling of the soot onto
transmission electron microscopy (TEM) grids, with subsequent TEM analysis. These structural
measurements may also be combined with the K. measurements to provide estimates of the
absorption coefficient of the soot, as required for predictions of soot radiant emission. Qualitative
information on soot radiant emission is provided by flame imaging through a selected bandpass
in the near-infrared. Finally, measurements of the local radiant emission, with contributions from
both soot and gas radiation, are provided by a thermopile coupled to a long, thin light pipe. More
details about these measurement techniques are provided in subsequent report sections.

Table 1. Measurement Strategy

Measurement Property Diagnostic Technique(s)

OH' PLIF
C;H,, H,O TDLAS
PAH PLIF
T FRS, soot pyrometry
v PIV
soot f, PLII, extinction
Soot microstructure TEM
soot K, TCRN

soot radiation

local radiant heat flux

near-IR emission

thermopile

OH = hydroxyl radical

C,H; = acetylene

PAH = polycyclic aromatic hydrocarbons
f, = volume fraction

K. = dimensionless extinction coefficient
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PLIF = planar laser-induced fluorescence

TDLAS = tunable diode laser absorption spectroscopy
FRS = filtered Rayleigh scattering

PLII = planar laser-induced incandescence

TEM = transmission electron microscopy

TCRN = transmission cell reciprocating nephelometer



Burner and Flame Specification

Several of these diagnostic techniques are based on line-of-sight absorption or emission, and
therefore greatly benefit from using a long slot flame. These techniques include soot extinction,
radiant emission, and tunable diode laser absorption measurements. In addition, the OH PLIF is
calibrated by performing OH absorption measurements, which are more accurately performed on
a slot burner. For sooty flames, as investigated here, even those diagnostic techniques that do not
inherently benefit from a slot geometry in comparison to a coannular geometry do benefit from
the lack of a curved soot layer between the plane of excitation and the camera detector in a slot
flame. Therefore, in this project the most complete set of measurements was performed on a
laminar Wolfhard-Parker burner (a slotted diffusion flame burner) that can be operated in either a
steady flame mode or an unsteady forced mode. Whereas a coannular geometry is clearly
preferred over the slot geometry for flame modeling, it has been previously demonstrated that the
slot geometry is reasonably amenable to detailed combustion modeling (Leung and Lindstedt,
1995). However, because of the inherent instability of this type of flame, wire mesh screens must
be used at relatively low heights to stabilize the flames, such that soot oxidation and/or radiative
quenching of the flame sheet cannot be investigated in this flame system. Because transient soot
oxidation and radiative quenching are thought to be important phenomena in aviation fuel pool
fires, a coannular, coflow laminar diffusion flame burner was also constructed and interrogated.

For investigation of unsteady vortex-flame interactions in both Wolfhard-Parker and coannular
flames, loudspeakers were used on the fuel stream to sinusoidally modulate the fuel flow at low
frequencies (on the order of 10-20 Hz), thereby exciting the natural buoyant instability that
produces pool fire puffing (and candle flame flicker). By locking the frequency of this instability
to that of the loudspeaker excitation, perfectly reproducible flame cycles can be interrogated at
specified cycle phases by the different diagnostic techniques.

In addition to the considerations given above for “normal” diffusion flames, wherein an
overabundance of oxidizer surrounds a central fuel jet, it was desired to make a subset of
measurements in “inverse” diffusion flames, where the relative positions and overall abundances
of fuel and oxidizer are reversed. This type of flame geometry is believed to be reasonably
common within large fire plumes as turbulent eddies occasionally mix relatively small amounts
of air into a large fuel core, but no definitive comparison of soot formation and radiation in these
two types of flames has previously been performed (Shaddix et al., 2004-1). Therefore,
measurements were made in inverse flames established on the slot burner, where direct,
quantitative comparison of radiation intensities could be readily made.

The fuels chosen for investigation in this study were methane, ethylene, and JP-8 surrogate.
Methane and ethylene were chosen because of their ease of use, their predominant use in
previous studies of sooty flames, and the wide range of soot concentrations produced with these
two fuels. An inclusion of JP-8, the target fuel for most of Sandia’s interest in large pool fires,
was felt to be important, but for the sake of ease of future modeling and for future experimental
reproducibility a surrogate mixture for JP-8 was used. Because of the need to keep all of the fuel
tube heated above the top end of the JP-8 distillate curve and the difficulty in modulating the fuel
vapor flow, the JP-8 flames were only established on a specially designed coannular burner.
More details concerning burner design and the canonical flames investigated are given in the
following section.
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A number of investigators have recently developed specific mixtures of pure hydrocarbon to act
as surrogates for kerosene or specifically for JP-8 (Lindstedt and Maurice, 2000; Edwards and
Maurice, 2001; Violi et al., 2002; Agosta et al., 2004). Because of Sandia’s close affiliation with
the University of Utah in their ASCI-Alliance program, “C-SAFE,” and because of the specific
focus at Utah on JP-8 surrogates appropriate for modeling large pool fires, we chose to use one
of the six component mixtures recommended by the University of Utah (Eddings et al., 2004).
This mixture is shown below in Table 2, both in terms of molar composition and liquid volume
composition. This mixture has a molecular weight of 152 g/mol, a liquid density of 0.818 g/ml,
and a stoichiometric molar air/fuel ratio of 100.6. The surrogate mixture was produced at Sandia
in 500 ml increments with an accuracy of greater than 1 ml volume addition of each component.
The components were obtained from Fischer Scientific and Sigma-Aldrich and had purities of =
98%. Initial liquid fuel flame tests were performed with common household kerosene, obtained
from the local Orchard Supply Hardware store. The observed flame properties (height and
luminosity) were nominally the same between the surrogate mixture and the hardware store
kerosene.

Table 2. JP-8 Surrogate Mixture (Univ. of Utah “Hex-12")

Component Chemical Class Molecular Formula Mole-% Volume-%
isooctane branched alkane CgH g 3 3
xylenes aromatic CsHio 15 10
tetralin cycloalkane/aromatic CioHiz 13 9
decalin cycloalkane CioHis 27 y s
dodecane normal alkane Ci2Has 30 37
hexadecane normal alkane CisHss 12 19

Burners and Flames

Wolfhard-Parker Burner

A large Wolfhard-Parker burner was used to support laminar diffusion flames of methane/air and
ethylene/air (see Figs. 1 and 2). The overall dimensions of this burner are similar to one
previously investigated at Sandia by Schefer and coworkers (Najm et al., 1998; Mueller and
Schefer, 1998). The central, rectangular slot is 12 mm wide by 95 mm long. Coflow is introduced
on each of the long sides of the slot and nitrogen gas is introduced at the short ends of the slot to
prevent the formation of end-flames. The flame sheets are confined and protected from room air
disturbances by a rectangular chimney enclosure with a cross-section of 140 mm x 191 mm.
Within the chimney, two curved wire mesh screens form a two-dimensional contraction to assist
in stabilizing the flame. UV-quality quartz windows provide optical access from all four walls of
the enclosure. For studies of pulsed flame behavior, the central flow is modulated by two 100-
mm diameter loudspeakers that face each other across the slot, well below the burner face. Power
spectral density analysis of the flame emission from the unstable regions of the nominally
“steady” flames (well above the height at which measurements are normally made) revealed that
the natural puffing frequency of the burner is 11 Hz.
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@) (b)

Figure 1.  Photographs of Wolfhard-Parker burner (a) from the side of the slot, showing
loudspeaker and chimney enclosure with optical access window and stabilizing
screen, (b) looking down at the burner face with the chimney removed, and (c)
looking down the axis of the slot with “gull wing” stabilization screens in view.

K Laser Sheet
(50 mm high
200 um thick)

Lens
and
[ Filters

Wolfhard- |
Parker : i Intensified
Burner T Camera

Figure 2. Schematic of Wolfhard-Parker burner with laser sheet and intensified CCD
camera for flame imaging.

Air, fuel, and nitrogen flows to the burner were metered using calibrated mass flow controllers.
For the experiments involving normal diffusion flames (NDFs), fuel was fed to the slot and air
formed the coflow. To form inverse diffusion flames (IDFs), these connections were reversed.
Fuel and air flow parameters for the investigated flames are shown in Table 3. The NDFs
extended nearly 0.50 m above the top of the chimney, for a total flame height of approximately
0.70 m. Calculations using the Roper correlations for flame heights of laminar jet diffusion
flames (Roper, 1977) suggest that essentially the same flowrate of air will yield a common flame
height for methane and ethylene IDFs. Therefore, a common air flowrate of 30 slpm was used for
these two IDFs, and indeed these flames both had a height of 80 mm, as determined from the
location of the dark inner edge of the luminous zone. This choice of air flow yielded relatively
stable IDFs with near-vertical flame sheets in the 50-mm high interrogation region at the base of
the flames, similar to the NDFs. The methane and ethylene fuel flows in the IDFs were set to the
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50 slpm maximum flow capability of the fuel flow handling system, to improve flame stability
and minimize product recirculation.

Table 3. Flowrates of Investigated Wolfhard-Parker Flames

Flame Qfuel (slpm)  Quir (slpm) Ve (cm/s) V4 (cm/s) slot Re 0"
CH4 NDF 15.0 250 223 17.6 270 0.57
C,Hs NDF 7.5 250 11.2 17.6 260 0.43
CH, IDF 50 30.0 3.5 44.6 590 15.8
C,H4 IDF 50 30.0 3.5 44.6 590 237

* global stoichiometry of gases supplied to the burner

For operation of the methane IDF, an outlet screen was necessary to prevent self-ignition of the
fuel-rich product gases. Recirculation of soot and tar-laden gases occurred along the sides of the
chimney enclosure when operating IDFs of either fuel, resulting in attenuation of the incident
laser beam and of the imaged optical signals. To address these difficulties, a chimney extension
was incorporated, which confined the product gas recirculation to a region above the stabilizing
screens (see Fig. 3).

Outlet Screen

Chimney
Extension
Stabilizing
Screens

Laser Sheet
Base

Enclosure

:Hw.!,r'*j : \
.)_’.'«'/ i
Speaker/ !

\
ok }‘ Coflow Intensified
U ]” Inlets Camera and

Slot Inlets ’A Filters

Figure 3. Schematic of Wolthard-Parker burner with chimney extension and outlet screen
for operation of inverse diffusion flames.

Figs. 4-5 show photographs of the steady and pulsed Wolfhard-Parker diffusion flames. With the
use of the slot flame geometry, the blue CH* chemiluminescence, marking the fuel-rich edge of
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the reaction zone (Schefer, 1997), is clearly seen to lie outside of the yellow-orange soot
luminosity for the NDF and inside of the luminous zone for the IDF (Fig. 5). Fig. 4 demonstrates
the uniform flame behavior along the slot that was achieved for the normal diffusion flames.

(a)

Figure 4. Photographs of ethylene/air Wolfhard-Parker normal diffusion flames: (a) side-
view of steady flame, with the bottom edge of the stabilization screen evident,
(b, ¢) two different phases of the pulsed flame.

Methane Diffusion Flames Ethylene Diffusion Flames

Figure 5.  Photographs of investigated steady Wolfhard-Parker flames, showing (from left
to right, for each fuel) a close-up of the NDF, a distant view of the NDF, and a
close-up of the IDF.

Gas Fuel Coannular Burner

After reviewing the literature of soot formation studies in laminar, coannular diffusion flames
and considering the tradeoffs of spatial resolution of intensified CCD (ICCD) imaging and
maximum imaging height per image, it was decided that the best choice of burner tube diameter
would be the Y2-inch tube used by Mitchell and coworkers (Mitchell et al., 1980), Santoro,
Dobbins and coworkers (Santoro et al., 1983, 1987; Santoro and Semerjian, 1984; Megaridis and
Dobbins, 1989; Puri et al., 1992, 1993, 1994; Dobbins et al., 1995, 1998), Smyth and coworkers
(Smyth et al., 1993; Shaddix et al., 1994; Shaddix and Smyth, 1996; Smyth et al., 1997), and
McEnally, Pfefferle and coworkers (McEnally and Pfefferle, 1996, 1998a, 1998b; Smooke et al.,
1999). In contrast to previous studies, however, we designed a square burner face and chimney
enclosure, facilitating laser sheet imaging measurements of the flame (see Fig. 6).
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The fuel and air flowrates chosen for the coannular flames are shown in Table 4 and photographs
of the steady flames are shown in Fig. 7. Fuel flowrates were chosen to yield similar visible
flame heights for the steady flames and sufficiently short, pulsed flames that could be fully
interrogated through the burner chimney windows. In addition, the choice of fuel flow in the
ethylene flame was made to yield the same steady flame height as that of the “non-smoking” or
“NS” flame extensively investigated by Santoro, Dobbins, and coworkers (Santoro et al., 1983,
1987; Santoro and Semerjian, 1984; Puri et al., 1992, 1993; Dobbins et al., 1995, 1998). The
coflow of air was chosen to yield optimal stability in the steady flames. This value is significantly
higher than that generally used for the “NS” flame (43 slpm).

(a (b ) (c)
Figure 6. Photographs of coannular gas fuel burner (a) with chimney attached, showing
optical access windows, (b) side profile, showing loudspeaker on burner base,
and (c) looking down on the burner face, with ceramic honeycomb and central

fuel tube.

Table 4. Flowrates of Investigated Coannular Flames

Flame  Que (SIpm) Quir (slpm) Vg (cm/s) Ve (cm/s) tubeRe  ¢*  he(mm)®

CH,4 0.44 350 8.2 353 274 0.012 84
CoHy 0.22 350 4.1 353 258 0.009 88
JP-8 surrog. 0.0335 350 2.6 233 41°  0.010 40 ¢
+ N, diluent 0.107

“ global stoichiometry of gases supplied to the burner
® visible flame height
“at 327 °C

d height of strongly luminous zone (smoking flame without a well-defined flame height)
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Figure 7. Photographs of steady methane, ethylene, and JP-8 surrogate coannular flames.

Liquid Fuel Coannular Burner

There have been few studies of liquid-fueled laminar jet diffusion flames. The vaporizer and
burner assemblies that have previously been designed have generally used a diluent carrier gas
(usually nitrogen) to sweep the fuel vapor out of a heated vaporization unit before pyrolytic
reactions begin to occur in the hot fuel vapor. Those systems employing aromatic fuels have
required special sealing materials in heated vapor delivery lines, with the vaporizer and delivery
system placed in a fume hood. The difficulty of handling hot fuel vapor increases with the
temperature required to vaporize the fuel. In our case, the top end of the kerosene distillation
curve is approximately 300 °C (Eddings et al., 2004), posing daunting requirements for sealing of
a heated fuel delivery line. To circumvent these difficulties and eliminate the need for a fuel line
ventilation system, we decided to use a novel ceramic, capillary force vaporization system and
attach it to the bottom of the fuel tube in the coannular burner (Fig. 8). The vaporizer is
manufactured by Vapore, Inc., based in Richmond, California, that specializes in vaporization of
practical hydrocarbon fuels. The vaporizer base unit itself is not designed to operate correctly at
elevated temperatures, so we implemented an insulating seal between the heated fuel tube and the
base unit and attached a heat dissipation fin section, with attached fan, to the bottom of the base
unit (Fig. 8). The fuel tube is heated by a coil heater to 350-380 °C, well above the upper limit of
the distillation curve, to maintain the evaporated fuel in the gas state.

A

Al

e 1

Figure 8.  Photographs of (a) capillary force vaporizer, with fuel vapor jetting from central
hole, (b) vaporizer unit attached to bottom of burner, with cooling fins and fan,
(c) fuel tube, with coiled heater and sidearm connection, and (d) assembled
burner, with model airplane piston attached to modulate fuel flow.
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To modulate the fuel flowrate and yield reproducible, pulsed flames, a model airplane piston,
driven by an electric motor, is attached to a sidearm that connects into the vertical fuel tube. For
simplicity in design and operation, the sidearm was not heated. Unfortunately, with this design
some of the vaporized fuel condensed within the sidearm, resulting in unsteady flame operation.
We found that by providing a small flow of nitrogen diluent at the base of the fuel tube, this
problem could be avoided and the flame would have good stability and reproducibility.
Consequently, the measurements of the JP-8 surrogate flames were performed with a diluted
flow of fuel vapor. This had the additional advantage of reducing the local soot concentrations in
the flames to levels that were more manageable for the different diagnostic techniques.

Choice of Unsteady Flame Conditions

Once steady flame flowrates had been chosen, the appropriate conditions to investigate for
unsteady flames needed to be determined. The intent in this project was to modulate the fuel flow
rate at a frequency in the vicinity of the natural buoyant instability frequency of the flames, thus
triggering repeatable generation of air-side vortical structures that would induce compressive and
extensional strain on the flame as the vortices propagated vertically up the sides of the flame. For
the Wolfhard-Parker burner and coannular burners used in this study, the natural resonant
frequency of the buoyant instability is about 10 Hz, as predicted by experimental correlations
(Hamins et al., 1992; Cetegen and Ahmen, 1993; Thuillard, 2002) and determined explicitly in
this study. But decisions were required for the precise pulse frequency, or frequencies, that
should be used for the canonical unsteady flames to be interrogated, and what extent of fuel
forcing should be used?

With respect to forcing frequencies, one consideration was the ease with which phase-locked
measurements could be achieved with the different laser diagnostic techniques. The Nd:YAG-
pumped dye laser system that was used for OH and PAH PLIF measurements can be operated at
pulse repetition rates ranging from 7.5 to 10 Hz. The PIV laser system is designed to operate at a
15 Hz pulse repetition rate, but can have its Q-switch triggered to as low as 7.5 Hz. Therefore,
we determined it was simplest to achieve phase-locking for frequencies spanning approximately
5-30 Hz by pulsing the flames at multiples of 7.5 Hz.

In considering the appropriate pulse amplitude to apply, knowledge of the actual extent of flow
modulation was not known a priori — only the voltage applied to the loudspeaker(s) and the
observed flame behavior were known until a detailed set of PIV data could be collected later.
Consequently, the fuel modulation amplitude for the candidate flames was chosen to be the
smallest value such that, for the modulation frequencies investigated, substantial flame
movement was evident. In this way, the choice of fuel modulation amplitude was coupled to the
choice of modulation frequencies. To simplify the choice of fuel modulation amplitude, it was
decided to use the same loudspeaker forcing amplitude for both methane and ethylene slot
flames, although the higher fuel flowrate of methane flames meant that a given loudspeaker
forcing amplitude resulted in a lower relative flow modulation. In fact, the observed flame
response for the methane and ethylene slot flames was similar for a common loudspeaker forcing
amplitude. For the coannular flames, the methane flame was excited much more easily than the
ethylene flame, so that a significantly lower forcing voltage was used for methane. For the liquid-
fueled coannular burner, different piston assemblies were tried until the correct degree of flame
oscillation was observed for a piston with a 11.7 mm bore and 5.6 mm stroke (0.60 cc
displacement). We used a common loudspeaker voltage when investigating the behavior of
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different forcing frequencies, although the loudspeakers potentially produce a different
displacement depending on the forcing frequency.

With the above considerations in mind, the methane and ethylene slot flames were investigated
using simultaneous OH and PAH PLIF (described in the next section) phase-locked to the
sinusoidal oscillation of the loudspeakers. Full sets of images were collected for forcing
frequencies of 7.5 Hz, 15 Hz, and 22.5 Hz. As the forcing frequency was extended to higher or
lower frequencies than these, the magnitude of flame perturbation decreased. In addition, the
flame response became chaotic for frequencies around 30 Hz. After settling on the use of a
forcing amplitude of 5.0 volts applied to the two 4-inch loudspeakers on the fuel slot, it was
noted that the 15 Hz and 22.5 Hz methane flames and the 22.5 Hz ethylene flame could be
locked at one of two different cycle evolutions, depending on the vagaries of when the triggering
was initiated. Further investigation verified that in fact this behavior resulted from the flames
oscillating at a characteristic frequency of {/2, where f was the forcing frequency applied to the
fuel flow. This behavior, previously unreported, was thoroughly investigated in this study by
using a laser beam deflection diagnostic aligned in the direction of the fuel slot (see Fig. 9).
Power spectral density analysis of the time records of laser beam transmission clearly revealed
the important frequency components of the flame and allowed “stability maps” to be generated
for the methane and ethylene flames, showing where the flames characteristically responded to
the forcing at a frequency equal to f, f/2, f/3, or even a lower subharmonic of the forcing
frequency (Williams et al., 2003; see Fig. 10). In all cases, the subharmonic response of the flame
could be rationalized as a means of the flame oscillating at a frequency close to its natural
buoyant instability frequency of ~11 Hz.

®

Figure 9.  Schematic of pulsed slot burner and associated laser beam deflection and
laser sheet imaging diagnostics.

The subharmonic frequency response of these flames turns out to be relevant to the current study
both because it provides new information regarding the nature of the fundamental buoyant
instability of fire plumes, which is poorly understood, and because in our forced flames, the
subharmonic response can lead to transient flow separation between interior flow regions, where
the soot exists, and the high temperature flame zone. To define canonical pulsed flame conditions
for construction of our database, we decided to apply all of the diagnostics in 15 Hz pulsed
flames and, when convenient, to also collect some data in 7.5 Hz and 22.5 Hz flames.
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OH and PAH, Soot Radiation

A frequency-doubled, Nd:YAG-pumped dye laser provided pulsed ultraviolet light for the
simultaneous planar excitation of OH- and PAH fluorescence, as detailed in Smyth et al., 1997.
The laser light also excited laser-induced incandescence (LII) emission from the soot particles.
The laser sheet was 50 mm high, with a thickness of 250 um through the flame zone. The beam
was used to pump the relatively temperature-insensitive Q;(8) line of the (1,0) band of the OH-
A*Z"_X°IT; electronic transition at 283.57 nm. The fluorescence and LII signals were collected
through a 45-mm focal length, /1.8 UV lens attached to a gated, intensified charge-coupled
device (ICCD) camera. A Schott WG295 long-pass filter eliminated laser reflections as well as
scattering from soot particles. For the fluorescence measurements, an additional filter was used to
reduce the signal contribution from soot LII, C, Swan band emission, and natural flame emission.
A 450 nm UV-quality short-pass filter was used for methane flames, whereas a 340 nm band-
pass filter was used for ethylene flames. OH and PAH signals were clearly distinguished by
tuning the laser off of the OH absorption line. To prevent irising effects with the slow-gating
ICCD camera, an intensifier gate width of 200 ns was used for both the fluorescence and LII
measurements.

For investigation of the pulsed flames, the speakers were synchronized to the Q-switch sync of
the Nd:YAG laser, thus allowing flame excitation frequencies at multiples of the 7.5 Hz flash-
lamp frequency. The LIF images were corrected for the mean laser sheet intensity profile
determined from 200-shot images of Rayleigh scattering from room temperature air. Shot-to-shot
variations in laser power at any given position in the laser sheet were found to average less than
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5%. The laser intensities used for imaging were verified to be sufficiently low to produce a linear
power dependence for both the OH and PAH LIF.

In addition to these laser-based measurements, natural flame emission at a wavelength of 850 nm
was measured through a 10 nm FWHM interference filter. The 850 nm bandwidth filter was
chosen for the measurement of the natural radiation because it was the longest wavelength that
could be detected with sufficient sensitivity to permit a detection gate width short enough for
good phase locking. A longer wavelength is preferred to shorter ones both to avoid contributions
from chemiluminescent emissions and to more faithfully track changes in soot radiant emission
(which peaks at around 1400 nm in these flames). For the pulsed flame measurements, the
natural radiation is phase-locked in the same manner as the laser-based measurements, but uses a
4 us detection gate width. This corresponds to a phase resolution of a fraction of a degree.

Figure 11 shows simultaneous OH and PAH PLIF images of selected methane, ethylene, and JP-
8 surrogate flames. This diagnostic technique reveals the location of the high-temperature
flamesheet (via OH LIF), shows the region of fuel-rich molecular growth (via PAH PLIF), and,
in strongly sooting flames, also shows the location of the soot layer. Consequently, it is a very
useful technique for surveying the dynamic behavior of pulsed flames.

Figure 12 shows images of the 850 nm radiation emission from the 15 Hz pulsed ethylene slot
flame. This measurement gives a semi-quantitative assessment of the intensity of thermal
radiation from soot in these flames. When these images are viewed alongside the OH and PAH
PLIF images (with some soot LII evident), the effect of flame dynamics on the heating of the soot
layer is readily apparent. Anywhere the vortex-flame interaction results in straining of the flame,
the existing soot layer is driven closer to the high-temperature flamesheet (shown by OH) and
gives off much stronger thermal radiation.

Soot Volume Fraction

Soot volume fraction was measured in the canonical flames using the technique of laser-induced
incandescence (Santoro and Shaddix, 2002). This technique uses a pulsed laser (in the form of a
beam or a sheet) to heat soot particles up to their vaporization temperature (around 4000 K) and
then measures the magnitude of the broadband thermal emission from the soot. To avoid
interfering signals from PAH LIF and from laser-excited C, Swan Band emission, this technique
is best performed using a long wavelength excitation laser. In this project, we utilized the
fundamental frequency output (1064 nm) from a Nd:YAG laser and expanded it into a two-
dimensional sheet. Even after overexpanding and clipping the edges of the sheet, scans of an iris
in front of a joule-meter showed a 50% drop in laser fluence near the edges of the 50-mm wide
image plane. The LII signal from a given location of the flame varied considerably as the flame
was moved both horizontally and vertically across the image plane. The vertical variations result
from a combination of CCD intensifier gate irising effects, laser fluence variations, and the LII
power dependence curve, whereas the horizontal variations result from a combination of irising
effects, laser sheet thickness variations, and the power dependence curve. To minimize the irising
effects, while limiting sensitivity to variations in soot primary particle size and laser fluence, a
400 ns intensifier gate width was used on the ICCD, with the gate opening beginning 100 ns
before arrival of the laser pulse. Also, the 50-mm images were collected with a 25 mm overlay,
such that only the central 25 mm of the images needs to be quantitatively analyzed.
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Methane

Ethylene

JP-8
surrogate

Steady 15 Hz Pulsed Flame

Figure 11. ICCD images (50-mm high) of simultaneously excited OH PLIF and PAH PLIF. The top two rows show
images of the steady and 15 Hz pulsed methane and ethylene slot flames. The last row shows images of the
steady and 15 Hz pulsed JP-8 surrogate/N, coannular flames. Soot LII signals are weakly evident as thin
streaks in the pulsed ethylene flames and are strong signals in upper regions of the JP-8 flame.
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Figure 12. ICCD images (50-mm high) of 850 nm (thermal) emission from the 15 Hz pulsed
ethylene slot flame. The phases shown here correspond to the first 5 phases shown
for PLIF imaging of this flame in Fig. 11.

Finally, the horizontal and vertical variations in signal response were mapped out in detail, to
allow subsequent corrections to be applied, if need be. The LII signals were collected with a 450
nm short-pass filter. An example of LII images is shown in Fig. 13.

Calibration of LII was performed via laser extinction measurements. UV extinction
measurements were performed in both methane and ethylene slot flames. In addition, extinction
measurements at 1310 and 1540 nm were performed as part of the data collection for tunable
diode laser measurements of water vapor and acetylene (described later). Quantification of the
extinction measurement in terms of soot volume fraction requires the use of an appropriate
dimensionless extinction coefficient, as measured in this project at 635 nm and 1310 nm
(described later). The 1310 nm values were used to calibrate the extinction data collected in the
slot flames at the same wavelength.

Figure 13. Stacked, planar images of LII from the steady and 15 Hz pulsed methane
coannular flame.

Velocity Field
The velocity field was measured using particle image velocimetry (PIV), using a special PIV

laser that supplies pairs of second harmonic Nd:YAG pulses at 532 nm with an adjustable time
delay between the pulses. The PIV technique relies on tracking the motion of individual seed
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particles from the first pulse to the second pulse. High densities of seed particles must be injected
into the fuel and air to obtain good velocity maps, especially in the vicinity of the high
temperature flame sheet, where gas expansion effects reduce the seed density. The seed particles
used in the flames were ceramic microspheres with 10 wt% less than 1 um, 50 wt% less than
5 um, and 90 wt% less than 14 um. Olive oil droplets were used as the particle seed for cold-
flow PIV of the velocity fields exiting the fuel and air passages. Fig. 14 shows an example of the
transient cold-flow velocity field for pulsed fuel conditions and Fig. 15 shows the air-side
buoyant vortex structure that drives the flame pulsing behavior in the unsteady flames.
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Figure 14. Overlay of ICCD image of (a) light scattering from heavily seeded
airflow and (b) velocity vectors, obtained by performing PIV on lightly
seeded fuel and air flows. The flow exiting the fuel slot appears dark.

Figure 15. Lower images: overlay of OH/PAH PLIF image and air-side velocity field from the
15 Hz ethylene slot flame for three successive phase increments of 20°. The mean
vertical velocity on the air-side of the flame sheet has been subtracted from each of
the images to clearly show the embedded vortex structure. Upper images: false color
PLIF images, with the regions interrogated in the lower images indicated by squares.
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Temperature

Temperature measurements were attempted in two different ways during this project. First,
measurements were made in soot-containing regions using calibrated two-color imaging
pyrometry. This was accomplished by splitting the naturally emitted light with a large
beamsplitter and using two ICCD cameras, at right angles to one another, to image the soot layer
at specific wavelengths that are free from significant gas-band radiation. A photograph of the
optical arrangement is shown as Fig. 16. Because this technique relies on line-of-sight emission,
it is well-adapted to implementation in the Wolfhard-Parker burner flames and can directly
utilize existing equations for two-color pyrometry (Murphy and Shaddix, 2004). For application
to the coannular flames, the raw data need to be inverted along a given radial line by performing
one-dimensional tomography (Dasch, 1992; Snelling et al., 2002). Calibration of the two-color
measurement was performed by moving the optical breadboard containing the beamsplitter and
ICCDs to a position in front of a high-temperature blackbody source (Micron M330) and
focusing the ICCD lenses onto the back wall of the blackbody cavity.

Figure 16. Photograph of 2-color pyrometry imaging setup.

The second technique attempted for temperature measurements was filtered Rayleigh scattering
(FRS), which has been recently developed as a promising technique for flowfield imaging
measurements of temperature or velocity (in high-speed, isothermal flows) (see Kearney et al.,
2004). Implementation of this diagnostic technique requires an injection-seeded YAG laser. For
this project, we had the option of sending our burners to Albuquerque, where an FRS diagnostic
system is operational, or attempting to construct our own system in the Turbulent Combustion
Laboratory utilizing leftover components from a previous FRS setup. A recent study had
demonstrated that the high altitude of Albuquerque results in noticeable broadening of buoyant
flames (Kearney et al., 2004), so we decided to attempt the FRS measurements in California. A
photograph of the optical layout is shown as Fig. 17. The YAG laser we obtained for this purpose
had not been using its seeder for quite some time and it took a week’s worth of dedicated effort
to get the laser operating well. Even then, the first attempts at FRS images showed very weak
signals compared to past experience with FRS, so further work on obtaining FRS data was
abandoned until other critical measurements were completed. These other measurements
consumed the available time until the end of the project, so FRS data was never collected. Based
on previous experience of performing FRS in soot-containing flames, it is not believed that this
technique will work in most of the flames investigated in this project, because the technique fails
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for soot levels on the order of 1 ppm volume fraction (Hoffman et al., 1996; Will, 2001; Kearney
et al., 2004). However, it is hoped that FRS measurements can still be attempted on the flames
studied in this project as part of a suitable, current project.

Figure 17. Photograph of filtered Rayleigh scattering diagnostic setup for
wavelength scanning and locking of an injection-seeded YAG. The
horizontal cylinder on the left is an iodine cell.

Acetylene and Water Vapor

Acetylene and water vapor were measured using tunable diode laser absorption spectroscopy
(TDLAS). This is inherently a line-of-sight technique and therefore is well-suited to interrogation
of slot flames. In fact, at the near-infrared wavelengths at which the measurements here were
performed, the absorption signals were so weak that measurements in the coannular flames were
impossible. For the slot flames, suitably strong signals were obtained by passing the beam along
the slot axis when applying high-frequency wavelength modulation spectroscopy (wms) to record
the signals. To eliminate uncertainties in the phase matching for the lock-in amplifier
measurement of the second harmonic signals, the lock-in output was recorded in quadrature,
using two separate, custom-designed short time constant lock-in amplifiers (Shaddix et al., 2001;
see Fig. 18). Potential water lines to measure were investigated by scanning a nominally 1305 nm
TDL whose output was coupled to a Herriott cell in the open air of the laboratory (total
pathlength of 4.5 m) and also by testing candidate absorption lines in the slot flames. In the end,
an absorption line at 1304.3 nm (in air at STP) was chosen for measurement, based on its signal
strength. Acetylene absorption lines that were accessible with a nominally 1548 nm TDL were
identified by interrogating a sealed Herriott cell with a 10 m optical pathlength that was filled
with 200 ppm of acetylene at 400 torr. Figure 19 shows the acetylene transitions and associated
water transitions accessible with the acetylene TDL, based on data in the HiTran compilation
(Rothman et al., 1998). Candidate acetylene lines were evaluated for cold or hot water line
interferences using the open-air Herriott cell (with ambient moisture) and through evaluation of
transverse profiles in the slot flames. Through this process, an absorption line at 1547.8 nm (in
air at STP) was chosen that had no apparent interferences. All of the other acetylene transitions
accessible with this laser showed water line interferences.
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Figure 18. Photograph of TDLAS electronics setup: laser temperature controller to
the left; function generators and lock-in amplifier electronics to the right.
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Figure 19. Linestrengths and line centers of water and acetylene absorption features
within the tuning range of the diode laser used to measure acetylene.
HiTran data is used for all but the high-temperature acetylene line
strengths, which were derived from earlier spectral modeling (Shaddix et
al., 2001). The temperatures indicate the laser control temperature used to
produce laser light that is resonant with the indicated acetylene transition.

TDL measurements are notoriously sensitive to etalon effects from the laser beam passing
through glass surfaces that are not anti-reflection (AR) coated or at least canted with respect to
the axis of laser beam propagation. In the current application this was again found to hold true, as
passage of the TDL beam through the window on either side of the burner chimney introduced
etalon features in the recorded signals and passage of the beam through both windows introduced
extremely large etalon features. Consequently, an AR-coated fiber optic pigtailed aspherical
collimating lens was used to project the beam directly through the flame (see Fig. 20). On the
opposite side of the flame, a strongly canted window was sealed to a piece of tubing that was
itself press-sealed against the window, with a bore through the window. Once past the canted
window, a focusing mirror brought the transmitted beam onto an InGaAs diode detector, thereby
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reducing sensitivity to transient beam steering effects in the pulsed flames. 1310 nm and 1550
nm bandpass filters were used to attenuate broadband emission signals from the flames.

(b)

Figure 20. Photographs of TDLAS optical configuration, with (a) fiber pigtailed
collimator within window-sealed body, (b) canted optical flat attached to
window-sealed body, and (c) focusing mirror, bandpass filter, and diode
detector, downstream of optical flat.

Figure 21 shows sample signals from a single wavelength sweep of the water laser. Signals were
collected in 250 Hz spectral sweeps of the laser for steady flames and 900 Hz sweeps for pulsed
flames, giving a phase resolution of 6° for the 15 Hz flames. The wavelength modulation
spectroscopy was achieved using sinusoidal modulation at 1.1 MHz and lock-in detection at 2.2
MHz with a 8 us time constant. One lock-in channel was nominally phase-locked for optimal
signal strength, while the other was set at a 90° phase offset (providing data collection in
quadrature). Signals were collected over several pulse cycles, allowing for subsequent averaging
to improve signal-to-noise. Data were collected in 1 mm transverse steps across the slot flames at
increments of 5 mm in height. The TDL beam through the flame was estimated to be 2 mm in
diameter.
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Figure 21. Example of a single 250 Hz ramp scan of a water absorption line at a
height of 20 mm and a transverse position of 10 mm from the centerline
of the steady ethylene slot flame. The two *“2f” signals shown here are in
a quadrature phase relationship.
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Soot Dimensionless Extinction Coefficient

The dimensionless extinction coefficient of soot within the flames was measured using the
transportable TCRN assembly originally constructed in Albuquerque, New Mexico, as part of a
measurement campaign in large pool fires (Jensen et al., 2004). This device takes a sample
stream containing soot, dilutes it, flows it through a 1-m long optical tube to allow accurate
extinction measurements to be performed, and then allows a portion of the flow to be filtered for
determination of the entrained soot mass. The existing design measures light extinction at both
635 nm and 1310 nm, thereby allowing determination of the dimensionless extinction coefficient,
K., at both of these wavelengths. For this project, extensive modifications in the sampling
configuration were necessary to minimize perturbation of the laminar flames by the sample
probe. A tapered quartz microprobe was designed and constructed, based on a design previously
used by researchers at Penn State University to sample gases from sooty methane and ethylene
laminar diffusion flames (Puri, 1992; Kennedy et al., 1996) — see Fig. 22. The key operational
feature of this probe is a solenoid driven wire that protrudes through the tip of the probe to
prevent tip pluggage by soot. In practice, we found that in both our ethylene slot flame and
kerosene coannular flame, excessive buildup of soot and tar occurred within the probe, on the
solenoid activated wire, and on the outside of the probe. These deposits resulted in a strongly
time-dependent soot sampling efficiency and severe perturbation of the flame flowfield.
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Figure 22. Schematic and photograph of quartz microprobe, constructed for
unobtrusive soot sampling from laminar flames.
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To surmount the problems encountered with the quartz microprobe, we tried sampling through
straight-cut steel tubing and found that for a 1/8” stainless steel tube (3.175 mm OD, 1.75 mm
ID) we could sample in the sootier flames without excessive buildup on the exterior of the probe.
Further, by restricting the sample flow rate to 0.1 slpm, the probe had no noticeable effect on the
local flame structure (downstream of the probe, the flame was obviously influenced — see Fig.
23). Soot buildup did occur inside the tube when sampling regions with high soot density, but we
found that this flow restriction could be conveniently removed with a rapid backflush of the
dilution nitrogen (5 slpm) out the end of the probe.

= (©)

Figure 23. Photographs showing (a) equipment rack with flow controllers, valves,
and filter assemblies for controlling operation of the TCRN, (b) soot
transport and dilution line, leading from the flame, and (c) stainless steel
sampling probe, drawing soot from the ethylene slot flame.

The phenomena of soot probe clogging and nitrogen backflushing added a significant dynamic
component to the laser attenuation signals collected in the TCRN measurement, as shown in Fig.
24. Traditionally, the dimensionless extinction coefficient, K., has been calculated by collecting
soot mass during a period of steady laser attenuation and by applying the following equation,
using average values of the laser attenuation:

e j‘F,.mm.VJ;;as ln(/l/}g)
K= : (1)
Lm

soot

which is readily derived from Bouguer’s Law:

o = exp(ﬂJ . 2)
& A

For application to situations where the instantaneous light extinction (and soot mass being
collected) is varying significantly with time, Eq. 1 is only valid each instant in time (i.e., for each
recorded datapoint) and must be integrated over the entire time period in which soot mass is
being collected. This is equivalent to applying Eq. 1 using the total soot mass and the mean of
In(//Ip). Using this analysis technique, K. could be accurately determined even for sampling
conditions in which several nitrogen backflushes were necessary to keep the probe from
clogging.
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Figure 24. Time record of laser transmission signals from the TCRN diagnostic when
sampling from the steady ethylene slot flame at a height of 65 mm. The
plateau regions at the beginning and end of the time record denote the
baseline laser transmission when the probe is sampling clean air. The two
rapid drops in transmission in the middle of the sampling period follow probe
backflushing events, temporarily allowing improved sampling of the soot.

Measurements of K. were made at heights of 25 mm, 45 mm, and 65 mm in the steady methane
and ethylene Wolfhard-Parker and coannular flames. In addition, a measurement was made at a
height of 10 mm in the steady ethylene Wolfhard-Parker flame. For the kerosene flame, with its
shorter flame height, measurements were made at heights of 25 mm, 35 mm, and 45 mm. For the
15 Hz pulsed flames, measurements were made at a height of 45 mm. At most sampling
locations, at least two measurements were performed to assess the reproducibility of the
measurement. Also, at every sampling position the radial location was chosen to roughly
maximize the amount of soot being sampled. The spatial resolution of the sampling technique
was deemed to be insufficient to effectively perform radial profiling through the thin soot layers.
To optimize the consistency of the measurement in the different flames, the flowrates in the
TCRN system were held constant throughout the series of measurements. Laminar flow elements
were used to verify the indicated readings on the previously calibrated mass flow controllers. The
collected soot masses varied from 0.4 mg to 4.3 mg, and these were determined by weighing
teflon filters (with a weight of ~ 260 mg) before and after soot collection using a Mettler scale
with a resolution of 0.01 mg. To verify the absence of any moisture condensation on the soot,
several filters representing high and low derived K. values were re-weighed after being placed in
a dessicator for several days and showed no change of mass.

Figure 25 shows the measured values of K, at 635 nm and 1310 nm as a function of height above
the burner. The data are plotted in this manner because the height above burner acts as a
surrogate for increasing soot residence time in the flame, and some variation of the soot optical
properties may occur as the soot undergoes thermal annealing with increasing residence time at
high temperatures (Shaddix et al., 2004-2). The results show that the fuel source and flame type
both influence the value of K. measured. Methane K. values are generally lower than those for
ethylene, which are in turn very similar to those of JP-8 (kerosene, not the JP-8 surrogate, was
actually used for these measurements). The K. values measured in the slot burner are generally
lower than those from the coannular burner, especially at the near-infrared wavelength.
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Figure 25. Dimensionless extinction coefficient of soot collected from the various
flames investigated in this study. Filled symbols denote samples collected
from pulsed flames operating at a 15 Hz pulsing frequency. Results from the
635 nm laser source are shown in the upper plot and results from the 1310
nm laser source are shown in the lower plot.

Recent measurements of K, from overfire soot have yielded values between 8 and 10, in the same
range as the coannular ethylene and JP-8 flame soot measured here. Measurements of soot
extracted from the flame zone of large JP-8 pool fires (most likely a mixture of overfire and in-
flame soot) yield K. values between 7 and 10 for both 635 nm and 1310 nm, with a slight bias
towards higher values at 635 nm (Jensen et al., 2004). No measurements of K for soot sampled
directly from a laminar diffusion flame have been previously reported, nor have results of any
kind from a methane-fueled flame been reported. For the conditions used in this study, the
coannular flames have much more rapid heating of the interior region of the flame, in
comparison to the Wolfhard-Parker flames. As a consequence, soot is formed more rapidly in the
coannular flames and, based on the relative intensities of the PAH PLIF signals, PAH and tar
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concentrations are lower. Therefore, the contribution of tar material to the collected soot mass
would be expected to be lower in the case of coannular flames, consistent with the trend of
higher K. for these flames (tar does not tend to absorb light at visible and, especially, infrared
wavelengths, so any inclusion of tar in the sampled mass reduces the derived K.). Similarly, the
low sooting propensity of methane results in a higher concentration of PAH and tar, relative to
soot concentration, in these flames (Smyth et al., 1997), potentially explaining the low K. values
measured for methane flames. In fact, the methane soot samples have a distinct naphthalene
(“mothballs”) odor to them that is lacking in the kerosene and ethylene soot samples. We are
currently pursuing the possibility of performing thermogravimetric analysis of the soot samples
(measuring the rate of volatilization as a function of temperature) in order to evaluate the tar
content of the collected samples.

Soot Microstructure

To measure the soot microstructure in these flames, a rapid insertion thermophoretic sampling
system was designed and implemented for depositing soot particles onto exposed TEM grids. An
initial design based on the large, rugged apparatus developed for sampling in pool fires was
determined to be too slow and intrusive for sampling in our much smaller laminar flames.
Consequently, we solicited the assistance of Prof. Constantine Megaridis of the University of
Illinois at Chicago, who had invented this sampling technique while performing doctorate
research at Brown University (Dobbins and Megaridis, 1987). Prof. Megaridis has subsequently
improved the technique to make it as unobtrusive as possible. For this project, Prof. Megaridis
visited Sandia and explained the details of the design and operation of his soot sampler.
Subsequently, we designed a sampler based on his suggestions while accounting for the
constraints of mounting and using such a sampler in our enclosed burner arrangements. A
photograph of our sampler is shown in Fig. 26. In this design, a small pneumatic cylinder,
powered by compressed air and a fast-acting solenoid valve, is used to drive a shaft forward and
then backwards, with characteristic insertion and retraction times of 6 ms. The shaft ends with an
attached metal shim that has a hole drilled in it for exposing a thin TEM grid that has been
carefully inserted into the shim. Electronic control of the solenoid valve allows the “hold” time
for sampling at the position of maximum extension to be set to any desired value. The
extensional length is controlled by the travel length of the pneumatic cylinder. Transit times of
the pneumatic cylinder were measured by passing two laser beams across the path of the tongue.

Typically, hold times on the order of 100 ms have been used when sampling soot from steady
laminar flames. For sampling from our pulsed flames, we needed to use substantially shorter hold
times, to prevent oxidation of the deposited soot when an oxidation zone passed by the flame
sampling position during the flame pulse cycle. Consequently, we investigated the possibility of
doing multiple exposures of the TEM grid into the flame (at the same phase timing of the pulse
cycle) to build up the total exposure time and improve grid coverage by soot. A qualitative
assessment suggested that the sampled soot structures indeed looked similar for multi-shot
sampling in comparison to the traditional single-shot sampling, but we also found that reasonable
soot aggregate collection could be achieved with as little as 10 ms exposure time in the ethylene
slot flame. A sample TEM micrograph is shown as Fig. 27.
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Figure 26. Photograph of thermophoretic sampler for collecting representative soot
samples onto a TEM grid. Compressed air lines are attached to a
pneumatic cylinder at the left of the photo. When activated, the cylinder
drives a thin “tongue” containing the TEM grid through the slotted
opening at the end of the brass cap (right). The cap acts to deflect
sideways (away from the flame) the significant blast of air that is carried
with the moving drive rod.

Figure 27. Sample TEM image of soot aggregates from the ethylene Wolfhard-
Parker flame collected on a lacey grid.

One of the concerns of TEM grid sampling is the extent to which the flame structure is altered by
the rapid insertion of the sampler tongue into the flame. This affect has been previously analyzed
based on luminous imaging of the flame on a high-speed camera (Megaridis, 2002). This
technique allows ready evaluation of the global effects of thermophoretic sampling on the flame,
but does not provide explicit insight into any effects the tongue insertion may have on the
flowfield inside the flamesheet. To evaluate this, the same OH and PAH PLIF technique
described earlier in this report was applied with the laser sheet crossing the tip of the
thermophoretic sampler tongue, when fully inserted into the flame. The resulting images are
shown as Fig. 28. These images clearly show that the PAH layer, in particular, is affected by the
insertion of the sampling tongue, but this effect is much more prominent downstream of the
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sampling probe, which does not pose a concern for the integrity of the soot sampling itself. There
is no evidence of significant perturbation of the soot-containing streamline upstream of the
sampling position.

PAH -,
.

OH Layer.,
.,

Soot Layer~.,
e

Figure 28. Simultaneously excited OH and PAH PLIF images of the steady ethylene
Wolthard-Parker flame with insertion of the thermophoretic sampler
tongue into the flame. For this demonstration, the sampler operated with a
40 ms hold time. The tip of the sampler appears as a sharp scattering
signal to the flame side of the right-hand PAH layer in each image. Laser
light propagates from right-to-left in each image, revealing the shadowing
effect of the sampler tongue tip.

Local Radiant Heat Flux

The local radiant heat flux from the flames was measured using a thin-film thermopile with a
CaF; window and a 250 mm long sight tube with an ID of 2 mm. The sight tube was anodized to
minimize light reflections. The use of the CaF, window material makes the radiometer equally
sensitive to radiant emission from 0.13—11 um, encompassing nearly all of the energy-containing
radiation from the flame. The thermopile that was chosen for this measurement is 2 mm x 2 mm
in size and has a characteristic response time of 85 ms. In theory, this response time is
insufficient to fully resolve the dynamics associated with the pulsed flames that we investigated.
However, we tried using faster responding thermopiles (smaller thermopiles and the same
thermopile with a different bath gas) with time constants of 34 ms, 12.8 ms, and 5.6 ms, and
found the measurement of the radiation dynamics from the 15 Hz ethylene slot flame to be
precisely the same for the different thermopiles. Hence, we used the 85 ms thermopile for data
collection because it gave the best signal-to-noise. Similarly, radial scans with the smaller
thermopiles (1 mm x | mm and 0.9 mm x 0.4 mm) gave the same profile shape, so the 2 mm
thermopile was deemed to be sufficiently small to maximize the spatial resolution in this setup.
The radiometer was calibrated by mounting it in front of a high-temperature blackbody source
(Fig. 29), whose display temperature was verified with a type R fine-wire thermocouple. The
temperature of the thermopile was closely monitored during measurements and calibrations
because of the sensitivity of the thermopile response to temperature. For measurements across
sooty Wolfhard-Parker burner flames (which generate significant thermal radiation), thermal
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conduction down the sight tube was found to result in heating of the thermopile, so a water jacket
was formed around the sight tube and forced circulation of water from a temperature-controlled
chiller was used to maintain the thermopile at the ambient lab temperature.

Figure 29. Photographs showing (a) experimental setup for radiometer
measurements in the Wolfhard-Parker burner, and (b) setup for blackbody
calibration of radiometer.

Radiometry measurements for the steady normal and inverse Wolfhard-Parker flames are shown
in Fig. 30. These measurements show slightly greater total radiant emission from the normal slot
flames in comparison to the inverse flames. Measurements of soot concentrations also showed
somewhat lower values in the slot flames. The minor difference (factor of two) in total radiation
from the methane and ethylene flames reflects the relatively low concentrations of soot in these
flames (thereby allowing gas-phase radiation to play an important role) as well as the lower
temperature of the soot in the ethylene flames. The soot concentrations in the ethylene flame are
20 times higher than in the methane flame.

For measurements in the coannular flames, a shorter, 150 mm long sight tube was used to boost
the strength of the weak radiometer signals. The use of the shorter sight tube reduces the spatial
resolution of the measurement by providing a larger angle of acceptance to the thermopile, but
this is not believed to have a significant effect for the coannular flames, where the flame is
constrained to the center of the burner. To interpret the measured signals as local radiant
emission (in the same way as for the slot burner results), the data must be deconvolved using
optical tomography.

Figure 31 shows a sample of the radiometer measurements in a pulsed ethylene slot flame. The
reproducibility of the flame motion with the loudspeaker forcing of the fuel flow is clearly
shown. From these measurements, the local, instantaneous radiant emission from the flames has
been determined.
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Figure 31. Time record of radiant emission from the 15 Hz pulsed ethylene slot
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Conclusions

In this LDRD project, several laser diagnostic techniques and extractive measurement techniques
were employed in a series of laminar, soot-forming diffusion flames operating in both steady and
pulsed, unsteady modes. The flames investigated included large Wolfhard-Parker flames of
methane and ethylene burning in air and coannular flames of methane, ethylene, and a nitrogen-
diluted JP-8 surrogate burning in air. In addition, partial characterization was performed of
inverse Wolthard-Parker (WP) flames of air burning in methane or ethylene. The measurement
techniques that were employed in these flames included OH and PAH PLIF, near-IR radiation
imaging, planar LII for soot concentration, PIV for velocity field, two-dimensional two-color
pyrometry for temperature through the soot layer, TDLAS for water and acetylene concentrations
(WP flames only), soot dimensionless extinction coefficient via a TCRN, soot microstructure
(thermophoretic TEM grid sampling and analysis), and local radiant heat flux. Most of these
techniques had been previously developed, but in nearly all cases adjustments had to be made to
the means of implementing these techniques to make them work in sooty flames. As a
consequence of the measurements performed in this project, a large quantity of high-quality data
exists that can be synthesized and analyzed to provide new insights into the mechanisms and
rates at which soot forms, grows, and oxidizes in diffusion flames, and also how it is transported
and how much radiation it emits and absorbs. This is key information for the development of
new constitutive models for large-scale, high-fidelity simulations of fire and also provides a
unique database for validation of proposed models of soot formation, transport, and radiation in
fires.
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