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Abstract 
In this paper we present an analysis of a new configuration for achieving spin 
stabilized magnetic levitation. In the classical configuration, the rotor spins 
about a vertical axis; and the spin stabilizes the lateral instability of the top in 
the magnetic field. In this new configuration the rotor spins about a horizontal 
axis; and the spin stabilizes the axial instability of the top in the magnetic field. 

'Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin 
Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. 
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1 Introduction 
Earnshaw’s theorem [9] implies that it is impossible to achieve stable static 
magnetic levitation in a static magnetic field., However, the discovery of the 
LevitronTM [7] has shown that it is in fact possible for a spinning top to be in 
stable equilibrium in a static magnetic field. We refer to this as spin stabilized 
magnetic levitation. There have been numerous papers analyzing spin stabilized 
magnetic levitation ,[1], [2],[6], [lo], [5]. In this paper we extend these results 
by considering the case of a rotor that spins about a horizontal axis. Although 
no such device has yet been built, a program is currently under way to build 
one. A sketch of what such a device might look like is given in figures 1) and 2). 
As with the classical LevitronTM, we anticipate that there will be a high degree 
of sensitivity in such a device, so that it may take an adept experimentalist to 
build one. For this reason we believe that it is worth presenting the theory even 
though there is as yet no experimental justification. 

Classically, spin stabilized magnetic levitation devices are axisymmetric. In 
principle we could achieve a horizontally spinning device using systems of mag- 
nets that have no symmetry properties at all. However, we choose to consider 
systems that have enough symmetry so that equilibrium of forces and torques is 
guaranteed in all directions except for the vertical. One such situation (depicted 
in figure 1) is the following: 

0 The base magnets have reflectional symmetry about the planes y = 0 and 
x = 0. 

0 The rotor is axisymmetric and has reflectional symmetry about its mid- 
plane. 

0 The rotor is placed with its center of mass at (0 ,0,z0)  and its axis of 
symmetry pointing in the direction (1,0,0). 

We will show that due to the symmetry of this configuration, there are no 
forces in the y and x direction when the rotor is placed symmetrically in the 
field. Similarly, there are no torques in any direction. Equilibrium in the z 
direction can be obtained by adjusting the height or weight of the rotor. 

A similar situation (depicted in figure 2) exists when the base magnets are 
anti-symmetric about the plane x = 0, and the magnets on the rotor are anti- 
symmetric with respect to reflections about the midplane of the rotor. 

Earnshaw’s theorem implies that this equilibrium position must be unstable 
if the rotor is not spinning. When we analyze the stability of a spinning rotor 
in such a configuration, we find that the equations for perturbations in the y 
and z directions decouple from the perturbations in the axial (x) direction, and 
from the angular perturbations. This implies that it is not possible for spinning 
to stabilize the perturbations in the y and z directions. If we are going to 
stabilize this configuration by spinning the rotor, the rotor must be unstable to 
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perturbations in the axial direction (in the absence of spin). In certain situations 
we can stabilize the perturbations in the axial direction by spinning the rotor. 
As with the vertically spinning systems, there is an upper and lower spin rate 
for stable equilibrium. 

We would like to emphasize that for spin stabilized magnetic levitation of a 
vertically spinning rotor in an axisymmetric field it is not possible to stabilize 
the axial direction by spinning. This means that in the absence of spin, the 
system is stable axially, and unstable laterally. This is exactly the opposite of 
horizontal spin stabilized systems that we discuss in this paper. 

We now give an outline of the rest of this paper. In section 2) we discuss 
the symmetry properties of these configurations. In section 3) we show that 
these properties imply that when the rotor is placed symmetrically in the field, 
all of the forces and torques vanish except for the force in the vertical direc- 
tion. In section 4) we derive the equations governing the linear stability of the 
equilibrium. In section 5 )  we give simple necessary conditions for stability, a 
simple stability condition similar to the adiabatic approximation made in [1], 
and a quartic equation that can be solved to determine the upper and lower spin 
rates. In section 6) we discuss how to compute the dynamical parameters in 
the linear stability equations for a given configuration of magnets. In section 7) 
we discuss how to find configurations of magnets that have the desired stability 
properties. We give our conclusions in section 8). 

2 Symmetry Properties 
We assume that the rotor and its magnets are axisymmetric, and that in equi- 
librium it is aligned with its axis of symmetry in the x direction, and that it 
spins about the x axis. In equilibrim its center of mass is at = (0, 0,zo). We 
consider two different situations. 

Systems where the supporting magnets produce a potential that is anti- 
symmetric with respect to a reflection about the plane x = 0, and sym- 
metric with respect to a reflection about the plane y = 0. In this case we 
assume that the magnets on the rotor are anti-symmetric with respect to 
reflections about the mid-plane. 

Systems where the supporting magnets produce a potential that is sym- 
metric with respect to reflections about the planes x = 0 and y = 0. In 
this case we assume that the magnets on the rotor are symmetric with 
respect to a reflection about the mid-plane. 

We will show that in both of these situations when the center of mass of the 
rotor is at y = 0 ,x = 0, and the axis of symmetry of the rotor is aligned in the 
x direction, we are guaranteed of having no forces in the y or x direction, and 
no torques on the rotor. By suitably adjusting the weight of the rotor, or the 
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strengths of the magnets, we can make it so that the force in the z direction 
balances the force of gravity, which we assume points in the z direction . 

The first of these symmetries can be constructed by building a rotor with 
two dipoles on the axis of symmetry, symmetrically located about the midplane, 
and both pointing in the same direction along the axis of symmetry. In this 
case a system of supporting magnets having the proper symmetry could consist 
of magnets in a plane z = constant all pointing in the z direction. In this. 
case any supporting magnet at (20,  yo, ZO) would have companion magnets at 
(fq, &yo, ZO). The dipole at (20, -yo, 20) would be in the same direction as 
the first dipole, and the dipoles at (-zo,fyo,zo) would be in the opposite 
direction. This is just one example of how to achieve this symmetry. More 
generally we could have the magnets in the base have the dipoles pointing in 
arbitrary directions as long as their companion magnets have been appropriately 
reflected. 

The second of these symmetries can be constructed by building a rotor with 
two dipoles on the axis of symmetry, symmetrically placed about the midplane, 
and pointing in opposite directions along the axis of symmetry. In this case a 
system of supporting magnets having the proper symmetry could consist of mag- 
nets in a plane z = constant all pointing in the z direction. In this case any sup- 
porting magnet at (20, yo, ZO) would have companion magnets at (fxo, fyo, 20). 

All of the magnets would have their dipoles pointing in the same direction. Once 
again, this is just one way of acliievng systems with this symmetry. 

Since the rotor is axisymmetric, the energy of the rotor in an arbitrary 
magnetic field can be written as 

E n e r g y  = U(:,d) 

where = (z ,y ,z )  is the center of mass of the rotor, and Cl = (d,,d,,d,) is 
a unit vector pointing in the direction of the axis of symmetry. The energy 
satisfies 

v p  = 0 

where V? is the Laplacian with respect to the variable :. 

reflections about the z axis satisfy the following symmetry properties. 
The energy of systems where the potential is anti-symmetric with respect to 

Systems where the potential is symmetric with respect to reflections about 
the x axis satisfy the identical symmetry properties. 
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2.1 Examples Illustrating the Symmetry Properties 
These symmetry properties become clearer if we consider special cases of such 
systems. Suppose we have a rotor that has two equal dipoles on the axis of 
symmetry, each pointing in the direction of the axis of symmetry. We suppose 
that the magnets are placed symmetrically a distance 6/2 from the center of 
mass When the rotor gets displaced and rotated, one of the dipoles will be 
located at x+ = g + 6/2d, and the other one at g- = g - &/2d. The dipole 
moment of the magnet at g+ will be E, = mod, and the moment at E- will be 
m- = mod. The total magnetic energy of the rotor will be 

W C ,  d )  = mo (d . W C + )  + d . V+kL))  

It can be verified that assuming that +(x, y, z )  is symmetric in y and anti- 
symmetric in 2, the energy U ( g ,  d)  satisfies the symmetry properties stated in 1). 
Note that these symmetry properties would hold for more complicated systems, 
such as rotors having more than one pair of symmetrically placed dipoles, or 
symmetrically placed rings. 

An example illustrating the second sort of symmetry comes from a rotor 
that once again has symmetrically placed dipoles, but in this case the dipoles 
are equal and opposite to each other. In this case the energy can be written as 

U(a ,  d)  = mo (d * V+(.+) - dV+(z-))  
Once again it can be verified that if +(x, y, z )  is symmetric in 2 and y, then the 
energy satisfies the symmetry properties 1). 

3 Equilibrium 
We will now show that assuming our system of magnets and the rotor satisfy the 
symmetry properties of the last section, we can easily find equilibrium configu- 
rations. In particular, we will show that if we place the rotor so that its center 
of mass is at (O,O,zo), and its axis of symmetry is pointing in the direction 
(1,0,0), then there is no torque on the rotor, and the only component of force 
is in the z direction. By appropriately adjusting the weight or the strengths of 
the magnets, we can make it so that the force of gravity balances this magnetic 
force. 

The force and torque on the rotor can be computed using 

E = -V,U(E,d) 

- 7- = -d x V(jU(g,d) 

Here, V, is the gradient with respect to g, and Vd is the gradient with respect 
to 4. 
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We can derive these formulas using generalizations of the derivations for the 
force and torque on a point dipole [3]. The principle of virtual work tells us 
that the change in energy when we move the center of mass without rotating it 
is given by 

where 
the top. Since we can write 6U = V,U. Sr, we see that 

6U = -F.6r 
is the force on the top, and Sr is the change in the center of mass of 

Since this must hold for all values of 6r we see that 

- F = -VxU. 

On the other hand, if we rotate the body about the axis e by an angle 68,then 
the principle of virtual work requires that the change in energy is given by 

6u = - regbe  

When we rotate the body about e by 68, the change in the unit vector 8 is given 
by 6d = g x &e. We see that 

6u = vdu.6d = vdu* (ex d)68 = (ax vdu) *e68 

When we equate this expression to the expression from the principle of virtual 
work, and require that it hold for all values of g and 8 we get 

- 7 = -4 x vdu. 
The symmetry properties of the energy show that for both the anti-symmetric 

and symmetric cases we have 

u(x,o,z, l ,o,o) = U(-x,O,z, 1,0,0) 

u(o,Y,z,Lo,o) = U(O,-Y,Z,1,0,0) 
When the rotor is placed symmetrically in the field, the forces F, and Fv in 

the x and y directions satisfy 

To show that the torques vanish, we substitute x = 0, y = 0 into the 
symmetry propertry U(x,y,z,dx,dy,dZ) = U(-x,y,z,dx,-dv,-dZ) to get 



U(O,O, z,1,  d,, &) = U(O,O, z ,  1, -dy, -4) 
This shows that the energy at x = y = 0 is an even function of d, and d,, and 
hence the derivatives with respect to d, and d, must vanish. Using the fact that 
2 = -d x VdU we see that 

- T ( 0 ,  0 ,  z,  1,0,0) = 0 

We see that based on the symmetry of our problem, if we put the rotor so 
that its center of mass is at x = y = 0, and so that its axis of symmetry is 
pointing in the x direction; there will be no forces in the x or y directions, and 
no torques at all. 

4 The Linearized Equations of Motion 
We describe the kinematics of the rotor in a manner similar to [6].  In our dis- 
cussion the coordinates (2, y, z )  refer to coordinates fixed in space. We assume 
that the body is axisymmetric with a moment of inertia of 13 about the axis of 
symmetry, and 11 about the other two principal axes. 

We will orient the body by rotating about the z axis by 9, the y axis by 4 
and then the x axis by I). If the rotor is spinning about the x axis with angular 
velocity W O ,  then a small perturbation to this state gives approximate angular 
momenta L, and L, of 

L, = 1 ~ 4  + Iswoe 
L, = 1,e - 13w04 

These formulas can be derived rigorously by expressing the angular momenta 
in terms of the the angular variables and their derivatives, and then assuming 
that 8 and 4 are small. They also have a simple intuitive interpretation. The 
expression for L, consists of two terms. The first term is the angular momentum 
we would get if wo were zero, and the body were spinning about the y axis. The 
second term is the angular momentum we would get if the body kept spinning 
about the axis of symmetry with angular velocity WO, but was slowly tilted by 
an amount 8 about the x axis. As a result of this tilting some of the angular 
momentum that was intially in the x direction gets projected onto the y axis. A 
similar interpretatiion can be given for the angular momentum in the z direction. 

The linearized equations of motion can be written 
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In the linear approximation, the forces and torques are linear functions of 
(2,  y, z ,  8,q5). In the linear approximation, we have 

- d = (&, d,, d Z )  = (lie, -4 
Also, in the linear approximation the forces and torques are derivable from a 
quadratic potential. The symmetry properties show that many of the terms in 
the quadratic potential must be missing. For example, the fact that U ( x ,  y, z ,  d,, d,, d Z )  = 
U ( x ,  -y, z ,  d,, -d,, d,) implies that the Taylor series expansion of the energy 
cannot have any terms of the form xy ,  yz, yq5, x6, 20, or 04. . The fact that 
U ( x ,  y,  z,  d,, d,, d,) = U(-x ,  y ,  z ,  d,, -d,, -dz)  implies that we cannot have any 
terms of the form z y ,  xz , yq5, ye, zd ,  or 20. Using these symmetry properties 
we conclude that the linearized equations of motion are of the form 

my+Aly = 0 

m f + A 2 z  = 0 

mx - A x  - Bq5 = 0 

1 ~ 8  - I3Wo6 - c,e = o 
I14 + I3Wod - Czq5 - BX = 0 

Note that the equations for y and z decouple from the other equations. This 
means that in order to have stability we must have A1 and AS both be bigger 
than zero. In other words, the system would have to be stable to lateral pertur- 
bations if the rotor were not spinning. The fact that VZU = 0 (or Earnshaw’s 
theorem) implies that AI + A2 = A ,  and hence the system must be unstable to 
axial perturbations if the rotor is not spinning. 

4.1 The Dimensionless Equations of Motion 
We now introduce the dimensionless variables 

In terms of these dimensionless variables, we get the dimensionless equations 
(after dropping the hats for notational convenience) 



Here we have introduced the dimensionless parameters 

mB2 A = -  
I1 A2 ( 5 )  

5 The Stability of the Equilibrium 
We now analyze the stability of the system of equations 2). In the first sub- 
section we compute the characteristic equation governing the stability, and give 
some necessary conditions for stability.. In the next subsection we carry out 
an analysis assuming that rl, r2, and A are all large. This analysis gives very 
simple criteria for stability, and we believe it is similar to making the adiabatic 
assumption as in [l] (see the discussion in Appendix B) . In the next subsec- 
tion we use results from the theory of polynomials that allow us to predict the 
exact upper and lower spin rates by solving a quartic equation. This is simi- 
lar to the procedure carried out in [2] in the analysis of the vertically spinning 
LevitronTM. 

5.1 The Characteristic Equation and its Properties 
We now assume solutions of the form eiat in the linearized dynamical equations. 
This leads to the characteristic polynomial 

(u2 + 1) ((u2 + rl)(u2 + r2) - a2u2) - h(u2 + r,) = o (7) 
Expanding this we get 

G(q, 0) = q3+q2 (1 + r, + r2 - a2)+q (rl + r2 + rlr2 - A - ~ ~ ) + r , r ~ - ~ r ,  = o 
(8) 

where 
2 q = u .  

In order for our system to be stable, all of the roots of equation 8) must be 
real and positive. Descartes theorem [8] implies that for an equation of the form 
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z3 + p z 2  + qz + T = 0 to have all real and positive roots, it is necessary that 
p < 0, q > 0, and T < 0. Furthermore, if all of the roots are real, then these 
conditions are both necessary and sufficient conditions for all of the roots to be 
positive. This, along with the condition that A > 0 gives us several necessary 
conditions for stability 

a 2 > 1 + r l + r 2  
rl + r2 + rlr2 - A > o2 

nr, > rlr2 
A > O  

The last of these conditions is the requirement that A > 0 in order to 
have lateral stability. As with the vertically spinning spin stabilized magnetic 
levitation, we see that there is both an upper and a lower value of R for stability. 

5.2 Asymptotic Stability Analysis 
We can gain considerable insight into these equations by analyzing their behav- 
ior when rl, r2 and A are all large. We claim that this is similar to making the 
adiabatic approximation as in [l]. We elaborate on the connection between our 
asymptotic stability criterion and the adiabatic approximation in appendix B. 

To be precise, we assume that 

A = A l e 2  

rl = % / E 2  

r2 = 7 2 / E  

R = W / E  

2 

If we substitute these expression into 7), multiply by E ~ ,  and set E = 0, we get 
the equation 

2 
7 2 = A - 7 2  

This gives us two roots of our 6 th order polynomial. We can only have positive 
solutions to n2 if 

7 2  > 0, 

A - 7 2  > o .  
and 

We get the four other roots by assuming that = +/e This gives us the 
equation 

12 - 
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82 ( ( 8 2  + 71)(8-2 + 72) - R28-2) = 0 

After factoring out e2 this is the characteristic equation for for a spinning 
rotor in a harmonic potential. 

(8." + TI)(&-" + 7 2 )  - 0282 = 0 

A simple application of the quadratic equation shows that in order for this to 
have all real roots we must have > 0, which along with our previous 
stability criterion requires that both rl and r2 be positive. We must also have 
rl +I'z - R2 < 0, and (rl + r2 - R2)2 -4r1r2 > 0. By choosing R large enough 
we can satisfy all of these criterion. 

We can give a simple interpretation of these stability conditions. If rl, r2 
and A are large, and the system is not responding too quickly, the second of 
equations 2) implies that 

r24+ AX = o 
This is equivalent to saying that as the rotor moves around, it orients itself SO 

that there is no torque on it. This gives us the expression 4 = -fix/rz. When 
we substitute this into the first of equations 2) we get 

+ X ( h / r 2  - 1) = o 
We see that this will be a stable harmonic oscillator provided A > r2. This is 
the first of our asymptotic stability conditions. In order to satisfy this condition 
we must have r2 > 0, which implies that the rotor would want to flip over in 
the absence of spin. 

Our second criterion is the condition that we are spinning the rotor fast 
enough that it will not flip over. To analyze this mode we have assumed that 
a is order l/c In this case, the first of equations 2) implies that 'x  is small 
compared to 4. This means that we can solve the second and third equations 
ignoring x. This is equivalent to considering a rotor spinning in a potential 
where we ignore the translational energy. This leads to our second stability 
condition. 

The asymptotic analysis we just presented does not predict the existance of 
an upper spin rate. In order to predict the upper spin rate we once again assume 
that rl, r2 and A are large. We will see that if R is too large, the eigenvalues 
that are order one will eventually go unstable. 

Assuming that a is order unity, and that all of our parameters are large, our 
eigensystem can be approximated by 

(a2 + l)x + 4 4  = 0 

-ioa+ - r,e = o 
iaoe - r24 - ~ X X  = o 
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These equations are obtained by ignoring the second derivatives of 0 and 
in equations 2). They are an extension of the results we have already presented 
where we ignore all derivatives of these quantities. 

These equations imply that 

( D 2  + 1) (rlr2 - a202) - r l A  = o 
This is a quadratic equation for 02. We need this equation to have positive 

real roots. In order for this to be so we must have r1r2 > R2, A > r2 and 

where 

(. - r2)2 - ~Z(A - r2) > 0 

R2 
rl z = -  

This gives a quadratic equation in z whose roots are 

zf = 2~ - r2 f 
In order to have real roots we must have z < z- or z > z+. However, if 

z > z+, we cannot satisfy the other inequalities necessary to have positive real 
roots, It follows that we must have < z-.  This is the asymptotic prediction 
for the upper spin rate. Note that assuming that rl, r2 and A are order 1/e2, 
this upper limit on the spin rate is also of order l/e2. On the other hand, the 
lower spin rate is on the order 1 / ~ .  It follows that as we make E smaller, the 
ratio of the upper and lower spin rate can be made very large. 

We will now collect all of our results from the asymptoti stability analysis. 
Assuming that I'l = -yl/e, r2 = 7 2 / e ,  A = X/e2, we see that necessary and 
sufficient conditions for stability are 

rl > o  ( W  

r2 > o W b )  

A > r2 (1lc) 

(W 
R~ < rlz- (11e) 

a2 > rl +r2 + 2 m  

Once again we emphasize that if rl, r2 and A are order 1/e2, then the lower 
spin rate is order 1/e, and the upper spin rate is order 1/e2. This shows that 
as we keep the ratios of I'l, r2, and A fixed but let the quantities get large, the 
ratio of the upper and lower spin rates also gets large. 

In the next section we will show that by finding the roots of a fourth order 
polynomial we can find exact expressins (that must be computed numerically) 
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for the upper and lower spin rates. Figure 3) shows that our asymptotic es- 
timates for the upper and lower spin rates are in fact quite accurate even for 
moderate values of r1, r2, and A. 

5.3 
We will now find an exact expression for determining the upper and lower spin 
rates. In order to do this we first note that in a region of stability we must have 
AI?, > I'1r2. This is both one of our asymptotic stability criteria, and one of 
the conclusions in 9) from Descarte's theorem. This implies that we can never 
have roots of our characteristic equation G(q, 0) = 0 (defined in 8) ) with q = 0. 
It follows that if Ro is at a boundary of a stability region, then G(q, no) must 
have all real roots, but a small perturbation of R will yield complex roots. This 
implies that on a boundary of a region of stability there must be a root qo such 
that both G(q0,R) and G'(q0,R) = 

Upper and Lower Bounds on the Spin Rate 

vanish . 
We will write 

G(q, R) = q3 + (D - R2)q2 + (E - R2)q + F 

where 
D =  i+r l  +r2 

E = rl +r2 +rlr2 - A  

F = r1r2 - A r 1  
On the boundary of stability G and G' must have a common root, or equiva- 
lently, G must have a multiple root. A necessary and sufficient condition that a 
polynomial have multiple roots is that the discriminant vanishes. This is equiv- 
alent to saying that the resultant of G and GI vanishes. Suppose we have two 
polynomials 

9(X) = goX3 4- g i X 2  + g2X 4- 93 
and 

A necessary and sufficient condition that these two polynomials have roots in 
common is that the resultant vanish. The resultant is the determinant of the 
following matrix. 

h(s)  = hoX2 + his + hz 

93 92 91 90 
0 93 92 91 90 [ 0 h2 hl ho ) 

When we substitute the polynomials G and G' into this expression we find 

R =  h2 hi ho 0 0 

0 0 hz hi ho 

( with the help of Mathematica) that the resultant can be written as 
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K6 = (32 - 16D - 16E + 32F)/8 

K4 = (8D2 - 96E + 32DE + 8E2 + 144F - 96DF)/8 

K2 = (-16D2E + 96E2 - 16DE2 - 144DF + 96D2F - 144EF)/8 

KO = (8D2E2 - 32E3 - 32D3F + 144DEF - 216F2)/8 

This is a quartic polynomial in R2. We have shown that on the boundary of 
stability $(R) must vanish, but we have not shown that any root of this equation 
will yield a value of R that is on the boundary of stability. In appendix A we 
apply the theory of Hankel matrices [4] to show that the polynomial G(q, 0) will 
have all real roots if and only if $(R) < 0. We will further show that G(q,R) 
will have all positive real roots if and only if $(R) < 0. and all of the inequalities 
in 9) are satisfied. 

If we compute the roots of the polynomial $(a), we find that there are roots 
that do not satisfy the conditions 9). If we limit ourselves to roots that satisfy 
the conditions 9), we find that the roots of $(a) do in fact give the upper and 
lower limits on the spin rates. Figure 3)  shows the numerically computed upper 
and lower spin rates and compares them to the previously derived asymptotic 
estimates. 

6 Computing the Dynamical Constants 
In this section we will explain how for a given configuration of magnets on the 
rotor and in the base, one can compute the dynamical constants A I ,  A2, A,B, (21 
C2 and B that are needed in order to compute the stability of the equilibrium. 
We also show how to compute the lift L. 

For simplicity we will assume that the magnets on the rotor can be approxi- 
mated by dipoles. We could extend this analysis so that the magnets on the rotor 
were approximated as a combination of axisymmetric dipoles, quadrapoles, and 
octopoles. However, that would make some of our results quite tedious. We will 
begin by analyzing the case where the rotor is in an antisymmetric potential. 
That is , we assume that the potential f(z, y, z )  satisfies 

f b ,  Y, 2) = f(z, -Y, 2) 
f(z, Y, 2) = --f(-G Y, 2) 

We will assume that when the rotor is oriented in its equilibrium position, 
it has dipoles at ( f S / 2 , 0 ,  Z O ) ,  both of magnitude MR, and both pointing in the 
direction (1,0,0). We will compute the dynamical constants when we have just 



a single pair of dipoles on the rotor. If we have more than one pair, then the 
constants can be computed by summing over all the different pairs. 

In order to compute the force and torques on the rotor as it gets displaced 
from its equilibrium, we need to compute the Taylor series ( up to the cubic 
terms) of the magnetic potential about the points (fS/2,O,zo). 

1 1 
f(z+d/2,y,  z0+z) = ~0~+~1~+p0~~+-81(222-~2-~2)+282(~2-~2)+r+(~, 2 Y, Z) 

r+(s, y, zo+z) = yo (x3/3 - 2y2/2 - zz2/2)+y1 (2y2/2 - 2~~/2)+y2(~~/6-2~~/2)+y3(z~/6-y~z/2)+... 
Around the point (-S/2,0, zo) we have the Taylor series expansion 

1 1 
2 2 f(2-6/2, y, z0+z) = ao~-alz+pozz--pl (2z2-y2-z2)--p2(y2-~2)+r+(~, y, Z) 

l-'-(s, y, zo+z) = 70 (x3/3 - xy2/2 - 2z2/2)+y1 (2y2/2 - 2z2/2)-y2(z3/6-22z/2)-y3(~3/6-y2z/2)+... 
This is the most general form for the Taylor series (up to cubic terms) of a 
function f(z, y, z )  that is anti-symmetric in x and symmetric in y. 

The dynamical constants can be computed with the following procedure 
which is easily implemented in Mathematica. 

0 Compute the orientation of the dipole which for small angles is approxi- 
mated by d = (1 - e2/2 - 42/2, 8, -4). 

0 Set the position of the right dipole to 
moment to rn, = M R ~ .  

moment to m- = M R ~ .  

= gCm + &/2, and the dipole 

0 Set the position of the left dipole to E- = &m - &/2, and the dipole 

0 Compute the magnetic energy U = rn+ . Of@+) + 224- . Vf(.-). 

0 Calculate the force E = -VU 

0 Compute the torques, which in the linear approximation can be written 
8U BU 

84 as rz = -m and T, = --. 
0 Set G~ = E(? ,  e, 2),  and 8 = €8, 4 = €4. 

0 Expand the forces and torques up to order E. 

Set the lift L equal to the zeroeth order term in the force F,. 

0 Set -A1 to the term in F, that is linearly proportional to y, -A2 to the 
term in F, that is linearly proportional to z ,  and A equal to the term in 
F, that is linearly proportional to 2. Set B equal to the term in F, that 
is linearly proportional to 4. 
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Set C1 and C2 to the terms in rz and rar that are linearly proportional to 
8 and q5 respectively. 

After carrying out this procedure, we arrive at the following expressions for 
the dynamical constants. 

If we have several systems of dipoles on the rotor, the dynamical constants 
are the sum of the dynamical constants for each system of magnets. 

It should be pointed out that we get the exact same formula for systems with 
potentials that are symmetric with respect to reflections abut the z axis, and 
whose rotor magnets are also symmetric with respect to reflections about the 
midplane. In this case we get the same expansion of the field about the point 
(6/2,0, ZO), but the expansion about (-6/2,0,0) is exactly opposite that given 
for the anti-symmetric case. If we define our fields using the Taylor expansion 
about (6/2,0,0), the dynamical constants have the exact same values as those 
given for the anti-symmetric case. 

7 Finding Realizable Confiugrations 
So far we have discussed how to compute the dynamical constants assuming 
that we have a given configuration of magnets. We now discuss how one could 
in fact find a given configuration of magnets that gives the desired dynamical 
constants. We will present at least one way of going about this for systems that 
have potentials with reflectional symmetry about the z axis. 

We will suppose that the base magnets consist of 4N dipoles all pointing in 
the z direction. The positions of the dipoles are given by 

p .  = (*ai, *bi ,  Ci) i = l , N  
-2 

and the magnetizations are given by 

Mi = (O,O, di )  i = 1, N 

For each value of i (four symmetrically placed magnets in the base), we can 
compute the dynamical constants A l ( i ) ,  Aa(i), A(i), B(i) ,  CI(~)  , C2(i), and 
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L(i)  for di = 1. The values of the dynamical parameters for the whole system 
can be obtained by summing over the different sets of magnets multiplied by 
the strengths of the dipoles. . For example, 

N 
L = C d , L ( i )  

i=l 

If we have 6 or more systems of magnets, we can choose the strengths di so 
that we get any desired values of the parameters that we want. This means that 
in theory we can specify the desired values of AI, A2, L ,  rl, r2, and A that we 
would like; and thus the values of A, B,  Cl, and C2 that we would like. Once 
these are known we can determine the dipole strengths of the magnets that give 
these parameters. 

The procedure we have outlined is meant to show that these configurations 
can be realized in theory. It does not address how to actually find a good 
configuration. For example, it is possible that the configurations could be very 
sensitive to small variations in the positions of the magnets, or to their strengths. 
We have carried out some more elaborate forms of this procedure in order to 
find possible configurations. We do not feel that it is appropriate to give any 
specific examples until we have aaalyzed them for their robustness. 

8 Conclusions 
We have theoretically demonstrated the existance of what is a distinctly different 
form of spin stabilized magnetic levitation. As with the traditional set up for 
spin stabilzed magnetic levitation, we expect that most configurations will have 
a high degree of sensitivity to the placement of the magnets. For this reason we 
believe that it is necessary to come up with some measure of the robustness of 
a configuration, and to search over a large class of configurations trying to find 
robust configur ationa . 

Although nobody has ever used spin stabilized magnetic levitation for any- 
thing other than a scientific toy, it is possible that this principle could in fact 
have practical applications. It is hoped that by showing that the classical ver- 
tical configuration is not the only possibility, this paper may contribute to the 
eventual practical use of this prniciple. 

9 Appendix A 
We have shown that on the boundary of a region of stability, we must have 
$(a) = 0. In this appendix we will show that the condition + < 0 is a necessary 
and sufficient condition for G(q, 0) to have all real roots. To do this we apply 
the method of Hankel matrices presented in [4]. In [4], this method is explained 
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for arbitrary polynomials, to simplify the notation , we will limit ourselves to 
cubic polynomials. Suppose we have a cubic polynomial of the form 

2 aOx3 - alx  + a22 - a3. 

The theory we present allows us to determine the number of real roots of this 
polynomial. 

Suppose (xo,x1, x2)  are the roots to this polynomial (which of course we do 
not know). We begin by computing the Newton polynomials 

k k k  ffk = 20 + 2 1  + 52 

Eventhough we do not know the roots to the polynomial, we can compute the 
Newton polynomials. This follows from the fact that the Q’S are symmetric 
polynomials in the variables xi, and hence can be written as polynomials in the 
coefficients aj of our polynomial. The theory of how to do this is explained in 
[8]. w e  will need to know ffk up to k = 4. We can compute these recursively 
using 

a0  = 3 

f f 1  = a1 

f f 2  = U l f f 1  - 2a2 

ff3 = a1ff2 - a2ff1 + 3a3 

ff4 = air3 - a2ff2 + a3ff1 

We now form the Hankel matrix. 

0 0  g1 a 2  

a 2  g 3  a4 
H = ( (TI 0 2  03 ) 

The number of real roots is equal to 3 - 2V where V is the number of sign 
changes in the sequence DO, D1,D2 where DO = GO, 

and 
D2 = D e t ( H )  

In order to have all real roots all of the determinants DO, D1 and D2 must 
be positive. However, for a cubic polynomial, it is not possible to have D1 be 
negative while 0 2  is positive. This can be shown algebraically, or by noting that 
if this were the case, then our formula for the number of real roots would yield 
a negative number of real roots, which is impossible. It follows that a necessary 
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and sufficient condition for our cubic polynomial to have all real roots is that 
the determinant D2 is positive. 

When we substitiute the coefficients from the polynomial G(q,R) into the 
general expression for D2,  this yields the polynomial -$(R). It follows that 
a necessary and sufficient condition for G(q,R) to have all real roots is that 

If a polynomial has all real roots, then a necessary and sufficient condition 
that all of its roots are positive is that its coeffecients alternate in sign. This 
implies that our system will be stable if and only if both $(Q) < 0, and all of 
the inequalities n 9) are satisfied. 

$(W 0. 

10 Appendix B 
In this appendix we will discuss the relation between the asymptotic stability 
analysis made in section 5.2 (assuming rl, rz and fl are large) and the adiabatic 
approximation presented for the vertically spinning LevitronTM in [l]. We will 
show that these two approaches give the same results, and we will show that 
the conditions that the dimensionless parameters rl, r2 and 0 be large are 
equivalent t o  the conditions stated n [l] for the adiabatic approximation to 
hold. 

Since the adiabatic approximation in [l] is worked out for a point dipole, 
we will now restrict our analysis to that case. That is, we will assume that our 
rotor only has a single dipole pointing in the direction of the axis of symmetry. 
This is an example of one of our two symmetries that we discussed in section 

We begin by applying the adiabatic approximation to our problem. Follow- 
ing [l], we argue that assuming that the top is fast we can make the approxi- 
mation 

- L = I3wod 

Here wo is the initial spin of the top, and _d is the unit vector in the direction of 
the axis of symmetry. This assumes that we can ignore all components of the 
angular momentum except for the component about the axis of symmetry of 
the top. As pointed out in [l] the fast top approximation holds as long as the 
spin of the top is large compared to the precession rate of the top. 

Under this fast top approximation, the equation for the change in angular 
momentum can be written as 

2). 

W O I ~ ~  = -mod x B 
Here mo is the dipole moment of the dipole on the rotor. In the adiabatic 
approximation this equation implies that the quantity 
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stays constant. In order for this approximation to hold it is necessary that rate 
of change of the vector d be large compared to the rate of change of the quantity 

In the adiabatic approximation, the magnetic energy of the rotor can be 
d*Bl  I B I. 
written as 

Umag = -pad I B I 
This is equivalent to saying that the top is moving in an effective potential 

that depends only on the center of mass of the top, not on its orientation. This 
effective potential is computed by using the magnetic energy U ( a ,  d) = -mod.& 
of the top, but using the fact that d is always pointing in the direction of the 
magnetic field. This is clearly equivalent to the approximation made in section 
5.2 where we assumed that the rotor always orients itself so that there is no 
torque on it; and then using this to get an effective simple harmonic oscillator 
for the 2 component. 

We would now like to show that the criteria that our parameters I'l, r2 and R 
be large are equivalent to the criteria given in [l] for the adiabatic approximation 
to hold. We will discuss the scaling properties using the dimensionless lnearized 
equations of motion 2. The precession frequency of the top is given by 

(20) 

This precession frequency is obtained by ignoring the second derivatives of 6' 
and 4 and the term in equations 2. The fast top assumption assumes that 
this precession rate is small compared to the spin rate of the top. This can be 
written as 

Another condition stated in [l] for the adiabatic approximation to hold is 
that the bobbing freqency of the top be much less than the precession rate of 
the top. Physically this means that as the top moves around it can quickly 
orient itself so that it is aligned with the direction of the magnetic field. In our 
case the bdbbing frequency of the top is obtained by ignoring the term in 
equations 2). Since we have made our equations dimensionless by this bobbing 
frequency, our bobbing frequency is unity. The condition that the precession 
rate is fast compared to the bobbing frequency can be written as 

Q p r e c  >> 1 (22) 
In order to satisfy both of the conditions in eqns. 21) and 22), it is clearly 

necessary that R >> 1. The condition that RpTec >> 1 implies that 

rlr2 >> a4 
Since R is large, this implies that the product rlI'2 must be large. In the case 
of an axisymetric top considered in [l] this would imply that = r2 >> 1. 
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