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Abstract

This report discusses a set of verification test cases for the frequency-domain, boundary-element,
electromagnetics code Eiger based on the analytical solution of plane wave scattering from a sphere. Three
cases will be considered: when the sphere is made of perfect electric conductor, when the sphere is made
of lossless dielectric and when the sphere is made of lossy dielectric. We outline the procedures that must
be followed in order to carefully compare the numerical solution to the analytical solution. We define an
error criterion and demonstrate convergence behavior for both the analytical and numerical cases. These
problems test the code’s ability to calculate the surface current density and secondary quantities, such as
near fields and far fields.
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A Set of Verification Test Cases for Eiger:

Plane Wave Scattering from a Sphere

1 Introduction

In this report we compare solutions obtained from the frequency-domain, boundary-element,
electromagnetics code Eiger to analytical solutions of plane wave scattering from a sphere. Three types of
spheres will be considered: a perfect electric conductor (PEC), lossless dielectric and lossy dielectric.

We begin by defining the general test case geometry. We then derive the analytical solution of plane
wave scattering from a PEC sphere and calculate all components of both E and H fields in spherical
coordinates at locations outside the sphere. By allowing the observation point to be on the surface of
the sphere, we obtain both components of electrical current density, which are the principal unknowns
calculated by Eiger. By allowing the radius of the observation point to approach infinity, we obtain the F
field components in the far field. In Section 3.4, we perform a convergence study of the analytical solution
for all quantities calculated. The procedures used to compare the numerical solution to the analytical
solution are quite involved and are, therefore, documented in Section 3.5. Comparisons between numerical
and analytical solutions are made for all quantities at various frequencies to show how the error varies as
a function number of basis functions per wavelength. Results are shown for the three equations that are
implemented in Eiger to solve the PEC boundary condition: the electric field integral equation (EFIE),
the magnetic field integral equation (MFIE) and the combined field integral equation (CFIE). We also
demonstrate how the CFIE overcomes problems that the EFIE and MFIE have at internal resonance.
Comparing results of Eiger to the analytical calculation of currents on the PEC sphere is one of the
verification tests required for the electromagnetic radiation (EMR) environment (Test 1.a.a) [1].

The analytic solution to plane wave scattering from a dielectric sphere is discussed in Section 4.
Convergence studies, comparison procedures and comparisons to numerical solutions follow the same format
as the PEC sphere. The lossy dielectric sphere discussion starts in Section 5 and follows the same format
as the other two test cases.

2 Test Case Geometry

Consider a plane wave travelling in the 42 direction incident on a sphere as shown in Figure 1. The
ﬁ field is polarized along ¥ so
ﬁ = oneijkoz
where ko = w,/Eofig is the wavenumber in free-space (throughout this report, we assume an e™/“! time
dependency). The sphere is centered at the origin and has a radius a.
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Figure 1. Plane wave incident on a sphere

3 PEC Sphere Test Case

3.1 Derivation of the Analytical Solution

If the sphere is a PEC, the potentials at r > a are given as [2]

Af = —cosqsz [an , (kor) + b, H® (kor)} P! (cos )

= — smngZ [an n (kor) + an( ) (kor)} P! (cos )

where 7,60 and ¢ are the spherlcal coordlnates P} is the associated Legendre polynomial of order 1 and
degree n; J, is the alternative spherical Bessel function of the first kind, order n; H,, is the alternative
spherical Hankel function of the second kind, order n; and p is the permeability of the medium surrounding

the sphere. Calculation of P} J and Hn, along with their derivatives, are discussed in Appendix I.
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Additionally,

o ient)
" o n(n+1)
J! (k
bn = —Qp—=< 2)E Oa)
(koa)
Cp = n = (koa)
H? (koa)
The total field components are calculated from these potentlalb For the E field components
1 0?
E, = AT
" Jweo <8r2 +k0) "
—JjEo ~ 02
= = e co S¢Z {an (8 5+ ko) In (kor) + (8 5 + ko) H® (kor)} P! (cos )

= —jEy cosqSZ [anJ" (kor) + by H2)" (kor)} L (cos0) + [ i (ko) + by HP (kzor)] P! (cos)
n=1
1OFS 1 oAf
rsinf 0¢ jwsor orod

—-Ey 0
" ko 51319 0 (sin ¢) 221 { o (kor) + ¢ H? (kor)} P! (cos0)

+—— ik [ Z [ o (kor) + b, H® (kor)] 82( P! (COSQ))]

w2 pgeor

_ —EO cosqS Z [an " (ko) + en I (o )] P} (cos )

n=1

At r = a, and substituting for b,, and ¢, in terms of a,, we obtain

—J [anj;'l (kor) + b, H? (kor)} PY (cosf)sinf

sin 0

_E b X N T . pl .
Ey = —Eocos ¢ Z andyy (koa) — anMH,(f) (koa) M
koa — HT(LZ) (koa) sin 6
!
—j ' (koa) — an, :T(g)gkoa) H? (kga)| PY (cos6)sin
n (koa)
_ —Eo cosqﬁ 1 (cos6) Vo
= Z sm9 J 0] P’ (cosf)sin@

=0
which states that the PEC boundary condition (E tangential to a PEC surface is zero) is satisfied. The
scattered Ey field is

s _ —Locosg Py (cos®) .1, sy u _
Eo  kor Z [ } sng {ann (koT)} P, (cosf)sind
which, when kr — oo, becomes
s _ _EO COS¢ 1 =ikor Pl (cos®) . _— ket o1 )
B = Z 7hor] “sng [bn "1 (—=4) e77*7] P,/ (cos ) sin 6

| E P! 5 0
= ]km? e Ikor cosanZ::lj" {ang’ (cosf)sinf — cn%}

13



The total Ey field is

L _ LoRT 1 Ap
() jwsorsiHG 0rdg¢
o EO Sin(b ( ) i 1
= o {an n (kor) + cn H (kor)] 50 (Py (cos9))
on G, =9
~rand | 9 (€59 Z::a_ [aan (kor) + by H? (kzor)]P <cos9)]

_ —Epsing <& = 53(2) Vi mvann [ 7 5 2) P, (cos9)
= ; {aan (kor) + e H,, (kor)} P, (cosf)sinf — j {aan (kor) + bp H,, (k;or)] g

At r = a, the PEC boundary condition states that total Ey = 0, i.e.,

—F 73
E¢ = 70 §1n¢ E an n k;oa) anAJﬂ 1(12) (koa) P,}/ (COS 9) sin ¢
koa = (koa)
. = J’ (koa) = P! (cos®)
_ 7 —Zn M0 r(2) n\~"7
] laan (kOa) 2% /\(2)/ (k a) n (k()a) sin @

=0
The scattered Ey field is

. —Eo sm(;S y N ) P! (cos0)
E; E— [cn (kor) ] P, (cosf)sinf — j [ann (kor)} o
which, when kr — oo, becomes
; —E sin - n o —ikerr PL(cos®
E; = 0 d) Z Le=iko | Py (cos@)sin® — j [b,j" T (—j) e gko ] #
— ]EO e Jkor n P’r% (COS 9) _ 1/ .
= kor sin ¢ Z:] {bn g cn P, (cos ) sin
The H field components are
1 [0
H, = — + k| FF
Jwhtg (37"2 * 0) '
 —ivEaEy 9 N 5 70
T g ine 32 on (g +48) o) e (353 48) B2 o] e
—iEy

= » sin ¢ Z {an (kor) + an (kor)] Pl (cos ) + [anjn (kor) + an( (kor)} L (cos 0)
0 n=1
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1 9Ar 1 0Ff

H =
o rsinf O¢ + Jwpor 0rod
= _ B ]9 (cos ¢) Z[a (kor) + b, H(2 (k r)}Pl(cosﬂ)
wityrsin g ¢ —~ e AR 0
—l—m sin X:: o [aan (kor) + ¢, H? (kor)} 50 (P, (cos))
_ —Epsing 5 (2) P} (cos ) , ~(2) , .
= oo nzl [ n (kor) + b H (k:or)} g [anJ (kor) + cn Hy, (kor)} P’ (cosf)sind
At r =a,
_E R Pl .
Hy — osm(bz and, (koa) anA(ﬂHfﬁ) (koa) M
Nokoa HP (koa) sin ¢
7k R
—j land!, (koa) — an;]@)(—oa)H,(f)’ (koa) | P’ (cosf)sind
H (koa)
T 77(2 T P! (cos 9
 —E Slnd) Z [J (koa) HT(I ) (koa) — J! (koa) 7(l ) (k:oa)] m
o ok - 77 i P'(cos 0) sin
Nokoa [T (koa) S (ko) = T, (koa) HY? (koa)| Zieestlein
Simplifying the quantities in the brackets by invoking the Wronskian (W =JH —JH=— j) we obtain
—Fysin ¢ . Pl(cosf) L P’ cos@ sin @
Hy (koa) = Tzan [—7] =) ( — — [—]] ( )
Nokoa  ~— Hy”" (koa)sin @ jHE (koa)
_ £, sin ¢ i o (fl (cosf) P (cos 0) sin 0
Ny koa HY (koa)sin 6 jHE (koa)

which allows us to calculate the $ directed electric current density:

Jy = Tx §H9 (1)
7. = ' sm 0] Z P1 (cosf)  P'(cosf)sind
¢ koa k:oa) sin 0 JHP (koa)

Equation 1 agrees with Equation (6-103) of [2 ]
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104f 1 9FF

H =
¢ r 00 + Jwiorsin@ Orog
0
[ ] ]
Ey 0 — 0
+jwu0korsin€ l&? sin @) X:: 5 [a T (kor) + e H? ( Or)} L (cos 0)
E r —~ A Pl 0
= 7;)023i¢ {an ' (kor) + by H® (kor)} PY (cos0)sinf — j _anJ,’L (kor) + ¢, H?' (k:m“)] %
At r=a,
E T, (koa) = ]
H, = 0C0s ) 3 andy (koa) — an %Hﬁz) (koa)| Py (cos @) sin 6
konga =~ Hy”" (koa) |
5 Jo (koa) - P} (cosf
—j lan T’ (koa) — anA(z)(ioa)Hff)’ (koa) M
(koa) sinf
7 77 P} (cos 0) sin 0
Eycos ¢ i [Jn (koa) B (koa) — T (koa) P (kzoa)] %
- An [ - 5 "P(cos 0
Romoa =" | 45 | (koa) B (koa) = T, (hoa) B (koa) | et
o o] 1/ . 1
_ _jEO cos ¢ Z u P ((C())S ) sin 6 ]P (cos )
o koa Hy (koa) koa sin @
which allows us to calculate the @ directed electric current density:
@Je = —?X$H¢ (2)

Jo — j cosqS Z PY( c2())/s ) sind N A?ZI)?’,{ (cos9)
“koa v (koa) n (koa)siné

Equation 2 agrees with Equation 6-103 in [ ].

3.2 Summary of the Analytical Solution

3.2.1 Currents

Ty = cos cos ¢ Z Pl’ (cosf)siné N Aéf?} (cos9)
" koa (koa) n (koa)siné
. . (o) Pl P, . . 0
Jy— LEO sin ¢ Z o, A(2)7 (cos®) (Ac(o;) 0) sin
Mo koa Hy (koa)sin®  jHy (koa)

3.2.2 Near Fields

= —jEy cosqﬁz [an (kor) + b H" (kg r)} P! (cos8) + |anJy, (kor) + by HP (kor)] P! (cos )
n=1
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—F, p! N ~
Ep = oCOS¢ Z { ' (kor) + en H® (o )} —ns(i(rio@se) —j [anJ,’l (kor) + b, H?' (k;or)] PY (cos ) sin 6

P} (cos )

E, = _EO squ Z [ o (kor) + e H® (k’or)} PY (cos0)sinf — j [anJ (kor) + by H? (kor)} gz

_ It smqﬁz [ " (kor) + cn H" (ko r)] P! (cos0) + [ i (kor) + ey HP) (kor)} P! (cos )

 —E, Sln¢ @) Pl(cosO) [ o oy L
Hy = Trokor & |:a/n ' (kor) + bn H® (ko )} g Y {aan (ko) + cn H, (k;or)] P’ (cosf)siné
_ o GIAS g2 i _ 2 (2) P! (cos®)

nokor 2~ [an w (kor) + b, Hy; (k:or)} P} (cosf)sinf — j [anJ (kor) + co H'® (kor )} -

3.2.3 Far Fields

0 1
Ej = 7Eo eIk cos ¢ Zj" {anﬁ’ (cos®)sinf — cnw}

Tor sin 0
0 n 1

. jEO ke PL( cos@) ,
Ej = o Jko smqij { — ¢, PY (cosf) sinf

3.3 Code Implementation of the Analytical Solution

The formulas in Section 3.2 were implemented in the code pec sphere. Pec sphere calculates
quantities of interest versus 6, which varies from 1° to 179° in 1° increments. The other two observation
coordinates, ¢, and rqps, are set by the user. In the code, Ey = 1.0 V/m.

User input to pec_ sphere is interactive and consists of the following:
e Number of terms N used in the summations.

e Frequency (Hertz).

e Sphere radius a (meters).

e Observation radius 7.5 (meters).

e Observation phi ¢, (degrees).

The results are written to five output files, each of which contain 179 rows (1 row per 6 value) and
seven columns. When necessary, zeros are put in certain columns of each row in order to make the format
consistent. All angles (6 and phase) are given in degrees.

Output files:

e pec_sphere jt.txt: 6, |Jy|, phase Jy, 0.0,0.0,0.0,0.0

e pec_ sphere jp.txt: 0, |Jy|, phase Jy, 0.0,0.0,0.0,0.0

e pec_sphere enf.txt: 0, |E,|, phase E,, |Ey|, phase Ey, |Eg|, phase Ey
e pec_sphere hnf.itxt: 0, |H,|, phase H,, |Hg|, phase Hy, |[Hy|, phase Hy

e pec_sphere fl.txt: 6, 0.0, 0.0, )re+-7krEg'f‘ , phase re"’jkTng, ‘re"’jkTng‘ , phase Te+-7kTE£'f.

17



The first two files (pec__sphere jt.txt and pec_ sphere jp.txt) contain the 6 and a directed electric
current density that exists on the surface of the sphere at ¢,,,. The next two files (pec__sphere enf.txt
and pec_sphere hnf.txt) contain the spherical components of total E and H fields in the near field
region at (rops, Gops) - The last file (pec sphere ff.txt) contains the 6 and ¢ directed components of E*
in the far field multiplied by the factor (re*jkor).

3.4 Convergence Study of the Analytical Solution

We will first examine the convergence behavior of the analytical solution as we increase the number
of terms in the summations. Anticipating that this solution will eventually be compared to a numerical
solution, we will use a sphere radius of a = 0.9989497 meters for reasons that will be explained later. We
will observe all quantities at ¢,,; = 45°. Near field quantities will be observed at rops = 1.1 meters. We will
look at convergence for three different frequencies: f = 2.997925 x 107 Hz (koa ~ 0.27), f = 2.997925 x 108
Hz (koa ~ 2.0m), and f = 2.997925 x 10° Hz (koa ~ 20.07), which span the frequency range of the numerical
solutions.

In the following tables we compare the root mean squared relative error (RE,.,,s), which is defined as

RE. .1 /179'5° IRy (0) — React (0))]
S VT Jose | Rmax |2

where Ry () is the compared quantity (Jg, Eg, etc...) summed up to N modes, Regzqct (0) is the exact
quantity and R2X, is the maximum value of |Regzqct| over all values of §. This choice of normalization
keeps errors in the small values of Ry from dominating RE,.,s. For the tables in this section we will let
Rezact = Ri20 and then demonstrate that the answer has converged to eight digits of accuracy (indicated
by RE; s = 0.0 in the tables). Each of the table entries gives RE;,,s as a function of number of terms (V)

for various quantities calculated. Note that RE,,,s is the actual error and not a percentage.

o (3)

For the low frequency, f = 2.997925 x 107 Hz, the analytical solution has converged to eight digits in
20 terms.

N [ Jy Jy

5 [ 0.263x1072 | 0.321x10 2

10 [ 0.280x1073 | 0.132x10~"

20 | 0.0 0.0

N | E, Ey Ey £} B’/
5 [ 0.359x1072 | 0.973x10 2 | 0.793x10~2 | 0.175x10° | 0.166x10~°
10 | 0.408x10~% | 0.290x10~7 | 0.206x10~7 | 0.0 0.0
20 | 0.0 0.0 0.0 0.0 0.0
N | H, Hy Hy Maximum Error

5 [ 0.121x10° T [ 0.347x10°2 | 0.284x102 | 0.121x10° T

10 | 0.169%x10~ 7 | 0.684x10~% | 0.584x10~ 3 | 0.290x10~ "

20 | 0.0 0.0 0.0 0.0

For the intermediate frequency, f = 2.997925 x 10® Hz, the analytical solution has converged to eight

digits in 30 terms.
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N | Jy Jy

10 | 0.586x10~" | 0.536x10~!

20 | 0.498x10~7 | 0.696x10~7

30 | 0.0 0.0

N | E, Ey E, E) E7/
10 | 0.116 0.662x10~" | 0.689x10~' | 0.218x10=2 | 0.196x10~2
20 | 0.263x10°% [ 0.290x10=% | 0.198x10° | 0.0 0.0
30 | 0.0 0.0 0.0 0.0 0.0
N | H, Hy Hy Maximum Error
10 | 0.145 0.799x10~ T | 0.830x10~T | 0.145

20 | 0.570x107% | 0.222x107% | 0.144x107% | 0.570x10~°

30 | 0.0 0.0 0.0 0.0

Finally, for the high frequency, f = 2.997925 x 10° Hz, the analytical solution needs 110 terms in order

to converge to eight digits.

N [ Jy Js

10 | 0.691 0.475

50 | 0.483 0.203

70 [ 0.263x10~ T [ 0.143x10° T

90 | 0.248x10~7 | 0.350x10~7

100 | 0.0 0.201x10~ M

110 | 0.0 0.0

N | E, Ey E, E} E]7

10 | 0.482 0.386 0.496 0.899x10~ T | 0.885%x 10~ 1.
50 | 0.458 0.218 0.382 0.384x10~ 1 [ 0.384x10° T
70 | 0.202 0.778x10~T | 0.148 0.102x1073 | 0.915x10~2
90 | 0.489x10~7 [ 0.322x10° | 0.290x10~° | 0.0 0.0

100 | 0.322x10~% | 0.330x10~% | 0.180x10=% | 0.0 0.0

110 | 0.0 0.0 0.0 0.0 0.0

N H, Hy Hy Maximum Error

10 | 0.452 0.397 0.550 0.550

50 | 0.402 0.178 0.404 0.458

70 | 0.183 0.608x10~T | 0.149 0.202

90 | 0.457x107° [ 0.245x105 | 0.283x10~° | 0.489x10~°

100 | 0.158x10~7 | 0.305x10~° | 0.319%x10~% | 0.158x10~ "

110 | 0.0 0.0 0.0 0.0

We conclude that if we use 120 terms in the analytical solution, the solution is accurate to 8 digits and
is adequate for comparing to a numerical solution.

3.5 Procedures for Checking the Numerical Solution of a PEC Sphere

In this section we outline the procedures that must be followed to compare a numerical solution of the
PEC sphere to the analytical solution. We not only have to properly set up the input decks to make the
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Figure 2. Grid of a sphere using triangular elements with a 10cm edge length

best comparison possible, but also run additional code to get the numerical data in the proper format for
comparison.

To organize the many computer runs needed for comparison, we created separate input files for each
test problem and named the input and output files to various codes in the comparison sequence consistently.
The sphr 10cm part of the file name indicates a sphere gridded with elements having a 10 cm edge
length. The number/letter combination part of the file name (0a for example) indicates the equation to
be solved and the excitation. The numbers 0, 1 and 2 stand for the EFIE, MFIE and CFIE respectively.
The letters a through e indicate different frequencies for the Jy solution. The letters f through j indicate
different frequencies for the Jy solution. An example file name — sphr 10cm_Oa.eig — indicates that
this problem is a PEC sphere gridded with elements having a 10 cm edge length. The sphere is solved with
the EFIE, the frequency is 29.979 MHz, and the excitation is a plane wave with 6;,. = 180°, ¢, . = 315°
and Hy = (+2.65442 x 1073,0.0) (an excitation suitable to obtain Jy).

inc

3.5.1 Comparing Surface Currents

1. Grid the surface of a sphere with a regular, triangular mesh. Figure 2 shows the mesh used
throughout this report, where the radius of the geometric sphere is 1 meter and the element edges are
nominally 10 cm long. Eiger performs calculations on the faceted element sphere inscribed within the
defined geometric sphere so the numerical solution will be for a sphere with a circumference slightly less
than that of the geometric sphere. This difference in size must be taken into account for the most precise
comparison with analytical results.

The post-processor, moench, can calculate the current density along a line located on the surface of
the sphere. The current can be either parallel to, or perpendicular to this line. The line is defined by the
user listing a set of element pairs. Each pair defines an edge, which is common to both elements. Moench
calculates the current density flowing across each edge as well as the cumulative distance from edge to edge.

To calculate Jy we choose pairs of elements whose common edges are perpendicular to 0. The centers
of the common edges are all located at ¢,,, = 315° and the edges are chosen in an order so that 6 varies
from smallest to largest value. The first edge chosen is located an arc distance of 0.0945 meters from the
sphere axis. To calculate J, we choose pairs of elements whose common edges are perpendicular to ¢ at
bope = 2700, Again, the edges are chosen in an order so that # varies from smallest to largest value. The
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Edges for

J, at ¢ =315"
Edges for J,
at ¢ =270"

Figure 3. Generating an element list to plot current

center of the first edge is located an arc distance of 0.0523 meters from the sphere axis. Figure 3 shows
a few elements from Figure 2 to illustrate these points. Our strategy throughout this report will be to
always keep the grid and these element pairs the same and vary frequency and angle of incidence in order
to compare to various analytical quantities.

Since we are comparing to physical currents in the analytical solution, we must make the grid so that
the element normals point outward in order to avoid sign errors.

2. Run the pre-processor, jungfrau, to define the electromagnetic problem. The incident plane wave
in the analytical solution propagates in the +72 direction. Therefore, we defined the incident plane wave in
jungfrau to have 6;,. = 180°. We then choose ¢;,. in jungfrau to orient the incident wave with respect
to the elements chosen in Step 1.

inc

For Jp we set ¢;,,. = 315° and H, = (4+2.65442 x 1073,0.0) A/m, which aligns the incident 1 V/m
E field with the center of the element edges at ¢,,, = 315° and drives the maximum current across these

edges. For the analytical solution we will set ¢ ,, = 0% to align the observation angle with the incident F
field.

obs

For J, we set ¢;,. = 0° and Hy = (+2.65442 x 1072,0.0) A/m. This drives the maximum Jy across
the edges at ¢,,, = 270°. For the analytical solution we will also set ¢_,, = 270°.

obs obs

Note that since the edges for Jp and J, are not at the same value of ¢, (and can never be at the same
value of ¢ because of discretization) we must create an input file for each comparison and run eiger multiple
times. An example jungfrau input file for Jy is sphr 10cm_ Oa.in, which is printed in Appendix II.

3. Run eiger. Example input is sphr _10cm_ Oa.eig. Example output is sphr 10cm__Oa.mnbh.

4. Run moench asking for unknowns along a line (the ul option) and give the set of element pairs
from Step 1 to plot either Jy or J, along a constant ¢ value. An example moench input file for Jy is
moench sphrlOcm_jt.in, which is printed in Appendix II. Output is given in a user-named *.lin1 file

(sphr_10cm_ Oa.linl, for example).

5. Use a text editor to strip the header information from the *.linl file. The zero location of the
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*.lin1 file is the element edge designated by the first pair of elements, which is not the zero location of the
analytical solution. Run moench current offset to add the proper location offset to the first column

of the *.linl file. For Jp we add 0.0945 meters and for J, we add 0.0523 meters. An example output file is
jt_10cmOa_offset.txt. This completes the numerical portion of the comparison.

6. Run pec_ sphere to obtain the analytic solution. The number of terms (n) is set to be 120 for
each run based on what we found in the convergence studies in Section 3.4. The frequency of the analytical
solution is identical to that of the numerical solution. The radius of the analytic sphere is slightly smaller
than 1.0 meters (a = 0.9989497 meters) so that the numerical element sphere and the analytic sphere have
the same circumference. To compare with the numerical solution of Jy, @, is set to be 0° (recall that the
analytic F field is aligned along ¢ = 0°). To compare with the numerical solution of Jg, Pops 1 set to be
270°. The observation radius 7y is not used in calculating the current and can be set to any value. The
input file for Jy (pec_sphere.in) is printed in Appendix II. Jy is output to the file pec_sphere jt.txt
and Jy is output to pec_ sphere jp.txt.

7. Run sphere surface compare to find the point-wise relative error and root mean squared
relative error (RE,,s given by Equation 3) between pec sphere jt.txt and jt 10cmOa _offset.txt.
When applying Equation 3 we assume that the analytic solution is the exact solution (Rezact) and the
numerical solution is Ry. Since jt 10cmOa_offset.txt contains non-uniformly spaced data, the code
linearly interpolates the analytical solution. Relative error as a function of  is output in error.txt;
current as a function of ¢ is output in jt _plot.txt.

3.5.2 Comparing Normal E fields

Eiger can calculate the F field normal to and at the centroid of a set of user-designated elements
without resorting to moench. The following procedure allows us to compare the numerical E,, to the
analytical solution.

1. Step 1 is the same as in comparing surface currents.

2. Run jungfrau with the same incident field as was used in calculating Jy. Request the normal
field for the set of elements used for plotting Jy. These elements have centroids that are clustered around
bops = 3159, The elements are ordered so that 6 varies from smallest to largest value.

3. Run eiger. Example output file containing the normal fields is sphr _10cm__0Oa.nor.

4. Run eiger enormal offset, which calculates the spherical coordinates of each E, element’s
centroid. The coordinates will vary non-uniformly in # and may vary in ¢ as well, since due
to the construction of the grid, the element centroids may not be perfectly aligned along ¢ ;..
Eiger enormal offset rejects elements whose centroids fall outside a user-defined tolerance (A)
around ¢,,, and outputs E, on the remaining elements to a user-named file. An example output file is
enormal 10cmOa _offset.txt. This completes the numerical portion of the comparison.

5. Run pec_ sphere with ¢,,, = 0.0° and 74, = 0.9989297 meters (the sphere radius). Output is
pec_sphere enf.txt.

6. Run sphere surface compare. Relative error as a function of 6 is output in error.txt; F, as
a function of ¢ is output in jt _plot.txt. Only the first two columns in each file are used.
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3.5.3 Comparing Near Fields

In this section we will only consider the F near field comparison since the H near field is analogous.
1-3. Steps 1 through 3 are the same as those for comparing the Jy surface current.

4. Run sphere jfg build to generate a grid of bars along an arc. The bars will define points where
near fields are to be calculated. The code generates 179 disconnected bar elements all having centers at
user-defined coordinates rqr. and ¢,,,. The 04, coordinates range from 19 to 1799 in 19 increments.
The points and elements are written out in *.jfg format. This special grid allows us to exactly match
the observation points of the analytic case, eliminating the need for interpolation, which was necessary in
comparing surface quantities like current and normal E field. For this test case we generated an arc at
Tare = 1.1 meters and ¢,,. = 0°. Note that since the input F field is directed along ¢,,. = 315° we are
observing the near fields at an angle +45° with respect to the incident F field. We need to account for this
when running the analytic case.

5. Run moench asking for near fields (nf option) on a read-in grid (re option) and give the name of
the *.jfg file generated in Step 4 as the read-in grid. An example input file moench sphrl.1 nfld.in is
printed in Appendix II. An example output file is sphr10cmOa_rl.1 0Odeg.nfldO, the name of which
indicates that the near field was calculated at a radius of 1.1 meters and ¢,,, = 0°.

6. Run moench r2s nfld to convert the total &/ and H fields in sphr10cmOa rl.1 Odeg.nfld0
from rectangular to spherical coordinates. The output is given in two user-named files: one for E fields
and the other for H fields. Both files have a format identical to that of the analytic near field file. An
example output file for the E field is named enf 10cmOa.txt. This completes the numerical portion of
the comparison.

7. Run pec_sphere with ¢, = 459 and rops = 1.1 meters to match the numerical case. An example
input file is printed in Appendix II. Output is in pec_ sphere _enf.txt.

8. Run sphere field compare to find the relative error as a function of # and RMS error between
near field components. Output is in error.txt.

3.5.4 Comparing Far Fields

1-3. Steps 1 through 3 are the same as those for comparing the Jy surface current.

4. Run moench asking for far fields (ff option). Ask for the far fields at a single value of ¢ = 0°
and 179 values of 6 from 1° to 179°. An example input file moench sphrl0cm_fiid.in is printed in
Appendix II. An example output file is named sphr10cmOa_0deg.fld0, which indicates that the far
field was calculated at ¢ = 0°.

5. Run moench fHd to strip out the scattered far field data. An example output file is named
sphr10cmOa_ff.txt. This completes the numerical portion of the comparison.

6. Run pec_sphere with ¢, = 459 to match the numerical case. The quantity 74 is unimportant
since the observation radius is normalized out of the far field calculation. Output is in pec_sphere ff.txt.

7. Run sphere field compare to find the relative error as a function of # and RMS error between
far field components. Output is in error txt.
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Comparison of Surface J, Magnitude
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Figure 4. Comparison (left axis) and relative error (right axis) of |Jy| vs. 0 for f = 299.7925 MHz

3.6 Numerical Results

In this section we compare the numerical solution to analytical solution for all quantities of interest,
which are the surface current density, all components of ¥ and H in the near field, and Ey and Ey4 in the
far field. We make the comparison for each of the equations that can be used by Eiger: the electric
field integral equation (EFIE), the magnetic field integral equation (MFIE) and the combined field integral
equation (CFIE). For the EFIE calculation we show plots of all the quantities of interest at a single
frequency and summarize the RMS relative error for all frequencies in tables. For the other equations we
only show results for the surface current density — showing plots for a single frequency — and summarizing
the RMS relative error for all frequencies in tables. Results are also shown for all equations when the
frequency is such that an internal resonance occurs.

3.6.1 EFIE

In Figures 4 through 14 we show results for the EFIE calculation. In each figure we compare the
magnitude of each quantity of interest computed by Eiger (isolated solid triangles) to the quantity
calculated analytically (solid lines) as a function of §. The left hand axis is the magnitude of the quantity.
Also plotted in each figure is the relative error (line with open squares), which goes with the right hand
axis. The frequency was set at 299.7925 MHz, which corresponds to the rule of thumb that the element
edge length should be approximately 1/10 of a wave-length or smaller for good results. The relative
error measures both magnitude and phase. Therefore, a high relative error when the magnitude shows
good comparison implies that differences in phase are dominating the error. The RE,,,s; (Equation 3) is
evaluated and printed in the subtitle.

In the tables below we study the RMS relative error for all quantities as we vary the frequency,

keeping the grid fixed. Column 1 is the frequency in MHz, column 2 is the number of basis functions
per wavelength, and the remaining columns shows the RMS relative error for each quantity. The last
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Figure 5. Comparison (left axis) and relative error (right axis) of |Jy| vs. 8 for f =299.7925 MHz
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Figure 6. Comparison (left axis) and relative error (right axis) of E,, vs. 6 for f =299.7925 MHz
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Comparison of E, Magnitude
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Figure 7. Comparison (left axis) and relative error (right axis) of E, vs. 6 for f = 299.7925 MHz
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Comparison of E¢ Magnitude
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Figure 9. Comparison (left axis) and relative error (right axis) of Ey vs. 6 for f = 299.7925 MHz
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Figure 11. Comparison (left axis) and relative error (right axis) of E(’;f vs. 6 for f =299.7925 MHz
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Comparison of Hy Magnitude
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Figure 13. Comparison (left axis) and relative error (right axis) of Hy vs. @ for f = 299.7925 MHz
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column of the last table shows the maximum error over all the columns. The, maximum relative error
increases from 0.77% when we discretize at 100 basis functions per wavelength to 37% when we discretize
at 5 basis functions per wavelength. The error increases monotonically as the number of basis functions
per wavelength decreases. Also note that the maximum error is usually from the F,, column.

Frequency (MHz) | basis/A | Jy Jo E,
29.979 100 0.77x1073 [ 0.12x10~2 | 0.51x10~2
199.862 15 0.11x10 T [ 0.77x102 | 0.25x10° T
299.793 10 0.30x10~T | 0.21x10~" | 0.56x107"
428.275 7 0.83x10~ T [ 0.28x10~T | 0.10
599.585 5 0.29 0.20 0.37
Frequency (MHz) | basis/A | E, Ey Ey Eg 7 ng
29.979 100 0.14x1072 | 0.77x1072 | 0.67x1072 | 0.18x1072 | 0.24x102
199.862 15 0.11x10" T [ 0.86x10~2 | 0.58x10~2 | 0.43x10"2 | 0.41x10 2
299.793 10 0.25x10~T [ 0.13x10~" | 0.77x1072 | 0.73x1072 | 0.72x102
428.275 7 0.52x10~ T [ 0.20x10~ T [ 0.11x10~ T [ 0.13x10~T | 0.12x10° T
599.585 5 0.10 0.35x10~T [ 0.22x10~" | 0.19x10~" | 0.18x107!
Frequency (MHz) | basis/\ | H, Hy H, Max Error
29.979 100 0.55x102 [ 0.10x10~2 | 0.74x1073 | 0.77x10~2
199.862 15 0.61x10~2 | 0.58x1072 | 0.77x1072 | 0.25x107 "
299.793 10 0.80x1072 [ 0.14x10° T [ 0.20x10~ T | 0.56x 10T
428.275 7 0.11x10"T [ 0.35x10~ T | 0.44x10~T | 0.10
599.585 5 0.19x10~ T [ 0.95x10~ T [ 0.93x10~T | 0.37

3.6.2 MFIE

In Figures 15 through 18 we show results for |Jy| and |J,| solved by all three equations that can be
applied to the PEC sphere (EFIE, MFIE, and CFIE) compared to the analytic solution. The discretization
is 10 basis functions per wavelength. At this frequency, the CFIE shows the best comparison, followed by
the EFIE and finally the MFTE.

The following table shows the RMS error for Jy and Jy at various frequencies when the MFIE is
applied.

Frequency (MHz) | basis/A | Jy Js
29.979 100 0.12x10~1 | 0.13x107!
199.862 15 0.24x10~1 | 0.19x10~?
299.793 10 0.41x10~1 | 0.32x107!
428.275 7 0.62x10~1 | 0.32x10~1
599.585 ) 0.11 0.14

3.6.3 CFIE

The following table shows the RMS error for Jy and Jy4 at various frequencies when the CFIE is applied.

Note that the CFIE has a lower RMS relative error that either the EFIE or MFIE.

30



Comparison of Surface J, Magnitude
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Figure 15. Comparison of |Jy| vs. 6 as solved by different equations for f = 299.7925 MHz
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Comparison of |J, | at Internal Resonance
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Figure 19. Comparison of |Jy| vs. 6 as solved by different equations at resonance (f = 289.70 MHz)

Frequency (MHz) | basis/A | Jy Jg

29.979 100 0.63x10~2 | 0.75x10~ 2
199.862 15 0.98x102 | 0.11x107 "
299.793 10 0.18x10~ T [ 0.16x10°T
428.275 7 0.35x10~T | 0.23x107 "
599.585 5 0.67x10"T [ 0.34x10°T

3.6.4 Internal Resonance Test Case

At certain frequencies, even though we are actually solving a scattering problem, the interior of the
surface that defines the sphere becomes resonant causing problems for the EFIE and MFIE formulation.
These problems manifest themselves in an impedance matrix with a high condition number and a current
density corrupted by the sourceless solution of the resonant cavity. One such frequency for the PEC sphere
considered here is 289.70 MHz, (ka = 6.062). At this frequency the TM to 7, n=1, m=4 mode is resonant.

Figure 19 shows |Jy| versus 6 at the 289.70 MHz as calculated by the EFIE, MFIE and CFIE. Note
that only the CFIE maintains its low RMS relative error, as shown in Figure 20. The error for the other
two equations increases significantly.

4 Lossless Dielectric Sphere Test Case

4.1 Derivation of the Analytical Solution

If the sphere is a dielectric, with permittivity eq = €,¢9 and permeability p; = p, 1o, the potentials
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Figure 20. Relative error for Jy vs. 0 as solved by different equations at resonance (f = 289.70 MHz)



outside the sphere are given as [2]

Af =20 cosqﬁz [an ", (kor) + by H (kor)} P! (cos )
= — s1n¢) Z {an (kor) + cnH (kor)} P! (cos )
while the potentials inside the sphere are glven as

Ey
A= o cos ¢ Z dnJ,, (kqr) Pr (cos )

n=1

E; :—stSZen n (kar) P, (cos@)

where kg = w,/E4/14 is the wavenumber in the dlelectrlc material,

i (2n+1)
anp = ————
n(n+1)
o _—Eared, (kow) T (kaa) + EoriaTy (koa) T, (aa)
VERH Y (koa) T (kaa) — \/EoiigHY (koa) T, (kaa)
. — JEafigIn (koa) T, (kaa) + \/Eoig ), (koa) T (kaa) "
VERHY (koa) T, (kaa) — \/EoligH" (koa) T (Kaa)
d —Jv/EdHo a
Jsd,uOH() (kzoa) n (kqa) — ,/Eo,udH (k:oa)JT’l (kqa)
o — Jv/Eolig

= = = = Qn
\ /EdMOHT(IQ) (koa) J! (kqa) — | /EoudH,(f)/ (koa) Jy, (kqa)

Outside the sphere, the fields are the same as given in Section 3.2 with new values of b,, and ¢,. Inside the

sphere the fields are:
1 o
E. = k5 ) AS
Jjweq <8r2 * d> "

- f]EO,uTcosqSZd [ (kar) + T, (kdr)} P! (cos )

E o -1 BF; 1 8214;
O = sing oo} Jjwegr Orol
_ —Bycoso o = Pl (cos ) TR
N kor nz::l {e”‘]" (Kar) sin 0 —J : —dpJ,, (kar) P (cosf)siné
10F - 1 QA—
E¢ = - 0 T 9 r

r 00 + jwz—:dr sin @ Ord¢
_ 1
= EO squ Z [En w (kar) Py (cos @) sing — j, / MrdnJ' (kar) M}

sin 0
n=1

1 2
H, = - <8_ + kﬁ) E-
JWiq

= _zoEO ersin g Z €n [JH (kar) + Tn (kdr)} P, (cos6)
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1 9A; 1 O*F-

H =
o rsing d¢ + Jjwigr 0rof
—Epsing P1 Py (cost) . [e, 4 1 .
dyJr, (kar —end,, (kar) P, 0 0
nokor ;{ J ar sin 6 —J Mre Iy (kar) P, (cos 0) sin
_ 2 —
Hy - 104, 1 0°F;

r 00 + Jwpgrsin@ Ordg
0 R R 1
_ Zocosg Z [dan (kar) Py (cos0)sinf — 5, /E—TenJ,’L (kar) M}
Hop

Nokor  “— sin

4.2 Code Implementation of the Analytical Solution

The formulas in Section 4 were implemented in the code diel sphere. Diel sphere calculates
quantities of interest versus 6, which varies from 1° to 179° in 1° increments. The other two observation
coordinates, ¢, and rqps, are set by the user. In the code, Fp = 1.0 V/m. Note that the relative
permittivity and permeability (¢, and p,) are both real quantities for the lossless dielectric.

User input to diel sphere is interactive and consists of the following:

e Number of terms used in the summations.

e Frequency (Hertz).

e Relative permittivity of dielectric e, (unitless).
e Relative permeability of dielectric p, (unitless).
e Sphere radius a (meters).

e Observation radius 7.5 (meters).

o Observation phi ¢, (degrees).

The results are written to seven output files, each of which contain 179 rows (1 row per 6 value) and
seven columns. When necessary, zeros are put in certain columns of each row in order to make the format
consistent. All angles, 6 and phase, are given in degrees.

Output files:
e diel sphere jt.txt: 0, |Jy|, phase Jy, 0.0,0.0,0.0,0.0

e diel sphere jp.txt: 0, |Jy|, phase Jy, 0.0,0.0,0.0,0.0

e diel sphere mt.txt: 6, |My|, phase My, 0.0,0.0,0.0,0.0

e diel sphere mp.txt: 0, [My|, phase My, 0.0,0.0,0.0,0.0

e diel sphere enf.txt: 0, |E,|, phase E,, |Ey|, phase Ey, |Eg|, phase Eg
e diel sphere hnf.txt: 0, |H,|, phase H,, |Hg|, phase Hy, |Hy|, phase H,

e diel sphere ff.txt: 6, 0.0,0.0, }re*j’”ng‘ ,

27 re*j’”E(’;f’ , phase re*j’”Eq{f
The first two files (diel sphere jt.txt and diel sphere jp.txt) contain the 0 and gAZ)
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directed components of electric current density. The next two files (diel sphere mt.txt and

diel sphere mp.txt) contain the 9 and $ directed components of magnetic current density. Unlike the
PEC case, which specializes the radius to the surface of the sphere to obtain the current, these results are
for r = rops (not necessarily specialized to the sphere surface). J =7x Hand M = E xT7. Therefore,
when comparing current density, rops must be set to be equal to the sphere radius. The next two files
(diel sphere enf.txt and diel sphere hnf.txt) contain the spherical components of total E and H
fields in the near field region at (7ops, ops) - The last file (diel sphere ff.txt) contains the 0 and &
directed components of E* in the far field multiplied by the factor (re+j ko”).

4.3 Convergence Study of the Analytical Solution

We will examine the convergence behavior of the analytical solution as we increase the number of terms
like we did for the PEC sphere. We will again use a sphere radius of a = 0.9989497 meters. Unlike the
PEC sphere, we will observe near field quantities just off the surface of the sphere at r,,; = 1.0 meters and
bops = 45° in order to capture the convergence behavior of the surface currents, which are related to the
0 and ¢ components of field at this location. We will look at convergence for the same frequencies as the
PEC case: f = 2.997925 x 107 Hz, f = 2.997925 x 10% Hz, and f = 2.997925 x 10° Hz and we will set
er =3, and p, = 2.

For the following tables we will again use Equation 3, let Reyqct = Ri120 and demonstrate that the
answer has converged to eight digits of accuracy (indicated by RE,,,s = 0.0 in the tables). Each of the
table entries gives RE,.,,s as a function of number of terms (N) for various quantities calculated. Note that
RE,; s is the actual error and not a percentage.

For the low frequency, f = 2.997925 x 107 Hz, the analytical solution has converged to eight digits in
20 terms.

N | E, Ey Ey £} Bl

5 [0.282x1072 | 0.238x1072 [ 0.204x1072 | 0.139x10~° | 0.128x10~°
10 | 0.535x10~% | 0.926x10~% | 0.226x10=8 | 0.0 0.0

20 | 0.0 0.0 0.0 0.0 0.0

N | H, Hy Hy Maximum Error

5 | 0.296x1072 | 0.256x1072 | 0.216x1072 | 0.296x10~2

10 | 0.472x10~8 | 0.506x10~8 | 0.751x10~% | 0.926x10~8

20 | 0.0 0.0 0.0 0.0

For the intermediate frequency, f = 2.997925 x 10® Hz, the analytical solution has converged to eight
digits in 30 terms.

N | B, Ey E, E) £l

10 | 0.573x10~1 | 0.113 0.132 0.109%x1072 | 0.164x102
20 | 0.660x10~7 | 0.178%x10~7 | 0.167x10~ " | 0.0 0.0

30 [ 0.0 0.0 0.0 0.0 0.0

N | H, Hy Hy Maximum Error

10 | 0.233 0.142 0.908x10~T | 0.233

20 | 0.319x10~7 [ 0.110x10~7 | 0.203x10~7 | 0.660x 10"

30 | 0.0 0.0 0.0 0.0
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Finally, for the high frequency, f = 2.997925 x 10° Hz, the analytical solution needs 110 terms in order

to converge to eight digits.

N | E, Ey E, E}’ E]J

10 | 0.229 0.233 0.231 0.895x10~T | 0.900x10~!
50 | 0.217 0.128 0.150 0.400x10~T [ 0.395%x10~ T
70 | 0.146x107! | 0.797x1072 | 0.113x10~! | 0.109x10~3 | 0.125x103
90 | 0.126x10~7 [ 0.667x10~% | 0.101x10~ " | 0.0 0.0

100 | 0.0 0.0 0.0 0.0 0.0

110 | 0.0 0.0 0.0 0.0 0.0

N H, Hy H, Maximum Error

10 | 0.324 0.181 0.257 0.324

50 | 0.291 0.102 0.184 0.291

70 | 0.236x10~T | 0.522x1072 | 0.110x10~ ' | 0.236x10~ T

90 | 0.185%x10~% [ 0.935x10~ 8 [ 0.971x10~% [ 0.126x10~ "

100 | 0.338%x10~° | 0.0 0.0 0.338x10~10

110 | 0.0 0.0 0.0 0.0

4.4 Procedures for Checking the Numerical Solution of a Dielectric Sphere

In this section we outline the procedures that must be followed to compare a numerical solution of the
dielectric sphere to the analytical solution. All of the files are tagged with the name sphr 10cm and
a number/letter combination. The number part (3) is for the dielectric equation and the letter part (a
through t) is for various frequencies and excitations.

4.4.1 Comparing Surface Currents

1. We use the same grid as the PEC case, but since the wavelength inside the dielectric is 1/ V6 the
wavelength outside the dielectric, we will lower the frequency in order to obtain the required number of

basis functions per wavelength inside the dielectric. We will use the same element pairs to define edges as
in the PEC case.

2. Run jungfrau. To compare Jy and J, we use the same incident wave as we did in the PEC test
case. In addition to electric current density, the dielectric sphere has magnetic current density (M). For
all surface current calculations we set 6;,. = 180°.

For My we set ¢,,. = 45° and H, = (+2.65442 x 1073,0.0) A/m, which aligns the incident 1 V/m E
field 90° with respect to the center of the element edges at ¢,,, = 315° and drives the maximum My across
these edges. For the analytical solution we will set ¢_,, = 270° to align the observation angle 90° with
respect to the incident E field.

obs

For M, we set ¢;,,, = 270° and H, = (+2.65442 x 1073,0.0) A/m. This drives the maximum M,
across the edges at ¢,,, = 270°. For the analytical solution we set ¢,,, = 0.

3. Run eiger. Example input is sphr 10cm_ 3a.eig. Example output is sphr 10cm__3a.mnbh.
4. Run moench asking for unknowns along a line (the ul option) and give the set of element pairs

from Step 1 of the PEC case to plot Jy, Js, My, or My along a constant ¢ value. An example moench
input file for My is moench sphrlOcm_mp.in, which is shown in Appendix II. Output is given in a
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user-named *.linl file (sphr 10cm_ 3c.linl, for example).

5. Use a text editor to strip the header information from the *.linl file. The zero location of the
*.lin1 file is the first element edge designated in the element pairs, which is not the zero location of the
analytical solution. Run moench current offset to add the proper location offset to the first column
of the *.linl file. For Jy or My we add 0.0945 meters and for Jy or My we add 0.0523 meters. An
example output file is mp 10cm3c_offset.txt. This completes the numerical portion of the comparison.

6. Run diel sphere to obtain the analytic solution. The number of terms (n) is set to be 120 based
on the convergence studies in Section 4.3. The frequency of the analytical solution is identical to that of
the numerical solution. The radius of the analytic sphere is a = 0.9989497 meters. To compare with the
numerical solution of Jp, ¢, is set to be 0°. To compare with the numerical solution of J, ¢, is set to be
270°. To compare with the numerical solution of My, ¢, is set to be 270°. To compare with the numerical
solution of My, ¢, is set to be 0°. The observation radius r.ps must be set to be the same as the sphere
radius, so rops = 0.9989297 meters. An example input file to calculate My (diel sphere.in) is printed in
Appendix II. Jy is output to the file diel sphere jt.txt, J, is output to diel sphere jp.txt, My to
diel sphere mt.txt, and M, to diel sphere mp.txt.

7. Run sphere surface compare to find the point-wise relative error and root mean squared
relative error (RE,.,s given by Equation 3) between the analytical and numerical results.

4.4.2 Comparing Near Fields

Near fields are compared exactly like the PEC case except the analytical solution is found by running
diel sphere.

4.4.3 Comparing Far Fields

Far fields are compared exactly like the PEC case except the analytical solution is found by running
diel sphere.

4.5 Numerical Results

In Figures 25 through 32, we follow the procedures of Section 4.4 to compare the numerical results to
the analytical results. In each figure we compare the magnitude of each quantity of interest computed by
Eiger (isolated solid triangles) to the quantity calculated analytically (solid lines) as a function of §. The
left hand axis is the magnitude of the quantity. Also plotted in each figure is the relative error (line with
open squares), which goes with the right hand axis. All of these results are at f = 122.38978 MHz where
the elements have an edge length of 1/10 of the wavelength inside the dielectric sphere.

In the tables below we study the RMS relative error for all quantities as we vary the frequency, keeping
the grid fixed. The frequency in column 1 along with the nominal size of the element (10cm) yields the
number of basis functions per wavelength shown in column 2. The wavelength is that inside the dielectric
sphere, (1/4/6 of the wavelength outside) so the frequency is uniformly lower than the PEC test cases. The
remaining columns show the RMS relative error for each quantity of interest.

The table below shows the RE,.,,,s for all components of surface current density.
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Comparison of E. Magnitude
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Figure 21. Comparison (left axis) and relative error (right axis) of E, outside the dielectric sphere vs. 6 for

f =122.38978 MHz
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Figure 22. Comparison (left axis) and relative error (right axis) of E,. inside the dielectric sphere vs. 6 for

f =122.38978 MHz
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Comparison of E, Magnitude
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Figure 23. Comparison (left
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Figure 24. Comparison (left axis) and relative error (right axis) of Ey inside the dielectric sphere vs. 6 for

f =122.38978 MHz
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Comparison of E, Magnitude
10 basis/wavelength, r=1.1m, phi=45 degree , RE rms =0.42%
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Figure 25. Comparison (left axis) and relative error (right axis) of E, outside the dielectric sphere vs. 6 for

f =122.38978 MHz
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Figure 26. Comparison (left axis) and relative error (right axis) of Ey4 inside the dielectric sphere vs. 6 for

f =122.38978 MHz
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Comparison of H, Magnitude
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Figure 27. Comparison (left axis) and relative error (right axis) of H, outside the dielectric sphere vs. 6 for

f =122.38978 MHz
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Figure 28. Comparison (left axis) and relative error (right axis) of H, inside the dielectric sphere vs. 6 for

f =122.38978 MHz
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Comparison of H, Magnitude
10 basis/wavelength, r=1.1m, phi=45 degree , RE rms =0.66%
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Figure 30. Comparison (left axis) and relative error (right axis)
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Frequency (MHz) | basis/A | Jy Jo My My

12.239 100 0.48x10~1 [ 0.78x1071 | 0.55x10~1 | 0.90x10~*
81.593 15 0.13x10~' | 0.14x10~T | 0.10x10~* | 0.91x10~2
122.390 10 0.11x1071 [ 0.11x107T | 0.95x10=2 | 0.11x10~ T
174.843 7 0.65x1072 | 0.74x1072 | 0.53x1072 | 0.68x10~2
244.780 5 0.11x1071 [ 0.10x10~ T | 0.13x10~Y | 0.11x10~ 1T

When rqps = 1.1 meters (outside the sphere) the RMS errors for the E field components are shown in
columns 3 through 5 in the following table. Columns 6 and 7 are the far field errors.

Frequency (MHz) | basis/\ | E. Ey E, Eg 7 Eé:f

12.239 100 0.60x10=2 | 0.83x10~2 | 0.10x10~! | 0.12x1072 | 0.15x10~2
81.593 15 0.51x1072 | 0.54x1072 | 0.67x1072 | 0.42x1072 | 0.47x10~?
122.390 10 0.13x10~1 | 0.52x1072 | 0.42x1072 | 0.74x1072 | 0.65x10~2
174.843 7 0.71x1072 | 0.43x10~2 | 0.39x1072 | 0.32x1072 | 0.30x10~2
244.780 ) 0.24x1071 [ 0.11x10~ | 0.15x10~% | 0.83x1072 | 0.10x10~!

The next table shows RMS errors for the H near field at r,,s = 1.1 m.

Frequency (MHz) | basis/\ | H, Hy H,

12.239 100 0.74x1072 | 0.76x10~2 | 0.92x10~2
81.593 15 0.66x10=2 | 0.50x10~2 | 0.59x10~2
122.390 10 0.11x107* | 0.66x10~2 | 0.62x10~2
174.843 7 0.83x1072 | 0.38x1072 | 0.43x10~2
244.780 ) 0.30x10~T [ 0.10x10~1 | 0.12x107!

When rops = 0.9 meters (inside the sphere), the following tables show the errors in the E and H field.
The final column is the maximum error found for all other columns.

Frequency (MHz) | basis/A | E, Ey Ey

12.239 100 0.21x10~ T [ 0.17x10~ T [ 0.20x107 T

81.593 15 0.15x10~ T [ 0.14x10~T | 0.14x107 T

122.390 10 0.67x1072 | 0.63x1072 | 0.62x10~2

174.843 7 0.11x10~1 [ 0.72x10~2 | 0.66x10~2

244.780 5 0.18x10~ T [ 0.13x107 T [ 0.12x107 T

Frequency (MHz) | basis/\ | H, Hy H, Max Error
12.239 100 0.19x10~ ' [ 0.15x10~T | 0.19x10~T | 0.90x 10!
81.593 15 0.16x10~ T [ 0.12x107 T [ 0.13x10~ % | 0.16x107 T
122.390 10 0.10x10~ 1 [ 0.59x1072 | 0.52x10~2 | 0.13x 107!
174.843 7 0.14x107 T [ 0.56x1072 | 0.57x1072 | 0.14x107 T
244.780 5 0.23x10~ 1 [ 0.11x10~T | 0.90x10~2 | 0.30x 10!

Surprisingly, although the errors are small, they do not increase monotonically with frequency as they
did in the PEC case. Rather, at 100 basis functions per wavelength the error is less than 9.0%, then it
decreases until at 10 basis functions per wavelength the error is less than 1.3% and then it increases again
until at 5 basis functions per wavelength it is less than 3%.
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5 Lossy Dielectric Sphere Test Case

The equations for the lossy dielectric case are the same as those in Section 4 except that p, and ¢, are
both complex, with a positive real part and negative imaginary part. The quantities kg and the Bessel
functions are also complex.

5.1 Code Implementation of the Analytical Solution

The formulas in Section 4 were implemented in the code lossy sphere. Lossy sphere calculates
quantities of interest versus 6, which varies from 1° to 179° in 1° increments. The other two observation

coordinates, ¢, and rqps, are set by the user. In the code, Ey = 1.0 V/m.

User input to lossy sphere consists of the following:

e Number of terms used in the summations.

o Frequency (Hertz).

e Relative permittivity of dielectric (unitless).
e Relative permeability of dielectric (unitless).
e Sphere radius a (meters).

o Observation radius 7.5 (meters).

e Observation phi ¢, (degrees).

The results are written to three output files, each of which contain 179 rows (1 row per 6 value) and
seven columns.

Output files:

e lossy sphere jt.txt: 6, |Jy|, phase Jy, 0.0,0.0,0.0,0.0

e lossy sphere jp.txt: 6, |Js|, phase Jg, 0.0,0.0,0.0,0.0

e lossy sphere mt.txt: 6, [My|, phase My, 0.0,0.0,0.0,0.0

e lossy sphere mp.txt: 6, |My|, phase My, 0.0,0.0,0.0,0.0

e lossy sphere enf.txt: 6, |E,|, phase E,, |Ey|, phase Ey, |Ey|, phase Ey
e lossy sphere hnf.txt: 0, |H,|, phase H,, |Hg|, phase Hy, |[Hy|, phase Hy

e lossy sphere ff.txt: 6, 0.0,0.0, )re“—k’”ng‘ , phase re*jk’“ng,

re*jk’“Ej;f‘ , phase re“'k’”ng

These files are analogous to the output files of diel sphere.

5.2 Convergence Study of the Analytical Solution

We will examine the convergence behavior of the analytical solution as we increase the number of terms.
We will use the same parameters as the lossless dielectric sphere except that we will set e, = (3.0, —0.2),
and u, = (2.0,—0.1).

For the following tables we will let Repqcr = Rooo and then demonstrate that the answer has converged
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to eight digits of accuracy (indicated by RE,,,s = 0.0 in the tables). Each of the table entries gives RE; 5
(defined in Equation 3) as a function of number of terms (V) for various quantities calculated.

For the low frequency, f = 2.997925 x 107 Hz, the analytical solution has converged to eight digits in
20 terms.

N

E,

Ey

Eq

ng

Vi
E¢

5

0.283x10~2

0.240x10~2

0.205x1072

0.140x107°

0.129x10~°

10

0.586x 108

0.790x10~8

0.372x1078

0.0

0.0

20

0.0

0.0

0.0

0.0

0.0

N

H,

Hg

Hy

Maximum Error

5

0.297x102

0.249% 102

0.211x10°2

0.297x102

10

0.548x1078

0.467x10~8

0.665x10~8

0.790x10~8

20

0.0

0.0

0.0

0.0

For the intermediate frequency, f = 2.997925 x 10% Hz, the analytical solution has converged to eight

digits in 30 terms.

N | E. Ey Ey E)’ E7/

10 | 0.137 0.595x10~ 1 [ 0.737x10~T [ 0.136x10~2 | 0.131x102
20 | 0.136x107° | 0.450x10~7 | 0.415x10~7 | 0.0 0.0

30 | 0.0 0.0 0.0 0.0 0.0

N | H, Hy H, Maximum Error

10 | 0.152 0.564x10~" | 0.688x10~ ! | 0.152

20 | 0.161x10°% [ 0.511x10~7 | 0.420x10~7 | 0.161x10°°

30 | 0.0 0.0 0.0 0.0

Finally, for the high frequency, f = 2.997925 x 10° Hz, the analytical solution needs 120 terms in order

to converge to eight digits.

N | E Ey E, £} B

50 | 0.420 0.279 0.278 0.391x10~" | 0.394x10~!
70 | 0.441x1071 [ 0.222x10~T | 0.220x10~" | 0.911x10=% | 0.890x10~*
90 [ 0.597x10~7 | 0.337x10~7 | 0.322x10~" | 0.0 0.0

120 | 0.0 0.0 0.0 0.0 0.0

N H, Hy Hy Maximum Error

50 | 0.404 0.266 0.300 0.420

70 | 0.405x10~1 [ 0.202x10~1 | 0.245x10~" | 0.441x10~T

90 [ 0.662x10~7 | 0.317x10~7 | 0.279x10~7 | 0.662x10~"

120 | 0.0 0.0 0.0 0.0

5.3

We follow the same procedures as in Section 4.4 to compare the numerical results to the analytical

results
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Frequency (MHz) | basis/\ | Jy Jo Mo, My
12.239 100 0.48x10~1 [ 0.77x1071 | 0.54x10~1 | 0.89x10~}
81.593 15 0.17x10~' | 0.16x10~ T | 0.12x10~ | 0.11x10~!
122.390 10 0.11x1071 [ 0.12x107 T | 0.13x10~ Y | 0.11x10° 1T
174.843 7 0.12x10~' | 0.12x10~ T | 0.11x10~ | 0.11x10~!
244.780 5 0.13x10~1 [ 0.12x10° T | 0.14x10~1 | 0.12x10° 1T
When 7,55 = 1.1 meters (outside the sphere)
Frequency (MHz) | basis/A | E, Ey Ey Eg 7 ng
12.239 100 0.60x1072 | 0.82x1072 | 0.10x10~T | 0.11x1072 | 0.15x10~2
81.593 15 0.38x1072 [ 0.41x10~2 | 0.47x1072 | 0.23x1072 | 0.24x 102
122.390 10 0.78x1072 | 0.47x1072 | 0.52x1072 | 0.21x1072 | 0.18x10~2
174.843 7 0.63x1072 | 0.38x1072 | 0.44x1072 | 0.12x1072 | 0.14x 102
244.780 5 0.10x10~ ' | 0.55x1072 | 0.72x1072 | 0.18x1072 | 0.30x 102
Frequency (MHz) | basis/\ | H, Hy Hy
12.239 100 0.74x1072 | 0.75x1072 | 0.91x1072
81.593 15 0.41x1072 | 0.39x1072 | 0.52x1072
122.390 10 0.82x1072 | 0.39x10~2 | 0.50x 1072
174.843 7 0.83x1072 | 0.38x1072 | 0.46x10~2
244.780 5 0.11x10~ ' [ 0.59x1072 | 0.74x1072
When 7,55 = 0.9 meters (inside the sphere)
Frequency (MHz) | basis/A | E, Ey Ey
12.239 100 0.21x10~1 [ 0.16x10~T | 0.20x10*
81.593 15 0.13x107 ' | 0.12x10~ ' | 0.12x107!
122.390 10 0.96x1072% | 0.83x1072 | 0.82x1072
174.843 7 0.19x1071 [ 0.97x1072 | 0.97x10~2
244.780 5 0.17x10~1 | 0.13x10~ % | 0.13x10*
Frequency (MHz) | basis/\ | H, Hy H, Max Error
12.239 100 0.19x10~! [ 0.15x107T | 0.18x10~1 | 0.89x10~!
81.593 15 0.13x107 1 [ 0.12x107 T | 0.12x10~ 1 | 0.17x10~ T
122.390 10 0.10x10~! [ 0.97x1072 | 0.88x10=2 | 0.13x10~}
174.843 7 0.19x10~' | 0.97x1072 | 0.10x10~* | 0.19x10~ !
244.780 5 0.18x10~! [ 0.11x107! | 0.11x10-1 | 0.18x10~!

In terms of convergence as a function of frequency the lossy dielectric sphere behaves much like the
lossless dielectric sphere.

6 Conclusions

In this report we demonstrated that Eiger can calculate the current density, near fields and far fields
for plane wave scattering from three-dimensional objects made of either PEC, lossless dielectric, or lossy
dielectric. All available equations were tested. The ability of the CFIE to overcome internal resonance
problems was also demonstrated. If the gridding is sufficiently fine (better than 10 basis functions per
wavelength) the relative error should be less than the 10% error required by Test l.a.a. in the EMR
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8 Appendix I: Special Functions

8.1 Associated Legendre Polynomials P! (z)

For the calculations discussed in this report, the order of the associated Legendre polynomial is always
1 and degree is an integer, n = 1...N. The results will be stored in the array P1(n) where n represents the
degree. The first two values in the sequence are calculated explicitly.

P1(1)=P!(z)=—(1-2%)"""
1/2

P1(2) =P} = -3z (1 —2?)

The remaining values, n = 3...N, are calculated using a recursion relation [3].

m+1-m)R} () — 2n+ 1) xR} () + (n+m) R} | () =0

Let m=1

R = P ep e - e
Plln+1) = 2n;1xP1(n)—nzlPl(n—l)

We checked the result using tables found in [3].

8.2 First Derivative of Associated Legendre Polynomials PY ()

Again the order is always 1 and degree is an integer 1 to N. The results will be stored in an array
DP1 (n) where n represents the degree.
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AP (x) 1

dr = 1o LBl @)+ (et m) By ()]

Let m = 1, therefore,
dP} (z 1
w0 [nePl (@) + (4 ) P (@)
1

For the special case of n =1

dP} (z) B T
daj - (1—x2)1/2
X
DP1(1) = T

We checked the above result against a finite-difference approximation of the derivative using P! ().

8.3 Alternative Spherical Bessel Functions En

The alternative spherical Bessel function of order n is

B, (z) = \/?Bn-i-lﬂ (2)

where B, represents the Bessel function of the first or second kind, and n = 1to N. B, /5 () is calculated
using the SLATEC [4] routines BESJ or BESY and stored in B1(n). We checked the result using tables

found in [3].

8.4 First Derivative of Alternative Spherical Bessel Function Eﬁl

dﬁn T e | T
dqf ) = — 73n+1+1/2 (z) + ( % (n+ 1)) Bn+1/2 (x)

DBI1 (n) = —\/?Bl (n+1)+ <\/g(n + 1)) B1(n)

We checked the derivative against a finite difference approximation of E;L using En

8.5 Second Derivative of Alternative Spherical Bessel Function E;{

d2B,,(x) TE T T
2 73n+2+1/2 (z) — o (2n+3) Buy141/2 () + 5.3 (n+1)nB, 12 (2)

DBz(n)z\/?BWLH)—\/%(2n+3)31(n+1)+,/2%(n+1)n31(n)
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We checked the second derivative against a finite difference approximation of E;{using ’BS;L

9 Appendix II - Example Input Files

9.1 Electric Current Density

The following input to jungfrau (sphr 10cm_0a.in) is used to obtain an *.eig file for the PEC
sphere in order to calculate Jy, E,, all components of ' and H in the near field and F in the far field.

continue
continue

ce
sphere_10cm
sphr_10cm_Oa
ya

1 meter radius, 10cm edge, PEC sphere,

3 dimensional problem

dynamic problem
no ground planes
no periodicity
meter

body1

sm

pec

efie

linear

away

1

no symmetry
continue
homogeneous
(1.0,0.0)
(1.0,0.0)
continue

no movement

0 lumped loads
ot

1

plane wave

ot

1

1

180.0

315.0
(0.0,0.0)
(+2.65442¢-3,0.0)
ot

1

2.997925e7
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create an *.eig file option
x.jfg file (input)

x.eig file (output)

overwrite all

theta=180, phi=315, £=2.997925e7

green property

solid metal

material of sphere

equation

interpolation order

element normals point away from metal
region surrounding metal

region 1 definition
relative permittivity
relative permeability

excitations defined one at a time
one excitation defined

the excitation is a plane wave
the plane waves are defined one at a time
1 plane wave is defined

plane wave is in region 1

theta value

phi value

H theta

H phi

frequencies one at a time

one frequency

frequency



bl
1lu

58
2168
2146
2145
2116
2115
2086
2085
2056
2055
2026
2025
1996
1995
1966
1965
1936
1935
1906
1905
1876
1875
1846
1845
1816
1815
1786
1785
1756
1755
15
16
45
46
75
76
105
106
135
136
165
166
195
196
225
226
255
256
285

blanket solutions

LU decomposition

0 far field patterns

E normal defined at 58 elements
Element 1

Element 2
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286
315
316
345
346
375
376
405
406
428 ! Element 58

The following input to moench (moench sphrlOcm _jt.in) writes the unknowns associated with
Jy along a line defined by the user.

sphr_10cm_Oa *x.eig file (input)
sphr_10cm_Oa *.mnh file (input)
ul unknowns along a line option
sphr_10cm_Oa x.1linl file (output)
ya overwrite all

1 frequency id

1 excitation id

exit exit information loop
11 node_set_id 1, unknown_id 1 (electric current)
29 number of element pairs
2168 pair 1

2146

2145 pair 2

2116

2115 pair 3 etc...

2086

2085

2056

2055

2026

2025

1996

1995

1966

1965

1936

1935

1906

1905

1876

1875

1846

1845

1816

1815

1786

1785

1756
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1755
15
16
45
46
75
76
105
106
135
136
165
166
195
196
225
226
255
256
285
286
315
316
345
346
375
376
405
406 pair 29
428
quit quit moench

The following input to pec__sphere is to compare Jy. Note that the ¢, = 0.0.

obs
50 number of terms

29.97925e+06 frequency

0.9989497 sphere radius

0.9989497 observation radius

0.0 observation phi

9.2 Near Fields

The following input to moench (moench sphrl.1 nfld.in) is to calculate the near field along an
arc defined by the *.jfg file sphere 1pl 0d. Note that the *.eig file used here must be the same as the
* eig file used to generate the *.mnh file. If the *.eig file used here is for a different excitation or frequency,
the near fields will be incorrect.

sphr_10cm_3a *.eig file
sphr_10cm_3a *.mnh file

nf near field option
re read in grid
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1 region

sphere_1p1_0d *.jfg grid for near fields

yes output a near field for this excitation
sphr_10cm3a_r1.1_Odeg name of near field file

ya overwrite existing file

quit quit moench

The following input to pec_sphere is to compare near fields. Note that the ¢, = 459 and rops = 1.1
meters

120 number of terms
29.97925e+06 frequency
0.9989497 sphere radius

1.1 observation radius
45.0 observation phi

9.3 Far Fields

The following input to moench (moench sphrlOcm _ffld.in) is to calculate the far field along
an arc defined by the user. Note that the *.eig file used here must be the same as the *.eig file used to
generate the *.mnh file. If the *.eig file used here is for a different excitation or frequency, the far fields
will be incorrect.

sphr_10cm_3a *.eig

sphr_10cm_3a *.mnh

ff far field option

1 number of far_field patterns
1 region id

179 number angles in theta

1.0 first theta angle

179.0 last theta angle

1 number of angles in phi

0.0 phi angle

yes make a plot for excitation and frequency
sphr10cm3e_£ff_Odeg far field file

ya overwrite the old files

quit quit moench

9.4 Magnetic Current Density

The following input to moench (moench sphrlOcm _mp.in) writes the unknowns associated with
My, along a line defined by the user.

sphr_10cm_3d *.eig file (input)
sphr_10cm_3d *.mnh file (input)

ul unknowns along a line option
sphr_10cm_3d *.1linl file (output)

ya overwrite all

1 frequency id

1 excitation id
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exit
12
30
2596
2175
2566
2160
2536
2130
2506
2100
2476
2070
2446
2040
2416
2010
2386
1980
2356
1950
2326
1920
2296
1890
2266
1860
2236
1830
2206
1800
2176
1770
465

495
31

525
61

555
91

585
121
615
151
645
181
675
211
705
241
735

exit the information loop

node_set_id 1, unknown_id 2 (magnetic current)
number of element pairs

pair 1

pair 2

pair 3 etc...
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271

765

301

795

331

825

361

855

391

870 pair 30
421

quit quit moench

The following input to diel sphere is to compare My. Note that the ¢
radius of the sphere.

obs = 0.0 and 745 equals the

50 number of terms
12.23898E+06 frequency

3.0 epsilon

2.0 mu

0.9989497 sphere radius
0.9989497 observation radius
0.0 observation phi
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