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Abstract 
 
As part of DARPA’s Software for Distributed Robotics Program within the Information 
Processing Technologies Office (IPTO), Sandia National Laboratories was tasked with 
identifying military airborne and maritime missions that require cooperative behaviors 
as well as identifying generic collective behaviors and performance metrics for these 
missions.  This report documents this study.  A prioritized list of general military 
missions applicable to land, air, and sea has been identified.  From the top eight 
missions, nine generic reusable cooperative behaviors have been defined.  A common 
mathematical framework for cooperative controls has been developed and applied to 
several of the behaviors.  The framework is based on optimization principles and has 
provably convergent properties.  A three-step optimization process is used to develop 
the decentralized control law that minimizes the behavior’s performance index.  A 
connective stability analysis is then performed to determine constraints on the 
communication sample period and the local control gains.  Finally, the communication 
sample period for four different network protocols is evaluated based on the network 
graph, which changes throughout the task.  Using this mathematical framework, two 
metrics for evaluating these behaviors are defined.  The first metric is the residual error 
in the global performance index that is used to create the behavior.  The second metric 
is communication sample period between robots, which affects the overall time required 
for the behavior to reach its goal state.   
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I.  Introduction 
 
Coordinated military maneuvers are not a new military concept.  In fact, coordinated military maneuvers 
date back thousands of years [1-2].  What is new is the development of coordinated maneuvers for 
unmanned robotic vehicles for land, air, and sea.  Recent success with unmanned air vehicles (UAVs) in 
U.S. conflicts has invigorated military-funded research in unmanned systems (e.g. Unmanned Ground 
Vehicles (UGVs), Unmanned Underwater Vehicles (UUVs), and Unmanned Surface Vehicles (USVs)).  
While much of the research on unmanned systems is still dedicated to autonomy of a single vehicle, there 
has been some fundamental research in cooperative robotic behaviors.  In particular, the primary goal of 
DARPA’s Software for Distributed Robotics Program, through which this project is funded, is to develop 
military relevant cooperative behaviors that coordinate “swarms” of up to one hundred robotic vehicles. 
 
Over the past several years, the academic research community has developed many cooperative robotic 
behaviors that have been either simulated in software or demonstrated on small numbers of robot vehicles 
[3-12].  Many researchers proclaim that their algorithms are relevant to military missions such as 
intelligence, surveillance and reconnaissance; however, very little detail is given on the actual military 
applications.  The objective of this report is to tabulate military airborne and maritime missions that 
require cooperative behaviors to coordinate unmanned air, surface, and underwater vehicles.  These 
missions have been identified by examining military doctrine for manned systems and recently issued 
roadmaps and master plans for unmanned vehicles.  In addition, we attempt to begin to define 
performance metrics for these missions that can be used to evaluate the effectiveness of cooperative 
behavior algorithms. 
 
To meet these objectives, the following questions will be addressed in this report. 

• What are the prioritized military cooperative missions needed for air and sea? 
• Are there general military missions applicable to land, air, and sea? 
• Are there reusable cooperative behaviors that apply across multiple missions? 
• Can we categorize these behaviors? 
• Is there a common mathematical framework that can be used to describe all behaviors? 
• What metrics can be used to compare similar behaviors?   

 
In the following section, the history of cooperative behaviors in warfare or “swarming” will be discussed.  
Section III lists the top swarming missions for land, air, and sea.  Section IV suggests generic, reusable 
cooperative behaviors that can be used to satisfy these missions.  Section V develops a common 
mathematical framework that can be used to create many of the generic behaviors listed in Section IV.  
Finally, Section VI discusses measures of effectiveness that can be used to evaluate behaviors. 
 
II. History of Swarming 
 
Cooperative behavior amongst warriors and manned military platforms (horses or motorized vehicles), 
most recently called “swarming,” has a long and extensive history.  Arquilla and Ronfeldt’s book [1] 
provides an interesting perspective of the history of warfare and possible future directions.  Arquilla 
describes four paradigms of warfare throughout history: 

1. The melee was the era of hand-to-hand combat in which every man looked after only himself. 
2. Next came the period of massing when soldiers fought in rank and column formations, much like 

the British soldiers fought during the revolutionary war.  
3. After World War I came the era of maneuver-based fighting, which has been the current 

strategy of the U.S. military until recently. 
4. Swarming is the new emerging paradigm for future conflicts involving terrorist suppression.   

 
Edwards [2] classified swarming into two categories.  The first category is called massed swarms and is 
the more prevalent in history.  Figure 1 illustrates a massed swarm.  A massed swarm begins as a single 
unified entity, then surrounds the enemy, and concludes with a convergent attack.  The second type of 
swarming is called dispersed swarming (see Figure 2).  In a dispersed swarm, the attacking entities never 
mass before or after an attack.  This is similar to guerrilla warfare or terrorist activities.  Edwards 
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suggests that this dispersed swarm is the future of warfare for the United States.  U.S. soldiers will be 
distributed throughout the world, only coming together for smaller regional conflicts and then dispersing 
again. 
 
 

= enemy

= unmanned system

= enemy

= unmanned system

= enemy

= unmanned system

= enemy

= unmanned system

 
Figure 1.  Massed swarming attack. 
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Figure 2.  Dispersed swarming attack. 
 
The swarming paradigm is interesting in that there have been many examples throughout history where 
swarming has occurred, especially in ancient times.  Edwards [2] gives several examples of swarming in 
the pre-modern (horse-archer) era including: 
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1. Scythians vs. Macedonians, Central Asian Operations of Alexander the Great, 329-327 B.C..  
Scythians effectively used swarming horse-archers (“Parthian tactics”) to fight Alexander.  Even 
though the horse-archers had great mobility and long-range arrow fire, Alexander eventually 
won using the anti-swarm “bait” tactic shown in Figure 3. 

2. Parthian horse archers defeated the Romans in the Battle of Carrhae, 53 B.C..  Roman 
Legionaries carried a gladius (a short sword) and javelin, which was no match for the mounted 
archers who swarmed around the Romans and killed them with their bow and arrows. 

3. At the Battle of Dorylaeum in 1097, the swarming Turkish horse archers initially surrounded 
the Crusaders and were on the verge of winning when another Crusader detachment arrived and 
surrounded the Turks, causing the battle to turn into a melee.  The Crusaders won. 

4. Mongol horse archers in the Battle of Liegnitz in 1241 were the ultimate swarmers.  If they 
could not encircle the enemy, they used a feigned withdrawal.  Mongol Toumens defeated their 
enemies using superior mobility and battlefield intelligence.  Communication between groups 
included horns and flaming arrows.  Mongol spies were always sent ahead as merchants. 

 
More recent swarming cases include: 

1. The woodland Indians surrounded and defeated a U.S. Army camp at St. Clair’s Defeat in 1791. 
2. Napoleon’s operational swarming of the French during the Ulm Campaign in 1805.  Napoleon 

used four or five corps arranged in diamond formations.  Each corp would fight and pin an entire 
opposing army for at least 24 hours, just enough time for sister corps to converge. 

3. The German’s use of U-boat “Wolfpack” tactics during the Battle of the Atlantic is a naval 
example of swarming.  Between 1939 and 1945, packs of five or more U-boats would converge 
on a convoy of transport ships and their destroyer escorts at night, independently attacking from 
multiple directions.  The first boat to sight the convoy would begin shadowing it over the edge 
of the horizon by day, closing at dusk.   

4. In 1993, Somalians swarmed towards the two U.S. helicopter crashes and the sound of firefights.  
Somalians converged on every street corner, shooting at the U.S. Commandos that were trying 
to escape.  Somali civilians acted as sensors, pointing out the position of the U.S. Commandos.  
The Somalians had better situational awareness. 

 
According to Edwards [2], the advantages of swarming are as follows. 

1. It provides the unnerving psychological effect of being surrounded. 
2. Dispersion of swarming units reduces vulnerability to WMD (Weapons of Mass Destruction). 

r 

4. ive at peace operations since while soldiers are dispersed around the world 

 
 shoul

er). 
In o r ust be good at these three factors.  In the author’s 

ll be re-entering this era of 

 

3. It is good for COunterINsurgency (COIN) missions.  COIN missions include physical “cove
down” over a geographical area and pick up battlefield intelligence missed by airborne and 
spaceborne sensors. 
It maybe more effect
they may be performing peace-keeping activities. 

d be noted that throughout history not all swarming tactics resulted in wins.  After studying It
historical battles, Edwards suggests that three factors for successful swarming are 

1. Elusiveness (mobility or concealment). 
2. Superior situational awareness. 

e firepow2. Standoff capability (longer rang
rde  to successfully swarm, unmanned systems m

opinion, one of the most difficult factors to satisfy will be concealment and “superior situational 
awareness.”  As noted in an Army Science Board Study [13], perception of the environment is still the 
long pole in the tent for all unmanned systems; therefore, until the perception problem is solved, it will be 
difficult to achieve superior situational awareness on an autonomous platform. 
 

rquilla [1] and Edwards [2] both suggest that the United States military wiA
swarming as exemplified by the recent trend towards Network-Centric distributed small-unit forces.  
Even a recent article from MSNBC News illustrates the recent infatuation with swarming behaviors: 
 

U.S. military aims to paralyze enemy 
Using 'swarm tactics,' Pentagon hopes for swift victory
SWARM TACTICS 
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       Of the 250,000 U.S. troops arrayed against Iraq, about 130,000 are in Kuwait. That would be the 

91 war over the same ground, using so-called 
do 

SNBC News, March 17, 2003 

Note that the word “simultaneous” is crucial for military operations.  Arquilla [1] also mentions that 

note, it is also important to understand anti-swarming tactics.  If swarming is to be the future of 

 
 

main launching pad for a ground invasion, to include about 30,000 British troops. Franks is to 
command U.S. forced from his base in Qatar. 
       The overall scenario would differ from the 19
"swarm tactics" - simultaneous, coordinated attacks by air, conventional forces and comman
units, designed to confuse and overrun Iraqi defenders - would replace that war's five-week 
softening-up by airstrikes. 
 
M
 
 

communication was key to many advances in combat tactics.  For example, early swarming attacks were 
signaled with flags, flaming arrows, or horns. 
 
As a final 
military operations, then the enemy may also use the same tactic.  In fact, the anti-swarm tactics that 
Alexander used over 23 centuries ago are similar to modern U.S. counterinsurgency doctrine.  U.S. Army 
Field Manual (FM) 90-8, Counterguerrila Operations, instructs soldiers to “locate, fix and engage.”  
Manuals FMs 7-10, 7-20, and 7-30 order soldiers to “find, fix, and finish” the guerrilla.  The two 
techniques to engage elusive foes are either to block positions along likely escape routes or to encircle and 
cut off all ground escape routes and slowly contract the circle.  One or more units in an encirclement can 
remain stationary while others drive the guerrilla force against them. 
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Figure 3.  Anti-swarm bait tactic used by Alexander the Great to defeat the Scythians.  Unmanned 
systems in the middle of the enemy are used as bait to attract swarming enemy.  The Calvary, which is 
hiding behind the light infantry screen, flanks and attacks the swarming enemy. 

 
 
III.  Top Swarming Missions 
 
This section describes the top swarming missions as defined by the United States Joint Force Command 
J9 Swarming Entities Roadmap [14], the Navy Unmanned Underwater Vehicle (UUV) Master Plan 
[15], and the Unmanned Aerial Vehicles (UAV) Roadmap [16].  In addition, several swarming missions 
for Unmanned Surface Vehicles (USVs), which were generated based on concepts of Naval warfare as 
presented in [8], are listed. 
 
The definition of swarming behavior as defined by J9 [14] is “a collection of n>1 entities (human and/or 
artificial) that exhibits some degree of self organization in support of a military goal through local 
interactions.”  J9’s Roadmap focuses on unmanned entities.  Notice that this definition implies that 
swarming behaviors are self-organizing and rely on local interactions. 
 
During a five day conference sponsored by J9 on November 4-8, 2002, participants discussed and ranked 
the missions in which swarming concepts and capabilities have the greatest potential value – 
operationally sound, technically feasible, and cost-effective.  There was strong agreement regarding the 
top four. The following lists the missions for swarming entities, in order of decreasing priority: 

1. Area Intelligence/Surveillance/Reconnaissance (ISR) and Intelligence (IMINT, SIGINT, 
RADINT, METOC, MASINT) – detect, classification, identification, neutralization, and salvage.  

2. Point Target ISR – continued surveillance of an important area, multi-spectral Battle Damage 
Assessment (BDA) with different types of sensors to tell what is going on after attack; traffic 
analysis. 
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3. Communications / Navigation / Mapping – update of IPB; swarming supplementation of 
communication networks; and precision mapping of an area (surface or sub-surface). 

4. Swarming Attacks 
5. Defense / Protection – submarine warfare includes tagging by swarms, potential counter to 

swarming boats; defensive operations for surface forces (flank protection). 
6. Delay / Fix / Block 
7. Deception Operations – UGV attack to emulate an attack pattern to cover an attack at another 

point, decoys with swarm, jamming over whelm receivers for areas. 
8. Search and Rescue (SAR) and Combat Search and Rescue – Applying swarms of UxVs to find 

and/or retrieve personnel or other assets.  

In addition to these missions, other possible unique or special applications of swarming entities were 
listed but not considered as primary missions.  These include: 
 

1. Clandestine or lethal obstacle clearance (minefields, toxic agents, bio hazards). 
2. Recovery of objects, elements, or samples (e.g. ore, soil samples) in special environments. 
3. Tracking and/or tagging operations (long-term surveillance) over wide areas or with many 

targets (i.e., all the containers within a given port or ports within a region; ore shipments). 
4. Airfield denial or aerial exclusion zones. 
5. Urban operations: communications relays, surveillance, reconnaissance, tagging, and mapping. 
6. Distributed, robust (graceful degradation) "phased-array" or multi-aspect sensors and/or 

communications. 
7. Subterranean operations / contained water body operations / subterranean "fluid” operations. 
8. Logistics (user defined quantity, on demand, point or "home" delivery).  
9. Undersea search and survey – mine counter measures, object sensing, and oceanography. 
10. Navigation/Communication – On demand, subsurface data exchange between swarming entities. 
11. Submarine track and trail – detect, classify, track, detect, support training, anti-submarine 

warfare. 
12. Recon – detect, classification, identification, neutralization, and salvage. 

 
The UUV Master Plan [15] also defines four high priority missions: 

1. Maritime reconnaissance – ISR, extending the reach into denied areas, and enabling missions in 
the littorals. 

2. Undersea search and survey – mine counter measures, object sensing, and oceanography. 
3. Communication/Navigation Aids – clandestine communication and navigation relay function, 

data retrieval and exchange with subsea systems (buoys, arrays, etc.) 
4. Submarine track and trail – detect, classify, track, detect, support training, anti-submarine 

warfare. 
 
Several interesting perspective on Naval warfare are given in Hughes [17].  Weapon range and lethality 
have increased the size of the no man’s land between the fleets.  Scouts and screens occupy the 
intervening space.  Based on this fact, it appears that the first use of unmanned naval systems should be as 
scouts and screens.  There is also a trend towards spreading forces out while using command and control 
to concentrate firepower from dispersed formations.  The advantages of dispersion are 1) reduced 
signature and probability of detection by enemy, 2) reduced chances of mass destruction by WMD, and 3) 
break up of enemy assets.  On the other hand, the advantages of massing are 1) collaborative support, and 
2) increased striking power. 
 
Based on Hughes [17], the following missions are suggested as swarming Naval USV missions: 

1. Maritime reconnaissance – ISR in no man zone between fleets, extending the reach into denied 
areas, and enabling missions in the littorals. 

2. Maritime search and rescue  
3. Communication/Navigation Aids – clandestine communication and navigation relay function. 
4. In-port security and perimeter defense – e.g. USS Cole  
5. Fleet escort 

 
The UAV Roadmap [16] lists many missions for unmanned air vehicles (see Tables 1 and 2); however, it 
does not describe many missions that require large swarming numbers.  Shaw [18] explains that manned 
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aircraft rarely fly combat missions in numbers greater than 2 or 4.  Two fighter aircraft (called a Section) 
is considered by most military doctrines to be the ideal mutual supporting element.  Manned aircraft 
rarely fly in groups greater than 4 (a Division consists of 2 Sections).  Problems with larger numbers 
includes: 

• Increased probability of detection (wider RADAR cross-section).  Surprise is nine-tenths of air 
combat success. 

• Divided attention of pilot to keep track of wingman. 
• Formation tactics usually result in reduced aircraft performance. 
• Increased communication (problems with attendant task loading and greater probability of 

electronic detection). 
For these reasons, swarming UAVs have not been viewed as a high priority. 
 
 

Table 1.  CINC/Service UAV Mission Prioritization Matrix – 2000. 
 Predator Global 

Hawk 
TUAV VTUAV IPLs 

Reconnaissance 1 1 1 1 1 
Signals Intelligence 3 2 7 4 4 
Mine Countermeasures 7 12 4 5 10 
Target Designation 2 11 3 2 - 
Battle Management 8 7 5 7 - 
Chem-Bio Recon 10 10 6 9 5 
Counter CC&D 4 5 8 11 - 
Electronic Warfare 6 4 9 10 7 
Combat SAR 5 8 10 8 8 
Comm/Data Relay 9 3 2 3 2 
Information Warfare 11 6 11 6 - 
Digital Mapping 12 9 12 12 - 
* IPL = Integrated Priority List 
 

Table 2.  SOCOM UAV Mission Prioritization Matrix – 2000. 
 Predator Global 

Hawk 
TUAV VTUAV 

Reconnaissance - 5 7,8 7,8 
Signals Intelligence - 7 15 11 
Mine Countermeasures 10 12 11 11 
Target Designation 6 6 6,14 6,14 
Battle Management 7 8 16 16 
Chem-Bio Recon 1 1 1 1 
Counter CC&D - 10 18 18 
Electronic Warfare - - 19 19 
Combat SAR - 11 17 17 
Comm/Data Relay 4,11 3 4,13 4,13 
Information Warfare 8 9 5 5 
Digital Mapping 5 4 - - 
PSYOP (broadcast/leaflets) 2 2 2 2 
Covert Sensor Emplacement 2 - 3 3 
Decoy/Pathfinder - - 9 9 
Team Resupply 9 - 10 10 
Battle Damage Assessment 12 - 12 12 
GPS Pseudolite - 13 - - 
Weather - 14 - - 

 
 
However, one application where multiple UAVs does make sense is DARPA’s Net Fires program.  In this 
program, multiple Precision Attach Missiles (PAMs) and Loitering Attack Missiles (LAMs) may be used 
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to attack multiple moving ground targets.  As part of this project, Sandia has looked at the cooperative 
behaviors required for this mission.  A separate report was written to discuss the cooperative behaviors 
used to control these missiles [19]. 
 
 

IV. Generic Behaviors 
 
As shown in the previous section, there are many possible military missions for cooperative unmanned 
systems.  In this section, we will only consider the top 8 missions as identified by the U.S. Joint Force 
Command.  Given these missions, the next questions to ask are:  

• Are there generic behaviors that can be reused regardless of whether the mission is on land, sea, 
or air? 

• Can we categorize these behaviors? 
 

According to Edwards [2], the four stages of swarming are locate, converge, attack, and disperse.  These 
stages occur in succession during the evolving conflict.  It should be noted that these same stages have 
been identified by other researchers when describing the swarming of insects [20].  While these four 
stages are certainly evident in a conflict, we suggest that additional stages are required to perform the top 
8 missions.  We suggest that these missions could be accomplished with 9 generic swarming behaviors as 
shown in the columns in Table 3.  The categorization of these behaviors is based on algorithms that the 
authors have developed and algorithms that have been found in the literature.  This categorization is not 
unique, and as additional algorithms are developed, these algorithms may fall into one of these categories 
or new behavior categories may need to be formed. 

 
 

Table 3.  Reusable generic behaviors that can be applied to top 8 swarming missions.  An ‘x’ indicates that 
the cooperative behavior may be used in a mission.  A ‘c’ stands for combat. 
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Area ISR   x   x x   
Point ISR   x  x x x   
Comm/Navigation/Mapping  x x   x x   
Swarming Attacks x x x x x x x x x 
Defense/Protection   x x   x   
Delay/Fix/Block   x x   x   
Deception Operations x      x  x 
(Combat) Search and Rescue   x   x x  c 

* Localization is not listed as a behavior because it is an essential part of all behaviors. 
 
 
These behaviors are typically instantiated sequentially over the mission.  For example in a swarming 
attacks mission as shown in Figure 4, the group of unmanned vehicles might perform the following tasks.  
First, the group of unmanned vehicles might first drive in formation to the planned location of an ambush.  
Formation behaviors allow a single operator to guide multiple entities to a desired end point while 
staying in a specified geometric formation.   Over the past several years, many researchers have developed 
formation behaviors [21-25].  
 
 
 
 

Drive in Formation to Location X 
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Map area A around Location X Search Area B around Location X and/or 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Ambush (Attack) example of sequencing of cooperative behaviors. 
 
 
After arriving at the specified location, the unmanned vehicles might search and/or map the region 
around this location.  Searching behaviors are used to locate sparse objects of interest in a large 2D or 3D 
environment.  The International Aeronautical and Maritime Search and Rescue Manuals [26] list several 
types of search strategies: 

• Sector Search 
• Expanding Square Search 
• Track Line Search 
• Parallel Sweep Search 
• Coordinated Creeping Line Search 
• Contour Search 
• Beacon Search 
• Parachute Flare Search 

Illustrative examples of these strategies are shown in Figures 5 - 13.  Mapping/survey behaviors are used 
to generate 2D and 3D maps of indoor and outdoor environments.  Several researchers have also 
developed mapping behaviors [27-29]. 
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Figure 5.  Vector search. 
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Figure 6.  Expanding square search. 
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Figure 7.  Track line search: either Track Search Return (TSR) or Track Search Non-Return (TSN) 
patterns. 

 
 

 
 

Figure 8.  Parallel sweep search is often used to search large regions.  Search legs are parallel to the long 
sides of the rectangular search region. 
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Figure 9.  Coordinated creeping line search.  Vessel provides direction to aircraft.  Aircraft should pass 
directly over vessel at the center of each search leg. 
 
 
 
 

 
 

Figure 10.  A contour search is typically only performed by a single manned aircraft. 
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Figure 11.  Map-assisted aural electronic beacon search. 
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Figure 12.  Time-assisted aural electronic beacon search. 

Figure 13.  Parachute flare search. 
 

ext, the group of unmanned vehicles might cover or contain the region.  The word coverage refers to 

nce dispersed, the unmanned vehicles might detect and track intruders as they enter the region.  This 

inally, the unmanned vehicles might converge, pursue, or evade from the intruders depending whether 
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Burn-out Burn-out

Flare Flare

Ship’s Relative Wind

Ship’s Track

Burn-out Burn-out

Flare Flare

 

 
N
dispersing the unmanned vehicles throughout the entire region.  For UGVs, this means to disperse in two 
dimensions.  For UUVs and UAVs, this means to disperse in three dimensions.  The word containment 
implies to disperse the unmanned vehicles over a subspace of dimension at least one less than the space of 
interest.  For UGVs, this means to disperse along a one-dimensional curve around the two dimensional 
area.  For UUVs and UAVs, this means to disperse along the two-dimensional surface surrounding the 
three-dimensional volume. 
 
O
cooperative behavior requires that multiple unmanned vehicles share information on their observations to 
obtain a better estimate of the intruder’s position.  Distributed Kalman or information filters are often 
used to provide optimal estimates [30]. 
 
F
the group is winning or losing the current battle.  Convergent behaviors cause multiple unmanned 
vehicles to simultaneously gather together or converge around the target of interest.   In contrast, 
multiple vehicles will not simultaneously converge on the target in a cooperative pursuit.  Instead, one 
vehicle might chase the target while other vehicles might “head the target off at the pass.”  Often game 
theory techniques are used to develop cooperative pursuit behaviors that maximize the probability of 
capture or kill [31].  Evasion behaviors are used to escape from the enemy.  The goal of this behavior is 
to maximize the probability of escape.  Examples of evasive behaviors include 1) dispersing unpredictably 
in all directions, and 2) acting as sacrificial decoys so as to increase chances that a select few (possibly 
manned) escape.  This behavior may be one of the easiest collective behaviors in that dispersing 
unpredictably is relatively easy to do. 
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V.  Common Mathematical Framework 

 this section, a common mathematical framework that can be used to describe a number of cooperative 

his mathematic framework is motivated by the fact that most of the laws in physics and mechanics can 

Table 4.  Lagrangian for various physical phenomena [32]. 
 

Phenomenon Lagrangian 

 
In
behaviors is developed.  This mathematical framework is applied to three of the generic behaviors listed in 
the previous section:  containment, coverage, and converging.  The authors believe that this same 
framework could be applied to the other behaviors, although this has not been proven at the time of this 
publication.   
 
T
be derived by finding the maximum or minimum of some performance index, in this case, called the 
Lagrangian integral.  In Table 4, notice that the Lagrangian of each phenomenon is a function of some 
gradient term squared.  In the analysis that follows, you will notice that each behavior’s performance 
index is also a function of some gradient term squared. 
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ollowing this same optimization approach, a three-step process for developing cooperative control 
gorithms has been developed [48].  These three steps are as follows: 

l entities. 
. Partition and eliminate terms in the performance index so that only terms of local neighbors are 

 performance index. 

 understands the problem well enough that it can be posed as a global 
ptimization problem.  This step can be relatively difficult, but as the examples in the remainder of this 

 
F
al
 
1. Define a global performance index as a function of parameters from al
2
included. 
3. The local control law is the gradient (or the product of the inverse Hessian and gradient) of the 
partitioned
 
The first step requires that one
o
section will show, that with the right simplifying assumptions, rather simple equations can be used to 
solve difficult problems.   
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The second step, partitioning the performance index, is often used in parallel optimization to reduce the 
omputation time for large-scale problems  [33].  In this case, the second step is used to reduce 

dex using either a first-order 
eepest descent algorithm or second order method such as the Newton’s Method [34].   

 in practice.  Six 
xamples are given with details on the problem formulation and the task that was performed. 

.1.  Example 1:  Spreading Apart along a Line – A Containment Behavior 

ly spread 
part along a straight line using only information from the neighboring robots on the right and left.  In 

c
communications between robots and to increase robustness of the distributed system.  The control law 
that would result from step 1 would require that every robot be able to communicate with all the other 
robots.  As the number of robots increase to 100s and 1000s, the time delay necessary for communication 
would make the resulting control infeasible.  Instead, partitioning the performance index and eliminating 
terms to include only terms of local neighbors results in a control law that only requires communication 
with nearest neighbors, thus greatly reducing communication delay.  Also, using nearest neighbors that 
change throughout the motion adds an element of robustness.  The mathematical formulation of the 
partition does not specify that robot number 10 must communicate with robot number 6.  Instead, the 
mathematical formulation specifies a group of nearest neighbors that can change based on external forces 
and environmental conditions.  This creates an element of self-organization that allows the system to 
change and evolve.  If a robot fails, a new set of nearest neighbors is formed. 
 
The third step is to solve for the extremum of the partitioned performance in
st
 
The remainder of this section will be spent showing how these three steps have been used
e
 
 
V
 
This first example is a simple one-dimensional problem.  The goal is for multiple robots to even
a
Figure 14, the first and last robots are assumed to be stationary while the ones in between are to spread 
apart a distance d away from each other.   

2 

3 

4

t= 0 

x 

1  

t= tf 

x 

1  2 3 4

 
Figure 14.  One-dimensional control problem.  The top line is the initial state.  The second line is the 
desired final state. Vehicles 1 and 4 are boundary conditions.  Vehicles 2 and 3 spread out along the line 

he optimization steps are as follows. 

lem, the objective is to 

using only the position of their left and right neighbors. 
  
 
T
 
Step 1.  Specified as an optimization prob

)(min xv
x

                                                                 (1) 

where the global performance index is 
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is the position of robot i, ix [ ]Tnxxx ...1=  are the positions of all the robots, and d is the desired 
dis  The goal is to m

tep 2.  This problem is easily partitioned amongst the interior n-2 robots.  The distributed objective is to 

tance between each robot. inimize the sum of squared errors in distances between 
every robot. 
 
S
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where the partitioned performance index is 
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Because of the additive form of Equation (2), simultaneously solving Equation (3) for eac

tep 3.  A steepest descent control law for the partitioned performance index is given by 

h robot is the 
same as minimizing the global performance index in Equation (2).  Therefore, in this case, no terms were 
eliminated.  This is not necessarily true for the other example problems below. 
 
S

( ) ( ) ( ) 10,)(1 ≤<∇−=+ αα kxvkxkx ii  ,                i                      (5) 
where 

( ) 1111 if2)( +−−+ <<+−=∇ iiiiiii xxxxxxxv   .                               (6) 
 

 when ( )112

1
−+ += iii xxx0)( =∇ xviNote that .  Therefore, the vehicles will disperse along the line until 

exactly in the mithey have reached a position that is ddle of its nearest neighbors.  In [35], it is shown 
that α is actually more constrained than 10 ≤<α  depending on the speed of the vehicle and the 
communication sample period.  The control Equations (5)-(6) have been used to spread robot 
vehicles apart along a perimeter [36] as shown in Figures 15-16, as well as to spread out hopping 
minefield robots [37] as shown in Figures 17-18. 
 

 law in 

 
 

 
 

igure 15.  Four robot vehicles are shown guarding a perimeter denoted by the blue line segments.  F
When an intrusion detection sensor denoted by the numbered circles alarms, one robot vehicle attends to 
the alarm (vehicle near sensor 33) while the others spread apart along the perimeter so that each vehicle 
is midway between its neighbors. 
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Figure 16.  Robot vehicles used to perform perimeter surveillance task. 
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igure 17.  Hopping landmine robots are filling breach left by enemy vehicle.  When a robot is reached, F b

the robots will hop towards the missing robot and settle when each robot is midway between its 
neighbors. 
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Figure 18.  Hopping landmine robots used in self-healing minefield tests. 

 
 
V.2.  Example 2:  Coverage of a Two-Dimensional Space  
 
Next, we consider the example of dispersing robots in a plane in a specified pattern.  In Figure 19, the 
robots are to move from the configuration on the left to the configuration on the right.  The configuration 
on the right is specified by the distances between robot i and robot j. ijd

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19.  (Left) Initial configuration of robots.  (Right) Desired final configuration. 
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Step 1.  The objective is to 

)(min xv
x
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where the global performance index is 
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x  is the position of robot i in the xy plane, and [ ]TT

n
T xxx ...1=  is the position of all the 

robots in the xy plane.  By minimizing the error between the squared desired distance and the squared 
measured distance between every pair-wise combination of robots, we can drive the robots from an initial 
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pattern to the desired specified pattern.  Notice that the global performance index does not specify the 
orientation or final absolute position of the group of robots. 
 
Step 2.  The global performance index is over constrained since it is possible to achieve the same 
minimum solution without having to minimize the error between every pair-wise combination.  The same 
minimum solution can be achieved by only minimizing the error between neighboring robots.  The 
distributed objective is to 
  

nixvi
xi

,...,1)(min =∀                                                          (9) 

where the partitioned performance index is 
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and NN stands for nearest neighbor.   
 
Step 3.  The steepest descent control law for the partitioned performance index is given by 
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Note that  when 0=∇ iv ( ) ( ) NNjyyxxd jijiij ∈−+−= for222 .  In [38], the connective stability of 

this control law is proven using a vector Liapunov technique.  The control law in Equations (11)-(14) has 
been used to spread apart the hopping minefield robots as shown in Figure 20.  In this case, the specified 

distances  are all equal and the number of nearest neighbors used for control is three. ijd
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Figure 20.  Plot of 20 vehicles’ trajectories started from a clustered position with the goal of spreading 
out uniformly through the space (blue * indicates initial position, red marks indicate trajectory, and black 
+ indicate final position). 
 
 
 
V.3.  Example 3:  Coverage of a Two-Dimensional Space with Constraints 
 
Next, consider the same problem as in the previous example, except that the robots are constrained to 
stay within a region that is bounded by line segments as shown in Figure 21. 
 
 

 

 

 
Figure 21.  Plot of 20 vehicles’ trajectories started from a clustered position with the goal of spreading 
apart uniformly through a hallway with a side corridor (blue * indicates initial position, red marks 
indicate trajectory, and black + indicate final position). 
 
 
Step 1.  The objective is to 

)(min xv
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where the global performance index is 
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nibxA i ,...,1=∀≤                                                        (17) 

where  and .  Equation (17) specifies the boundary conditions of m straight-line 
segments. 
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Step 2.  The distributed objective is to 
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Here, the inequality constraints in Equation (17) have been added as a weighted penalty function that is 
the sum of the inverse squared perpendicular distances between robot i and the nearest obstacle (NO) line 
segments l.  The  is a scalar used to vary the importance of obstacle avoidance.  As before, NN stands 
for the set of nearest neighbors.  Similarly, the set NO is the set of nearest obstacles.   

Λ

 
Step 3.  The steepest descent control law is 
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The control law in Equations (19) and (20) has been used to spread out the robot vehicles in a hallway as 
shown in Figure 21.  The nearest obstacles are determined from IR proximity sensors.  The specified 
distance d between vehicles was chosen to be within the 10 meter acoustic range of the sensors on top of 
the vehicle (see Figure 22) [39].  Again, the number of nearest neighbors used for control is three. 
 
 

 
 

Figure 22.  Robot vehicles used in an indoor communication/navigation network. 
 
 
V.4.  Example 4.  Forming an Ellipse with Constraints – A Containment Behavior 
 
Next, consider a path following/formation problem where multiple vehicles are to 1) travel towards and 
spread apart on an ellipse, 2) not drive into each other, and 3) stay away from obstacle line segments.  
This is shown in Figure 23. 
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Figure 23.  Robot path planner drives vehicles towards ellipse while staying away from obstacles, denoted 
by red line, and the other vehicles. 
 
 
Step 1.  The objective is to 
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where the global performance index is 
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The global performance index is squared error of the robot’s position from the ellipse.  The position of the 
center of the ellipse is ox , and ρ  and σ  are the elliptical parameters along the x- and y-axes.  The first 
constraint ensures that the vehicles stay a distance d apart from each other.  The second constraint 
ensures that the vehicles stay away from the line constraints as in the previous example. 
 
Step 2.  The distributed objective is 
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The two constraints are implemented as penalty functions.  The equations are the same as in the previous 
example. 
 
Step 3.  The steepest descent control law is 
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The control law in Equations (26)-(27) has been implemented on a path planner as shown in Figure 23.  
The number of nearest neighbors and number of nearest obstacles can be one if the time step is small.  
The nearest neighbor and obstacle will continually change throughout the motion. 
 
 
V.5.  Example 5.  Converging on the Source of a Plume – 2D Case 
 
The next example is a plume localization problem.  The objective is for multiple vehicles to locate and 
converge on a source, which could either be acoustic, radio frequency, temperature, or chemical (See 
Figure 24).  It is assumed that the spatial signature of the source can be approximated by a quadric 
surface.  The form of this second order equation allows us to easily formulate convergent control to the 
extremum of the surface.  If the data were fit to a higher order surface with many local extremum, then it 
would not be possible to guarantee convergence to a single solution. 
 
 

 
Figure 24.  Multiple vehicles converging on a rotating plume. 

 
 
Step 1.  The objective is 
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x

                                                                 (28) 

where the global performance index is 
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The parameters of the quadratic surface are ℜ∈0a , , and .  The center of the source 
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Step 2.  The distributed objective is 
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Each vehicle determines it’s own estimate of the quadratic surface using information from its nearest 
neighbors.  An alternative approach is to use data from as many neighbors as possible and calculate a 
least-squares estimate of the quadratic coefficients.  References [40-41] describe the least squares fitting 
algorithm in more detail. 
 
Step 3.  The second order Newton’s method control law is 
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where the quadratic coefficients are determined from the solution to the nearest neighbor equations 
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The control law in Equations (32)-(33) has been implemented on RATLER vehicles (See Figure 16) that 
locate an acoustic source and on a set of miniature robotic vehicles (See Figure 25) that locate a block of 
dry ice [40-41].  In both cases, the number of nearest neighbors is six because seven measurements 
(including itself) are needed to uniquely determine the quadric coefficients  and .   iA1 iA2
 
 

               
 

Figure 25.  Miniature robot used in the plume localization experiment that located a block of dry ice. 
 
 
V.6.  Example 6.  Converging on the Source of a Plume – 3D Case  
 
The last example is a three-dimensional plume localization problem.  The objective is for multiple 
vehicles to locate and converge in on a source, which could either be acoustic, temperature, or chemical.  
It is assumed that the spatial signature of the source can be approximated by a quadratic surface.   
 
Step 1.  The objective is 
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where the global performance index is 
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The parameters of the quadratic surface are ℜ∈0a , , and .  The center of the source 

is located at 

3
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Step 2.  The distributed objective is 
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where the partitioned performance index is 
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Each vehicle determines it’s own estimate of the quadratic surface using information from its nearest 
neighbors.   
 
Step 3.  The second order Newton’s method control law is 
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where the quadratic coefficients are determined from the solution to the nearest neighbor equations 
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For the 3D case, the number of nearest neighbors is nine because ten measurements (including itself) are 
needed to uniquely determine the quadratic coefficients  and .  Most recently, this algorithm has 
been implemented on underwater vehicles that locate and converge in on a 3D plume [42].  Preliminary 
tests were conducted with a synthetic plume.  Synthesized sensor data was calculated as a function of 
position to debug the algorithm. The underwater robots are shown in Figure 26.  The results of a typical 
test run are shown in Figure 27. 

iA1 iA2
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Figure 26.  Nekton Research underwater vehicle used to locate synthetic plume source. 

 
 

 
 

Figure 27.  Underwater synthetic plume test results. 
 
 
These six examples demonstrate the utility of this three-step process for creating locally optimal 
distributed controls for multiple robotic vehicles.  The resulting control laws are robust and only require 
sharing of information between nearest neighbors.  The robustness is the result of the self-organizing 
nature of the control where nearest neighbors are continually changing throughout the motions.  If a 
vehicle is lost or dies, another set of nearest neighbors can be used to complete the task.  By using penalty 
functions to approximate constraints, the control laws are in a form that is identical to the potential field 
control laws often used for controlling single and multiple robots.  The main difference is the switching of 
potential fields based on the nearest neighbors and the nearest obstacles. 
 
 
VI.  Behavior Metrics 
 
In this section, two metrics are developed for comparing similar cooperative behaviors.  The first metric 
is the global performance index described in the previous section.  The second metric is the time required 
to converge to the behavior’s final state.  There are many other possible metrics that need to be 
investigated in the future.  These include the algorithm’s robustness to failure, required on-board 
computing, and required sensing.  There are also behavior-specific metrics that need further 
investigation.  For example, the probability of detection and false alarm rates are important metrics that 
must be evaluated for a search behavior.  In the cooperative Net Fires report [19], the system-level 
cumulative probability of detection was evaluated for different search patterns. 
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Based on the analysis in the previous section, the most obvious metric for measuring the performance of a 
cooperative behavior is the global performance index used to create the behavior.  For example in the 
containment behavior for spreading out on a line, the global performance index defined in Equation (2) 
can be used to measure the effectiveness of the distributed control law.  Because of the partitioning step 
used to determine local behaviors, the global performance index will often not be zero.  This implies that 
the best distributed control behaviors will partition the problem and choose local neighbor interactions 
such that the global performance index is minimized. 
 
The global performance indices described in the previous section are not a function of time.  Instead, they 
minimize the final goal position of the robots.  Another metric that is much more difficult to evaluate is 
the time required to converge to the behavior’s final state.  Because many of the interactions between 
vehicles depend on information that is shared over a radio, this metric depends heavily on the 
communication overhead and network configuration time.  The communication bandwidth and latency 
will greatly affect the stability and performance of the system. 
 
Within this project, previous analysis regarding stable control of multiple vehicles using large-scale 
decentralized control techniques [35] has been extended to include the communications aspects of the 
problem.  A stability analysis shows that the local feedback control gains of the robotic vehicles must be 
decreased if the communication sample period is increases.  Therefore, there is a tight coupling between 
communications and controls that cannot be ignored. In general, a system will be more responsive and 
have shorter settling times if the feedback control gains are as large as possible and the communication 
sample period is as short as possible.  This section evaluates the resulting communication sample period 
of four different communication protocols: a Time Division Multiple Access (TDMA) linear broadcast, a 
TDMA polylogarithmic broadcast, a TDMA coloring algorithm, and a Collision Sense Multiple Access 
(CSMA) coloring algorithm.  The selection of the best protocol depends on the density of the robot 
vehicles and the communication radius of each vehicle.  
 
Throughout this section, the one-dimensional dispersion example from the previous section is used to 
illustrate the design methodology.  In [35], it is shown that α in Equation (5) is actually more 
constrained than 10 ≤<α  depending on the speed of the vehicle and the communication sample period.  
Therefore, the next question to ask is that of connective stability.  Under what conditions will the overall 
system be globally asymptotically stable even under structural perturbations?  Analysis of connective 
stability is based upon the concept of vector Liapunov functions, which associates several scalar functions 
with a dynamic system in such a way that each function guarantees stability in different portions of the 
state space.  The objective is to prove that there exist Liapunov functions for each of the individual 
subsystems and then prove that the vector sum of these Liapunov functions is a Liapunov function for the 
entire system. 
 
To simplify matters, we will assume that the control function has already been chosen and the closed loop 
dynamics of the discrete time system can be written as 

 
( ) ( ) { }.,...,1,,~),(1: Nixkgxkgkx iiii ∈+=+S                             (40) 

where ( ) nkx ℜ∈  is the state of  (e.g., x, y position, orientation, and linear and angular velocities of all 

vehicles) at time ,  is the state of the i
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where { }jnq∈   and . { }inp∈

 
The structural perturbations of S are introduced by assuming that the elements of the fundamental 
interconnection matrix that are one can be replaced by any number between zero and one, i.e.   
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Therefore, the elements represent the strength of coupling between the individual subsystems.  A 

system is connectively stable if it is stable in the sense of Liapunov for all possible

ije

( )ijeE =  [43].  In 

other words, if a system is connectively stable, it is stable even if an interconnection becomes decoupled, 
i.e. , or if interconnection parameters are perturbed, i.e. .  This is potentially very 

powerful, as it proves that the system will be stable even if an interconnection is lost through 
communication failure. 

0=ije 10 << ije

 
For linear systems, the discrete time dynamics may be written as  
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and the Liapunov function for each individual subsystems is ( ) ( ) 21
ii

T
iii xHxxv =  where  is a positive 

definite matrix. For the system S to be connectively stable, the following test matrix 
iH
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an M-matrix (i.e., all leading principal minors must be positive) [44]: 
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1
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iM
i
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T
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T
ii −=− ** ( )•mλ  and ( )•Mλ  are the 

minimum and maximum eigenvalues of the corresponding matrices, and the superscript * denotes the 
Hermitian operator. 
 
For the linear dispersion example, we will model the vehicle dynamics as a discrete time integrator with a 
position feedback loop (see Figure 28).  The proportional control gain is , and the sampling period is 
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Figure 28.  Discrete time control block diagram of N-vehicle interaction problem. 

 
 
The sampling period is both the communication and position update sample time.  The state equations of 
the system are 
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Note that when comparing Equation (46) to Equations (5) and (6), it is evident that and 

.  If Equation (46) is forced to be exactly equivalent to Equations (5) and (6), then 

TK p=α2

TK pγα = 2
1=γ  and 

2
TK p=α .  The following stability test is less restrictive, and the interaction gain γ  is less constrained.  
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and if , the test matrix is 21 ≤< TK p
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For N=2, the test matrix is an M-matrix, and the system is connectively stable if 
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Figure 29 illustrates the stability region for the case of N=2.  The dark region represents stable 
combinations of the interaction gain γ  and  (proportional control gain multiplied by the sampling 

period).  The white region represents unstable combinations of 

TK p

γ  and .  We refer to the dark region 

as a stability “house” due to the shape of the stable zone.  The size of this stability house varies only with 
N.  As N is increased, the house gets smaller in width but maintains the same height and shape. The size 
of the stability house is a measure of the robustness of the closed-loop system to parameter variations in 
interaction gain 

TK p

γ , sampling period T, and proportional control gain .  Figure 30 shows the stability 

region for N=10000. 
pK

 
For this particular example, another way to check the stability of this linear system is to check that the 
eigenvalues of the system matrix A are within the unit circle.  There is a special formula (p. 59 of [45]) 
for the eigenvalues of A given by 

Ni
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From this formula, we can see that as N �∞, the cosine term becomes unity.  This implies that γ  must 

stay between –0.5 and 0.5 for  less than one in order to maintain stability.  For  greater than 

one, the admissible 

TK p TK p

γ  values taper off parabolically (the sloped “roof”) until 2=TK p . 
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Figure 29. Stability region for the N=2 vehicle case. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 30.  Stability region for the N=10000 vehicle case. 
 
 
Several conclusions can be drawn from this stability analysis.  First, asymptotic stability of vehicle 
positions depends on vehicle responsiveness , communication sampling period T, and vehicle 

interaction gain 

pK

γ .  If the vehicle is too fast (large ) or the sample period is too long (large T) then 

the vehicles will go unstable.  There is a dependence on interaction gain for stability as well.  Second, the 
interaction gains can be used to bunch the vehicles closer together or spread them out.  Third, the 
stability region shrinks as the number of vehicles, N, increases but only to a defined limit.   

pK

 
As noted, the communication sample period greatly affects the stability of the system.  As defined in the 
equations above, this sample period is the time it takes for every node to communicate once.  In this 
section, we will evaluate the communication sample period of four different communication schemes: a 
Time Division Medium Access (TDMA) linear broadcast, a TDMA polylogarithmic broadcast, a TDMA 
coloring algorithm, and a Collision Sense Medium Access (CSMA) coloring algorithm.  All of these 
schemes assume that each node has a unique identification number.  The TDMA schemes also assume 
that each node has a synchronized clock that is used to notify each node when it may transmit a message.  
The CSMA scheme first checks the communication channel for a collision before transmitting a packet.    
 
In order to determine this sample period, one important parameter associated with an ad hoc 
communication network is the degree of the network.  The degree of the network is defined as the 
maximum number of nodes that any node can communicate with given a limited communication range.   
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Figure 31.  Graph of ad hoc communication network.  Nodes with connecting lines can communication 
with each other. 
 
 
For the network shown in Figure 31, the degree of the network is  
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and is the communication radius of each node.  Assuming all the robots are evenly spaced along a line 

of length L and have a density 
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N
=δ , then the degree of the resulting network is 
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For the TDMA linear broadcast where every node is assigned a unique identification number, the 
communication sample period time required for every node to send a message is 

NT τ=                                                                                  (54) 
where τ is the time period associated with each communication time slot.  Notice that the above 
expression is proportional to N.  This delay time can be shortened by using a polylogarithmic broadcast 
scheme [46] where each node communicates during multiple time slots.  Even though multiple messages 
are being broadcast at the same time, the message is guaranteed a successful broadcast during one of the 
time slots as long as the degree of the network is below a certain value.  The communication period for a 
polylogarithmic broadcast is 

( )hNT 2log2τ=                                                                           (55) 
when 

1-2 1+≤Δ h                                                                             (56) 
and where 

( )⎣ ⎦1loglog/log 222 += NNh  .                                                         (57) 
 
Notice that this expression is proportional to the log2 N instead of N.  Figure 32 compares the linear 
broadcast to the polylogarithmic broadcast for a network spread out over a line and with each node 
having a communication radius that is one-tenth the length of the line.  At 20 robots, the average degree 
of the network becomes too large and the polylogarithmic broadcast will no longer work. 
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Figure 32.  Communication sample period for TDMA linear and polylogarithmic broadcasts when 

1.0=
L

Rc  and τ=0.1s. 

 . 
 
Even better than the linear broadcast and the polylogarithmic broadcast, a color scheme allows multiple 
nodes to communicate at the same time by using spatial reuse of time slots.  Time slots (called colors) are 
assigned so that each node has a different color than its first and second nearest neighbors.  By using 
different colors, the hidden node problem, where two nodes speak to an intermediate node at the same 
time, is eliminated.  In graph theory, the minimum number of colors can range from the maximum degree 
of the network plus one to the square of the maximum degree of the network plus one. 

11 2 +≤≤+ ΔkΔ                                                                       (58) 
However, in a typical planar wireless network the number of colors is typically bounded by 

ε+≤ Δk                                                                               (59) 
where ε is a small number, typically 1 to 5. 
 
For a TDMA colored network, the communication sample period is given by 

( ) small is       whereεετ +Δ=T .                                                       (60) 
 
For a CSMA colored network, the actual delay time is non-deterministic because the packets often collide 
and a random back-off is used before retransmitting.  However, the rule of thumb is the best a CSMA 
colored network will perform is equivalent to a TDMA network with half the bandwidth.  Therefore, an 
optimal CSMA colored network will have a communication delay that is approximately twice that of a 
TDMA colored network. 

( ) small is       where2 εετ +Δ=T .                                                   (61) 
The delay times for both the TDMA and CSMA colored networks are shown in Figure 33. 
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Figure 33.  Communication sample period for TDMA and CSMA reconfigurable coloring when 

1.0=
L

Rc , τ=0.1s,and ε=1. 

 
 
Notice that both the TDMA and CSMA colored networks have a shorter communication sample period 
compared to both linear and polylogarithmic broadcasts.  The disadvantage of the colored networks is 
that there is an initialization time that is required to determine the color of each node whenever the 
network topology changes.  Both the linear broadcast and the polylogarithmic broadcast have the 
advantage that they do not require a network initialization time.  Using an algorithm by [47], this 
initialization time is the time required to broadcast their own identification number, their 1st nearest 
neighbor lists (after which each node can determine 2nd nearest neighbor), and k+2 additional messages 
for coloring.  Since time slots are typically not assigned before hand, this initialization process occurs 
using CSMA protocols, and it should be performed whenever the topology of the network changes, i.e. 
when robots move.  The resulting initialization time is given by 

( ) ( )( )[ ] 222tinit εεετ +Δ++Δ++Δ=                                                   (62) 

where ε is small.  This initialization time is plotted as a function of the number of robots in Figure 34.  
Adding the initialization time in Figure 34 to the communication sample period in Figure 33, we see that 
a linear or polylogarithmic broadcast has a shorter sample period than the colored network for this 

particular example where 1.0=
L

Rc .  However, as 
L

Rc  decreases, there is a point where the colored 

networks, even with continual initialization, will out perform the linear and polylogarithmic broadcasts. 
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Figure 34.  Communication overhead for reconfigurable coloring when 1.0=
L

Rc , τ=0.1s, and ε=1. 

 
This section illustrates the tight coupling that exists between communications and controls when 
designing large-scale cooperative robotic systems.   A connective stability analysis shows that local 
feedback control gains and communication sample periods are inversely related.  If the communication 
sample period increases, then the local feedback control gains must decrease.  The communication sample 
period is a function of the protocol, and the protocol with the shortest communication sample period 
depends on the density of robots and the communication radius.  By assuming worst-case conditions for 
robot density and communication range, this analysis can be used off-line to determine conservative 
control gains required for stable control.  In the future, it might also be possible to use this analysis on-
line to adjust control gains and/or communication range as the robot density changes.  
 
 
VI.  Conclusions 

 
In this paper, several military air and sea missions for cooperative unmanned systems are identified; and 
from the top eight missions, nine generic reusable cooperative behaviors have been defined for these 
missions.  The top eight swarming missions include area ISR (Intelligence, Surveillance, Reconnaissance); 
point target ISR; communications/navigation/mapping; swarming attacks; defense/protection; 
delay/fix/block; deception operations; and Search and Rescue (SAR).  The nine generic behaviors include 
formation, mapping/survey, coverage, containment, converging, search, detect/track, pursuit, and 
evasion.  These behaviors are typically instantiated sequentially over the mission lifetime.  Some missions 
such as the swarming attack might utilize all the behaviors over the lifetime of the mission, while others 
might only use a few of the behaviors. The categorization of these behaviors is based on algorithms that 
the authors have developed and algorithms that have been found in the literature.  This categorization is 
not unique, and as additional algorithms are developed, these algorithms may fall into one of these 
categories or new behavior categories may need to be formed. 
 
For many of these behaviors, robotics researchers have already proposed centralized and distributed 
algorithms that exhibit the necessary features of these behaviors.  In an attempt to develop metrics that 
can be used to evaluate these algorithms, we have proposed a common mathematical framework for 
creating cooperative controls algorithms.  A three-step optimization process is used to develop the 
decentralized control law that minimizes the behavior’s performance index.  This framework has been 
applied to several variants of the coverage, containment, and converging behaviors.  Future research 
might apply this same framework to the other six behaviors.  
 
Using this mathematical framework, two metrics for evaluating these behaviors are defined.  The first 
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metric is the residual error in the global performance index that is used to create the behavior.  The 
second metric is communication sample period between robots, which affects the overall time required for 
the behavior to reach its goal state. For the second metric, a connective stability analysis is performed to 
determine constraints on the communication sample period and the local control gains.  The 
communication sample period is evaluated for four different network protocols: Time Division Medium 
Access (TDMA) linear broadcast, a TDMA polylogarithmic broadcast, a TDMA coloring algorithm, and 
a Collision Sense Medium Access (CSMA) coloring algorithm.  The communication sample period is a 
function of the protocol, and the protocol with the shortest communication sample period depends on the 
density of robots and the communication radius.  By assuming worst-case conditions for robot density 
and communication range, this analysis can be used off-line to determine conservative control gains and 
communication sample periods required for stable control.   A simple example of dispersion on a line was 
given in this report.  Future research is needed to extend this analysis to other tasks such as dispersion in 
the plane.  In the future, it might also be possible to use this analysis on-line to adjust control gains 
and/or communication range as the robot density changes.  This is an area of future research.   
 
There are many other possible metrics that need to be investigated in the future.  These include the 
algorithm’s robustness to failure, required on-board computing, and required sensing.  There are also 
behavior-specific metrics that need further investigation.  For example, the probability of detection and 
false alarm rates are important metrics that must be evaluated for a search behavior.   
 
The portions of the last two sections of this paper have been published in [48-49]. 
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