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Abstract

Wireless sensor networks allow detailed sensing of otherwise unknown and inac-
cessible environments. While it would be beneficial to include cameras in a wireless
sensor network because images are so rich in information, the power cost of transmit-
ting an image across the wireless network can dramatically shorten the lifespan of the
sensor nodes. This paper describe a new paradigm for the incorporation of imaging
into wireless networks. Rather than focusing on transmitting images across the net-
work, we show how an image can be processed locally for key features using simple
detectors. Contrasted with traditional event detection systems that trigger an image
capture, this enables a new class of sensors which uses a low power imaging sensor
to detect a variety of visual cues. Sharing these features among relevant nodes cues
specific actions to better provide information about the environment. We report on
various existing techniques developed for traditional computer vision research which
can aid in this work.
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On Computer Vision in Wireless
Sensor Networks

1 Introduction

Wireless sensor networks (WSNs) are increasingly called upon to assist in securing our
nation. Because of the small form factor, wireless communication, and battery power of an
individual node, it is easily deployable in difficult to monitor environments and at a scale
not previously feasible. To fully exploit the capabilities of WSNs, this paper asserts the
benefits of distributed computation and imaging. Imaging provides orthogonal information
from the traditional sensors considered in small low-power WSNs and distributed compu-
tation allows for rapid information extraction at the source of the events. The motivation
for this work is described in Section 2. Section 3 contains a proposed approach to address
the challenges of embedding computer vision techniques in a distributed manner through a
WSN. A preliminary survey of existing image-based information extraction techniques is
summarized in Section 4.

2 Motivation

WSNs are typically thought of as a data collection tool. Data is funneled through an ad-hoc
network of low-power microprocessors with embedded sensors to a centralized base sta-
tion. This base station has infinite power and memory resources compared to the distributed
sensor nodes enabling complex processing on the incoming data and interface with an end
user, [14, 18, 1]. When dealing with small amounts of information at controlled intervals,
as in Kyker’s work [14] which sampled radiation levels or Polastreet al.’s work [18] which
sampled various environmental conditions, a centralized data poll is feasible on the limited
available bandwidth. Yet, inherently, this is not a scalable architecture. System bandwidth
is proportional to the number of nodes connected to the base station, as well as dependent
on the communication power of these nodes. These nodes are typically relatively few be-
cause the wireless sensor networks are placed in large and inaccessible areas. The location
of the base station can often far from the center of activity. The full processing power of
the base station cannot be utilized because not enough data can be received, and the full
sensing power of the nodes cannot be utilized because of the bottleneck at the base station.
In a recent field test [1], Arroraet al. illustrated how centralized data fusion is capable of
flooding the network layers and provide little to no information to the end user.
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2.1 Enabling Technologies

Another limitation of WSN is their inability to readily incorporate image sensors into their
system. Yet as humans, we rely heavily on our sight because it provides rich orthogonal
information compared to our other senses. There is much to leverage in research devoted
to the exploitation of the information provided by images, from clustering of images to
recognition/tracking objects within the images or video.

Recently, driven by the incorporation of cameras in cellular phones, there exists low
power CMOS image sensors which consume approximately 2 millijoules to capture an
image and have a form factor of less than 10 mm x 10 mm x 5 mm. Their form factor can
be easily interfaced with current WSN platform.

Images captured by these sensors are around 100,000 bytes and require a larger memory
and processing power than some sensor node platforms provide. Recent advances in XScale
processing (e.g., Stargate [34] and PASTA [23]) provide adequate interfaces to be integrated
into a wireless sensor node. The PASTA board [23] is particular attractive because of its
modular design fitting well within the Embedded Reasoning Institute (ERI) framework for
sensor systems [3]. A more powerful processor also means greater power consumption, so
it is important that this module can be powered down and used only when needed. On a
similar vein, Digital Signal Processing (DSP) boards are becoming increasingly low power
and supported with key image processing functions to add in efficient analysis of raw data.

Researchers are beginning to see the possibilites that are opened up by these techno-
logical breakthroughs and investigating the possibility of embedded vision. Two examples
of embedding vision within small devices is the work done by Rowe,et al [24], and Viola
and Jones [32]. Rowe,et al have used an embedded 8-bit processor and image sensor to
direct the motion of a small robot. Their research has proven the capability of rudimentary
vision techniques in small embedded devices. We have extended this idea of embedded
vision to extracting information in a distributed environment. Another example system is
Viola and Jones’s work in face detection on the XScale platform [32]. While their work
demonstrates the size and complexity of an algorithm we can expect from an XScale plat-
form, we recognize that even their work would be too computational expensive for WSNs.
To be viable in wireless sensor networks, the XScale processor needs to remain in sleep
mode as much as possible to conserve power. The architectural scheme used in [35] and
[32] quickly reduces the required computation by first ruling out unlikely search spaces, a
necessary concern when working within the power constraints presented by wireless sensor
networks.

Another body of work led by Yang [37] has focused on crowd monitoring using WSNs.
While not currently implemented on small embedded devices and assumes a known loca-
tion and orientation of the cameras, the underlying research provides insight into distributed
computer vision. Other work on the use of multiple cameras are Rahimi’s work [20] in the
simultaneously tracking of a single user and the discovery of node locations and orientation,
and Khan’s work [11] in tracking moving cars along a highway. While these approaches
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have taken a centralized approach in the acquisition and processing of images, their work
illuminates the challenges of comparing images taken from different cameras.

Some system approaches has incorporated image sensors into the traditional wireless
sensor network. Sensoria [17] relies on a simpler sensor, a Passive Infrared Sensor, to
determine if an event of interest has occured, which then triggers an image capture and
subsequent image transfer back to the base station. The SDAC system [12] proposed using
an image as part of the decision making processing by performing simple local image
processing techniques to extract key features which either refute or affirm the presence of
an event and only transfer parts of an image which contains the event.

2.2 The A in SDAC

The network layers of WSNs have been optimized to handle transfers of small amounts of
data between nodes. While investigations have begun on how to transfer large amounts of
data for reprogramming of the sensor nodes [26, 5], these solutions can be inadequate for
sensor system tasks due to time constraints. For example, [26, 5]’s methods take minutes to
traverse a few hops. The cause for this delay steams from the limited bandwidth available
and the unreliability of wireless communication. By the time the image is received at the
base station, the event of interest (i.e., person) could have traveled far away and be out of
detection range.

Clusters of computers working collaboratively are capable of providing greater compu-
tation than the fastest single computer. The strength of parallel or distributed computing
has been shown throughout the high performance computing community. Yet, many of
the current sensor network deployments do not attempt to utilize the processing power of
the distributed nodes. In many ways, the nature of sensor networks lends itself easily to
parallel and distributed computing because the sensed data is naturally distributed across
the network.

The concept of Sense, Decide, Act, and Communicate (SDAC) developed by Berryet
al. [3] describes the potential of WSNs. Rather than the centralized data pull that most
research is focused on, SDAC-type systems are envisioned to have embedded intelligence
at the sensor node level, placing decision making and acting at the souce of detection. In
WSNs, it is essential to take advantage of the distributed processors because of the time
and power constraints of these type of systems. There exists a tradeoff between the amount
of instantaneous information the system can provide and how long the system can provide
information in general. Assuming infinite bandwidth, constantly shipping the maximum
amount of information back to a base station will provide greater resolution of the envi-
ronment, but will also result in a shorter lifespan of the sensor network. Reducing the
amount transmitted will increase the lifespan, but information will be missed. Introducing
user feedback to this system can provide a varying amount of information, but the time
constraint of monitoring real-life events most likely will be too tight to utilize this.In situ
processing is necessary to improve the tradeoff between the resolution of information and
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the lifetime of the sensor networks [3].In situ processing allows for sensor nodes to im-
mediately comprehend the environment through their on board analysis of the sensor data.
Through this analysis, they are able to perform specific actions to better inform the end user,
by gathering more detailed sensed data, performing more complicated computation on the
sensed data, or directing the activities of other nodes. These actions can be performed with
little delay, capturing information that would be otherwise lost on time-sensitive events.

3 Body of Research

The future generations of wireless sensor networks and vision based systems are entwined.
To realize the full potential of WSNs, there needs to be a method of capturing the infor-
mation provided in images when they can not be transported back to the base station for
centralized analysis. For acquiring cutting edge speed and robustness, computer vision re-
search needs to take advantage of distributed dense information from different viewpoints.
The following sections will describe the initial scope to begin this work, general research
questions which arise when integrating these two fields, and the proposed architecture to
address these issues.

3.1 Constraints

Our design of a distributed vision-based wireless sensor network has been governed by
these underlying constraints:

• Unreliable communications exists between nodes.

• Processing and communications are power intensive operations.

• Memory is limited.

Wireless communication in real-life large-scale deployments is inherently unreliable
and difficult to predict through simulations and testbeds. A number of issues arose in the
Great Duck Island deployment [18] illustrating unexspected failures in the networking and
application layers. Unreliable power-intensive communications suggests local processing,
but local processing is constrained by the processors selected for WSNs and the memory
limitations on sensor nodes [3].

These constraints suggest that a different approach is required than the traditional cen-
tralized data feed used in current WSNs and a centralized image processing used in com-
puter vision. We propose work in developing a framework which exhibit these features:

• There is no need to share images between nodes or with the base station.

10



• Each nodes does not need to solve the entire problem. (e.g., execute all feature
extractions.)

• Features are cascaded through the network.

• Features are selected and weighted according to their relevance.

• Computation is scaled and conservative.

The work presented in [12] illustrates information extraction at the sensor nodes so that
images would not need to be transported back to a centralized base station. By extracting
simple features from the images of an object passing through the view of the camera and
comparing these features against feature templates associated with humans, we were able
to differentiate times when a person was or was not in a scene. Specifically, the sensor
node looked for skin colored objects and moving objects within its view point. We used
the heuristic that an image of humans would have skin colored pixels and that the human
would be moving in the scene as feature templates. While these features demonstrated an
extremely compact algorithm in terms of memory and processing, more sophisticated fea-
tures would provide finer granularity, reducing false postivies and misses, penhancing the
ability to distinguish between different people. More sophisticated features are necessary
to distinguish between different events as well as providing a thorough characterization
of events across sensor nodes. This follows the same concept of AdaBoost [32], which
uses cascaded detectors which become increasingly complex and detailed to quickly rule
out false positives by using simple statistically discovered orthogonal features minimizing
computation.

3.2 Fundamental Questions Addressed

Fundamental questions arise when integrating cameras within a WSNs, issues that com-
puter vision research typically do not need to address. These three questions outline the
key issues.

Feature Detection: How can events of interest (e.g., person, group of people, tank
movement) be described as a collection of features that are computational feasible within
a wireless sensor network?

The human vision system can distinguish between different objects (such as a tank and
a person) because there are distinguishing features that each exhibit. The features which we
perceive are in abundance and have unknown processes. Even if it were known, to attempt
to replicate this system on a sensor node would be an intractable problem considering the
tight power constraints and limited processing power. The state of the art research in com-
puter vision has shown it is possible to characterize an object uniquely by detecting people
within an image [32], or even characterizing different people by certain biometrics [15].
Even so, the high resolution of object descriptions are rarely coupled with real-time pro-
cessing. The state of the art real-time systems typically incorporate prior information and
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sacrifice accuracy for robustness. While having proven success with relatively unlimited
power and memory constraints running on a centralized Pentium 4 processor, it is unclear
how these systems would perform in a constrained environment. Because of the high cost
of processing images, efficient feature extraction that is kept to a minimum in terms of
processor cycles and memory space is needed for successful computation.

Object Resolution: How are these features manifested across differing images in time,
differing position and orientation of cameras, and differing position and orientation of the
event?

While the first question addresses the constraints imposed by the physical hardware of
WSNs, the second question addresses the constraints imposed by time and space. Events
are moving in the field of sensors constantly changing their pose, position, and orientation.
Distributed cameras are placed in random positions and orientations capturing different
viewpoints of an event. This wide set of variables are rarely dealt with all together be-
cause many of the systems currently being developed are for environments where more
assumptions can be made. A centralized calibration of a few cameras is often employed
to help resolve these unknowns where the centralized computing unit has access to all the
raw images between cameras. Without a centralized computing unit, the features chosen
to interpret events need to be salient across these variables so that sensor nodes begin to
understand their relationships to one another. In this context, a feature or a set of features
are the representation of the event. This representation needs to be easily shared between
nodes and interpretable independently of the raw image.

The attempt to characterize an object by features in a computationally constrained en-
vironment encourages the distribution of feature extraction to occur at different nodes to
gather incrementally knowledge of an event, while attempting to correlate features with
events pushes parallel extraction of features to resolve multiple detections of an event from
the same object. Although the same features can be used to describe an event as to resolve
multiple detections, there is an additional required step in resolving multiple detections.
In this case, we need to define an appropriate similarity measure which takes into account
the different views of the event. Typical similarity measures like mean squares might be
too weak of a paradigm. Or rather, it could be that the features are not an appropriate rep-
resentation. Finding the right representation for features is as critical as finding the right
similarity measure.

Aggregation of Distributed Information : How does a network of sensors fuse features
across nodes with minimal communication to enable the classification and tracking events
of interest?

The last question addresses the problems that occur when dealing with information that
is distributed across different units. To exploit the advantages of having multiple cameras
dispersed throughout the environment, a method of effectively gathering aggregated infor-
mation about the event and reporting this back to the user is essential. Each node should
independently be capable of determining whether or not they are the current leader. Most
leader election implementations for wireless sensor networks are not dynamic with the
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sensed data. For example, some methods use randomness for enhanced security [3]. Orga-
nizing the network based on sensed information allows for dynamic changes in leadership
which are implicit, reducing the algorithm footprint in memory and processing. From [16],
it is clear as long as sensor nodes are not identical, nodes can determine a leader without an
external intervening force. The data received from various sensors differentiates the sensor
nodes. Because of the power constraints of WSNs, it is critical that the features shared
among the sensor nodes maintains this difference. While the challenges discussed above
push for salient features which are detectable across time and space, the features which will
be of use for efficient aggregation of the event description need to capture the differences
from sensor node’s viewpoint.

3.3 Framework

To maintain the adaptability and flexibility of WSNs, we propose a probabilistic framework
for the representation of features. Recognizing that the environment in which WSNs are
deployed is not predictable or easily accessible, using statistics allows features to be easily
shared among different sensors and nodes. While each feature provides unique informa-
tion in its own format, the detection of events lies in the combination of multiple values
of multiple features. Statistics provide a common language in which the features can be
represented. Information flows from the image captured from the CMOS image sensor
through feature extractors, which represent the information in the image in a compact ex-
plicit form, and then is compared against other features for orrelating across sensor units
and past knowledge as shown in Figure 1.

Features can be used to describe an image, describe an object, and differentiate an object
from an image. Image description features provide information about the entire image, but
do not actually locate the object in either the world or the camera coordinates. Typically,
these features can be computed quickly, and therefore can be used as a first pass filter for
reducing unnecessary computation. Similarly, features that describe an object can help
differentiate events from one another. Though these features can be the same as the image
features, their instantiation may be different due to a higher level representation of the
event. To determine which pixels provide information about an event, it is essential to have
features which can differentiate the event from the rest of the image. For example, these
features could simple be the features that provide information about the event searched
across the entire image. While effective, this method would be computationally expensive.

We rely on these features to represent the image throughout the sensor system. The
information contained within the image about an event is transformed by feature extractors
into an event description. Then, a quantitative measurement of similarity against other de-
tected events by various similarity measures can be computed. The feature extractors and
similarity measure are designed to be independent modules which can be easily selected
and deselected for the appropriate application. In addition, these modules can be adjusted
in real-time for adaptive computation for drilling deeper into the feature space and extract-
ing more details about an event and adjusting for appropriate features given the dynamic
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Figure 1. Decomposition of proposed framework. Processing
begins with the capture of an image. Selected features are ex-
tracted from the image and compared against models built offline
or incoming features from other sensor node sto determine corre-
lations between events. The selection of features, similarity mea-
sures, models, and weighting function is dependent on previously
extracted features.

environment.

The similarity measures computed from a set of features used to associate data can
be viewed as a measure of an individual node’s ability to detect events. In the simplest
case, the sensor node which has the strongest response to an event would be the natural
leader of the information. For concreteness, this could be the sensor node which is closest
to the event. Future leaders can be hypthesized by detected trajectories. As the event
moves, the leader naturally shifts to the sensor node which is closest. Leaders have the
dual responsibility of getting information back to the user about the event and directing
the feature extraction in a way that allows the accumulation of new information rather than
only the reinforcement of known information. So even if the detection of an event by a
single embedded processor can only tell that something of interest has occurred, by arming
other sensor nodes with this information, over time collectively they are able to discover
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more detailed information, cascading the information through the network. Identifying the
event, then resolving the event to a person, then a soldier, and then a solider who is running
is possible through exploitation of the distributed processors.

To conserve power, the extraction of all possible features does not need to occur at each
node. Because of the density of the image sensors throughout the environment, it is also not
necessary to rely on only the information from a single image. By providing an adaptable
similarity measure which adjust according to which features are extracted, we can attempt
to maximize the relevant information extracted while minimizing computation. Features
can be selected according to their relevance to a specific task and the environment. For
example, if a small color range is detected, we can reduce the influence of color-based
features on our classification of the event.

While adding imaging to WSNs has pushed the need for embedded processing, this
approach is designed in a modular fashion to readily incorporate other sensors which can
provide better or orthogonal footprints to be used for classification and tracking of events
in WSNs.

3.4 Enhanced Capabilities

The application of computer vision research can provide several new or enhanced capabil-
ities to current WSNs. General capabilities are discussed briefly below.

TrackingAutomated target tracking has been a widely researched field, but results are
still not reliable enough for integration into commercial systems. Most existing systems
use a very limited number of cameras to monitor a small area in detail [6] or very large
area with cameras placed at a distance [11] which is prone to error due to the low resolu-
tion of information and possible occlusion. Through the high sensing fidelity of WSNs, we
believe that many of the difficulties of tracking can be mitigated, providing details across
large areas. The areas occluded in one camera’s viewpoint can be viewed through other
cameras. More images provide greater information to reduce the errors in tracking estima-
tions. Details of tracked objects provide a means of differentiating overlapping paths.

Identification. While some sensors systems [3] demonstrate the ability to use very sim-
ple sensors (e.g., acoustic, seismic, passive infrared) to detect activity within an area, the
addition of an image sensor can further classify this activity. The work presented in [32]
used a cascaded Adaboost with weighted simple Haar-like features to detect faces. The
cascade allows the system to quickly remove unlikely candidates without first computing
all possible features required in the model. This task can easily be distributed across nodes,
where each sensor only computes one level of the cascade or even a subset of the features
within each level. It seems likely that although we are generating an Adaboost model of
specific events of interest in the traditional method and using the model on different seg-
mented images, the performance should not be hurt due to the indepedence of the features
from one another. Coordinating and reducing the feature extraction redundancy across dif-
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ferent nodes is the central challenge of making Adaboost feasible to WSNs. Experiments
may show that a partial decision from a random subset of features in each level at a single
node may be all that needs to be shared across the network for a consensus as to whether
or not to proceed to the next level.

Scene ReconstructionTo achieve real-time scene reconstruction, sacrifices to accuracy
is often made for speed. One of the state of the art offline systems, [19], illustrated a
complete automated scene reconstruction algorithm, which has very few assumptions about
intrinsic camera properties. It does have the assumption of small changes of viewpoints
between frames, which would be difficult for distributed sensor network to fulfill. At the
heart of this work is the ability to correlate extracted feature points across frames, but the
probability of occluded points increases as the viewpoint difference increases. Intelligent
handling of missing data is increasingly important not only due to the physical reality of
occlusion but also due to the unreliability of the wireless link.

Information-based OrganizationIn the attempt to resolve multiple detections of an
event, the sensor node concurrently acquire an understanding of their environment. Sen-
sor nodes, that were previously unaware of their location respective to one another, can
hypothesize which nodes they share the same viewpoint by using the similarity measures
associated with the features. Over time as more events are detected, these hypotheses will
be reinforced or negated. In this way, the WSN becomes organized in overlapping clusters
based on shared information. An important feature of this process is that over time, the
WSN provides more information about the event as it traverses the environment and more
accurate tracking as the system improves its informational clusters.

4 Preliminary Suvery

4.1 Features

The simplest feature would be the raw pixel values, or its grayscale equivalent. Though
valid and useful, other features can make explicit certain characterisics that are embedded
in the pixel values. Characterizing an image with simple features can provide valuable
information to end users of a WSN. In some applications, such as scene reconstruction, we
can use these features to provide a rough reconstruction, indicating if the camera is viewing
buildings, open fields, natural scenes. Image features can also be used to measure the
amount of information a particular image viewer is capable of providing, due to improper
orientation or times of day. When trying to characterize a specific event within the image,
many of the image features can also be used on the subpixels pertaining to an event. Table
1 and 2 outline some of the possible features that can potentially be extracted on a wireless
sensor node. The challenge of partitioning the foreground blob pixels from the background
pixels can be mitigated by using features outlined in Table 3. Correlating images across
time to track events through space, different features listed in Table 4 can be used.
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Table 1. Image Features

Image Feature Description Citation

color histogram

Bins similar colors of an image the same bin.
Differentiate between indoor and outdoor im-
ages. Determine if an image has colors asso-
ciated with a particular event.

[12]

changes in color histogram
Bins only changes between two images.
Changes indicate rapid changes do to events
or gradually change do to the environment.

[12]

wavelet histogram Same as above with a different measure.
changes in wavelet histogram Same as above with a different measure.
frequency histogram Same as above with a different measure.
changes in frequency histogramSame as above with a different measure.

number of blobs
A high level feature which can be estimated
by through the analysis of lower level image
segmentation features and blob features.

binary pixels
Set a threshold pixel value, and filter image
into a binary representation. Quickly reduces
memory footprint.

[37] [29]

zoning
Partition image into zones and describe zone
with one pixel values. Quickly reduces mem-
ory footprint.

[29]

brightness
Computes the level of saturation in the image.
The amount of useful information can be es-
timated of this value.

4.2 Similarity

Researchers have used a variety of similarity measures to compare features collected from
different frames, sources, or models. Table 5 list a few of the possible mathematical for-
mulations we coud use to measure how similar two events are to one another.

4.3 Learning

Computer vision relies heavily on machine learning techniques to provide higher level
understanding. While there are many more than outlined in Table 6 and 7, this outlines
some of the more prevalent algorithms currently used.

17



Table 2. Blob Features

Blob Feature Description Citation

above image features

haar-like wavelets

After having computed an integral im-
age,through one pass of the image, comput-
ing a haar-like wavelets cost only a constant
number of operations.

[32]

haar wavelets in time Same as above. [33]

size
Size would be a good pruning mechanism for
reducing false positives given that we have a
calibrated camera and a horizon line.

aspect ratio
A relative measure which can help charac-
terize classes of objects. This would require
capture of entire object.

Coutour Energy
Need to further investigate computational
complexity. This could be user for

[22]

Curvilinear Continuity

Higher level feature. Describes how continu-
ous the segmentation is. The smaller the an-
gle changes the more continuous the segmen-
tation is.

[22]

texture
A possible feature to further classify or dis-
tinguish between objects.

[29]

Parallel Contrasting Rectangles
A subclass of the above. Useful and simple to
calculate texture feature for quickly discrimi-
nate different objects.

[21]

Harris corners
A corner detector. Useful for determining
corners of man-made objects, like buildings
and cars.

[19]

4.4 Hardware

The low-power solution for embedding image sensors into WSNs still requires further ad-
vances in sesnosrs and board design. Listed in Table 8, we list some of the state-of-the-art
components which we have considered which can aid us in this vision.

5 Conclusion

We have presented a distributed approach to extracting features which is capable of reduc-
ing the computation and communicates at the sensor nodes, two critical factors in increas-
ing the lifetime of the sensor system for a variety of potential applications. This work has
been motivated by the need for WSN which is reactive, long-lived, and informative. The
collaboration between sensor nodes is exploited within the network to facilitate intelligent
distributed feature extraction, to discover information-based clusters, and to present the
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Table 3. Blob Finding Features

Blob Finding Feature Description Citation

Above Blob Features

Use features to search through image.
Through effective, this option can be too
computationally expensive, because compu-
tation scales by the sample rate rather than
the event rate.

[32]

Edges

Only a simple edge detection algorithm
which finds sharp contrasts is likely to be
computationally feasible, but can provide
helpful clues as to where to start looking for
objects of interest.

Colors
If known aprior, the color of the object can be
used to locate objects of interest.

[35] [13] [24]

Color Changes
Changes in the image tells us that something
has changed. It can be used an initial first pass
filter.

user with higher level information about the system using less bandwidth and power.
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Table 4. Tracking Features

Tracking Feature Description Citation

motion field

The motion field is the perspective projection
onto the image plane of the true 3-D veloc-
ity field of moving surfaces in space. Opti-
cal flows are calculated from teh first-order
derivatives of the motion field, and some-
times does not provide a good estimate of the
motion field. Need to further investigate com-
putational complexity.

[31] [4]

direction of center of mass

A higher level feature, requiring the detection
of the blob pixels. Direction of motion rela-
tive to the camera can help hypothesis abso-
lute motion with several cameras.

velocity

A higher level feature, requiring knowledge
from several cameras or several features. Ve-
locity may be estimated by the size change of
an image as well as the direction of the cen-
ter of mass. Velocity is critical when trying to
estimate the future position when sampling at
a low rate.

visual hull [37]

Table 5. Similarity Measure

Similarity Measures Citation

mean square distance [29]
histogram difference [29]
cumulative histogram difference[29]
chi-squared measure [22]
texture similarity [22]
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Table 6. Supervised Learning

Techniques Description Citation

Nearest Neighbors
Assigns class to data point according to its
nearest neighboring data points.

[28]

Regresssion
Finds closest approximation to a function.
Linear, Polynomial, Logistic variations.

Linear Discriminant Analysis
Uses Bayes to determine a boundary between
classes. Sometimes approximated with Gaus-
sians.

Expectation-Maximization Algorithm (EM)
Finds a good local maximum of likelihood as
formulated by Bayes.

Markov Chain Monte Carlo (MCMC)
A method of simplifing computationally dif-
ficult problems through the use of an random
walks or sampling of the problem space.

[30]

Kalman Filter

A probabilistic framework which efficiently
estimates the past, present, and future state
of a process with the assumption of Gaussian
densities. Variants include Discrete Kalman
Filter and Extended Kalman Filter.

[27]

Particle Filtering

A probabilistic framework which efficiently
estimates the past, present, and future state
of a process with learned dynamic models.
A generalization of the Kalman filter. Also
known as Sequential Monte Carlo methods
and Condensation.

[8]

Boosting
Combines multiple weak classifiers (slightly
better than guessing) to form a single strong
classifier).

[30] [2]

Bagging
Combines classifiers built from a collection
of training sets to form a stronger classifier.

Neural Networks

A collection of neurons which send sim-
ple scalar messages to one another based on
weighted inputs from sensors or other neu-
rons, to arrive at a global decision.

[25] [36]

Support Vector Machines (SVM)

Separates two classes of data by transform-
ing the values into a higher-dimensional ker-
nel space where they are separatible through
a kernel function.

[13]

Graphical Models
Captures the depedencies of varables through
probability.

[21]

Hidden Markov Models (HMM)

Uses observations to estimate the underly-
ing state which produce these observations
over time. Can be representedas a graphical
model.

[21] [13]
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Table 7. Unsupervised Learning

Techniques Description Citation

Density Estimation Fit distributions to data. Gaussian, Kernel
variations.

[7]

Mixture Models Use multiple probability distributions to pro-
vide a better fit to the data.

[7] [9]

K-Means
Iteratively reestimates k means and reassoci-
ates the nearest neighbors to each mean

[21] [2]

Self-Organizing Maps
A constrained version of k-means clustering
which creates a constrained topological map
from higher-dimension data.

Principal Component Analysis (PCA)
Transforms data points from correlated vari-
ables to (sometimes smaller) uncorrelated
variables.

[10] [2] [36]

Indepedent Component Analysis (ICA)
Decouples data that arises from underlying
independent sources.

[2] [36]

Table 8. Hardware

Hardware Description Citation

CMUCam
Low-power processor with embedded CMOS
Sensor. An easy testbed system for feather-
weight signal processing.

[24]

PASTA
A USC-ISI developed XScale processor with
a modular interface which matches with the
ERI framework. Still in development phases.

[23]

Stargate
An Intel developed XScale processor which
interfaces with the mote platform. An easy
testbed for developing distributed algorithms.

[34]
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