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Abstract

In a recent paper, Starr and Segalman demonstrated that any Masing model
can be represented as a parallel-series Iwan model. A preponderance of the con-
stitutive models that have been suggested for simulating mechanical joints are
Masing models, and the purpose of this discussion is to demonstrate how the
Iwan representation of those models can yield insight into their character. In
particular, this approach can facilitate a critical comparison among numer-
ous plausible constitutive models. It is explicitly shown that three-parameter
models such as Smallwood’s (Ramberg-Osgood) calculate parameters in such a
manner that macro-slip is not an independent parameter, yet the model admits
macro-slip. The introduction of a fourth parameter is therefore required. It
is shown that when a macro-slip force is specified for the Smallwood model
the result is a special case of the Segalman four-parameter model. Both of
these models admit a slope discontinuity at the inception of macro-slip. A five-
parameter model that has the beneficial features of Segalman’s four-parameter
model is proposed. This model manifests a force-displacement curve having a
continuous first derivative.
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Relationships Among Certain
Joint Constitutive Models

Introduction

It would be well to give the historical basis and impetus for this work. The story begins
in 2000 when Jeffrey Dohner [1] explored the construction of constitutive models for
joints employing a close approximation to the Masing hypothesis [7] and using cubic
and quartic polynomial representations for the backbone curve. Shortly afterward,
David Smallwood et al.[2] constructed a symmetric hysteresis (Masing) model in
which the backbone curve shared the response characteristics of the Ramberg-Osgood
model [12]. It was recognized that energy dissipation in jointed structures was often
approximately power-law in nature, at least at loads substantially lower than the
force necessary to initiate macro-slip, so the Ramberg-Osgood model was a natural
construction for use in the low-force regime.

Early in 2001, Dan Segalman [3] proposed an Iwan model that also predicted
power-law behavior, though only in the region of small loads. In 2002, he proposed a
similar 4-parameter constitutive model [4] that explicitly contained an independent
parameter identifying the macro-slip force. Being Iwan representations, the Segal-
man models are also Masing models [5]. Although the use of distribution functions
within the Iwan model may seem to be an additional step toward the construction of
hysteretic response, it is shown below that those distribution functions afford clari-
fying insight and rigorous supporting mathematics for comparison and evaluation of
competing constitutive models.

The most prominent properties of a joint when measured in one-dimensional ex-
periments are:

• stiffness KT manifest under small amplitude load

• the force FS necessary to initiate macro-slip

• dissipation D(F0) per cycle as a function of load amplitude F0 in harmonic
experiments. For many joints and over large ranges of load, the dissipation is
approximated reasonably well by a power-law relationship

D(F0) = C0F
α
0 (1)

though this is far from universally true.

The role of these properties in the various constitutive models listed above is presently
described.
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The Smallwood Model

Smallwood et al. [2] observed that a Ramberg-Osgood plasticity model coupled with
an assumption of Masing behavior could predict a power-law dissipation over all force
amplitudes.

The Ramberg-Osgood [12] plasticity model asserts that on initial monotonic load-
ing, the applied force f and the resulting displacement u are related as

u =
(

FR

KR

)

(

f

FR

)



1 +

(

f

FR

)r−1


 (2)

where the exponent r is greater than 1.0 and the normalizing force FR roughly sepa-
rates the region of near-linear behavior (f < FR) from the softening region (f > FR).
Examination of Eq. (2) will show that KR actually is the low-force stiffness (repre-
sented in the following as KT ).

Smallwood et al. [2] accommodated macro-slip by asserting that the applied force
saturates at a nominal yield level.

Masing Models

As a means of modeling the Bauschinger effect [6], Masing [7] considered a collection
of ten parallel elasto-plastic material elements, each with identical elastic modulus
but with a different yield stress level. At the time, it was believed that the discrete
yield levels were phenomenologically linked with different orientations of grains within
the material, although it is now generally accepted that the Bauschinger effect arises
from local variations in dislocation density and the development of back stress along
active slip planes due to dislocation pile-ups. During load reversal each of Masing’s
discrete elements exhibits plasticity only after going through twice its initial elastic
range. The intrinsic behavior of this model is thus: hysteretic paths obtained during
cyclic loading are of the same form as the monotonic loading, except for an expansion
by a factor of two (shown in Figure 1).

Masing was the first to assert the above relationship between the initial load-
ing curve and the hysteresis loop, which is now commonly referred to as Masing’s
hypothesis.

The monotonic loading curve is often referred to as the backbone curve. The
backbone curve can be used to present displacement in terms of force

u = G(f) (3)
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or to present the force in terms of displacement

f = F (u) (4)

−f  0

f 0

−u  0
u 0

f d (u)

f l (u)

u

f

Figure 1. Schematic of a hysteresis loop which obeys Mas-

ing’s hypothesis. The unloading and reloading curves are de-

rived directly from the initial monotonic loading curve.

The mathematical representation of Masing’s hypothesis can be phrased as

ud(f) = u0 − 2G

(

f0 − f

2

)

(5)

which states that the unloading displacement, ud, as a function of applied force, is
given by the displacement at load reversal, u0 minus twice the function, G of Eq. (3).
The reloading displacement, ul, is the negative of the unloading displacement with a
negative argument

ul(f) = −ud(−f) = −u0 + 2G

(

f0 + f

2

)

(6)
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Note that Eqs. (5) and (6) can each be inverted to provide corresponding dis-
placement based relationships:

fd(u) = f0 − 2F
(

u0 − u

2

)

(7)

and

fl(u) = −f0 + 2F
(

u0 + u

2

)

(8)

Examination of Eqs. (5) and (6) or Eqs. (7) and (8) will show that the lower curve
of the hysteresis loop is obtained by reflecting the upper curve both vertically and
horizontally. When a hysteresis loop exhibits this particular symmetry, it satisfies the
Masing relationship.

Further, the energy dissipation per cycle under harmonic loading can be expressed
in terms of the backbone curve:

D(f0) = −8
∫ f0

0
G(f) df + 4f0u0 (9)

and

D(u0) = 8
∫ u0

0
F (u) du− 4u0f0 (10)

Substitution of Eq. (2) into Eq. (9) obtains the energy dissipation per cycle for
the Ramberg-Osgood model:

DR−O = 4
(

r − 1

r + 1

)

(F 2
R/KR) (f0/FR)1+r (11)

which is indeed the power-law relation that Smallwood et al. [2] desired. We note
that the Ramberg-Osgood exponent r is related to the power-law dissipation slope
by r = slope − 1. To provide power-law slopes of the desired range (2 ≤ slope ≤ 3),
the exponent must satisfy 1 ≤ r ≤ 2.

The original Masing hypothesis is valid only for cases of steady-state cyclic behav-
ior or loading between fixed limits. However, Masing’s hypothesis has been extended
by following two simple rules (Jayakumar [8]) so that arbitrary hysteretic response
can be obtained. The first rule states that the equation of any hysteretic response
curve is obtained by applying the Masing hypothesis using the latest point of loading
reversal. The second rule asserts that if an active curve crosses a curve described in
a previous cycle, the current curve follows that of the previous cycle. In this manner,
the response to any load history can be computed from the backbone curve and a
record of all load reversals. It is this generalized Masing rule that is employed by
Smallwood et al. [2]
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Features of the Smallwood/Ramberg-Osgood Model

Though the Ramberg-Osgood model discussed above could be a reasonable model for
one-dimensional joint behavior, there are some serious limitations. The first is that
most of our finite element codes are displacement based - they expect constitutive
models to return a force increment resulting from a given displacement increment. It
would be valuable to invert this model.

Other serious limitations of this model concern the Masing assumption. The
experimental data show that the symmetries inherent to the Masing assumption are
not supported empirically. On the other hand such subtleties may be beyond the
reach of simple constitutive models and the economy of expression and efficiency of
computation facilitated by the Masing hypothesis may be adequate return for that
loss of fidelity.

To make good use of the Ramberg-Osgood model, it is necessary to be able to both
invert it and compare it in a commensurate manner with other alternative constitutive
models. Iwan’s parallel-series systems provide that capability.

Parallel-Series Iwan Systems

Iwan Model Definition Form

The parallel-series model is the more frequently treated of the two major Iwan [9]
models. Figure 2 shows a collection of N parallel spring-slider or Jenkins elements
that constitute a parallel-series Iwan system. Each Jenkins element consists of a
linear spring with stiffness ki in series with a Coulomb damper with break-free force
φ̃i. The Jenkins elements are indexed in order of their slider strengths.

For an imposed displacement, u, the total force acting through the system is given
by

f =
∑

φ̃i≤ki u

φ̃i +
∑

φ̃i≥ki u

kiu (12)

where the first summation includes all those Jenkins elements which have slipped and
the second summation includes all those elements which remain elastic. Like Iwan, it
is assumed that all the springs have the same stiffness, k, and the number of elements
having a break-free strength φ̃ is expressed in terms of a density, ρ̃(φ̃). The density,
sometimes referred to as a distribution function, is a non-negative function whose
domain is all possible values of φ̃ (all positive numbers). Typically it is assumed that
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k3

k2

k1

kN

φ~1

φ~2

φ~3

φ~N

f

u

Figure 2. Schematic of the parallel-series Iwan model.

each spring has a stiffness, k, so the resultant force in the system is

f =

ku
∫

0

φ̃ρ̃(φ̃)dφ̃+ ku

∞
∫

ku

ρ̃(φ̃)dφ̃ (13)

It is then convenient to remove the stiffness, k, from the above equation by using
the following changes of variable due to Segalman [4]:

φ = φ̃/k

ρ(φ) = k2ρ̃(kφ)

Eq. (13) now becomes

f =

u
∫

0

φρ(φ)dφ+ u

∞
∫

u

ρ(φ)dφ (14)

If the system is moved to a certain state of displacement, u0, undergoes a reverse
displacement to −u0 and is then re-displaced to u0, a hysteresis loop with Masing
type symmetry will result. The force-displacement relationship at any given state
during reverse displacement involves three elemental contributions, namely, those
that have 1) yielded during initial displacement and yielded during reversal, 2) yielded
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during initial displacement and are still elastic during reversal, and 3) those that were
elastic during initial displacement and remain elastic during reversal. The form of
the relationship is

fd(u) = −

(u0−u)/2
∫

0

φρ(φ)dφ+

u0
∫

(u0−u)/2

(u− u0 + φ)ρ(φ)dφ+ u

∞
∫

u0

ρ(φ)dφ (15)

for the reverse motion. Similar calculations show that

fl(u) =

(u0+u)/2
∫

0

φρ(φ)dφ+

u0
∫

(u0+u)/2

(u+ u0 − φ)ρ(φ)dφ+ u

∞
∫

u0

ρ(φ)dφ (16)

for motion back in the positive direction.

Eqs. (15) and (16) can be shown to satisfy Eqs. (7) and (8) respectively where F in
those last equations is taken to be the left hand side of Eq. (14). This establishes
that every parallel-series Iwan model is also a Masing model.

The force (stress) response to an arbitrary displacement history can be calculated
from

f(t) =
∫ ∞

0
ρ(φ)[u(t) − x(t, φ)] dφ (17)

and

ẋ(t, φ) =

{

u̇ if ‖u− x(t, φ)‖ = φ and u̇ (u− x(t, φ)) > 0
0 otherwise

(18)

where the quantities x(t, φ) are states that capture the amount of slipping that takes
place for each species (characterized by a value of φ) of Jenkins element. It is the
presence of these quantities that enables parallel-series Iwan elements to accommodate
arbitrary load/displacement histories. Note that it is guaranteed that ‖u−x(t, φ)‖ ≤
φ.

From examination of Eqs. (17) and (18), the tangent stiffness at low force levels
is

KT =
∫ ∞

0
ρ(φ) dφ (19)

and the yield force is

FS =
∫ ∞

0
φρ(φ) dφ (20)
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In modeling joints, FS is the force necessary to initiate macro-slip.

The energy dissipation of displacing the Iwan system a distance u0 is four times
the integral of the product of slider force (φ) and slider displacement (u0 − φ) times
the density of such sliders (ρ(φ)):

DI(u0) = 4
∫ u0

0
ρ(φ)φ [u0 − φ] dφ (21)

(This equation can also be derived from Eq. (10)).

All Masing Models are Also Iwan Models

The authors have shown elsewhere [5] that all Masing models can be represented - in
principle - as parallel-series Iwan models. The proof observes that any two Masing
constitutive models that have identical backbone curves must be equivalent models.
Further, given any backbone curve, an Iwan model can be constructed [10] that shares
that backbone. Since Iwan models are also Masing models, that Masing model can
also be represented by an Iwan model.

The qualifying words “in principle” are used because the identification of the
parameters of the Iwan model corresponding to a given Masing model is sometimes
a challenge.

System Identification from Displacement-Based Data

Iwan showed [10] how the density can be derived through the second derivative of
Eq. (14)

ρ(φ) = −
d2f

du2

∣

∣

∣

∣

∣

u=φ

(22)

If the ordinate of the backbone curve is unbounded and the backbone increases asymp-
totically to a linear response limu→∞ f(u)/u = K∞ > 0, the Iwan system determined
above reproduces the original Masing model only up to that limiting stiffness:

f(t) =
∫ ∞

0
ρ(φ)[u(t) − x(t, φ)] dφ+K∞u (23)

where the constant K∞ is selected so that

KT =
df

du

∣

∣

∣

∣

∣

u=0

=
∫ ∞

0
ρ(φ) dφ+K∞ (24)
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The stiffness K∞ corresponds to a Dirac delta function in ρ at φ = ∞. Song et al.
[11] discussed this additional stiffness extensively.

System Identification from Force-Based Data

For Masing models where displacement is given in terms of force, Eq. (22) cannot be
applied directly. Given a Masing model that presents the backbone displacement uR

in terms of the applied force fR:

uR = G(fR) (25)

an inverse function F is sought such that it returns backbone force in terms of dis-
placement:

fR = F (uR) (26)

where F and G are inverse functions

G(F (uR)) = uR (27)

In general, explicit inversion of G to obtain F is not possible, but the chain rule
provides a means of deriving the relationship between derivatives

dF (u)

du

∣

∣

∣

∣

∣

u=G(fR)

=
1

(dG/dfR)
(28)

and

d2F (u)

du2

∣

∣

∣

∣

∣

u=G(fR)

= −
d2G

df 2
R

/

(

dG

dfR

)3

(29)

Inversion of the Ramberg-Osgood Model via

Parallel-Series Iwan Systems

Applying the operator of Eq. (29) to the Ramberg-Osgood model (Eq. (2)), obtains
the Iwan distribution function corresponding to this model:

(FR/K
2
R) ρ̂(u(f)) =

r(r − 1)(f/FR)r+1

((f/FR) + r(f/FR)r)3
(30)
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The above and Eq. (2) can be used to plot the Iwan distribution function versus
displacement. This relationship is plotted in dimensionless form for the case r = 1.5
in Figure 3. The asymptotic behavior seen in this figure can be deduced by combining
Eqs. (2) and (30) for both small and large values of f :

(FR/K
2
R)ρ̂(u) =

{

r(r − 1)(uKR/FR)r−2 for small u
((r − 1)/r2)(uKR/FR)(1−2r)/r for large u

(31)

(32)

These asymptotic curves intersect at

u∗ = (FR/KR) r3r/(1−r2) (33)

The above leads to the definition of dimensionless slider strength

φ = uKR/FR (34)

and a dimensionless distribution function

ρ(φ) = (FR/K
2
R) ρ̂(φFR/KR) (35)

Note that the asymptotic representation for small arguments (Eq. (31)) has the
integrable singularity φχ (where χ = slope − 3) that Segalman [3] demonstrated to
be necessary to obtain power-law behavior in the region of small loads.

Approximate Inversions

The density ρ can be represented arbitrarily well with the asymptotes (Eqs. (31)
and (32)) for small and large values of the abscissa along with spline (or other)
interpolation over the intermediate region. This representation and Eq. (17) provides
a nearly exact inversion of the Ramberg-Osgood model. Of course more concise
representations for ρ would be desirable as well.

Doubly-Asymptotic Approximation

The density ρ can be approximated by just the asymptotes of Eqs. (31) and (32).
This is not a particularly bad approximation. To the author’s knowledge, it has not
yet been explored.
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Figure 3. The density ρ(φ) for Jenkins elements corre-

sponding to a Ramberg-Osgood model having r = 1.5. Such a

model might be appropriate to simulate a mechanical joint.

Singly-Asymptotic Approximation

Segalman’s Three-Parameter Iwan Model

Segalman [3] introduced a constitutive model in 2001 that could predict power-law
behavior in the region of low forces. This consisted of the parallel-series Iwan model
defined by

ρ(φ) =

{

Rφχ for 0 < φ < φmax

0 for φ > φmax
(36)

in parallel with a stiffness

K0 = KT −
∫ φmax

0
Rφχdφ (37)

where φmax bounds the anticipated joint displacements. Parameters R and χ are
selected to reproduce exactly the asymptote of Eq. (31). Because the approximation
for the Jenkins population distribution is exact for u < u∗, the energy dissipation will
also be exact for imposed cyclic deformations within that range.
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Referring to Eq. (21), the energy dissipation per cycle under harmonic loading is

DS3
(u0) =

4Ru3+χ
0

(χ+ 2)(χ+ 3)
(38)

Since much of the glue holding this modeling approach together is the Masing
hypothesis, it is worth exploring the backbone curve associated with this model.

f(u) =
∫ u

0
Rφχφdφ+ u

∫ φmax

u
Rφχdφ+ uK0 (39)

= KTu−
R

(χ+ 1)(χ+ 2)
uχ+2 (40)

In the above form, it is fairly clear that for oscillatory loading at small force
amplitudes f0, the resulting displacement amplitudes will be proportional to the force
amplitude u0 ∼ f0 and

D ∼ f0
3+χ (41)

as expected. On the other hand, behavior at large forces is far from obvious. Ex-
amination of Eq. (40) shows that the force resulting from monotonic displacement
reaches a maximum at

û =

(

KT (χ+ 1)(χ+ 2)

R

)
1

χ+1

(42)

In order to make dimensionless plots, a reference force F̂ introduced from which
the following dimensionless quantities are defined

f̃ = f/F̂ ũ = KT u/F̂

R̃ = RF̂ χ+1/Kχ+2
T D̃ = DKT/F̂

The dimensionless backbone curve is plotted in Figure 4 for the case of R̃ = 1 and
χ = −0.5. Here the force does indeed reach a maximum. This maximum force can
be associated with the inception of macro-slip.

A corresponding plot of dimensionless dissipation versus dimensionless force under
oscillatory loading for the case of R̃ = 1 and χ = −0.5 is presented in Figure 5. Here
the dissipation goes as force to the 3 + χ power for small loads. On the other hand,
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Figure 4. The force of the three-parameter model reaches

a maximum and then declines. Only the portion of the curve

to the left of the maximum can be used sensibly.

as the force approaches it maximum value, the rate of dissipation approaches infinity.
This behavior is consistent with the initiation of macro-slip.

The disturbing element of this model is that the three parameters R, χ, and KT

are determined by stiffness and by dissipation at low force; they have nothing to
do with macro-slip. The macro-slip force should be defined independently of the
low-force stiffness and the dissipation.

Segalman’s 4-Parameter Model

The 4-parameter Iwan model [4] was introduced both to accommodate a macro-slip
force and to permit tuning of the dissipation rate at large force levels as well as small.

Here again, starting with the left asymptotic curve to the Iwan representation
for the Ramberg-Osgood model (Eq. ( 31)) a displacement umax at which macro-slip
occurs is explicitly specified. Additionally, in order to accommodate macro-slip, the
spring in parallel with the Iwan system is removed.
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Figure 5. The log-log plot of energy dissipation versus force

shows the dissipation rate becoming infinite as the force am-

plitude approaches the max value available to it.

A density is postulated

ρ(φ) = Rφχ [H(φ) −H(φ− umax)] + Sδ(φ− umax) (43)

where H is the Heaviside function. Note the addition of the parameter S. Param-
eters R and χ are associated with the power-law distribution at low forces, umax is
associated with macro-slip, and S contributes to both stiffness and yield load.

Of the four parameters χ is dimensionless, umax has dimension length, S has dimen-
sion force/length, and R has fractional dimension. This is a sub-optimal combination.
Ideally, parameters of fractional dimension should be avoided and dimensionless pa-
rameters are preferred over those with dimension. Additionally parameters that most
directly relate to measurable properties are preferred. With this in mind, a preferred
set of parameters is {KT , FS, χ, β} where FS is the force at micro-slip and β is defined
by

S = β

(

Ruχ+1
max

χ+ 1

)

(44)
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The remaining old parameters are expressed in terms of the new as follows:

umax =
(

FS

KT

)

(

1 + β

β + (χ+ 1)/(χ+ 2)

)

(45)

and

R =
FS(χ+ 1)

uχ+1
max (β + (χ+ 1)/(χ+ 2))

(46)

The dimensionless parameters χ and β are found so as to best fit the dissipation
data from oscillatory load experiments. Per reference [4], the force amplitude F0

during oscillatory loading is parameterized by a scalar ψ : 0 ≤ ψ ≤ 1

F0 = FS ψ
(β + 1) − ψχ+1/(χ+ 2)

β + (χ+ 1)/(χ+ 2)
(47)

as is the dissipation per cycle with respect to ψ

D = ψχ+3 4

(

F 2
S

KT

)





(β + 1)(χ+ 1)

(β + χ+1
χ+2

)2 (χ+ 2)(χ+ 3)



 (48)

Parameters χ and β are found via numerical optimization so that a plot of D from
Eq. (48) against F0 from Eq. (47) best reproduces the experimental dissipation data.

This model has been fit to several data sets successfully [4]. Of course given in-
complete experimental data, the ”best” model parameters are always found. If the
tangent stiffness at very low loads is not available, it is extrapolated from stiffnesses
measured at larger loads. If there is no macro-slip data from which to deduce FS,
normal loads in the joint could be estimated and multiplied by a coefficient of resti-
tution.

Smallwood’s Postulated Inverse

Smallwood et al. [2] postulated an inverse to the Ramberg-Osgood model which is
identical to Segalman’s three-parameter model, though none of the authors fully re-
alized the connection at the time. Segalman presented his model in terms of the Iwan
density whereas Smallwood et al. [2] presented their model in terms of a backbone
curve (equivalent to Eq. (40)) and the Masing conditions.
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Smallwood [15] sometimes introduces macro-slip by modifying his backbone curve
to flatten out at some point (uS, FS) where uS < û (see Eq. (42)). The mathematical
form of the modified backbone is

f
DOS

(u) =

(

KT u −
R

(χ+ 1)(χ+ 2)
uχ+2

)

[1 −H(u− u
S
)]

+

(

KT uS
−

R

(χ+ 1)(χ+ 2)
uχ+2

S

)

H(u− u
S
) (49)

The corresponding Iwan distribution is

ρ
DOS

(φ) = Rφχ [1 −H(u− u
S
)] +

(

KT −
R

(χ+ 1)
uχ+1

S

)

δ(φ− u
S
) (50)

which is a special case of Segalman’s four-parameter model.

Continuous and Discontinuous Force Displacement

Slopes

The δ - function was placed at the termination of the support of the distribution
function in Eq. (43) the stiffness KT and macro-slip force FS could be specified
separately. The disadvantage of admitting the delta function is that it causes a
discontinuity of slope in the backbone curve: the slope to the right of macro-slip is
zero, while the slope just prior to macro slip is

df

du

∣

∣

∣

∣

∣

u=u−

max

= lim
u→umax

∫ umax

u
ρ(φ)dφ = S (51)

This problem can be obviated by replacing the δ - function in Eq. (43) with some
slightly less singular function that lives primarily on the right hand side of the interval
(0, umax). One candidate for that function is suggested by the distribution function
that captures the Mindlin solution for the shearing of contacting spheres:

ρ
M
(φ) = S (umax − φ)λ [H(φ) −H(φ− umax)] (52)

where λ = −1/2. To eliminate the discontinuous slope, a 5-parameter model can be
chosen

ρ5(φ) =
[

Rφχ + S (umax − φ)λ
]

[H(φ) −H(φ− umax)] (53)
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where −1 < λ ≤ 1. It is apparent that the tangent stiffness of the backbone curve
is continuous all the way through macro-slip. The cost of this approach is that yet
another parameter has been introduced to the constitutive model. Strategies for
finding all five parameters from the (generally limited) experimental data can be
devised or λ can be fixed at some nominal value such as λ = −1/2.

Properties of this model are outlined in the appendix.

Conclusion

The appeal of the Ramberg-Osgood model for a numerical simulation of joints is
that it is simple and defined by parameters that can be related to elementary ex-
perimental parameters. The force-based nature of this model makes it ill-suited to
displacement-based structural dynamics applications, so there is strong motivation to
find displacement approximations that could be used instead.

Because all Masing models can be represented as Iwan models, this problem can
be posed as that of finding tractable Iwan population distributions that approximate
that of the Ramberg-Osgood model. Most efforts up to now capture the low-force
asymptotic behavior of the Ramberg-Osgood model but differ on how they accom-
modate higher forces.

The displacement-based model of Smallwood et al. [2] and Segalman’s three-
parameter Iwan model are shown to be equivalent by observing that they have the
same backbone curves and are both Masing models. These models manifest a yield
load that cannot be set independently of the small force stiffness and dissipation.

Segalman’s four-parameter Iwan model resolves this difficulty while retaining the
appropriate asymptotic behavior at low-forces by specifying a compact support for
the Iwan distribution function.

Limitations of all of the above formulations must be kept in mind. First, as
discussed above, any Masing model will show the symmetries of Eqs. (5) through (8)
which are generally not found experimentally. This visible divergence may not be a
serious issue, but it should be remembered. Another consideration is that where a
yield load is specified in the above models, the corresponding slope in the backbone
curve is generally non-zero. In Eq. (43) this discontinuity in slope is due to the
presence of the δ - function. This issue might be resolved by using a weaker singularity.
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Appendix: Properties of the 5-Parameter Model

Of course a preferred set of parameters would lean heavily toward dimensionless
parameters, parameters of integer dimension, and parameters that are directly mea-
surable. One such set of preferred parameters would be {χ, λ, β, FS, KT}, where

β =

(

S uλ+1
max

1 + λ

)

/

(

Ruχ+1
max

1 + χ

)

(A-1)

Solving for the old parameter set in terms of the new set:

umax =
(

FS

KT

)

(

(β + 1) (2 + λ) (2 + χ)

β (2 + χ) + (2 + λ) (χ+ 1)

)

(A-2)

R = KT
(χ+ 1)

uχ+1
max (β + 1)

(A-3)

and

S = KT
β (λ+ 1)

uλ+1
max (β + 1)

(A-4)

The backbone curve behaves as

f(s umax) =
Ru2+χ

max s [(2 + χ) − s1+χ]

(χ+ 1) (2 + χ)
+
S u2+λ

max

[

1 − (1 − s)2+λ
]

(λ+ 1) (2 + λ)
(A-5)

The dissipation behaves as

D(s umax) = 4
Rs3+χ u3+χ

max

(3 + χ) (2 + χ)

+ 4
S u3+λ

max

[

−2 + s (3 + λ) + (1 − s)λ [2 − (3 − λ) s− 2λ s2 + (λ+ 1)s3]
]

(λ+ 1) (2 + λ) (3 + λ)
(A-6)

The shapes of the backbone and dissipation curves for the case of FS = 1, KT = 1,
β = 1, χ = −1/2, and λ = −1/2 are shown in Figure A6. The slope of the backbone
curve goes to zero as the displacement approaches macro-slip and the dissipation curve
manifests a power-law dissipation at small load amplitudes. These two properties
result from the asymptotic properties of ρ5 at small and large values of its argument.
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Figure 6. The backbone and dissipation curves for the 5-

parameter model for the case FS = 1, KT = 1, β = 1, χ =
−1/2, and λ = −1/2. Note that the slope of the backbone

curve goes to zero as the displacement approaches macro-slip.

The dissipation curve manifests a power-law dissipation at

small load amplitudes.
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