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Executive Summary:  
 

Critical Infrastructures are formed by a large number of components that interact within 
complex networks. As a rule, infrastructures contain strong feedbacks either explicitly through 
the action of hardware/software control, or implicitly through the action/reaction of people. 
Individual infrastructures influence others and grow, adapt, and thus evolve in response to their 
multifaceted physical, economic, cultural, and political environments. Simply put, critical 
infrastructures are complex adaptive systems. In the Advanced Modeling and Techniques 
Investigations (AMTI) subgroup of the National Infrastructure Simulation and Analysis Center 
(NISAC), we are studying infrastructures as complex adaptive systems. 

 
In one of AMTI’s efforts, we are focusing on cascading failure as can occur with 

devastating results within and between infrastructures. Over the past year we have synthesized 
and extended the large variety of abstract cascade models developed in the field of complexity 
science and have started to apply them to specific infrastructures that might experience cascading 
failure. In this report we introduce our comprehensive model, Polynet, which simulates 
cascading failure over a wide range of network topologies, interaction rules, and adaptive 
responses as well as multiple interacting and growing networks. We first demonstrate Polynet for 
the classical Bac, Tang, and Wiesenfeld or BTW sand-pile in several network topologies. We 
then apply Polynet to two very different critical infrastructures: the high voltage electric power 
transmission system which relays electricity from generators to groups of distribution-level 
consumers, and Fedwire which is a Federal Reserve service for sending large-value payments 
between banks and other large financial institutions. For these two applications, we tailor 
interaction rules to represent appropriate unit behavior and consider the influence of random 
transactions within two stylized networks: a regular homogeneous array and a heterogeneous 
scale-free (fractal) network.  

 
For the stylized electric power grid, our initial simulations demonstrate that the addition 

of geographically unrestricted random transactions can eventually push a grid to cascading 
failure, thus supporting the hypothesis that actions of unrestrained power markets (without 
proper security coordination on market actions) can undermine large scale system stability. We 
also find that network topology greatly influences system robustness. Homogeneous networks 
that are “fish-net” like can withstand many more transaction perturbations before cascading than 
can scale-free networks. Interestingly, when the homogeneous network finally cascades, it tends 
to fail in its entirety, while the scale-free tends to compartmentalize failure and thus leads to 
smaller, more restricted outages. In the case of stylized Fedwire, initial simulations show that as 
banks adaptively set their individual reserves in response to random transactions, the ratio of the 
total volume of transactions to individual reserves, or “turnover ratio”, increases with increasing 
volume. The removal of a bank from interaction within the network then creates a cascade, its 
speed of propagation increasing as the turnover ratio increases. We also find that propagation is 
accelerated by patterned transactions (as expected to occur within real markets) and in scale-free 
networks, by the “attack” of the most highly connected bank. These results suggest that the time 
scale for intervention by the Federal Reserve to divert a cascade in Fedwire may be quite short.  

 
Ongoing work in our cascade analysis effort is building on both these specific stylized 

applications to enhance their fidelity as well as embracing new applications. We are 
implementing markets and additional network interactions (e.g., social, telecommunication, 
information gathering, and control) that can impose structured drives (perturbations) comparable 
to those seen in real systems. Understanding the interaction of multiple networks, their 
interdependencies, and in particular, the underlying mechanisms for their growth/evolution is 
paramount. With this understanding, appropriate public policy can be identified to guide the 
evolution of present infrastructures to withstand the demands and threats of the future. 
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1. Introduction 
 

National and economic security and the quality of life in the U.S. depend on reliable 
operation of complex infrastructures. The National Infrastructure Simulation and Analysis 
Center, or NISAC, provides modeling and simulation capabilities for analyzing critical 
infrastructures. These capabilities will improve the robustness of our nation’s critical 
infrastructures by informing policy analysis, investment and mitigation planning, education and 
training, and near real-time assistance to crisis response organizations. The Advanced Modeling 
and Techniques Investigations Task (AMTI) is one of NISAC’s long-term investments in 
understanding critical infrastructures and their interdependencies (Glass et al., 2003). Our 
mandate is to identify theories, methods, and analytical tools from the study of general complex 
adaptive systems that are useful for understanding the structure, function, and evolution of 
complex interdependent critical infrastructures. 
 

The complexity of the interdependent and ever changing systems that comprise critical 
infrastructures makes understanding and modeling them difficult. Fortunately, there has been a 
great deal of basic research over the past few years focused on understanding complex adaptive 
systems and developing theories to explain how they behave under stress. This fundamental 
research has begun to explain the evolution of generic complex network structures, and to 
identify their vulnerabilities and strengths. We are applying and extending the results of 
complexity theory to model critical infrastructures. Complexity theory allows us to better 
understand how general features, such as network connectivity and operational pressures, 
influence system robustness, determine operating margins, and control system behavior and 
evolution. This perspective may disclose strategies to make critical infrastructures more robust 
by strengthening a given set of components, or through the formulation of appropriate long range 
policy whereby the infrastructure evolves robustness over time. AMTI’s initial work has focused 
on one of the hallmarks of complexity theory, the cascade model. In the past decade, cascade 
models have been used to represent many natural and social phenomena that undergo 
catastrophic response such as earthquakes, mass extinctions, major forest fires, landslides, 
epidemics, wars, and revolutions. They have also been proposed to represent a variety of critical 
infrastructure problems, such as the failure of electric power grids and telecommunication 
systems, traffic jams, financial market crashes, and the behavior of groups of people in crisis.  
 

An example of a simple cascade model is the now-classical “BTW sand-pile” introduced 
in 1987 by Bak, Tang, and Wiesenfeld. This model has created its own cascade of activity with 
well over 2000 citations and applications in fields ranging across physics, biology, economics, 
and geology, as well as some spillover to critical infrastructure. BTW systems can develop to a 
state of self-organized criticality. For systems that exhibit self-organized criticality, events of all 
sizes may occur, and the frequency of events as a function of size is represented by a power-law 
over a range limited by the size of the system. Important repercussions of this behavior are the 
lack of predictability beyond a statistical representation and “heavy tails” in the cascade statistics 
due to the power-law. Thus, although they are rare, large system-spanning events are to be 
expected. 
 

In the AMTI effort, we have first worked toward synthesis of the large variety of cascade 
models reported in the literature and their extension and application to critical infrastructure 
systems. As part of this effort we are building a comprehensive model, Polynet, which goes 
beyond the simple cascade models of the past. Polynet implements a wide range of network 
topologies, interaction rules, and adaptive responses as well as the ability to consider multiple 
interacting and growing networks. In addition to considering a variety of purely abstract 
problems, we are also applying Polynet to specific critical infrastructures. By grounding the 
abstract in the specific, as well as generalizing the specific in the abstract, our effort strives to 
enhance our fundamental understanding of the structure, function, and evolution of complex 
interdependent critical infrastructures. If we can understand “robustness” as a function of the 
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critical characteristics of infrastructures and understand how infrastructures respond to 
evolutionary pressures, we can identify public policy that will foster the evolution of robust 
infrastructures.  
 

In this report, we first introduce Polynet and demonstrate its behavior for the classical 
BTW sand-pile implemented on arbitrary network topologies (Section 2). We then apply Polynet 
to two example critical infrastructures, the electric power grid (Section 3) and Fedwire (Section 
4). We choose these two applications because they exhibit very different interaction rules and 
contexts. For each we consider cascade behavior in context of random transaction perturbations 
in two stylized network topologies: homogeneous regular networks as well as complex scale-free 
networks that exhibit fractal qualities. Finally we conclude and sketch important directions of 
future study in the AMTI effort (Section 5). 
 
 
2. Polynet  
 

Polynet is an abstract automaton or simple agent based model that encompasses and 
extends previous algorithms published in the literature (e.g., Bak, Tang, and Wiesenfeld, 1987; 
Olami, Feder, and Christensen, 1992; Sakhtjen, Carrerras and Lynch, 2000; de Arcangelis and 
Herrmann, 2002; Goh, Lee, Kahng, and Kim, 2003). Generally, abstract nodes are linked 
together into a network of arbitrary topology. The state of each node is defined by a local state 
variable. External stresses can change a node’s state. More importantly, one node’s state can 
depend on the state of connected nodes through interaction rules that may range from local 
(nearest neighbor) to global (the state of each node depending on the state of all other nodes). 
When the value of a node’s state variable exceeds a given threshold, the state of the node 
abruptly changes. The interaction rules propagate abrupt state changes to connected nodes and 
thus can create a cascade. This simple framework can produce rich and surprising behavior. It 
can also be extended to include additional processes found to be important in critical 
infrastructure, as well as other complex adaptive systems, that can act at a variety of nested time 
scales. Feedback between node activity and node behavior can drive nodes to adapt by adjusting 
their thresholds, their links to other nodes, as well as other critical parameters. Additionally, 
multiple networks with alternative interaction rules and topologies may be connected to consider 
inter-dependencies and inter-network cascades. A full description of Polynet is beyond the scope 
of this report and will be presented elsewhere.  
 

The generality and flexibility of Polynet allows application to an extremely wide range of 
problems. As an introduction to the model, and before describing our two critical infrastructure 
applications, we will demonstrate Polynet with the simple abstract problem of the BTW sand-
pile. In the BTW sand-pile, a grain of sand is added to a site chosen at random within a two 
dimensional square lattice. When the number of grains at a site exceeds 4, it distributes a grain of 
sand to each of its non-diagonal neighbors. If any of these sites are pushed over their thresholds, 
they too distribute their sand grains and thus contribute to the cascade. Sand is removed from the 
domain when it encounters the edge of the network. Application of the BTW sand-pile relies on 
a separation of time scale between a relatively slow process that adds sand to the domain and a 
fast process by which sand is redistributed within the domain.  Thus the fast process fully relaxes 
the system and a cascade, when triggered, runs to its completion before the next addition of a 
sand grain to the domain; concurrent cascades are precluded. To generalize the BTW sand-pile 
and apply it to arbitrary network topologies, let us consider grains of sand to represent units of 
“energy”, E, and specify a constant threshold value across all sites, Ec, at which a site changes 
state and distributes one unit of E to each of its neighboring sites. Let us also choose a small 
number of randomly distributed sites within the network to act as sinks that absorb all E 
distributed to them. These sites play the role of the edges of the original BTW sand-pile and 
allow closed networks to be considered. In this generalized form, we can now apply the BTW 
sand-pile to any network topology.  
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Figure 2.1:
edges to form a torus (or “donut”), b) Random 
d) Scale-Free network. Red nodes denote a BT
 

 
Stylized network topologies range from , to 

random (Erdos and Renyi, 1959), to scale-free
blend any or all (e.g., Watts and 
can range from “fish-nets”, to honeycombs, to rings (see
wrapped edges forms a torus or “donut”). In ma
who also have the same neighbors and thus . 
While regular lattices can be found in nature, such
models for many real networks under study.  So small-

s 

  

                                         c)                                                                  d) 

world characteristic, i.e., a small number of steps connect any two nodes within the network, is 
ubiquitous but not found in regular lattices. A stylized network that has the small-world 
characteristic is the random network developed by Erdos and Renyi (1959). A random network i
formed by the sequential random pairing of nodes (see Figure 2.1b). Unfortunately, random 
networks have very little clustering. To remedy this problem, Watts and Strogatz (1998) created 
a blended network that begins with a regular ring, where every node on the ring is connected not 
only to the next node but to a certain number ahead and behind on the ring, and then imposes 

                           
 Example Stylized network topologies for a) Square Lattice “fish net” with wrapped 

network, c) Watts-Strogatz blended network, and 
W sand-pile cascade in progress. 

regular (as originally considered by BTW)
 (Barabasi and Albert, 1999), as well as others that 

Strogotz, 1998). Regular networks are classical constructs that 
 Figure 2.1a where a fish-net with 

ny regular lattices, nodes are connected to others 
they often demonstrate a high degree of clustering

 as in crystals or bee hives, they are poor 
cial networks are an example. There the 
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random re-wiring to achieve both a high degree of clustering as well as the small-world 
characteristic (Figure 2.1c). In other naturally occurring networks, one finds a power-law or n
power-law for the nodal degree distribution such that a significant number of highly con
nodes exist (i.e., a heavy tail). While such a distribution can be imposed on a random or Watts-
Strogatz network through re-wiring, a intuitively pleasing approach is to form it naturally by 
growing the network such that nodes entering the network preferentially attach to ones of highe
degree. Barabasi and Albert (1999) introduced such an approach to generate what is now calle
the scale-free network for its fractal properties (Figure 2.1d).  
 
 

ear 
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d 

igure 2.2: For the BTW sand-pile on fish-net and scale-free networks, example time series for 
ascade size (to the left) and cascade size distributions (on the right). 

Example BTW sand-pile simulations for 10,000 node problems in each of the stylized 
etwork types presented above exhibit time series that are highly erratic (see examples for fish-
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n
 scale-free in Figure 2.2 left). In the figure, cascade size (defined by the number of tim

nodes in the network are pushed about threshold and distribute E) is plotted in time defined by 
the number of unit additions of E to the network.  The time between cascades appears to be 
random and the size of the cascade unpredictable. Cascade size distributions for each network 
type (Figure 2.2 right) exhibit the typical BTW sand-pile power-law with eventual exponen
“roll-off” at large values. The power-law is indicative of self-organized criticality while the rol
off reflects the finite size of the simulation. The exponent of the power-law (slope of the line in 
Figure 2.3 right) is dependent on the network topology and conforms to the results obtained 
recently by others (de Arcangelis and Herrmann, 2002; Goh, Lee, Kahng, and Kim, 2003). 
Interestingly, but less noticeable in the figure, an additional influence of network topology is 
found in the fraction of cascades that involve only a single node. Nearly half of the cascades
the scale-free network are single node while only a tenth are single node in the other networks
This is due to the fact that in scale-free networks, nodes of degree one (singly connected) are 
always connected to nodes of higher degree (multiply connected). Because a node in the BTW 
sand-pile distributes a unit of energy to connecting node, an energy “well” equal to its degree 
appears for each node. Thus, cascades from lower degree nodes into higher degree nodes are 
buffered and a number of them must occur before the higher degree node is pushed above 
threshold. Combining this behavior with the fact that nodes of degree 1 make up roughly 40%
the scale-free network and thus receive that portion of the random perturbations, a large nu
of single node cascades result. 
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The BTW sand-pile considers simple local nearest neighbor interactions between nodes 
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e application of a cascade model with simple interaction rules is a considerable 
simplification of the complex dynamics that transpire within a transient electric power grid as it 
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a
lating perturbations. As it stands, such a model may have application to a variety of 

situations of importance in the analysis of critical infrastructures.2 However, the constraint
the BTW sand-pile can be relaxed or replaced with others quite generally within Polynet and
thus transform the model in many directions. In the next two sections, we explore such 
transformations in context of two applications: the electric power grid and Fedwire.  
 
 
3
 

Electric power grids have a propensity to cascade; histor
su

ugust 14, 2003 outage in the Northeast United States and Canada. The first examp
cascade model applied to the electric power grid was presented by Sakhtjen, Carrerras and Lync
(2000). They conceived of the electric power grid as a closed network of transmission nodes and 
implemented nearest neighbor interaction rules to model a damage surge. Perturbations were 
imposed by random exchanges of voltage between one node and its neighbor. When a given 
node was pushed above its threshold, it distributed voltage to its neighbors similarly to the BT
sand-pile (e.g., Section 2). Taking a somewhat different approach, Motter and Lai (2002), and
most recently Albert, Albert, and Nakarado (2004), considered the cascade of an electric power 
grid due to the redistribution of ‘load’ within a damaged network subsequent to the removal of 
single transmission node. They implemented global interaction rules to calculate ‘load’ 
conceived of as the local congestion incurred within the network from the routing of electricity 
along the shortest paths between generator and consumer nodes. If the local load increas
beyond a given threshold for a particular node, it too would fail and cause additional load 
redistribution.  

 
While th

ch application allows focus on a variety of situations that are currently difficult to assess
by other means. The response of a cascade model to random surges such as considered by 
Sakhtjen, Carrerras and Lynch (2000) and node removal either under random or directed attach 
such as considered by both Motter and Lai (2002), and Albert, Albert, and Nakarado (2004
suggest that the electric power grid can be fragile under these types of perturbations. Another 
possible driver of perturbations is a simple, unregulated market, such as that which characteri
certain geographic elements of the present electric power market and has been hypothesized to
promote large scale electric power grid instability. In our example application of Polynet, we ask 
whether an electric power grid is inherently prone to cascading failure through its operation in 
context of a simple market and whether network topology can play a role in either postponing 
cascades or modifying their extent once they occur. Thus, we consider a stylized electric power
grid responding to simple random fluctuations in load within the network imposed by energy 
transactions between power generators and consumers. 
 

 
2 For instance, consider a simple abstraction of human mass action in response to crisis within say a financial market 
or a subway station. Let us interpret the nodes in our BTW sand-pile to be people connected within a social/financial 
network or simply adjacent to each other in space. E will be the “desire” an individual has and Ec the threshold 
desire level needed to make a given binary decision such as buy/sell or fight/flight. Many studies of animals and 
people have documented “herd” behavior whereby individuals are influenced by the action of their friends or 
neighbors. If we abstract this as the simple BTW sand-pile interaction rule and interpret random additions of unit E 
to be random events that increase the desire of a person to act, our analogy is complete. 
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In our stylized application, we place power generators and consumers within ideal 
networ logy. 
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For our example problem, we consider a stylized high voltage power transmission grid 
with a s

 ~ 
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 of 

ly due to 

The topology of realized electric power grid networks is under investigation (e.g., Albert, 
Albert,

ee 

arsely 

 the grid 

We performed multiple 400 node realizations for each network type and in all cases, 
cascade

required 

s 

d 

k topologies and calculate the resulting flow of current within using a DC circuit ana
At each node, load is defined by the sum of the currents conducted across the node. Threshold 
values for load (above which failure occurs) are given by a safety factor on the initial base load
imposed by the generator-consumer population. Both positive and negative perturbations to this 
initial state are imposed by generator-consumer pair transactions chosen at random. Transaction 
sizes are a fixed fraction of the consumer’s present demand. After a transaction, the flow of 
current is recalculated within the network and the new loads are compared to their threshold 
values. If a node exceeds its threshold, it fails and is removed from the network. Loads within
network are then recalculated, compared to their threshold values, and failed nodes once again 
removed. The process of load redistribution and node removal proceeds until the cascade ends. 
a perturbation does not result in the separation of consumers from generators, it is retained and a 
new perturbation is added. In this way, the system undergoes a random walk that varies both the 
total current and its distribution within the network. When a cascade occurs and consumers are 
separated from generators resulting in unmet demand, data from the cascade are recorded such a
the time to cascade (number of perturbations added), its size (number of nodes that fail), duration 
(number of load redistribution cycles that take place), and fraction of demand that is unmet. The 
initial state is then restored and perturbations are once again imposed. In this way, we build 
cascade statistics over a large number of simulations for a given network configuration. 
 

et of parameters that are reasonably representative of real electric power grids. We take 
the ratio of generators to consumers as ~ 1:1 (where the term consumer is representative of a 
group of residential, commercial, and/or industrial consumers of electricity with a common 
connection point to the high voltage transmission system) and in combination, they make up
2/5’s of the nodes, the remaining 3/5’s forming relay substations. While consumers have very 
similar demand (250 MW with a standard deviation of 20 MW), generators produce over a wid
range (50-1200 MW with a mean of 300MW). We take the safety margin at a node as ~ 4 
standard deviations, or ~ 30% above the base mean value. While the conductive properties
links in an electric power grid are heterogeneous across the network, we treat them as 
homogeneous in our example so that the variability of load within the network is entire
network topology and placement of consumers/generators. Finally, for convenience, we take the 
size of the transaction perturbation as ~ 4% of the particular consumer node’s present demand. 
 

 and Nakarado, 2004). For demonstration purposes, we considered two stylized network 
types that seem to somewhat bracket expected topology. The first is a scale-free network 
generated with the preferential attachment algorithm of Barabasi and Albert (1999) (e.g., s
Figure 2.1d). For this stylized network, we designate all nodes of degree 1 to be either 
generators or consumers, with nodes of higher degree forming relay substations. This 
arrangement mimics the tendency of high voltage electric power grid networks to be sp
connected at both the supply and demand points but be densely connected in between. 
Additionally, we consider the regular fish-net square lattice with wrapped edges so that
folds to be a torus (or “donut”) (e.g., see Figure 2.1a). For this stylization, generators and 
consumers are distributed at random within the network.  
 

s occurred in our stylized electric power grids. Statistics were gathered for each 
realization in a period over which 1000 cascades occurred. In general, fish-net networks 
~ 30 times more perturbations than did the scale-free to complete the 1000 cascade period. We 
have chosen a typical simulation for each network type to depict in our figures. Figure 3.1 show
cascade size over the course of a run for both networks. Across all realizations, the scale-free 
always contained multiple bands while the fish-net tended to have concentration at the high en
with the occasional development of a small low end peak. We also find that the size of the 
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cascade is directly related to the fraction of demand that is shed by the cascade (Figure 3.2) as 
well as to its duration (Figure 3.3). Interestingly, for the scale-free, both large and small events 
are of short duration while intermediate size events are much longer. The data for the scale-free 
is distributed tightly or “clumped” around a set of distinct loci. For the fish-net, larger events 
tend to be of longer duration however there is much greater scatter around the large event locu
 

s.  

 
igure 3.1:  Example cascade time series for 1000 events on a 400 node scale-free (to the left) 
nd fish-net (to the right) network. Note that the scale-free network shows a number of cascade 

 

igure 3.2: Example relation between fraction of unmet demand and cascade size for a 400 node 
ale-free (to the left) and fish-net (to the right) network. 

 
 
 

 

F
a
size bands well below the size of the network while the fish-net exhibits only very small or very
large cascade sizes. 
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Figure 3.3: Example relation between cascade duration and cascade size on a 400 node scale-
free (to the left) and fish-net (to the right) network. Note the clumped nature of the scale-free 
results. 
 
 

Our results demonstrate that for the electric power grid cascade application, the 
distribution of event sizes is not a power-law as has been found in the classical BTW sand-pile 
(See Section 2 above). Instead there is a tendency in fish-net networks and a possibility in the 
scale-free for cascade frequency to increase with size. While for the fish-net, most cascades are 
near the size of the system (and shed near 100% of the demand), in scale-free networks distinct 
sub-peaks occur, any of which may be the most common, with a high degree of variability from 
realization to realization. These differences between the BTW sand-pile and the electric power 
grid cascade results are hypothesized to be due to the combination of 1) our use of global versus 
local information in the calculation of node state and 2) network topology. 
 

The global calculation of load does two things. First it allows the spreading of failure past 
nearest neighbors. Although there is only local connectivity among nodes, there is an implicit 
global interaction as the failure of one node instantaneously changes load at every other node in 
the network. Changes may be larger near the failed node, but there is the potential for failure to 
“jump” to any point in the network. Second, and likely more important, there is a tendency for 
cascades to accelerate because each additional node that fails pushes the loads of all nodes 
higher. Contrarily, for the BTW sand-pile, only local rules apply and acceleration is not possible. 
Acceleration is clearly implied in the fish-net results where cascades that reach a size of greater 
than ~ 10 nodes always run to span nearly the entire network (refer to Figure 3.2).  
 

On top of the influence of global information on cascade dynamics, the scale-free 
network topology imposes preferred conduits for the flow of current. The scale-free topology is 
also naturally segmented or “hierarchical”. This means that when a cascade begins, it can be 
isolated by the failure of a small number of critical nodes. If the initial allocation of generators 
and customers along with transaction perturbations have not built an over reliance of one region 
of the network on others, then sub-regions fail independently. However, if significant generation-
consumption dependencies have developed across regions, cascades can spill over from one to 
other dependent sub-regions of the network. Such a behavior is likely responsible for the banded 
and clumped nature of the scale-free cascade response. Another influence of the scale-free 
network topology is that it makes the entire network more fragile to perturbations than the fish-
net. On average, it takes ~ 1/30th of the transaction perturbations in the fish-net network to trigger 
a cascade in the scale-free. This is due to the fact that in the fish-net, there are many more 
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possible paths between any two sources and sinks while in the scale-free, preferential attachment 
builds hierarchy instead of redundancy.  
 
 
3.1 Summary and future extensions for the electric power grid application: 
 

Our initial analyses show that small additive power transaction perturbations applied at 
random and with no geographical restrictions will drive our stylized electric power grids to 
failure in both fish-net and scale-free topologies. These results support the hypothesis that 
unrestricted power markets can undermine system stability however they do not yet speak to 
whether restricting markets will increase system robustness. We find that the fish-net topology is 
much more robust to additive transaction perturbations than the scale-free (roughly a factor of 
30). However, when a cascade occurs, the scale-free naturally compartmentalizes failure while 
the fish-net does not and thus when the fish-net fails it does so near the scale of the entire 
network. This topological influence is hypothesized to be due to the fact that the scale-free 
consists of well-connected sub-regions with grouped power generators and consumers that are 
connected to other sub-regions through a small number of critical and more vulnerable nodes. 
Dependencies between sub-regions arise in our analysis through random power transactions that 
can span the entire network. It is these dependencies that likely cause failure in one sub-network 
to cascade into others.  
 

Beyond testing the hypothesized influence of network topology, a number of future 
studies will improve the fidelity of our analyses. First, parametric studies that systematically vary 
network size, perturbation size, and the distribution of sources/sinks (size and location), would 
fully disclose present model behavior. Second, actual electric power grid topologies with 
appropriate node parameterization (resistances, etc.) can be rendered from available data to 
consider real rather than purely stylized network topologies. Third, we can introduce the added 
cascade of a “damage surge” that results from voltage spikes emanating from the source of the 
failure. Fourth, we can consider data-based event distributions for additional perturbation types, 
such as random human or component failure. Fifth, we can consider the adaptive setting of node 
thresholds such as to mimic the natural upgrading process that is imposed when a component 
fails. This study would begin to push beyond the interrogation of a static grid by incorporating 
active self-healing processes. Accordingly we must extend Polynet to include processes that 
drive the topology, composition, and operational demands of an infrastructure. For the electric 
power grid application, one such process is the dynamic power market interactively connected 
with additional networks (information, other markets, social connections, etc.) all of which are 
driven by a number of externalities such as weather and climate. With such an extended model, 
attack scenarios and policy related questions could be considered such as: 

 
1) Will geographically restricting transactions decrease the probability of cascade 

occurrence or the size of the cascade when it does occur?  
2) What might the influence of distributed power generation be on electric power grid 

stability? 
3) Are there any general principles beyond those already designed and outlined within the 

North American Electric Reliability Council operating rules that may aid in the graceful 
fragmentation of the network either before or during a cascade? 

 
Answering such questions for a variety of network topologies as well as real electric power grids 
can aid informed policy analysis and allow the creation of new policy that can guide the electric 
power grid toward increased robustness. 
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4. Stylized Fedwire Polynet Application 
 

Fedwire is a Federal Reserve service for sending large-value payments between banks 
and other large financial institutions. The average daily volume transmitted within Fedwire is ~ 
$1.6T, while the total of the reserve account balances supporting this flow is typically only ~ 
$10B. This extremely efficient use of capital (characterized by the turnover ratio of transaction 
volume to total balances) arises from and depends upon the close coordination of payments 
among banks. Failure of a participant to make timely payments, either through communications 
failure or liquidity shortfalls, can affect the ability of payees to fulfill their own obligations. The 
close coordination engendered by a reliable payment system creates a network of inter-bank 
dependencies, which is potentially subject to cascade failures in the absence of mitigating 
interventions.  
 

McAndrews and Potter (2002) describe Fedwire’s response during 9-11. While no banks 
failed, damage to property and communication systems perturbed the coordinated flow of funds 
and resulted in payment problems among banks. The Federal Reserve intervened by supplying 
abundant liquidity through discount window loans and open market operation that restored 
payment coordination. This episode emphasized both 1) concern that rising debt within the 
system might create a cascade that would bring the system to a standstill, and 2) the usefulness of 
the discount window and of intraday lending by the central bank for managing market demands 
for liquidity. To our knowledge, there has been no quantitative simulation of Fedwire that would 
allow evaluation of both normal and reactive behavior. In particular, understanding of the speed 
of the cascade process in Fedwire is important to construct intervention scenarios by the Federal 
Reserve in the event of acute infrastructure failure. The time in which the Federal Reserve must 
intervene to avert a liquidity crisis may be quite short given the high turnover ratio seen in the 
Fedwire system. 

 
Here we apply Polynet to first simulate the normal behavior of banks conducting random 

transactions using the Fedwire system, and then consider the disruption and ensuing cascade 
when a bank is removed from the network. Nodes represent banks and links potential payment 
exchanges between banks within the network. Payments are assumed to have a uniform (unit) 
size. During normal operations, connected banks are randomly selected to transact a payment, 
which increases the debit count at the sending bank and decreases the debit count at the receiving 
bank. A large number of such transactions are simulated during a specified trading period. At the 
conclusion of this period each bank has a debit count reflecting its net position. If this debit count 
exceeds the bank’s reserves, it is in an overnight overdraft position. Heavy penalties are imposed 
for overnight shortfalls. Banks therefore have an incentive to maintain adequate reserves to avoid 
overdraft penalties. Federal Reserve deposits do not earn interest, so banks also have a strong 
incentive to keep reserves low. Banks adjust their reserves at the end of each trading period and, 
over the course of many trading periods, balance overdraft risk against lost opportunity costs for 
holding reserve balances. 
 
 In our simulation, we associate a particular bank’s reserves with its threshold and 
implement adaptive feedback to allow each node to set its threshold during a “training” period 
composed of a large number of trading periods. Once thresholds have adapted to the trading 
pattern across the network, we disrupt the payment system by disconnecting a single bank. 
Disconnection prevents this bank from making payments, while the payments due the 
disconnected bank are encumbered even though undeliverable. We note that this is simple 
nearest neighbor interaction within the network of potential payment exchanges. While the 
model is globally conservative in the normal (training) mode, disconnecting a bank results in a 
net injection of deficit into the system. The disruption propagates when bank’s deficits exceed 
their thresholds (reserves) due to interaction with a disconnected bank, resulting in suspension of 
payments by that bank. Suspension injects additional deficit for any subsequent payments due by 
that bank, which induces suspensions in other banks and thus a deficit cascade. 
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We initially considered networks of 1000 nodes. Two stylized network topologies were 

used to explore the effects of heterogeneity in activity and interconnection: a scale-free network 
with nodes having degrees (number of connections) ranging from 1 to more than 100, and a 
regular ring network in which each node is connected to the 25 nodes on either side along the 
ring. For each network, a trading period consisted of 50,000 transactions between randomly 
selected pairs of adjacent nodes. Over the course of a training period composed of 3000 trading 
periods, each bank adjusted its threshold (which represents reserve account balance) so that the 
risk of an overnight overdraft is less than 0.001. The size of the training period was selected by 
observing the convergence behavior of the thresholds. Ten realizations of each of the two 
network types were examined.  
 

The connection heterogeneity in the scale-free network naturally leads to concentration of 
transaction activity at highly connected nodes. To sharpen the comparison with the homogeneous 
ring network, we enhanced this concentration by making the probability of a bank interacting 
with a connected bank proportional to the degree of the connected bank. Following the training 
period, liquidity is not evenly distributed within the network. Banks with higher connectivity 
participate in more transactions, and therefore require larger reserves to achieve the same level of 
risk. While the ring yields a normal distribution for reserves (Average of 30.8, Standard 
deviation of 3.7), the scale-free has heavy tails. This distribution is a direct consequence of the 
distribution of node connectivity within the network (see Figure 4.1 left). Required reserves do 
not scale linearly with degree, even though the number of transactions increases with degree. 
This is because the standard deviation of the end-of-period balance, and therefore the level of 
reserves needed to satisfy a specified risk, scales with the square root of the number of 
transactions.  
 
 

igure 4.1: Reserve levels at nodes for three realizations of a 1000 node scale-free network are 
 

On removal of a single randomly chosen bank, the cascade process begins. Figure 4.1 
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F
shown to the left. Most and least rapid liquidity decay during cascades instigated by the removal
of a random node in 1000 node scale-free and ring networks are shown to the right. 
 
 
 
r hows the erosion of total available liquidity (sum of available reserves at all active bank
as a function of time for both the scale-free and ring networks. Simulations that bracket the 
results seen for the 10 realizations are shown for each network type. The variability among 
realizations for the scale-free is much larger than the variability seen in the ring case. The sc
free response is characterized by a highly variable delay between the initiating suspension and 
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the first subsequent suspensions.  However, after this initiation period the cascade response is 
similar for the sampled scale-free networks, and slightly more rapid than for the ring networks.
The decline in liquidity seen in Figure 4.1 right is approximately described by a logistic curve. 
Such a response is seen in classical models of spreading infection where the rate of disease 
progression is proportional to the interaction rate between infected and uninfected populatio
Rates are slow at the beginning and end of the response, when the population is almost entirely 
uninfected or infected, and are largest when the population sizes are equal. Between 8 and 14 
trading periods elapse before half of the banks are suspended. In the scale-free case, the first 5 
10 suspensions occupy most of this time.  Once initiated, approximately 3 to 4 trading periods 
are required for the cascade to pervade the network. 
 

  

ns. 

or 

In the above simulations, the liquidity to which the banks have tuned to control overdraft 
risk du

s, 

n 

es 

 

e 

igure 4.2: The effect of increasing transaction density (decreasing thickness) on liquidity decay 

thickness and patterned transactions accelerate the cascade. 

ring the training period is ~ 27,000 for the scale-free and ~ 31,000 for the ring – just more 
than half of the period’s trading volume of 50,000 units. This level of reserves indicates some re-
use of funds within the system (slightly more in the scale-free due to its inherent heterogeneity), 
but does not approach the efficiencies seen in Fedwire use. The reserves retained by each bank 
buffer the propagation of payment shortfalls through the system. Normal Fedwire operations 
typically have reserves of less than 1/100 of daily volume. However, for the above simulation
reserves settle during the training period to ~ 3/5 of a period’s trading volume. In our model, 
reserves are determined by the fluctuations in the ending balance at each bank, which is in tur
determined by the sum of its trading period transactions. Because reserves required to meet a 
certain risk level are proportional to the standard deviation of this sum, the ratio of total reserv
to total transaction volume, which we define as “turnover ratio”, is proportional to N-1/2, where N 
is the number of trading period transactions. Thus we can reduce the turnover ratio by increasing 
the number of transactions seen by each bank. As an illustration, we conducted simulations using 
a network of 100 rather than 1000 nodes, and an increased transaction frequency resulting in 
500,000 rather than 50,000 transactions in a trading period. The reserve levels supporting this
higher volume are approximately equal to the original levels, so that the reserve overhead has 
decreased from 3/5 to 3/50 of the trading period volume. The effect of increased turnover on th
loss in liquidity in the system after a random bank failure is shown in Figure 4.2 left. We see 
that thinner reserves lead to much more rapid propagation of disruption: half of the banks are 
suspended after slightly more than half of a trading period. 
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F
in a scale-free network is shown to the left. The effect of adapting to predictable patterned 
transactions on bank failures in a scale-free network is shown to the right. Both decreasing 
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Real wholesale payments also have patterns (i.e., temporal correlation for transaction
with particular nodes), and it is reasonable to expect that ban

s 
ks exploit these patterns to manage 

their re
 

t 

 

 
 

igure 4.3: Most and least rapid liquidity decay during cascades instigated by the attack of the 
ighest degree node (most connected, red) versus random removal (blue) on a scale-free 

. 

The cascades presented above were all instigated by the initial removal of a single 
ndomly-selected bank. In other studies of cascade phenomena, scale-free networks often 

exhibit omly 
work 

r 
d 

.1 Summary and extensions for the Fedwire application: 

d responses. The simple adaptive 
sponse of banks to avoid both overdrafts and excess reserves adjusts individual levels such that 

the mor he 

serve accounts. Such patterns can be included explicitly in the model to consider their 
influence. We have begun exploring the effect of patterned payments by generating a fixed set of
recurring transactions. Transactions seen by the system are a mixture of selections from this se
of transactions and random transactions generated as before. Figure 4.2 right shows the effect 
on the number of failed banks in time when half of the daily transactions are selected from the 
recurring set in a 1000 node scale-free network. The time required until 50% of the banks are 
suspended has decreased from the completely random transaction result of 10 trading periods to
slightly more than 7. The overall reserve balance is slightly higher at 29,000 units, but has the 
same distribution.  
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network. Attack of the highest degree node entirely removes the initiation period for the cascade
 
 

ra
 very different behavior depending on whether the initial disruption occurs at a rand

chosen node or at a well-connected node. To consider the susceptibility of the scale-free net
to the attack of a highly connected node, we revisited the analysis presented in Figure 4.1 and 
instead removed the maximally connected node to begin the cascade. Figure 4.3 shows the 
resulting liquidity declines for two bounding network realizations. The corresponding curves fo
removal of a randomly chosen node from Figure 4.2 are reproduced for comparison. We fin
that the long and variable initiation period found for random removal is entirely removed in each 
attack scenario.  
 
 
4
 

Our initial Fedwire analyses illustrate many expecte
re

e transactions a bank has, the greater its level. The turnover ratio of the reserves, i.e., t
total transaction level relative to the level of the reserves within the entire network, increases 
with the number of transactions. But with increasing turnover ratio, the speed of liquidity loss 
when a bank is removed from the network increases dramatically. Overall turnover ratio is a 
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reflection of predictability, and greater predictability reduces the need for bank reserves. The 
high efficiency of reserve use seen during actual Fedwire operations suggests that payments a
highly predictable or controllable. Our initial exploration of patterns in payments, and 
adaptations to those patterns, demonstrates an additional increase in the speed of liquidity loss on
removal of a single bank. We also found that for the attack of the most highly connecte
the initiation period before the system cascades is entirely elimiated. Thus, we expect that the 
potent combination of high transaction volume, imposed patterned transactions and high degree
node attack may be result in an acute cascade failure for which the required intervention time b
the Federal Reserve may be quite small.  

 
Our Fedwire Polynet application is

re 

 
d bank, 

 
y 

 in its initial stage and a number of future studies will 
improve the fidelity of present analyses. First, parametric studies that systematically vary 
networ

 

fast must the Federal Reserve react after a bank removal is sensed? What are the 
bounds on injections required to stabilize the system? 

 to prevent such a spread? 
 
Answe  policy 

at can guide Fedwire toward increased robustness. 

. Conclusion and Directions for the AMTI task 

r AMTI effort to apply insights 
om the study of generic complex adaptive systems to understand the structure, function, and 

evoluti  on 

n 

llow some 
conclusions to be drawn and hypotheses to be formulated. Both applications consider the effects 
of rand

ure, 
 

tric 
 are 

k size and topology, transaction size, and transaction patterning will more fully disclose 
present model behavior. Second, it would be useful to apply the model to actual Fedwire 
transaction topologies with appropriate node parameterization (connectivities, reserves, etc.). 
Additionally, and as in the case of the electric power grid, transactions in Fedwire are made on 
behalf of their customers. These customers form a trading network, through markets and other
relationships, that determines the demand for money transfers. Extending Polynet to explicitly 
include this underlying “economic” drive will constrain the payment activities in the Fedwire 
model, as well as provide another pathway for propagation of disruptions through the payment 
system. With such an extended model, policy related questions such as the following could be 
considered: 
 

1) How 

2) How might the collapse of Fedwire influence and spread into other markets and 
infrastructures? Are there measures that could be taken

ring such questions can aid informed policy analysis and allow the creation of new
th
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In this report, we have presented the beginnings of ou
fr

on of complex interdependent critical infrastructures. As our first step we have focused
cascading failure as can occur with devastating results within and between infrastructures. We 
have developed an abstract cascade model, Polynet, which encompasses a variety of complex 
system models. We demonstrated Polynet with one fully abstract problem, the BTW sand-pile i
various network topologies, and for two critical infrastructure related applications, the electric 
power grid and Fedwire, both in scale-free and regular homogeneous topologies.  

 
While our critical infrastructure applications are in their initial stage, they a

om transactions on idealized networks. However, they differ in the way cascades are 
initiated and the way failed nodes influence the subsequent cascade process. For the electric 
power grid, the addition of random transactions eventually pushes the grid to a cascading fail
while for Fedwire, the removal of a bank initiates the cascade. In the electric power grid, state
changes are felt instantaneously throughout the network, while payment failures have only local 
influence on correspondent banks in Fedwire. For both cases, we observe a dependence on 
network geometry. Network geometry influences the electric power grid’s robustness to 
transaction perturbations, as well as the cascade size disribution. On stylized scale-free elec
power grids, cascades appear to be limited to network sub-regions, which we hypothesize
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characterized by regional supply/demand imbalance. In contrast, cascades on the stylized fish-ne
most often occur at the scale of the entire network. For Fedwire, network topology significantl
influences the cascade initiation period and for the scale-free network, attacking the most highly 
connected node can cause the cascade to begin immediately. In our stylized Fedwire application,
we also considered the adaptive response of nodes to balance overdraft risk against lost 
opportunity costs for holding reserve balances. We found that the system naturally evolved to 
larger turnover ratios as we increased the transaction volume, thus leading to the acceler
cascade failure. For the electric power grid one can imagine that the adaptive setting of load 
thresholds to mimic the strengthening of troublesome nodes might cause the scale-free network 
to evolve enhanced robustness.  

 
As a whole, our studies em

t 
y 

 

ation of 

phasize the importance of capturing the relevant abstracted 
“physics”, i.e., node interaction, network topology, and adaptive behavior, when considering 
cascade

 

 

response of a single specific network cannot tell us whether the propensity to cascade is 
acciden  
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 behavior in infrastructures. For each of the two critical infrastructure applications we 
have identified ways to better capture the governing dynamics. In both cases, these extensions
include connections to other “networks” such as markets, telecommunication, and/or control 
(e.g., sensor networks that may be an array of widgets or an array of humans connected in a 
social network). Additional applications such as the spread of infectious diseases within 
agricultural systems, or the reaction of a crowd to crisis within a constrained physical 
environment (e.g., a network of mass transit terminals) will also require such extensions. 

 
Networks form and operate in response to external drivers, and understanding the 

tal or endemic. This distinction is essential for informing policy. Understanding the
interaction of multiple networks, their interdependencies, and in particular, the underlyin
mechanisms for their growth/evolution is paramount. Because cycles of spontaneous failure 
adaptive regeneration can endogenously re-shape the structure and function of networks, th
problem cannot be fully considered with a static network as we have done in our initial work 
reported here. Growing/evolving network topology, and adapting interaction/behavioral rules 
ultimately determine the shape and performance of infrastructures. If we can understand which
characteristics are critical for infrastructure behavior, and understand how infrastructures 
respond to evolutionary pressures, we can identify appropriate public policy to foster the 
evolution of robust infrastructures.  
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