
Salinas–Theory Manual

Garth Reese∗ Manoj K. Bhardwaj† Timothy Walsh‡

Sandia National Laboratories
Albuquerque, NM 87185-0847

August 16, 2004

∗Phone: 845-8640
†Phone: 844-3041
‡Phone: 284-5374

SAND2004-4079
Printed August 2004

Revision: 1.7

Date: 2004/07/19 14:44:51

Latest Software Release: 1.3

Abstract

This manual describes the theory behind many of the constructs in Salinas.
For a more detailed description of how to use Salinas , we refer the reader to
Salinas, User’s Notes.

Many of the constructs in Salinas are pulled directly from published ma-
terial. Where possible, these materials are referenced herein. However, certain
functions in Salinas are specific to our implementation. We try to be far more
complete in those areas.

The theory manual was developed from several sources including general
notes, a programer notes manual, the user’s notes and of course the material in
the open literature.

(this page intentionally blank)

Salinas Theory Manual

Contents

1 Solutions 1
1.1 Time integration . 1
1.2 Linear transient analysis . 1
1.3 Nonlinear transient analysis . 2
1.4 Time integration with viscoelastic materials 5

1.4.1 Equations of motion . 5
1.4.2 Constitutive equations . 5
1.4.3 Linear Representation of Velocity 8
1.4.4 Midpoint Representation of Velocity 8

1.5 Random Vibration . 9
1.5.1 algorithm . 9
1.5.2 Power Spectral Density . 10
1.5.3 RMS Output . 11
1.5.4 RMS Stress . 11
1.5.5 matrix properties for RMS stress 11
1.5.6 model truncation . 12

1.6 Modal Frequency Response Methods 13
1.6.1 No Rigid Body Modes . 13
1.6.2 Rigid Body Modes . 14
1.6.3 Example . 16

1.7 Complex Eigen Analysis - Modal Analysis of Damped Structures . . 17
1.7.1 Modal Analysis of Damped Structures 17
1.7.2 Input File Specification . 17
1.7.3 Output File Format . 19
1.7.4 Some Back Ground . 19
1.7.5 Viscoelasticity . 20
1.7.6 Viscofreq . 20
1.7.7 Trust Regions and Real Modes 21
1.7.8 ViscoFreq - Approximating the Response of Viscoelastics . . 21

1.8 Component Mode Synthesis . 24
1.8.1 Reduction of superelement matrices 24

1.9 A posteriori error estimation for eigen analysis 27
1.9.1 Preliminaries . 27
1.9.2 Approach I - explicit error estimator 28
1.9.3 Extension of Estimators to Elasticity 29

i

1.9.4 Explicit Estimator - Multiple Materials 32
1.9.5 Explicit Estimator Summary 38
1.9.6 Approach II - quantity of interest estimator 39

2 Elements 43
2.1 Isoparametric Solid Elements. Selective Integration 43

2.1.1 Derivation . 43
2.2 Implementation . 45
2.3 Quadratic Isoparametric Solid Elements 45
2.4 Wedge elements . 46

2.4.1 Shape Functions . 46
2.4.2 Quadrature . 46

2.5 Tet10 elements . 46
2.6 Notes on calculating shape functions and their gradients for the Hex20

element . 47
2.7 Anisotropic Elasticity . 48
2.8 Triangular Shell Element . 49

2.8.1 Allman’s Triangular Element 49
2.8.2 Discrete Kirchoff Element . 49
2.8.3 Verification and Validation 50

2.9 Triangular Shell - Tria3 . 50
2.10 Two Node Beam . 52
2.11 Truss . 52
2.12 Springs . 52
2.13 Multi-Point Constraints, MPCs . 53

2.13.1 Constraint Transforms . 54
2.14 Rigid Elements . 55

2.14.1 RROD . 56
2.14.2 RBAR . 56
2.14.3 RBE3 . 56

2.15 Shell Offset . 58
2.16 Notes on Consistent Loads Calculations 58

2.16.1 Salinas Element Types . 59
2.16.2 Pressure Loading . 60
2.16.3 Shape Functions for Calculating Consistent Loads 60
2.16.4 Shell Elements - consistent loads 61

2.17 Coordinate Systems . 62
2.18 Constraint Transformations in General Coordinate Systems 64

2.18.1 Decoupling Constraint Equations 64
2.18.2 Transformation of Stiffness Matrix 65

ii

2.18.3 Application to single point constraints 66
2.18.4 Multi Point Constraints . 67
2.18.5 Transformation of Power Spectral Densities 67

2.19 HexShells . 68

3 Linear Algebra Issues 70
3.1 Solution Spaces . 70

References 73

A Anisotropic Materials 75
A.1 Linear Anisotropic Elasticity . 75
A.2 Stress Vectors . 75
A.3 Strain Energy and Orientation . 77

B Integration of Isoparametric Solids 80
B.1 Uniform Strain-Displacement Matrices 81
B.2 Mixed Integration . 82

Index 83

iii

1

1 Solutions

One thing which makes Salinas somewhat unique among the many mechanics codes
developed at Sandia National Labs is that Salinas combines a variety of different
solution procedures. These range from modal superposition based solutions to non-
linear transient. As described in the User’s Notes , these solutions can be combined
(or chained) in solution cases. This section of the manual describes the theory be-
hind these individual solutions. For details about particular finite elements, see
section 2.

1.1 Time integration

1.2 Linear transient analysis

The equations of motion of the structure are

M [(1− αm)an+1 + αman] + Ĉ [(1− αf)vn+1 + αfvn] +
K [(1− αf)dn+1 + αfdn] = (1− αf)F ext(tn+1) + αfF

ext(tn)
(1)

where F ext is the external load, αf , αm are the integration parameters for the gen-
eralized α method, and Ĉ = C + αM + βK. That is, the damping matrix is the
sum of the standard damping matrix C plus the proportional damping terms. 1

The time integration scheme is defined as follows

dn+1 = dn + ∆tvn +
∆t2

2
[(1− 2βn)an + 2βnan+1]

vn+1 = vn + ∆t [(1− γn)an + γnan+1]
(2)

where γn, βn are the integration parameters for the Newmark method. In order to
have a displacement-based method, we solve these equations for the acceleration

1 As specified in the user’s manual, αf and αm are specified by the parameter RHO in the time
integrator. Where,

αf = ρ/(1 + ρ)

αm = (2ρ− 1)/(1 + ρ)

2 1 SOLUTIONS

and velocity in terms of displacement, which yields

an+1 =
1

βn∆t2
[dn+1 − dn − vn∆t]− 1− 2βn

2βn
an

vn+1 = vn + ∆t [(1− γn)an + γnan+1]

= vn + ∆t
[
(1− γn)an +

γn

βn∆t2
[dn+1 − dn − vn∆t]− γn

1− 2βn

2βn
an

]
(3)

Substituting these equations into the equation of motion, and collecting terms,
we obtain [

M
(1− αm)
βn∆t2

+ Ĉ(1− αf)
γn

βn∆t
+K(1− αf)

]
dn+1 =

Fn+1+αf
−Kαfdn

−Ĉ
[
αfvn + (1− αf)

[
vn + ∆t(1− γn)an +

γn

βn∆t
[−dn −∆tvn]− γn∆t(1− 2βn)

2βn
an

]]

+M
[
−αman +

1− αm

βn∆t2
[dn + vn∆t] + (1− αm)

1− 2βn

2βn
an

]
There are three matrix-vector products on the right hand side of this equation, one
for each of the system matrices M , K, and C.

1.3 Nonlinear transient analysis

This section follows closely the nonlinear transient procedure given by Belytschko et
al,1 with the modification of using the generalized alpha integrator rather than the
Newmark beta approach. In the case of a nonlinear transient analysis, the equation
of motion is

M [(1− αm)an+1 + αman] + Ĉ [(1− αf)vn+1 + αfvn] +
(1− αf)F int

n+1 + αfF
int
n = (1− αf)F ext(dn+1) + αfF

ext(dn)
(4)

where F int
n+1 and F int

n are the internal forces at the current and previous time steps,
respectively. Note that we have written the external loads as functions of displace-
ment, since in the most general case they could be follower loads.

1.3 Nonlinear transient analysis 3

Before preceeding, we note that there are two possible approaches for imple-
menting the generalized alpha method, and in equation 4 we have taken one of
these approaches. The difference lies in the treatment of the internal and external
forces. The first approach is to evaluate them as follows

F int((1− αf)dn+1 + αfdn)
F ext((1− αf)dn+1 + αfdn)

(5)

and the second is to evaluate two separate terms

(1− αf)F int(dn+1) + αfF
int(dn)

(1− αf)F ext(dn+1) + αfF
ext(dn)

(6)

When both F ext and F int are linear functions, the two approaches are identical. For
nonlinear problems, both F ext and F int could be nonlinear functions, and thus the
two procedures are different. In the limit of very small time steps, these nonlinear
functions effectively linearize and the two approaches again become the same. Thus
the limiting behaviour of the two approaches is the same.

We note that in most cases, the external load F ext is treated as a piecewise
linear function of time, and in those cases the two approaches yield the same result
for the external load, though a couple of exceptions are worth mentioning. First,
if two consecutive time steps lie within two different linear segments, then the two
approaches above yield different loads. Second, although they are seldom used,
polynomial and loglog interpolation functions are available in Salinas in addition
to the commonly used linear interpolation, and in those cases different load vectors
result from the above procedures. For problems with very large time steps and
involving polynomial interpolation, different results are to be expected.

In Salinas we have chosen the second option, which evaluates both the internal
force and external force at both times of interest, and forms a linear combonation
of the two. Comparisons have shown little difference in the results on simple test
problems.

Using the tangent stiffness method, we replace F int
n+1 as

F int
n+1 = F int

n +Kt∆d (7)

where Kt is the tangent stiffness matrix, defined as Kt = ∂Finternal/∂u. Also, we
use equations 3, which are the same as in the linear case.

4 1 SOLUTIONS

First, we substitute equations 3 and 7 into equation 4. This results in the
following equations, which are almost identical to the ones from the linear case[

M
(1− αm)
βn∆t2

+ Ĉ(1− αf)
γn

βn∆t
+Kt(1− αf)

]
dn+1 =

Fn+1+αf
− αfF

int
n − (1− αf)

[
F int

n −Ktdn

]

−Ĉ
[
αfvn + (1− αf)

[
vn + ∆t(1− γn)an +

γn

βn∆t
[−dn −∆tvn]− γn∆t(1− 2βn)

2βn
an

]]

+M
[
−αman +

1− αm

βn∆t2
[dn + vn∆t] + (1− αm)

1− 2βn

2βn
an

]
Finally, we want the unknown to be ∆d = dn+1−d̂, where d̂ is the current iterate

of displacement. To accomplish this, we subtract the appropriate terms from both
sides, which yields, after collecting terms[

M
(1− αm)
βn∆t2

+ Ĉ(1− αf)
γn

βn∆t
+Kt(1− αf)

]
∆d =

Fn+1+αf
− (1− αf)F̂ int − αfF

int
n − C [(1− αf v̂ + αfvn]
−M [(1− αm)â+ αman] (8)

where again hats denote current iterates of acceleration, velocity, etc. Upon using
the Newmark beta time integrator (γn = 1

2 , βn = 1
4 , αf = αm = 0, equation 8

reduces to [
M

4
∆t2

+ Ĉ
2

∆t
+Kt

]
∆d = Fn+1 − F̂ int − Cv̂ −Mâ (9)

which is the same equation given by Belytschko et al.1

We note that equation 8 can be written as

A∆d = res (10)

where A is the dynamic matrix, ∆d is the change in displacement from the previous
Newton teration to the current Newton iteration, and res is the residual, i.e. the
amount by which the equations of motion (equation 4) are not satisfied by the
current iterate.

1.4 Time integration with viscoelastic materials 5

1.4 Time integration with viscoelastic materials

Here we describe the integration of viscoelastic structures using the generalized alpha
method. For the proper choice of the parameters of the generalized alpha method,
the results below reduce to those corresponding to the Newmark-beta method.

1.4.1 Equations of motion

The equations of motion of elastodynamics in three dimensions are given by

utt −∇ · σ = f(x, t) Ω (11)
u(x, t) = 0 x ∈ ΓD (12)

σ(x, t) = g(x, t) x ∈ ΓN (13)
(14)

where u = (ux, uy, uz) is the vector of displacements, σ is the stress tensor, and
f(x, t) is the body force. The boundary of Ω is divided into Dirchlet ΓD and Neu-
mann ΓN subregions.

The Dirichlet conditions lead to the space of admissible functions

V =
[
v ∈ H1(Ω), v(x) = 0, x ∈ ΓD

]
(15)

The equation of motion, along with boundary conditions, is cast into the weak
form in the standard way∫

Ω
utt · v +

∫
Ω
σ · ∇svdx =

∫
Ω
f(x, t) · vdx+

∫
ΓN

g(x, t) · vds ∀v ∈ V (16)

where an integration by parts has been carried out on the middle term, and ∇s =
1
2(∇+∇T) denotes the symmetric part of the gradient operator.

1.4.2 Constitutive equations

The representation of the time-dependent moduli for a viscoelastic material is com-
monly written in the form of a Prony series

G(t) = Ginf + (G0 −Ginf)ζG(t) (17)

ζG(t) =
∑

i

cie
− t

si (18)

where G0 is the glassy modulus, Ginf is the rubbery modulus, and ci, si are coef-
ficients used to fit the Prony series representation to the experimentally measured

6 1 SOLUTIONS

relaxation curve. A similar expression holds for K(t), with different values for the
constants, and possibly a different number of terms in the series. Assuming an
isotropic viscoelastic constitutive law, we only need to consider two rate-dependent
material properties. In this presentation, we will work in terms of the bulk K and
shear G moduli, since experimental data is typically given in terms of these two
parameters.

The constitutive model for an elastic material can be written in terms of the
shear and bulk moduli

σ = Dε = (KDK +GDG)ε (19)

where DK , DG are given in equation 9.4.7 in,2 and K, G are the bulk and shear
moduli. This constitutive law can be generalized to a linear viscoelastic material as
follows

σ(x, t) = (G0 −Ginf)DG

∫ t

0
ζG(x, t− τ)∂ε(x, τ)

∂τ
dτ +GinfDGε(x, t) + (20)

(K0 −Kinf)DK

∫ t

0
ζK(x, t− τ)∂ε(x, τ)

∂τ
dτ +KinfDKε(x, t)

The above expression is then used to represent the stress in the weak form of the
equations of motion, 16.

Given a finite dimensional subspace Vh ⊂ V , we represent the approximate
solution in the standard way

uh(x, t) =
n∑

i=1

φi(x)ηi(t) (21)

where Vh = span(φi), and η(t) represents the unknown time dependence. We also
denote Φ(x) = [φi(x)] as the matrix having φi as the ith column. Inserting this into
the equations of motion, and rearranging, we obtain

Mη̈(t) + (G0 −Ginf)K1

∫ t

0
ζG(t− τ)η̇(t)dτ +

(K0 −Kinf)K1

∫ t

0
ζK(t− τ)η̇(t)dτ +K2η(t) = f(t) (22)

where
M =

∫
Ω
ρ(x)ΦT (x)Φ(x)dx (23)

is the mass matrix,

K1 = (G0 −Ginf)
∫

Ω
BTDGBdx+ (K0 −Kinf)

∫
Ω
BTDKBdx (24)

K2 = Ginf

∫
Ω
BTDGBdx+Kinf

∫
Ω
BTDKBdx (25)

1.4 Time integration with viscoelastic materials 7

are the stiffness matrices, and

f(t) =
∫

Ω
f(x, t) · v(x)dx+

∫
ΓN

g(x, t) · v(x)ds (26)

is the right hand side. The corresponding element matrices are defined simply by
breaking the integrals into elementwise contributions.

Equation 22 represents a system of Volterra integro-differential equations. With-
out the inertial term, 22 represents a system of Volterra integral equations of the
first kind. We now consider implicit schemes for integrating these equations in time.
The goal is to reduce the system of equations 22 to a system in standard form

Mη̈(t) + Cη̇(t) +Kη(t) = f̂(t) (27)

where C is a constant damping matrix, and ˆf(t) is a modified right hand side that
will include a portion of the viscoelastic convolution term. We demand that C be
independent of time, since this will eliminate the need for refactoring the left hand
side at each time step. The damping (integral) term in equation 22 is certainly time-
dependent. However, we will show that it is possible to split this integral term into
a time-dependent and a time-independent part. The time-independent parts remain
on the left hand side and become the damping matrix, whereas the time-dependent
parts can be carried to the right hand side, since they are known quantities. Once
the equations 22 are reduced to the system 27, the standard time integrators for
structural dynamics can be employed.

For simplicity, we consider the case of only a single Prony series term. The
results for more terms can be obtained by adding together the results for a single
term. The integral in equation 22 can be split into two parts (considering only a
single Prony series term)∫ t

0
e

t−τ
s η̇(t)dτ =

∫ ti

0
e

t−τ
s η̇(t)dτ +

∫ t

ti

e
t−τ

a η̇(t)dτ (28)

= e
∆t
s

∫ ti

0
e

ti−τ

s η̇(t)dτ +
∫ t

ti

e
t−τ

s η̇(t)dτ (29)

where the first term is a loading history term that is known at time ti. Consequently,
it can be treated as an additional load and brought to the right hand side. The
remaining term can be split into two terms, one containing coefficients of η̇, and the
other containing coefficients of η̇i. The former is unknown and thus becomes Cη̇,
whereas the latter is known and thus also contributes to the right hand side.

In order to evaluate the term ∫ t

ti

e
t−τ

s η̇(t)dτ (30)

8 1 SOLUTIONS

we first need a representation for the velocity ˙η(t) in the interval t ∈ [ti, t]. We
present two choices, both of which are second order accurate.

1.4.3 Linear Representation of Velocity

The first is consistent with the Newmark-beta method, which presumes a constant
acceleration within the time step. With this assumption, the velocity must vary
linearly within the time step. Thus,

˙η(t) = ˙η(ti) +
η̈ + ¨η(ti)

2
(t− ti) (31)

where η̈ is the (unknown) acceleration at current time t, and ¨η(ti) is the previous
acceleration. Although equation 31 is the correct representation for velocity, it is
inconvenient in that it would lead to (after inserting into equation 30) a contribution
to the mass matrix. This is undesrirable, since it would interfere with the use of a
lumped mass matrix. Thus, we re-write the velocity distribution in an equivalent
form

η(t) = ˙η(ti) +
η̇ − ˙η(ti)

∆t
(t− ti) (32)

We note that equations 31 and 32 are equivalent representations of the velocity. By
inserting equation 32 into equation 30 we obtain∫ t

ti

e
t−τ

s η̇(t)dτ =
[
s+

s2

∆t

(
e

∆t
s − 1

)]
η̇ +

[
−se

−∆t
s +

s2

∆t

(
1− e

−∆t
s

)]
η̇i (33)

The first term involves a coefficient times the unknown η̇, which is the unknown
velocity at the current time, and thus it must remain on the left hand side as a
damping term contribution. The damping matrix implied by this term is

C = cK(sK +
s2K
∆t

(e
−∆t
sK − 1))BTDKB + cG(sG +

s2G
∆t

(e
−∆t
sG − 1))BTDGB (34)

The second term is known, and thus it can be added to the load vector.

1.4.4 Midpoint Representation of Velocity

A second implicit scheme can be derived simply by using the midpoint rule on
the velocity in the viscoelastic term. The only difference from the linear approach
described above is in equation 33.

η̇(t) =
η̇ + ˙η(ti)

2
(35)

1.5 Random Vibration 9

This leads to ∫ t

ti

e
t−τ

s η̇(t)dτ =
s

2

(
1− e

∆t
s

)
η̇ +

s

2

(
1− e

∆t
s

)
η̇i (36)

In the same way as for the linear velocity approach, we use the term involving η̇
to construct a damping matrix, and the remaining known terms are carried to the
right hand side.

It should be noted that the midpoint scheme is inconsistent in that a different
discretization scheme is used for the viscoelastic term than was used for the over-
all time integration. The linear represenation of velocity is a consistent scheme.
However, both approaches are second order accurate.

1.5 Random Vibration

Details of random vibration analysis are included in a number of papers2. These
few paragraphs document what was implemented.

1.5.1 algorithm

The first step in the calculation is computation of a modal spatial contribution, Γqq,
which is performed in ComputeGammaQQ. This is accomplished as follows.

Let the modal frequency response be defined as,

qi(f) =
1

ω2
i − ω2 + 2jωωiγi

The modal force contribution from load a is,

Fia(f) =
∑

k

φikf
a
k sa(f)

= Zi
asa(f)

where fa
k is the k component of the force vector associated with load a, and sa(f)

contains all of the frequency content of the force, but none of the spatial depen-
dence. We have defined Zi

a for each load that represents the sum of all the spatial
contributions for mode i. It represents the frequency independent component of the
force for load a.

Zi
a =

∑
k

fa
kφik

2see for example, reference 3.

10 1 SOLUTIONS

A transfer function to an output degree of freedom, k, from the input load a, may
be written as a modal sum.

Hka(f) =
∑

i

Fia(f)qi(f)φik

where φik is the eigenvector of mode i.

1.5.2 Power Spectral Density

The displacement power spectral output (at a single location) is a 3× 3 matrix.

Gmn(f) =
∑
a,a′

H∗
ma(f)Hna′(f)

=
∑
i,j

∑
a,a′

F ∗
ia(f)q∗i (f)φimF

∗
ja′(f)qj(f)φjn

=
∑
i,j

∑
a,a′

q∗i (f)qj(f)φimφjnZ
i
aS

a,a′(f)Zj
a′

Here Sa,a′(f) is the complex cross-correlation matrix between loads a and a′, and the
superscript ’*’ denotes complex conjugate. The subscripts m and n are applicable
to the 3 degrees of freedom at a single location.

By summing over the loads we may reduce the power spectral expression to a
sum on modal contributions.

Gmn(f) =
∑
i,j

φimφjnGij(f) (37)

where

Gij(f) = q∗i (f)qj(f)
∑
a,a′

Zi
aZ

j
a′S

a,a′(f) (38)

Note that with the exception of the Zi
a (which may be computed only once and are

a fairly small matrix), all the terms in equation 38 are completely known on each
subdomain.

1.5 Random Vibration 11

1.5.3 RMS Output

The RMS output for degree of freedom m is given by,

Xrms =

√∫
Gmm(f)df

=
√∫ ∑

i,j

φimφjmGij(f)df

=
√∑

i,j

φimφjmΓij

where Γij =
∫
Gij(f)df .

The parallel result can be arrived at by computing Zi
a on each subdomain, and

then summing the contributions of each subdomain. Note that Zi
a contains the

spatial contribution of the input force. At boundaries that interface force must be
properly normalized just as an applied force is normalized for statics or transient
dynamics by dividing by the cardinality of the node. Once Z has been summed,
Γij may be computed redundantly on each subdomain. The only communication
required is the sum on Z (a matrix dimensioned at the number of loads by the
number of modes).

The acceleration power spectral density is just Gmm(ω)ω4. Subsection 2.18.5
provides details about transforming power spectra to an output coordinate system.

1.5.4 RMS Stress

A description of the algorithm for computation of the von Mises RMS stress is in-
cluded in the reference at the beginning of this chapter. Two methods are available,
but both use the integrated modal contribution Γij as the basis for their computa-
tion. The more complete method relies on a singular value decomposition. Portions
of that method are touched on below

1.5.5 matrix properties for RMS stress

Since S(f) is Hermitian, it follows that Γqq is also necessarily hermitian. It will
not in general be real. Therefore, the svd() must be computed using complex
arithmetic. We use the zgesvd routine from arpack. The results from the svd of
an hermitian matrix are real eigenvalues (stored in X), and complex vectors, stored
in Q.

12 1 SOLUTIONS

At the element level another svd must be performed. In this case we are com-
puting the singular values of the matrix C.

C = XQ†BQX

where,
B = ΨTAΨ

Obviously, B is symmetric. It can be shown that Q†BQ is hermitian. If we examine
a single element of C we can see that it contains the sum over all the terms in an
hermitian matrix. That sum is necessarily real, since it can be computed by adding
the lower half with it’s transpose and then summing the diagonal. Let,

Aij =
∑
m,n

Q∗
miBmnQnj =

∑
m,n

aij

But,
A∗ji =

∑
m,n

Qm, j ∗BmnQ
∗
ni =

∑
m,n

QnjBmnQ
∗
mi =

∑
m,n

a∗ij

We therefore only need use the real svd routines to compute the results at each
output location.

1.5.6 model truncation

The svd calculations provide the information needed for model truncation. In gen-
eral, if the size of the model grows, the number of modes required for an analysis also
grows. The relationship is very model dependent. However, the computational time
for calculating the svd varies as the cube of the dimension of the matrix. Since the
svd(Γ) is only computed once, it is not terribly important. However, the computa-
tion of each decomposition of C occurs at each output location and can significantly
affect performance. In the model problem where the dimension of C was allowed to
remain the same as the number of modes, increasing the number of modes from 20
to 100 changed the time for the analysis by factor of more than 100 (close to the
53 one might expect). Clearly, this is unacceptable especially as the desired models
may have many hundreds of modes.

The svd(Γ) provides important information about the number of independent
processes. Note that C includes the svd values from this calculation. We truncate by
computing all the nmodes x nmodes terms in B, but only retaining Cdim columns of
Q, where Cdim is chosen so the values ofX are not too small. Thus, X[(Cdim)]/X[0] >
10−14. This restricts the dimension of C to a fairly small number, while retaining
all components that contribute significantly to its value. As a result, the entire
calculation appears to scale approximately linearly with the number of modes.

1.6 Modal Frequency Response Methods 13

1.6 Modal Frequency Response Methods

The Salinas implementation of the modal acceleration method is described in this
section. Separate cases are considered when the structure does and does not have
rigid body modes.

1.6.1 No Rigid Body Modes

We first consider the frequency domain version of the equations of motion.

(−ω2M + jωC +K)û = f̂ (39)

Consider the modal approximation

û ≈
N∑

i=1

φiqi (40)

where N is the number of retained modes, φi is the i’th mode shape, and qi is the
i’th modal dof. For modal damping, one obtains the uncoupled equations

(−ω2mi + jωci + ki)qi = φT
i f̂ (41)

for i = 1, . . . , N where

mi = φT
i Mφi (42)

ci = φT
i Cφi (43)

ki = φT
i Kφi (44)

(45)

are the modal mass, modal damping, and modal stiffness of the i’th mode. Solving
equation 41 for qi leads to

qi = (φT
i f̂)/(−ω2mi + jωci + ki) (46)

Replacing (−ω2M + jωC)û in equation 39 with the modal approximation

(−ω2M + jωC)
N∑

i=1

φiqi (47)

leads to

Kû = f̂ + (ω2M − jωC)
N∑

i=1

φiqi (48)

14 1 SOLUTIONS

Recall that the mode shapes satisfy the eigenproblem

Kφi = ω2
iMφi (49)

where ωi is the circular frequency of the i’th mode. Provided ωi 6= 0, one obtains

K−1Mφi = φi/ω
2
i (50)

In addition, see Eq. (18.14) of Craig, the damping matrix C can be expressed as

C =
N∑

i=1

(
2ζiωi

mi

)
(Mφi)(Mφi)T (51)

where ζi is the damping ratio of the i’th mode. Substituting equations 50 and 51
into equation 48 and solving for û leads to

û = K−1f̂ +
N∑

i=1

(ω2/ω2
i − 2ζijω/ωi)φiqi (52)

The acceleration frequency response, â, can be obtained by multiplying equation 52
by −ω2.

1.6.2 Rigid Body Modes

The procedure outlined here describes how the modal acceleration method can be
used in the case when the structure has rigid body modes. The main difference
between the approach presented here and Craig’s method4 (pp. 368-371) is in the
way that the flexible response is computed using the singular stiffness matrix. Craig
removes the rigid body modes from the stiffness matrix using constraints. In our
approach, we first orthogonalize the right hand side with respect to the rigid body
modes, and then use an iterative solver such as FETI to solve the singular system di-
rectly. Although the two methods are equivalent the latter is much more convenient
from the implementation point of view. Note, however, that the implementation is
likely to fail on a single processor since the direct solvers in Salinas are unable to
manage a singular stiffness matrix.

The equations of interest are the frequency domain equations of motion

−ω2Mu+ jωCu+Ku = f (53)

Since the stiffness matrix may be singular, we first split the solution into a rigid
body part and a flexible part.

1.6 Modal Frequency Response Methods 15

u(ω) = uR(ω) + uE(ω) (54)
= ΦRqR(ω) + ΦEqE(ω) (55)

where the subscript R refers to rigid body mode contributions, and E refers to contri-
butions from flexible modes. We define N as the total number of degrees of freedom,
NR as the number of rigid body modes and NE the number of flexible modes, where
N = NR +NE . Then, ΦR is an NxNR matrix of rigid body eigenvectors, ΦE is an
NxNE matrix of flexible eigenvectors, qR is a vector of dimension NR, and qE is a
vector of dimension NE . We assume mass normalized eigenvectors.

We now substitute equation 55 into equation 53, and premultiply both sides by
ΦT

R and ΦT
E . This yields two sets of equations, after using orthogonality and the fact

that KΦR = 0.

− ω2qR + jωCRqR = ΦT
Rf (56)

−ω2qE + jωCEqE +KEqE = ΦT
Ef (57)

where CR, CE are diagonal matrices containing the modal damping contributions,
and KE is a diagonal matrix containing the eigenvalues. In particular, the ith
diagonal entry of CE is 2ωiζEi , and the ith diagonal entry of CR is 2ωiζRi . For most
applications, CR is null. Solving these equations we obtain the component-wise
values of the coefficients

qRi =
ΦT

Ri
f

−ω2 + jωCRi

(58)

qEi =
ΦT

Ei
f

−ω2 + jωCEi + ω2
E

(59)

Equation 57 can be solved for qE , and substituting this into equation 55, we
obtain

u = ΦRqR + ΦEK
−1
E ΦT

Ef + ω2ΦEK
−1
E qE − jωΦEK

−1
E CEqE (60)

The first term in equation 60 is known. The third and fourth terms of equation
60 can be computed by modal truncation, and in fact these are the same as the
second and third terms of equation 52. The second term in equation 60 is the static
correction, and is not readily computable in the present form since all of the flexible
modes would have to be known to compute it.

In order to compute the second term in equation 60, we note that the matrix
aE = ΦEK

−1
E ΦT

E is the inverse of the elastic stiffness matrix, that is, the stiffness

16 1 SOLUTIONS

matrix without the rigid body components. Craig gives a procedure of constraining
the rigid body modes in the stiffness matrix in order to compute the product aEf .
This procedure would require re-sizing the global stiffness matrix midway through
the modalfrf solution procedure, and this is tedius from the code development stand-
point.

A more convenient approach is to use FETI to solve the system Ku = fE , where
fE is obtained by orthogonalizing the right hand side f with respect to the rigid
body modes, via Gram Schmidt. We note that FETI can solve problems of the form
Ku = f even if K is singular, provided that the right hand side f is orthogonal to
the rigid body modes.

The procedure is to first apply Gram Schmidt orthogonalization to obtain fE .
Then, we use FETI to solve the system KuE = fE , where K is singular. Finally,
to be sure uE is orthogonal to the rigid body modes, we apply Gram Schmidt
one more time to uE . Though in theory uE is already orthogonal to the rigid
body modes after the FETI solve, numerical roundoff may result in a small loss
of orthogonality (especially if the solver tolerance is loose), and thus we apply this
final orthogonalization to uE to be on the safe side. The resulting solution we again
denote by uE . Then,

uE = ΦEK
−1
E ΦT

Ef (61)

and thus all of the terms in equation 60 are known. Thus the modal frequency
response can be computed using equation 60.

We note that the orthogonalizations refered to above involve only the standard
dot products. That is, in order to make f orthogonal to one rigid body mode φi,
the Gram Schmidt factor is

α =
φT

i f

φT
i φi

(62)

and then
fE = f − αφ (63)

The dot products appearing in these expressions do not involve the mass matrix.
They are the standard dot products.

1.6.3 Example

Finally, we present an example of the performance of this method as compared to
the stndard modal displacement method. The example is a beam composed of 320
hex8 elements. The beam is free-free, so that all rigid body modes are present. The
frequency response is computed up to 9000 Hz, and 15 modes are used in the modal
expansions. The 15th mode had a frequency of 11362 Hz. In Figure 1, the two

1.7 Complex Eigen Analysis - Modal Analysis of Damped Structures 17

methods are compared with the direct frequency response approach. It is seen that
the modal acceleration method gives a significantly improved performance over the
modal displacement method.

1.7 Complex Eigen Analysis - Modal Analysis of Damped Struc-
tures

1.7.1 Modal Analysis of Damped Structures

Salinas will solve the eigenvalue problems for structures with some types of damping.
The algorithms are designed for internally damped structures such as from viscoelas-
tic materials. The package is called Ceigen, and the parameters to be aware of are
eig tol, nmodes, and viscofreq. The first two parameters, eig tol and nmodes
will be familiar to Salinas users that solve eigenvalue problem for undamped struc-
tures. eig tol is the convergence tolerance for the eigenvalues, and nmodes is the
number of requested eigenvalues. viscofreq approximates the first flexible mode
of the structure. The default value for eig tol is 1.e− 8.

The complex eigen value problem which we solve is also known as the quadratic
eigenvalue equation. [

K + λD + λ2M
]
φ = 0 (64)

where,

K = the stiffness matrix
D = the damping matrix
M = the mass matrix
λ = the complex frequency.

All of the matrices are independent of frequency. Note that we are solving for
λ = iω + γ, not ω2.

1.7.2 Input File Specification

The Salinas input file specification is similar to the specification for transient simula-
tions. To change a working Salinas input file for a transient problem into a Salinas
input file for Ceigen, change the Solution and Parameters blocks. The example
below illustrates how the Solution and Parameter blocks are modified for modal
analyses.

SOLUTION
case ceig
ceigen nmodes 20

18 1 SOLUTIONS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
100

101

102

103

104

105

106

Frequency

A
m

pl
itu

de

Comparison of frf methods with rigid body modes

directfrf
modal disp
modal accel

Figure 1: A comparison of the modal displacement, modal acceleration, and di-
rect frequency response approaches. The modal acceleration method gives a better
approximation to the direct approach than the modal displacement method.

1.7 Complex Eigen Analysis - Modal Analysis of Damped Structures 19

viscofreq=1.e+4
END
PARAMETERS
eig_tol 1.E-5
wtmass=0.00259
END

The parameter wtmass is an example of a parameter that was was needed for the
transient simulation, and is still needed for modal analyses.

1.7.3 Output File Format

The output is very similar to the output for the undamped eigenvalue problem. The
results file contains any requested data. Supplemental information is written to the
screen that is useful for algorithm development.

The Results file foo.rslt tabulates the values λ/(2π) for (λi) that solve equa-
tion (65). Pure real eigenvalues are not written to the Results file.3 If λi has
been found with i in the range, 1 ≤ i ≤ 24, 27 ≤ i ≤ 34, then the missing eigenval-
ues (λi)25≤i≤26 are real eigenvalues that are omitted. The number of eigenvalues
written in the Results file is less than or equal to nmodes.

As is the case with the undamped eigenvalue problem, Salinas will print a table
to the screen. The table is titled “Ritz values (Real, Imag) and direct residuals”,
and has four columns of real numbers. The number of eigenvalues that are actually
computed may be larger or smaller than the number requested. Some real eigen-
values may appear among the converged eigenvalues. The table will contain any
converged real eigenvalues (zero in column two). Columns three and four are two
different residual norms for each eigenvalue. Eigenvalues with large residual norms
are not converged. The residual norm in the third column is less sensitive to the
linear system relative residual norm bound than the residual norm in the fourth
column is After each implicit restart, all the approximate eigenvalues are printed to
the screen.

1.7.4 Some Back Ground

The eigenvalue problem for an undamped structure

KΦ = MΦΩ2, ΦTMΦ = I,

Ω = ⊕iωi, has been discussed elsewhere in this document. Salinas returns the
frequencies ω/(2π). Ceigen solves a similar problem. Ceigen solves the quadratic

3Real modes correspond to an overdamped mode with no oscillatory component. These are
usually generated from numerical artifacts discussed below, and are seldom of practical value

20 1 SOLUTIONS

eigenvalue problem

[Mλ2 + Dλ+ K]u = 0, uTu = 1. (65)

In the undamped case, D = 0, λ = iω.
A second order linear differential equation is the same as a first order system.

Similarly a quadratic eigenvalue problem is the same as a matrix eigenvalue problem
of twice the size.

Linear problems such as matrix eigenvalue problems are solvable in that it is
possible to find all of the solutions. For matrix eigenvalue problems the key idea
is deflation. One big subspace is used to compute all of the eigenvalues. Small
eigenvalues tend to be computed early and are deflated from the problem. The
reward for deflation is that the gravest remaining eigenvalues are much more likely
to be computed next. For general nonlinear eigenvalue problems on the other hand,
no robust algorithms are known to the author.

1.7.5 Viscoelasticity

The eigenvalue problem for viscoelastic problems5 in the most simple case (one term
Prony series) has the form

[Ms2 + D(s)s+ K]u = 0. (66)

K = BE∞, D(s)s = B(Eg − E∞)f(s),

f(s) = s/(s+ a) = 1− (s/a+ 1)−1.

Prony series damping in the time domain5 creates a frequency domain problem
with real eigenvalues that are not physical.5 Some care is needed to avoid the real
eigenvalues in computations.

Here is a sketch of justification that the Prony series problem has real eigenvalues.
The eigenvalue problem has a closed form solution in terms of the eigenvalues of the
undamped problem. The one term Prony series damping increases the degree of the
characteristic equation from two to three, and the third root must be real.

1.7.6 Viscofreq

The eigenvalue problem in equation (66) is not a quadratic eigenvalue problem
(M,D,K). The obvious approximation is to evaluate D(s) at some fixed so near to
the wanted eigenvalues. The user parameter viscofreq= ω is a real number such
that so = iω. In a later release so = r + iω for some internally computed value r.

Using a value of viscofreq that is much too small may degrade performance.
As viscofreq increases, the eigenvalues do change, and Salinas converges more

1.7 Complex Eigen Analysis - Modal Analysis of Damped Structures 21

quickly. The cluster of real eigenvalues moves left, away from zero, and it becomes
possible to compute more of the complex eigenvalues. Over-estimates of viscofreq
are safer than underestimates.

Suppose that so = r + iω. A different quadratic eigenvalue problem is used.5

Both D and K are modified. The approximation is more accurate for problems in
which r is much more accurate than ω. Also (M,D,K) are all real matrices. The
eigenvalues and eigenvectors come in complex conjugate pairs.

Important to be aware that no constant damping matrix inherits the property
of D(s) that

lim
s→∞

D(s) = 0.

Physically, this means that the eigenvalues in equation (65) that are far from
viscofreq are over-damped. If for a given mode shape, so is closer to the real
eigenvalue of equation (66) than either complex conjugate pair, then Ceigen may
return the real eigenvalue. For example equation (66) has many real eigenvalues
clustered left of −a.

1.7.7 Trust Regions and Real Modes

The eigenvalue problem is solved using ARPACK. The convergence criteria in the
ARPACK package use a trust region. CEigen will compute the right-most eigen-
values of the eigenvalue problem in equation (qevp). If the k-th mode does not
satisfy the convergence tolerance, and k ≤nmodes, then ARPACK is not converged,
no matter how many other eigenvalues are converged.

The authors have gone to great lengths to filter out real eigenvalues. Nonetheless
in problems with a cluster of real eigenvalues among the right-most eigenvalues, it
is very difficult to compute eigenvalues high into the frequency range. If such a
problem arises, increase eig tol (multiply by ten), increase nmodes (add ten), and
most importantly increase viscofreq (double).

1.7.8 ViscoFreq - Approximating the Response of Viscoelastics

The viscoelastic mass matrix can be considered to be independent of frequency.
However, the damping and stiffness matrices can be functions of frequency, depend-
ing on the formulation. There are two possible formulations. The first one results in
a complex, frequency dependent damping matrix, and a real-valued, frequency inde-
pendent stiffness matrix. The second results in a frequency- dependent, real-valued
damping matrix and a frequency-depenedent, real valued stiffness matrix. We chose
the second formulation since the complex-valued damping matrix is somewhat dif-
ficult to deal with in quadratic eigensolvers. The two formulations are the same up
to the order of the linearization error.

22 1 SOLUTIONS

Consider the simplest possible viscoelastic material, characterized by a single
term of the Prony series. The equation of motion for a 1D system with this material
is given below. The full 3D case is similar, except that it has separate terms for the
bulk and shear components.[

K∞ + sD(s)− s2M
]
u = f(s) (67)

Here, s is the Laplace transform frequency, f(s) is the frequency dependent force,
and the damping matrix is now a function of frequency.

D(s) = (EG − E∞)
1

s+ 1/τ
B (68)

with E∞, the Young’s modulus for high frequencies, EG the modulus for low (or
glassy) frequencies, τ is the Prony series relaxation time, and K∞ = E∞B is the
stiffness at high frequencies.

We now return to equation 67, and consider different ways of linearizing the
relation, since for the quadratic eigenvalue problem, we may only solve equations of
the form in equation 64, i.e. quadratic in λ or s.

User Specified frequency of linearization We define viscofreq, ω and sω =
r + iω, which is the complex number about which the linearization takes place. In
the current methodology, r is zero.

First, we split D(sω) into its real and imaginary components by multiplying by
(r+1)−iωτ
(r+1)−iωτ .

D(s) = (EG − E∞)
1

s+ 1/τ
B (69)

= (EG − E∞)
τ

iωτ + (rτ + 1)
B (70)

=
τ((rτ + 1)− iωτ)
(rτ + 1)2 + ω2τ2

(EG − E∞)B (71)

Then we also temporarily replace the s in front of sD(s) with sω. This gives,

sD(s) = (iω + r)D(iω + r) (72)

=
τ(iω + r) + ω2τ2 + r2τ2

(r + 1)2 + ω2τ2
(EG − E∞)B (73)

Finally, we replace iω + r with s to go back to the quadratic eigenvalue problem.
This results in a contribution to the the stiffness matrix, and a real damping matrix.

1.7 Complex Eigen Analysis - Modal Analysis of Damped Structures 23

[(
E∞ + (EG − E∞)

ω2τ2 + r2τ2

(r + 1)2 + ω2τ2

)
B + s

(
τ

(r + 1)2 + ω2τ2

)
(EG − E∞)B + s2M

]
φ = 0

(74)
Thus we see that the damping matrix is purely real, but the stiffness matrix gets

an additional (positive) real contribution.
Practically of course, the systems are far more complex. Typically there is more

than one material, and that material has a number of Prony terms. Equation 74 is
modified, but the overall effect is the same, i.e. the stiffness matrix is increased by
a viscoelastic term, and the damping term is also modified. Effectively we have the
following.

K̃(r + iω) =
∑
elem

K̃elem(r + iω) (75)

where K̃elem is the modified stiffness matrix.

K̃elem(r + iω) = Kelem + imag(Delem(r + iω))

Likewise,
D̃elem(r + iω) = real(D(r + iω)) (76)

We now solve the linearized eigenvalue equation for λ,[
K̃(r + iω) + iλD̃(r + iω)− λ2M

]
φ = 0 (77)

A Simple Error Estimate This question is now how well the eigenvalues com-
puted from equation 74 approximate the true eigenvalues of equation 67.

First, we define the distance from a given computed eigenvalue, sc, to the point
of linearization, sω as δ.

δ = sc − sω (78)

Note that δ is a complex-valued quantity.
Next, we define the residual as the vector resulting from inserting sc and the

corresponding computed eigenvalue, φc, into equation 67.(
s2cM + scD(sc) +K

)
φc = res (79)

The residual, as defined in equation 79, is a computable quantity. Obviously, if the
residual is large, then the error in the computed eigenvalue and eigenvector is large.
However, the more interesting question from the analyst’s perspective is how large
may δ be for one to expect accurate eigenvalues.

24 1 SOLUTIONS

1.8 Component Mode Synthesis

Component mode synthesis in Salinas follows the Craig-Bampton method. In this
method the model is reduced using fixed interface modes and constraint modes.
The method is outlined in some detail in Craig’s book, (Chapter 19 of 4). It is
summarized below. Note that in Salinas we do not permit any flexibility in the
interface boundary options. Only fixed interface modes are supported.

CMS is typically applied to eigenvalue analysis, but it may be used in other
solution methods as well. Here we describe only the eigen analysis application.
Within Salinas only a subset of the standard CMS method is available. Salinas may
reduce an entire model to a set of interface degrees of freedom with the corresponding
system matrices and transfer matrices. Salinas will also (eventually) be capable of
reading in a reduced system for solution within its framework.

CMS by these methods is always a linear model, with supports only linear elas-
ticity. The reduction is based on an eigen reduction and linear superposition.

1.8.1 Reduction of superelement matrices

The entire model of a structure may be reduced to the interface degrees of freedom
and generalized degrees of freedom associated with internal modes of vibration.
Consider the general eigenvalue problem, with the system matrices partitioned into
interface degrees of freedom, C, and the complement, V .([

Kvv Kvc

Kcv Kcc

]
− λ

[
Mvv Mvc

Mcv Mcc

])[
uv

uc

]
= 0 (80)

Within Salinas we consider only the cases where Kvv is nonsingular. For the Craig-
Bampton method this implies that clamping the interface degrees of freedom removes
all zero energy modes from the structure.

The Craig-Bampton method reduces the physical degrees of freedom, u, to gen-
eralized coordinates, p, using a set of preselected component modes, Ψ.

u = Ψp (81)

The component modes are selected as follows. We let Ψ = [Φ ψ], where Φ is a
set of eigen modes of the fixed interface, i.e.,

(Kvv − λMvv) Φ = 0

We retain only a subset of the modes in this system. In addition, we define the
constraint modes, ψ, as the static condensation of the problem. Each column of
ψ is the solution of the static problem where one interface degree of freedom has

1.8 Component Mode Synthesis 25

unit displacement, and all other interface degrees of freedom are fixed. As shown in
Craig,

ψ = −K−1
vv Kvc (82)

Note that since we require that Kvv be positive definite, all these solutions are
well defined. The matrix need be factored only once for all the modes.

Reduced System

As shown in Craig, the reduced system matrices can be written as follows.

µ =
[
µkk µkc

µck µcc

]
(83)

and,

κ =
[
κkk κkc

κck κcc

]
(84)

where,

µkk = Ikk

µkc = µT
ck = φT (Mvvψ +Mvc) (85)

= φTMvvψ + (Mcvφ)T

µcc = ψT (Mvvψ +Mvc) +Mcvψ +Mcc

= ψTMvvψ + (Mcvψ)T +Mcvψ +Mcc

and,
κkk = Λkk

κkc = κck = 0 (86)
κcc = Kcc −KcvK

−1
vv Kvc

= Kcc +Kcvψ

Note that the coupling between the modal and interface portion of the system matrix
occurs only in the mass matrix.

Parallelization Issues

The discussion above applies simply for direct solvers for which a system matrix
is generated. Parallelization issues are straightforward, and cover 3 main areas 1)
computaion of fixed interface modes, 2) computation of constraint modes, and 3)
matrix vector products.

26 1 SOLUTIONS

1. Fixed Interface Modes. Since the process of cmputation of the eigensystem
is independt of the particular solver, there are no parallelization issues with
respectt to the eigenvalue problem. It is easily shown that parallel solvers
result in the same eiben pairs as serial solvers. There is no reason to expect
that any finite precision issues would be more important here than in other
modal based solutions.

2. Constraint Modes. The constraint modes are different, in that we do not
currently have a capability to compute enforced displacement in parallel. Re-
call that the constraint mode is the displacement on space “V” that is com-
puted when a unit displacement is applied to as single degree of freedom on
the interface. The serial equations are as follows.[

Kvv Kvc

Kcv Kcc

] [
uv

uc

]
=
[

0
R

]
(87)

Equation 82 uses the first of these only to solve for uv = ψ. For a domain de-
composition problem, the system matrices are written differently. We examine
a two subdomain problem for clarity.

K1vv K1vc 0 0 CT
1v

K1cv K1cc 0 0 CT
1c

0 0 K2vv K2vc CT
2v

0 0 K2cv K2cc CT
2c

C1v C1c C2v C2c 0



u1v

u1c

u2v

u2c

µ

 =


0
0
0
0
R

 (88)

We extract only the first and third rows to arrive at,

[
K1vv 0 CT

1v

0 K2vv CT
2v

] u1v

u2v

µ

 =
[
f1

f2

]
(89)

Here fi = Kivcuic. This system is the standard system of equations that is
solved by the domain decomposition solver. The RHS is just the sum of the
individual subdomain terms.

3. Matrix Vector Products. Clearly matrix vector and vector-vector products
must be computed differently in parallel. However, the code to do this is
already being used in the eigensolver.

1.9 A posteriori error estimation for eigen analysis 27

1.9 A posteriori error estimation for eigen analysis

The purpose of this section is to summarize two different approaches for a posteriori
error estimation of eigen analysis. The first is an explicit error estimator,6,7 and the
second is a quantity of interest approach.8 The explicit approaches are described
in chapter 2 of,9 and the quantity of interest approaches are described in chapter
8 of the same book. However, since we are interested in the eigenvalue problem,
the methodologies are somewhat different than the approaches described in,9 though
there are many similarities. Both the explicit and the quantity of interest approaches
have the same goal - to use the computed solution to compute upper and lower
bounds on the discretization error for the eigenvalues and eigenvectors. A drawback
to the explicit approach is that unknown constants are present in the bounds, making
final determination of the error more difficult. Because of this, explicit estimators are
more frequently used as element indicators to drive adaptivity algorithms, rather
than as error estimators. The quantity of interest approach avoids the unknown
constants, but is more work in terms of implementation.

1.9.1 Preliminaries

We seek a posteriori bounds on the error of the finite element solution of the eigen-
value problem for elasticity

−ρλu = (Λ + µ)∇(∇ · u) + µ∇2u = ∇ · σ(u) (90)

or
A1(u) = −λA2(u) (91)

where where A1(u) and A2(u) are the partial differential operators implied by equa-
tion 90, λ and u are the unknown eigenvector and eigenvalue, and Λ and µ are the
Lamé elasticity constants. We note that the right hand side of equation 90 can be
written either in terms of displacement, as in the first representation, or in terms of
stress, as in the second representation of the right hand side of the equation. The
weak formulation of equation 90 is constructed by multiplying by a test function,
and integrating by parts, with homogeneous boundary conditions. This leads to the
weak formulation: Find (λ, u) ∈ V ×R such that

B(u, v) = λM(u, v) ∀v ∈ V (92)

where
B(u, v) =

∫
Ω
σ(u)ε(v)dx (93)

and
M(u, v) =

∫
Ω
ρuvdx (94)

28 1 SOLUTIONS

After defining a finite element discretization, this reduces to: Find (uh, λh) such
that

Ku = λMu (95)

where (uh, λh) are the finite element approximations of the eigenvector and eigen-
value, and K, M , are the assembled stiffness and mass matrices.

1.9.2 Approach I - explicit error estimator

In Larsen6 and Rannacher,7 two independently derived error estimates are presented
for the Laplace equation. While the two estimates differ slightly, both incorporate
an unknown constant, C, an element diameter term, he, and an element residual
function, ρ̄. In what follows we extend these estimates to the elasticity problem.
The following two error estimates are given in6 and7 respectively. In what follows
we use Larsen’s results (equation 96) exclusively. 4

|λ− λh| ≤ cλCe,0

(
Ne∑
e=1

h4
eρ̄(uh, λh)2

) 1
2

(96)

|λ− λh| ≤ C2

Ne∑
e=1

h2
eρ̄(uh, λh)2 (97)

where he is the element diameter, and

ρ̄(uh, λh)2 =
∫

Ωe

(|A1uh + λhA2uh|+Rflux)2 dΩe (98)

The first term on the right hand side is the interior element residual, which is the
differential stiffness operator A1, defined in equation 91, applied to the computed
element displacement combined with the computed eigenvalue times the differential
mass operator A2, also defined in equation 91, applied to the computed element dis-
placement. This term is computed by representing the eigenvector as a summation

uh(x) =
N∑

i=1

aiNi(x) (99)

where ai is the ith entry in the eigenvector, and Ni(x) is the ith shape function, and
then simply applying the gradient and divergence operators from equation 90 to the
summation in equation 99.

4Equation 96 applies to elements with linear shape functions. The more general expression may
be found in equation 146 or the reference.

1.9 A posteriori error estimation for eigen analysis 29

We note that the quantity A1uh + λhA2uh is expressed in the strong form, and
thus is not the same as Kuh − λhMuh, though both expressions are on the element
level. The difference can be seen by observing the first term A1uh

A1uh = ∇ · σ(uh) (100)

That is, A1uh is the divergence of the stress (which is computed from the finite
element displacement uh). This is not the same as Kuh, since Kuh is in the weak
form, and has been evaluated by integrating over the element against a test function.
For example, if we consider linear elements, we have A1uh = ∇ · σ(uh) = 0, since
the stress is constant over the element. On the other hand, Kuh is not zero.

The second term is the boundary or flux residual.

Rflux = (hevol(e))
−1/2

[∫
Γe

R2dΓe

]1/2

(101)

It has two different integrands depending on whether the face in question lies on a
part of the boundary where traction or pressure boundary conditions are applied,
or whether it is an interior face. When it lies on a boundary loaded face,

R = g − σijnj (102)

where g is the applied traction or pressure load. Note that g = 0 for eigen problems.
When the face is an interior face,

R = [σijnj] = σa
ijnj − σb

ijnj (103)

where σa and σb are the stress tensors in the two adjacent elements, element ’a’
and element ’b’. Note that because the integrand is squared, computing the flux
residual in parallel requires parallel communication.

We note the intuitive nature of the upper bound in equation 96. As the element
size he tends to zero, the right hand sides of the estimate goes to zero, due to the
multiplication by the element sizes he. Keep in mind also that the ρ̄ term includes
an integral over a volume and that

∑Ne
e=1 ‖const‖ is a constant.

There are two important issues in applying the results in Larsen’s reference to
general elasticity problems. The first of these is the the extension to elasticity. The
second is the extension to multiple materials. These are covered in the following
sections.

1.9.3 Extension of Estimators to Elasticity

This section was provided by Ulrich Hetmaniuk to help us with problems in scaling
the Laplace equation to the elasticity problem. It addresses issues of both mass

30 1 SOLUTIONS

and stiffness scaling. A similar development was provided by Clark Dohrman. The
development herein builds upon Larsen’s development 6, and uses quantities defined
there.

We consider the eigenvalue problem

− µ∆u− (Λ + µ)∇(∇ · u) = −∇ · σ(u) = θρu in Ω (104)
u = 0 on ∂Ω (105)

where the Lamé constants Λ and µ satisfy

Λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(106)

We define also a weak formulation: find (u, θ) ∈ V× R

a(u,v) = θb(u,v), ∀ v ∈ V (107)
b(u,u) = 1 (108)

where
a(u,v) =

∫
Ω
σ(u) · ε(v)dx (109)

and
b(u,v) =

∫
Ω
ρu · vdx (110)

We follow the approach in the paper by M. Larson to derive a posteriori error
estimators. We use most of his notation.

Residual

The definition (3.7) for the residual becomes, on a triangle τ ,

R(uh, θh)|τ =
1
√
ρ
|∇ · σ(uh) + θhρuh|+

√
1

h vol(τ)

∫
∂τ\∂Ω

(
n ·
[
σ(uh)
2
√
ρ

])2

(111)

Note that we have
R(uh, θh) ≡ R(uh, θh, ρ, E, ν) (112)

and that R satisfies the following scaling properties

R(
uh√
α
,
θh

α
, αρ,E, ν) =

1
α
R(uh, θh, ρ, E, ν) (113)

R(uh, αθh, ρ, αE, ν) = αR(uh, θh, ρ, E, ν) (114)

1.9 A posteriori error estimation for eigen analysis 31

Stability estimates

The equation (3.10) becomes

||D2+sv|| ≤ Ce,s

√√√√b

((
−1
ρ
∇ · σ

)1+s/2

(v),
(
−1
ρ
∇ · σ

)1+s/2

(v)

)
(115)

Note that

Λ + µ =
E

2(1 + ν)(1− 2ν)
,

µ

Λ + µ
= 1− 2ν (116)

Then, we get

Ce,s = c
ρ(1+s)/2

(Λ + µ)(2+s)/2
(117)

Note that we have
Ce,s ≡ Ce,s(ρ,E, ν) (118)

and that Ce,s satisfies the following scaling properties

Ce,s(αρ,E, ν) = α(1+s)/2Ce,s(ρ,E, ν) (119)

Ce,s(ρ, αE, ν) =
1

α(2+s)/2
Ce,s(ρ,E, ν) (120)

A posteriori estimates

We make also the assumption (2.6) : there are 0 ≤ δ < 1 and h0 > 0 such that

max
θi 6∈Θ

∣∣∣∣θh − θ
θi − θ

∣∣∣∣ ≤ δ , ||QΘuh||2 ≤ δ (121)

for all meshes such that maxh(x) ≤ h0. Using p = 1, k = 2, β0 = 0, and β1 = 1,
the final estimate on the eigenvalues becomes

θh − θ
θ
≤ c

1− δ
Ce,0
√
ρ||h2R(uh, θh)|| (122)

The estimates on the error in the discrete eigenvector are now√
b(eΘ, eΘ) ≤ c

1− δ
Ce,0(1 + max

θi 6∈Θ

θ

|θi − θ|
)
√
ρ||h2R(uh, θh)|| (123)

√
a(eΘ, eΘ) ≤

c
√
ρ

1− δ
(Cc + Ce,0 max

θi 6∈Θ

θθ
1/2
i

|θi − θ|
hmax)||hR(uh, θh)|| (124)

32 1 SOLUTIONS

where Cc is related to the coercivity constant

||Dv|| ≤ Cc

√
a(v,v) (125)

In Ciarlet’s book (“The finite element method for elliptic problems”), the coercivity
constant is given

a(v,v) ≥ 2µ||Dv|| ⇒ Cc =
c√
2µ

(126)

1.9.4 Explicit Estimator - Multiple Materials

To date, we have not seen any publication which extends the explicit error estimator
to multiple materials. We don’t believe that there are signficant issues, and present
the approach used in Salinas here. There are two main constraints from the explicit
error estimator formulations that must be maintained.

1. The eigenvectors, uh must be unit normalized, i.e.‖uh‖ = 1. This is important
for mass scaling so that a change of units does not affect the fractional error in
the solution. It is an essential part of both Larsen’s development and Ulrich’s
extension to elasticity. See equation 108.

2. The extensions must maintain finite element consistency so that as h goes to
zero there is no inconsistency.

The second of these can be evaluated by examination of the residuals (as in
equation 98). Both the internal and the flux terms of the residuals are unaffected by
most scaling operations provided that materials remain constant within an element.
Note that the evaluation of the flux jump (equation 101) is unaffected by multiple
materials since the normal component of stress discontinuity should go to zero even
for disparate materials.

Eigenvector normalization could be addressed in several ways. The eigenvectors
computed in Salinas are mass normalized, i.e. uTMu = I. We renormalize for error
estimation in the following manner.

1. A unitless mass matrix, M̄ is computed using unit density material.

2. We compute a scale factor
mα = uT M̄u (127)

3. The eigenvectors are renormalized as u← u/
√
mα.

In addition to eigenvector renormalization, we move the evaluation of the scaling
constant, Ce, s, from equation 117 inside the summation of equation 96. This main-
tains the proper scaling with respect the element stiffness terms.

1.9 A posteriori error estimation for eigen analysis 33

A recent paper by Bernardi and Verfurth10 has shown that explicit estimators
can be used in the presence of multiple materials. For static Laplace equation, he
derived multiplicative constants for the interior and flux contributions that make the
multiplicative constant in front of the estimator independent of jumps in material
properties. In what follows we extend this approach to the eigenvalue problem, and
to elasticity problems. We will follow the same approach as in that paper, i.e. first
constructing the lower bound, and then the upper bound. The proper choices for
the coefficients will result from the upper and lower bound estimates.

First, we note a commonly used form for explicit estimators.

‖uh − u‖α ≤ c
∑
K

(
h‖Ri(uh, θh)‖2L2(K) +

√
h‖ [σn(uh)]

2
‖2L2(∂K)

) 1
2

(128)

where Ri(uh, θh) = |∇ · σ(uh) + θhρuh|, [σn(uh)] is the jump in stress across the
element boundary ∂K, and ‖ · ‖α is the energy norm. This estimator can be shown
to give both an upper and a lower bound on the error. As written, this estimator
does not fully account for discontinuous material properties, since the constant c in
front of the estimator would depend on the jumps in material properties.

We note that the estimator, written in this form, is essentially the same as the
one proposed by Larson. For example, by writing the boundary term as an integral
of a constant function, scaled by the volume of the element, then we can write
equation 128 in the form

‖uh − u‖α ≤ c
∑
K

(
‖hRi(uh, θh) +

√
h

V ol(K)
[σn(uh)]

2
‖2L2(K)

) 1
2

(129)

which is the same expression given by Larson in the case of linear elements. We
note that this estimator is in terms of the energy norm, whereas Larson gives his
results in terms of the L2 norm. This results in the difference of one power of h in
equation 129.

The approach in Bernardi is to replace the estimator in equation 128 by

‖uh − u‖α ≤ c
∑
K

(
µK

2‖Ri(uh, θh)‖2L2(K) + µe‖
[σn(uh)]

2
‖2L2(∂K)

) 1
2

(130)

where µK and µe are chosen in such a way that the resulting estimator is both an
upper and lower bound on the error, and the constant c is independent of the jumps
in material properties.

34 1 SOLUTIONS

Before beginning, we redefine the original PDE as follows

−∇ · σ
ρ

= θu (131)

the corresponding bilinear forms as

a(u,v) =
∫

Ω

1
ρ
σ(u) · ε(v)dx

b(u,v) =
∫

Ω
u · vdx

and the corresponding interior residual as

Ri(uh, θh) = |∇ · σ(uh)
ρ

+ θhuh| (132)

By dividing through by ρ, we include the density in the energy norm. This will be
important later on when the coefficients in equation 130 are selected.

As in Bernardi, we need the following identities, which follow from equation 92

a(u− uh,v) = θb(u,v)− a(uh,v) (133)

θb(u,v)− a(uh,v) =
∑
K

∫
K

(
θu +

1
ρ
∇ · σ(uh)

)
vdx−

∑
e

∫
e

[
1
ρ
σn(uh)

]
· vdτ (134)

where the summation
∑

e is over all edges (in 2D) or over all faces (in 3D). We also
use equations 2.11 in Bernardi’s paper.

The lower bound will be considered first. We set wK = ΨKRi(uh, θh), where
ΨK comes from equation 2.11 in Bernardi’s paper. We will also make use of the
following inequality for the bilinear form

a(u,v)K ≤ ‖u‖α‖v‖α (135)
≤ αK‖u‖1‖v‖1 (136)

where αK = CK
ρK

, and CK is the maximum eigenvalue of the material property
matrix, and ρK is the density of the element.

1.9 A posteriori error estimation for eigen analysis 35

For the interior part of the residual, we have

‖Ri(uh, θh)‖2L2(K) ≤ γ2
1

∫
K

[
1
ρ
∇ · σ(uh) + θhuh

]
·wKdx

= −γ2
1

∫
K

1
ρ
σ(uh) · ε(wK)dx + γ2

1

∫
K
θhuh ·wK

= γ2
1a(u− uh,wK)K − γ2

1θ

∫
K

u ·wKdx + γ2
1θh

∫
K

uh ·wKdx

≤ γ2
1

[
‖u− uh‖α(K)γ2h

−1
K α

1
2
K + ‖θhuh − uθ‖L2(K)

]
× ‖Ri(uh, θh)‖L2(K) (137)

where we note that, since ΨK is a bubble function, the boundary terms vanish in
the integration by parts on the second line of the above equation.

This implies that

‖Ri(uh, θh)‖α(K) ≤ γ2
1

[
‖u− uh‖α(K)γ2h

−1
K α

1
2
K + ‖θhuh − uθ‖L2(K)

]

or, multiplying through by µK ,

µK‖Ri(uh, θh)‖α(K) ≤ γ2
1

[
‖u− uh‖α(K)µKγ2h

−1
K α

1
2
K + µK‖θhuh − uθ‖L2(K)

]

Now is where a critical assumption comes into play. We assume here that the
computed eigenvalue θh and eigenvector uh are closer to the exact solution θ and
u than any other eigenvalue/eigenvector pair. This assumption is also made by
Larson, in equation 2.6. With this assumption, the term ‖θhuh − uθ‖L2(K) is a
higher order term compared with ‖u − uh‖α(K), and thus will decay to zero at a
faster rate. This was also shown in the paper by Duran.11 Thus, we select µK based

on the term ‖u−uh‖L2(K) only. If we select µK = hKα
− 1

2
K then the right hand side

is independent of the jumps in material properties.

For the boundary term, we first choose we = Ψe

[
1
ρσn(uh)

]
, where again Ψe

comes from equation 2.11 in Bernardi. Then, using equation 137 we have

36 1 SOLUTIONS

‖
[
1
ρ
σn(uh)

]
‖2L2(e) ≤ γ2

3

∫
e

[
1
ρ
σn(uh)

]
·wedτ

= γ2
3

∑
K

∫
K

(
∇ · 1

ρ
σ(uh) + θhuh

)
·we − γ2

3

∑
K

a(u− uh,we)

+ γ2
3

∑
K

∫
K

(θu− θhuh) ·we

≤ cγ2
3

(∑
K

γ5h
1
2
e ‖Ri(uh, θh)‖L2(K) +

∑
K

γ4h
− 1

2
e α

1
2
K‖u− uh‖α

+ γ5h
1
2
e

∑
K

‖uθ − uhθh‖L2(K)

)
‖
[
1
ρ
σn(uh)

]
‖L2(e)

≤ cγ2
3

[∑
K

h
− 1

2
e α

1
2
K‖u− uh‖α +

∑
K

h
1
2
e ‖θhuh − θu‖L2(K)

]

× ‖
[
1
ρ
σn(uh)

]
‖L2(e) (138)

where in the above equation,
∑

K denotes a summation over elements, but only
those elements that border the edge e. Also, in the previous estimate we collected
constants involving γ and combine with the constant c, where possible.

This implies that

µ
1
2
e ‖
[
1
ρ
σn(uh)

]
‖L2(e) ≤ cγ2

3µ
1
2
e

[∑
K

h
− 1

2
e α

1
2
K‖u− uh‖α +

∑
K

h
1
2
e ‖θhuh − θu‖L2(K)

]

We see that if we choose µe = he max (αK1, αK2)
−1, where subscripts 1 and 2 denotes

the two neighboring elements that contain the edge or face e, then the right hand
side (neglecting the higher order term) is independent of the jumps in material
properties.

Now we construct the upper bound. We start with a few identities that will be
needed along the way.∫

Ω

(
1
ρ
∇ · σ(uh) + θu

)
· (w −wh) = −a(uh,w −wh) +∑

e

[
1
ρ
σn(uh)

]
· (w −wh) +

∫
Ω
θu(w −wh)

(139)

1.9 A posteriori error estimation for eigen analysis 37

This implies that

a(uh,w −wh) =
∑

e

[
1
ρ
σn(uh)

]
· (w −wh)

+
∫

Ω
θu · (w −wh)−

∫
Ω

(
1
ρ
∇ · σ(uh) + θρu

)
· (w −wh) (140)

We will use the previous result in the upper bound on the energy norm of the error.
Let w = u− uh. Then

‖u− uh‖2α = a(u− uh,w) = a(u− uh,w −wh) (141)

where the last equality follows from Galerkin orthogonality. Breaking the previous
expression into element-wise quantities, and using equation 140, we obtain

‖u− uh‖2α =
∑
K

a(u− uh,w −wh) (142)

=
∑
K

a(u,w −wh)−
∑

e

[
1
ρ
σn(uh)

]
· (w −wh)

−
∑
K

∫
K
θu · (w −wh) +

∑
K

∫
K

(
∇ · 1

ρ
σ(uh) + θu

)
· (w −wh)

=
∑
K

∫
K

(
∇ · 1

ρ
σ(uh) + θu

)
·w −wh −

∑
e

[
1
ρ
σn(uh)

]
· (w −wh)

≤
∑
K

µK‖∇ ·
1
ρ
σ(uh) + θu‖L2(K)µ

−1
K ‖w −wh‖L2(K)

+
∑

e

µ
1
2
e ‖
[
1
ρ
σn(uh)

]
‖L2(e)µ

1
2
e ‖w −wh‖L2(e)

≤

[∑
K

µ2
K‖∇ ·

1
ρ
σ(uh) + θu‖2L2(K) +

∑
e

µe‖
[
1
ρ
σn(uh)

]
‖2L2(e)

] 1
2

×

[∑
K

µ−2
K ‖w −wh‖2L2(K) +

∑
e

µ−1
e ‖w −wh‖2L2(e)

] 1
2

We now use equation 2.16 in Bernardi’s paper, which shows that[∑
K

µ−2
K ‖w −wh‖2L2(K) +

∑
e

µ−1
e ‖w −wh‖2L2(e)

] 1
2

≤ c‖w‖α (143)

38 1 SOLUTIONS

With this result, we have

‖u− uh‖α ≤ c

[∑
K

µ2
K‖∇ ·

1
ρ
σ(uh) + θρu‖2L2(K) +

∑
e

µe‖
[
1
ρ
σn(uh)

]
‖2L2(e)

] 1
2

(144)

which is the desired upper bound. We note that we would also obtain higher or-
der terms in the above expression by adding and subtracting terms of the kind∫
K θhuhdx, but the same argument could be made as before.

1.9.5 Explicit Estimator Summary

Summarizing, the implementation of the explicit error estimator involves the follow-
ing steps. These steps have to be carried out for each eigenvalue separately.

1. Renormalize the eigenvectors as in section 1.9.4, equation 127.

2. Loop through all elements in the mesh. Compute the surface flux residuals
for each face. Share that residual vector at each surface gauss point with
neighboring elements to determine the stress jump 103. Integrate over all
faces (by summing at surface gauss points) to determine Rflux (eq 101).

3. Loop through all elements in the mesh. At each interior gauss point of each
element,

(a) Compute the interior residual,

a1 = |A1(uh) + λhA2(uh)|

(b) Compute the integrand,
(a1 +Rflux)2

Note that Rflux is a constant over the element.

(c) Sum at gauss points to obtain the element contribution,

ρ̄2 =
∫

Ωe

(a1 +Rflux)2dΩe

≈
Ngauss∑

i

wi(a1(xi) +Rflux)2

1.9 A posteriori error estimation for eigen analysis 39

4. Compute the global contribution to the error. For elements with linear shape
functions, this may be written,

|λ− λh|
λ

≤ c

(
Ne∑
e=1

(Ce,0h
2
eρ̄)

2

) 1
2

. (145)

Where (as shown in section 1.9.3, equation 117),

C2
e,0 =

ρ

(Λ + µ)2

and ρ, Λ and µ are the material density and the Lamé constants respectively.
The more general expression for elements of order p is,

|λ− λh|
λ(p+1)/2

≤ c

(
Ne∑
e=1

(Ce,p−1h
(p+1)
e ρ̄)2

) 1
2

. (146)

We note that although the constant, c, in equation 145 is not known com-
pletely, it is usually estimated to be of order 1. The constant depends on the
details of the mesh, and in particular on the minimum angle in the elements.

1.9.6 Approach II - quantity of interest estimator

In,8 an error estimator is derived for the elasticity equation, using the eigenvalues
as the quantity of interest. The estimate is of the form

ηλ
low = −η2

upp (147)

ηλ
upp = −η2

low (148)

where ηλ
low is a lower bound on λ−λh, and ηλ

upp is an upper bound on λ−λh. Note
that both quantities are necessarily negative,5 since the computed eigenvalues are
always larger than the exact ones.

The quantities ηupp and ηlow are computed using the so-called element residual
method. This method involves solving a small linear system on each element to
obtain an error representation for that element, and then the element contributions
are accumulated to obtain the total errors. The element residual method involves
solving the following linear system on each element

−B(ΦK , v) = R(v, 0) +
∫

∂K
gγ,Kvds ∀v ∈WK (149)

5for consistent mass only.

40 1 SOLUTIONS

or
Kba = f (150)

where a is the vector of coefficients that represent the function ΦK . In other words,
ΦK =

∑Nshapebubble
i=1 aiNi, where Ni is the ith bubble shape function. The left hand

side Kb is the element stiffness matrix, but evaluated using bubble functions rather
than the standard element shape functions. This is necessary since the standard
element stiffness matrix is singular and thus equation 150 would otherwise not be
solvable. The right hand side consists of two terms, an interior residual term for
the interior of the element, and a stress jump term on the element boundary. This
is similar to the interior and boundary residual terms that were encountered in the
explicit error estimator, though the exact formulas for these terms are somewhat
different. The first term is simply

R(v, 0) = B(uh, v)− λhM(uh, v) (151)

Equation 151 can be most efficiently evaluated using the following method.12 We
evaluate the first term first.

B(uh, v) =
∫

K
BT

bubbleσ(x)dx (152)

where BT
bubble is the standard ’B’ matrix, or the matrix of derivatives of the element

shape functions, except that it is using the bubble shape functions rather than the
standard shape functions. Note that the result of equation 152 is a vector of length
3xNshapebubble, where Nshapebubble is the number of bubble shape functions. We
note that the routine ForceFromStress in IsoSolid.C already performs the compu-
tation needed for equation 152, with the only change being the use of the matrix
BT

bubble rather than the standard BT , and thus this code could be re-used.
The second term can be evaluated in a similar way.

M(uh, v) =
∫

K
uh(x)v(x)dx (153)

Note that uh(x) is a known function. This term is also a vector of length 3xNshapebubble.
The three entries corresponding to the ith bubble shape function are as follows∫

K
u1h(x)φi(x)dx (154)∫

K
u2h(x)φi(x)dx (155)∫

K
u3h(x)φi(x)dx (156)

(157)

1.9 A posteriori error estimation for eigen analysis 41

where u1h, u2h, and u3h are the x, y, and z components of uh, and φi is the ith

bubble shape function.
The boundary term consists of the following. gγ,K is simply the traction on the

element boundary, or ∫
∂K

gγ,Kvds =
∫

∂K
[σijnj] vds (158)

where [σijnj] denotes the averaged stress on the element faces. For two adjacent
elements, element ’a’ and element ’b’, it is the average of their stress traction vectors.

[σijnj] =
1
2

(
σa

ijnj + σb
ijnj

)
(159)

Again, the test (shape) function in this case, ’v’ is the bubble function rather than
the standard element shape function. We note that the boundary integral term in
equation 149 and equation 158 is over all faces of the element in question. Thus, if
the implementation of this term proceeds one face at a time, then there will be a
nodal summation step to get the complete right hand side vector corresponding to
the boundary integral term. We could also write this term as

∫
∂K

gγ,Kvds =
Nfaces∑

i=1

∫
∂Ki

gγ,Kvds (160)

where ∂Ki is the ith face of element ’K’. Note that the test functions, v become the
element shape functions when restricted to an element. Thus, for a given element
bubble shape function φbubble, and a given face, we can write the previous equation
as ∫

∂Ki

gγ,Kφbubbleds (161)

Note that gγ,K is a 3-vector, and so for a given bubble shape function, and a given
face,

∫
∂Ki

gγ,Kφbubbleds is also a 3-vector. We then take this 3-vector and project
it into the element right hand side. After looping through all faces and all bubble
shape functions, we end up with a vector that is of length 3 ∗Nshapebubble.

Once the linear systems 150 are solved on each element, the upper bound, ηup

from equation 148 can be computed as follows

ηupp =
√∑

K

B(ΦK ,ΦK) (162)

42 1 SOLUTIONS

This equation can also be written as follows. If we represent the function ΦK as a
summation of coefficients multiplied by the bubble shape functions,

ΦK =
Nshapebubble∑

i=1

aiNi (163)

then

ηupp =
√∑

K

B(ΦK ,ΦK) =
√∑

K

aTKba (164)

Finally, using equation 148, we have an upper bound on the error in the eigenvalue.
A lower bound on the error in the eigenvalue can also be computed. This is

described in detail in,8 and we summarize here.
First, we define a function χ ∈ V , which we will define shortly. Once the function

χ is defined, the lower bound can be computed as follows

ηlow =
|Rp(χ, 0)|√
B(χ, χ)

(165)

The quantities in both the numerator and denominator can be computed by loop-
ing through all elements and computing the corresponding element-wise quantities
(using equation 151), and then summing globally.

Summarizing, in order to implement the quantity of interest approach for eigen-
value error estimation, we have the following steps. These must be carried out for
each eigenvalue.

1. Loop over all elements. Construct the bubble stiffness matrix, Kb in equation
150, in the same way that standard element stiffness matrix is constructed,
but using the bubble shape functions.

2. Loop over all elements. Construct the right hand side of equation 150. This
consists of the interior part, equation 151, and the boundary part, equation
158.

3. Loop over all elements and solve the linear systems 150, to obtain the error
functions ΦK .

4. Compute the upper bound on the error in the eigenvalue using equation 164.

5. Compute the lower bound on the error in the eigenvalue using equation 165.

43

2 Elements

Structural dynamics is a rich and extensive field. Finite element tools such as
Salinas have been used for decades to describe and analyze a variety of structures.
The same tools are applied to large civil structures (such as bridges and towers), to
machines, and to micron sized structures. This has necessarily led to a wealth of
different element libraries. Details of these element libraries are presented in this
section. For information on the solution procedures that tie these elements together,
please refer to section 1.

2.1 Isoparametric Solid Elements. Selective Integration

The following applies to any solid isoparametric element, but is implemented in
the code on elements with linear shape functions (such as hex8 or wedge6). This
discussion addresses calculation of relevant operators on the shape functions and
eventual integration into the stiffness matrices. 6

2.1.1 Derivation

We begin with the separation of the strain into deviatoric and dillitational parts so
that their contributions to the stiffness matrix can be computed separately. This is
part of the strategy for avoiding overstiffness with respect to bending.

The strain energy density in the case of an isotropic, linearly elastic material is:

p =
1
2
(2Gε+ λtr(ε)I) • ε (166)

with some re-arrangement, this can be shown to be:

p = Gε̂ • ε̂+
1
2
β(tr(ε))2 (167)

where ε̂ = ε− 1
3 tr(ε)I.

Having separated the part of the strain energy density due to deviatoric part of
the strain from the part of the strain energy density due to the dillitational part
of the strain, we shall integrate them separtely. First, we must determine how to
express the strains in terms of nodal degrees of freedom.

We know that the deformation field is linear in the nodal degrees of freedom and
that the displacement gradient is also, so we should be able to expand each of those
quantities as follows.

6This development is based on work by Dan Segalman.

44 2 ELEMENTS

Let Pj be the node associated with the jthe degree of freedom and let sj be the
direction associated with that degree of freedom. The displacement field is:

~u(x) = ÑPj (x)uPj
sj ~esj (168)

where summation takes place over the degree of freedom j.
Similarly, the displacment gradient is:

~∇~u(x) = (
∂

∂xk
)ÑPj (x)uPj

sj ~esj~ek (169)

We now define the shape deformation tensor W j corresponding to the j th nodal
degee of freedom:

W j(x) = (
∂

∂u
Pj
sj

)~∇~u(x) (170)

which, with Equation 169 yields:

W j(x) = (
∂

∂xk
)ÑPj (x)~esj~ek (171)

The symmetric part of this tensor is:

Sj(x) =
1
2
(W j(x) +W j(x)T) (172)

and the strain tensor is
ε(x) = Sj(x)uPj

sj (173)

From the above, we construct the dillatational and deviatoric portions of the
strain in terms of the nodal displacement components:

tr(ε(x)) = bj(x)uPj
sj (174)

where
bj(x) = tr(Sj(x)) (175)

Similarly,
ε̂(x) = B̂j(x)uPj

sj (176)

where
B̂j(x) = Sj(x)− 1

3
bj(x)I (177)

The stiffness matrix is evaluated using the consitutive equation (Equation 167)
and the following definition:

Km,n =
∂2

∂uPm
sm ∂u

Pn
sn

∫
volume

p(x)dV (x) (178)

2.2 Implementation 45

This plus our expressions for strain in terms of the nodal degrees of freedom yield
us the following expression for element stiffness:

Km,n = G

∫
volume

(B̂m(x))T • B̂n(x)dV (x)

+β
∫

volume
bm(x)bn(x)dV (x) (179)

2.2 Implementation

From the above it is seen that once the shape deformation tensor W j is found, the
rest of the calculation follows naturally. The calculation of the components of that
tensor is presented here. The components of W j are

W j
mn = ~em ·W j · ~en (180)

= δm,sj (
∂

∂xn
)ÑPj (x) (181)

The partial derivative (∂
∂xn

)ÑPj (x) is calculated from

(
∂

∂xn
)ÑPj (x(ξ)) = (

∂

∂ξα
)NPj (ξ)J−1

α,n (182)

where

Jm,γ =
∂

∂ξγ
xm(ξ) (183)

and

N(ξ) = Ñ(x(ξ)) (184)

The issue of selective integration in the elements is discussed in Appendix B.
The formulation discussed there applies to all the isoparametric solid elements.

2.3 Quadratic Isoparametric Solid Elements

Quadratic elements (elements with bilinear or higher order shape functions) such as
the Hex20 and Tet10 are naturally soft and do not need to be softened by positive
values of G and β (see section 2.1 and Appendix B for definitions of G and β.)
Therefore, G=0 and β=0 are good values for such elements.

46 2 ELEMENTS

2.4 Wedge elements

2.4.1 Shape Functions

The shape functions are given explictly in Hughes, (ref. 13). These are provided as
bi-linear polynomials in r, s, t, and ξ, where r and s are independent coordinates
of the triangular cross-subsections, t = 1 − r − s, and ξ is the coordinate in the
third direction. For our purposes, it is necessary to expand the shape functions as
polynomials in r, s, and ξ:

Nk = Ak
0 +Ak

1r +Ak
2s+Ak

3ξ +Ak
4rξ +Ak

5sξ (185)

The shape functions and the coefficients are given in the following table:
Shape Function A0 A1 A2 A3 A4 A5

N1 = 1
2(1− ξ)r 1

2 -1
2

N2 = 1
2(1− ξ)s 1

2 −1
2

N3 = 1
2(1− ξ)t 1

2 -1
2 -1

2 -1
2

1
2

1
2

N4 = 1
2(1 + ξ)r 1

2
1
2

N5 = 1
2(1 + ξ)s 1

2
1
2

N6 = 1
2(1 + ξ)t 1

2 -1
2 -1

2
1
2 -1

2 -1
2

2.4.2 Quadrature

Three reasonable quadratures for wedges that come to mind are indicated in the
following table:

No. Points r s ξ

1 1/3 1/3 0
2 1/3 1/3 -1/

√
3

1/3 1/3 1/
√

3
6 1/6 1/6 -1/

√
3

1/3 1/6 -1/
√

3
1/6 1/3 -1/

√
3

1/6 1/6 1/
√

3
1/3 1/6 1/

√
3

1/6 1/3 1/
√

3

2.5 Tet10 elements

The 4-point integration is given in Hughes (see 14), and the 16-point integration is
given in Jinyun. It is believed that a higher order integration is needed for the mass
matrix than the stiffness matrix and that the reason is that the mass matrix involves

2.6 Notes on calculating shape functions and their gradients for the Hex20 element47

higher degree polynomials. (Using 4-point integration to try to estimate the mass
matrix of a natural element resulted in a 30 by 30 mass matrix with several zero
eigenvalues.)

2.6 Notes on calculating shape functions and their gradients for
the Hex20 element

Using a 3D Pascal’s triangle, we can construct 20 polynomials of the form,

pi = εri
1 ε

si
2 ε

ti
3

where the ri, si and ti (i = 1, . . . , 20) are integers satisfying,

r2i + s2i + t2i ≤ 7

These terms may be constructed with the following loop.7

count=0
for I = 0 to 7
for J = 0 to 7

for K = 0 to 7
if I^2 + J^2 + K^2 <= 7
count = count + 1

r(count) = I
s(count) = J
t(count) = K

endif
endfor

endfor
endfor

We require 20 shape functions Ni, with i = 1, . . . , 20, that satisfy the conditions
that Ni = 1 at node i and Ni = 0 at every other node. This results in 20 equations
at each node. Expressing the Ni as linear combinations of the pi, we can write,

~N = A~p (186)

where A is a 20x20 matrix. We want to find the 400 term A−matrix values. For
each node, we have 20 equations and there are 20 nodes; so, there are 400 equations
for the 400 unknowns. Let ~εi denote the natural coordinate value at the ith node.
We have A~p(~ε1) = ~e1 ≡ (1, 0, 0, . . . , 0)T , and, in general, A~p(~εi) = ~ei. So,

[~ε1, ~ε2, . . . , ~ε20] = [A][~p(~ε1), ~p(~ε2), . . . , ~p(~ε20)]
7 This is how the rst matrix in Hex20.C was created.

48 2 ELEMENTS

or,
I = AP

or,
A = P−1

This matrix A is the matrix “hc20” in Hex20.C.
Not only can the shape functions be expressed as a linear combination of the pi,

but so can the derivatives, ∂ ~N
∂εj

, (j = 1, 2, 3). Differentiating equation 186, we have

∂ ~N

∂εj
= A

∂~p

∂εj

but the ∂~p/∂εj may be written as a linear combination of the pk via the following
trhee equations.

∂pi

∂ε1
= riε

ri−1
1 εsi

2 ε
ti
3 (187)

∂pi

∂ε2
= siε

ri
1 ε

si−1
2 εti3 (188)

∂pi

∂ε3
= tiε

ri
1 ε

si
2 ε

ti−1
3 (189)

while noting that equations 187, 188 and 189 are zero if ri, si, or ti is zero, respec-
tively. We would like to find the matrix Bj with j = 1, 2, 3 such that,

∂ ~N

∂εj
= Bj~p.

Evaluating ∂ ~N/∂εj and ~p at all 20 nodes, we have,[
∂ ~N

∂εj
(~ε1),

∂ ~N

∂εj
(~ε2), . . . ,

∂ ~N

∂εj
(~ε20)

]
= Bj [~p(~ε1), ~p(~ε2), . . . , ~p(~ε20)] (190)

Matrix equation 190 can be inverted to solve for Bj with j = 1, 2, 3. In Hex20.C,
AB1 is B1 , AB2 is B2, and AB3 is B3.

2.7 Anisotropic Elasticity

Anisotripic elasticity requires special care in the rotation of the matrix of matrerial
parameters when those parameters are given in some coordinate system other that in
which the element matrices are calculated. A derivation of the formulae for rotating
those matrices is given in A.

2.8 Triangular Shell Element 49

2.8 Triangular Shell Element

The triangular shell element (TriaShell) is derived as follows. The bending d.o.f.
(w, θx, θy) and the membrane d.o.f. (u, v, θz) are decoupled. The idea is to obtain
the membrane response using Allman’s triangle and the bending response using the
discrete Kirchoff triangular (DKT) element.

2.8.1 Allman’s Triangular Element

Using the formulation given in Ref. 15 and replacing cos(γij) = yji

lij
and sin(γij) =

−xji

lij
, we get

u = u1ψ1+u2ψ2+u3ψ3+
1
2
y21(ω2−ω1)ψ1ψ2+

1
2
y32(ω3−ω2)ψ2ψ3+

1
2
y13(ω1−ω3)ψ3ψ1

(191)

v = v1ψ1+v2ψ2+v3ψ3+
1
2
x21(ω2−ω1)ψ1ψ2−

1
2
x32(ω3−ω2)ψ2ψ3−

1
2
x13(ω1−ω3)ψ3ψ1

(192)
The stiffness and mass matrices ([K]AT , [M]AT) are found using general finite

element procedures. Unfortunately, a mechanism exists for this element if the de-
formations are all zero and the rotations are all the same value. Cook et al.2 have
a “fix” for this which has been implemented to avoid undesirable low energy modes
produced by this mechanism.

2.8.2 Discrete Kirchoff Element

As for the DKT16 element, things are not so simple. The nine d.o.f. element is
obtained by transforming a twelve d.o.f. element with mid-side nodes to a triangle
with the nodes at the vertices only. This is obtained as follows. Using Kirchoff
theory, the transverse shear is set to zero at the nodes. And the rotation about
the normal to the edge is imposed to be linear. Using these constraints, a nine
d.o.f. bending element is derived (DKT) using the shape functions for the six-node
triangle. Unfortunately, the variation of w over the element cannot be explicitly
written. Therefore, the w variation over the element needs to be calculated before
the mass matrix can be obtained.

As stated, the equation for w is not explicitly stated over the element in the
derivation by Batoz at al.. Using a nine d.o.f. element, a complete cubic cannot
be written, since 10 quantities would be needed to get a unique polynomial. The
strategy taken here is that the stiffness matrix produced using for the DKT element

50 2 ELEMENTS

provides reasonable results, and the derivation of the mass matrix is not as critical.
So, the equation for w is taken from Ref. 17, as

w = α1ψ1+α2ψ2+α3ψ3+α4ψ1ψ2+α5ψ2ψ3+α6ψ3ψ1+α7ψ1
2ψ2+α8ψ2

2ψ3+α9ψ3
2ψ1

(193)
For the AT and DKT elements, the stiffness and mass matrices are derived

with the help of Maple. The consistent mass matrix is derived using “normal”
finite element procedures. If a lumped mass matrix is requested then the mass
matrix terms associated with the translation d.o.f. are found in the “normal” sense.
However, mass matrix terms for the rotational d.o.f. are set to 1

125 of the translation
terms.

In summary, the code has been written which uses the AT and DKT element
use in combination as a shell element. The stiffness matrices are calculated without
complication. The mass matrix for the AT element is also derived without com-
plication. The mass matrix for the DKT element is derived using an incomplete
polynomial, but the results obtained should not be effected very much.

2.8.3 Verification and Validation

The AT element is verified by comparing calculated results with the results published
by Allman in Ref. 15. The square plate in pure bending and a cantilvered beam
with a parabolic tip load are used as verification examples. The mass matrix is not
verified except to note that the mass is conserved in the u, v directions.

The DKT element is validated by using the experimental data published by Batoz
et al. in Ref. 16 for a triangular fin. The first 10 eigenvalues for the triangular fin
(cantilever) match very well. In addition, the DKT element is verified by using a
cantilevered beam and matching deflection results at the tip. If ν = 0, then results
should match very closely with Euler-Beam theory results, and they did.

Finally, the AT/DKT element is verified by comparing with published results
from Ref. 18. Tables 1 and 2 show that our elements match exactly with ABAQUS
to the number of digits shown. The first column is the result produced by Ertas et
al., the second column is the result produced by ABAQUS, and the third column is
the result produced by SALINAS using this DKT/AT element.

2.9 Triangular Shell - Tria3

The triangular shell used most in Salinas is the Tria3 element developed by Carlos
Felippa of the University of Colorado in Boulder. This element is very similar to the
TriaShell element presented in section 2.8. Full details of the theory behind the
element is out of the scope of this document, but details may be found in references
19, 20 and 21.

2.9 Triangular Shell - Tria3 51

DOF AT/DKT ABAQUS AT/DKT!
x 0.000 0.000 0.000
y 0.000 0.000 0.000
z -1.405 × 10−2 -1.398 × 10−2 -1.398 × 10−2

θx 3.337 × 10−2 3.337 × 10−2 3.337 × 10−2

θy 3.106 × 10−2 3.089 × 10−2 3.089 × 10−2

θz 0.000 0.000 0.000

Table 1: Comparison of deflections at Node 2

DOF AT/DKT ABAQUS AT/DKT!
x 0.000 0.000 0.000
y 0.000 0.000 0.000
z 1.949 × 10−2 1.955 × 10−2 1.955 × 10−2

θx 3.363 × 10−2 3.363 × 10−2 3.363 × 10−2

θy -2.686 × 10−2 -2.702 × 10−2 -2.702 × 10−2

θz 0.000 0.000 0.000

Table 2: Comparison of deflections at Node 3

52 2 ELEMENTS

2.10 Two Node Beam

This is the definition for a Beam element based on Cook’s development (see pp
113-115 of reference 2).

The beam uses underintegrated cubic shape functions. Only isotropic material
models are supported. Torsional affects are accounted for in the axis of the beam.
The beam is uniform in area and bending moments, i.e. they are not a function of
position in the beam.

The following parameters are read from the exodus file.

1. The cross subsectional area of the beam (Attribute 1)

2. The orientation of the beam (Attributes 2, 3 and 4)

The orientation should not be aligned with the beam axis. In the event of an
inproperly specified orientation, a warning will be written, and a new orienta-
tion selected. The orientation is an x,y,z triplet specifying a direction. It does
not need to be completely perpendicular to the beam axis, nor is it required
to be normalized. The orientation vector, and the beam axis define the plane
for the first bending direction.

3. The first bending moment, I1. (Attribute 5).

4. The second bending moment. I2. (Attribute 6).

5. The torsional moment, J. (Attribute 7).

2.11 Truss

This is the definition for a Truss element based on pages 214-216 of Cook (ref 2).
The truss uses linear shape functions. Unlike the truss elements used by Nastran,

there is no torsional stiffness. The truss is uniform in area, i.e. the area is not a
function of position in the truss.

The following parameters are read from the exodus file.

1. The cross subsectional area of the truss (Attribute 1)

2.12 Springs

The Spring element is the simplest one dimensional element. It has no mass. Entries
in the stiffness matrix are added by hand. Note the following.

• The force generated in a Spring element should be colinear with the the nodes.
Typically spring elements connect coincident nodes so that no torques are
generated.

2.13 Multi-Point Constraints, MPCs 53

• Springs attach 3 degrees of freedom. In the event that some of the spring
constants are zero, there is no effective stiffness for that associated degree of
freedom. However, the degree of freedom will remain in the A-set matrices.
This will be a problem if the other degrees of freedom are not attached to other
elements which provide stiffness entries connecting them to the remainder of
the model. For an understanding of the various solution spaces (such as the
A-set), see section 3.1.

The data for spring elements is entered in the input file. Three values are given,
Kx, Ky, and Kz. This results in a 6x6 element stiffness matrix,

K ′ =



Kx 0 0 −Kx 0 0
0 Ky 0 0 −Ky 0
0 0 Ky 0 0 −Kz

−Kx 0 0 Kx 0 0
0 −Ky 0 0 Ky 0
0 0 −Kz 0 0 Kz


Notice that K ′ is blocked. It could be written more simply,

K ′ =
(
K ′

11 K ′
12

K ′
12 K ′

11

)
The rotation matrix for the two endpoints is block diagonal. As a result, the

stiffness matrix in the basic coordinate system can be written,

K =
(
K11 K12

K12 K11

)
where,

Kij = RTK ′
ijR

and R is the 3x3 rotation matrix of subsection 2.17.

2.13 Multi-Point Constraints, MPCs

A description of MPCs is contained in the users manual. This subsection discusses
the coordinate system dependencies.

MPCs may be defined in any coordinate system. However, all nodes in the MPCs
are defined in the same system. This is done for convenience in parsing, and not
for any fundamental reason. Consider a constraint equation where each entry in the
equation could be specified in a different coordinate system.∑

i

Ciu
(ki)
i = 0

54 2 ELEMENTS

where Ci is a real coeffient, and u(ki)
i represents the displacement of degree of freedom

i in degree of coordinate system ki. We can transform to the basic coordinate system
using u(ki)

i =
∑

j R
(ki)
ji u

(0)
j , where R(ki) is the rotation matrix for coordinate system

ki. Then we may write, ∑
i,j

CiR
(ki)
ji u

(0)
j = 0

or, ∑
i

C
(ki)
i u

(0)
i = 0

where C(ki)
i =

∑
j R

(ki)
ij Cj . Note however, that in this analysis, we have assumed

that the dimension of C is 3. Thus, rotation into the basic frame will likely increase
the number of coefficients.

Salinas is designed to support constraints through at least two methods. These
include a constraint transform method and Lagrange multipliers. Lagrange multi-
pliers have not been implemented at this time.

2.13.1 Constraint Transforms

Constraints may be eliminated using the constraint transform method. This is
described in detail in Cook, chapter 9 (ref 2). In this method, the analysis set is
partitioned into constrained degrees of freedom and retained degrees of freedom.
The constrained dofs are eliminated.

Unlike many Finite Element programs, Salinas does not support user specifi-
cation of constraint and residual degrees of freedom. The partition of constrained
and retained degrees of freedom is performed simultaneously in the “gauss()” rou-
tine. This routine performs full pivoting so the constrained degrees of freedom are
guaranteed to be independent. Redundant specification of constraint equations is
handled by elimination of the redundant equations and issue of a warning. User
selection of constrained dofs in Nastran has led to serious difficulty to insure that
the constrained dofs are independent and never specified more than once.

For constraint elimination we have a constraint matrix C = CcCr, where Cc is a
square, nonsingular matrix and Cr is the solution. We wish to solve for,

Crc = −[Cc]−1Cr

This is equivalent to the Gauss-Jordan elimination probrlem for Kx = b if we
let Cr = b, Cc = K and x = −Crc. There is one additonal wrinkle: we have mixed
the rows of C so Cc is intermingled with Cr. However, we only require that CC be
non-singular. Therefore if we do a gauss elimination with full pivoting we should
simultaneously obtain an acceptable reordering of C, and botain Crc.

2.14 Rigid Elements 55

In practice, it is not even necessary that Cc be non-singular. It is not uncommon
for two identical constraints to be specified. The program issues a warning and
continues.

Constraint transform methods do not currently support recovery of MPC forces.
The Gaussian elimination is presently being performed with a sparse package

called ”SuperLU,” instead of a dense gaussian elimination, to speed up the time to
create Crc. On some platforms, e.g., sgi and dec, the blas routine dmyblas2.c in the
CBLAS directory of of the SuperLU directory (need superlu-underscore-salinas.tar
to create this) should be the one and only routine whose object file is placed into
the SuperLU-blas library (presently called libblas-underscore-super.a) to be linked
in to create the salinas executable. Failure to include this routine will cause failures
of the type ”Illegal value in call to DSTRV” on the above platforms, and including
more than just dmyblas2.c can cause slow performance on many platforms as the
SuperLU-CBLAS could override the built-in blas routines. (The built-in routines
are almost always faster.)

2.14 Rigid Elements

Salinas supports standard pseudoelements for rigid bodies. These include,

• RRODs - a rigid truss like element, infinitely stiff in extension, but with no
coupling to bending degrees of freedom.

• RBARS - a rigid beam, 6 degrees of freedom deleted

• RBE2 - a rigid solid. 6(n − 1) degrees of freedom deleted, where n is the
number of nodes

• RBE3 - an averaging type solid. This connects to many nodes, but removes
only 6 dofs.

All of the rigid elements are stored and applied internally as MPC equations.
The RBE2 is a special case of RBAR (actually just multiple instances). Note,
that unlike MPC equations, these rigid elements do activate (or touch) degrees of
freedom. In general, an MPC equation will not activate a degree of freedom. In the
case of a rigid element however, it is necessary to activate the degrees of freedom
before constraining them. Otherwise the rigid elements do not act like real elements.

Rigid elements are input into Salinas using exodus beam elements. A block entry
is then provided in the input file indicating what type of rigid element is required.
There is no stiffness or mass matrix entry for any type of rigid elements (only the
MPC entries described above).

56 2 ELEMENTS

2.14.1 RROD

An RROD is a pseudoelement which is infinitely stiff in the extension direction. The
constraints for an RROD may be conveniently stated that the dot product of the
translation and the beam axial direction for a RROD is zero. There is one constraint
equation per RROD.

2.14.2 RBAR

An RBAR is a pseudoelement which is infinitely stiff in all the directions. The
constraints for an RBAR may be summarized as follows.

1. the rotations at either end of the RBAR are identical,

2. there is no extension of the bar, and

3. translations at one end of the bar are consistent with rotations.

It is apparent that the last two of these constraints may be specified mathemat-
ically by requiring that the translation be the cross product of the rotation vector
and the bar direction.

~T = ~R× ~L

where ~T is the translation difference of the bar (defined as ~U2 − ~U1),
~R is the rotation vector, and
~L is the vector from the first grid to the second.
The three constraints in the cross product, together with the three constraints

requiring identical rotations at both ends of the bar form the six required constraint
equations.

2.14.3 RBE3

The RBE3 elements behavior is taken from Nastran’s element of the same name.
Note however, that the precise mathematical framework of the Nastran RBE3 ele-
ment is not specified in the open literature. This element should act like an RBE3
for most applications. The element is used to apply distributed forces to many nodes
while not stiffening the structure as an RBE2 or RBAR would. The RBE3 uses the
concept of a slave node. Constraints are specified as follows.

1. The translation of the slave node is the sum of translations of all the other
nodes in the element.

2. The rotation of the slave node is the weighted average rotation of all the other
nodes about it.

2.14 Rigid Elements 57

While the first of these constraints is easy enough to apply using multi-point
constraints, the second is a little more difficult. We seek a least squares type solution.

Let ~Di = ~Ui − ~Uslave,
~Li = ~Xi − ~Xslave

The L represent a vector from the “origin” to the point i, while the Di represent
the differential displacement of the same points. Note that the origin is at the
location of the slave node, and will not in general be at the centroid of the structure.

We will use least squares to compute the rotational vector of the slave node.
This is equivalent to computing a rotational inertial term and requiring a similar
net rotation for the centroid.

The displacement at the centroid should be given by,

~Di = ~R× ~Li

or, in the least squares sense we seek to minimize E.

E =
∑

i

(~Di − ~R× ~Li) · (~Di − ~R× ~Li)

Take the derivative of E with respect to a component of R, rk.

dE

drk
= 0 = 2

∑
i

(êk × ~Li) · (~R× ~Li)− ~Di · (êk × ~Li)

Now, let R =
∑

m rmêm. We substitute for R in the previous equation to obtain,∑
m

∑
i

rm(êk × ~Li) · (êm × ~Li)− ~Di · (êk × ~Li) = 0

Now, if we write Li as a column vector then the expression (êk × ~Li) · (êm × ~Li)
can be written as LT

i Li · I − LiL
T
i . If the sum on i is performed for the first term,

we may write, ∑
m

rmAmk −
∑

i

êk · (~Li × ~Di) = 0

This provides three equations (one for each k) in the 3 unknowns, rm.
The solution is found by looping once through all i to fill in the A matrix,

and simultaneously to fill out the coefficients for the three equations involving Di.
Once the loop has been completed, the coefficients of R are known, and the three
components of rm can be added for each of the three equations. Each equation has
3 components of R, 2n components of Ui and 2 components of Uslave for a total of
2n+ 5 equations.

58 2 ELEMENTS

2.15 Shell Offset

Consider a shell offset, with an offset vector, ~v. Notice that ~v could be defined at
each nodal location in what follows, but for this development, we assume a single
offset ~v which applies to all nodes. Define a coordinate system at the node, with
variables u. On the offset beam the coordinate system is ũ.

Now, u is related simply to ũ. The constraint of a constant offset may be stated
that the displacement difference of the two systems must be orthogonal to ~v, i.e.
(u − ũ) = ~v × ~κ, where ~κ is the rotation at the nodes. Notice that the rotation is
the same at both nodes.

Thus we can write, (
ũ
κ

)
= [L]

(
u
κ

)
(194)

where L is a constant matrix which depends only on the geometry. We can use this
transformation matrix to eliminate the degrees of freedom associated with ũ. The
energy of the shell can be written,

Estrain = 0.5
{
ũ
κ

}T [
K̃
]{ ũ

κ

}
(195)

But with this substitution,

Estrain = 0.5
{
u
κ

}T [
LT K̃L

]{ u
κ

}
(196)

If we let K = LT K̃L, then,

Estrain = 0.5
{
u
κ

}T

[K]
{
u
κ

}
(197)

Thus, ũ has been eliminated, and the equations may be rather simply put in
terms of the output variables.

2.16 Notes on Consistent Loads Calculations

Starting with equation 4.1-6 from Concepts and Applications of Finite Element
Analysis by Cook et al.,

{re} =
∫

Ve

[B]T [E]{ε0}dV −
∫

Ve

[B]T {σ0}dV +
∫

Ve

[N]T {F}dV +
∫

Se

[N]T {Φ}dS

(198)

2.16 Notes on Consistent Loads Calculations 59

where each of these terms are defined in Subsection 4.1 of the above mentioned
reference. The load vector, {re}, is composed of four parts in Eqn. 198. In this
document, only the last part, which is the contribution of the surface tractions to
the load vector, will be considered. Rewritting,

{re} =
∫

Se

[N]T {Φ}dS (199)

Here, the integral is calculated over the surface of the element on which the surface
traction, {Φ}, is applied. Therefore,

{Φ} = [ΦxΦyΦz]T (200)

and [N] is the shape function matrix of the element on which the surface tractions,
{Φ}, are applied. In Salinas, {Φ} can be applied within PATRAN by applying a
spatial field to a specified side set. As a result, when calculating the load vector,
this field must be accounted for. In Salinas however, this spatial field values will be
available only at the nodes of the element. Using the nodal values of this surface
traction, the value inside must be defined using an interpolation function over the
surface or side of the element. Since only one value per node may be specified on
the side set in Salinas, a surface traction may be applied only in one direction at a
time. Therefore, {Φ} will be defined as

{Φ} =


nx

ny

nz

Φ(x, y, z) (201)

2.16.1 Salinas Element Types

The following 3-D and 2-D elements have consistent loads implemented:

• Hex8

• Hex20

• Wedge6

• Tet4

• Tet10

• Tria3

• TriaShell

60 2 ELEMENTS

• Tria6 (four Tria3s)

• QuadT (two Tria3s)

• Quad8T (1 QuadT and 4 Tria3s)

2.16.2 Pressure Loading

Here, we will consider only pressure loads on 3-D elements, such that

{Φ} =


nx

ny

nz

Φ(x, y, z) (202)

where [nx, ny, nz]T is the normal to the element face. Hence, the consistent loads
can be calculated as,

{re} =
∫

Se

[N]T {Φ}dS =
∫

Se

[N]T Φ(x, y, z)(~a×~b)dSe (203)

Here,

~a = [
∂x

∂r
,
∂y

∂r
,
∂z

∂r
]T (204)

~b = [
∂x

∂s
,
∂y

∂s
,
∂z

∂s
]T (205)

where Φ is the pressure load, and (x, y, z) are the physical coordinate directions,
and (r, s) are the local element directions for the face of the element. Notice, taking
the cross-product of ~a and ~b, the normal is obtained.

2.16.3 Shape Functions for Calculating Consistent Loads

For 3-D elements, all the faces are either quadrilateral or triangular shaped. Hence,
shape functions for quads and triangles could be used to evaluate the consistent
loads. If the shape functions for the 3-D elements are used, it will reduce code and
“fit” better into the current finite element class structure. This is what is currently
implemented. This requires a “mapping” of the 3-D elements’ faces to a 2-D plane.
The additional overhead for using the 3-D elements is that each face of the element
must have this “mapping” which states how the elements’ 3-D shape functions will
map to a 2-D element. For example, for a Hex20, the element coordiantes (η1, η2, η3)
are defined in a particular way. For each face of the Hex20, defined by a side id,
the face will have a local coordinate system (r, s). The “mapping” will define how
(r, s) are related to (eta1, eta2, eta3). This will also help defined what how 2-D

2.16 Notes on Consistent Loads Calculations 61

Gauss points are mapped to the 3-D face. These mappings are done for all the 3-D
elements.

2.16.4 Shell Elements - consistent loads

All the 2-D elements (shell elements) are based on the Tria3. The consistent loads
calculations for the Tria3 can be “copied” to the TriaShell. This way all the shell
elements will use the same consistent loads implementation. Since Carlos Felippa
designed the Tria3, his consistent loads implementation is used. The portion for
linearly varying pressure loads is shown here. If the loads are aligned along an edge,
{q}, they need to be decomposed into (qs, qn, qt). Where (s, n, t) are coordinate
directions along the element edge. Coordinate s varies along the element edge
tangentially, n is normal to the element edge, and t is tangent to the element edge
in the transverse direction, i.e., in the direction of the thickness. Once, the edge
load is decomposed, the equations for consistent loads are

f1
s =

1
20

(7qs1 + 3qs2)L21 f2
s =

1
20

(3qs1 + 7qs2)L21 (206)

f1
n =

1
20

(7qn1 + 3qn2)L21 f2
n =

1
20

(3qn1 + 7qn2)L21 (207)

f1
t =

1
20

(7qt1 + 3qt2)L21 f2
t =

1
20

(3qt1 + 7qt2)L21 (208)

m1
s = m2

s = 0 (209)

m1
n = − 1

60
(3qt1 + 2qt2)L2

21 m2
n =

1
60

(2qt1 + 3qt2)L2
21 (210)

m1
t = − 1

40
(3qn1 + 2qn2)L2

21 m2
t =

1
40

(2qn1 + 3qn2)L2
21 (211)

where qs1 is the value of q in the s direction at node 1 of the edge, L12 is the length of
the edge. The superscipts 1,2 are the node numbers of the edge. Note, it is assumed
here that the load q is per unit length, but this is not assumed when creating the
sideset in PATRAN for example. Therefore, this distributed load is multiplied, in
Salinas, by the thickness of the triangle.

Now if the pressure load is on the face of the Tria3, the equations become,

62 2 ELEMENTS

f1
x = f1

y = m1
z = f2

x = f2
y = m2

z = f3
x = f3

y = m3
z = 0 (212)

f1
z = (

8
45
p1 +

7
90
p2 +

7
90
p3)A (213)

f2
z = (

7
90
p1 +

8
45
p2 +

7
90
p3)A (214)

f3
z = (

7
90
p1 +

7
90
p2 +

8
45
p3)A (215)

m1
x =

A

360
[7(y31 + y21)p1 + (3y31 + 5y21)p2 + (5y31 + 3y21)p3] (216)

m1
y =

A

360
[7(x13 + x12)p1 + (3x13 + 5x12)p2 + (5x13 + 3x12)p3] (217)

m2
x =

A

360
[(5y12 + 3y32)p1 + 7(y12 + y32)p2 + (3y12 + 5y32)p3] (218)

m2
y =

A

360
[(5x21 + 3x23)p1 + 7(x21 + x23)p2 + (3x21 + 5x23)p3] (219)

m3
x =

A

360
[(3y23 + 5y13)p1 + (5y23 + 3y13)p2 + 7(y23 + y13)p3] (220)

m3
x =

A

360
[(3x32 + 5x31)p1 + (5x32 + 3x31)p2 + 7(x32 + x31)p3] (221)

where yij = yi− yj and xij = xi−xj , A is the area of the triangle, pi is the value of
the pressure load at node i, and (xi, yi) are coordinates of the triangle in 2-D space.
Finally, the “pseudo” elements (QuadT, Quad8T, Tria6) created by using Tria3s
require a little extra overhead. For example, the Quad8T is composed of 1 QuadT
and 4 Tria3s. However, since it is defined as a Quad8T, it will have distribution
factors at its 8 nodes, and these distribution factors have to be mapped to the 1
QuadT and the 4 Tria3s. The number of distribution factors will be 3 however,
if the load is applied to its edge. Therefore, this extra coding can be seen in the
ElemLoad method of the shells’ classes.

2.17 Coordinate Systems

Coordinate systems are provided for a number of applications including:

1. specification of boundary constraints (SPCs)

2. specification of multi-point constraints (MPCs)

3. specification of material property rotations for anisotropic materials.

4. specification of spring directions (see subsection 2.12).

2.17 Coordinate Systems 63

- X

6

Y

�
�

�
�

���

X ′

@
@

@
@

@@I

Y ′

θ

Figure 2: Original, and rotated coordinate frames

5. specification of output coordinate systems (in history files only).

There are some applications for coordinate systems which we do NOT intend to
support. These include,

1. specification of nodal locations,

2. specification of new coordinate systems in any but the basic system.

Coordinate systems for cartesian, cylindrical and spherical coordinates may be
defined. In the case of noncartesian systems, the XZ plane is used for defining the
origin of the θ direction only.

Each coordinate system carries with it a rotation matrix. It is important to
clarify the meaning of that matrix. Specifically,

X ′ = RX

Where X ′ is the new system of coordinates, R is the rotation matrix and X is the
basic coordinate system. For cartesian systems, the rotation matrix is static. Curvi-
linear systems will require computation of a new rotation matrix at each location
in space.

The usual identity on rotation matrices applies, namely:

X = RTX ′ (222)

and
RTR = RRT = I

As an example, consider a cartesian system as shown in Figure 2.
The new system (marked by primes) is rotated θ from the old system with the

new X ′ axis in the first quadrant of the old system. The rotation matrix is,

64 2 ELEMENTS

R =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


2.18 Constraint Transformations in General Coordinate Systems

In general, constraint equations can be applied in any coordinate system. We here
describe the transformation equations and implications for general constraints in
any coordinate system. The implications of this use in Salinas are also outlined.

Consider a constraint equation,

C ′u′ = Q (223)

where the primes indicate a generalized coordinate frame. The frame may be
transformed to the basic coordinate system using equation 222, and

u′ = Ru (224)

We can now rewrite equation 223,

C ′Ru = Q
Cu = Q

(225)

where C = C ′R.
Thus a general system of constraint equations may be easily transformed to the

basic system. Further, the rotational matrix is a 3x3 matrix which may be applied
to each node’s degrees of freedom separately.

2.18.1 Decoupling Constraint Equations

We still have a coupled system of equations. We partition the space into constrained
and retained degrees of freedom, and describe the constrained dofs in terms of its
Schurr complement.

u =
[
ur

uc

]
(226)

The whole constraint equation may be similarly partitioned.

[
Cr Cc

] [ur

uc

]
= [Q] (227)

Note that Cr is an cxr matrix, Cc is cxc, and Q is a vector of length c. Under most
conditions Q is null.

2.18 Constraint Transformations in General Coordinate Systems 65

This may be solved for uc,

uc = C−1
c Q− C−1

c Crur (228)

We must be concerned with cases where Cc may be either singular or over con-
strained. The former case occurs if we try to eliminate c equations, but the rank
of C is less than c. This could occur if the equations are redundant. We can over
constrain the system only if Q is nonzero. Both these situations need attention, but
both can be dealt with.

We may also write the solution using a transformation matrix, T .[
ur

uc

]
= [T] [ur] + Q̃ (229)

where

T =
[

1
Crc

]
(230)

Crc = −C−1
c Cr (231)

and

Q̃ =
[

0
C−1

c Q

]
=
[

0
Q̆

]
(232)

2.18.2 Transformation of Stiffness Matrix

We assume a similar partition of the stiffness matrix. The equations for statics are
then, [

Krr Krc

Kcr Kcc

] [
ur

uc

]
=
[
Rr

Rc

]
(233)

or,
[K] [T]ur + [K]

[
Q̃
]

= R (234)

and
T TKTur = T T

{
R−KQ̃

}
= R̃ (235)

We can define the reduced equations,

K̃ = T TKT = Krr +KrcCrc + CT
rcKcr + CT

rcKccCrc (236)

and,

R̃ = T TR− T T

[
KrcQ̆

KccQ̆

]
= Rr + CT

rcRc −KrcQ̆− CT
rcKccQ̆

(237)

66 2 ELEMENTS

The solution in the retained system is

K̃ur = R̃ (238)

The system may now be solved using the reduced equations, and the constrained
degrees of freedom may be solved using equation 228. Much of this is detailed in
Cook, but without the constrained right hand side.

For eigen analysis the mass matrix may be transformed exactly as the stiffness
matrix in equation 236. There is no force vector.

For transient dynamics the mass and stiffness matrix transform the same. The
force vector and force vector corrections may be time dependent. There is currently
no structure to store these time dependent terms in Salinas.

2.18.3 Application to single point constraints

Our initial efforts at applying single point constraints (SPC) has been limited to the
basic coordinate system. In that system the equations decouple, Cc is unity and Crc

is zero. Then equations 236 and 237 reduce to elimination of rows and columns.
To properly account for the coupling that occurs when the constraints are not

applied in the basic coordinate system, we must generate all the constraint equation
on the node. This may be up to a 6x6 system. I believe that there is no real conflict
in first applying constraints in the basic system, then adding additional constraints
in other systems.

The process for applying constraints can be summarized as follows.

1. Generate the constraint equation in the generalized coordinate system (equa-
tion 223).

2. Transform the constraint equation to the basic coordinate system (equation
224).

3. Determine the constraint degrees of freedom. It may need to be done in concert
with the next step to keep from degrading the matrix condition.

4. Compute the two transformation matrices C−1
c and Crc from equations 227

and 231.

5. Compute the corrections to the force vector from equation 237. We currently
do not have a structure to store these corrections, except for the case of statics.

6. Compute the reduced mass and stiffness matrices from equation 236.

7. Eliminate the constraint degrees of freedom from the mass and stiffness matrix.

In addition, for post processing,

2.18 Constraint Transformations in General Coordinate Systems 67

8. store the terms of the equations necessary to recover the constraint degrees of
freedom (equation 228).

A few words about post processing could also prove useful. In the first imple-
mentation of Salinas, constraints were applied only in the basic coordinate system.
The degree of freedom to eliminate was obvious from the exodus file, and it’s value
was a constant (usually zero). In this later version, a more general approach must
be used. We use the following strategy.

1. degrees of freedom directly constrained to zero are handled implicitly. This is
done by setting the G-set vector to zero before merging in the A-set results.
There is no storage cost for this.

2. Other degrees of freedom are managed using an spc info object. An array
of these objects will be stored globally. Each object contains the degree of
freedom to fill, an integer indicating the number of other terms, a list of
dofs/coefficients, and a constant. This facilitates solutions of the form,

uspc = constant +
retained dofs∑

i

uiCi (239)

2.18.4 Multi Point Constraints

The application to multipoint constraints is very straight forward. The only dif-
ference is that the whole system of equations must be considered together. This
changes the linear algebra significantly because the matrices must now be stored in
sparse format. However, the steps that are applicable for single point constraints
apply here as well. Subsection 2.13 deals more explicitly with MPCs.

2.18.5 Transformation of Power Spectral Densities

Note: The following is taken almost verbatim from Paez’s book [22]. We identify
how to transform output PDS.

Let H(f) denote a frequency response function vector for a given input (in the
global system) expressed as,

H(f) = H1(f)e1 +H2(f)e2 +H3(f)e3

where ei represents the unit vectors of this space. Note that H(f) is an output vector
at a single location in the model. H(f) can also be expressed using an alternate set
of unit vectors, ẽi.

H(f) = H̃1(f)ẽ1 + H̃2(f)ẽ2 + H̃3(f)ẽ3

68 2 ELEMENTS

Taking the dot product of these two equations and equating the results, we have,

H̃1(f) =
3∑

k=1

ckiHk(f) (240)

where
cki = ek · ẽi

The spectral density function Gij(f) (for a given input and at a single output loca-
tion) can be expressed as,

Gij(f) = αH∗
i (f)Hj(f) (241)

where α is a constant and superscript * denotes complex conjugate. Similarly for
the alternative coordinate frame,

G̃ij(f) = αH̃∗
i (f)H̃j(f)

We may use equation 240 to express G̃ in terms of the Hi. We may then use
the spectral definition in equation 241 to provide the transformation of spectral
densities.

G̃ij(f) = α

(
3∑

k=1

ckiH
∗
k(f)

)(
3∑

m=1

cmjHm(f)

)

=
3∑

k=1

3∑
m=1

ckicmjGkm (242)

This can be expressed in matrix notation as G̃ = CTGC.

2.19 HexShells

Hexshells are provided to give the analyst an element with performance similar to
a standard shell, but with the mesh topography of a brick. Thus, thin regions of
the model can be meshed with hexshells, without concern for the bad aspect ratio
of the elements, and with topography consistent with a solid mesh.

The element is documented extensively in the description by Carlos Felippa (see
reference 23). The paragraphs in this document summarize the limitations of the
shells and the possible usage.

Because hexshells have an inherent thickness direction, it is important to be able
to identify that direction. There are (at least) four methods to accomplish this.

2.19 HexShells 69

natural The natural ordering of the nodes in the element can determine the thick-
ness direction. This is the method used by Carlos in developing the element.
I believe that the connectivity for the element will indeed have to be modified
to properly interface to his software.

sideset The placement of a sideset on one (or both) thickness faces of the elements
uniquely identifies the thickness direction.

topology Usually the topology can be used to identify the thickness direction.
The hexshell should be used in a sheet. If the hexshells are considered alone,
only the free surfaces of the sheet are candidates for the thickness direction.
Further, once the thickness direction is established for one element, it must
propagate to the neighbors. (Note that this implies that we can’t have a self
intersecting sheet).

projection The thickness direction could be determined by the closest projection
to a coordinate direction.

We will try to support all of the above methods. The topology method puts the
least burden on the analyst. It is the least explicit however, and the most work
to implement (especially in parallel). The next simplest (for the analyst) is the
projection method. Sideset methods are burdensome for both the analyst and the
code development team. The natural method is the easiest to implement, but can
be next to impossible for the analyst to use.

Input will be structured as follows. Keywords are associated with each method.
Only one of the four keywords above can be entered. If no keyword is entered, then
topology is assumed.

Block 9
HexShell
orientation sideset=’1,2’
material=9

end

or,

Block 10
HexShell
orientation topology
material=9

end

70 3 LINEAR ALGEBRA ISSUES

3 Linear Algebra Issues

3.1 Solution Spaces

There are a number of different dimensions in Salinas. These will be summarized
here with a focus on using the data within the matlab framework. Examples of how
to convert data from one dimensionality to another will be given.

The subject of matrix dimensions is an important one. Salinas has a fairly simple
set of dimensions compared to more complex systems like Nastran. However, it is
critical that these be well understood if we wish to manipulate the data.

As an example, I consider an eigen analysis of a structure with 9938 nodes. This
structure is made of shells and solids. There are no boundary conditions, but there
are 9 mpcs applied. I look at only the serial file sizes.

To get the required maps and other m-files, we must select ’mfiles’ in the output
section. To get the eigenvector data, we must also write the exodus file with ’disp’
selected in the output section.
For this model, we have the following important dimensions.

1. #nodes=9938

2. external set= #nodes * 6 dofs/node = 59628

3. G-set = # active dofs before boundary conditions = 42708

4. A-set = analysis set = # equations to be solved = 42699

5. reduced external set = #nodes * 3 = 29814

There are 3 dofs/node for solid elements, but shells and beams have 6. In aggregate,
the total dofs is 42708 before boundary conditions and mpcs are applied. There are
no BCs in the model, but there are 9 MPC equations, each of which eliminates 1
dof, so the Aset is reduced to 42699.

Unfortunately, the eigen disp*.m files are written in the reduced external set
since this is what the analysts typically want. The bad news is that these m-files
are useless to us. The good news is that all the data is available in either m-files
or in the exodus output.

The matrices Mssr and Kssr contain the mass and stiffness matrices in the A-set.
They are symmetric matrices and only one half of the off diagonal is stored. To get
the complete matrix within matlab,

>>> K = Kssr + Kssr’ - speye(size(Kssr)).*Kssr;

The full eigenvectors (in the external set) are available in the output exodus file. To
get them use the seacas command exo2mat.

3.1 Solution Spaces 71

> exo2mat example-out.exo

Within matlab, the data can be converted to a properly shaped matrix.

>>> load example-out
>>> phi = zeros(nnodes*6,nsteps);
>>> tmp = (0:nnodes-1)*6;
>>> phi(tmp+1,:)=nvar01;
>>> phi(tmp+2,:)=nvar02;
>>> phi(tmp+3,:)=nvar03;
>>> phi(tmp+4,:)=nvar04;
>>> phi(tmp+5,:)=nvar05;
>>> phi(tmp+6,:)=nvar06;

We now have phi as a matrix with each column corresponding to an eigenvector.
However, phi is dimensioned at 59628 x 10 for this example. We clearly can’t
multiply phi by K for example - the dimensions don’t match. To do this we need a
map.

We have two maps in our directory. FetiMap a.m is the map from the external set
to the A set. Thus we can reduce phi to the A-set by combining it with Fetimap a.
If the G-set is desired instead of the A-set, replace FetiMap a with FetiMap.

>>> p2=zeros(max(max(FetiMap_a)),nsteps);
>>> for j=1:nnodes*6
>>> i=FetiMap_a(j);
>>> if (i > 0)
>>> p2(i,:)=phi(j,:);
>>> end
>>> end

This is slow. A faster, but less straightforward method is shown here.

>>> mapp1=FetiMap_a+1;
>>> tmp=zeros(max(max(mapp1)),nsteps);
>>> tmp(mapp1,:)=phi;
>>> p2=tmp(2:max(max(mapp1)),:);

Now we can do all the neat things like p2’*K*p2.
To get back to the external set, we again use this map. For example, if we have

a vector of dimension 42699,

72 3 LINEAR ALGEBRA ISSUES

>>> x=1:42699’;
>>> XX = zeros(59628,1);
>>> for i=1:59628
>>> if (FetiMap_a(i)>0)
>>> XX(i)=x(FetiMap_a(i));
>>> end
>>> end

Obviously, similar shortcuts can be made to make this more efficient. One that
appears to work is shown here.

>>> xtmp=[0 x’];
>>> X2=xtmp(mapp1);

REFERENCES 73

References

[1] Belytschko, T., Liu, W. K., and Moran, B., Nonlinear Finite Elements for
Continua and Structures, John Wiley & Sons, first edn., 2000.

[2] Cook, R. D. and D. S. Malkaus, M. E. P., Concepts and Applications of Finite
Element Analysis, John Wiley & Sons, third edn., 1989.

[3] Reese, G., Field, R., and Segalman, D. J., “A Tutorial on Design Analysis Using
von Mises Stress in Random Vibration Environments,” Shock and Vibration.
Digest , vol. 32, no. 6, 2000.

[4] Craig, R. R., Structural Dynamics: An Introduction to Computer Methods,
John Wiley & Sons, 1981.

[5] Day, D. M. and Walsh, T., “Damped Structural Dynamics,” Tech. Rep. Sali-
nasDocuments/SandReport/qevp - Draft, Sandia National Laboratories, 2003.

[6] Larsen, M., “A Posteriori and a Priori Error Analysis for Finite Element Ap-
proximations of Self-Adjoint Elliptic Eigenvalue Problems,” SIAM Journal of
Numerical Analysis, vol. 38, no. 2, 2000, pp. 608–625.

[7] Heuveline, V. and Rannacher, R., “A Posteriori Error Control for Finite Ele-
ment Approximations of Elliptic Eigenvalue Problems,” Advances in Compu-
tational Mathematics, vol. 15, 2001, pp. 107–138.

[8] Oden, J. T. and Prudhomme, S., “Error Estimation of Eigenfrequencies for
Elasticity and Shell Problems,” Mathematical Models and Methods in Applied
Sciences, vol. 13, no. 3, 2003, pp. 323–344.

[9] Ainsworth, M. and Oden, J. T., A Posteriori Error Estimation in Finite Ele-
ment Analysis, John Wiley & Sons, Inc., first edn., 2000.

[10] Bernardi, C. and Verfurth, R., “Adaptive finite element methods for elliptic
equations with non-smoooth coefficients,” Numerische Mathematik , vol. 85,
2000, pp. 579–608.

[11] Duran, R., Padra, C., and Rodriguez, R., “A Posteriori Error Estimates for the
Finite Element Approximation of Eigenvalue Problems,” Mathematical Models
and Methods in Applied Sciences, vol. 13, no. 8, 2003, pp. 1219–1229.

[12] Prudhomme, S., “personal communication,” March 2004.

[13] Hughes, T. J. R., The Finite Element Method–Linear Static and Dynamic Fi-
nite Element Analysis, Prentice-Hall, Inc, 1987.

74 REFERENCES

[14] Hughes, T. J. R., The Finite Element Method–Linear Static and Dynamic Fi-
nite Element Analysis, chap. Appendix 3.1, Prentice-Hall, Inc, 1987, p. 170.

[15] Allman, D. J., “A Compatible Triangular Element Including Vertex Rotations
for Plane Elasticity Problems,” Computers and Structures, vol. 19, no. 1-2,
1996, pp. 1–8.

[16] Batoz, J.-L., Bathe, K.-J., and Ho, L.-W., “A Study of Three-Node Triangu-
lar Plate Bending Elements,” International Journal for Numerical Methods in
Engineering , vol. 15, 1980, pp. 1771–1812.

[17] Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method , vol. 2,
chap. 1, McGraw-Hill Book Company Limited, fourth edn., 1991, pp. 23–26.

[18] Ertas, A., Krafcik, J. T., and Ekwaro-Osire, S., “Explicit Formulation of an
Anisotropic Allman/DKT 3-Node Thin Triangular Flat Shell Elements,” Com-
posite Material Technololgy , vol. 37, 1991, pp. 249–255.

[19] Alvin, K., de la Fuente, H. M., Haugen, B., and Felippa, C. A., “Membrane
triangles with corner drilling freedoms – I. The EFF element,” Finite Elements
in Analysis and Design, vol. 12, 1992, pp. 163–187.

[20] Felippa, C. A. and Militello, C., “Membrane triangles with corner drilling free-
doms – II. The ANDES element,” Finite Elements in Analysis and Design,
vol. 12, 1992, pp. 189–201.

[21] Felippa, C. A. and Alexander, S., “Membrane triangles with corner drilling
freedoms – III. Implementation and performance evaluation,” Finite Elements
in Analysis and Design, vol. 12, 1992, pp. 203–239.

[22] Wirsching, P. H., Paez, T. L., and Ortiz, K., Random Vibrations, theory and
practice, John Wiley and Sons, Inc, 1995.

[23] Felippa, C. A., “The SS8 Solid-Shell Element: Formulation and a Mathematica
Implementation,” Tech. Rep. CU-CAS-02-03, Univ. Colo. at Boulder, 2002.

[24] Auld, B. A., Acoustic Fields and Waves in Solids, Second Edition, vol. I, Robert
E. Krieger Publishing Company, 1990.

75

A Anisotropic Materials

Here we discuss how anisotropic elasticity is implemented in Salinas.8 The approach
is reasonably standard, but a documentation here is necessary to specify which of
the many conventions of material parameter numbering is used in Salinas. Further,
it is useful to present the theoretical development for those who may do maintenance
on this part of the code.

A.1 Linear Anisotropic Elasticity

Linear elasticity asserts that the stress is a linear function of the strain:

σij = C4
ijklεkl (243)

Where C4
ijkl are the Cartesian components of the fourth order constitutive tensor

and the Einstein convention of summation on repeated indices is used.

A.2 Stress Vectors

By definition, the strain is symmetric. Further, we make the usual constitutive
assumption that the stress is symmetric. This permits the representation of the 3x3
stress matrix and the 3x3 strain matrix each by a column vector having six rows.

s =



σ11

σ22

σ33

σ23

σ13

σ12


(244)

and,

e =



ε11
ε22
ε33
2ε23
2ε13
2ε12


.

This is the Voigt notation. Note that this mapping from σ to s and from ε to e is not
universal. This is the numbering used in Malvern and seems to be popular in the
materials science world, but it differs from the numbering used in NASTRAN and

8 This is a transcription of Dan Segalman’s framemaker document, “aniosConst.frm”.

76 A ANISOTROPIC MATERIALS

from the numbering in ABAQUS. Further, note that though the above are usually
referred to as “stress vectors” and “strain vectors”, they are not vectors in the sense
that they map from one coordinate system to another as true vectors do. How that
mapping is done is discussed in a later section.

We use the above to map the fourth-order tensor C4
ijkl into a 6x6 matrix of

material parameters. This is done with the aid of the matrices that formally map
σ to s and from ε to e.

en = Enijεij (245)

and
εij = enFnij (246)

where

E1 =

 1 0 0
0 0 0
0 0 0

 E2 =

 0 0 0
0 1 0
0 0 0

 E3 =

 0 0 0
0 0 0
0 0 1


E4 =

 0 0 0
0 0 1
0 1 0

 E5 =

 0 0 1
0 0 0
1 0 0

 E6 =

 0 1 0
0 0 0
0 1 0

 (247)

and

F1 =

 1 0 0
0 0 0
0 0 0

 F2 =

 0 0 0
0 1 0
0 0 0

 F3 =

 0 0 0
0 0 0
0 0 1


F4 =

 0 0 0
0 0 1/2
0 1/2 0

 F5 =

 0 0 1/2
0 0 0

1/2 0 0

 F6 =

 0 1/2 0
0 0 0
0 1/2 0

 (248)

We note that the stress mappings are also achieved with the above third order
quantities:

sn = Fnijσij (249)

and
σij = snEnij (250)

From Equations 245 and 246 or Equations 249 and 250 we see that,

EmijFnij = δmn (251)

Substituting Equations 246 and 250 into Equation 243 and simplifying with
Equation 251, we find

sm = Cmnen (252)

A.3 Strain Energy and Orientation 77

where
Cmn = FmijC

4
ijklFnkl (253)

Though above shows how to find the 6x6 matrix Cij in terms of the fourth order
tensor components C4

ijkl, the material description is usually provided directly in
terms of the components of Cij .

A.3 Strain Energy and Orientation

We now address the situation where the matrix of material parameters of are provide
in a Cartesian coordinate system different from the coordinate system (usually the
global system) in which strains are calculated. Because stress and strain are tensors,
they transfer from one coordinate system to another by:

σij = Raiσ̂abRbj (254)

and
εij = Raiε̂abRbj (255)

where σij and εij are the stress and strain components calculated in some other
(global) Cartesian system and Rai are the components of the rotation matrix that
rotates the basis vectors in that global system to that with respect to which the
material properties are defined. A basis vector b̂a in the local, material frame is
expressed in terms of the basis vectors of the global system by:

b̂a = Raibi (256)

where b1, b2, and b3 are the basis vectors of the global frame.

From Equations 249, 250, and 253, we find following

sm = (FmijEnabRaiRbj)ŝn. (257)

From Equations 245, 246, and 255, we find the more useful relationship

em = (EmijFnabRaiRbj)ên. (258)

The above two transformations are simplified:

s = T T ŝ (259)

and
e = T ê (260)

78 A ANISOTROPIC MATERIALS

where the 6x6 transformation matrix, T , is defined

Tnk = EnijFkabRaiRbj = tr
(
ET

nRFkR
T
)

(261)

Noting that
s = Ĉê, (262)

and substituting Equations 259 and 260 into Equation 262, we further find

s = T T ĈTe. (263)

Comparing the above with Equation 252, we finally find that

C = T T ĈT (264)

which was the main point of this exercise.
Note also that the components of arrays En and Fn are mostly zero, with the

rest either 1 or 1/2. After using Maple to simplify the product matrix,we find that
T has a fairly simple form.

T =
[
T11 T12

T21 T22

]
(265)

where

T11 =

 R2
11 R2

12 R2
13

R2
21 R2

22 R2
23

R2
31 R2

32 R2
33

 , (266)

T12 =

 R13R12 R13R11 R13R11

R23R22 R23R21 R23R21

R33R32 R33R31 R33R31

 , (267)

T21 =

 2R21R31 R22R32 R23R33

2R11R31 R12R32 R13R33

2R11R21 R12R22 R13R23

 , (268)

and

T22 =

 R23R32 +R22R33 R23R31 +R21R33 R22R31 +R21R32
R13R32 +R12R33 R13R31 +R11R33 R12R31 +R11R32
R13R22 +R12R23 R13R21 +R11R23 R12R21 +R11R22

 . (269)

Note that T defined above is the transformation matrix N in of Equatoin 3.34
in Auld’s “Acoustic Waves in Solids, Volume I” (reference 24), which is used in the
same way.

The Maple code to perform the above calculations follows.

A.3 Strain Energy and Orientation 79

with(linalg);
E[1] := matrix(3,3,[[1,0,0],[0,0,0],[0,0,0]]);
E[2] := matrix(3,3,[[0,0,0],[0,1,0],[0,0,0]]);
E[3] := matrix(3,3,[[0,0,0],[0,0,0],[0,0,1]]);
E[4] := matrix(3,3,[[0,0,0],[0,0,1],[0,1,0]]);
E[5] := matrix(3,3,[[0,0,1],[0,0,0],[1,0,0]]);
E[6] := matrix(3,3,[[0,1,0],[1,0,0],[0,0,0]]);
F[1] := E[1];
F[2] := E[2];
F[3] := E[3];
F[4] := (1/2)*E[4];
F[5] := (1/2)*E[5];
F[6] := (1/2)*E[6];
R := matrix(3,3);

for k from 1 to 6 do
FRR[k] := matrix(3,3);
FRR[k] := evalm (R &* F[k] &*transpose(R));
od;

T := matrix(6,6);
for k from 1 to 6 do
for n from 1 to 6 do
T[n,k] := 0;
for i from 1 to 3 do
for j from 1 to 3 do
T[n,k] := T[n,k] +evalm(FRR[k][i,j])*E[n][i,j];
od; od;
od; od;

readlib(C);
C(T);

read("/home/djsegal/Maple/tools/maple2mif.mpl");
M := maple2mif();
fprintf("/home/djsegal/MPP/notes/temp.mif",’%s’,M(eval(T))) ;

80 B INTEGRATION OF ISOPARAMETRIC SOLIDS

B Integration of Isoparametric Solids

We show below how one achieves effective selective integration of isoparametric
solids in a manner that satisfies the standard conditions (such as the patch test)
and also accommodates anisotropic materials.9

We begin with the definition of the strain vector. For computational convenience
defines the stress and strain vectors:

s =



σ11

σ22

σ33

σ23

σ13

σ12


(270)

and,

ν =



ε11
ε22
ε33
2ε23
2ε13
2ε12


. (271)

These are related through the matrix of elastic constants.

s = Cν (272)

We now take a look at virtual work, since it is from virtual work that the stiffness
matrix is derived.

δW =
∫

V
sT δνdV =

∫
V
νTCδνdV (273)

If we select the above volume to be that of an element and use the strain-displacement
matrices associated with each nodal degree of freedom,

ν(x) =
∑

j

Bj(x)uj (274)

where uj is the jth nodal degree of freedom, the virtual work becomes

δW = ujδuk

∫
V
Bj(x)TCBk(x)dV (275)

9 This is a transcription of Dan Segalman’s framemaker document, “IsoInt.frm”.

B.1 Uniform Strain-Displacement Matrices 81

Since the element stiffness matrix is defined by

δW = ujδKij (276)

we conclude that
Kij =

∫
V
Bj(x)TCBk(x)dV (277)

The next step is to decompose the strain-displacement vectors into deviatoric and
dilatational components.

Bj(x) = BD
j (x) +BV

j (x) (278)

where,

BV
j (x) = dj(x)



1
1
1
0
0
0

 (279)

and 3dj(x) is the sum of the first three rows of Bj(x). BD
j (x) is defined by Equation

278. Substitution of Equation 278 into Equation 277 yields:

Kij =
∫

V
BD

j (x)TCBD
k (x)dV +

∫
V
BV

j (x)TCBV
k (x)dV + · · ·

+
∫

V
BV

j (x)TCBD
k (x)dV +

∫
V
BD

j (x)TCBV
k (x)dV (280)

For isotropic materials, the deviatoric and dilatational portions of the strain are or-
thogonal with respect to the matrix of material constants, so the last two integrals in
the above equation are zero. It is sometimes common to integrate the contributions
of each to the stiffness matrix using separate strategies. Such approaches can pro-
duce elements with slightly less susceptibility to parasitic shear. Such an approach
does not work for elements of anisotropic material, so the following approach has
been developed.

B.1 Uniform Strain-Displacement Matrices

At this point it is useful to define the element averaged strain displacement matrices.

B̄k =
1
V

∫
V
Bk(x)dV (281)

82 B INTEGRATION OF ISOPARAMETRIC SOLIDS

For hex elements, these are the strain-displacement matrices of the Flanagan and
Belytschko, and are known as “uniform strain” elements. Elements formed by the
above strain/displacement matrices are very “soft”, having properties similar to
elements formed by single point integration. Hex elements of this sort display ex-
traneous zero-energy modes. In what follows, we consider linear combinations of this
strain-displacement matrix formulation with the consistent formulation presented in
Equation 274.

The uniform strain matrices are also separable into dilatational and deviatoric
parts.

B̄k = B̄V
k + B̄D

k (282)

B.2 Mixed Integration

The approach presented here builds on one presented by Hughes.13 We can achieve
the effect of softening elements by forming the strain displacement matrices from
combinations of the consistent strain-displacement and the uniform strain displace-
ment matrices.

B̂k(x) = αB̄V
k + (1− α)BV

k (x) + βB̄D
k + (1− β)BD

k (x) (283)

(14) Note that for all values of α and β, the above correctly captures uniform
strains. It is in how the non-uniform strains contribute to the stiffness matrix that
the particular values of α and β make a difference. By setting values of α and β
according to the following table, we recover the standard integration forms:

α β Integration
1 1 Flanagan and Belytschko
0 0 Full Integration
1 0 Selective Integration

We note that setting α = 1 and using an intermediate value of β, we can achieve
performance almost as good as that of the Flanagan and Belytschko element but
without admitting hour-glass modes.

Index

abstract, 3
Allman, 49

Citations, 73
CMS, 24
Component Mode Synthesis, 24
Craig-Bampton, 24

element residual method, 39
error estimation, 27
error estimator

explicit, 28
quantity of interest, 39

Error Estimators
explicit

elasticity, 29

Felippa, Carlos, 50
foreward, 3

generalized alpha, 1

Hex20, 45
Hex8, 43

isoparametric solids, 43, 45

linear algebra, 70

matrix dimensions, 70
Modal Acceleration Method, 13

Newmark-Beta, 1, 5

offset shells, 58

References, 73
rho, 1

selective integration, 43, 45

Shell
Triangle, 50

shell offsets, 58
solid elements, 43, 45
solution spaces, 70
superelement, 24

Tet10, 45
time integration, 1, 5
Tria3, 50
Tria6, 49
Triangular Shell, 50
Triangular shell, 49

viscoelastic materials, 5
viscoelastics, 21
viscofreq, 21

83

	Solutions
	Time integration
	Linear transient analysis
	Nonlinear transient analysis
	Time integration with viscoelastic materials
	Equations of motion
	Constitutive equations
	Linear Representation of Velocity
	Midpoint Representation of Velocity

	Random Vibration
	algorithm
	Power Spectral Density
	RMS Output
	RMS Stress
	matrix properties for RMS stress
	model truncation

	Modal Frequency Response Methods
	No Rigid Body Modes
	Rigid Body Modes
	Example

	Complex Eigen Analysis - Modal Analysis of Damped Structures
	Modal Analysis of Damped Structures
	Input File Specification
	Output File Format
	Some Back Ground
	Viscoelasticity
	Viscofreq
	Trust Regions and Real Modes
	ViscoFreq - Approximating the Response of Viscoelastics

	Component Mode Synthesis
	Reduction of superelement matrices

	A posteriori error estimation for eigen analysis
	Preliminaries
	Approach I - explicit error estimator
	Extension of Estimators to Elasticity
	Explicit Estimator - Multiple Materials
	Explicit Estimator Summary
	Approach II - quantity of interest estimator

	Elements
	Isoparametric Solid Elements. Selective Integration
	Derivation

	Implementation
	Quadratic Isoparametric Solid Elements
	Wedge elements
	Shape Functions
	Quadrature

	Tet10 elements
	Notes on calculating shape functions and their gradients for the Hex20 element
	Anisotropic Elasticity
	Triangular Shell Element
	Allman's Triangular Element
	Discrete Kirchoff Element
	Verification and Validation

	Triangular Shell - Tria3
	Two Node Beam
	Truss
	Springs
	Multi-Point Constraints, MPCs
	Constraint Transforms

	Rigid Elements
	RROD
	RBAR
	RBE3

	Shell Offset
	Notes on Consistent Loads Calculations
	Salinas Element Types
	Pressure Loading
	Shape Functions for Calculating Consistent Loads
	Shell Elements - consistent loads

	Coordinate Systems
	Constraint Transformations in General Coordinate Systems
	Decoupling Constraint Equations
	Transformation of Stiffness Matrix
	Application to single point constraints
	Multi Point Constraints
	Transformation of Power Spectral Densities

	HexShells

	Linear Algebra Issues
	Solution Spaces

	References
	Anisotropic Materials
	Linear Anisotropic Elasticity
	Stress Vectors
	Strain Energy and Orientation

	Integration of Isoparametric Solids
	Uniform Strain-Displacement Matrices
	Mixed Integration

	Index

