
SANDIA REPORT
SAND2004-3858
Unlimited Release
Printed August 2004

Performance of a Streaming Mesh
Refinement Algorithm

David C. Thompson
Philippe P. Pébay

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

SAND2004-3858
Unlimited Release
PrintedAugust 2004

Performance of a Streaming Mesh Refinement
Algorithm

David C. Thompson
Sandia National Laboratories

M.S. 9012, P.O. Box 969
Livermore, CA 94550, U.S.A.

dcthomp@sandia.gov

Philippe P. Ṕebay
Sandia National Laboratories

M.S. 9051, P.O. Box 969
Livermore, CA 94550, U.S.A.
pppebay@ca.sandia.gov

Abstract

In SAND report 2004-1617 [8], we outline a method for edge-based tetrahedral
subdivision that does not rely on saving state or communication to produce compat-
ible tetrahedralizations. This report analyzes the performance of the technique by
characterizing (a) mesh quality, (b) execution time, and (c) traits of the algorithm that
could affect quality or execution time differently for different meshes. It also details
the method used to debug the several hundred subdivision templates that the algorithm
relies upon. Mesh quality is on par with other similar refinement schemes and through-
put on modern hardware can exceed 600,000 output tetrahedra per second. But if you
want to understand the traits of the algorithm, you have to read the report!

3

Contents

1 Introduction. 7
2 Parallel streaming mesh refinement. 8

2.1 Unambiguous Cases. 8
2.2 Ambiguous Cases. .10

3 Practical Implementation Thanks ToS4 . 13
3.1 Python Implementation. .13
3.2 Brief Reminder About Symmetric Groups. 14
3.3 Application to Tetrahedron Subdivision. 15

4 Results!. 19
4.1 Individual Elements. .19
4.2 Entire Meshes. .24

4.2.1 Refinement According to the Distance to a Plane. 24
4.2.2 Refinement Governed by an Analytical Size Map. 26

4.3 Speed!. .32
4.4 Chance!. .33

5 Conclusion. 35
References. 38

Figures

1 Subdivision of unambiguous case 3a. 9
2 Potentially ambiguous configurations. 10
3 Ambiguous isosceles face refinement. 11
4 Ambiguous case 4bα: canonical configuration, image by(01) and reorien-

tation to obtain configuration|02|= |12|< |03|< |13| 17
5 Ambiguous case 4bα: canonical configuration, image by(0312) and reori-

entation to obtain configuration|02|= |03|< |12|< |13| 17
6 Ambiguous case 2a: theoretical and computed subdivisions. 19
7 Ambiguous cases 3a: theoretical and computed subdivisions. 20
8 Ambiguous cases 3c: theoretical and computed subdivisions. 20
9 Ambiguous cases 4a: theoretical and computed subdivisions. 21
10 Ambiguous cases 4b(α, β andγ): theoretical and computed subdivisions. . 21
11 Ambiguous cases 4b(δ andε): theoretical and computed subdivisions. 22
12 Ambiguous cases 4b(ζ andη): theoretical and computed subdivisions. . . . 22
13 Ambiguous cases 5: theoretical and computed subdivisions. 23
14 Initial meshT 0

box of a cuboid. .24
15 Streaming refinement ofT 0

box according to the distance to a plane. 25
16 Boundaries of a mechanical part and of the initial meshT 0

part 27
17 The LISSAJOUScurve(cos(t),sin(2t)) and the generalized cylinder using

it as directrix .28
18 Boundary overview and close-up of the final refined meshT 3

part 29

4

19 Streaming refinement ofT 0
part according to the distance to a plane. 30

20 Streaming refinement ofT 0
part according to the distance to a plane. 31

21 Refinement ofT 0
part using distance from a plane. 32

22 Triceratops and beauty queen. .34
23 Total case counts at each of 4 refinement steps governed by a distance-

from-a-plane metric of the cuboid, mechanical part and triceratops meshes. 35
24 Total ambiguous case counts during 4 refinement steps governed by a distance-

from-a-plane metric of the cuboid and triceratops meshes. 36

Tables

1 Subdivisions of canonical ambiguous cases. 12
2 Case 4bα: permutations from the canonical representation to all possible

configurations.. .18
3 Best, average, worst, and standard deviation ofι (aspect-ratio) andρ (radius-

ratio) qualities of meshesT 0
box, T 1

box, T 2
box, T 3

box andT 4
box. 26

4 Best, average, worst, and standard deviation ofι (aspect-ratio) andρ (radius-
ratio) qualities of meshesT 0

part, T 1
part, T 2

part andT 3
part. 29

5 Quasilinear speed of execution for varying levels of refinement of the me-
chanical part. .33

6 Quasilinear speed of execution for varying levels of refinement of the cuboid33

5

6

Performance of a Streaming Mesh
Refinement Algorithm

1 Introduction

Given an initial tessellation of an element’s parametric domain, we apply an adaptive trian-
gulation technique similar to [1], [9], and [7]. The main difference between our technique
and the first two is that we handle tetrahedra as well as triangles and currently use chord
error at the parametric midpoint of each edge rather than the angle between normal vectors
at each endpoint. Our approach is a direct extension of [7], but ensures compatibility in all
conditions without neighborhood information. As with the previous work, we assume that
the initial tessellation is fine enough that no large changes in the error metric occur inte-
rior to the simplices; the adaptive tessellation is intended to improve detail, not to handle
understanding.

The key design point of our implementation is that there are two tasks performed by an
edge-subdivision based tessellation algorithm:

1. making a decision about whether an edge should be subdivided, and

2. applying a template to produce new elements based on which edges of the initial
element require subdivision.

We split these two tasks into separate C++ classes so that the same templates for subdivision
could be applied to many different subdivision decision algorithms. The algorithms that
decide whether edges require subdivision vary depending on

1. the interpolation algorithm used for the geometric map,

2. the criteria used in the decision (geometric distance, scalar field nonlinearity),

3. the purpose of the overall task requiring a tessellation.

Item 3 requires some further explanation; if the tessellation is being produced simply for
display purposes, then a view-dependent subdivision may be performed. This greatly re-
duces the amount of work required, since no function evaluation need take place if both
edge endpoints are safely outside the viewing frustum1. On the other hand, if the tessel-
lation is produced as input to some further post-processing step, then no regions may be
excluded from the calculation.

1We assume that some safety margin is included so that edges which curve into the frustum are not
excluded.

7

The templates that produce new simplices given a starting simplexσ and the edges ofσ
requiring subdivisions deserve some discussion. The problem of triangulating the new set
of points (i.e., the original vertices ofσ and the mid-edge nodes being introduced by the
subdivision) is not unique – there may be one or many possible triangulations of the point
set. With a streaming algorithm, we must guarantee that each simplex may be processed
without any information about its neighbors. Since we want to maintain a compatible tes-
sellation, this means that any simplices that are shared as a boundary between two higher-
dimensional simplices must be tessellated identically when all the higher-dimensional sim-
plices are divided, even where there are several distinct possibilities. For example, any
triangle,τ, shared by two tetrahedra,σ0 andσ1, must be tessellated the same way whenσ0

andσ1 are subdivided.

We have presented in [8] a new scheme for refining tetrahedral meshes that does not
require neighborhood information. This makes it viable for streaming large datasets and
for parallel processing, where communication would be required to process elements on
boundaries between processes. We explain here how to practically implement the method
described in [8], since there is a long way to go from describing the canonical configura-
tions to implementing all the situations each of them represents.

2 Parallel streaming mesh refinement

2.1 Unambiguous Cases

We use the same nomenclature as [7], so this section is just a brief review of their results.
When a tetrahedron,σ, is to be subdivided, we are given a list of edges ofσ that will be
divided. First, the vertices ofσ are permuted intoσ′, a positive arrangement ofσ that
matches one of 12 cases ([7] present 11 cases but we divide their case 3c into 3c and 3d so
thatσ′ will always be apositivearrangement ofσ). Cases are called out with

• the number of edges of a tetrahedron,σ, that should be subdivided, and

• a letter representing a unique configuration of those edges relative to each other.

Then, a collection of points,P, is created that includesσ′ and the midpoints of edges inσ′
that must be subdivided. This set of points,P, must be tessellated in a consistent manner
so that simplices adjacent toσ will be compatible at the boundary they share withσ. Let’s
say we can produce such a tessellation. Call itσ′′. For each of the 12 cases, there will be
edges inσ′′ that are constrained to be present and possibly some edges ofσ′′ that are not
constrained. [7] use geometry – the length of the edges ofσ′ – to decide how to connect
points inP to form σ′′. They choose edges forσ′′ that produce tetrahedra with the best
possible aspect ratio givenP. Each case with unconstrained edges inσ′′ will have several

8

����

��
����

����

	�	

����

��

��

��
����

����

����

����

����

��

�
!�!"

#�#$

%�%&

'�'(

)�)*

+,

-.
/�/0

1�12

3�34

5�56

7�78

9:

;<
=�=>

?�?@

A�AB

C�CD

E�EF

GH

IJ
K�KL

M�MN

O�OP

Q�QR

ST

Constrained configuration

Initial edges

Geometric configuration

6-7-1-3
6-7-4-1

7-4-2-1
7-4-6-2

6-7-1-2
6-7-4-1

4-6-3-2
4-6-7-3

7-4-2-3
7-4-6-2

4-6-3-1
4-6-7-3

4-7-6-0

1-3-2-7 1-3-2-61-3-2-4

0

1

3

2

4

7

0

1

3

2

4

7

0

1

3

2

4

7

0

1

3

2

4

7

0

1

3

2

4

7

0

1

3

2

4

7

6

|01| > |02| > |03|

|02| > |03| > |01| |03| > |02| > |01||02| > |01| > |03|

|01| > |03| > |02| |03| > |01| > |02|

6 6

666

Figure 1. Subdivision of unambiguous case 3a.

variants based on which edges ofσ′ are longer than the others (relative to which edges must
be subdivided). Figure1 shows all 6 variants for Case 3a.

Unfortunately, when edges ofσ′ are of equal length, the edge length criterion gives
no answer for howσ′′ should be obtained. This leaves several possibilities forσ′′ and it
is ambiguous which one we should use so thatσ′′ remains compatible with its neighbors.
There are two ways to resolve these ambiguities:

1. the algorithm stores the state of each element as it is refined, and subsequent com-
munication will insured compatibility; or,

2. the algorithm choosesσ′′ using a criterion that will the same for all simplices sharing
that face.

We will take the second approach, because it requires less states for the algorithm, and
eliminates communication. In the next section, we devise such an algorithm.

9

2.2 Ambiguous Cases

Ambiguous cases occur when a face can be split in two different ways,i.e., whenever at
least one face has exactly two edges of equal length that must be split. A simple enumer-
ation shows that all such situations can be summarized by the means of reference config-
urations 2a, 3a, 3c, 4a, 4b or 5 (see Figure2). To resolve the ambiguity when edges of

����

���
�

0

1

3

2

5

4

Case 2a

����

���
� ��

0

1

3

2

4

7

6

Case 3a

����

���
� ��

0

1

3

2

5

4

7

Case 3c

�������
� ����

���
�

��

0

1

3

2

7

9

6

8

Case 4a

�������
� ����

��

���
�

0

1

3

2

5

7

6
8

Case 4b

�������
� ����

���
�

����

	

0

1

3

2

5

7

9

6
8

Case 5

Figure 2. Potentially ambiguous configurations.

σ′ are of equal length, we propose adding a new point,a, to each face with an ambiguous
triangulation. More precisely, the face must be split unequivocally into a triangle and an
isosceles trapezoid, the latter having two possible triangular subdivisions, both of them be-
ing acceptable according to the subdivision algorithm (cf. Figure3(a)). By placinga on
the angle bisector of the vertex opposite the base of the trapezoid, as shown in Figure3(b),
there exists a triangulation that is symmetric about the angle bisector and will be identical
for σ and any tetrahedron that shares the face withσ. We discuss the placement ofa along
the angle bisector for the best resulting tetrahedra in [6]. The end result is that we placea
at 1

4 of the triangle’s altitude. In [8], we proposed lifting the face ambiguities by the means
of point(s) insertion(s) in the interior of the ambiguous faces. A complete set of compatible
tetrahedral subdivisions for each canonical case has been proposed, and it is recalled here
in 2.2.

10

�������
�

�������
�

(a)

�������
�

�������
�

�������
�

(b)

Figure 3. Ambiguous isosceles face refinement: (a) two different
subdivisions are possible, and (b) unambiguous subdivision thanks
to a point insertion.

11

Table 1. Subdivisions of canonical ambiguous cases

Case Ambiguity Tetrahedra
2a |01|= |12| 04a3 0a23 4153 45a3 a523

3aα |01|= |02|> |03| 0467 4367a123a263a643a413
3aβ |01|= |02|< |03| 0467 1327a127a267a647a417

3aγ |01|= |02|= |03| 0467 26ad 37db41ab b6a4 b6da
b67d b647 2abd1ab2 2b3d 321b

3cα |01|= |12|> |03| 4153a047a207a743a273a523a453
3cβ |01|= |12|< |03| 7153 7523a047a207a527a457 1547

3cγ |01|= |12|= |03| 415b b153a047a207a523
a273a74b a7b3 a45b ab53

4aα |03|= |13|> |23| 7893 670b 601b 6978 67b8 6b18 1268 2689
4aβ |03|= |13|< |23| 7893 670b 601b 6978 67b8 6b18 1269 1689

4aγ |03|= |13|= |23| 7893 670b 601b 6978 67b8
6b18 612c 629c 698c 681c

4bα |02|= |12|< |13|< |03| 7823a607a158a017a718
67a8 6a58 6278 6528

4bβ |02|= |12|> |13|> |03| 6523a607a158a018a708
67a8 6a58 6378 6538

4bγ |03|< |02|= |12|< |13| 6238a607a158a018a708
67a8 6a58 6378 6528

4bδ |02|= |12|< |03|= |13| 7823a607a158a01b ab18a0b7
a7b8 67a8 6a58 6278 6528

4bε |02|= |12|= |03|< |13| a607a158a018a708d625d378
d238d285 67a8 6a58 6d78 65d8

4bζ |02|= |12|= |03|> |13| a607a158a018a708d625d378
d235d385 67a8 6a58 6d78 65d8

4bη |02|= |12|= |03|= |13| a607a158a01b ab18a0b7 a7b8 d625d378
d23c d2c5 dc38d5c8 67a8 6a58 65d8 6d78

5α |02|= |12|, |03|> |13| 6529 7893a607a158a017a718a859a679

5β |02|= |12|, |03|= |13| 6529 7893a607a158a01b
ab18a0b7 a7b8 a859a679

12

3 Practical Implementation Thanks ToS4

The algorithm outlined in the previous section implies that the tetrahedronσ′ must be
permuted into one of the canonical configurations of Table2.2, prior to decidingσ′′. In
other words, the algorithm requires the composition of two permutations; this results in a
great deal of complexity.

3.1 Python Implementation

We usePython to generate C++ code for two reasons: it helps manage the complexity of
the tessellation process and it allows a compact array of output tetrahedra to be generated
for fast execution.

To illustrate the complexity of the process, the basic flow of the adaptive tessellation
code is:

1. An input tetrahedron,σi = {v0,v1,v2,v3}, is supplied by the user,

2. A subdivision algorithm is applied to each edge ofσi , possibly resulting in additional
vertices (some subset,E ⊆ {v4,v5, . . . ,v9}).

3. A mapΛ : (σi ,E) → (σi ,E) is applied to permute the vertices ofσi andE into one
of 12 reference configurations.

4. All faces of σi that contain exactly 2 subdivided edges of exactly the same length
have a vertex added to the face, resulting in another set of additional vertices,F ⊆
{v10,v11,v12,v13}.

5. The lengths of edges ofσi are used to determine a set of output tetrahedra,T consist-
ing of vertices fromσi , E, andF . This is a second map whose domain is the vertices
in σi , E, andF ; and whose range is a set of simplices composed of vertices inσi , E,
andF , i.e.,ϒ : (σi ,E,F)→{[vi ,v j ,vk,v`], . . .}.

6. Eachσo ∈ T is used as an input tetrahedron for this algorithm until no further subdi-
vision is required or the maximum number of recursions has been made.

The mapΛ is implemented as a simple lookup table with 64 entries (the number of possi-
ble unique subsetsE). ϒ is more complex because the map relies on geometric relations
between vertices ofE and because the range is sets of simplices rather than a permutation
of the input vertices. We could create a list of sets of all the simplices in the range ofϒ,
but this list would be extremely long. Also, it would contain many tetrahedralizations ofσi

that were simply rotated, mirrored, or otherwise transformed versions of some other set in
the list. So, we decomposeϒ into a pair of maps (ϒ = ∆◦Ω):

13

1. A permutation of the input vertices (i.e., a second map,∆, of the same form asΛ),
and

2. A map from the input vertices to a set of tetrahedra (i.e., a map,Ω, of the same form
asϒ but with a smaller domain).

Even after the decomposition, there are still approximately 280 tetrahedra grouped into
50 sets. Rather than hand-write the C++ code that selects the proper set of tetrahedra and
permutations to apply, we have created a Python script that assembles an array of tetrahedra
and permutations and then writes C++ code to apply the proper maps as table lookups.

3.2 Brief Reminder About Symmetric Groups

Definition 3.1. Let E be a set. A bijection fromE onto itself is called apermutation of E.
Equipped with the composition operation (also calledproductin this context), the set of all
permutations ofE forms a group, called thesymmetric group of E, and denoted asS(E).
For alln∈ IN∗, the symmetric group of{1, . . . ,n} is denotedSn.

Remark3.1. It is clear that the symmetric group of any ordered finite setE with n∈ IN∗

elements is isomorphic toSn, thanks to the canonical increasing bijection betweenE and
{1, . . . ,n}. Therefore, we will make use ofS4 to denote the symmetric group of the four
vertices of a tetrahedron, indexed from 0 to 3.

In all that follows,E and will denote a finite set with cardinalityn∈ IN∗.

Definition 3.2. Let s∈S(E). For any givenx∈ E, thes-orbit of x is defined as follows:

Os(x) = {sp(x), p∈ IN} .

A s-orbit is a part ofE that is a thes-orbit of at least onex ∈ E. s is said to be acycle
if there is uniques-orbit Os with nonzero cardinality; in this case, denotingp the cardinal
number of the orbit,s is said to be ap-cyclewith supportO. A transpositionis a 2-cycle.
A p-cycles with support{a1, . . . ,ap}, whereai = si−1(a1) will be denoted(a1 . . .ap).

Remark3.2. The p-cycle notation is not unique: for example, a transposition(a1a2) can
also be written(a2a1).

Example3.1. S4 contains
(4

2

)
= 6 transpositions. In the case where the permuted set is

{0,1,2,3}, these are(01), (02), (03), (12), (13) and(23). The composition of any two of
them with non-disjoint support is a 3-cycle, and there are 4×2 = 8 three-cycles. In addi-
tion, S4 contains 3 permutations formed of 2 permutations with disjoint support, namely
(01)(23), (02)(13) and(03)(12); those, along with the identityι4, form the KLEIN Vier-
gruppe, the smallest finite group with element orders all smaller than the group’s cardinal.
The remaining 4!−18= 6 elements are the 4-cycles, such as(0312).

We recall the following essential results, see [3] for proofs:

14

Theorem 3.1. All non-identity permutations of E can be written as a product of permuta-
tions with pairwise disjoint supports. In addition, this product is unique, up to the factors
ordering.

Corollary 3.2. Any permutation of E can be written as a product of transpositions.

Definition 3.3. Let s∈ S(E) and m(s) the number ofs-orbits in its decomposition as
defined in Theorem3.1. Thesignatureof s is then defined as:

ε(s) = (−1)n−m(s).

Theorem 3.3. If s∈S(E) is a product of m transpositions, thenε(()s) = (−1)m.

Example3.2. The 4-cycle(0312) can be written as(03)(31)(12):

(0,1,2,3)
(12)7−→ (0,2,1,3)

(31)7−→ (0,2,3,1)
(03)7−→ (3,2,0,1)

This decomposition is not unique since we also have,e.g.,

(0312) = (12)(20)(03) = (03)(31)(12)(02)(02).

Its signature isε((0312)) = (−1)4−1 = (−1)3 = (−1)5 =−1.

3.3 Application to Tetrahedron Subdivision

The idea developed hereafter is to retrieve directly from the canonical configuration the
decomposition of any particular configuration pertaining to a given subcase, by the means
of vertex permutations. More precisely, given a particular configuration, vertices will be
permuted while leaving the overlying topology unchanged, so that the canonical configu-
ration is retrieved. In other words, vertex indices might be changed, but the connectivity
is not transported throughout the process. In order that the relative vertex locations remain
constant, midpoints and face points must be transported consistently. We therefore must
extend vertex permutations to midpoints and faces, as illustrated in the following example:

Example3.3. Consider the transposition(01), which switches 0 and 1, while keeping the
other vertices unchanged: for instance, the doubles(1,2) and(0,2) are switched. In order
to preserve midpoint consistency, 5 and 6 must therefore be switched, too. In fact, the
generalized(01) is the following map:

(0,1,2,3,4,5,6,7,8,9,a,b,c,d) 7−→ (1,0,2,3,4,6,5,8,7,9,a,b,d,c).

In particular, edge 01 is left globally unchanged, but if,e.g., the canonical configuration
has edgec8, then the configuration obtained thanks to the generalized(01) permutation
has edged7 instead.

15

One can accordingly generalize all the elements ofS4 but, since this is both easy and
lengthy to be described, it is left to the reader as an exercise. In everything that follows, all
permutations will be implicitly meant in the “generalized sense”, except otherwise men-
tioned.

Given a particular configurationK, once both the canonical configurationK0 and the
generalized permutations necessary to go fromK0 to K are known, then the subdivision
of K is immediately obtained by applyings to the element vertices in the decomposition of
K0, as detailed in Example3.4.

Example3.4. Consider the ambiguous case 4bα, which arises when in ambiguous case 4b,
exactly two edges among 12, 02, 13 and 03 have equal lengths, while being shorter than
the two other ones. To represent the class of all such configurations, the canonical case 4bα
in [8], illustrated in Figure4(a), is defined by:

|02|= |12|< |13|< |03|. (1)

According to Table2.2, the corresponding subdivision is as follows (oriented tetrahedra):

0123= 7823∪a607∪a158∪a017∪a718∪67a8∪6a58∪6278∪6528. (2)

Let us consider now another configuration which pertains to the same topological equiva-
lence class, but with a different ordering of the edge lengths:

|02|= |12|< |03|< |13|, (3)

as illustrated in Figure4(c). Thanks to the help ofS4, it is straightforward to generate
the decomposition of this particular configuration from the canonical (2): in fact, (3) is
simply obtained by applying the transposition(01) to (1). The new configuration, shown
in Figure4(b), has therefore the following subdivision, obtained by applying(01) to (2):

1023= 8723∪a518∪a067∪a108∪a807∪58a7∪5a67∪5287∪5627, (4)

that might be reoriented, becauseε((01)) =−1, such that the oriented configuration reads:

0123= 7823∪5a18∪0a67∪1a08∪8a07∪85a7∪a567∪2587∪6527. (5)

Now, consider the particular configuration defined as follows:

|02|= |03|< |12|< |13|, (6)

which can be deduced from the canonical configuration by applying the permutation(0312),
that transforms (2) into (see Figure5(b)):

3201= 8501∪d738∪d265∪d328∪d825∪78d5∪7d65∪7085∪7605. (7)

Finally, becauseε((0312)) =−1, the latter subdivision needs to be reoriented, which leads
to the proper (oriented) decomposition of the configuration (6) (see Figure5(c)):

2301= 5801∪7d38∪2d65∪3d28∪8d25∪87d5∪d765∪0785∪6705. (8)

Note that tetrahedra 2301 and 0123 have the same orientation; the subdivision provided
in (8) is therefore a valid oriented subdivision of the tetrahedron in configuration (6).

16

�������
� ����

����

��
	�		�	

0

1

3

2

5

7

a

8
6

(a)

(01)7−→ �������
� ����

����

��
	�		�	

3

2

a

7

0

1

6

5

8

(b)

R7−→ �������
� ����

����

��
	�		�	

0

1

3

2

5

7

a

8
6

(c)

Figure 4. Ambiguous case 4bα: (4(a)) canonical configura-
tion (|02| = |12| < |13| < |03|), (4(b)) image by(01), and (4(c))
reorientation to obtain the oriented subdivision of configuration
|02|= |12|< |03|< |13|.

�������
� ����

����

��
	�		�	

0

1

3

2

5

7

a

8
6

(a)

(0312)7−→ �������
� ����

����

��
	�		�	

3

2

1

0

6

8

d

5
7

(b)

R7−→ �������
� ����

����

��
	�		�	

2

1

0

7

5

d

8
6

3

(c)

Figure 5. Ambiguous case 4bα: (5(a)) canonical configuration
(|02| = |12| < |13| < |03|), (5(b)) image by(0312), and (5(c))
reorientation to obtain the oriented subdivision of configuration
|02|= |03|< |12|< |13|.

17

As expected, obtaining the subdivision of the particular configuration is immediate, as
soon as thes∈ S4 necessary to transform the canonical into the particular configuration
is known. For instance, all the configurations that can be deduced from the canonical
representation of case 4bα are detailed in Table3.3. If the permutations∈ S4 used to

Table 2. Case 4bα: permutations from the canonical representa-
tion to all possible configurations.

s∈S4 Configuration s(0123) ε(s)
ι4 |02|= |12|< |13|< |03| 0123 1

(01) |02|= |12|< |03|< |13| 1023 -1
(23) |03|= |13|< |12|< |02| 0132 -1

(01)(23) |03|= |13|< |02|< |12| 1032 1
(02)(13) |02|= |03|< |13|< |12| 2301 1
(03)(12) |12|= |13|< |02|< |03| 3210 1
(0213) |12|= |13|< |03|< |02| 2310 -1
(0312) |02|= |03|< |12|< |13| 3201 -1

obtain the desired configuration has a negative signature, then the subdivision is composed
of negatively oriented tetrahedra. This can be a problem, depending on the application
using the refined mesh. As a general rule, it is good practice for mesh refinement software
to be orientation-preserving. Therefore, whenever needed,i.e., wheneverε(s) =−1, a final
reorientation step must be performed, as done for instance in Figure4(c) and Figure5(c).
This reorientation operationR can be interpreted as the application of any transposition
τ ∈S4 to the whole configuration, including the topological features, so that connectivities
are left unchanged. A more geometric point of view is to regardR as a symmetry across
any arbitrary plane, followed by a rotation and a transposition to retrieve the initial vertex
coordinates.

Remark3.3. One can observe that the permutations listed in Table3.3, combined with the
composition operation, form a group, and hence a subgroup ofS4. This is indeed not
surprising, since the permutations do not change the topology of the tetrahedron (including
edges imprinted onto it), and thus all configurations pertaining to 4bα can be deduced
from each other. In particular, the configuration chosen to be canonical does not matter.
The same argument applies to all cases, and thus each set of permutations (including the
identity) associated with a canonical configuration is a subgroup ofS4, whose cardinal
thus divides 24. Therefore, there can be only (including the canonical case itself) 1, 2, 3,
4, 6, 8, 12, or 24 particular configurations associated with a given case (e.g., 8 with 4bα).
This property is used to verify the code.

18

4 Results!

The results are presented as follows: first, we compare the theoretical decompositions of
each ambiguous case to the subdivision as computed by the tessellator. Note that the theo-
retical decompositions are a matter of topology only, and therefore all of them can be pre-
sented over a unique generic tetrahedron. The actual instances of such ambiguous cases,
on the contrary, can be encountered only for specific geometries, and therefore each case is
represented by a particular tetrahedron that has the desired geometric properties,i.e., edge
length ratios.

4.1 Individual Elements

We first test the tessellator results for each of the cases we newly introduced in [8] and
reminded in this report, in Table2.2.

����

���
�

0

1

3

2

5

4

(a) (b)

Figure 6. Ambiguous case 2a: theoretical (a) and computed (b)
subdivisions.

Figure6 compares the theoretical and computed decompositions of ambiguous case 2a.
Similar comparisons are provided for all other ambiguous cases but, for the sake of sav-
ing space, all subcases of ambiguous cases 3a, 3c, 4a and 5 are gathered, respectively, in
Figures7, 8, 9 and13. Due to the number of subcases, ambiguous case 4b is split across
Figures10, 11and12.

19

����

���
� ��

����

0

1

3

2

4

7

6

a

Case 3aα

����

���
� ��

����

0

1

3

2

4

7

6

a

Case 3aβ

���
�
����

���
� ��

	�	
 ����

0

1

3

2

4

7

6

a

b

d

Case 3aγ

Figure 7. Ambiguous cases 3a: theoretical (upper) and computed
(lower) subdivisions.

����

���
� ��

�������
�

0

1

3

2

5

4

7

a

Case 3cα

����

���
� ��

�������
�

0

1

3

2

5

4

7

a

Case 3cβ

����

����

���
� ��

	�		�	

0

1

3

2

5

4

7b

a

Case 3cγ

Figure 8. Ambiguous cases 3c: theoretical (upper) and computed
(lower) subdivisions.

20

�������
�

�������
�

����

���
�

	

0

1

3

2

7

9

6

b

8

Case 4aα

�������
�

�������
�

����

���
�

	

0

1

3

2

7

9

6

b

8

Case 4aβ

�������
�

�������
�

�������
�

����

		

��

0

1

3

2

7

9

6

b

8

c

Case 4aγ

Figure 9. Ambiguous cases 4a: theoretical (upper) and computed
(lower) subdivisions.

�������
� ����

����

��
	�		�	

0

1

3

2

5

7

a

8
6

Case 4bα

�������
� ����

����

��
	�		�	

0

1

3

2

5

7

a

8
6

Case 4bβ

�������
� ����

����

��
	�		�	

0

1

3

2

5

7

a

6
8

Case 4bγ

Figure 10. Ambiguous cases 4bα, 4bβ and 4bγ: theoretical (up-
per) and computed (lower) subdivisions.

21

�������
�

�������
�

����

����

	

�������
�

0

1

3

2

5

7

6

a
b

8

Case 4bδ

�������
�
����
����

����

	

�������
�

0

1

3

2

5

7

a

6

d

8

Case 4bε

Figure 11. Ambiguous cases 4bδ and 4bε: theoretical (upper)
and computed (lower) subdivisions.

�������
�
����
����

����

	

�������
�

0

1

3

2

5

7

a

8
6

d

Case 4bζ

�������
�

�������
�

�������
�
����
	�	

����

�
�������
�

0

1

3

2

5

7

a

8 6

d

b

c

Case 4bη

Figure 12. Ambiguous cases 4bζ and 4bη: theoretical (upper)
and computed (lower) subdivisions.

22

�������
� ����

���
�

����

	

�������
�

0

1

3

2

5

7

9

6
8

a

Case 5α

�������
�

�������
�

����

���
�

	�	

��
���
�

0

1

3

2

5

7

9

6
8

a
b

Case 5β

Figure 13. Ambiguous cases 5: theoretical (upper) and computed
(lower) subdivisions.

23

4.2 Entire Meshes

Now that the tessellator is validated for all canonical configurations, we test it,sine die,
with entire tetrahedral meshes.

4.2.1 Refinement According to the Distance to a Plane

The first example is that of a cuboid2. The initial meshT 0
box has 553 points and 1627

tetrahedral elements, and is displayed in Figure14. The mesh refinement, using the scheme

Figure 14. Initial meshT 0
box of a cuboid: boundary (left) and clip

across the mesh to show interior detail (right).

described in the previous sections, is performed according to the following criterion:
An edge of lengtheand whose midpoint coordinates are(mx,my,mz) is subdivided if

(mx +my +mz−2)2

3
< 2e2. (9)

Geometrically, this occurs when the distance between the edge midpoint and the plane with
unit normal 1√

3
(1,1,1) passing through the center of the mesh,(0,0,2), is smaller than

√
2

times the edge length. Four successive refinement steps are performed from the initial
meshT 0

box, leading to the refined meshesT 1
box, T 2

box, T 3
box, andT 4

box. Columnsnv andnt

in Table3 respectively indicate the numbers of points and tetrahedra of these meshes, and
cut snapshots are shown in Figure15. It is also interesting to examine whether the scheme
degrades mesh quality or not, since this is a typical weak point of mesh subdivision without
subsequent mesh smoothing. In this goal, we are making use of the aspect-ratio measure,
denotedι, which is the most accepted estimate in the context of tetrahedral finite element
analysis (cf. [2]). This measure is defined for each tetrahedronK by

ι(K) = α
hmax(K)

r(K)
, (10)

2also known, more formally but less conveniently, asrectangular parallelepiped.

24

T 1
box T 2

box

T 3
box T 4

box

Figure 15. Streaming refinement ofT 0
box according to the dis-

tance to a plane: 1
(
T 1

box

)
, 2

(
T 2

box

)
, 3

(
T 3

box

)
, and 4

(
T 4

box

)
levels

of refinement; some elements have been removed to show interior
detail.

wherehmax(K) andr(K) respectively denote the longest edge length and the inradius ofK.
α is a normalization coefficient, so thatι(K) = 1 whenK is a regular tetrahedron. An
elementary geometric calculation shows thatα = 1

12

√
6. Indeed, 1 is the absoluteminimum

of ι and is reached only by regular tetrahedra. We have also written aVTK class that
computesι qualities:vtkCalculateMeshQuality.

Quality is also assessed by the means of the radius-ratioρ, since there is an existing
VTK quality that already computes it:vtkMeshQuality. This measure is defined for each
tetrahedronK as follows:

ρ(K) = β
R(K)
r(K)

, (11)

whereR(K) is the circumradius ofK, andβ is a normalization coefficient, such thatρ(K) =
1 whenK is regular. Since, for any regular tetrahedronK0, R(K0) = 3r(K0), it follows
immediately thatβ = 1

3.

Remark4.1. In the case of 2D simplicial (triangular) meshes, it is shown in [5] that ι andρ
have essentially similar behaviors, except for the fact that the latter has a critical point at its
minimum, which might make it less suitable for iterative optimization procedures than the
former, who has a salient point instead. In the case of 3D simplicial (tetrahedral) meshes,
this result has not been proven but it is reasonable to also expect similar behaviors.

25

Table 3. Best, average, worst, and standard deviation ofι (aspect-
ratio) andρ (radius-ratio) qualities of meshesT 0

box, T 1
box, T 2

box, T 3
box

andT 4
box.

np nt ι− ι ι+ σι ρ− ρ ρ+ σρ

T 0
box 553 1627 1.05 1.85 12.2 0.73 1.01 1.7 37.5 1.78

T 1
box 1742 7351 1 1.97 12.2 0.79 1 1.91 35.4 1.83

T 2
box 6517 32887 1 2.16 18 0.94 1 2.3 116 2.63

T 3
box 25691 140588 1 2.4 18 1.15 1 2.82 121 3.6

T 4
box 103253 587283 1 2.71 32.6 1.44 1 3.58 384 5.38

The results of mesh quality assessments are provided in Table3. Average qualities
are not dramatically worsened, and the dispersion of elements is not substantially worse.
Radius ratios (ρ) exhibit far greater dispersion than aspect ratios (ι), but that was expected,
due to the nature of the estimates themselves. Indeed, in the case of triangle elements,
this property has been established theoretically in [5]. The reduction in average quality
is comparable to what is described in [2] for mid-edge based tetrahedral refinement. The
fact that we are treating some of the isosceles faces as ambiguous cases might reduce the
number of elements with bad aspect ratios (or radius ratio), because the 4 subfaces as shown
in Figure3(b)have better aspect ratios than the 2 subfaces of either possible decompositions
in Figure3(a).

4.2.2 Refinement Governed by an Analytical Size Map

The second example will consist in the refinement of the tetrahedral mesh of mechanical
part, illustrated in Figure16(a), left. The initial mesh, denotedT 0

part (cf. Figure16(b)), has
28694 points and 150779 elements.

The edge subdivision criterion that will be used to refine that mesh relies on the prin-
ciple of an edge size map specification [2]. In fact, the previous example can also be
formulated in that way, but it is certainly more intuitive to present it in terms of distance to
a plane. In the case of the current example, we are going to make use of a more evolved
analytical size specification, based on the 3D lifting of a 2D closed smooth curve. An in-
teresting category of such curves is the family ofLISSAJOUScurves, seee.g.[4]. One of the
simplest LISSAJOUScurves in thexyplane can be parametrized as follows:{

x(t) = Acost
y(t) = Bsin(2t), (12)

26

(a) (b)

Figure 16. Boundaries of a mechanical part (a) and of the initial
meshT 0

part (b). Thanks to Pr Pascal Frey (University P. & M. Curie,
Paris-6) for the mesh.

whereA andB are two real positive constants, andt ∈ [0,2π[. The curve obtained by taking
A = B = 1 in (12) is shown in Figure17(a).

In order to specify a size map, an implicit definition of the curve is needed. Using
the fact that sin(2t) = 2sint cost, it follows immediately that any point that belongs to the
parametric curve defined in (12) satisfies the following implicit equation:

4x4

A4 −
4x2

A2 +
y2

B2 = 0. (13)

Conversely, any real double(x,y) that satisfies (13) also has

y2

B2 =
4x2

A2 −
4x4

A4 =
4x2

A2

(
1− x2

A2

)
, (14)

and thus 1− x2

A2 ≥ 0, whence−A≤ x≤ A. Therefore, there exists a uniqueϕ ∈ [0,2π[such
thatx = Acosϕ and (14) then becomes:

y2

B2 = 4cos2ϕsin2ϕ, (15)

hencey =±Bsin(2ϕ). This means that, by takingt as eitherϕ or−ϕ (thanks to the parity
of cos), any real double(x,y) that satisfies the implicit equation (13) can be parametrized
as in (12). Since the double inclusion has been shown, it follows that (12) and (13) are
equivalent. It is now therefore immediate to deduce a 3D surface by considering (13) in
IR3, where the generic coordinates are denoted(x,y,z). In that case, (13) is thus a general-
ized cylinder with directrix the LISSAJOUScurve (12) in thexy plane, and director curves
the lines perpendicular to that plane. In all that follows, this generalized cylinder will be
denotedLA,B; a section ofL1,1, for 0≤ z≤ 2, is displayed by Figure17(b).

27

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

x

(cos(t),sin(2t))

(a)

-1
-0.5

0

0.5

1

-1
-0.5

0
0.5

1

0

0.5

1

1.5

2

-1
-0.5

0

0.5

1

-1
-0.5

0
0.5

1

0

0.5

1

1.5

2

(b)

Figure 17. (a): the LISSAJOUScurve (cos(t),sin(2t)); (b): a
section of the generalized cylinder with the latter as directrix, and
director lines perpendicular to thexyplane.

Now, the right-hand side of (13) will be used to specify the edge size map, by defining,
for all (x,y,z,) in IR3,

f (x,y,z) =
4x4

A4 −
4x2

A2 +
y2

B2 ,

and the refinement criterion will therefore be:

[f (mx,my,mz)]
2 < ke2, (16)

where, as previously,(mx,my,mz) are the coordinates of the midpoint of an edge with
lengthe, andk is a positive real constant to be set, depending on the desired level of refine-
ment progressivity. By definition,LA,B is the 0-level set off , which means that the edge
size target on this surface is 0. On the other hand, the further an edge midpoint fromLA,B,
the looser the size specification implied by (16). Therefore, the mesh refinement process
should “track” LA,B, and the tracking should become tighter when iterating refinement
steps. Finally, we setA andB so that a completez-section ofLA,B is intercepted by the
initial mesh3.

Mesh topology and quality results of 3 refinement steps are summarized in Table4.
Similar trends in quality were observed for the mechanical part as with the cuboid. A
boundary overview and a close-up on some interesting features of the final meshT 3

part are
presented in Figures19and20display cuts across initial and refined meshes.

3the exact values used areA = 1
30 andB = 1

50.

28

Table 4. Best, average, worst, and standard deviation ofι (aspect-
ratio) andρ (radius-ratio) qualities of meshesT 0

part, T 1
part, T 2

part and
T 3

part.

np nt ι− ι ι+ σι ρ− ρ ρ+ σρ

T 0
part 28694 150779 1.01 1.5 12 0.27 1 1.29 40.9 0.3

T 1
part 62854 345529 1.01 1.63 19.9 0.39 1 1.44 168 0.65

T 2
part 211480 1207377 1.01 1.85 33.2 0.59 1 1.75 427 1.42

T 3
part 865695 5034682 1.01 2.11 46.4 0.81 1 2.19 890 2.84

Figure 18. Boundary overview (left) and close-up (right) of the
final refined meshT 3

part.

29

T 0
part T 1

part

T 2
part T 3

part

Figure 19. Streaming refinement ofT 0
part according to the dis-

tance to a plane: 0
(
T 0

part

)
, 1

(
T 1

part

)
, 2

(
T 2

part

)
, and 3

(
T 3

part

)
levels

of refinement; some elements have been removed to show interior
detail.

30

T 0
part T 1

part

T 2
part T 3

part

Figure 20. Streaming refinement ofT 0
part according to the dis-

tance to a plane: 0
(
T 0

part

)
, 1

(
T 1

part

)
, 2

(
T 2

part

)
, and 3

(
T 3

part

)
levels

of refinement; some elements have been removed to show interior
detail.

31

4.3 Speed!

The speed of execution of the algorithm is an important performance measure second only
to adequate mesh quality. The mechanical part mesh was refined using the distance-from-a-
plane subdivision metric with 0 through 4 levels of refinement, which generate increasingly
large output meshes for the same input set (see Figure21).

Figure 21. Several views of a 3-level refinement of the mechan-
ical part’s meshT 0

part using the distance-from-a-plane subdivision
metric.

The time required to perform the refinement and the throughput (in Mtets4 per second)
are shown in Table4.3. The times are CPU times of the algorithm, compiled with gcc 3.3.3
on a single-CPU AMD Opteron 246 running Linux (Fedora Core 2) with 4 GB of memory.
Mesh read and write times are not included, but the memory allocations required to store
the output tetrahedra are included (as opposed to a true stream in which the results would
be discarded after computation). Times are also shown for the cuboid in Table4.3, but
since the input is small and the mesh synthetic, they should probably be given less weight.

4millions of tetrahedra

32

Table 5. The speed of execution for varying levels of refinement
of the mechanical part varies almost linearly with the number of
output tetrahedra.

Refinements Time[s] Tetrahedra Throughput[tets
s ×106]

0 0.220 150779 0.687
1 0.458 277705 0.606
2 1.19 799149 0.674
3 4.36 2957365 0.679
4 17.2 11955114 0.697

Table 6. The speed of execution for varying levels of refinement
of the cuboid varies almost linearly with the number of output
tetrahedra.

Refinements Time[s] Tetrahedra Throughput[tets
s ×106]

0 0.00221 1627 0.737
1 0.0101 7351 0.726
2 0.0503 32887 0.654
3 0.214 140588 0.657
4 0.887 587283 0.662
5 3.757 2447890 0.652

4.4 Chance!

One of thing that affects the speed and quality of the output meshes is the chance that each
subdivision case is encountered. We therefore present the case distribution histograms cor-
responding to 4 levels of distance-from-a-plane refinements for the cuboid and mechanical
part meshes, respectively in Figures23(a)and23(b). Also shown, in Figure23(c), is the
histogram for a more organic mesh illustrated in Figure22. Note that an additional case
is mentioned: 3d; it corresponds to negatively oriented 3c configurations, that are treated
independently only for practical implementation reasons.

Remark4.2. It is interesting to notice that, for all non-ambiguous cases, any particular con-
figuration can be obtained from the canonical one byvia a positively oriented permutation,
except for case 3c. This is why only this case enjoys the honor of a special treatment.

Global trends observed in Figure23 are similar for the three meshes, although those
exhibit substantially different topologies (e.g., number of elements, genus) and geometric
(e.g., boundary curvature, quality) features. The fact that all cases are met is yet another
global validation of the tessellator, since all cases outlined theoretically have been met and
resolved. However, this does not mean that all subcases, and in particular ambiguous sub-
cases, have been met. We therefore further refine the diagnostic, by examining the case
counts for ambiguous cases at the end of the refinement process (level 4). Surprisingly
enough, not a single ambiguous tetrahedron is met during the 4 steps of refinement of the

33

Figure 22. Several views of the boundaries of the initial mesh of
a triceratops (left), and of the beauty queen (right) obtained after 4
steps of refinement governed by a distance-from-a-plane metric.

34

1

10

100

1e3

1e4

1e5

1e6

1 2a 2b 3a 3b 3c 3d 4a 4b 5 6

N
um

be
r o

f o
cc

ur
en

ce
s

Case

step 1
step 2
step 3
step 4

(a)

1 2a 2b 3a 3b 3c 3d 4a 4b 5 6
Case

step 1
step 2
step 3
step 4

(b)

1 2a 2b 3a 3b 3c 3d 4a 4b 5 6
1

10

100

1e3

1e4

1e5

1e6

Case

step 1
step 2
step 3
step 4

(c)

Figure 23. Total counts of the cases encountered at each of the
4 steps of refinement governed by a distance-from-a-plane metric
of the cuboid (a), mechanical part (b), and triceratops (c) meshes;
case 3d denotes negatively oriented 3c configurations.

mechanical part, and thus only the statistics for the cuboid and the triceratops are shown
in Figure24. Case 3d, introduced above for practical implementation reasons, is decom-
posed as the canonical 3c, in 3dα, 3dβ and 3dγ subcases; each of them is therefore only
one negative permutation away from its canonical counterpart. It appears clearly that the
similar trends previously observed for the distribution among the general cases no longer
holds when considering ambiguous subconfigurations: the diversity of the original meshes
is clearly reflected by great variations among ambiguous cases. Chances to hit an ambigu-
ous case are much larger when dealing with a mesh that has been obtained from regular
geometries, such asT 0

box.

5 Conclusion

This report presents a technique for statelessly refining a tetrahedral mesh. Rather than
coordinate face and edge subdivision information across elements of the mesh, subdivision
templates and criteria are chosen so that they always yield identical results on shared faces
and edges. Although this requires more computation (twice for each face and as many
times per edge as there are tetrahedra that reference it), it bypasses any communication that
might otherwise be required.

The main contribution of this paper above our previous work is that we now have an
implementation, available inParaView, while [8, 6] presented the theory of the new refine-
ment scheme. This has allowed us in particular to assess mesh quality and algorithm speed.
Two meshes were evaluated: a synthetic geometric mesh of a cuboid and the mesh of a
mechanical part. The qualities of the refined meshes are comparable to other refinement
schemes that use communication to resolve ambiguities.

35

http://www.paraview.org/

1

2

4

8

16

32

64

2a 3aα 3aβ 3aγ 3cα 3cβ 3cγ 3dα 3dβ 3dγ 4aα 4aβ 4aγ 4bα 4bβ 4bγ 4bδ 4bε 4bζ 4bη 5α 5β

N
um

be
r o

f o
cc

ur
en

ce
s

Case

cuboid
triceratops

Figure 24. Total counts of the ambiguous cases encountered dur-
ing the 4 steps of refinement governed by a distance-from-a-plane
metric of the cuboid and triceratops; cases 3dα, 3dβ and 3dγ re-
spectively denote negatively oriented 3cα, 3cβ and 3cγ configura-
tions.

In addition to mesh quality, the time performance of the algorithm is characterized. The
algorithm can generate approximately 600,000 tetrahedra per second on modern hardware.
More importantly, the algorithm scales linearly with the size of the output. Since the output
vertices are stored on the heap during the recursive call to sample a tetrahedron, speed may
likely be increased by preallocating a pool of memory for output vertices. This could also
allow higher levels of refinement to be handled since the heap is not typically sized for such
use.

Besides the performance of the algorithm, the relative frequency of ambiguous and
unambiguous refinement templates presents an interesting trend. A version of the tessel-
lator instrumented to count cases was used to examine the refinement of several meshes.
Meshes of regular geometries tended to have higher numbers of ambiguous cases because
they have many coplanar vertices and are often created by mesh generators that regularly
sample space.

Possible future work includes allowing some canonical cases to choose between several
subdivision templates to further optimize quality, depending on the particular geometry.

36

Acknowledgments

Thanks to Prof. P. J. FREY5, Universit́e P. & M. Curie, Paris, France, who provided the
initial meshes of the mechanical part and triceratops used in this Report.

5URL: http://www.ann.jussieu.fr/˜frey/

37

References

[1] A. J. Chung and A. J. Field. A simple recursive tessellator for adaptive surface trian-
gulation.Journal of Graphics Tools, 5(3), 2000.

[2] P. J. Frey and P.-L. George.Mesh Generation. Hermes Science Publishing, Oxford &
Paris, 2000.

[3] T. W. Hungerford.Algebra. Graduate Texts in Mathematics. Springer, 1997.

[4] J. D. Lawrence.A Catalog of Special Plane Curves. Dover Publications, New York,
1972.

[5] P. P. Ṕebay and T. J. Baker. Analysis of triangle quality measures.Mathematics of
Computation, 72(244):1817–1839, 2003.

[6] P. P. Ṕebay and D. C. Thompson. Parallel mesh refinement without communication.
In Proc. 13th International Meshing Roundtable, Williamsburg, VA, September 2004.
Accepted.

[7] D. Ruprecht and H. M̈uller. A scheme for edge-based adaptive tetrahedron subdivi-
sion. In Hans-Christian Hege and Konrad Polthier, editors,Mathematical Visualiza-
tion, pages 61–70. Springer Verlag, Heidelberg, 1998.

[8] D. C. Thompson, R. Crawford, R. Khardekar, and P. P. Pébay. Visualization of higher
order finite elements. Sandia report, Sandia National Laboratories, April 2004.

[9] Luiz Velho. Simple and efficient polygonization of implicit surfaces.Journal of Graph-
ics Tools, 1(2):5–24, 1996.

38

DISTRIBUTION:

1 Pr Richard Crawford
Mech. Engr., C2200
The Univ. of Texas at Austin
Austin, TX 78703

1 Patricia Howard
Comp. & Appl. Mathematics
Rice University
6100 Main St. - MS 134
Houston, TX 77005-1892

1 Rahul Khardekar
1634 Oxford Street
Apt 305
Berkeley, CA 94709

2 Will Schroeder
Kitware
28 Corporate Drive
Suite 204
Clifton Park, NY 12065

1 Timothy J. Baker
Mechanical & Aerospace Engi-
neering Department
Engineering Quadrangle
Princeton University
Princeton, NJ 08544

1 Pr J́erôme Pousin
I.N.S.A. Lyon
Center for Mathematics
Bâtiment Ĺeonard de Vinci
69621 Villeurbanne cedex,
France

1 Pr Pascal Frey
Laboratoire J-L Lions
Universit́e Pierre et Marie Curie
Bôıte courrier 187
75252 Paris cedex 05, France

1 MS 9051
Andy McIlroy, 8351

4 MS 9051
Philippe P. Ṕebay, 8351

1 MS 9915
Curtis L. Janssen, 8961

1 MS 9915
Mike Koszykowski, 8961

1 MS 9915
Mitchel W. Sukalski, 8961

1 MS 9217
Paul T. Boggs, 8962

1 MS 9217
Kevin R. Long, 8962

1 MS 9012
Jerry A. Friesen, 8963

1 MS 9012
Gary J. Templet, 8963

4 MS 9012
David C. Thompson, 8963

1 MS 0382
Kevin D. Copps, 9143

1 MS 1110
David M. Day, 9214

1 MS 1110
Louis Romero, 9214

1 MS 0822
Brian N. Wylie, 9227

1 MS 0822
Lee Ann Fisk, 9227

3 MS 9018
Central Technical Files,
8940-1

1 MS 0899
Technical Library, 9616

1 MS 9021
Classification Office,
8511, for Technical
Library, MS 0899,
9616 DOE/OSTI via URL

39

	Performance of a Streaming Mesh Refinement Algorithm
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Parallel streaming mesh refinement
	Unambiguous Cases
	Ambiguous Cases

	Practical Implementation Thanks To S4
	Python Implementation
	Brief Reminder About Symmetric Groups
	Application to Tetrahedron Subdivision

	Results!
	Individual Elements
	Entire Meshes
	Refinement According to the Distance to a Plane
	Refinement Governed by an Analytical Size Map

	Speed!
	Chance!

	Conclusion
	References

