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Exponential Integrators for the

Incompressible Navier–Stokes Equations

Christopher K. Newman

Abstract

We provide an algorithm and analysis of a high order projection scheme
for time integration of the incompressible Navier–Stokes equations (NSE).
The method is based on a projection onto the subspace of divergence–free
(incompressible) functions interleaved with a Krylov–based exponential time
integration (KBEI). These time integration methods provide a high order
accurate, stable approach with many of the advantages of explicit methods,
and can reduce the computational resources over conventional methods. The
method is scalable in the sense that the computational costs grow linearly
with problem size.

Exponential integrators, used typically to solve systems of ODEs, utilize
matrix vector products of the exponential of the Jacobian on a vector. For
large systems, this product can be approximated efficiently by Krylov sub-
space methods. However, in contrast to explicit methods, KBEIs are not
restricted by the time step. While implicit methods require a solution of a
linear system with the Jacobian, KBEIs only require matrix vector products
of the Jacobian. Furthermore, these methods are based on linearization, so
there is no non–linear system solve at each time step.

Differential–algebraic equations (DAEs) are ordinary differential equa-
tions (ODEs) subject to algebraic constraints. The discretized NSE consti-
tute a system of DAEs, where the incompressibility condition is the algebraic
constraint. Exponential integrators can be extended to DAEs with linear
constraints imposed via a projection onto the constraint manifold. This re-
sults in a projected ODE that is integrated by a KBEI. In this approach, the
Krylov subspace satisfies the constraint, hence the solution at the advanced
time step automatically satisfies the constraint as well. For the NSE, the pro-



jection onto the constraint is typically achieved by a projection induced by
the L2 inner product. We examine this L2 projection and an H1 projection
induced by the H1 semi-inner product. The H1 projection has an advan-
tage over the L2 projection in that it retains tangential Dirichlet boundary
conditions for the flow. Both the H1 and L2 projections are solutions to
saddle point problems that are efficiently solved by a preconditioned Uzawa
algorithm.
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Chapter 1

Introduction

1.1 Overview

Computer simulations of incompressible flows play an increasingly important
role in scientific investigations. As problem sizes increase, computational re-
sources grow. The increase in problem size is often the result of a requirement
of greater resolution or accuracy, or a result of increasingly complex geome-
tries. The development of scalable algorithms is crucial to cope with the
increase in problem size. The main result of this thesis is the development of
a scalable, high order time accurate unsteady solver for the incompressible
Navier–Stokes equations based on a marriage of Krylov–based exponential
integration and projection methods. Scalability often refers to the ability
to use additional computational resources effectively to solve increasingly
larger problems. One example of this is through the use of multiple pro-
cessors. However, we refer to scalability as a description of how the total
computational work requirements grow with problem size, which can be dis-
cussed independent of the computing platform. We refer to a method as
scalable if the computational costs grow linearly with the problem size. The
method we describe is constructed of scalable building blocks that are rela-
tively easy to synthesize. Scalability of the method hinges on the following
key requirements:

1. Scalable time integration of the momentum equation.

2. Scalable computation of a divergence–free projection.

1
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In the first part of this thesis we address scalable time integration. We provide
a detailed introduction to exponential integration methods and Krylov–based
exponential integration methods in Chapter 2. Krylov–based exponential
integration methods project a problem onto a smaller dimensional subspace
where the critical computations are performed, then extends the solution
to the larger space. Thus for our method to be scalable, it is crucial that
the dimension of the smaller subspace only grow modestly with problem
size. We discuss scalable computation of a divergence–free projection in the
second part of the thesis. Since a projection onto the space of divergence–
free functions is performed for each dimension of the Krylov subspace at each
time step, it is essential that we implement this step in an efficient, scalable
way.

Finite element discretizations of the incompressible Navier–Stokes equa-
tions lead to what are known as differential–algebraic equations rather than
ordinary differential equations. Chapters 3 and 4 provide the framework
necessary to discuss the incompressible Navier–Stokes equations and a dis-
cussion of divergence–free projections. The thesis concludes with results of a
Krylov–based exponential integrator on a test problem for the incompressible
Navier–Stokes equations (Chapters 6).

One of the advantages of exponential integrators is that the time step
restriction due to the von Neumann condition is avoided. The von Neumann
condition describes the maximum stable time step size that can be used in
an explicit method [51, 68]. PDEs often possess a diffusive term that renders
the discretized ODE inherently stiff. The effect of stiffness becomes larger as
the mesh size decreases. Thus for stiff systems, the von Neumann condition
restricts the step size severely. In these cases, an alternative to explicit
methods are implicit methods, which retain stability with larger time steps.
Implicit methods typically require the solution of a non–linear system with
the Jacobian at each time step. If Krylov iterative methods are employed
for the linear solve, this stiffness can cause the convergence of the iterative
method to be slow. Unless a suitable preconditioner or multigrid methods
are available, a large number of iterations can be required. Exponential
integration methods provide an alternative to explicit methods in the sense
that they allow a stable time integration with a time step that is not restricted
by the von Neumann condition.

Exponential integration methods rely on computation of the matrix expo-
nential operator of the Jacobian. For small systems of ODEs this method has
been used with success [41, 42, 79]. For large systems of ODEs, computing
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the matrix exponential of a large, non-symmetric Jacobian matrix is infeasi-
ble. We refer to [57] for a comprehensive review of methods for computing
the matrix exponential operator.

The use of Krylov subspace projection methods in the 1980’s provided a
solution to this problem for large matrices. The Krylov subspace projection
method is based on projecting a matrix onto a smaller dimension Krylov
subspace. The exponential function is evaluated with the smaller projected
matrix as the argument, then the result is lifted back to the original space.
Thus the exponentiation of a large matrix is avoided however, exponentiation
of a small matrix is still required. An overview of Krylov subspace projection
methods can be found in [70, Chap. 6, 7].

The first use of Krylov subspace methods in ODEs [13, 29] utilized Krylov–
based iterative methods to solve systems arising from Newton’s method in
implicit multistep methods. A high order efficient method is presented in
Hochbruck et al. [42]. This method is based on a Runge–Kutta framework
and provides an error analysis based on the theory of Krylov subspace ap-
proximations to functions of matrices found in earlier work [41]. The methods
of [42] were applied to partial differential equations that arise in magnetohy-
drodynamic modeling of solar magnetic arcades by Tokman [79].

We provide a derivation and discuss in detail how Krylov–based expo-
nential integration methods are constructed in Chapter 2. We discuss the
theory of [41] where error estimates and numerical analysis for approximat-
ing the matrix exponential operator of a large matrix using Krylov subspace
projection techniques are developed. We also discuss why Krylov subspace
approximations to the matrix exponential operator can converge faster than
Krylov based iteration methods for solving the linear system that arises in
implicit methods. In addition we discuss time integration methods for or-
dinary differential equations. We discuss implicit and explicit methods for
ordinary differential equations that arise from spatial discretization of time
dependent partial differential equations. We solve the heat equation using
a high order Krylov–based exponential integration method and the Crank
Nicolson method. Our results provide an insight into the advantages and
disadvantages of both methods.

The second part of this thesis discusses the application of Krylov based
exponential integration methods to the differential–algebraic equations that
arise from finite element discretizations of the incompressible Navier–Stokes
equations. We focus on a projection–based scheme in conjunction with a high
order exponential integrator. Projection–based schemes precede a time step
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with a projection onto the constraint space. In the case of the incompress-
ible Navier–Stokes equations, the constraint space is the incompressibility
or divergence–free subspace. The advantages of projection methods is the
decoupling of the velocity field from the pressure field.

Projection–based schemes date from the late 1960’s to the fractional step
projection method of Chorin [15, 16] and Temam [77]. This method is the
most frequently employed technique for the numerical solution of the Navier–
Stokes equations. These methods are also commonly referred to as semi–
implicit or Chorin methods. The method is based on a time discretization
where a projection to the divergence–free subspace is utilized to decouple the
velocity and pressure calculations. The original scheme was heuristically mo-
tivated in [15, 16] via a Taylor series analysis to provide a first order accurate
in time approximation for the velocity. The theoretical convergence proper-
ties of the method were studied in [37, 60, 71, 74, 73]. A higher order in time
method presented in [38, 60] utilizes improved pressure boundary conditions
to achieve higher accuracy. An analysis of several second order projection
schemes is given in [72]. The fractional step methods have been speculated to
be at most second order accurate (see [35]) although this remains unproven.

In Chapter 3 we present the incompressible Navier–Stokes equations in
primitive variable form. In addition, we provide an overview of the two com-
mon projections onto the divergence–free subspace. The common fractional
step projection methods utilize a projection induced by the L2 inner prod-
uct. Another viable but seldom utilized projection is induced by the H1 semi
inner product. An overview of the divergence–free L2 and H1 projections is
given in Glowinski [32] and Gresho and Sani [35]. We provide derivations
and discuss in detail the implementations of each of these projections. We
discuss the advantages and disadvantages of each projection.

In Chapter 4 we provide insight on the temporal convergence of fractional
step projection methods, and discuss advantages and disadvantages over ex-
plicit and implicit methods. We outline in detail the Krylov–based exponen-
tial integration method for the incompressible Navier–Stokes equations and
contrast the method with the fractional step projection methods. The key
differences are that the fractional step methods approximate a divergence–
free projection of the momentum equation via an initial approximation for
the pressure. This produces an intermediate velocity to which a divergence–
free projection must be applied. The Krylov–based exponential integration
method avoids the approximation by applying a divergence–free projection
directly to the momentum equation, eliminating the intermediate velocity
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altogether. The projected momentum equation is integrated in time by a
high–order Krylov–based exponential integrator.

In Chapter 5 we discuss implementation issues for a scalable projection–
based high–order time integration method for the incompressible Navier–
Stokes equations. We discuss in detail the stability in the sense of the
Ladyzhenskaya–Babus̆ka–Brezzi condition for mixed finite element realiza-
tions of the L2 projection. We provide experimental results that extend the
work of Mardal et al. [54]. The work of [54] demonstrates that that mixed
finite elements that are stable for the Stokes problem may not be stable for
the L2 projection.

In Chapter 6 we present results of numerical experiments that address
convergence and scalability of the method applied to the Stokes and Navier–
Stokes problems. We draw conclusions and discuss the contributions from
this work and outline future work in Chapter 7.

1.2 Notation

We use x to denote spatial coordinates in � d with d = 2 or 3. We denote
the components of x by xi, 1 ≤ i ≤ d. When d = 1 we simply denote
x by x. We use bold font to denote vector functions in � d with d = 2 or
3 and normal font for functions in � . For example we denote the vector
velocity by u : � d → � d with components ui, 1 ≤ i ≤ d or denote the
scalar quantity pressure by p. When we make use of matrix theory, we use
bold non-italicized font to denote vectors and upper case for matrices. To
illustrate this notation, consider the linear system Ax = b. In addition to the
bracket notation, we use non-italicized fonts for the components of a vector,
and subscripts for elements of a matrix. For example, xi and [x]i denote
the ith component of x, while Aij and [A]ij denote the element in row i and
column j of the matrix A. We denote by {ei}n

i=1 the canonical basis of � n.
We also make use of upper case unambiguously for linear operators and for
vector spaces. We define additional notation when needed.
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Chapter 2

Exponential integration
methods

Development of our scalable solver relies on two crucial building blocks: an
efficient and scalable means for time integration, and an efficient and scalable
means to apply a divergence–free projection. This chapter focuses on time
integration with the development and implementation of high order accurate
Krylov–based exponential time integrators. We construct exponential inte-
grators for general large systems of ordinary differential equations. Next we
describe how these integrators can be efficiently computed in a Krylov sub-
space using the Arnoldi method and an efficient high order approximation
to the matrix exponential. Finally we provide a numerical experiment that
highlights efficiency and scalability of the method over a traditional implicit
method. We implement this method for the incompressible Navier–Stokes
equations in Chapter 4.

Krylov methods were used to evaluate the exponential of Hamiltonian
operators in [58, 59], and later in [61]. The idea of evaluating arbitrary func-
tions of matrices using Krylov subspace methods was mentioned by van der
Vorst in [82]. Saad [69] provides a rigorous overview of Krylov subspace ap-
proximations to the matrix exponential operator. Krylov–based exponential
integration methods for large systems of ordinary differential equations were
presented for the first time by Friesner et al. [27]. This work was extended to
partial differential equations in an application to the incompressible Navier–
Stokes equations in [25]. Methods for parabolic partial differential equations
with nonlinear forcing term were presented by Gallopoulos and Saad [28].
This work included results on accuracy and stability of the method. Related

7
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work includes that of [48, 75, 76] in which systems of ordinary differential
equations are solved by projecting onto a Krylov subspace and integrated
in time with polynomial methods based on Chebyshev expansion. Recently,
Pini and Gambolati [63] introduced a method in which a system of ordinary
differential equations is projected onto a Krylov subspace and integrated by
the Crank Nicolson method.

2.1 Exponential integrators

Consider the ODE

ẏ = f(y), (2.1)

y(t0) = y0. (2.2)

Implicit methods for (2.1)–(2.2) usually lead to solving linear systems of the
form

(I − τA)x = v (2.3)

at each time step, where A is the Jacobian (or an approximation) of f(y)
evaluated at some fixed y and τ is related to the step size. The system (2.3)
arises through the use of Rosenbrock–Wanner methods, which are based on
linearization, or as a step in a non–linear solution process. Exponential
integration methods approximate the action of an exponential function of
the Jacobian on a vector, rather than solving non-linear systems at time
steps. Gallopoulos and Saad [28] speculated that Krylov approximations
to the product exp(τA)v converge substantially faster than those for the
solution of (I − τA)x = v.

In this section we investigate exponential methods for the integration
of (2.1)–(2.2) involving matrix vector products of ϕ(τA)v, where ϕ(z) is a
function involving the exponential of z. Convergence of approximations to
ϕ(τA)v [41] compare to those for exp(τA)v. A well known method is the
exponentially fitted Euler method given in [42]. Given yn at the current time
step, the approximate solution, yn+1, at the next time step is

yn+1 = yn + ∆tϕ(∆tA)f(yn), (2.4)

where ∆t is the step size, A is the Jacobian of f evaluated at yn and

ϕ(z) =
1

z
(ez − 1) . (2.5)
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The exponentially fitted Euler method is derived from a Taylor series
approximation. The first two terms of the Taylor series for f(y) centered at
y0 gives the approximation

f(y) ≈ f(y0) + A (y(t) − y0), (2.6)

where A is the Jacobian of f(y) evaluated at y0. Let x(t) = y(t)−y0 so that
ẋ(t) = ẏ(t) and x(0) = 0. In light of this change of variable and the Taylor
series approximation, an approximation for ẏ is given by

ẏ(t) ≈ f(y0) + Ax.

Now consider the ODE

ẋ(t) = f(y0) + Ax, x(0) = 0. (2.7)

Equation (2.7) can be solved using the integrating factor e−At, thus

e−A t (ẋ(t) − Ax(t)) = e−A tf(y0),

d

dt

(

e−A t x(t)
)

= e−A tf(y0). (2.8)

Integration of (2.8) over a time step ∆t yields,
∫ ∆t

0

d

dt

(

e−A t x(t)
)

dt =

∫ ∆t

0

e−At f(y0) dt,

e−A t x(t)
∣

∣

∆t

0
=

(
∫ ∆t

0

e−A t dt

)

f(y0),

e−∆t Ax(∆t) − x(0) =

(
∫ ∆t

0

e−A t dt

)

f(y0),

x(∆t) = e∆t A

(
∫ ∆t

0

e−A t dt

)

f(y0),

x(∆t) =

(
∫ ∆t

0

eA (∆t−t) dt

)

f(y0).

By the power series definition of e(∆t−t) A,

x(∆t) =

(

∫ ∆t

0

∞
∑

i=0

Ai(∆t− t)i

i!
dt

)

f(y0),

=

(

∞
∑

i=0

∫ ∆t

0

Ai(∆t− t)i

i!
dt

)

f(y0),
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where the interchange of integration and summation is justified by uniform
convergence of the sum for t ∈ [0,∆t]. Hence,

x(∆t) =

(

∞
∑

i=0

−Ai(∆t− t)(i+1)

(i + 1)!

∣

∣

∣

∣

∆t

t=0

)

f(y0),

=

(

∞
∑

i=0

Ai∆t(i+1)

(i+ 1)!

)

f(y0),

= ∆t

(

∞
∑

i=0

(∆tA)i

(i + 1)!

)

f(y0),

≡ ∆tϕ(∆tA)f(y0). (2.9)

Substitution of x(∆t) = y(∆t) − y0 in (2.9) yields the exponentially fitted
Euler step (2.4). The exponentially fitted Euler method is locally second
order and is exact when f(y) is linear. This method is usually implemented
when f(y) is nonlinear.

When f(y) is linear and homogeneous (2.1) becomes ẏ = Ay. In this case
the exponentially fitted Euler method (2.4) can then be written as, given yn

at the current time step, the approximate solution, yn+1, at the next time
step is

yn+1 = exp(∆tA)yn, (2.10)

where ∆t is the step size.
More general methods are multistage methods given by

ki = ϕ(γ∆tA)

(

f(ui) + ∆tA
i−1
∑

j=1

γijkj

)

, i = 1, . . . , s, (2.11)

ui = yn + ∆t
i−1
∑

j=1

αijkj, (2.12)

yn+1 = yn + ∆t

s
∑

i=1

biki. (2.13)

Here A is the Jacobian of f(y) evaluated at y = yn, and γ, γij, αij, bi, with
γij = αij = 0 for i ≤ j, are coefficients that determine the method. This
method is locally fourth order accurate. Note that for ϕ(z) ≡ 1 and γij = 0,
this is an explicit Runge-Kutta method, and the exponentially fitted Euler
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method for s = 1. See [42] for a discussion of these methods. In particular
we can write the fourth order method (2.11)–(2.13) as follows [42, p. 1563]:

k1 = ϕ(1
3
∆tA)f(y0), (2.14)

k2 = ϕ(2
3
∆tA)f(y0), (2.15)

k3 = ϕ(∆tA)f(y0), (2.16)

w4 = − 7

300
k1 +

97

150
k2 −

37

300
k3, (2.17)

u4 = y0 + ∆tw4, (2.18)

d4 = f(u4) − f(y0) − ∆tAw4, (2.19)

k4 = ϕ(1
3
∆tA)d4, (2.20)

k5 = ϕ(2
3
∆tA)d4, (2.21)

k6 = ϕ(∆tA)d4, (2.22)

w7 =
59

300
k1 −

7

75
k2 +

269

300
k3 +

2

3
(k4 + k5 + k6) , (2.23)

u7 = y0 + ∆tw7, (2.24)

k7 = ϕ(1
3
∆tA)d7, (2.25)

yn+1 = yn + ∆t

(

k3 + k4 −
4

3
k5 + k6 +

1

6
k7

)

. (2.26)

We note that we have combined the coefficients and intermediate vectors in
(2.11)–(2.13) to write a complete time step of the fourth order method as
(2.14)–(2.26).

We remark that (2.1)–(2.2) constitute an autonomous system of ODEs.
As pointed out in [42] the methods mentioned in this section apply to the
nonautonomous system

ẏ = f(y, t), (2.27)

y(t0) = y0, (2.28)

because we can write the nonautonomous system (2.27)–(2.28) as the au-
tonomous system

[

ẏ
ṫ

]

=

[

f(y, t)
1

]

,

y(t0) = y0.
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Figure 2.1: Krylov approximation of the matrix A.

2.2 Krylov approximation to the matrix ex-

ponential operator

2.2.1 Krylov subspace

For a matrix A of dimension n and a unit vector v ∈ � n, the Arnoldi process
generates an orthonormal basis Vm = [v1, . . . ,vm] for the Krylov subspace
Km,

Km = span{v, Av, . . . , Am−1v}, (2.29)

and an upper Hessenberg matrix Hm of dimension m such that

AVm = VmHm + hm+1,mvm+1e
T
m,

where ei is the ith standard basis vector for � m. Gallopoulos and Saad [28]
show that for analytic functions f ,

f(A)v ≈ Vmf(Hm) e1. (2.30)

For m� n, Vmf(Hm) e1 is usually much easier to compute than f(A)v. We
can use (2.30) to approximate the product

ϕ(γ∆tA)v ≈ Vmϕ(γ∆tHm) e1. (2.31)

2.3 Implementation

In the present section we discuss practical implementation of the Krylov ap-
proximation (2.31). In Section 2.3.1 we discuss the use of the Arnoldi algo-
rithm to generate a basis for the Krylov subspace of A. Section 2.3.3 discusses
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a high–order accurate method to compute exp(γ∆tHm) e1 and ϕ(γ∆tHm) e1

where

ϕ(z) =
ez − 1

z
.

2.3.1 Arnoldi method

Arnoldi’s method is an orthogonal projection of A onto Km, given by (2.29)
when A is non–Hermitian. When A is Hermitian, Km is typically found via
the Lanczos method. In this work we will only encounter non–Hermitian ma-
trices, hence the Lanczos method will not be discussed. The basic algorithm
is given in [70, Algorithm 6.1, p. 146].

Algorithm 2.1 (Arnoldi’s method).

1: Given v1 with ‖v1‖ = 1
2: for j = 1, 2, . . . , m do
3: for i = 1, 2, . . . j do
4: hij = (Avj,vi)
5: end for
6: wj = Avj −

∑j
i=1 hijvi

7: hj+1,j = ‖wj‖
8: if hj+1,j = 0 then
9: stop

10: end if
11: vj+1 = wj/hj+1,j

12: end for

At each step, the algorithm applies a matrix–vector product with Avj and
orthonormalizes wj against vi, i = 1, 2, . . . , j by the Gram–Schmidt process.
We denote by Vm the n×m matrix whose columns are the vectors v1, . . .vm

found in Algorithm 2.1. We denote by Hm the m × m upper Hessenberg
matrix whose nonzero entries hij are found in Algorithm 2.1. We state the
following results [70, Propositions 6.4–6.5 pp. 146–147].

Theorem 2.1. If Algorithm 2.1 does not stop prior to step m, then the
vectors {v1, . . .vm} form a basis for Km.

Theorem 2.2. The following relations hold:

AVm = VmHm + wmeT
m (2.32)
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and

V T
mAVm = Hm. (2.33)

We often write (2.32) as

AVm = VmHm + hj+1,mvmeT
m.

We note that Algorithm 2.1 will break down at step j < m if hj+1,j = 0. In
this case we have the following result [70, Proposition 6.6 p.147].

Theorem 2.3. If Algorithm 2.1 breaks down at step j < m, then the subspace
Kj is invariant under A.

Algorithm 2.1 assumes exact arithmetic is used. In most cases round off
error and cancellation can be severe in the orthogonalization steps. In par-
ticular the classical Gram–Schmidt method has poor numerical properties,
and a severe loss of orthogonality is exhibited between each vi. Significant
improvement comes from double orthogonalization [52, p. 50].

Since {v1, . . . ,vm} forms an orthonormal set, we readily see that V T
mVm =

I. We can define the orthogonal projection operator P : � n → Km by
P = VmV

T
m . Thus we can project the product Av by

Av ≈ PAPv = VmV
T
mAVmV

T
mv = VmHmV

T
m v.

We can write v = ‖v‖v1 and v1 = Vme1,

Av ≈ ‖v‖VmHme1.

2.3.2 Error in the approximation

In this section we provide an analysis for the error in approximation of ϕ(z) by
Krylov subspace methods. Error estimates were derived in [28, 69] based on
an argument that approximating a function of a matrix in a Krylov subspace
is equivalent to interpolating the function by a polynomial. The authors de-
rive error estimates based on the remainder of the interpolating polynomial.
The authors mention that the error bounds are not sharp enough to explain
the error observed in numerical experiments. More recently a theory [41, 42]
has been presented that gives much sharper estimates. This theory provides
an insight into the relationship between the error, the spectrum of the matrix
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and the function that is to be approximated. In this section we present error
estimates based on the approach of [41, 42].

We define the numerical range

F (A) = {x∗Ax : x ∈ � n, ‖x‖ = 1}.

Using (2.33) we have F (Hm) ⊂ F (A). We make use of the Cauchy’s integral
formula [2, p. 119]

Theorem 2.4 (Cauchy’s integral formula). Let f(z) be analytic in an
open disk Ω. and let Γ be a closed curve in Ω. Then for any point a with
a 6∈ Γ,

f(a) =
1

2πi

∫

Γ

f(z)

z − a
dz. (2.34)

We can treat a as a variable, and hence we can rewrite (2.34) as

f(z) =
1

2πi

∫

Γ

f(ξ)

ξ − z
dξ, (2.35)

Let f be analytic in a neighborhood of F (A). Then we can use (2.35) to
write

f(A)v =
1

2πi

∫

Γ

f(ξ) (ξI − A)−1 v dξ, (2.36)

where Γ is a closed curve that encloses F (A). Using (2.36) we have

Vmf(Hm)e1 =
1

2πi

∫

Γ

f(ξ)Vm (ξI −Hm)−1 e1 dξ. (2.37)

When ξ 6∈ F (A), ξ is not an eigenvalue of A or Hm, thus neither (ξI − A)−1

nor (ξI −Hm)−1 are singular and (2.36)–(2.37) are valid. We denote the
error in the Arnoldi approximation as

εm = f(A)v − Vmf(Hm)e1,

=
1

2πi

∫

Γ

f(ξ)
[

(ξI − A)−1 v − Vm (ξI −Hm)−1 e1

]

dξ.

Thus we can obtain error bounds by estimating the error in (ξI − A)−1 v −
Vm (ξI −Hm)−1 e1, and multiply by |f(ξ)|. We integrate the result along an
appropriate contour Γ. We make use of the following [41, Lemma 1]



16

Theorem 2.5. Let E be a convex, closed bounded set in the complex plane,
� , with F (A) ⊂ E. Let φ(z) be the conformal mapping that carries � \ E
onto the exterior of the unit circle (|w| > 1), with φ(z) = z/ρ + O(1) as
z → ∞ for ρ > 0. Let f(z) be analytic. Let Γ be a piecewise smooth contour
that contains E. Let the matrices Vm and Hm be determined by (2.32). Then
for every polynomial qm−1 of degree at most m− 1

‖f(A)v − Vmf(Hm)e1‖ ≤ M

2π

∫

Γ

|f(ξ) − qm−1(ξ)| |φ(ξ)|−m |dξ|, (2.38)

with M = l(∂E)/ (d(∂E)d(Γ)), where l(∂E) is the length of the boundary
curve ∂E, and d(S) is the distance between F (A) and a subset S of � . If Γ
is a line segment or a disk, then (2.38) holds with M = 6/d(Γ).

The following results from [41] specify the error bounds in Theorem 2.5
for the function f(A) = eτA and for special classes of matrices A.

Corollary 2.1. Let A be a Hermitian negative semidefinite matrix with
eigenvalues in the interval [−4ρ, 0], then the error in the Arnoldi approxi-
mation of exp(τA)v is

‖εm‖ ≤ 10e−m2/(5ρτ)
√

4ρτ ≤ m ≤ 2ρτ, (2.39)

‖εm‖ ≤ 10(ρτ)−1e−ρτ
(eρτ

m

)m

m ≥ 2ρτ. (2.40)

Corollary 2.2. Let A be a matrix with F (A) contained in the disk |z+ρ| ≤ ρ,
then the error in the Arnoldi approximation of exp(τA)v is

‖εm‖ ≤ 12e−ρτ
(eρτ

m

)m

m ≥ 2ρτ.

The error estimates in Corollary 2.1 provide some insight on how exponen-
tial methods compare with implicit methods. Suppose that A is symmetric
negative definite with eigenvalues in the interval [−4ρ, 0], and we wish to
solve (2.3) by the conjugate gradient method. Then application of the con-
jugate gradient method to solve (I − τA) x = v is equivalent to using the
Arnoldi method to approximate

x = f(τA)v = (I − τA)−1 v (2.41)
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Figure 2.2: Error bounds for the Krylov approximation (2.40) (black) and
for conjugate gradient (2.42) (blue) versus m for ρ = 10 and τ = 10−1.

in a Krylov subspace. We apply Theorem 2.5 with f(τA)v defined by (2.41)
to obtain an error bound for the conjugate gradient method. Theorem 2.5
yields the error bound (see [41, p. 1916])

‖x − xm‖ ≤ 2
√

1 + 4ρτ

(

1 − 2√
1 + 4ρτ + 1

)m

(2.42)

for the conjugate gradient method. Comparison of (2.42) to (2.39)–(2.40)
suggests that the error in approximating the matrix exponential will be re-
duced faster than the error in the conjugate gradient method. This phenom-
ena is illustrated in several examples in [41], and confirmed in computational
experiments in Section 2.4. Figure 2.2 shows the bounds (2.40) and (2.42)
versus m for ρ = 10 and τ = 10−1

Hochbruck and Lubich [41, p. 1916] state that the same bounds as in
Theorem 2.5 and Corollaries 2.1–2.2 are valid for Krylov subspace approxi-
mations of ϕ (τA)v with ϕ (z) = (z − 1) /z.
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2.3.3 Computation of the matrix exponential operator

In this section we discuss practical computation of the products eHme1 and
ϕ(Hm)e1. We make use of a rational approximation to the matrix exponential
by partial fraction expansion given in [28]. The rational approximation to
the exponential has the form

e−z ≈ Rk1,k2(z) =
pk1(z)

qk2(z)
,

where pk1(z) and qk2(z) are polynomials of degree k1 and k2 with leading
coefficients ρk and σk respectively, that is

pk(z) =
k
∑

i=1

ρiz
i, and qk(z) =

k
∑

i=1

σiz
i.

Approximations of this type are commonly referred to as Padé approxima-
tions. Padé approximations are local, and are very accurate near the origin,
however may suffer in accuracy away from the origin. We are mainly inter-
ested in the integration of ordinary differential equations that arise from fi-
nite element discretizations of parabolic partial differential equations. These
discretizations possess eigenvalues with ratios in the interval [0,O

(

h−d
)

],
where h is related to the spatial mesh size and d is the spatial dimension.
We also wish to utilize large time steps. Thus we seek an approximation
that has greater accuracy throughout the interval [0,∞). We utilize a ratio-
nal Chebyshev approximation to e−z as introduced in [84]. In the rational
Chebyshev approximation the coefficients ρk, σk are found such that

max |Rk1,k2(z) − e−z|
is minimized on the interval [0,∞). The rational Chebyshev approximation
will allow us to use a time step as large as our Krylov subspace allows.

We shall restrict ourselves to the use of diagonal rational approximations
where k1 = k2. We use the notation Rk for Rk,k. To evaluate the approxi-
mation to e−Hme1, we compute the vector y with

y = pk(Hm)qk(Hm)−1e1 = qk(Hm)−1pk(Hm)e1. (2.43)

We compute (2.43) via its partial fraction expansion

Rk(z) = α0 +

k
∑

i=1

αi

z − βi
,
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where

α0 =
ρk

σk
, αi =

pk(βi)

q′k(βi)
, i = 1, 2, . . . k,

and βi, i = 1, 2, . . . k are the roots of qk(z). The coefficients αi and βi for
k = 10 and 14 are given in [28, p. 1261]. The vector y is computed using
the following

Algorithm 2.2 (Approximation of y = e−Hme1).

1: for i=1,2,. . . ,k do
2: solve (Hm − βiI)yi = e1

3: end for
4: y = α0e1 +

∑k
i=1 αiyi

We make use of the relation [69, (17) p. 214] to approximate ϕ(−z) as
follows:

ϕ(−z) ≈ Qk(z) =
k
∑

i=1

αi

βi (z − βi)
.

Similar to Algorithm 2.2 we the following

Algorithm 2.3 (Approximation of y = ϕ(−Hm)e1).

1: for i=1,2,. . . ,k do
2: solve (Hm − βiI)yi = e1/βi

3: end for
4: y =

∑k
i=1 αiyi

We remark step 2 in Algorithms 2.2–2.3 involve a linear solution of an
upper Hessenberg matrix. Hence this step is handled efficiently by a direct
method. Algorithms 2.2–2.3 have worked well in practice, for a discussion of
stability properties and accuracy see [26, 43, 44, 85].

As a final note, when we make the approximation

ϕ(γ∆tA)v ≈ Vmϕ(γ∆tHm) e1 (2.44)

in the exponential method defined by (2.11)–(2.13) or (2.14)–(2.15) we refer
to those methods as Krylov–based exponential methods.
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2.4 Heat Equation

In this section we investigate exponential integrators for large systems of or-
dinary differential equations. An exponential integration method is applied
to an ODE obtained from discretizing the heat equation via the finite ele-
ment method in one spatial dimension. The performance of this method is
compared with the Crank Nicolson method.

2.4.1 Model problem

Consider the time dependent heat equation in one dimension,

ut(x, t) = ∆u(x, t), (2.45)

u(0, x) = u(1, x) = 0, (2.46)

u(x, 0) = g(x). (2.47)

With initial condition given by g(x) = x(1− x) sinh πx, (2.45)–(2.46) has an
exact solution that can be determined by Fourier series.

The problem is spatially discretized using the finite element method,
where the solution u(x, t) is approximated by uh(x, t), with

uh(x, t) =

n
∑

i=1

ui(t)ϕi(x).

Each ϕi(x) is a basis function for the finite element space and each ui(t)
is a time dependent coefficient to be determined. Problem (2.45)–(2.47)
was solved using piecewise linear (p = 1), piecewise quadratic (p = 2), and
piecewise cubic (p = 3) basis functions. Each discretization yields a finite
dimensional system of ordinary differential equations given by

M u̇(t) = −Ku(t), (2.48)

u(0) = u0, (2.49)

where M is the mass matrix, K is the stiffness matrix, u(t) is a vector
containing the coefficients ui(t), and u0 is a vector containing the coefficients
of the Lagrange interpolant of the initial condition g(x). For this example, the
spatial discretization is chosen to be h = 1/128 = 0.0078125. The matrices
M and K are square and of dimension n = 129 for p = 1, n = 257 for p = 2
and n = 385 for p = 3. The vectors u and u(t) are also of dimension n.
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Finite element theory [5] states that the spatial discretization obeys

‖u(x, t) − uh(x, t)‖0 = O(hp+1), (2.50)

where ‖ · ‖0 is the L2 norm [64, p. 99]. The bound (2.50) also holds for
the Lagrange interpolant of the initial condition [64, p. 91]. The error
in the initial condition in ‖u(x, 0) − uh(x, 0)‖0 is 1.50714 × 10−4 for p =
1,4.7363 × 10−7 for p = 2 and 1.08518 × 10−9 for p = 3.

In order to preserve this spatial accuracy, the time step ∆t must be chosen
such that the accuracy of the time integration method is as accurate as the
spatial discretization. Rather than examining the L2 error in the continuous
problem given by (2.50), we will examine the relative l2 error in computing
the coefficient vector u(t) in the discrete problem (2.48)–(2.49). The relative
l2 error is given by

ε(t) =
‖u(t) − ue(t)‖

‖ue(t)‖
,

where u(t) is the computed solution to (2.48)–(2.49) at time t, ue(t) is a
Lagrange interpolant to the exact solution at time t and ‖ · ‖ is the norm in
l2.

2.4.2 Exponentially fitted Euler Method for the Heat
Equation

The discrete heat equation (2.48)–(2.49), can be rewritten as

u̇(t) = −M−1Ku(t), (2.51)

u(0) = u0. (2.52)

The Jacobian of equation (2.51) is given by −M−1K. Applying the expo-
nentially fitted Euler method (2.10) to (2.51)–(2.52) yields,

un+1 = ϕ(−∆tM−1K)un, (2.53)

where ∆t is the step size, ϕ(z) = ez and un = u(tn). The task is to compute
the Krylov subspace Km = span{un, (M

−1K)un, . . . , (M
−1K)

m−1
un}, for

each un (at each time step), via the Arnoldi process, and to approximate

ϕ(−∆tM−1K)un
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Figure 2.3: Relative l2 error at each time step for the exponentially fitted Euler
method corresponding to ∆t = 2 · 10−4, for p = 1 and selected values of m.

by

Vmϕ(−∆tHm)e1

in (2.53). We are interested in integrating (2.51)–(2.52) from t = 0 to t =
1 · 10−2 in such a way that the l2 error at t = 1 · 10−2 is as small as the L2

spatial discretization error with as little computational costs as possible.

Figures 2.3–2.4 show relative l2 errors at each time step for the expo-
nentially fitted Euler method for p = 1 with time steps ∆t = 2 · 10−4 and
∆t = 1 ·10−4 and various values of m. Observe that as m increases, the error
decreases, and as ∆t decreases the error decreases.

As the degree of the spatial approximation, p, increases, so does the
spatial accuracy and matrix dimension. Thus a more accurate approximation
to a larger dimension matrix is required. Figures 2.5–2.6 show relative l2

errors for p = 2 and p = 3 with time steps ∆t = 10−4.

To reduce the error using the exponentially fitted Euler method with
Krylov approximation to the exponential, the time step can be decreased,
the dimension of the Krylov subspace can be increased, or a combination of
the two can be employed.
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Euler method corresponding to ∆t = 2 · 10−4, for p = 2 and selected values
of m.



24

0 0.002 0.004 0.006 0.008 0.01 0.012
10

−10

10
−9

10
−8

10
−7

10
−6

 l2  e
rr

or

   30

   40

   50

   m =

   45

PSfrag replacements

t

Figure 2.6: Relative l2 error at each time step for the exponentially fitted
Euler method corresponding to ∆t = 1 · 10−4, for p = 3 and selected values
of m.

2.4.3 Crank Nicolson Method for the Heat Equation

The second order implicit Crank Nicolson method applied to (2.48)–(2.49)
yields

(

M +
∆t

2
K

)

un+1 =

(

M − ∆t

2
K

)

un. (2.54)

Crank Nicolson has local truncation error O(∆t3), and global error O(∆t2).

In order to reduce the error using Crank Nicolson, the only option is to
reduce the time step size. Figures 2.7–2.9 show relative l2 errors for Crank
Nicolson with time steps ∆t = 1 · 10−3, ∆t = 1 · 10−4 and ∆t = 1 · 10−5

for p = 1, 2 and 3. As expected, the relative error decreases as the step
size decreases. Note that for p = 3, a step size of ∆t = 1 · 10−5 is not
sufficient to achieve an error in time integration that balances the error in
spatial discretization. If we wish to achieve a balance in temporal and spatial
accuracy we require that (∆t)2 ≈ hp+1. In this case, the step size ∆t should
be chosen smaller than ∆t = 1 · 10−5. As can be seen in Figure 2.9, high
order accuracy can require many small time steps.
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Figure 2.7: Relative l2 error at each time step for the Crank Nicolson method
for p = 1 and ∆t = 1 · 10−3, 1 · 10−4, 1 · 10−5.
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Figure 2.8: Relative l2 error at each time step for the Crank Nicolson method
for p = 2 and ∆t = 1 · 10−3, 1 · 10−4, 1 · 10−5.
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Figure 2.9: Relative l2 error at each time step for the Crank Nicolson method
for p = 3 and ∆t = 1 · 10−3, 1 · 10−4, 1 · 10−5, 2.5 · 10−6.

2.4.4 Computational Costs

Figure 2.10 shows relative l2 errors for the exponentially fitted Euler method
with p = 3 and ∆t = 1 · 10−4 for m = 40, m = 45 and m = 50; and
for the Crank Nicolson method with p = 3 and ∆t = 1 · 10−5, ∆t = 2.5 ·
10−6. In particular, it shows that the Crank Nicolson method with step size
∆t = 1 · 10−5 is comparable to the exponentially fitted Euler method with
∆t = 1 · 10−4 and m = 40 and that the Crank Nicolson method with step
size ∆t = 2.5 · 10−6 is comparable to the exponentially fitted Euler method
with ∆t = 1 · 10−4 and m = 50. It also shows that better accuracy can be
attained with m > 40.

Unless mass lumping is used or the operator M−1K can be computed, the
computation of one Krylov vector requires the application of M−1. Recall
that the condition number of M is O(1). Each application of M−1 by the
conjugate gradient method with tolerance 1 ·10−6 requires about 8 iterations.
Hence about 3.2 × 104 iterations of conjugate gradient are required to reach
t = 1 ·10−2 with the exponentially fitted Euler method for m = 40 and about
4.0 × 104 iterations are required for m = 50.

Crank Nicolson requires an application of
(

M + ∆t
2
K
)−1

to the vector
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Figure 2.10: Relative l2 error at each time step for the exponentially fitted
Euler method for p = 3 with ∆t = 1 · 10−4, m = 40, m = 45 and m = 50
(red) and for the Crank Nicolson method for p = 3 with ∆t = 1 · 10−5 and
∆t = 2.5 · 10−6 (blue).

(

M − ∆t
2
K
)

un at each time step. Some rearranging yields,

un+1 =

(

M +
∆t

2
K

)−1(

M − ∆t

2
K

)

un,

=

(

I +
∆t

2
M−1K

)−1

M−1M

(

I − ∆t

2
M−1K

)

un,

=

(

I +
∆t

2
M−1K

)−1(

I − ∆t

2
M−1K

)

un.

The condition number of K is O(h−2), hence the condition number of M−1K
is O(h−2). When ∆t is small, in particular when ∆t = O(h2) the condition
number of I + ∆tM−1K is small and the application of (I + ∆tM−1K)

−1

can be achieved via an iterative process with very few iterations. However,
(I + ∆tM−1K)

−1
needs to be applied at every time step. In this example the

conjugate gradient method with tolerance 1 · 10−8 was used. In practice, this
tolerance is a little excessive, however it assures an accurate representation
of the temporal error. Integration to t = 1 · 10−2 required about 1.2 · 104

iterations of conjugate gradient for ∆t = 1 ·10−5 and about 3.0 ·104 iterations
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Figure 2.11: Relative l2 error at ∆t = 2 ·10−3, 1 ·10−3, 5 ·10−4, 2.5 ·10−4, 1.25 ·
10−4, 6.25 · 10−5, 3.125 · 10−5, 1.563 · 10−5, 7.813 · 10−5 for the exponentially
fitted Euler method for p = 3 with m = 10 (blue), and m = 70 (red) and for
the Crank Nicolson method for p = 3 (black).

of conjugate gradient for ∆t = 2.5 · 10−6. When ∆t is large, considerably

more iterations of conjugate gradient are needed to apply
(

M + ∆t
2
K
)−1

We note that increasing the number of Krylov vectors from m = 40
to m = 50 requires about 20% increase in computational cost. However,
decreasing the step size from ∆t = 1 · 10−5 to ∆t = 2.5 · 10−6 requires over
200% increase in computational cost.

These results suggest that the exponentially fitted Euler method and the
Crank Nicolson method can be used to integrate the example problem with
comparable computational cost and accuracy.

Figure 2.11 shows relative l2 error versus time step size for the exponen-
tially fitted Euler method with m = 10 and m = 70 and the Crank Nicolson
method for p = 3. The figure reveals extremely high convergence rates for
the exponentially fitted Euler method. However, for m = 10 a small time
step is needed to attain a high convergence rate, while large time steps attain
higher order convergence rates for m = 70. In particular for the exponen-
tially fitted Euler method with ∆t = 5 × 10−4 and m = 70 corresponds to
an error on the order of l2 = 10−7. For the Crank Nicolson method, a time
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Figure 2.12: Cost measured in total number of matrix–vector products at
∆t = 2·10−3, 1·10−3, 5·10−4, 2.5·10−4, 1.25·10−4, 6.25·10−5, 3.125·10−5, 1.563·
10−5, 7.813 · 10−5 for the exponentially fitted Euler method for p = 3 with
m = 10 (blue), and m = 70 (red) and for the Crank Nicolson method for
p = 3 (black).

step of ∆t < 1.25 × 10−4 is needed to achieve this error.

The relative costs of each method are shown in Figure 2.12. The cost
is measured in total number of matrix–vector products required for integra-
tion to t = 10−2. The cost grows linearly for the exponentially fitted Euler
method, while the cost grows sub-linear for the Crank Nicolson method.
We note for the exponentially fitted Euler method with ∆t = 5 × 10−4 and
m = 70, the cost is roughly 2 orders of magnitude less than that of the Crank
Nicolson method with ∆t < 1.25×10−4. In this case the exponentially fitted
Euler method can take a time step that is four times longer, with greater
accuracy and less cost that the Crank Nicolson method.

We remark that the exponentially fitted Euler method and the Crank
Nicolson method are comparable in this example. This problem is ”easy” for
Crank Nicolson in the sense that preconditioning is not necessary for the so-
lution of (2.54) when time steps are sufficiently small. In a more complicated
problem preconditioning Crank Nicolson may be difficult. Higher spatial di-
mension, complicated geometry, an unstructured mesh, or the introduction
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Figure 2.13: Relative l2 error at each time step for the Crank Nicolson method
for p = 3 with ∆t = 1 · 10−3, when the exact solution to (2.45)–(2.47) is
u(x, t) = e−π2t sin πx (red), u(x, t) = e−π2t sin πx + e−4π2t sin 2πx (blue), and
u(x, t) = e−π2t sin πx + e−4π2t sin 2πx+ e−9π2t sin 3πx (green).

of constraints may also lead to difficult preconditioning. If preconditioning
is difficult or nonexistent, the use of exponential integrators may prove to be
beneficial.

We also remark that Figures 2.3–2.10 show that temporal errors decrease
as t increases. This seems counter intuitive, as errors in time integration
should accumulate. However, the exact solution of (2.51)–(2.52) is given by
the Fourier series

u(x, t) =
∞
∑

n=1

cne−n2π2t sin(nπx),

where cn = 2
∫ 1

0
g(x) sin(nπx). Thus u(x, t) is a linear combination of sine

waves sin(nπx) with frequencies nπ and amplitudes cne
−n2π2t. The solution

u(x, t) has an initial phase, called the initial transient for small t where
derivatives are large but decrease as t increases. The large derivatives in the
initial transient cause the error to be amplified. For a discussion of this effect
see [45, pp. 147–149]. Figures 2.3–2.10 show errors for t inside this initial
transient.

This phenomenon is demonstrated in Figure 2.13. Initial conditions are



31

chosen such that the exact solution to (2.45)–(2.47) is u(x, t) = e−π2t sin(πx),
u(x, t) = e−π2t sin(πx) + e−4π2t sin(2πx), and u(x, t) = e−π2t sin(πx) +
e−4π2t sin(2πx) + e−9π2t sin(3πx). The Crank Nicolson method is applied to
(2.48)–(2.49) for t ∈ [0, 1] with ∆t = 1 · 10−3 for each initial condition. In
each case u0 was chosen as the Lagrange interpolant of u(x, 0). Figure 2.13
shows l2 errors in each case. Note that when the exact solution contains
terms with large derivatives in the initial transient, the error is amplified in
that region.
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Chapter 3

Navier–Stokes equations

Our second building block requires an efficient, scalable application of a pro-
jection onto a divergence–free subspace. In this chapter, we address this issue
by deriving the two common divergence–free projections. The divergence–
free L2 projection is the most commonly used projection. This projection
stems from the L2 inner product. The less common divergence–free H1 pro-
jection is induced by the H1 seminorm. Since there are close connections
between the incompressible Navier–Stokes equations and these projections,
we provide a background for these equations as well. Practical implementa-
tion issues regarding both the L2 and H1 divergence–free projections will be
discussed in Chapter 4.

3.1 Function Spaces

In this section we introduce some function spaces that are important for the
theory of the Navier–Stokes equations.

Let H be a Hilbert space. We define the projection operator P : H → H
by

1. PPu = Pu, ∀u ∈ H.

2. P is a bounded operator.

P is an orthogonal projection operator if P = P ∗, otherwise P is an oblique
projection operator.

33



34

Let Ω be an open, bounded domain in � d, d = 2 or 3 with a Lipschitz
continuous boundary Γ, that is Γ can be parameterized by Lipschitz continu-
ous functions. A particular family of Hilbert spaces is defined as measurable
functions u such that

∫

Ω

|u|2 dx <∞.

This function space is denoted by L2 (Ω) and is endowed with the norm

‖u‖ =

(
∫

Ω

|u|2 dx

)1/2

,

and inner product

(u, v) =

∫

Ω

uv dx.

We use the following notation for partial derivatives:

Dαu =
∂|α|u

∂xα1
1 ∂xα2

2 · · ·∂xαn
n

,

where α = (α1, α2, . . . , αn) is a multi–index whose components are non–
negative integers. For any multi–index we make the definition |α| =

∑n
i=1 αi.

For k a non–negative integer we define the Sobolev space

Hk (Ω) =
{

u ∈ L2 (Ω) : Dαu ∈ L2 (Ω) , ∀ |α| ≤ k
}

.

Hk (Ω) is a Hilbert space with norm

‖u‖k =





∑

|α|≤k

‖Dαu‖2





1/2

,

and corresponding seminorm

|u|k =





∑

|α|=k

‖Dαu‖2





1/2

,

and inner product

(u, v)k =
∑

|α|≤k

(Dαu,Dαv) .

We identify H0 (Ω) with L2 (Ω).
The trace theorem given in [64, Theorem 1.3.1 p. 10] allows us to consider

how functions in Sobolev spaces can be restricted to the boundary Γ of Ω.
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Theorem 3.1 (Trace Theorem). Let Ω be a bounded open set of � d with
Lipschitz continuous boundary Γ and let s > 1/2.

1. There exists a unique continuous trace operator γ0 : Hs (Ω) →
Hs−1/2 (Γ) such that γ0v = v|Γ for each v ∈ Hs (Ω) ∩ C0

(

Ω̄
)

.

2. There exists a continuous operator R0 : Hs−1/2 (Γ) → Hs (Ω) such that
γ0R0ϕ = ϕ for each ϕ ∈ Hs−1/2 (Γ).

For g ∈ Hs−1/2 (Γ) we define the boundary norm

‖g‖s−1/2 = inf
u∈Hs(Ω)

γ0u=g

‖u‖s.

The existence of the trace operator enables us to characterize functions in
H1

0 (Ω) in terms of a boundary condition. We define the space Hk
0 = (Ω) {u ∈

Hk (Ω) : γ0u = 0} and denote the dual space ofHk
0 (Ω) by H−k (Ω) Analogous

results hold for the trace operator γΣ on a Lipschitz continuous subset Σ of
Γ. For example, we can define the space

H1 (Ω,Σ) =
{

u ∈ H1 (Ω) : γΣu = 0
}

,

of functions which vanish on Σ.
When analyzing functions of both space and time, we utilize the space

L2 (0, T ; Ω) =

{

u : (0, T ) → Hk (Ω) :

∫ T

0

‖u(t)‖2
k dt <∞

}

,

with norm

‖u‖L2(0,T ;Ω) =

(
∫ T

0

‖u(t)‖2
k dt

)1/2

.

We define the following differential operators. For scalar fields q : Ω → �
we denote the gradient by ∇q. The gradient is a vector with

[∇q]i =
∂q

∂xi

1 < i ≤ d.

For vector fields u : Ω → � d the gradient is a matrix defined as

[∇u]ij =
∂uj

∂xi
1 < i, j ≤ d.
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We denote the divergence by ∇ · u with

∇ · u =

d
∑

i=1

∂ui

∂xi
.

For matrix fields A : Ω → � d×d, the divergence is a vector defined by

[∇ · A]i =

d
∑

j=1

∂Aji

∂xj
1 < i ≤ d.

When d = 2 and q : Ω → � we denote the curl by ∇× q with

∇× q =

[

∂q/∂x2

−∂q/∂x1

]

,

and for u : Ω → � 2 we define

∇× u =
∂u2

∂x1
− ∂u1

∂x2
.

When d = 3 and u : Ω → � 3 we define the curl as

∇× u =





∂u3/∂x2 − ∂u2/∂x3

∂u1/∂x3 − ∂u3/∂x1

∂u2/∂x1 − ∂u1/∂x2



 .

We define the Laplacian operator as ∆ = ∇ · ∇, and note the Laplacian
makes sense when applied to both scalar and vector fields. For matrices A,
B : Ω → � d×d, we will also use the notation

A : B =

d
∑

i,j=1

AijBij.

For vector valued functions f : � n → � m we denote the Jacobian of f by df
du

with
[

df(u)

du

]

ij

=
dfi(u)

duj

1 ≤ i ≤ m, 1 ≤ j ≤ n. (3.1)

Sobolev spaces extend to vector-valued functions if we require that each
component belongs to the Sobolev space. For a vector u we will use the
notation γ0u to denote the trace of u by

[γ0u]i = γ0ui 1 ≤ i ≤ d.
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We denote the exterior unit normal vector by n, with components ni, 1 ≤
i ≤ d, and the unit tangent vector by τ , with components τi, 1 ≤ i ≤ d.

We will make use of additional Sobolev spaces of vector-valued functions
defined below. When considering incompressible flows we utilize the subspace
of L2 (Ω)d whose divergence is in L2 (Ω),

Hdiv (Ω) =
{

u ∈ L2 (Ω)d : ∇ · u ∈ L2 (Ω)
}

.

The space Hdiv (Ω) is a Hilbert space with inner product

(u, v)div = (u, v) + (∇ · u,∇ · v) ,

and norm

‖u‖div = (u,u)
1/2
div .

In addition to Theorem 3.1, there is a theorem [64, Theorem 1.3.2 p. 10] that
allows us to discuss normal components of vectors restricted to boundaries.

Theorem 3.2 (Trace Theorem for vector functions). Let Ω be a bound-
ed open set of � d with Lipschitz continuous boundary Γ.

1. There exists a unique continuous trace operator γ � : Hdiv (Ω) →
H−1/2 (Γ) such that γ � v = (v · n) |Γ for each v ∈ Hdiv (Ω) ∩ C0

(

Ω̄
)

.

2. There exists a continuous operator R � : H−1/2 (Γ) → Hdiv (Ω) such
that γ � R � ϕ = ϕ for each ϕ ∈ H−1/2 (Γ).

In addition to Hdiv (Ω) we define

Hdiv
0 (Ω) =

{

u ∈ Hdiv (Ω) : γ � u = 0
}

.

The divergence–free subspaces of L2 (Ω)d and H1 (Ω)d respectively are

H (Ω) =
{

u ∈ L2 (Ω)d : ∇ · u = 0, γ � u = 0
}

, (3.2)

J (Ω) =
{

u ∈ Hdiv (Ω) : ∇ · u = 0
}

,

and

V (Ω) =
{

u ∈ H1
0 (Ω)d : ∇ · u = 0

}

.
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We also consider the space of curl–free functions

G (Ω) =
{

u ∈ L2 (Ω)d : u = ∇q, q ∈ H1 (Ω)
}

. (3.3)

When considering approximations to pressure fields, we will utilize the space
of zero–mean functions

L2
0 (Ω) =

{

q ∈ L2 (Ω) :

∫

Ω

q dx = 0

}

.

We will also utilize some integration formulas. For u, v ∈ H1 (Ω) we have
Green’s formula:

∫

Ω

v
∂u

∂xi

dx = −
∫

Ω

u
∂v

∂xi

dx +

∫

Γ

(γ0u) (γ0v)ni ds 1 ≤ i ≤ d. (3.4)

In particular we have Stokes’ formula, for u ∈ Hdiv (Ω) and q ∈ H1 (Ω),

(q,∇ · u) = − (u,∇q) + 〈γ � u, γ0q〉Γ . (3.5)

For u ∈ H2 (Ω) and v ∈ H1 (Ω) we have

(∇u,∇v) = − (v,∆u) + 〈γ0v, γ � ∇u〉Γ .

For u ∈ H2 (Ω)d and v ∈ H1 (Ω)d we have

∫

Ω

∇u : ∇v dx = − (v,∆u) +
d
∑

i=1

〈γ0vi, γ � ∇ui〉Γ . (3.6)

We will sometimes use the notation

d
∑

i=1

〈γ0vi, γ � ∇ui〉Γ =

∫

Γ

v · ∂u
∂n

ds,

where
[

∂u

∂n

]

i

=
∂ui

∂n
. (3.7)

The following two theorems characterize orthogonal decompositions of
L2 (Ω)d. See [78, Theorem 1.4 p. 15] and [78, Theorem 1.5 p. 16].
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Theorem 3.3 (Helmholtz Decomposition). Let Ω be a bounded open set
of � d with Lipschitz continuous boundary Γ. Then

L2 (Ω)d = H (Ω) ⊕G (Ω) , (3.8)

where H (Ω) and G (Ω) given by (3.2) and (3.3) respectively, are mutually
orthogonal spaces.

Theorem 3.4 (Decomposition of G (Ω)). Let Ω be a bounded open set of
� d with Lipschitz continuous boundary Γ. Then

G (Ω) = G1 (Ω) ⊕G2 (Ω) , (3.9)

where G1 (Ω) and G2 (Ω) are mutually orthogonal spaces

G1 (Ω) =
{

u ∈ L2 (Ω)d : u = ∇q, q ∈ H1 (Ω) , ∆q = 0
}

(3.10)

G2 (Ω) =
{

u ∈ L2 (Ω)d : u = ∇q, q ∈ H1
0 (Ω)

}

. (3.11)

We note that G1 (Ω) is the subspace of L2 (Ω)d containing functions that
are both divergence–free and curl–free. These important results will be ad-
dressed in Section 3.5.2. Similarly the space H1

0 (Ω)d has the orthogonal
decomposition [30, Theorem 3.8 p. 36]:

Theorem 3.5 (Decomposition of H1
0 (Ω)d). Let Ω be a bounded open set

of � d with Lipschitz continuous boundary Γ. The space H1
0 (Ω)d has the

decomposition:
H1

0 (Ω)d = V (Ω) ⊕ V ⊥ (Ω) ,

where
V ⊥ (Ω) =

{

v ∈ H1
0 (Ω) : −∆v = ∇q, q ∈ L2 (Ω)

}

.

We can easily verify that the spaces V and V ⊥ are orthogonal with respect
to the bilinear form a(u, v) =

∫

Ω
∇u : ∇v dx, which induces the seminorm

in H1
0 (Ω)d. By the Poincaré–Friedrich’s inequality (see [30, Theorem 1.1 p.

3]), | · |1 is a norm equivalent to ‖ · ‖1 on H1
0 (Ω)d. Let u ∈ V ⊥ and v ∈ V .

By (3.6) and since v ∈ H1
0 (Ω)d we have

a(u, v) = −〈∆u, v〉 ,
= 〈∇q, v〉 ,
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Figure 3.1: Venn diagram characterizing the Sobolev spaces L2 (Ω), Hdiv (Ω),
Hdiv

0 (Ω), H1 (Ω), H1
0 (Ω), H (Ω) and V (Ω).

for some q ∈ L2 (Ω),

= 〈q,∇ · v〉 ,
= 0,

which follows by the assumption ∇ · v = 0. This theorem will be addressed
in Section 3.5.3.

We will introduce additional function spaces as needed. For a more com-
prehensive survey of Sobolev spaces we refer to [55, 64, 67, 78]. For a more
elaborate discussion of the decompositions of L2 (Ω)d we refer to [20, p. 312].
For a general background on functional analysis we refer to [49, 66]. We
conclude this section with some examples.

Example 3.1 (Illustration of the common function spaces). Figure
3.1 shows a Venn diagram characterizing the spaces mentioned above. This
diagram together with some properties of these spaces will be made clear in
the following examples.

�
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Example 3.2 (The space Hk (Ω)). Let Ω = (0, 1) and ϕ (x) = xα with
α ∈ � . Since

∫

ϕ (x)2 dx =
x1+2α

1 + 2α
,

we have ϕ (x) ∈ L2 (Ω) for α > −1/2. The kth derivative of ϕ (x) is given by

ϕ(k) (x) = x−k+α
k−1
∏

i=0

(−i + α) . (3.12)

Using (3.12) we can show that ϕ (x) ∈ Hk (Ω) for α > (2k − 1) /2.
�

Example 3.3 (H1 (Ω) is a subset of Hdiv (Ω)). Let Ω = (0, 1)× (0, 1). To
show that H1 (Ω) ⊂ Hdiv (Ω), we let u ∈ H1 (Ω), thus

∂ui

∂xj
∈ L2 (Ω) for i, j = 1, 2. (3.13)

In particular (3.13) holds for i = j. We use the triangle inequality:

‖∇ · u‖ =

∥

∥

∥

∥

∥

d
∑

i=1

∂ui

∂xi

∥

∥

∥

∥

∥

,

≤
d
∑

i=1

∥

∥

∥

∥

∂ui

∂xi

∥

∥

∥

∥

.

Thus u ∈ Hdiv (Ω). Now to show Hdiv (Ω) 6⊂ H1 (Ω), let ϕ (x) as in Example
3.2 with −1/2 < α < 1/2, for this choice of α, ϕ (x) ∈ L2 (0, 1) but ϕ (x) 6∈
H1 (0, 1). Consider u = (u1, u2)

T = (x1ϕ(x2), x2)
T . We see that ∇ · u =

ϕ(x2) + 1 ∈ L2 (Ω), thus u ∈ Hdiv (Ω). However, for u ∈ H1 (Ω) we require
that (3.13) holds. In particular we have

∂u1

∂x2

= x1ϕ
′(x2),

with ϕ′(x2) 6∈ L2 (0, 1).
�

Example 3.4 (The space Hk
0 (Ω)). Let Ω = (0, 1) and ϕ (x) = x(xα − 1)

with α ∈ � . We note that ϕ (0) = ϕ (1) = 0. Since

∫

ϕ (x)2 dx =
x3

3
− 2x3+α

3 + α
+

x3+2α

3 + 2α
,
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we have ϕ (x) ∈ L2 (Ω) for α > −3/2. The kth derivative of ϕ (x) is given by

ϕ(k) (x) = (1 + α)x−k+α+1

k−2
∏

i=0

(−i + α) . (3.14)

Using (3.14) we can show that ϕ (x) ∈ Hk
0 (Ω) for α > (2k − 3) /2.

�

Example 3.5 (Decomposition of L2 (Ω)2.). Let Ω = (0, 1) × (0, 1) and

u =

[

sin πx1 cos πx2 + cos πx1 sin πx2 + cos πx1 sinh πx2

− cos πx1 sin πx2 + sin πx1 cos πx2 + sin πx1 cosh πx2

]

.

u is clearly an element of L2 (Ω)2 and can be written as

u = v + ∇q1 + ∇q2,
with

v = ∇× 1

π
sin πx1 sin πx2 =

[

sin πx1 cos πx2

− cos πx1 sin πx2

]

,

q1 =
1

π
sin πx1 sinh πx2, ∇q1 =

[

cos πx1 sinh πx2

sin πx1 cosh πx2

]

,

q2 = sin πx1 sin πx2, ∇q2 =

[

π cos πx1 sin πx2

π sin πx1 cos πx2

]

.

Since ∇ · v = 0, and v · n|Γ = 0, we have v ∈ H (Ω). We have q1 ∈ H1 (Ω)
with ∆q1 = 0, hence ∇q1 ∈ G1 (Ω); and q2 ∈ H1

0 (Ω), hence ∇q2 ∈ G2 (Ω).
These functions are illustrated in Figure 3.2. Some remarks are in order.
u is nonzero on Γ, in particular u1|x2=0 6= 0, u2|x2=0 6= 0, u2|x1=0 6= 0 and
u2|x1=1 6= 0. The projection of u onto the divergence–free subspace of L2 (Ω)
is given by v + ∇q1. Figure 3.3 illustrates this decomposition.

�

Example 3.6 (Relationship to the curl spaces.). In terms of the curl
operator we can make the following identifications:

G (Ω) =
{

u ∈ L2 (Ω)2 : ∇× u = 0
}

,

G2 (Ω) = {u ∈ G (Ω) : u · τ |Γ = 0} ,
H (Ω) = ∇×H1

0 (Ω) ,

J (Ω) = ∇×H1 (Ω) .

Note that the space G2 (Ω) is composed of functions with zero tangential
component on Γ. Figure 3.3 and Example 3.5 illustrate these identifications.
We refer to [20, Chap. IX] for an overview of the curl spaces.

�
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Figure 3.2: Decomposition of u in L2 (Ω); u given in Example 3.5.
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G1(Ω) : ∇q1

L2(Ω)2 : u = v + ∇q1 + ∇q2

G(Ω) : ∇q1 + ∇q2 (= {u ∈ L2 (Ω)2 : ∇× u = 0})

J(Ω) : v + ∇q1 (= ∇× H1 (Ω))

H(Ω) : v (= ∇× H1
0

(Ω))G2(Ω) : ∇q2 (= {u ∈ G(Ω) : u · τ |Γ = 0})

Figure 3.3: Illustration of the decompositions of u in L2 (Ω); u given in
Example 3.5, and identification of curl–free spaces.

3.2 Navier–Stokes equations

Let Ω be an open, bounded domain in � d, d = 2 or 3 with a Lipschitz
continuous boundary Γ. The Navier–Stokes equations for incompressible
flow with homogeneous Dirichlet boundary condition are given by

∂u

∂t
= ν∆u − (u · ∇)u + f −∇p x ∈ Ω, (3.15)

∇ · u = 0 x ∈ Ω, (3.16)

u = 0 x ∈ Γ, (3.17)

where u : Ω → � d is the velocity, p : Ω → � is the pressure, f : Ω → � d

is the body force and ν > 0 is the kinematic viscosity, a constant. Equation
(3.15) is the momentum equation and the incompressibility of the fluid is
enforced by the continuity equation (3.16). Since (3.15) only determines p
to an additive constant, we require p ∈ L2

0 (Ω). Additionally (3.15)–(3.16)
require an initial condition

u (x, 0) = u0 (x) x ∈ Ω, (3.18)

and appropriate boundary conditions.
The most common boundary conditions for (3.15)–(3.16) are the no–pene-

tration boundary condition

n · u = 0 x ∈ Γ, (3.19)
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and the no–slip boundary condition

τ · u = 0 x ∈ Γ. (3.20)

The no–penetration boundary condition is equivalent to no flow crossing the
boundary. For viscous flow (ν > 0) the no–slip boundary condition means
that the fluid in direct contact with a solid boundary has the same velocity as
the boundary itself. The homogeneous Dirichlet boundary condition (3.17)
is a no–penetration, no–slip boundary condition. We could also impose a
non–homogeneous Dirichlet boundary condition

u = w x ∈ Γ. (3.21)

In this case n·u = w � and τ ·u = w � for x ∈ Γ. Non–homogeneous Dirichlet
boundary conditions coincide with inflow conditions.

The outflow or non–friction boundary condition is

d
∑

j=1

(

−pδij + ν

(

∂uj

∂xi
+
∂ui

∂xj

))

nj = gi x ∈ Γ 1 < i ≤ d, (3.22)

where δij is the Kronecker delta (δij = 0 for i 6= j, δii = 1).
We will often partition the boundary as Γ = ΓE ∪ ΓN , with ΓE ∩ ΓN = ∅

and refer to ΓE as the portion of the boundary with essential boundary
conditions and ΓN as the portion of the boundary with natural boundary
conditions. ΓE will correspond to boundaries where penetration and slip
conditions are specified and ΓN will correspond to boundaries with an out-
flow condition. In the present section we shall only consider homogeneous
Dirichlet boundary conditions.

We will be interested in several forms of (3.15)–(3.16) that are indepen-
dent of t. When ∂ �

∂t
= 0 we have the steady Navier–Stokes equations:

−ν∆u + (u · ∇) u + ∇p = f x ∈ Ω, (3.23)

∇ · u = 0 x ∈ Ω, (3.24)

u = 0 x ∈ Γ. (3.25)

The steady Navier–Stokes equations with the nonlinear term (u · ∇) u omit-
ted are known as the steady Stokes equations:

−ν∆u + ∇p = f x ∈ Ω, (3.26)

∇ · u = 0 x ∈ Ω, (3.27)

u = 0 x ∈ Γ. (3.28)
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Another form is known as Darcy–Stokes flow or the generalized Stokes equa-
tions given by

αu − ν∆u + ∇p = f x ∈ Ω, (3.29)

∇ · u = 0 x ∈ Ω, (3.30)

u = 0 x ∈ Γ, (3.31)

where α > 0 is a constant. Equation (3.29)–(3.30) arises as part of the
solution process of (3.15)–(3.16) using an implicit time integration scheme.
In this case α plays the role of an inverse time step. The final form we will
consider is the Darcy or Potential flow equations:

u + ∇p = f x ∈ Ω, (3.32)

∇ · u = 0 x ∈ Ω, (3.33)

n · u = 0 x ∈ Γ. (3.34)

The steady Stokes equations (3.26)–(3.27) and Darcy flow equations (3.32)–
(3.33) play an important role in divergence–free projections that will be dis-
cussed in Section 3.5.

3.3 Weak formulation

Given Hilbert spaces V and Q, a bilinear form b(·, ·), is a mapping V ×Q→ �
that is linear in each argument. Let V = H1

0 (Ω)d and Q = L2
0 (Ω). We define

the bilinear form b(·, ·) : V ×Q→ � by

b(v, q) = − (q,∇ · v) , (3.35)

the bilinear form a(·, ·) : V × V → � by

a(u, v) =

∫

Ω

∇u : ∇v dx, (3.36)

and the trilinear form c(·; ·, ·) : V × V × V → � by

c(w; u, v) =

∫

Ω

((w · ∇)u) · v dx =
d
∑

i,j=1

(

wj
∂ui

∂xj
, vi

)

.
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The weak formulation of (3.15)–(3.17) can be stated as: given u0 ∈ Hdiv (Ω)
and f ∈ L2

(

0, T ;Hdiv (Ω)
)

find u(t) ∈ V and p(t) ∈ Q such that for all
t ∈ (0, T )

d

dt
(u(t), v) + νa(u(t), v) + c(u(t); u(t), v)

+b(v, p(t)) = (f(t), v) ∀v ∈ V, (3.37)

b(u(t), q) = 0 ∀q ∈ Q, (3.38)

u(0) = u0. (3.39)

Existence of a solution to (3.15)–(3.17) for d = 2, 3 is proved in [30,
Theorem 1.4, p. 165]. Uniqueness of a solution to (3.15)–(3.17) for d = 2 is
proved in [30, Theorem 1.5, p. 168], uniqueness for d = 3 remains unproven.
For further results on existence and uniqueness we refer to [30, Chap. V]
and [78, Chap. 3]. To study the existence and uniqueness of problem (3.26)–
(3.27), we will make use of the Ladyzhenskaya–Babus̆ka–Brezzi (LBB) or
inf–sup condition. For simplicity we set ν = 1, and write the weak form of
(3.26)–(3.27) as: find u ∈ V and p ∈ Q such that

a(u, v) + b(v, p) = (f , v) ∀v ∈ V, (3.40)

b(u, q) = 0 ∀q ∈ Q. (3.41)

We introduce the space of weakly divergence–free or solenoidal functions

Z = {v ∈ V : b(v, q) = 0 ∀q ∈ Q} .

The next theorem [5, Theorem 4.3 p. 127] gives sufficient conditions to solve
(3.40)–(3.41).

Theorem 3.6 (Ladyzhenskaya–Babus̆ka–Brezzi). Let a(·, ·) be contin-
uous on V × V :

|a(u, v) | ≤ Ca‖u‖V ‖v‖V ∀u, v ∈ V,

and coercive on Z × Z:

a(u,u) ≥ γa‖u‖2
V ∀u ∈ Z,

let b(·, ·) be continuous on V ×Q:

|b(u, p) | ≤ Cb‖u‖V ‖p‖Q ∀u ∈ V, p ∈ Q,
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and let b(·, ·) satisfy the “LBB” or “inf–sup” condition

sup
� ∈V

b(u, p)

‖u‖V

≥ γb‖p‖Q ∀p ∈ Q.

Then (3.40)–(3.41) has a unique solution.

We remark that Theorem 3.6 assumes and “Z–coercivity” of the bilinear
form a(·, ·), thus Theorem 3.6 can be applied to study stability of the weak
forms of (3.29)–(3.30) or (3.32)–(3.33). In particular in Section 5.2 we ex-
amine the consequences when coercivity does not hold for equations of the
form (3.32)–(3.33).

3.4 Finite element discretization

For simplicity, let Ω be a polygonal domain that can be partitioned into
triangles or quadrilaterals. Let Th = {T1, T2, . . . , TM} be a partition of Ω.
Each Ti is called a finite element. We define the triangulation of Ω by Th if
the following properties hold:

1. Ω̄ =
⋃M

i=1 Ti.

2. If Ti

⋂

Tj consists of exactly one point, then it is a common vertex of
Ti and Tj.

3. If for i 6= j, Ti

⋂

Tj consists of more than one point, then Ti

⋂

Tj is a
common edge of Ti and Tj.

The parameter h is associated with the size of the finite elements. If all
the finite elements are the same size, then Th is a uniform triangulation. A
family of triangulations {Th} is called regular if there exists σ > 0 such that
every T in Th contains a circle of diameter ρT with

hT

ρT
≤ σ,

where hT is the diameter of T .
Let Th be a triangulation of Ω. We introduce finite element approxima-

tions V h of V and Qh of Q, based on the triangulation Th. The Navier–Stokes
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problem (3.37)–(3.39) becomes: find uh(t) ∈ V h and ph(t) ∈ Qh such that
for all t ∈ (0, T )

d

dt

(

uh(t), vh
)

+ νa
(

uh(t), vh
)

+ c
(

uh(t); uh(t), vh
)

+b
(

vh, ph(t)
)

=
(

f(t), vh
)

∀vh ∈ V h,
(3.42)

b
(

uh(t), qh
)

= 0 ∀qh ∈ Qh,
(3.43)

u(0) = u0. (3.44)

Let {ϕk}K
k=1 denote the basis of V h and {ψj}J

j=1 denote the basis of Qh. Then

uh(t) can be written as

uh(t) =

K
∑

k=1

uk(t)ϕk,

and ph can be written as

ph(t) =

J
∑

j=1

pj(t)ψj.

The algebraic or discrete form of (3.42)–(3.44) is

M
du(t)

dt
+Ku(t) +N (u(t))u(t) + Cp(t) = f(t), (3.45)

CTu(t) = 0, (3.46)

u(0) = u0, (3.47)

where we make the following definitions:

Mij =
(

ϕi,ϕj

)

, (3.48)

Kij = a
(

ϕi,ϕj

)

, (3.49)

[N(w)]ij =

K
∑

k=1

wk c
(

ϕk; ϕj,ϕi

)

, (3.50)

Cij = b
(

ϕj, ψi

)

, (3.51)

[f(t)]i = (f(t),ϕi) , (3.52)

[u(t)]i = ui, (3.53)
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and

[p(t)]i = pi. (3.54)

The matrix M is the mass matrix, K is the stiffness or diffusion matrix,
N (w) is the advection matrix, C is the gradient matrix, CT is the divergence
matrix, f (t) is the load vector and u(t) and p(t) are the vectors containing
the nodal coefficients for velocity and pressure, respectively.

We define the following polynomial spaces:

Qk = {polynomials of degree ≤ k in each coordinate},
�

k = [Qk]
n = {n-vectors whose components belong to Qk}.

Let the triangulation Th be a partition of Ω into a quadrilateral mesh if
d = 2 or a hexahedral mesh if d = 3. For the

�
mQn element we approximate

the velocity and the pressure with polynomials from
�

m and Qn on each
quadrilateral or hexahedral, such that the approximations are continuous on
Ω. The following Lemma characterizes the asymptotic convergence rate in
the space Qk [64, p. 96].

Lemma 3.1. Let Th be a regular triangulation of Ω. Let the number s satisfy
1 ≤ s ≤ k and m = 0, 1. Then there exists an element vh ∈ Qk such that

‖v − vh‖m ≤ Chs+1−m‖v‖s+1 ∀v ∈ Hs (Ω) , (3.55)

where C is a positive constant independent of h and v.

We provide a stability result that is a discrete analog of Theorem 3.6. We
introduce the space of weakly discretely divergence–free functions

Zh (Ω) =
{

uh ∈ V h : b
(

uh, qh
)

= 0 ∀qh ∈ Qh
}

. (3.56)

The space Zh (Ω) corresponds to N
(

CT
)

. Problem (3.40)–(3.41) is approx-
imated by: find uh ∈ V h and ph ∈ Qh such that

a
(

uh, vh
)

+ b
(

vh, ph
)

=
(

f , vh
)

∀vh ∈ V h, (3.57)

b
(

uh, qh
)

= 0 ∀qh ∈ Qh. (3.58)

As a consequence, if (uh, ph) solves (3.57)–(3.58), then uh ∈ Zh and uh solves
the following: find uh ∈ Zh such that

a
(

uh, vh
)

=
(

f , vh
)

∀vh ∈ Zh. (3.59)

The following Theorem provides error estimates for a mixed approximation.
[39, pp. 10–16]
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Theorem 3.7. Let V h ⊂ V and Qh ⊂ Q.

1. Assume that

(a) Zh is nonempty.

(b) a
(

uh,uh
)

≥ γh
a‖uh‖2

V ∀uh ∈ Zh.

Then (3.59) has a unique solution uh ∈ Zh and

‖u − uh‖V ≤ C1 inf
� h∈V h

‖u − v‖V + C2 inf
qh∈Qh

‖p− qh‖Q,

where

C1 = 1 +
Ca

γh
a

and 1 +
Cb

γh
a

.

2. Assume in addition, there exists γh
b > 0 such that

sup
� h∈V h

b
(

uh, ph
)

‖uh‖V
≥ γh

b ‖ph‖Q ∀ph ∈ Q.

Then there exists a unique ph ∈ Qh such that (uh, ph) solves (3.57)–
(3.58) and we have the error bounds

‖u − uh‖V ≤ K11 inf
� h∈V h

‖u − v‖V +K12 inf
qh∈Qh

‖p− qh‖Q, (3.60)

‖p− ph‖V ≤ K21 inf
� h∈V h

‖u − v‖V +K22 inf
qh∈Qh

‖p− qh‖Q, (3.61)

where

K11 = 1 +
Ca

γh
a

+
CaCb

γh
aγ

h
b

, K12 =
Cb

γh
a

δ(Z,Zh),

K21 =
Cb

γh
b

, K22 = 1 +
Cb

γh
b

and δ(Z,Zh) = sup
� h∈Zh

‖ � h‖V =1

inf
� ∈Z

‖z − zh‖V .

Note here that if Zh ⊂ Z, then δ(Z,Zh) = 0 and the error estimate for
the velocity decouples from the pressure error; however the error estimate
for the pressure is always coupled to the velocity error. The error bounds in
(3.60) and (3.61) contain terms that involve different norms. These terms are
usually equilibrated by choosing polynomials for the velocity approximation
uh a degree higher than the polynomials for the pressure approximation ph.
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The present discretization will utilize the quadrilateral or hexahedral
Taylor–Hood element

�
2Q1. The finite element spaces are given by

V h = {vh ∈ �
2 : vh = 0 on Γ}

and

Qh = {qh ∈ Q1 :

∫

Ω

qh dx = 0}.

The
�

2Q1 element consists of piecewise continuous bi-quadratic polynomial
approximation for the velocity space and piecewise continuous bilinear poly-
nomials for the pressure space. The

�
2Q1 element is a conforming element

of V h ×Qh. By Lemma 3.1, we have error estimates given by

inf
� h∈V h

‖u − vh‖1 ≤ c1h
3,

and
inf

qh∈Qh
‖p− qh‖0 ≤ c1h

2,

the error bounds (5.26) and (5.27) are balanced. The
�

2Q1 element satisfies
the condition 2 of Theorem 3.7 or the inf-sup condition [39, pp. 31–34]. The

�
2Q1 element provides a stable spatial discretization for the Navier–Stokes

equations (3.15)–(3.18) supplemented with boundary conditions (3.21) and
(3.22) see [64, pp. 310–311]. In addition to the references above we refer to
[30, 62, 78] for discussion of finite element methods for the incompressible
Navier–Stokes equations.

3.5 Divergence–free projections

In the present section we discuss divergence–free projections. We provide
an abstract framework that will allow us to characterize the divergence–
free L2 and H1 projections. Section 3.5.2 discusses the L2 projection from
L2 (Ω)d onto the divergence–free subspace of L2 (Ω)d, and issues of practical
implementation. Section 3.5.3 discusses the H1 projection from H1 (Ω)d onto
the divergence–free subspace of H1 (Ω)d.

3.5.1 Abstract framework for projections

We now construct an abstract framework that will be useful in our study of
divergence–free projections. Suppose X and Y are Hilbert spaces. Assume
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the bilinear forms s(u, v) and r(v, p) are given so that s(·, ·) is continuous
on X ×X:

|s(u, v) | ≤ Cs‖u‖X‖v‖X ∀u, v ∈ X,

r(·, ·) is continuous on X × Y :

|r(u, p) | ≤ Cr‖u‖X‖p‖Y ∀u ∈ X, p ∈ Y,

and an “inf–sup” condition holds:

sup
� ∈X

r(u, p)

‖u‖X
≥ γr‖p‖Y ∀p ∈ Y.

Define the kernel of r as

Zr = {v ∈ X : r(v, q) = 0 ∀q ∈ Y } .
with a cokernel defined by

Z⊥
r = {w ∈ X : s(w, v) + r(v, p) = 0 ∀v ∈ X and some p ∈ Y } .

Suppose further that s is coercive on Zr × Zr:

s(u,u) ≥ γs‖u‖2
X ∀u ∈ Zr.

For any x ∈ X, there exist unique u ∈ X and p ∈ Y such that

s(u, v) + r(v, p) = s(x, v) ∀v ∈ X, (3.62)

r(u, q) = 0 ∀q ∈ Y. (3.63)

Existence and uniqueness follows from Theorem 3.6. This also compels the
conclusion that Zr and Z⊥

r are complementary subspaces inX: Zr∩Z⊥
r = {0}

and X = Zr ⊕ Z⊥
r . Note that (3.62) implies that

s(u − x, v) + r(v, p) = 0 ∀v ∈ X,

so u − x ∈ Z⊥
r and u ∈ Zr solves the best approximation problem

s(u − x,u − x) = min
� ∈Zr

s(w − x,w − x) .

The implied mapping P : x 7→ u that (3.62) determines is a (oblique) pro-
jection of X onto Zr along the cokernel Z⊥

r . Indeed, consider û = P 2x as
the solution to

s(û, v) + r(v, p̂) = s(Px, v) ∀v ∈ X, (3.64)

r(û, q) = 0 ∀q ∈ Y. (3.65)

Since s(Px, v)+r(v, p) = s(x, v) ∀v ∈ X, we see that s(û, v)+r(v, p̂+ p) =
s(x, v) ∀ v ∈ X which implies that û = Px and so P 2 = P .
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3.5.2 Divergence–free L2 projection

In this section we utilize the abstract formulation developed in Section 3.5.1
to discuss the projection of L2 (Ω)d onto the divergence–free subspace H (Ω)
given by Theorem 3.3. For the divergence–free L2 projection we set

s(u, v) = (u, v) , (3.66)

r(u, p) = b(u, p) , (3.67)

X = Hdiv (Ω), Y = L2 (Ω) and the bilinear form b(·, ·) given by (3.35). Thus
we state the weak form of the divergence–free L2 projection as follows: given
u0 ∈ L2 (Ω), find u ∈ Hdiv (Ω) and p ∈ L2 (Ω) such that

(u, v) + b(v, p) = (u0, v) ∀v ∈ Hdiv (Ω) , (3.68)

b(u, q) = 0 ∀q ∈ L2 (Ω) . (3.69)

The forms (3.66) and (3.67) are continuous. We set

Zr = {v ∈ Hdiv (Ω) : b(v, q) = 0 ∀q ∈ L2 (Ω)}.

Since ∇ · u = 0 on Zr, we have

(u,u) = ‖u‖2 = ‖u‖2 + ‖∇ · u‖2 = ‖u‖2
div,

which establishes coercivity on Zr. Satisfaction of the “inf–sup” condition
is a consequence of standard results for the mixed formulation of the Pois-
son equation [5, p. 133]. Thus by Theorem 3.6, (3.68)–(3.69) has a unique
solution u = P0u0, where we denote the divergence–free L2 projection oper-
ator by P0. Equations (3.68)–(3.69) constitute a Darcy flow problem, hence
we will often refer to (3.68)–(3.69) as the Darcy flow formulation of the
divergence–free L2 projection.

3.5.3 Divergence–free H1 projection

We proceed as in Section 3.5.2 and utilize the abstract framework and set

s(u, v) = a(u, v)

r(u, p) = b(u, p) ,
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X = H1
0 (Ω)d, Y = L2

0 (Ω) and the bilinear form a(·, ·) given by (3.36). We
state the divergence–free H1 projection problem as: given u0 ∈ H1 (Ω), find
u ∈ H1

0 (Ω) and p ∈ L2
0 (Ω) such that

a(u, v) + b(v, p) = a(u0, v) ∀v ∈ H1
0 (Ω) , (3.70)

b(u, q) = 0 ∀q ∈ L2
0 (Ω) . (3.71)

We remark that (3.70)–(3.71) corresponds to a Stokes problem with forcing
term −∆u0. The weak formulation (3.70)–(3.71) satisfies Theorem 3.6. This
follows from standard results for the Stokes problem (see [5, pp. 142–146]).
Thus (3.70)–(3.71) has a unique solution u = P1u0.

The divergence–free H1 projection is equivalent to a Stokes problem,
which can be discretized using conforming finite elements that are stable
in the sense of Theorem 3.7. In addition this projection allows complete
specification of Dirichlet or Neumann boundary conditions.
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Chapter 4

Projection based schemes

In this chapter we combine the building blocks to construct the Krylov–
based exponential projection method (KBEI projection method). Prior to
constructing the method, we provide a brief overview of fractional step pro-
jection methods. These methods constitute a class of methods in which a
divergence–free L2 projection is utilized at an intermediate step to produce
a divergence–free velocity. The fractional step projection methods are the
most typically employed methods for time integration of the incompressible
Navier–Stokes equations. We provide a formal and non-rigorous overview
of the method due to Chorin [15] in order to contrast this method from
the KBEI projection method and to provide an insight on the convergence
properties of Chorin’s method.

4.1 Semi–implicit projection methods

The semi–implicit projection methods utilize a divergence–free L2 projec-
tion to decouple the diffusive and convective terms. The diffusive terms are
treated implicitly to avoid stability restrictions and the convective terms are
treated explicitly. The advantages of these methods are the unconditional
stability of the diffusion and the decoupling. One disadvantage is that the
decoupling is attained at the expense of a projection step, which introduces
a spatial error because the projection in general does not recover the tan-
gential component of the boundary conditions. Another disadvantage is that
the decoupling introduces a temporal error of at least second order. These
methods are sometimes referred to as Chorin projection methods, fractional
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step methods, pressure correction or operator splitting methods.

In this section we provide an overview of projection schemes to contrast
these schemes with the KBEI projection method. These methods were first
proposed by Chorin [15, 16]. Rannacher [65] provided a thorough analysis
of the convergence in time of the original method of Chorin and Temam. In
practice the fractional step projection method is a time integration method
that can be combined with any spatial discretization method. The method
and its variants have employed in a finite difference setting in [4]; finite el-
ement methods in [1, 33, 34, 36, 37, 53]; and spectral methods in [50]. Van
Kan [83] provides a rigorous analysis of the method of [46] and presents a
variant that incorporates a pressure correction. The method presented in [4]
utilizes an idea similar to [83] to construct a second order method. A recur-
ring difficulty encountered in projection–based methods is the proper choice
of boundary conditions for the velocity and/or pressure at the intermediate
time steps. Suitable choices of proper boundary conditions are discussed in
[12, 19, 23]. Kim and Moin [46] present a second order accurate scheme
based on Crank Nicolson and Adams Bashforth schemes and an appropriate
boundary condition on the intermediate velocity. Discussion regarding the
proper treatment of the intermediate pressure can be found in [17, 56]. In
addition to the above references and the references therein we refer to se-
quence of papers by E and Liu [21, 22, 24] and to [18, 35, 64, 65, 80, 81] for
an overview of fractional step projection schemes.

For our analysis we rewrite the Navier–Stokes equations (3.15)–(3.17) as

∂u

∂t
= ν∆u − (u · ∇)u + f −∇p x ∈ Ω, (4.1)

≡ F (u) −∇p x ∈ Ω, (4.2)

∇ · u = 0 x ∈ Ω, (4.3)

u = 0 x ∈ Γ. (4.4)

We refer to (4.2) as the momentum equation and (4.3) as the continuity
equation. We now formally describe fractional step methods. We apply the
continuous divergence–free L2 projection P0 to (4.2)

∂u

∂t
= P0F (u) x ∈ Ω, (4.5)

n · u = 0 x ∈ Γ. (4.6)
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By (4.2) and (4.5) we have

∂u

∂t
= P0F (u) = F (u) −∇p x ∈ Ω, (4.7)

n · u = 0 x ∈ Γ. (4.8)

Generally, the semi-implicit projection proceeds as follows: given u0 sat-
isfying (4.3) at the current time step, approximate ∇p at the current time
step and insert in (4.7), and integrate (4.7) over one time step ∆t to an
intermediate velocity ũ. We note that the projection in (4.7) is not actu-
ally applied. The projection is approximated by approximating ∇p. Due to
this approximation, the right hand side of (4.7) will not be divergence–free,
hence the intermediate velocity ũ will in general not be divergence–free. The
velocity at the end of the time step, u1, is attained by u1 = P0ũ.

This scheme attempts to subtract the curl–free portion, ∇p to obtain
the divergence–free portion rather that applying the projection directly to
F (u) − ∇p. An alternative would be, given u0 with ∇ · u0 = 0, to apply
the projection directly to F (u) − ∇p, which would remove ∇p from the
momentum equation. Then (4.5) is integrated one time step to a divergence–
free velocity u1. A scheme of this type was proposed in [25], and implemented
with a spectral method for spatial discretization.

The original Chorin scheme also referred to as Projection 1 in [35] is
defined as follows:

1. Given u with ∇ · u = 0 and p find ũ (∆t), with ũ (0) = u (0) from

∂ũ

∂t
= F (ũ) x ∈ Ω, (4.9)

ũ = t∇p x ∈ Γ. (4.10)

2. Find φ and u from

∆φ = ∇ · ũ (∆t) x ∈ Ω, (4.11)

∂φ

∂n
= ∆t

∂p

∂n
x ∈ Γ, (4.12)

u = ũ (∆t) −∇φ x ∈ Ω. (4.13)

3. Find p from

∆p = ∇ · F (u) x ∈ Ω, (4.14)

∂p

∂n
= n · F (u) x ∈ Γ. (4.15)
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Numerical experiences [35] suggest this method to be first order accurate in
time. We utilize a formal Taylor series analysis to show that this method
is first order accurate in time for x ∈ Ω, and to explain the choice of the
boundary conditions (4.10), (4.12) and (4.15). By the Taylor series expansion
of u(∆t) about ∆t = 0 we have

u (∆t) = u (0) + ∆tu̇ (0) + O
(

∆t2
)

, (4.16)

= u (0) + ∆t (F (u(0)) −∇p(0)) + O
(

∆t2
)

. (4.17)

Where we have used (4.2) in the second term of (4.17). Similarly the Taylor
series expansion of ũ(∆t) about ∆t = 0 is given by

ũ (∆t) = ũ (0) + ∆t ˙̃u (0) + O
(

∆t2
)

. (4.18)

Since ũ (0) = u (0) and F (u (0)) = F (ũ (0)) we have

ũ (t) = u (0) + tF (u(0)) + O
(

t2
)

. (4.19)

We subtract (4.18) from (4.19) to obtain

ũ(t) − u(t) = −t∇p + O
(

t2
)

, (4.20)

= O (t) . (4.21)

Thus the final velocity u(t) is first order accurate in time for x ∈ Ω. To obtain
the boundary condition (4.10), we recall that we have specified homogeneous
Dirichlet boundary conditions on u. Thus evaluation of (4.20) on Γ yields
(4.10). The boundary condition (4.12) is obtained by inserting (4.20) into
(4.11)

∆φ = ∇ · ũ (∆t) , (4.22)

= ∇ ·
(

−∆t∇p(∆t) + u(∆t) + O
(

∆t2
))

, (4.23)

= −∆t∆p(∆t) + O
(

∆t2
)

. (4.24)

We neglect higher order terms and use (4.24) to determine that φ = −∆tp(∆t)
thus

∂φ

∂n

∣

∣

∣

∣

Γ

= ∆t
∂p

∂n
.



61

û2

approx ∇p̂0

û2P0û2 =û1û0u0 =

approx ∇p̂2approx ∇p̂1

û1

∇ · u = 0
P0û1 =

Figure 4.1: A typical fractional step projection method.

∇ · u = 0
u1 u2u0 =u0

Figure 4.2: Krylov–based exponential projection method.

The boundary condition (4.15) is obtained by isolating normal components
of (4.7):

n · ∂u
∂t

∣

∣

∣

∣

Γ

= n · F (u)|Γ − n · ∇p|Γ ,

= n · F (u)|Γ − ∂p

∂n

∣

∣

∣

∣

Γ

.

Since n · u|Γ = 0 implies

n · ∂u
∂t

∣

∣

∣

∣

Γ

= 0,

we deduce (4.7).

Equations (4.11)–(4.13) define a Poisson formulation of the L2 projection
of the velocity u onto the divergence–free subspace H = {u ∈ L2 (Ω)d :
∇ · u = 0,u · n|Γ = 0}, thus the velocity does not necessarily satisfy the
tangential Dirichlet boundary conditions. If the tangential components were
then set to zero, a numerical boundary layer results [65].

There are variants of the semi–implicit projection schemes, because there
are many valid methods to integrate the momentum equation and to approxi-
mate ∇p. We note that a semi–implicit projection scheme that is higher than
second order accurate in time has not been developed [35, pp. 860–862]. For
construction of second order methods we refer to [46, 65].



62

4.2 Krylov–based exponential projection meth-

ods

In this section, we discuss the steps to construct the Krylov–based exponen-
tial projection method in detail. The three steps are as follows:

1. Evaluation of the Jacobian

2. Application of divergence–free projection

3. Application of KBEI

We consider the discretized form of the Navier–Stokes equations given by
(3.45) as

u̇(t) = M−1 (−Ku(t) −N (u(t))u(t) − Cp(t) + f(t)) , (4.25)

= F (u(t)) + G (p(t)) , (4.26)

CTu(t) = 0, (4.27)

u(0) = u0, (4.28)

where we have made the identifications

F (u(t)) = M−1 (−Ku(t) −N (u(t))u(t) + f(t)) (4.29)

and

G (p(t)) = −M−1Cp(t). (4.30)

We utilize a discretely divergence–free projection that we denote by P h.
Presently we make no distinction between the divergence–free L2 projection,
P h

0 , and the divergence–free H1 projection, P h
1 . We discuss the application

of each projection separately in the paragraphs to follow. We apply P h to
each (4.25)–(4.28), and recall the following property of P h:

CTP hu = 0.

This property allows us to eliminate the continuity equation (4.27) and write
the discretized Navier–Stokes equations as the following ordinary differential
equation

v̇(t) = P hF (v(t)) + P hG (p(t)) , (4.31)

v(0) = P hv0, (4.32)



63

to which we apply the high order Krylov–based exponential integration method
given by (2.14)–(2.26). Note that we use v to denote the velocity in the pro-
jected ordinary differential equation (4.31)–(4.32) rather than u that solves
(4.25) because in general v depends on the particular divergence–free pro-
jection used.

4.2.1 Evaluation of the Jacobian

In order to implement the high order Krylov–based exponential integration
method (2.14)–(2.26), we need to evaluate the product of the Jacobian of
P hF (u) + P hG (p) with respect to u on a vector v.

The first case we consider is the autonomous case, where f is independent
of t. We can obtain the Jacobian matrix applied to a vector v ∈ � N exactly

J(u)v =
d
(

P hF (u)
)

du
v, (4.33)

= P hM−1 (−Kv −N(u)v −N(v)u) , (4.34)

≡ P hF′(u)v, (4.35)

where we have used the identity

dN(u)

du
v = N(u)v +N(v)u (4.36)

in (4.34). Equation (4.36) can be derived by considering the ith component
of the Jacobian J(u) applied to v

[

d (N(u)u)

du
v

]

i

=

N
∑

l=1

[

d (N(u)u)

du

]

il

vl,

=
N
∑

l=1

d [N(u)u]i
dul

vl,

=

N
∑

l=1

vl
d

dul

N
∑

j=1

N
∑

k=1

ukc
(

ϕk; ϕj,ϕi

)

uj,

where we have used matrix–vector multiplication and the definition of N(u)u
given by (3.50). We differentiate under the summations and use the fact that

duk

dul
= δkl,
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where δkl is the Kronecker delta, to obtain

[

d (N(u)u)

du
v

]

i

=
N
∑

l=1

vl

N
∑

k=1

ukc(ϕk; ϕl,ϕi) +
N
∑

l=1

vl

N
∑

j=1

c
(

ϕl; ϕj,ϕi

)

uj,

= [N(u)v]i + [N(v)u]i ,

from which (4.36) follows.

4.2.2 Application of the divergence–free projections

We recall the L2 projection from Chapter 5. To find the application of the
discrete L2 projection u0 = P h

0 F′(u) we solve the following system for u0

[

M C
CT 0

] [

u0

λ0

]

=

[

MF′(u)
0

]

. (4.37)

We note the presence of M in the right hand side of (4.37) cancels the M−1

in F′(u). We also call attention to the property

P h
0 G(p(t)) = 0.

We discuss a scalable method for solution of this system in Section 5.1 and
the stability of finite element solutions in Section 5.2.

To apply the discrete H1 projection u0 = P h
1 F′(u) we solve the following

system for u0
[

K C
CT 0

] [

u0

λ0

]

=

[

KF′(u)
0

]

. (4.38)

We discuss a scalable method for solution of this system in Section 5.1.

4.2.3 Application of KBEI

For sake of illustration, we outline the method for the simple case of the
exponentially fitted Euler method (2.4) for the autonomous Navier–Stokes
equations, using a divergence–free projection P h. We apply the Krylov–
based exponentially fitted Euler method to (4.31)–(4.32); each step yields
the following

vn+1 = vn + ∆tVm‖v‖ϕ(∆tHm)e1. (4.39)
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Here Vm and Hm are the matrices found in (2.32) computed using Algorithm
2.1 for the Arnoldi process for the matrix product P hF′(un)v with

v = P hF(un). (4.40)

We note that P h is applied m times at each time step to compute vi, i =
1, . . . , m, where m is the dimension of the Krylov subspace. We compute the
product ϕ(∆tHm)e1 using Algorithm 2.3. We note that if P h = P h

0 , then we
use (4.39) and v = P hF(un).

In practice we utilize the high order method given by (2.14)–(2.26), where
the steps (2.14)–(2.16) are computed using Algorithms 2.1 and 2.3 for the
product P hF′(un)v with v given by (4.40), (2.20)–(2.22) are computed using
Algorithms 2.1 and 2.3 for the product P hF′(un)d4 and (2.25) is computed
similarly for the product P hF′(un)d7. In practice a smaller dimensional
Krylov subspace is required for steps (2.20)–(2.22) and (2.25), since the norms
of d4 and d7 are generally smaller than the norm of v given by (4.40).

4.2.4 Notes on the non–autonomous case

We consider the non-autonomous case where f = f(t). We recall from Sec-
tion 2.1 the special treatment of non–autonomous systems. In this case the
momentum equation (4.31) becomes

˙[

u(t)
t

]

=

[

P hF (u(t))
1

]

.

We write the Jacobian applied to the vector v̂ =
[

vT w
]T

with v ∈ � N and
w ∈ � as

[

P hF′(u(t)) P hḟ(t)
0 0

]

v̂ =

[

P h (F′(u(t))v + wf(t))
0

]

.

We define

P hF̂′(u)v̂ =

[

P h (F′(u(t))v + wf(t))
0

]

. (4.41)

The implementation of a Krylov–based exponential integration for the non–
autonomous case is essentially the same as the autonomous case, with the
exception that we compute the Arnoldi process for the products of the form
(4.41), rather than (4.34), where v̂ ∈ � N+1.
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4.2.5 Summary

We have outlined the key differences between the Krylov–based projection
method and the traditional fractional step methods. The Krylov–based pro-
jection method projects the momentum equation onto a divergence–free sub-
space, then integrates in time with a high order Krylov–based exponential
integrator. By construction, the Krylov subspace consists of weakly dis-
cretely divergence–free vectors, hence the vector obtained at the advanced
time step is also weakly discretely divergence–free. The fractional step meth-
ods approximate a divergence–free momentum equation via a guess for the
pressure at the initial time step. This results in a velocity vector at the
advanced time step that is not weakly discretely divergence–free. This is
remedied by projecting this vector onto a weakly discretely divergence–free
subspace via a divergence–free L2 projection obtained by a Poisson solve.
This process is illustrated graphically in Figure 4.1. Figure 4.2 illustrates
the projection process for the Krylov–based projection method. One ad-
vantage of the Krylov–based projection method is a higher order temporal
convergence.



Chapter 5

Implementation of
divergence–free projections:
scalability and stability

In this chapter we discuss the issues regarding the implementation of a
Krylov–based exponential projection method for the time integration of the
Navier–Stokes equations. We rewrite the discrete momentum equation (3.45)
as

u̇(t) = M−1 (−Ku(t) −N (u(t))u(t) − Cp(t) + f(t)) , (5.1)

= F(u(t)) + G(p(t)), (5.2)

u(0) = u0. (5.3)

We apply a discretely divergence–free L2 or H1 projection, which we denote
abstractly by P h, and denote the velocity by v to (5.1)–(5.3) as follows:

v̇(t) = P hF(v(t)), (5.4)

v(0) = P hv0. (5.5)

Recall from Chapter 4 that application of P h on a vector f is equivalent to
solving the following system for u:

[

A C
CT 0

] [

u
p

]

=

[

f
g

]

, (5.6)

where we have A = M for the divergence–free L2 projection and A = K for
the divergence–free H1 projection. The final step is to apply a high order
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Krylov–based exponential method defined by (2.14)–(2.15) to (5.4)–(5.5).
A solution to (5.6) must be computed for each each Krylov vector at each
time step. Thus it is critical that we solve (5.6) in an efficient and scalable
way. Another critical issue regards stability of finite element solutions to
the divergence–free L2 and H1 projections when boundary conditions are
imposed.

This chapter is dedicated to the following two issues:

1. Efficient and scalable computation of solutions to (5.6).

2. Stability of finite element solutions to the L2 projection.

We address the first issue in Section 5.1 where we discuss the implementation
of the Uzawa method for solution of (5.6). The Uzawa method is coupled
with a preconditioning strategy that is shown to be scalable or independent
of the mesh size. We address the second issue in Section 5.2, where we discuss
the stability theory and provide insight on the stability through a series of
numerical experiments. In particular, we show that the divergence–free L2

projection suffers from suboptimal convergence while the divergence–free H 1

projection converges optimally.

5.1 Uzawa method

The Uzawa method is a common method for solving (5.6) when A is posi-
tive definite. Efficient methods for (5.6) based on domain decomposition [7]
and block preconditioning are proposed in [6, 8]. A survey of precondition-
ing the Uzawa method can be found in [9]. These strategies are somewhat
limited because they are based on preconditioning the Stokes system under
the assumption A = K. More useful preconditioning strategies are found in
[14, 47], in which preconditioners are sought for discretizations of the general-
ized Stokes problem (3.29)–(3.30). Preconditioners for (3.29)–(3.30) are more
versatile because the matrix A has contributions from both M and K. The
preconditioned Uzawa method is an efficient method to solve the discretized
saddle point systems for Stokes flow and Darcy flow. In particular we inves-
tigate the effect of preconditioning the Uzawa algorithm and a variant that
utilizes conjugate directions. The preconditioned Uzawa method, Uzawa
method with conjugate directions, and the preconditioned Uzawa method
with conjugate directions are compared under a variety of conditions.
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We utilize the preconditioner due to Cahouet and Chabard [14] for its
ease of implementation and versatility when applied to (5.6) with A = M or
A = K. We discuss the implementation and versatility in detail below, and
provide experimental results that reveal the strengths of the preconditioner.
We evaluate the performance of each method.

We consider as a model problem a finite element discretization of Darcy–
Stokes flow given by (3.29)–(3.30):

α2u − ε2∆u + ∇p = f , x ∈ Ω, (5.7)

∇ · u = g, x ∈ Ω, (5.8)

u = 0, x ∈ Γ, (5.9)

with Ω = (0, 1) × (0, 1) and boundary ∂Ω. For α = 0 and ε = 1 (5.7)–(5.9)
represents a divergence–free H1 projection of f or Stokes flow and for α = 1
and ε = 0 (5.7)–(5.9) represents a divergence–free L2 projection of f or Darcy
flow. Discretization via a standard

�
2Q1 elements on a uniform, structured

mesh of size h yields a saddle point problem given by

[

A C
CT 0

] [

u
p

]

=

[

f
g

]

, (5.10)

with A ∈ � n×n; C ∈ � n×m; u, f ∈ � n; and p, g ∈ � n. The matrix A is given
by

A = α2M + ε2 K,

where M is the mass matrix defined in (3.48), K is the stiffness matrix
defined in (3.49) and f is as defined in (3.52). We shall consider solution
methods for (5.10) with α, ε ∈ [0, 1]. The condition number of a matrix A is
given by κ(A) = ‖A‖ ‖A−1‖. We note the condition numbers of the matrices
M and K: κ(M) = O(1), κ(K) = O(h−2).

Equation (5.10) can be written as

Au = f − C p, (5.11)

S p = CT A−1 f − g, (5.12)

with S given by CTA−1C. The matrix S is symmetric positive definite. The
standard Uzawa method is a steepest descent iteration applied to (5.12).
The conjugate gradient method can also be applied to (5.12). This is often
referred to as Uzawa with conjugate directions. We recall that C is a finite
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element discretization of a first order differential operator (C ≈ ∇ and CT ≈
∇·) and M is a finite element discretization of the identity operator, thus
when α = 1 and ε = 0, can be viewed as a Laplacian operator (CTM−1C ≈
∇ · I∇ ≈ ∆). Thus the matrix S can have large condition number, notably
when α = 1 and ε = 0, κ(S) = O(h−2). Thus preconditioning of the Uzawa
method is necessary.

To analyze preconditioning of the Uzawa method, let R be a precondi-
tioner for (5.12). For R to be an effective preconditioner for S we desire

R−1S ≈ I,

where I is the identity matrix, and that the cost of applying R−1 be consid-
erably less than that of applying S−1. We transform (5.12) as

R−1Sp = R−1
(

CT A−1f − g
)

. (5.13)

We utilize the Cahouet–Chabard preconditioner given in [14, 31] as follows:

R =
(

ε2M−1
p + α2K−1

p

)−1
, (5.14)

where Mp is the mass matrix corresponding to the pressure, and Kp is the
stiffness matrix corresponding to the pressure with pure homogeneous Neu-
mann boundary conditions. The matrix R is symmetric positive definite.
Note that when ε2 = 0, κ(R−1S) = O(1). Bramble and Pasciak [9] prove
that when the Cahouet–Chabard preconditioner is implemented, the number
of iterations required in the Uzawa method is independent of the mesh size.
This is important because as we increase the problem size, the number of
iterations require remains constant.

The Uzawa method consists of three key steps:

1. An outer iteration to apply S−1 in (5.12). Each outer iteration is an
iteration of the conjugate gradient method to apply S−1.

2. For each outer iteration, we require inner iterations to apply A−1 in
(5.11). Each inner iteration is an iteration of the conjugate gradient
method to apply A−1.

3. For each outer iteration, preconditioned iterations are required to ap-
ply R−1 in (5.13). Each precondition iteration is an iteration of the
conjugate gradient method to apply R−1.
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Table 5.1: Number of iterations for α2u−ε2∆u+∇p = f , ∇·u = 0 with
�

2Q1

elements, third order quadrature, mesh size h, using Uzawa with conjugate
directions (CD), Preconditioned Uzawa with steepest descents (PSD), and
Preconditioned Uzawa with conjugate directions (PCD). The left table shows
varying ε with α = 1. The right table shows varying α with ε = 1.

ε h CD PSD PCD α h CD PSD PCD
1 2−1 2 46 3 1 2−1 5 50 3

2−2 8 43 8 2−2 20 54 6
2−3 30 47 8 2−3 46 55 12
2−4 40 50 9 2−4 55 55 13
2−5 51 51 9 2−5 60 58 14
2−6 52 52 9 2−6 62 54 14
2−7 54 53 10 2−7 68 56 13

2−2 2−1 2 34 3 2−2 2−1 5 50 3
2−2 8 36 8 2−2 19 56 6
2−3 27 42 8 2−3 46 55 12
2−4 38 46 8 2−4 55 56 13
2−5 51 49 9 2−5 59 53 14
2−6 51 50 10 2−6 62 54 14
2−7 51 51 10 2−7 71 55 12

2−4 2−1 2 22 3 2−4 2−1 5 50 3
2−2 8 23 6 2−2 19 57 6
2−3 33 29 7 2−3 46 57 11
2−4 46 37 8 2−4 55 56 13
2−5 50 41 9 2−5 59 55 13
2−6 50 42 9 2−6 62 54 13
2−7 52 43 9 2−7 64 55 13

2−6 2−1 2 18 3 2−6 2−1 5 50 3
2−2 8 17 5 2−2 20 57 6
2−3 21 18 6 2−3 49 57 9
2−4 32 24 7 2−4 55 56 11
2−5 43 30 7 2−5 62 56 12
2−6 56 33 8 2−6 67 55 11
2−7 66 35 8 2−7 70 55 11

2−8 2−1 2 18 3 2−8 2−1 5 50 3
2−2 8 16 5 2−2 19 57 6
2−3 21 16 6 2−3 48 57 9
2−4 37 18 6 2−4 57 56 10
2−5 65 20 6 2−5 60 55 10
2−6 99 23 6 2−6 81 55 9
2−7 139 26 7 2−7 92 54 9

0 2−1 2 18 3 0 2−1 5 53 3
2−2 8 16 5 2−2 19 51 6
2−3 21 16 6 2−3 53 56 8
2−4 38 17 6 2−4 75 57 8
2−5 69 17 6 2−5 82 55 7
2−6 124 16 5 2−6 92 55 7
2−7 236 14 5 2−7 110 54 7



72

Table 5.2: α = 0, ε = 1.
h # inner # prec time (sec)

2−1 34 12 0.01
2−2 236 68 0.01
2−3 522 175 0.09
2−4 971 215 0.73
2−5 1852 217 6.50
2−6 3448 203 52.27
2−7 6803 189 420.79

Table 5.3: ε = 0, α = 1.
h # inner # prec time (sec)

2−1 33 30 0.01
2−2 119 65 0.01
2−3 147 115 0.03
2−4 147 191 0.13
2−5 127 309 0.71
2−6 121 517 3.48
2−7 112 927 17.58

Since κ(K) = O(h−2) and κ(Kp) = O(h−2), the applications of A−1 and R−1

should be preconditioned as well. An enhancement to the algorithm would
apply a multigrid method [11] for the applications of A−1 and R−1.

Equation (5.7)–(5.9) is discretized using
�

2Q1 elements on a uniform
structured triangulation of the domain Ω = (0, 1) × (0, 1). The functions f

and g are chosen such that u = ∇× sin2 πx1 sin2 πx2 and p = sin πx1. Note
that this solution satisfies ∇ ·u = g = 0 on Ω and u = 0 on Γ. We solve the
resulting saddle point problem (5.10) using the Uzawa method with conjugate
directions, preconditioned Uzawa with steepest descents, and preconditioned
Uzawa with conjugate directions. Each preconditioned method utilizes the
preconditioner R given by (5.14). The goal is to study these different solution
techniques with varying ε, α and mesh size, h. Each solution technique is
applied with a mesh size h = 2−1, 2−2, 2−3, 2−4, 2−6, 2−7; and with ε, α = 1,
2−2, 2−4, 2−6, 2−8, 0.

For each outer iteration a residual tolerance of 1 · 10−10 was used. For
each of the inner and precondition iterations the conjugate gradient method
with SSOR preconditioning with relaxation parameter ω = 1.2 and residual
tolerance 1 · 10−12 was used.

Table 5.1 shows the number of iterations required to reach convergence
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Figure 5.1: Number of outer iterations vs. h for Uzawa method with conju-
gate directions (blue), preconditioned Uzawa with steepest descent (green)
and preconditioned Uzawa with conjugate directions (red) for Darcy flow
(left) and Stokes flow (right).
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for each method with selected values of ε and h. We observe that for Uzawa
with conjugate directions and no preconditioning the number of iterations
increase as h decreases and as ε decreases. The increase in the number of
iterations as h decreases is due to the poor conditioning of S, while the in-
crease in the number of iterations as ε decreases is because S approximates a
second order differential operator as ε → 0. For both preconditioned meth-
ods, observe that for fixed ε, the number of iterations remains constant as h
decreases. This is due to the condition of R−1S, and demonstrates that this
preconditioning is independent of mesh size. We note that the number of
iterations decrease as ε decreases, since R−1S becomes better conditioned as
ε → 0. Another observation is the number of iterations is less for precondi-
tioned Uzawa with conjugate directions than for preconditioned Uzawa with
steepest descent.

Figure 5.1 shows the number of outer iterations vs. h for Uzawa method
with conjugate directions, preconditioned Uzawa with steepest descent and
preconditioned Uzawa with conjugate directions for the case α = 1, ε = 0 and
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the case α = 0, ε = 1. Both preconditioned methods are independent of mesh
size and that the number of iterations is less for preconditioned Uzawa with
conjugate directions than for preconditioned Uzawa with steepest descent.

Figure 5.2 shows the number of inner iterations vs. h and number of pre-
condition iterations vs. h for preconditioned Uzawa with conjugate directions
for for the case α = 1, ε = 0 and the case α = 0, ε = 1. When α = 1 and
ε = 0 the number of inner iterations is independent of mesh size; however the
number of iterations to apply the preconditioner increases. When α = 0 and
ε = 1 the number of inner iterations increases while the number of iterations
to apply the preconditioner is independent of mesh size.

Table 5.2 shows the number of inner iterations and the number of pre-
condition iterations required to reach convergence and CPU time for the
preconditioned Uzawa method with conjugate directions with selected values
of h for the case α = 0, ε = 1. Table 5.3 shows the number of inner iterations
and the number of precondition iterations required to reach convergence and
CPU time for the preconditioned Uzawa method with conjugate directions
with selected values of h for the case α = 1, ε = 0.

We reiterate that application of the divergence–free L2 projection is equiv-
alent to solving a Darcy flow problem and application of the divergence–free
H1 projection is equivalent to solving a Stokes problem. The results of this
section conclude that we can apply the divergence–free L2 projection or the
divergence–free H1 projection in a scalable manner that is independent of
the mesh size. Furthermore, the application of either projection is easily
implemented using a solver for the generalized Stokes problem and choosing
α and ε accordingly.

5.2 Stability of the divergence–free L2 pro-

jection

In this section we investigate the stability of some common conforming mixed
finite elements for Darcy–Stokes flow. Mardal et al. [54] show that stable
finite elements for Stokes flow are not necessarily stable for Darcy flow. De-
spite this lack of stability, the use of Stokes elements for the divergence–free
L2 projection [35, 33, 34] has been employed with some success. We examine
the stability of some of these elements at the transition from Stokes flow to
Darcy flow both mathematically and experimentally. This transition corre-
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sponds to the application of the divergence–free L2 projection with imposed
boundary conditions.

We consider a finite element discretization of Darcy–Stokes flow given by
(3.29) with α = 1:

(

I − ε2∆
)

u + ∇p = f x ∈ Ω, (5.15)

∇ · u = g x ∈ Ω, (5.16)

u = 0 x ∈ Γ, (5.17)

with Ω = (0, 1)× (0, 1) and boundary Γ. When the parameter ε = 0, (5.15)–
(5.17) represents the divergence–free L2 projection or Darcy flow, otherwise
(5.15)–(5.17) is a Stokes problem with the addition of a lower order term.

When ε > 0, a weak formulation of (5.15)–(5.17) is given by: find u ∈
H1

0 (Ω)2 and p ∈ L2
0 (Ω) such that

aε(u, v) + b(v, p) = (f , v) ∀v ∈ H1
0 (Ω)2 , (5.18)

b(u, q) = (g, q) ∀q ∈ L2
0 (Ω) . (5.19)

Where the bilinear form aε (·, ·) : H1 (Ω)2 ×H1 (Ω)2 7→ � is given by

aε(u, v) = (u, v) + ε2a(u, v) , (5.20)

with a(·, ·) : H1 (Ω)2×H1 (Ω)2 7→ � given by (3.36) and b(·, ·) : H1×L2
0 7→ �

given by (3.35).
For ε ∈ (0, 1], (5.18)–(5.19) has a unique solution for (u, p) ∈ H1

0 (Ω)2 ×
L2

0 (Ω). This is due to standard results for the Stokes problem, that is,
Theorem 3.6 is satisfied for the space (u, p) ∈ H1

0 (Ω)2 × L2
0 (Ω) and the

bilinear form aε(·, ·) defined as in (5.20). For the details the reader is referred
to [5]. However, for ε = 0, H1

0 (Ω)2 × L2
0 (Ω) is not a proper space for the

solution. In this case proper spaces for the solution are either Hdiv
0 (Ω) ×

L2 (Ω) or L2 (Ω)2 × (H1 ∩ L2
0 (Ω)). These spaces are proper solution spaces

for a standard mixed formulation of the Poisson problem [54].
We introduce the space Sε = Hdiv

0 (Ω) ∩ ε ·H1
0 (Ω)2 with norm

‖v‖2
ε = ‖v‖2 + ‖∇ · v‖2 + ε2‖∇v‖2.

Note that because H1
0 (Ω) ⊂ Hdiv

0 (Ω), we have Sε = H1
0 (Ω) for ε > 0, and

Sε = Hdiv
0 (Ω) for ε = 0.
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Figure 5.4: Relative errors vs. h for
�

2Q0 element.

In this section we review the work of [54] and present further numeri-
cal experiments to demonstrate that not all stable finite element discretiza-
tions of (5.18)–(5.19) for ε ∈ (0, 1] are stable finite element discretizations of
(5.18)–(5.19) for ε = 0.

Let V h and Qh be conforming finite element spaces of H1
0 (Ω)2 and L2

0 (Ω).
Problem (5.18)–(5.19) leads to the finite element discretization, find uh ∈ V h

and ph ∈ Qh such that

aε

(

uh, vh
)

+ b
(

vh, ph
)

=
(

f , vh
)

∀vh ∈ V h, (5.21)

b
(

uh, qh
)

=
(

g, qh
)

∀qh ∈ Qh. (5.22)

The discretization (5.21)–(5.22) is stable if Theorem 3.7 is satisfied: there
exist positive constants c1 and c2 independent of h and ε such that

aε

(

vh, vh
)

≥ c1‖vh‖2
ε ∀vh ∈ Zh, (5.23)

and

sup
� h∈V h

b
(

vh, qh
)

‖v‖2
ε

≥ c2‖qh‖2 ∀qh ∈ Qh, (5.24)
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Figure 5.5: Relative errors vs. h for
�

2Q1 element.
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Figure 5.7: Relative errors vs. h for
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3Q2 element.
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where Zh is the space of weakly discretely divergence–free functions given by
(3.56). For ε ∈ (0, 1], (5.23) is satisfied with c1 ≤ 1. This is due to the fact
that coerciveness holds on subspaces, that is aε(v, v) ≥ c1‖v‖2

ε holds for all
v ∈ H1 (Ω)2 and Zh ⊂ H1

0 (Ω)2 since V h ⊂ H1
0 (Ω)2 ⊂ H1 (Ω)2. In this case

one can choose conforming finite element spaces such that (5.24) is satisfied.
The standard

�
2Q1 element is an example of a stable element. More stable

elements can be found in [5].
However, when ε = 0 (5.23) may not hold. In fact when ε = 0, aε

(

vh, vh
)

=
‖vh‖2, ‖vh‖2

ε = ‖vh‖2 + ‖∇ · vh‖2 and (5.23) gives

‖vh‖2 ≥ c1
[

‖vh‖2 + ‖∇ · vh‖2
]

∀vh ∈ Zh.

Thus
γ‖vh‖2 ≥ ‖∇ · vh‖2 (5.25)

does not hold for all vh ∈ Zh and γ = (1 − c1)/c1 independent of h. Since
H1 (Ω)2 is the smallest function space where coercivity for the bilinear form
a(·, ·) is guaranteed to hold, and H1 (Ω)2 ⊂ Hdiv (Ω), we can not expect
(5.25) to hold on the larger space Hdiv

0 (Ω). Therefore condition (5.25) does
not hold for all conforming elements for (5.18)–(5.19) with ε > 0.

If the finite element spaces V h and Qh satisfy the condition of Theorem
3.7, a unique solution of (5.21)–(5.22) exists and the solution of (5.21)–(5.22)
converges to the solution of the continuous Stokes problem (5.15)–(5.17) as
the mesh size, h→ 0. Theorem 3.7 provides the following error estimates:

|u − uh|1 ≤ c1 inf
� h∈V h

|u − vh|1 + c2Θ inf
qh∈Sh

‖p− qh‖, (5.26)

and
|p− ph|1 ≤ c3 inf

� h∈V h
|u − vh|1 + c4 inf

qh∈Sh
‖p− qh‖, (5.27)

where Θ is the angle between Zh and Z:

Θ = sup
� ∈Zh,| � h|1=1

inf
� h∈Z

|u − uh|1.

Equation (5.15)–(5.17) is discretized using
�

2Q0,
�

2Q1,
�

3Q1 and
�

3Q2

elements on a uniform structured triangulation of the domain Ω = (0, 1) ×
(0, 1) consisting of quadrilateral elements. The functions f and g were chosen
such that u = ∇ × sin2(πx1) sin2(πx2) and p = sin(πx1). This solution
satisfies ∇ · u = g = 0 on Ω and u = 0 on Γ. A quadrature formula is
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used for the load vector, mass and stiffness matrices such that the mass and
stiffness matrix are integrated exactly. More precisely, for a degree p velocity
element, the mass matrix is of degree 2p and a p + 1 order quadrature rule
is required to integrate the mass matrix exactly. The initial mesh of size
h = 2−1 was uniformly refined until h = 2−8. The L2 and H1 velocity
errors and L2 pressure error were recorded at each refinement. The resulting
saddle point problem is solved using Uzawa with conjugate directions with
the Cahouet–Chabard preconditioner with a residual tolerance of 1 · 10−14.

Table 5.4 shows the L2 error in velocity, ‖u − uh‖0, the L2 error in
pressure, ‖p − ph‖0, and the H1 error in velocity, ‖u − uh‖1 for the

�
2Q0

element with different values of ε and h. In the tables we define rate as ratio
of error on the previous or coarse mesh to the error on the current mesh.
Figure 5.4 shows plots of these errors against h for each ε. When ε = 1,
the L2 error in velocity appears to be quadratic, while L2 error in pressure
and the H1 error in velocity appear to be linear. Note that as ε decreases,
the convergence in L2 error for velocity and pressure deteriorates and when
ε = 0 there is no convergence. As ε decreases, the convergence in H 1 error
in velocity also deteriorates, however convergence is lost for some ε > 0.

Table 5.5 and Figure 5.5 show errors in the same norms for the
�

2Q1

element. When ε = 1, the L2 error in velocity appears to be cubic, while L2

error in pressure and the H1 error in velocity appear to be quadratic. As ε
decreases the convergence in velocity deteriorates, however the convergence
in pressure does not change. In fact, when ε = 0, the convergence in the L2

error in velocity is quadratic and the convergence in the H1 error in velocity
is linear.

Table 5.6 and Figure 5.6 show the same errors for the
�

3Q1 element.
As expected, for ε = 1, the L2 error in velocity appears to be cubic and
deteriorates as ε decreases. For ε = 0 the convergence in the L2 error in ve-
locity is linear. The L2 error in pressure appears be quadratic over the range
ε ∈ [0, 1]. For ε = 1 the H1 error in velocity is quadratic and deteriorates as
ε decreases. The H1 error in velocity shows no convergence for ε = 0.

Figures 5.7–5.8 and Tables 5.7–5.8 show errors for the
�

3Q2 and
�

4Q3

elements. We observe a trend for elements
�

pQp−1 for p > 2. For ε = 1,
the L2 error in velocity appears to be order p+ 1, and deteriorates to order
p− 1 for ε = 0. The L2 error in pressure appears be order p over the range
ε ∈ [0, 1]. The H1 error in velocity appears to be order p for ε = 1, and
deteriorates to order p− 2 for ε = 0.

We also observe for higher order elements that as h decreases the errors
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Table 5.4: Convergence table for u − ε2∆u + ∇p = f , ∇ · u = 0 with
�

2Q0

elements, third order quadrature.
ε h ‖u − uh‖0/‖u‖0 rate ‖p− ph‖0/‖p‖0 rate ‖u − uh‖1/‖u‖1 rate
1 2−1 1.13e− 01 1.00e + 00 7.94e− 02

2−2 2.48e− 02 4.54 5.27e− 01 1.90 2.75e− 02 2.89
2−3 3.54e− 03 7.02 2.63e− 01 2.00 7.13e− 03 3.85
2−4 5.74e− 04 6.16 1.31e− 01 2.01 1.94e− 03 3.68
2−5 1.16e− 04 4.95 6.53e− 02 2.01 6.13e− 04 3.16
2−6 2.71e− 05 4.28 3.26e− 02 2.00 2.43e− 04 2.53
2−7 6.66e− 06 4.07 1.63e− 02 2.00 1.12e− 04 2.17
2−8 1.66e− 06 4.01 8.14e− 03 2.00 5.48e− 05 2.04

2−2 2−1 2.45e− 01 1.00e + 00 1.03e− 01
2−2 8.71e− 02 2.81 5.30e− 01 1.89 5.37e− 02 1.93
2−3 2.48e− 02 3.51 2.65e− 01 2.00 2.70e− 02 1.99
2−4 6.54e− 03 3.79 1.32e− 01 2.02 1.37e− 02 1.97
2−5 1.67e− 03 3.92 6.54e− 02 2.01 6.91e− 03 1.98
2−6 4.21e− 04 3.97 3.26e− 02 2.01 3.47e− 03 1.99
2−7 1.06e− 04 3.99 1.63e− 02 2.00 1.74e− 03 2.00
2−8 2.65e− 05 3.99 8.14e− 03 2.00 8.70e− 04 2.00

2−4 2−1 7.74e− 01 1.00e + 00 2.53e− 01
2−2 5.90e− 01 1.31 6.74e− 01 1.48 3.32e− 01 0.762
2−3 2.87e− 01 2.06 3.59e− 01 1.88 3.08e− 01 1.08
2−4 9.43e− 02 3.04 1.56e− 01 2.30 1.99e− 01 1.55
2−5 2.58e− 02 3.66 6.95e− 02 2.25 1.08e− 01 1.85
2−6 6.62e− 03 3.89 3.32e− 02 2.09 5.52e− 02 1.95
2−7 1.67e− 03 3.97 1.64e− 02 2.03 2.78e− 02 1.99
2−8 4.18e− 04 3.99 8.15e− 03 2.01 1.39e− 02 2.00

2−8 2−1 9.39e− 01 1.00e + 00 3.13e− 01
2−2 1.00e + 00 0.935 8.55e− 01 1.17 5.82e− 01 0.538
2−3 1.02e + 00 0.981 8.30e− 01 1.03 1.13e + 00 0.515
2−4 1.00e + 00 1.02 8.04e− 01 1.03 2.17e + 00 0.522
2−5 9.06e− 01 1.11 7.22e− 01 1.11 3.86e + 00 0.561
2−6 6.46e− 01 1.40 5.14e− 01 1.40 5.47e + 00 0.705
2−7 3.01e− 01 2.15 2.40e− 01 2.15 5.08e + 00 1.08
2−8 9.58e− 02 3.14 7.67e− 02 3.13 3.24e + 00 1.57

0 2−1 9.39e− 01 1.00e + 00 3.13e− 01
2−2 1.01e + 00 0.930 8.57e− 01 1.17 5.84e− 01 0.536
2−3 1.03e + 00 0.974 8.38e− 01 1.02 1.14e + 00 0.510
2−4 1.05e + 00 0.995 8.34e− 01 1.00 2.26e + 00 0.506
2−5 1.05e + 00 0.996 8.34e− 01 1.00 4.49e + 00 0.504
2−6 1.05e + 00 0.998 8.33e− 01 1.00 8.94e + 00 0.502
2−7 1.05e + 00 0.999 8.33e− 01 1.00 1.79e + 01 0.501
2−8 1.05e + 00 1.00 8.33e− 01 1.00 3.57e + 01 0.500
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Table 5.5: Convergence table for u − ε2∆u + ∇p = f , ∇ · u = 0 with
�

2Q1

elements, third order quadrature.
ε h ‖u − uh‖0/‖u‖0 rate ‖p − ph‖0/‖p‖0 rate ‖u− uh‖1/‖u‖1 rate
1 2−1 1.11e− 01 2.04e− 01 7.92e− 02

2−2 2.43e− 02 4.59 4.57e− 01 0.447 2.74e− 02 2.89
2−3 3.18e− 03 7.63 3.71e− 02 12.3 6.93e− 03 3.95
2−4 4.01e− 04 7.93 4.17e− 03 8.88 1.74e− 03 3.99
2−5 5.02e− 05 7.98 8.49e− 04 4.92 4.35e− 04 4.00
2−6 6.28e− 06 8.00 2.07e− 04 4.10 1.09e− 04 4.00
2−7 7.85e− 07 8.00 5.17e− 05 4.00 2.72e− 05 4.00
2−8 9.82e− 08 8.00 1.29e− 05 4.00 6.80e− 06 4.00

2−2 2−1 1.09e− 01 2.04e− 01 7.93e− 02
2−2 2.40e− 02 4.55 6.33e− 02 3.22 2.74e− 02 2.89
2−3 3.17e− 03 7.55 1.36e− 02 4.65 6.94e− 03 3.95
2−4 4.01e− 04 7.91 3.32e− 03 4.10 1.74e− 03 3.99
2−5 5.02e− 05 7.98 8.26e− 04 4.02 4.35e− 04 4.00
2−6 6.28e− 06 8.00 2.06e− 04 4.00 1.09e− 04 4.00
2−7 7.88e− 07 7.97 5.16e− 05 4.00 2.72e− 05 4.00
2−8 9.96e− 08 7.91 1.29e− 05 4.00 6.80e− 06 4.00

2−4 2−1 9.95e− 02 2.04e− 01 8.16e− 02
2−2 3.00e− 02 3.31 5.58e− 02 3.65 3.37e− 02 2.42
2−3 3.57e− 03 8.42 1.34e− 02 4.16 7.91e− 03 4.26
2−4 4.15e− 04 8.59 3.32e− 03 4.05 1.82e− 03 4.35
2−5 5.07e− 05 8.19 8.26e− 04 4.01 4.41e− 04 4.13
2−6 6.45e− 06 7.86 2.06e− 04 4.00 1.09e− 04 4.04
2−7 8.50e− 07 7.59 5.16e− 05 4.00 2.72e− 05 4.01
2−8 5.55e− 07 1.53 1.30e− 05 3.98 6.96e− 06 3.92

2−8 2−1 9.74e− 02 2.04e− 01 8.51e− 02
2−2 6.39e− 02 1.52 5.75e− 02 3.55 6.46e− 02 1.32
2−3 2.05e− 02 3.12 1.35e− 02 4.25 4.76e− 02 1.36
2−4 4.96e− 03 4.13 3.32e− 03 4.08 2.46e− 02 1.94
2−5 8.35e− 04 5.94 8.26e− 04 4.02 8.45e− 03 2.91
2−6 9.08e− 05 9.20 2.07e− 04 4.00 1.79e− 03 4.72
2−7 1.19e− 05 7.60 5.17e− 05 4.00 2.87e− 04 6.24
2−8 1.32e− 05 0.90 1.34e− 05 3.85 2.10e− 04 1.37

0 2−1 9.74e− 02 2.04e− 01 8.51e− 02
2−2 6.44e− 02 1.51 5.75e− 02 3.54 6.50e− 02 1.31
2−3 2.14e− 02 3.01 1.35e− 02 4.25 4.98e− 02 1.31
2−4 6.02e− 03 3.56 3.32e− 03 4.08 2.99e− 02 1.67
2−5 1.58e− 03 3.80 8.26e− 04 4.02 1.61e− 02 1.86
2−6 4.06e− 04 3.90 2.07e− 04 4.00 8.33e− 03 1.93
2−7 1.10e− 04 3.71 5.29e− 05 3.90 4.29e− 03 1.94
2−8 6.41e− 05 1.71 1.82e− 05 2.90 3.09e− 03 1.39
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Table 5.6: Convergence table for u − ε2∆u + ∇p = f , ∇ · u = 0 with
�

3Q1

elements, fourth order quadrature.
ε h ‖u − uh‖0/‖u‖0 rate ‖p − ph‖0/‖p‖0 rate ‖u− uh‖1/‖u‖1 rate
1 2−1 3.08e− 02 2.04e− 01 3.30e− 02

2−2 1.83e− 03 16.9 5.58e− 02 3.65 3.64e− 03 9.07
2−3 1.23e− 04 14.9 1.34e− 02 4.16 4.68e− 04 7.77
2−4 8.88e− 06 13.8 3.32e− 03 4.04 6.17e− 05 7.58
2−5 7.81e− 07 11.4 8.26e− 04 4.01 9.07e− 06 6.80
2−6 8.43e− 08 9.26 2.06e− 04 4.00 1.65e− 06 5.51
2−7 1.01e− 08 8.35 5.16e− 05 4.00 3.62e− 07 4.54
2−8 1.36e− 09 7.42 1.29e− 05 4.00 8.73e− 08 4.15

2−2 2−1 4.40e− 02 2.04e− 01 3.77e− 02
2−2 5.74e− 03 7.67 5.54e− 02 3.68 6.58e− 03 5.72
2−3 6.66e− 04 8.62 1.34e− 02 4.13 1.47e− 03 4.48
2−4 8.14e− 05 8.18 3.32e− 03 4.04 3.55e− 04 4.14
2−5 1.01e− 05 8.02 8.26e− 04 4.01 8.82e− 05 4.03
2−6 1.27e− 06 7.99 2.06e− 04 4.00 2.20e− 05 4.00
2−7 1.59e− 07 7.99 5.16e− 05 4.00 5.51e− 06 4.00
2−8 2.01e− 08 7.91 1.29e− 05 4.00 1.38e− 06 4.00

2−4 2−1 2.35e− 01 2.04e− 01 1.38e− 01
2−2 6.13e− 02 3.84 5.65e− 02 3.61 6.37e− 02 2.16
2−3 9.59e− 03 6.39 1.34e− 02 4.21 2.04e− 02 3.11
2−4 1.27e− 03 7.56 3.32e− 03 4.05 5.48e− 03 3.73
2−5 1.61e− 04 7.87 8.26e− 04 4.01 1.40e− 03 3.92
2−6 2.03e− 05 7.95 2.06e− 04 4.00 3.52e− 04 3.98
2−7 2.54e− 06 7.98 5.16e− 05 4.00 8.81e− 05 3.99
2−8 3.20e− 07 7.95 1.29e− 05 4.00 2.20e− 05 4.00

2−8 2−1 4.06e− 01 2.04e− 01 2.39e− 01
2−2 2.11e− 01 1.92 6.17e− 02 3.30 2.33e− 01 1.02
2−3 1.04e− 01 2.03 1.57e− 02 3.93 2.28e− 01 1.02
2−4 4.67e− 02 2.22 3.83e− 03 4.10 2.04e− 01 1.12
2−5 1.65e− 02 2.84 8.93e− 04 4.28 1.43e− 01 1.42
2−6 3.77e− 03 4.37 2.10e− 04 4.25 6.53e− 02 2.19
2−7 5.94e− 04 6.34 5.17e− 05 4.07 2.06e− 02 3.17
2−8 7.96e− 05 7.47 1.29e− 05 4.00 5.51e− 03 3.74

0 2−1 4.07e− 01 2.04e− 01 2.40e− 01
2−2 2.13e− 01 1.91 6.18e− 02 3.30 2.36e− 01 1.02
2−3 1.08e− 01 1.97 1.59e− 02 3.90 2.38e− 01 0.99
2−4 5.45e− 02 1.99 3.99e− 03 3.98 2.38e− 01 1.00
2−5 2.73e− 02 2.00 9.98e− 04 4.00 2.38e− 01 1.00
2−6 1.37e− 02 2.00 2.49e− 04 4.00 2.37e− 01 1.00
2−7 6.84e− 03 2.00 6.22e− 05 4.01 2.37e− 01 1.00
2−8 3.42e− 03 2.00 1.54e− 05 4.03 2.37e− 01 1.00
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Table 5.7: Convergence table for u − ε2∆u + ∇p = f , ∇ · u = 0 with
�

3Q2

elements, fourth order quadrature.
ε h ‖u − uh‖0/‖u‖0 rate ‖p − ph‖0/‖p‖0 rate ‖u− uh‖1/‖u‖1 rate
1 2−1 3.11e− 02 7.57e− 01 3.32e− 02

2−2 1.78e− 03 17.4 3.14e− 02 24.1 3.62e− 03 9.16
2−3 1.15e− 04 15.5 2.17e− 03 14.5 4.60e− 04 7.88
2−4 7.27e− 06 15.8 1.67e− 04 13.0 5.77e− 05 7.97
2−5 4.56e− 07 15.94 1.50e− 05 11.1 7.22e− 06 7.99
2−6 2.86e− 08 16.0 1.65e− 06 9.11 9.03e− 07 8.00
2−7 1.86e− 09 15.4 2.50e− 07 6.59 1.13e− 07 8.00
2−8 1.51e− 10 12.3 4.72e− 08 5.30 1.41e− 08 8.00

2−2 2−1 3.07e− 02 5.81e− 02 3.32e− 02
2−2 1.77e− 03 17.3 4.94e− 03 11.8 3.64e− 03 9.13
2−3 1.16e− 04 15.3 6.95e− 04 7.11 4.63e− 04 7.85
2−4 7.41e− 06 15.7 9.35e− 05 7.43 5.83e− 05 7.95
2−5 4.67e− 07 15.9 1.21e− 05 7.73 7.30e− 06 7.98
2−6 2.97e− 08 15.7 1.55e− 06 7.83 9.13e− 07 7.99
2−7 9.36e− 09 3.17 3.39e− 07 4.57 1.17e− 07 7.84
2−8 3.88e− 09 2.41 1.13e− 07 3.00 1.68e− 08 6.95

2−4 2−1 3.01e− 02 2.85e− 02 3.33e− 02
2−2 2.90e− 03 10.4 4.54e− 03 6.27 5.55e− 03 6.00
2−3 3.10e− 04 9.35 6.83e− 04 6.64 9.57e− 04 5.80
2−4 2.43e− 05 12.7 9.31e− 05 7.34 1.38e− 04 6.91
2−5 1.67e− 06 14.6 1.21e− 05 7.70 1.84e− 05 7.53
2−6 1.22e− 07 13.6 1.54e− 06 7.85 2.36e− 06 7.79
2−7 1.65e− 08 7.44 1.97e− 07 7.84 3.00e− 07 7.86
2−8 3.11e− 08 0.529 7.10e− 08 2.77 7.96e− 08 3.77

2−8 2−1 3.00e− 02 2.79e− 02 3.33e− 02
2−2 1.82e− 02 1.65 4.81e− 03 5.79 3.19e− 02 1.05
2−3 5.36e− 03 3.39 7.07e− 04 6.81 1.58e− 02 2.01
2−4 1.23e− 03 4.35 9.42e− 05 7.51 6.75e− 03 2.34
2−5 2.03e− 04 6.08 1.21e− 05 7.77 2.15e− 03 3.14
2−6 2.12e− 05 9.59 1.54e− 06 7.87 4.42e− 04 4.86
2−7 1.64e− 06 12.9 1.98e− 07 7.78 6.67e− 05 6.63
2−8 7.38e− 07 2.22 7.82e− 08 2.53 1.90e− 05 3.51

0 2−1 3.00e− 02 2.79e− 02 3.33e− 02
2−2 1.87e− 02 1.61 4.83e− 03 5.77 3.27e− 02 1.02
2−3 5.77e− 03 3.24 7.11e− 04 6.79 1.71e− 02 1.91
2−4 1.56e− 03 3.71 9.48e− 05 7.50 8.58e− 03 1.99
2−5 4.03e− 04 3.87 1.22e− 05 7.77 4.29e− 03 2.00
2−6 1.02e− 04 3.94 1.56e− 06 7.83 2.15e− 03 2.00
2−7 2.59e− 05 3.95 2.34e− 07 6.67 1.08e− 03 1.99
2−8 7.90e− 06 3.28 8.58e− 08 2.72 6.45e− 04 1.67
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Table 5.8: Convergence table for u − ε2∆u + ∇p = f , ∇ · u = 0 with
�

4Q3

elements, fifth order quadrature.
ε h ‖u − uh‖0/‖u‖0 rate ‖p− ph‖0/‖p‖0 rate ‖u− uh‖1/‖u‖1 rate
1 2−1 3.62e− 03 2.18e− 02 3.96e− 03

2−2 1.72e− 04 21.0 2.47e− 03 8.83 3.59e− 04 11.0
2−3 5.49e− 06 31.4 6.20e− 05 39.8 2.28e− 05 15.8
2−4 1.72e− 07 31.9 1.79e− 06 34.7 1.43e− 06 15.9
2−5 5.39e− 09 32.0 7.97e− 08 22.4 8.93e− 08 16.0
2−6 2.45e− 10 22.0 4.01e− 08 1.99 5.59e− 09 16.0
2−7 8.08e− 11 3.03 2.35e− 08 1.71 3.61e− 10 15.5

2−2 2−1 3.60e− 03 3.29e− 03 3.96e− 03
2−2 1.72e− 04 20.9 2.38e− 04 13.8 3.59e− 04 11.0
2−3 5.48e− 06 31.3 1.16e− 05 20.5 2.28e− 05 15.8
2−4 1.72e− 07 31.9 6.89e− 07 16.9 1.43e− 06 15.9
2−5 5.57e− 09 30.9 5.33e− 08 12.9 8.94e− 08 16.0
2−6 7.41e− 10 7.51 2.18e− 08 2.45 5.80e− 09 15.4
2−7 7.80e− 10 0.950 2.87e− 08 0.761 2.27e− 09 2.55

2−4 2−1 3.39e− 03 2.77e− 03 4.00e− 03
2−2 1.68e− 04 20.2 1.79e− 04 15.5 3.66e− 04 10.9
2−3 5.44e− 06 30.8 1.09e− 05 16.3 2.29e− 05 16.0
2−4 1.73e− 07 31.5 6.81e− 07 16.1 1.43e− 06 16.0
2−5 6.56e− 09 26.3 4.33e− 08 15.7 8.99e− 08 15.9
2−6 5.76e− 09 1.14 1.44e− 08 3.01 1.71e− 08 5.25
2−7 7.95e− 09 0.724 2.01e− 08 0.716 2.39e− 08 0.716

2−8 2−1 2.99e− 03 2.73e− 03 4.79e− 03
2−2 4.40e− 04 6.80 1.80e− 04 15.1 1.19e− 03 4.01
2−3 2.81e− 05 15.6 1.10e− 05 16.4 1.67e− 04 7.15
2−4 1.09e− 06 25.7 6.80e− 07 16.1 1.34e− 05 12.5
2−5 9.64e− 08 11.4 4.31e− 08 15.8 1.47e− 06 9.09
2−6 3.07e− 07 0.314 2.84e− 08 1.52 6.42e− 06 0.229
2−7 3.22e− 07 0.953 3.96e− 08 0.717 1.00e− 05 0.642

0 2−1 2.99e− 03 2.73e− 03 4.81e− 03
2−2 4.65e− 04 6.44 1.81e− 04 15.1 1.26e− 03 3.82
2−3 3.67e− 05 12.7 1.10e− 05 16.4 2.18e− 04 5.78
2−4 2.52e− 06 14.5 6.82e− 07 16.1 3.12e− 05 7.01
2−5 3.41e− 07 7.41 6.25e− 08 10.9 6.40e− 06 4.88
2−6 4.70e− 07 0.725 4.19e− 08 1.49 1.54e− 05 0.416
2−7 2.66e− 06 0.176 1.53e− 07 0.274 1.61e− 04 0.0959
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deteriorate for both velocity and pressure. This is because the error is dom-
inated by the error in solving the discrete system. Even though the solution
to the discrete system gives a small residual, this contribution to the L2 error
is larger than the high order spatial accuracy. Using the inverse estimate [64,
Proposition 6.3.1 p. 194], there exists c1, c2 > 0 such that for each vh ∈ V h

with vh =
∑

i viϕi

c1h
d|v|2 ≤ ‖vh‖2

0 ≤ c2h
d|v|2,

we can relate the residual tolerance to the computed error. When ε = 1,

‖u − uh‖0 ≤ chp+1 + h−1εr,

where c is a constant and εr is the residual tolerance of the discrete system.
If εr is chosen such that εr � 1, then for large h and small p the term h−1εr
is negligible. However when h is small and p is large, the last term may
contribute significantly to the error. Similar results hold for the L2 error in
pressure and H1 error in velocity.

In conclusion we observe that finite elements that are stable for the Stokes
equations are not stable for computation of the application of the divergence–
free L2 projection as h → 0, in particular convergence can be suboptimal.
However, reasonable convergence can be retained if the h → 0 cases are
avoided. We remark that despite the lack of stability, the divergence–free
L2 projection has been implemented as in Section 5.2 with success in a se-
ries of papers by Gresho [35, 33, 34]. In practice we prefer to compute
the divergence–free L2 projection using the approach outlined in this sec-
tion because it allows us to specify pure Dirichlet boundary conditions for
the divergence–free velocity with a minimal loss of stability. We conclude
with the reminder that Stokes elements provide a stable discretization for
the divergence–free H1 projection and lead to a discrete system that is effi-
ciently solved using the techniques of Section 5.1. Thus the divergence–free
H1 projection provides an alternative to the divergence–free L2 projection.
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Chapter 6

Numerical experiments

In this chapter we present results of a numerical experiment that show that
higher–order temporal convergence can be achieved for the Navier–Stokes
equations with lower computational cost than a Crank Nicolson implemen-
tation.

6.1 Implementation

Computer code for the numerical experiments in this chapter and Chapter 2
were written in C++. We make extensive use of the deal.II finite element
library [3]. deal.II is a C++ program library targeted at adaptive finite
elements and error estimation. It makes extensive use of modern object–
oriented programming techniques of the C++ programming language. It
provides an interface to the complex data structures and algorithms required
for adaptivity, a variety of finite elements in up to three space dimensions,
and the capability for time-dependent problems.

6.2 Numerical experiment

In this section we compare accuracy and cost for the Krylov–based exponen-
tial projection method and an implementation of the Crank Nicolson method
for the full Navier–Stokes equations (3.15)–(3.17).

The experimental problem was chosen such that the exact solution is
u(x, t) = ∇× sin2 πx1 sin2 πx2 sin π

2
t and p(x, t) = sin πx1 − 2/π. Equations

(3.15)–(3.17) were discretized using 1024
�

2Q1 elements on a structured

89
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Figure 6.1: Relative L2 error in velocity at t = 1 for Crank Nicolson method
(black), KBEI with m = 40 (blue) and m = 80 (red).

triangulation of Ω = (0, 1) × (0, 1). This discretization yields the system
(3.45)–(3.47) with 8450 unknowns for the velocity space and 1089 unknowns
for the pressure space. We integrate (3.45)–(3.47) from t = 0 to t = 1
using the Krylov–based exponential projection method and Crank Nicolson
methods with time step lengths ∆t = .5, .25, . . . , .03125.

Since f depends on t, the Krylov–based exponential projection method
utilizes a nonautonomous formulation of the Jacobian given by (4.41), the
Darcy flow formulation of the L2 projection and the KBEI given by (2.14)–
(2.26). Application of the Crank Nicolson method to (3.45)–(3.47) results in a
fully coupled nonlinear system that needs to be solved at each time step. The
nonlinear system is solved with a Newton method. Each Newton iteration
requires a linear solve with an unsymmetric, indefinite system, that is solved
using standard GMRES without preconditioning. The residual tolerance for
both the Newton and GMRES iterations was chosen based on ∆t as given
in [35, p. 801]. We note that second order temporal convergence is verified
with the tolerances chosen in this manner (see Figure 6.1).
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Figure 6.2: Cost in CPU time for Crank Nicolson method (black), KBEI
with m = 40 (blue) and m = 80 (red).

We use Crank Nicolson as a comparison because of its easy implementa-
tion, unconditional stability and second order accuracy. We do not consider
explicit methods because of their inherent stability limitations; nor do we
consider first order methods. Common second order implicit methods that
we could have considered for a comparison include the backward difference
method and the implicit midpoint rule.

Figure 6.1 shows relative L2 error in the velocity at t = 1 versus time
step size for the Krylov–based exponential projection method with m = 40,
m = 80 and the Crank Nicolson method. Second order temporal convergence
for the Crank Nicolson method is evident. The convergence rate for the
Krylov–based exponential projection method with m = 40 is less than second
order for ∆t > 10−1 and improves to greater than second order for ∆t <
10−1. For m = 80, the Krylov–based exponential projection method exhibits
convergence greater that second order for ∆t < 5 × 10−1. Thus temporal
convergence greater than second order can be attained using the Krylov–
based exponential projection method.
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Figure 6.3: Cost versus Relative L2 error in velocity at t = 1 for Crank
Nicolson method (black), KBEI with m = 40 (blue) and m = 80 (red).

The cost measured in CPU seconds of each method versus time step
length is displayed in Figure 6.2. For integration to t = 1, the Crank Nicol-
son method requires more CPU time than the Krylov–based exponential
projection method for any choice of ∆t. Figure 6.3 shows cost versus L2 er-
ror for each of the methods. In particular, we observe that the Krylov–based
exponential projection method with m = 40 and m = 80 achieve a smaller
error at a much smaller cost than the Crank Nicolson method. We remark
that the large cost in Crank Nicolson is due to the need to solve a nonlinear
system at each time step. We recall that no nonlinear solve is required by
the Krylov–based exponential projection method.

6.3 Summary

The results suggest that the methods described herein show promise and can
provide an alternative to conventional methods. In summary, we note that
these experiments and the experiments in Chapter 2 do not show beyond



93

reasonable doubt that the Krylov–based exponential projection method out-
performs conventional time integration methods for the Navier–Stokes equa-
tions.

Crank Nicolson possesses some advantages over other higher–order im-
plicit methods. Although the family of higher–order backward difference
methods possesses favorable stability properties, it suffers from artificial dis-
sipation. Backward difference methods also require that information from
the previous two time steps be retained. This facilitates the need to imple-
ment another integration method to reach the first time step. Another high
order alternative is the implicit midpoint rule. A drawback of the implicit
midpoint rule is that it requires function evaluations at mid time step. Im-
plicit Runge–Kutta methods [10, 40] and Rosenbrock methods [51] provide
high order accuracy at the expense of multiple linear solves at each timestep.
We note that if proper care is given in the sense that associated stability
criterions are satisfied, explicit methods may also be useful. In particular
Runge–Kutta methods and Adams–Bashforth methods [35] provide higher
order explicit methods.

The results of this chapter are positive and indicate promise. However,
one cannot conclude that traditional methods are inferior. Careful evalua-
tions against the methods mentioned in this section must be performed.
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Chapter 7

Conclusions

7.1 Summary

In this work we have studied KBEIs and used them to provided an algo-
rithm for time integration of the incompressible Navier–Stokes equations.
Our analysis of KBEIs highlighted the important issues in implementation
of such a method and demonstrates that Krylov–based exponential integra-
tion methods provide an alternative to both implicit and explicit methods.

We have outlined in detail how Krylov–based exponential methods can be
applied to the incompressible Navier–Stokes equations. The two key building
blocks of our algorithm consist of projection of the momentum equation
to a divergence–free subspace and integration of the momentum equation
with a KBEI. We have highlighted the theoretical and practical issues for
implementation for both of these building blocks. In particular we have
described how to project the momentum equation onto a divergence–free
subspace using a divergence–free L2 or H1 projection and obtain scalable
solution of the projection subproblems using a preconditioned Uzawa method.

7.2 Contributions

The main contribution of this work is the identification and development
of scalable solver for time integration of the incompressible Navier–Stokes
equations. We have also contributed an analysis of the divergence–free L2

and H1 projections and have shown that the seldom used divergence–free H1

projection provides a viable alternative to the divergence–free L2 projection.
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An analysis of a scalable preconditioned solution method for each projection
has been outlined. We have also addressed the stability of finite element
methods for the projection subproblems.

7.3 Future work

There are four research areas to pursue. The first lies in the area of KBEIs.
We plan on providing a theoretical description of scalability for KBEIs ap-
plied to not only discretizations the incompressible Navier–Stokes equations
but to partial differential equations in general. We would also like to conduct
a theoretical study to identify the types of problems in which KBEIs work
well. Another area of interest is the integration of KBEIs with methods for
solving steady state problems and operator–splitting methods.

The other area of research is incompressible flow. In particular we plan
to study implementation of other boundary conditions in our algorithm for
the Navier–Stokes equations. In particular we are interested in how the
divergence–free projections accommodate boundary conditions other than
Dirichlet.

The third area is code development. We plan on implementing the solver
for three spatial dimensions. Another improvement to the code would be to
use multigrid for the inner and precondition iterations in our Uzawa solver
for the divergence–free L2 or H1 projections. These two steps are outlined in
Section 5.1 and consist of solving a Poisson problem on either the pressure
space or the velocity space. This Poisson problem can be solved efficiently
using multigrid methods [11]. We also plan to identify components of the
code that can be parallelized. The development of parallel code would allow
us to run larger problems.

Finally, the method needs to be thoroughly evaluated against other stan-
dard approaches including the high order explicit and implicit methods and
the semi–implicit projection methods.
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