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ABSTRACT

We describe three MATLAB classes for manipulating tensors in order to allow fast
algorithm prototyping. A tensor is a multidimensional or N -way array. We present
a tensor class for manipulating tensors which allows for tensor multiplication and
“matricization.” We have further added two classes for representing tensors in de-
composed format: cp tensor and tucker tensor. We demonstrate the use of these
classes by implementing several algorithms that have appeared in the literature.
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1. Introduction. A tensor is a multidimensional or N -way array of data; Fig-
ure 1.1 shows a 3-way array of size I1 × I2 × I3. In this paper, we describe three
MATLAB classes for manipulating tensors: tensor, cp tensor, and tucker tensor.
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Fig. 1.1. A 3-way array

MATLAB is a high-level computing environment that allows users to develop
mathematical algorithms using familiar mathematical notation. In terms of higher-
order tensors, MATLAB R14 supports multidimensional arrays (MDAs). Allowed
operations on MDAs include elementwise operations, permutation of indices, and
most vector operations (like sum and mean) [9]. More complex operations, such as the
multiplication of two MDAs, are not supported by MATLAB. This paper describes
the use of MATLAB’s class functionality [8] to create a tensor datatype that extends
MATLAB’s MDA functionality to support tensor multiplication and more.

Basic mathematical notation and operations for tensors, as well as related MAT-
LAB commands, are described in §2. Tensor multiplication receives its own section,
§3, in which we describe both notation and how to multiply a tensor times a vector,
a tensor times a matrix, and a tensor times another tensor. Conversion of a tensor to
a matrix and vice versa is described in §4.

A tensor may be stored in factored form as a sum of rank-1 tensors. There are two
commonly accepted factored forms. The first was developed independently under two
names: the CANDECOMP model of Carroll and Chang [3] and the PARAFAC model
of Harshman [5]. Following the notation in Kiers [7], we refer to this decomposition
as the CP model. The second decomposition is the Tucker [10] model. Both models,
as well as the corresponding MATLAB classes cp tensor and tucker tensor, are
described in §5.

We note that these MATLAB classes serve a purely supporting role in the sense
that these classes do not contain algorithms—just data types. Thus, we view this
work as complementary to those packages that provide algorithms, such as Andersson
and Bro’s N -way toolbox for MATLAB [2].

In general, we use the following notational conventions. Indices are denoted by
lowercase letters and span the range from 1 to the uppercase letter of the index, e.g.,
n = 1, 2, . . . , N . We denote vectors by lowercase boldface letters, e.g., x; matrices by
uppercase boldface, e.g., U; and tensors by calligraphic letters, e.g., A. Notation for
tensor mathematics is still sometimes awkward. We have tried to be as standard as
possible, relying on [6, 7] for some guidance in this regard.
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2. Basic Notation & MATLAB Commands for Tensors. Let A be a tensor
of dimension I1 × I2 × · · · × IN . The order of A is N . The nth dimension or mode or
way of A is of size In.

Just as an n-vector can be thought of as an n × 1 matrix, an n-vector can be
thought of as an order-1 tensor of size n, and an m × n matrix can be thought of as
an order-2 tensor of size m× n.

2.1. Creating a tensor object. In MATLAB, a higher-order tensor can be
stored as an MDA. We introduce the tensor class to extend the capabilities of the
MDA object. An array or MDA can be converted to a tensor as follows.

T = tensor(A) or T = tensor(A,DIM) converts an array (vector, matrix, or
MDA) to a tensor. Here A is the object to be converted and DIM specifies the
dimensions of the object.

A = double(T) converts a tensor to an array.

Figure 2.1 shows an example of creating a tensor.

2.2. Tensors and size. Out of necessity, the tensor class handles sizes in a
different way than the MATLAB arrays. Every MATLAB array has at least 2 dimen-
sions; for example, a scalar is an object of size 1× 1 and a column vector is an object
of size n × 1. On the other hand, MATLAB drops trailing singleton dimensions for
any object of order greater than 2. Thus, a 4 × 3 × 1 object has a reported size of
4 × 3; see Figure 2.2. The MATLAB tensor class explicitly stores the size of its ob-
jects, allowing for as few as one dimension as well as for trailing singleton dimensions.
Thus, DIM must be specified in the constructor whenever the order is one or there are
trailing singleton dimensions.

2.3. General functionality. In general, a tensor object will behave exactly as
an MDA for all functions that are defined for an MDA; see Figure 2.3.

2.4. Accessors. We denote the index of an element within a tensor by either
subscripts or parentheses. Subscripts are generally used for indexing on matrices and
vectors but can be confusing for the complex indexing that is sometimes required for
tensors. For example, A(i1, i2, . . . , iN ) may be easier to read than Ai1i2···iN

. Further-
more, the parentheses notation is consistent with MATLAB:

A(i1,i2,...,iN) returns the (i1, i2, . . . , iN ) element of A.

We may replace an index with a colon or a range of indices in the same way as
is done in MATLAB. Thus, Ui: or U(i, :) denotes the ith row of U, and U:j denotes
the jth column of U. Likewise, A(:, :, k) denotes the kth submatrix along the third
mode. The MATLAB notation is straightforward:

A(:,:,k) returns the kth 3-mode submatrix of the tensor A.

Figure 2.4 shows an example of accessors for a tensor.
6



% Create a random MDA

A = rand(3,4,2)

A(:,:,1) =

0.2626 0.0211 0.8837 0.7377

0.2021 0.0832 0.1891 0.3264

0.7666 0.1450 0.4118 0.6331

A(:,:,2) =

0.1501 0.0396 0.7307 0.4609

0.2340 0.1489 0.6396 0.4528

0.2955 0.4261 0.1215 0.1157

% Create a tensor

T = tensor(A)

T is a tensor of size 3 x 4 x 2

T.data =

(:,:,1) =

0.2626 0.0211 0.8837 0.7377

0.2021 0.0832 0.1891 0.3264

0.7666 0.1450 0.4118 0.6331

(:,:,2) =

0.1501 0.0396 0.7307 0.4609

0.2340 0.1489 0.6396 0.4528

0.2955 0.4261 0.1215 0.1157

Fig. 2.1. Example of creating a tensor object from a multidimensional array.
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% Create an MDA of size 4 x 3 x 1

A = rand([4 3 1]);

% Matlab ignores trailing singleton dimensions

size(A)

ans =

4 3

ndims(A)

ans =

2

% Creating a tensor from A creates an order-2

% tensor of size 4 x 3

T = tensor(A);

size(T)

ans =

4 3

ndims(T)

ans =

2

% Specifing the dimensions explicitly creates

% an order-3 tensor of size 4 x 3 x 1

T = tensor(A,[4 3 1]);

size(T)

ans =

4 3 1

ndims(T)

ans =

3

Fig. 2.2. The tensor class explicitly tracks the size of its data.

• A + B or plus(A,B)

• A - B or minus(A,B)

• -A or uminus(A)

• +A or uplus(A)

• A.*B or times(A,B)

• A./B or rdivide(A,B)

• A.\B or ldivide(A,B)

• A.^B or power(A,B)

• A < B or lt(A,B)

• A > B or gt(A,B)

• A <= B or le(A,B)

• A >= B or ge(A,B)

• A ~= B or ne(A,B)

• A == B or eq(A,B)

• A & B or and(A,B)

• A | B or or(A,B)

• ~A or not(A)

Fig. 2.3. Functions that behave identically for tensors and multidimensional arrays.
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% Create a random 2 x 2 x 2 tensor

A = tensor(rand(2,2,2))

A is a tensor of size 2 x 2 x 2

A.data =

(:,:,1) =

0.4021 0.8332

0.6531 0.3029

(:,:,2) =

0.5953 0.3480

0.4503 0.3982

% Access the (2,1,1) element

A(2,1,1)

ans =

0.6531

% Reassign a 2 x 2 submatrix to be

% the 2 x 2 identity matrix

A(:,1,:) = eye(2)

A is a tensor of size 2 x 2 x 2

A.data =

(:,:,1) =

1.0000 0.8332

0 0.3029

(:,:,2) =

0 0.3480

1.0000 0.3982

Fig. 2.4. Accessors and assignment for a tensor object work the same as they would for a
multidimensional array.
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3. Tensor Multiplication. Notation for tensor multiplication is extremely dif-
ficult to understand, particularly because its use is often inconsistent. The issues
have to do with defining which indices are to be multiplied and how the modes of the
result should be ordered. We approached this problem by considering what could be
expressed easily by MATLAB.

3.1. Multiplying a tensor times a matrix. The first question we consider is
how to multiply a tensor times a matrix. With matrix multiplication, the specification
of which dimensions should be multiplied is automatic—it is always the rows of the
first matrix with the columns of the second matrix. A transpose on an argument swaps
the rows and columns. Because tensors may have an arbitrary number of dimensions,
the situation is more complicated. In this case, we need to specify which mode of the
tensor is multiplied by the columns of the given matrix.

The solution is the n-mode product [4]. Let A be an I1 × I2 × · · · × IN tensor.
Let U be an Jn × In matrix. Then the n-mode product of A and U is denoted by

A×n U.

The result is a tensor of size I1 × · · · × In−1 × Jn × In+1 × · · · × IN . Note that the
order of the result is the same as the original tensor. The entries are computed as
follows:

(A×n U)(i1, . . . , in−1, jn, in+1, . . . , iN ) =
In∑

in=1

A(i1, i2, . . . , iN ) B(in, jn).

To understand this notation in terms of matrices (i.e., order-2 tensors), suppose
A is m× n, U is m× k, and V is n× k. Then

A×1 UT = UT A and A×2 VT = AV.

Similarly, the matrix SVD can be written as

A = UΣVT = Σ×1 U×2 V.

The following MATLAB commands can be used to calculate n-mode products.

B = product(A,U,n) calculates B = A×n U.

B = product(A,{U,V},[m,n]) calculates B = A×m U×n V.

The n-mode product satisfies the following property from [4]. Let A be a tensor
of size I1 × I2 × · · · × IN . If U ∈ RJm×Im and V ∈ RJn×In , then

A×m U×n V = A×n V ×m U.(3.1)

See Figure 3.1 for an example that demonstrates this property, and Figure 3.2 which
revisits the same example but calculates the products using cell arrays.

It is often desirable to calculate the product of a tensor and a sequence of matrices.
Let A be an I1×I2×· · ·×IN tensor. Let U(n) denote a Jn×In matrix for n = 1, . . . , N .
Then

B = A×1 U(1) ×2 U(2) · · · ×n U(N)(3.2)
10



A = tensor(rand(4,3,2));

U = rand(2,4);

V = rand(3,2);

% Computing A x_1 U x_3 V

B = product(A,U,1);

C = product(B,V,3)

C is a tensor of size 2 x 3 x 3

C.data =

(:,:,1) =

1.9727 2.0380 2.6528

1.6460 1.8647 2.4649

(:,:,2) =

1.9051 2.0078 2.5385

1.5881 1.8406 2.3523

(:,:,3) =

0.3289 0.3437 0.4400

0.2743 0.3148 0.4082

% Computing A x_3 V x_1 U

B = product(A,V,3);

C = product(B,U,1)

C is a tensor of size 2 x 3 x 3

C.data =

(:,:,1) =

1.9727 2.0380 2.6528

1.6460 1.8647 2.4649

(:,:,2) =

1.9051 2.0078 2.5385

1.5881 1.8406 2.3523

(:,:,3) =

0.3289 0.3437 0.4400

0.2743 0.3148 0.4082

Fig. 3.1. Calculating n-mode products.
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% Compute the same thing using a cell array

W{1} = U;

W{2} = V;

C = product(A,W,[1 3])

C is a tensor of size 2 x 3 x 3

C.data =

(:,:,1) =

1.9727 2.0380 2.6528

1.6460 1.8647 2.4649

(:,:,2) =

1.9051 2.0078 2.5385

1.5881 1.8406 2.3523

(:,:,3) =

0.3289 0.3437 0.4400

0.2743 0.3148 0.4082

Fig. 3.2. An alternate approach to calculating n-mode products.
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is of size J1 × J2 × · · · × JN . We propose new, alternative notation for this operation
that is consistent with the MATLAB command:

B = A× {U}.

This notation will prove useful in presenting some algorithms.
The following equivalent MATLAB commands can be used to calculate n-mode

products with a sequence of matrices.

B = product(A,{U1,U2,...,UN}, [1:N]) calculates
B = A×1 U(1) ×2 U(2) · · · ×n U(N). Here Un is a MATLAB matrix
representing U(n).

B = product(A,U) calculates B = A× {U}. Here U = {U1,U2,. . .,UN} is a
MATLAB cell array and Un is as described above.

Another frequently used operation is multiplying by all but one of a sequence of
matrices:

B = A×1 U(1) · · · ×n−1 U(n−1) ×n+1 U(n+1) · · · ×N U(N).

We propose new, alternative notation for this operation that is consistent with the
MATLAB command:

B = A×−n {U}.

This notation will prove useful in presenting some algorithms in §6.
The following MATLAB commands can be used to calculate n-mode products

with all but one of a sequence of matrices.

B = product(A,U,-n) calculates B = A×−n {U}. Here U = {U1,U2,. . .,UN}
is a MATLAB cell array; the nth cell is simply ignored in the computation.

Note that B = product(A,{U1,. . .,U4,U6,. . .,U9},[1:4,6:9]) is equivalent to
B = product(A,U,-5) where U={U1,. . .,U9} ; both calculate B = A×−5 {U}.

3.2. Multiplying a tensor times a vector. In our opinion, one source of con-
fusion in n-mode multiplication is what to do when multiplying a tensor times a vector
due to the introduction of a singleton dimension in mode n. If the singleton dimension
is dropped (as is sometimes desired), then the commutativity of the multiplies (3.1)
outlined in the previous section no longer holds because the order of the intermediate
result changes and ×n or ×m applies to the wrong mode.

Although one can usually determine the correct order of the result via the context
of the equation, it is impossible to do this automatically in MATLAB in any robust
way. Thus, we propose an alternate name and notation in the case when the newly
introduced singleton dimension should indeed be dropped.

Let A be an I1× I2×· · ·× IN tensor, and let b be an In-vector. We propose that
the contracted n-mode product, which drops the nth singleton dimension, be denoted
by

A×̄n b.
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The result is of size I1×· · ·× In−1× In+1×· · ·× IN . Note that the order of the result
is N − 1, one less than the original tensor. The entries are computed as follows:

(A×̄n u)(i1, . . . , in−1, in+1, . . . , iN ) =
In∑

in=1

A(i1, i2, . . . , iN ) u(in).

The following MATLAB command computes the contracted n-mode product.

product(A,u,n,’vec’) computes A×̄n u.

Observe that A×̄n u and A ×n uT produce identical results except for the
order and shape of the results; that is, A×̄n u ∈ RI1×···×In−1×In+1×···×IN , whereas
A×n uT ∈ RI1×···×In−1×1×In+1×···×IN . See Figure 3.3 for an example.

For the contracted n-mode product, it is no longer true that multiplication is
commutative; i.e.,

(A×̄m u) ×̄n v 6= (A×̄n v) ×̄m u.

If we assume m < n, then

A×̄m u ×̄n v = (A×̄m u) ×̄n−1 v = (A×̄n v) ×̄m u.

As before with matrices, it is often useful to calculate the product of a tensor and
a sequence of vectors:

B = A×̄1 u(1) ×̄2 u(2) · · · ×̄N u(N)

or

B = A×̄1 u(1) · · · ×̄n−1 u(n−1) ×̄n+1 u(n+1) · · · ×̄N u(N).

As in the matrix case, we propose the following alternative notation:

B = A×̄ {u}

or

B = A×̄−n {u},

respectively.
In practice, one must be careful when calculating a sequence of contracted prod-

ucts to perform the multiplications starting with the highest mode and proceed se-
quentially to the lowest mode. The following MATLAB commands automatically sort
the modes in the correct order.

b = product(A,u,’vec’) computes A×̄ {u} where u is a cell array whose nth
entry is the vector u(n).

b = product(A,u,-n,’vec’) computes A×̄−n {u}.

Note that the result of the first calculation is a scalar, and the result of the second
is a vector of size In.

14



A = tensor(rand(3,4,2));

u = rand(3,1);

% Compute A x_1 u’

B = product(A,u’,1)

B is a tensor of size 1 x 4 x 2

B.data =

(:,:,1) =

0.5058 0.3319 0.1857 0.6210

(:,:,2) =

0.9385 0.4829 0.5141 0.8288

% Compare to A \bar x_1 u

C = product(A,u,1,’vec’)

C is a tensor of size 4 x 2

C.data =

0.5058 0.9385

0.3319 0.4829

0.1857 0.5141

0.6210 0.8288

Fig. 3.3. Comparison of A×n uT and A×̄n u.
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3.3. Multiplication of a tensor with another tensor. The last case of tensor
multiplication to consider is the product of two tensors. If the tensors have equal
dimensions and are of size I1 × I2 × · · · × IN , then their product is given by

〈A,B〉 =
I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

A(i1, i2, . . . , iN ) B(i1, i2, . . . , iN ).

In MATLAB, this is accomplished via the following command.

product(A,B) calculates 〈A,B〉; the result is a scalar.

Using the product definition, the Frobenius norm of a tensor is then given by

‖A‖2 = 〈A,A〉 =
I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

A(i1, i2, . . . , iN )2.

In MATLAB, the norm can be calculated as follows.

norm(A) calculates ‖A‖, the Frobenius norm of a tensor.

Next, suppose the two tensors are different sizes. Let A be of size I1×· · ·× IM ×
J1 × · · · × JN and let B be of size I1 × · · · × IM × K1 × · · · × KP . We can multiply
them along the first M modes, and the result is of size J1×· · ·×JN ×K1×· · ·×KP ,
given by

〈A,B〉{1,...,M ;1,...,M} (j1, . . . jn, k1, . . . , kp) =
I1∑

i1=1

· · ·
IM∑

iM=1

A(i1, . . . , iM , j1, . . . , jN ) B(i1, . . . , iM , k1, . . . , kP ).

Note that the modes to be multiplied are specified in the subscripts that follow the
angle brackets. The remaining modes are ordered such that those from A come before
B, which is different from the tensor-matrix product case considered above because the
leftover matrix dimension is inserted at Im and not moved to the end. In MATLAB,
the command is as follows.

product(A,B,[1:M],[1:M]) computes 〈A,B〉{1,...,M ;1,...,M}.

4. Matricize: Transforming a Tensor into a Matrix. It is often useful to
transform a tensor into a matrix such that all of the columns along a certain mode are
rearranged to form a matrix. Following Kiers [7], we call this process “matricizing”
because matricizing a tensor is analogous to vectorizing a matrix. De Lathauwer et
al. [4] call this process “unfolding.”

Typically, a tensor is matricized so that all of the columns associated with a
particular dimension are aligned. De Lathauwer et al. [4] and Kiers [7] differ on how
the columns should be arranged within the matrix; while both agree that the ordering

16
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Fig. 4.1. Matricizing a 3-way tensor according to De Lathauwer et al.
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Fig. 4.2. Matricizing a 3-way tensor according to Kiers.
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should by cyclic, the interpretation of that cyclic ordering is reversed. De Lathauwer
et al.’s ordering is shown in Figure 4.1, and Kiers’ ordering is shown in Figure 4.2.

In De Lathauwer et al.’s definition [4, Definition 1], A(n) is of size In × (I1 · · · In−1In+1 · · · IN )
and contains entry A(i1, . . . , iN ) in position (k, `) where k = in and

` = (in+1 − 1)In+2In+3 · · · INI1 · · · In−1

+ (in+2 − 1)In+3 · · · INI1 · · · In−1

+ · · ·
+ (iN − 1)I1I2 · · · In−1

+ (i1 − 1)I2 · · · In−1

+ · · ·
+ (in−2 − 1)In−1

+ (in−1 − 1) + 1.

In Kier’s definition [7], A(n) is of size In × (I1 · · · In−1In+1 · · · IN ) and contains entry
A(i1, . . . , iN ) in position (k, `) where k = in and

` = (in−1 − 1)In−2In−3 · · · I1IN · · · In+1

+ (in−2 − 1)In−3 · · · I1IN · · · In+1

+ · · ·
+ (i2 − 1)I1IN · · · In+1

+ (i1 − 1)IN · · · In+1

+ (iN − 1)IN−1 · · · In+1

+ · · ·
+ (in+2 − 1)In+1

+ (in+1 − 1) + 1.

To distinguish between these two definitions of matricizations in our mathematical
notations, we append the subscript phrase “DDV” or “Kiers”; e.g., A(n)Kiers . In most
cases, the distinction is unnecessary so long as the matricization method used on the
right hand side of an equation is the same as the left hand side.

The matricize function supports either interpretation as an option but defaults
to De Lathauwer et al.’s interpretation. The following MATLAB commands can
convert a tensor to a matrix.

matricize(T,n) or matricize(T,n,’DDV’) computes T(n)DDV .

matricize(T,n,’Kiers’) computes T(n)Kiers .

Figure 4.3 shows two examples of matricizing a tensor.
We can also construct a tensor from a “matricized” tensor by specifying the mode

of matricization and original tensor dimensions. The following MATLAB command
can convert a matrix to a tensor.

tensor(A,n,DIMS,’DDV’) or tensor(A,n,DIMS,’Kiers’) creates a tensor
from a matrix A(n). The dimensions of the resulting tensor are specified by
DIMS.
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Figure 4.4 shows such a conversion.
Tensors stored in matricized form may be manipulated as matrices, reducing some

tensor-matrix operations, such as n-mode multiplication, to matrix-matrix operations.
For example, the n-mode product of a tensor A by a matrix M may be expressed in
the following two ways:

B = A×n M

or, in terms of tensor matricizations,

B(n) = MA(n).

Moreover, the series of multiplications in (3.2), when written as a matrix formulation,
is given by

B(1)DDV = U(1)A(1)DDV(U(2)T

⊗U(3)T

⊗ . . .⊗U(N)T

)

= U(1)A(1)DDV(U(2) ⊗U(3) ⊗ . . .⊗U(N))T ,

when using the definition by De Lathauwer et al. [4], or

B(1)Kiers = U(1)A(1)Kiers(U
(N)T

⊗ . . .⊗U(3)T

⊗U(2)T

)

= U(1)A(1)Kiers(U
(N) ⊗ . . .⊗U(3) ⊗U(2))T ,

when using the definition by Kiers [7].

5. Decomposed Tensors. As we mentioned previously, we have also created
two additional classes to support the representation of tensors in decomposed form,
that is, as the sum of rank-1 tensors. A rank-1 tensor is a tensor that can be written
as the outer product of vectors, i.e.,

A = λ u(1) ◦ u(2) ◦ . . . ◦ u(N),

where λ is a scalar and each u(n) is an In-vector, for n = 1, . . . , N . The ◦ symbol
denotes the outer product; so, in this case, the (i1, i2, . . . , iN ) entry of A is given by

A(i1, i2, . . . , iN ) = λ u(1)
i1

u(2)
i2

· · ·u(N)
iN

,

where ui denotes the ith entry of vector u. We focus on two different tensor decom-
positions: CP and Tucker.

5.1. CP tensors. Recall that “CP” is shorthand for CANDECOMP [3] and
PARAFAC [5], which are identical models that were developed independently. The
CP decomposition is a weighted sum of rank-1 tensors, given by

A =
K∑

k=1

λk U(1)
:k ◦U(2)

:k ◦ · · · ◦U(N)
:k .(5.1)

Here λ is a vector of size K and each U(m) is a matrix of size In×K, for n = 1, . . . , N .
Recall that the notation U(n)

:k denotes the kth column of the matrix U(n).
The following MATLAB command creates a CP tensor.
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% Let T be a 3 x 4 x 2 tensor

T = tensor(rand(3,4,2))

T is a tensor of size 3 x 4 x 2

T.data =

(:,:,1) =

0.5390 0.5256 0.3962 0.7578

0.1358 0.3757 0.0959 0.1490

0.5949 0.4611 0.8326 0.1960

(:,:,2) =

0.1808 0.4731 0.8298 0.1779

0.5269 0.5443 0.5672 0.6324

0.9991 0.1961 0.1057 0.5835

% The De Lathauwer et al. matricization in mode-1

A1 = matricize(T,2,’DDV’)

A1 =

0.5390 0.1358 0.5949 0.1808 0.5269 0.9991

0.5256 0.3757 0.4611 0.4731 0.5443 0.1961

0.3962 0.0959 0.8326 0.8298 0.5672 0.1057

0.7578 0.1490 0.1960 0.1779 0.6324 0.5835

% The Kiers matricization in mode-1

A2 = matricize(T,2,’Kiers’)

A2 =

0.5390 0.1808 0.1358 0.5269 0.5949 0.9991

0.5256 0.4731 0.3757 0.5443 0.4611 0.1961

0.3962 0.8298 0.0959 0.5672 0.8326 0.1057

0.7578 0.1779 0.1490 0.6324 0.1960 0.5835

Fig. 4.3. Two methods for converting a tensor to a matrix.

% We can convert a matrix into a tensor (inverse matricize)

T = tensor(A1,2,[3,4,2],’DDV’)

ans is a tensor of size 3 x 4 x 2

ans.data =

(:,:,1) =

0.5390 0.5256 0.3962 0.7578

0.1358 0.3757 0.0959 0.1490

0.5949 0.4611 0.8326 0.1960

(:,:,2) =

0.1808 0.4731 0.8298 0.1779

0.5269 0.5443 0.5672 0.6324

0.9991 0.1961 0.1057 0.5835

Fig. 4.4. Constructing a tensor from a matrix by reshaping it.
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T = cp tensor(lambda,U) creates a cp tensor object. Here lambda is a
K-vector and U is a cell array whose nth entry is the matrix U (n) with K
columns.

A CP tensor can be converted to a dense tensor as follows.

B = full(A) converts a cp tensor object to a tensor object.

See Figure 5.1 for an example.
Addition and subtraction of CP tensors is handled specially. The λ’s and U(n)’s

are concatenated. To add or subtract two CP tensors (of the same order and size),
use the + and - signs.

A + B computes the sum of two CP tensors.

A - B computes the difference of two CP tensors.

An example is shown in Figure 5.2.
To determine the value of K for a CP tensor, execute the following MATLAB

command.

r = length(T.lambda) returns the “rank” of the tensor T.

5.2. Tucker tensors. The Tucker decomposition [10], also called a Rank-(K1,K2, . . . ,KM )
decomposition [1], is another way of summing decomposed tensors given by

A =
K1∑

k1=1

K2∑
k2=1

· · ·
KN∑

kN=1

λ(k1, k2, . . . , kN ) U(1)
:k1

◦U(2)
:k2

◦ · · · ◦U(N)
:kN

.(5.2)

Here λ is itself a tensor of size K1 ×K2 × · · ·×KN , and each U(n) is a matrix of size
In × Kn, for n = 1, . . . , N . As before, the notation U(n)

:k denotes the kth column of
the matrix U(n). The tensor λ is often called the “core array” or “core tensor.”

A Tucker tensor can be created in MATLAB as follows.

T = tucker tensor(lambda,U) where lambda is a K1 ×K2 × · · · ×KN tensor
and U is a cell array whose nth entry is a matrix with Kn columns.

Figure 5.3 shows an example.
A Tucker tensor can be converted to a dense tensor as follows.

B = full(A) converts a tucker tensor object to a tensor object.
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5.3. Relations between CP and Tucker. Mathematically, a CP decomposi-
tion is a special case of a Tucker decomposition where K = K1 = K2 = · · · = KN

and λ(k1, k2, . . . , kN ) is zero unless k1 = k2 = · · · = kN (i.e., only the diagonal entries
of the tensor λ are non-zero). On the other hand, it is possible to express a Tucker
decomposition as a CP decomposition where K =

∏N
n=1 Kn.

6. Examples. We demonstrate the use of the tensor, cp tensor, and tucker tensor
classes for algorithm development. De Lathauwer et al. have presented higher-order
generalizations of the power method and orthogonal iteration in [1], which serve as
our examples.

Our first example is the higher-order power method, Algorithm 3.2 from [1], which
is a multilinear generalization of the best rank-1 approximation problem for matrices.
In Figure 6.1, we have reproduced the algorithm using our notation. Figure 6.2 shows
the MATLAB code that implements the algorithm. Figure 6.3 shows sample output
using this method.

The higher-order orthogonal iteration is the multilinear generalization of the best
rank-R approximation problem for matrices. Algorithm 4.2 in [1] finds the best rank-
(R1, R2, . . . , RN ) approximation of a higher-order tensor. We have reproduced the
algorithm in Figure 6.4 using our notation, and that MATLAB implementation is in
Figure 6.5. Figures 6.6–6.8 show the algorithm applied to the same random tensor
from Figure 6.3 for computing different rank-(R1, R2, R3) approximations.

7. Conclusions. We have described three new MATLAB classes for manipulat-
ing dense and factored tensors. These classes extend MATLAB’s built-in capabilities
for multidimensional arrays in order to facilitate rapid algorithm development.

The tensor class simplifies the algorithmic details for implementing numerical
methods for higher-order tensors by hiding the underlying matrix operations. It
was previously the case that users had to know how to appropriately reshape the
tensor into a matrix, execute the desired operation using matrix commands, and
then appropriately reshape the result into a tensor. This can be nonintuitive and
cumbersome, and we believe using the tensor class will be much simpler.

The tucker tensor and cp tensor classes give users an easy way to store and
manipulate factored tensors, as well as the ability to convert such tensors into non-
factored (or dense) format.

At this stage, our MATLAB implementations are not optimized for performance
or memory useage; however, we have striven for consistency and ease-of-use. In the
future, we plan to further enhance these classes and add additional functionality.

Over the course of this code development effort, we have relied on published
notation, especially from Kiers [7] and De Lathauwer et al. [1]. To address ambiguities
that we discovered in the class development process, we have proposed extensions to
the existing mathematical notation, particularly in the area of tensor multiplication,
that we believe more clearly denote mathematical concepts that were difficult to write
succinctly with the existing notation.

We have demonstrated our new notation and MATLAB classes by revisiting the
higher-order power method and the higher-order orthogonal iteration method from
[1]. In our opinion, the resulting algorithm (using our consolodated notation) and
code (using our MATLAB classes) is more easily understood.

22



A = cp_tensor(5, [2 3 4]’, [1 2]’, [5 4 3]’)

A is a CP tensor of size 3 x 2 x 3

A.lambda =

5

A.U{1} =

2

3

4

A.U{2} =

1

2

A.U{3} =

5

4

3

B = full(A)

B is a tensor of size 3 x 2 x 3

B.data =

(:,:,1) =

50 100

75 150

100 200

(:,:,2) =

40 80

60 120

80 160

(:,:,3) =

30 60

45 90

60 120

Fig. 5.1. An example of a CP tensor.
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A = cp_tensor(5, [2 3 4]’, [1 2]’, [5 4 3]’);

B = A + A

B is a CP tensor of size 3 x 2 x 3

B.lambda =

5

5

B.U{1} =

2 2

3 3

4 4

B.U{2} =

1 1

2 2

B.U{3} =

5 5

4 4

3 3

C = full(B)

C is a tensor of size 3 x 2 x 3

C.data =

(:,:,1) =

100 200

150 300

200 400

(:,:,2) =

80 160

120 240

160 320

(:,:,3) =

60 120

90 180

120 240

Fig. 5.2. Adding two CP tensors.
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lambda = tensor(rand(4,3,1),[4 3 1]);

for n = 1 : 3

U{n} = rand(5,size(lambda,n));

end

A = tucker_tensor(lambda,U)

A is a Tucker tensor of size 5 x 5 x 5

A.lambda =

Tensor of size 4 x 3 x 1

data =

0.8939 0.2844 0.5828

0.1991 0.4692 0.4235

0.2987 0.0648 0.5155

0.6614 0.9883 0.3340

A.U{1} =

0.4329 0.6405 0.4611 0.0503

0.2259 0.2091 0.5678 0.4154

0.5798 0.3798 0.7942 0.3050

0.7604 0.7833 0.0592 0.8744

0.5298 0.6808 0.6029 0.0150

A.U{2} =

0.7680 0.4983 0.7266

0.9708 0.2140 0.4120

0.9901 0.6435 0.7446

0.7889 0.3200 0.2679

0.4387 0.9601 0.4399

A.U{3} =

0.9334

0.6833

0.2126

0.8392

0.6288

% The size of A

size(A)

ans =

5 5 5

% The "rank" of A

size(A.lambda)

ans =

4 3 1

Fig. 5.3. Creating a Tucker tensor.
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Higher-Order Power Method

In: A of size I1 × I2 × . . .× IN .

Out: B of size I1 × I2 × . . .× IN , an estimate of the best
rank-1 approximation of A.

1. Compute initial values: Let u
(n)
0 be the dominant

left singular vector of A(n) for n = 2, . . . , N .

2. For k = 1, 2, . . . (until converged), do:

For n = 1, . . . , N , do:

ũ
(n)
k+1 = A×̄−n {uk}.

λ
(n)
k+1 =

∥∥∥ũ(n)
k+1

∥∥∥
u

(n)
k+1 = ũ

(n)
k+1/λ

(n)
k+1

3. Let λ = λK and {u} = {uK} where K is the
index of the final result of the iterations.

4. Set B = λ u(1) ◦ u(2) ◦ . . . ◦ u(n).

Fig. 6.1. Higher-order power method algorithm of [1] using the proposed notation. In this
illustration, subscripts denote iteration number.

function B = hopm(A,kmax)

A = tensor(A);

N = order(A);

% Default value

if ~exist(’kmax’,’var’)

kmax = 5;

end

% Compute the dominant left singluar vectors

% of A_(n) (2 <= n <= N)

for n = 2:N

[u{n}, lambda(n), V] = svds(matricize(A,n), 1);

end

% Iterate until convergence

for k = 1:kmax

for n = 1:N

u{n} = product(A, u, -n, ’vec’);

lambda(n) = norm(U{n});

u{n} = double(u{n}./lambda(n));

end

end

% Assemble the resulting tensor

B = cp_tensor(lambda(N), u);

Fig. 6.2. MATLAB code for our implementation of the higher-order power method.
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T = tensor(rand(3,4,2))

T is a tensor of size 3 x 4 x 2

T.data =

(:,:,1) =

0.8030 0.9159 0.8735 0.4222

0.0839 0.6020 0.5134 0.9614

0.9455 0.2536 0.7327 0.0721

(:,:,2) =

0.5534 0.3358 0.3567 0.5625

0.2920 0.6802 0.4983 0.6166

0.8580 0.0534 0.4344 0.1133

norm(T)

ans =

2.9089

T1 = hopm(T)

T1 is a CP tensor of size 3 x 4 x 2

T1.lambda =

2.6206

T1.U{1} =

-0.6717

-0.5446

-0.5023

T1.U{2} =

0.5431

0.4700

0.5444

0.4333

T1.U{3} =

-0.8075

-0.5899

T1f = full(T1)

T1f is a tensor of size 3 x 4 x 2

T1f.data =

(:,:,1) =

0.7719 0.6680 0.7738 0.6159

0.6258 0.5416 0.6274 0.4993

0.5772 0.4996 0.5787 0.4606

(:,:,2) =

0.5639 0.4880 0.5653 0.4499

0.4572 0.3956 0.4583 0.3647

0.4217 0.3649 0.4227 0.3364

norm(T1f)

ans =

2.6206

Fig. 6.3. Example of the higher-order power method.
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Higher-Order Orthogonal Iteration

In: A of size I1 × I2 × . . .× IN and desired rank of
output.

Out: B of size I1 × I2 × . . .× IN , an estimate of the best
rank-(R1, R2, . . . , RN ) approximation of A.

1. Compute initial values: Let U
(n)
0 ∈ RIn×Rn be

an orthonormal basis for the dominant
Rn-dimensional left singular subspace of A(n) for
n = 2, . . . , n.

2. For k = 1, 2, . . . (until converged), do:

For n = 1, . . . , N , do:

Ũ = A×−n {UT
k }

Let W of size In ×Rn solve:

max
∥∥∥ Ũ ×n WT

∥∥∥ subject to WT W = I.

U
(n)
k+1 = W.

3. Let {U} = {UK} where K is the index of the
final result of the iterations.

4. Set λ = A× {UT }.
5. Set B = λ× {U}.

Fig. 6.4. Higher-order orthogonal iteration algorithm of [1] using the proposed notation. In
this illustration, subscripts denote iteration number.
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function B = hooi(A,R,kmax)

A = tensor(A);

N = order(A);

% Default value

if ~exist(’kmax’,’var’)

kmax = 5;

end

% Compute an orthonormal basis for the dominant

% Rn-dimensional left singular subspace of

% A_(n) (1 <= n <= N). We store its transpose.

for n = 1:N

[U, S, V] = svds(matricize(A,n), R(n));

Ut{n} = U’;

end

% Iterate until convergence

for k = 1:kmax

for n = 1:N

Utilde = product(A, Ut, -n, ’mat’);

% Maximize norm(Utilde x_n W’) wrt W and

% keeping orthonormality of W

[W,S,V] = svds(matricize(Utilde, n), R(n));

Ut{n} = W’;

end

end

% Create the core array

lambda = product(A, Ut, ’mat’);

% Create cell array containing U from the cell

% array containing its transpose

for n = 1:N

U{n} = Ut{n}’;

end

% Assemble the resulting tensor

B = tucker_tensor(lambda, U);

Fig. 6.5. MATLAB code for our implementation of the higher-order orthogonal iteration method.
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T2 = hooi(T,[1 1 1])

T2 is a Tucker tensor of size 3 x 4 x 2

T2.lambda =

Tensor of size 1 x 1 x 1

data =

2.6206

T2.U{1} =

0.6717

0.5446

0.5023

T2.U{2} =

-0.5431

-0.4700

-0.5444

-0.4333

T2.U{3} =

-0.8075

-0.5899

T2f = full(T2)

T2f is a tensor of size 3 x 4 x 2

T2f.data =

(:,:,1) =

0.7719 0.6680 0.7738 0.6159

0.6258 0.5416 0.6274 0.4993

0.5772 0.4996 0.5787 0.4606

(:,:,2) =

0.5639 0.4880 0.5653 0.4499

0.4572 0.3956 0.4583 0.3647

0.4217 0.3649 0.4227 0.3364

norm(T2f)

ans =

2.6206

Fig. 6.6. Example of the higher-order orthogonal iteration for computing the best rank-(1,1,1)
tensor.
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T3 = hooi(T,[2 2 1])

T3 is a Tucker tensor of size 3 x 4 x 2

T3.lambda =

Tensor of size 2 x 2 x 1

data =

-2.6206 0.0000

-0.0000 -1.1233

T3.U{1} =

0.6718 -0.0186

0.5445 0.6903

0.5023 -0.7233

T3.U{2} =

0.5430 -0.6862

0.4701 0.3773

0.5445 -0.1259

0.4332 0.6090

T3.U{3} =

-0.8083

-0.5888

T3f = full(T3)

T3f is a tensor of size 3 x 4 x 2

T3f.data =

(:,:,1) =

0.7843 0.6625 0.7769 0.6061

0.1962 0.7786 0.5491 0.8813

1.0284 0.2523 0.6620 0.0610

(:,:,2) =

0.5713 0.4826 0.5659 0.4415

0.1429 0.5671 0.3999 0.6419

0.7491 0.1838 0.4822 0.0444

norm(T3f)

ans =

2.8512

Fig. 6.7. Example of the higher-order orthogonal iteration for computing the best rank-(2,2,1)
tensor.
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T4 = hooi(T,[3 4 2])

T4 is a Tucker tensor of size 3 x 4 x 2

T4.lambda =

Tensor of size 3 x 4 x 2

data =

(:,:,1) =

2.6201 -0.0075 -0.0338 -0.0029

-0.0176 1.1198 -0.0118 -0.0006

0.0142 0.0854 -0.1634 -0.1214

(:,:,2) =

-0.0126 -0.0529 0.2446 -0.1165

0.1747 0.0187 0.2369 0.0055

-0.2249 -0.1523 -0.2324 -0.0311

T4.U{1} =

0.6774 0.0720 -0.7321

0.5344 -0.7321 0.4224

0.5055 0.6774 0.5343

T4.U{2} =

0.5442 0.6798 -0.2895 0.3974

0.4774 -0.3606 0.6648 0.4474

0.5474 0.1200 0.2110 -0.8009

0.4200 -0.6272 -0.6556 0.0203

T4.U{3} =

0.8117 0.5841

0.5841 -0.8117

T4f = full(T4)

T4f is a tensor of size 3 x 4 x 2

T4f.data =

(:,:,1) =

0.8030 0.9159 0.8735 0.4222

0.0839 0.6020 0.5134 0.9614

0.9455 0.2536 0.7327 0.0721

(:,:,2) =

0.5534 0.3358 0.3567 0.5625

0.2920 0.6802 0.4983 0.6166

0.8580 0.0534 0.4344 0.1133

norm(T4f)

ans =

2.9089

Fig. 6.8. Example of the higher-order orthogonal iteration for computing the best rank-(3,4,2)
tensor.
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