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ABSTRACT
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function C = and(A,B)
%TENSOR/AND Logical AND.
%
%   A & B is a tensor whose elements are 1’s where both A and B
%   have non−zero elements, and 0’s where either has a zero element.
%   A and B must have the same dimensions unless one is a scalar.
% 
%   C = AND(A,B) is called for the syntax ’A & B’ when A or B is a
%   tensor.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

A = tensor(A);
B = tensor(B);

if ~( issamesize(A,B)  |  (prod(size(A)) == 1)  |  (prod(size(B)) == 1) )
    error(’Tensor size mismatch.’)
end

C = multiarrayop(@and,A,B);

Page 1/1@tensor/and.m
function disp(t,name)
%TENSOR/DISP Command window display of a tensor.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

if ~exist(’name’,’var’)
    namedot = ’’;
    name = ’Tensor’;
else
    namedot = [name ’.’];
    name = [name ’ is a tensor’];
end

if strcmp(get(0,’FormatSpacing’),’compact’)
    skipspaces = 1;
else
    skipspaces = 0;
end

if skipspaces ~= 1
    fprintf(1,’\n’);
end

fprintf(1,’%s of size ’,name);
printsize(t.size);
fprintf(1,’\n’);

if skipspaces ~= 1
    fprintf(1,’\n’);
end

fprintf(1,’%s’,namedot);
if isempty(t.data)
    fprintf(1,’data = []\n’);
else
    fprintf(1,’data = \n’);
    disp(t.data);
end    

function printsize(sz)

for i = 1 : length(sz) − 1
    fprintf(1,’%d x ’,sz(i));
end
fprintf(1,’%d’, sz(length(sz)));

Page 1/1@tensor/disp.m

function display(t)
%TENSOR/DISPLAY Command window display of a tensor.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

disp(t,inputname(1));

Page 1/1@tensor/display.m
function a = double(t)
%TENSOR/DOUBLE Convert tensor to double array.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

a = t.data;
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function C = ge(A,B)
%TENSOR/GE Greater than or equal.
%
%   A >= B does element by element comparisons between A and B and
%   returns a tensor of the same size with elements set to one where
%   the relation is true and elements set to zero where it is not.  A
%   and B must have the same dimensions unless one is a scalar. A
%   scalar can be compared with anything.
% 
%   C = GE(A,B) is called for the syntax ’A >= B’ when A or B is a
%   tensor.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

A = tensor(A);
B = tensor(B);

if ~( issamesize(A,B)  |  (prod(size(A)) == 1)  |  (prod(size(B)) == 1) )
    error(’Tensor size mismatch.’)
end

C = multiarrayop(@ge,A,B);

Page 1/1@tensor/ge.m
function C = gt(A,B)
%TENSOR/GT Greater than.
%
%   A > B does element by element comparisons between A and B
%   and returns a tensor of the same size with elements set to one
%   where the relation is true and elements set to zero where it is
%   not.  A and B must have the same dimensions unless one is a
%   scalar. A scalar can be compared with anything.
% 
%   C = GT(A,B) is called for the syntax ’A > B’ when A or B is a
%   tensor.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

A = tensor(A);
B = tensor(B);

if ~( issamesize(A,B)  |  (prod(size(A)) == 1)  |  (prod(size(B)) == 1) )
    error(’Tensor size mismatch.’)
end

C = multiarrayop(@gt,A,B);

Page 1/1@tensor/gt.m

function b = issamesize(A,B)
%TENSOR/ISSAMESIZE
%
%   ISSAMESIZE(A,B) returns true if tensors A and B are the same size.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

if ((ndims(A) == ndims(B)) & (size(A) == size(B))) 
    b = true;
else
    b = false;
end

Page 1/1@tensor/issamesize.m
function C = ldivide(A,B)
%TENSOR/LDIVIDE Left array divide.
%
%   A.\B denotes element−by−element division.  A and B
%   must have the same dimensions unless one is a scalar.
%   A scalar can be divided with anything.
% 
%   C = LDIVIDE(A,B) is called for the syntax ’A .\ B’ when A or B is
%   a tensor.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

A = tensor(A);
B = tensor(B);

if ~( issamesize(A,B)  |  (prod(size(A)) == 1)  |  (prod(size(B)) == 1) )
    error(’Tensor size mismatch.’)
end

% if (istensor(A,’CP’) & istensor(B,’CP’))    
%     C = tensor(A);
%     C.lambda = [B.lambda; B.lambda];    
%     M = order(A);
%     for m = 1 : M
%         C.data{m} = [A.data{m} B.data{m}];
%     end    
%     return;
% end

C = multiarrayop(@ldivide,A,B);

Page 1/1@tensor/ldivide.m
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function C = le(A,B)
%TENSOR/LT Less than or equal.
%
%   A <= B does element by element comparisons between A and B
%   and returns a tensor of the same size with elements set to one
%   where the relation is true and elements set to zero where it is
%   not.  A and B must have the same dimensions unless one is a
%   scalar. A scalar can be compared with anything.
% 
%   C = LE(A,B) is called for the syntax ’A <= B’ when A or B is a
%   tensor.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

A = tensor(A);
B = tensor(B);

if ~( issamesize(A,B)  |  (prod(size(A)) == 1)  |  (prod(size(B)) == 1) )
    error(’Tensor size mismatch.’)
end

C = multiarrayop(@le,A,B);

Page 1/1@tensor/le.m
function C = lt(A,B)
%TENSOR/LT Less than.
%
%   A < B does element by element comparisons between A and B
%   and returns a tensor of the same size with elements set to one
%   where the relation is true and elements set to zero where it is
%   not.  A and B must have the same dimensions unless one is a
%   scalar. A scalar can be compared with anything.
% 
%   C = LT(A,B) is called for the syntax ’A < B’ when A or B is a
%   tensor.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

A = tensor(A);
B = tensor(B);

if ~( issamesize(A,B)  |  (prod(size(A)) == 1)  |  (prod(size(B)) == 1) )
    error(’Tensor size mismatch.’)
end

C = multiarrayop(@lt,A,B);

Page 1/1@tensor/lt.m

function A = matricize(T,idx,version)
%TENSOR/MATRICIZE
%
%   MATRICIZE(T,I) or MATRICIZE(T,I,’DDV’) matricizes (or "unfolds") a
%   tensor according to Definition 1 in L. De Lathauwer, B. De Moor
%   and J. Vandewalle, SIMAX 21(4):1253−1278.
%
%   MATRICIZE(T,I,’Kiers’) matricizes (or "unfolds") a tensor
%   according to H.A.L. Kiers, J. Chemometrics 2000; 14"105−122. 
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

% Note that the numerical version specification is essentially a
% "hidden" option. Options 1−3 are versions of DDV, in increasingly
% level of nifty−ness. Option 4 is Kiers.

if (idx > order(T))
  error(’Invalid index’);
end

if ~exist(’version’,’var’)
    version = 3;
end

if isa(version,’char’)
    if strcmp(version,’DDV’)

version = 3;
    elseif strcmp(version,’Kiers’)

version = 4;
    else

error(’Invalid 3rd argument’);
    end
end

if (version == 1)
  A = matricize_version1(T,idx);
elseif (version == 2)
  A = matricize_version2(T,idx);
elseif (version == 3)
  A = matricize_version3(T,idx);
elseif (version == 4)
  A = matricize_kiers(T,idx);
else
  error(’Invalid version’);
end

Page 1/1@tensor/matricize.m
function A = matricize_kiers(T,idx)
%TENSOR/MATRICIZE_KIERS
%
%  MATRICIZE(T,I) matricizes (or "unfolds") a Tensor according to 
%  the definition in Kiers, J. Chemometrics, 2000(14):105−122.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

if (idx > order(T))
  error(’Invalid index’);
end

A = double(T);
I = size(T);
M = ndims(T);

A = shiftdim(A, idx − 1);

m = I(idx);
n = prod(I)/m;

A = reshape(A,m,n);
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function A = matricize_version1(T,idx)
%TENSOR/MATRICIZE_VERSION1
%
%   See MATRICIZE: This version uses the exact formula from Definition 1
%   in L. De Lathauwer, B. De Moor and J. Vandewalle, SIMAX
%   21(4):1253−1278.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

if (idx > order(T))
  error(’Invalid index’);
end

% Method 1

I = size(T);
M = ndims(T);

m = I(idx);
n = prod(I) / I(idx);
A = zeros(m,n);

for imult = 1 : prod(I)
       
  tmpi = imult − 1;
  for m = 1 : M − 1
    tmpdiv = prod(I(m+1:M));
    i(m) = floor (tmpi / tmpdiv) + 1;
    tmpi = tmpi − (i(m) − 1) * tmpdiv;
  end
  i(M) = tmpi + 1;

  newi = i(idx);
  newj = 1;
  
  if (idx == 1)
    for m = idx + 1 : M − 1
      newj = newj + (i(m) − 1) * prod(I([m+1:M,1:idx−1]));
    end
    newj = newj + (i(M) − 1);
  else
    for m = idx + 1 : M
      newj = newj + (i(m) − 1) * prod(I([m+1:M,1:idx−1]));
    end
    for m = 1 : idx − 2
      newj = newj + (i(m) − 1) * prod(I(m+1:idx−1));
    end
    newj = newj + (i(idx−1) − 1);
  end
  

Page 1/2@tensor/matricize_version1.m
  for m = 1 : M
    if m == 1
      idxstr = int2str(i(1));
    else
      idxstr = [idxstr ’,’ int2str(i(m))];
    end
  end
  A(newi, newj) = eval([’T.data(’, idxstr, ’)’]);
  
end
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function A = matricize_version2(T,idx)
%TENSOR/MATRICIZE_VERSION2
%
%   See MATRICIZE: This version first reorders the tensor.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

if (idx > order(T))
  error(’Invalid index’);
end

% Method 2

T.data = shiftdim(T.data, idx − 1);

I = size(T);
M = ndims(T);

m = I(1);
n = prod(I(2:M));
A = zeros(m,n);

for imult = 1 : prod(I)
       
    tmpi = imult − 1;
    for m = 1 : M − 1

tmpdiv = prod(I(m+1:M));
i(m) = floor (tmpi / tmpdiv) + 1;
tmpi = tmpi − (i(m) − 1) * tmpdiv;

    end
    i(M) = tmpi + 1;
    
    newi = i(1);
    
    newj = 1;
    for m = 2 : M − 1

newj = newj + (i(m) − 1) * prod(I(m+1:M));
    end
    newj = newj + (i(M) − 1);
  
    for m = 1 : M

if m == 1
    idxstr = int2str(i(1));
else
    idxstr = [idxstr ’,’ int2str(i(m))];
end

    end
    A(newi, newj) = eval([’T.data(’, idxstr, ’)’]);
  
end
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function A = matricize_version3(T,idx)
%TENSOR/MATRICIZE_VERSION3
%
%   See MATRICIZE: This version is the simplest.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

if (idx > order(T))
  error(’Invalid index’);
end

if (order(T) == 1)
    return;
end

A = double(T);
I = size(T);
M = ndims(A);

A = shiftdim(A, idx − 1);
A = permute(A, [1,M:−1:2]);

m = I(idx);
n = prod(I)/m;

A = reshape(A,m,n);
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function C = minus(A,B)
%TENSOR/MINUS Binary subtraction for tensors.
%
%   MINUS(A,B) subtracts tensor B from A.  A and B must have the same
%   dimensions unless one is a scalar.  A scalar can be subtracted
%   from anything.  
% 
%   C = MINUS(A,B) is called for the syntax ’A − B’ when A or B is a
%   tensor.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

A = tensor(A);
B = tensor(B);
 
if ~( issamesize(A,B)  |  (prod(size(A)) == 1)  |  (prod(size(B)) == 1) )
    error(’Tensor size mismatch.’)
end

C = multiarrayop(@minus,A,B);

Page 1/1@tensor/minus.m
function C = mtimes(A,B)
%TENSOR/MTIMES Implement A*B for tensors.
%
%   MTIMES(A,B) is the product of A and B.  Any scalar may multiply 
%   a tensor.  Otherwise, the last dimension of A must equal the 
%   first dimension of B.
% 
%   C = MTIMES(A,B) is called for the syntax ’A * B’ when A or B is a
%   tensor.
% 
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

A = tensor(A);
B = tensor(B);

if (prod(size(B)) == 1) 
    C = tensor(A.data * B.data, size(A));    
    return;
elseif (prod(size(A)) == 1)
    C = tensor(A.data * B.data, size(B));    
    return;
end

dimA = size(A);
dimB = size(B);

if ( dimA(length(dimA)) ~= dimB(1) )
  error(’tensor dimensions must agree.’);
end

C = product(A,B,order(A),1);
        
%error(’TENSOR/MTIMES not fully implemented’);

Page 1/1@tensor/mtimes.m

function C = multiarrayop(fname,A,B)
%TENSOR/MULTIARRAYOP Generic functions for tensors. 
%
%   MULTIARRAYOP(F,A,B) applies the function specified by a function 
%   handle or function name, F, to the given tensor arguments, A and 
%   B.  For example, if F = @plus, then MULTIARRAYOP(F,A,B) adds 
%   the multidimensional array data of A and B.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

if prod(size(A)) == 1
    sz = size(B);
else
    sz = size(A);
end

C = feval(fname, A.data, B.data);
C = tensor(C, sz);
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function n = ndims(t)
%TENSOR/NDIMS Return the number of dimensions 
%
%   NDIMS(T) returns the number of dimensions of tensor T.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

n = order(t);
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function n = norm(T)
%Frobenius norm of a tensor.
%
%   NORM(T) returns the Frobenius norm of a tensor.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

T = T.^2;
T.data = reshape(T.data,1,prod(size(T)));
n = sqrt(sum(T.data));
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function B = not(A)
%TENSOR/NOT Logical NOT.
%
%   ~A is a tensor whose elements are 1’s where A has zero
%   elements, and 0’s where A has non−zero elements.
% 
%   B = NOT(A) is called for the syntax ’~A’ when A is a tensor.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

B = feval(@not, A.data);
B = tensor(B, size(A));
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function C = or(A,B)
%TENSOR/OR Logical OR.
%
%   A | B is a matrix whose elements are 1’s where either A or B
%   has a non−zero element, and 0’s where both have zero elements.
%   A and B must have the same dimensions unless one is a scalar.
% 
%   C = OR(A,B) is called for the syntax ’A | B’ when A or B is a
%   tensor.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

A = tensor(A);
B = tensor(B);

if ~( issamesize(A,B)  |  (prod(size(A)) == 1)  |  (prod(size(B)) == 1) )
    error(’Tensor size mismatch.’)
end

C = multiarrayop(@or,A,B);
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function n = order(t)
%TENSOR/ORDER Return the number of dimensions 
%
%   ORDER(T) returns the number of dimensions of tensor T.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

n = length(t.size);
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function T = permute(T,Idx)
%TENSOR/PERMUTE Permute tensor dimensions
%
%   B = PERMUTE(A,ORDER) rearranges the dimensions of A so that they
%   are in the order specified by the vector ORDER. The tensor
%   produced has the same values of A but the order of the subscripts
%   needed to access any particular element are rearranged as
%   specified by ORDER.  
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

if length(Idx) == 1

    if (Idx == 1)
return;

    else
error(’Invalid Order’);

    end

end

T.data = permute(T.data,Idx);
T.size = T.size(Idx);
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function C = plus(A,B)
%TENSOR/PLUS Binary addition for tensors. 
%
%   PLUS(A,B) adds tensors A and B.  A and B must have the same
%   dimensions unless one is a scalar (a 1−by−1 matrix).
%   A scalar can be added to anything.  
% 
%   C = PLUS(A,B) is called for the syntax ’A + B’ when A or B is a
%   tensor.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

A = tensor(A);
B = tensor(B);

if ~( issamesize(A,B)  |  (prod(size(A)) == 1)  |  (prod(size(B)) == 1) )
    error(’Tensor size mismatch.’)
end

C = multiarrayop(@plus,A,B);
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function C = power(A,B)
%TENSOR/POWER
% 
%   Z = X.^Y denotes element−by−element powers.  X and Y
%   must have the same dimensions unless one is a scalar. 
%   A scalar can operate into anything.
% 
%   C = POWER(A,B) is called for the syntax ’A .^ B’ when A or B is a
%   tensor.
% 
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

A = tensor(A);
B = tensor(B);
 
if ~( issamesize(A,B)  |  (prod(size(A)) == 1)  |  (prod(size(B)) == 1) )
    error(’Tensor size mismatch.’)
end

C = multiarrayop(@power,A,B);
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function C = product(varargin)
% TENSOR/PRODUCT Tensor Multiplication.
% 
%   PRODUCT(A,B) computes the scalar product of tensors A and B; A and
%   B must have the same size.
%
%   PRODUCT(A,B,ADIMS,BDIMS) computes the product of tensors A and B
%   in the dimensions specified by the row vectors ADIMS and BDIMS.
%   The result is a tensor of size equal to [size(A) size(B)] minus
%   the respective dimensions in ADIMS and BDIMS.
%
%   C = PRODUCT(A,B,N) computes the product of tensor A with a matrix
%   B; i.e., A x_N B. The integer N specifies the dimension in A along
%   which B should be multiplied. If size(B) = [J,I], then A must have
%   size(A,M) = I. The result will be the same order and size as A
%   except that size(C,M) = J.
%
%   C = PRODUCT(A,B,N,’vec’) computes the product of a tensor A with a
%   vector B; i.e., A x_N B. The integer M specifies the dimension in
%   A along which B should be multiplied. If size(B) = [I,1], then A
%   must have size(A,N) = I. The result will be of order one less than
%   A because the N−th dimension removed. Note that the flag ’vec’
%   must be specified to indicate that B is an N−vector.
%
%   PRODUCT(A,U) computes the product of a tensor A and a cell
%   array U; i.e., A x_1 U{1} x_2 U{2} ... x_N U{N}. If the tensor
%   A is of size I1 x I2 x ... x IN, then the n−th cell of U is a
%   matrix of size Jn x In. The result is a tensor of size J1 x J2
%   x ... x JN.
%
%   PRODUCT(A,U,’vec’) computes the product of a tensor A and a cell
%   array U; i.e., A x_1 U{1} x_2 U{2} ... x_N U{N}. If the tensor A
%   is of size I1 x I2 x ... x IN, then the n−th cell of U is a vector
%   of size In x 1. The result is a tensor of order 1 and size 1. Note
%   that the flag ’vec’ must be specified when the order of the result
%   is to be reduced.
%
%   PRODUCT(A,U,DIMS) computes the product of a tensor A and a
%   cell array U along the specified dimensions. 
%
%   Case 1: If DIMS contains positive entries, the i−th cell in array
%   U is multiplied by the dimension specified by DIMS(i). In this
%   case, it is assumed that length(U) = length(DIMS). 
%
%   Example 1: B = product(A,{X Y},[3 4]) computes B = A x_3 X x_4
%   Y.  Here A is a cell array of order at least 4, and X and Y are
%   appropriately sized matrices.
%
%   Case 2: If DIMS containts negative entries, then we compute the
%   product of A and the cell array U except in the dimensions
%   specified in DIMS.
%
%   Example 2: B = product(A, U, −3) computes B = A x_1 U{1} x_2 U{2}
%   x_4 U{4}. Here A is a 4th−order tensor, and U is a cell array with
%   4 entries.
%
%   PRODUCT(A,U,DIMS,’vec’) computes the product of a tensor A and a
%   cell array U along the specified dimensions. In other words, the
%   i−th cell in array U is multiplied by the dimension specified by
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%   DIMS(i). The result is a tensor of reduced order. Note that the
%   flag ’vec’ must be specified to indicate that U contains
%   vectors rather than matrices.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

if (nargin < 2)
    error(’product requires at least two arguments’);
end

if ~isa(varargin{1},’tensor’)
    error(’First argument must be a tensor.’);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Cell Array Multiplication
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isa(varargin{2},’cell’)
    
    A = varargin{1};
    U = varargin{2};
    
    if (nargin >= 3) & ~isa(varargin{3},’char’)

dims = varargin{3};
    else

dims = [1 : order(A)];
    end

    % Determine str argument to be passed to next product call 
    if (((nargin == 3) | (nargin == 4)) & ...

(isa(varargin{nargin},’char’)) & ...
(strcmp(varargin(nargin),’vec’)))
str = ’vec’;

    else
str = ’mat’;

    end

    % Check validity of DIMS and then check for "minus" case
    if (max(abs(dims)) > order(A))
        error(’An entry in DIMS exceeds order of A.’);
    elseif (max(dims) < 0)

dims = setdiff([1:order(A)], −dims);
    end
    
    % Check validity of parameters passed to product
    N = length(dims);
    if (N > order(A)) | (N > length(U))
        error(’DIMS is too long.’);
    elseif (N < length(U)) & (length(U) < order(A))
        error(’If length(DIMS) < length(U), then length(U) must equal order(A).’
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);
    elseif (length(U) > order(A))
        error(’Length of U greater than order of A.’);
    end

    % Reorder dims from least to greatest
    [sdims,sidx] = sort(dims);

    % Check sizes of U and DIMS to determine version to use.
    if (N == length(U))
        uidx = sidx;   % index U by sorted order 
    else 
        uidx = sdims;  % index U by (sorted) dimension 
    end

    % Calculate individual products
    C = product(A, U{uidx(N)}, sdims(N), str);
    for n = (N − 1): −1 : 1
        C = product(C, U{uidx(n)}, sdims(n), str);
    end

    return;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Otherwise, the 1st two entries are both tensors
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A = tensor(varargin{1});
B = tensor(varargin{2});
sizeA = size(A);
sizeB = size(B);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Scalar Inner Product
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (nargin == 2)
    if ~issamesize(A,B)

error(’A and B are not the same size for product(A,B)’);
    end
    n = prod(sizeA);
    A = reshape(A.data,n,1);
    B = reshape(B.data,n,1);
    C = sum(A.*B);
    return;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% More Complex Cases
% Case 1 : Inner Product 
% Case 2 : x_m Multiplication with Vector
% Case 3 : x_m Multiplication with Matrix
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if (nargin == 4) & ~isa(varargin{4},’char’)
    casetype = 1;
    Adims = varargin{3};
    Bdims = varargin{4};
elseif (nargin == 4) & isa(varargin{4},’char’) & strcmp(varargin{4},’vec’)
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    casetype = 2;
    Adims = varargin{3};
    Bdims = 1;
else
    casetype = 3;
    Adims = varargin{3};
    Bdims = 2;
end

if (casetype == 2) & ((length(sizeB) ~= 2) | (sizeB(2) ~= 1))
    error(’B is not a vector’);
end

if (casetype == 3) & (length(sizeB) ~= 2) 
    error(’B is not a matrix’);
end

if (casetype == 2) | (casetype == 3)
    if prod(size(Adims)) ~= 1

error(’M must be a scalar’);
    end
end
    
if ~issamesize(tensor(Adims),tensor(Bdims))
    error(’ADIMS and BDIMS are not the same size’);
end

for i = 1 : length(Adims)
    if (sizeA(Adims(i)) ~= sizeB(Bdims(i)))

error([’The ’ int2str(i) ’−th specified dimension does not match.’]);
    end
end

[A_New, Adims_New] = product_preprocess(A, Adims);
[B_New, Bdims_New] = product_preprocess(B, Bdims);

C = A_New’ * B_New;

Cdims = [Adims_New, Bdims_New]; 

if isempty(Cdims)
    Cdims = 1;
    MatDims = [1 1];
elseif length(Cdims) == 1 
    MatDims = [Cdims 1];
else
    MatDims = Cdims;
end
C = reshape(C, MatDims);

if (casetype == 3)
    % Calculating A x_n B. The result produced thus far has the
    % in a different shape. We need to permute it.
    N = ndims(A); 
    n = Adims;    
    Cdims_New = [1:n−1, N, n:N−1];
    C = tensor(C, [Cdims 1]);
    C = permute(C, Cdims_New);
elseif (casetype == 2)
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    % In this case, we can assume that Bdims = 1 and so B_Dims_New =
    % 1. Want to drop the last dimension, so it’s not included.
    C = tensor(C, Adims_New);
else
    C = tensor(C, Cdims);
end

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% −− Support Functions −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

function [A_New, I_New] = product_preprocess(A, A_Dims)
% Process A so that the dimensions specified by A_Dims are first
% and the tensor A is reshaped into a matrix with those dimensions
% in A_Dims corresponding to the rows of the matrix, and the
% remainder corresponding to the columns.

M = ndims(A);
I = size(A);

% if sum(~ismember(A_Dims, [1:M])) > 0
%     error(’Indices exceed number of dimensions in tensor’);
% end

M_Comp = setdiff([1:M], A_Dims);
I_Match = I(A_Dims);
I_New = I(M_Comp);

A_Permuted = permute(A, [A_Dims, M_Comp]);
A_New = reshape(A_Permuted.data, prod(I_Match), prod(I_New));
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function C = rdivide(A,B)
% TENSOR/RDIVIDE Right array divide.
%
%    A./B denotes element−by−element division.  A and B
%    must have the same dimensions unless one is a scalar.
%    A scalar can be divided with anything.
% 
%    C = RDIVIDE(A,B) is called for the syntax ’A ./ B’ when A or B is
%    a tensor.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

A = tensor(A);
B = tensor(B);

if ~( issamesize(A,B)  |  (prod(size(A)) == 1)  |  (prod(size(B)) == 1) )
    error(’Tensor size mismatch.’)
end

C = multiarrayop(@rdivide,A,B);
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function B = shiftdim(varargin)
%SHIFTDIM Shift dimensions.
%
%   B = SHIFTDIM(X,N) shifts the dimensions of X by N.  When N is
%   positive, SHIFTDIM shifts the dimensions to the left and wraps the
%   N leading dimensions to the end.  When N is negative, SHIFTDIM
%   shifts the dimensions to the right and pads with singletons.
% 
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

A = varargin{1};
n = varargin{2};

B = feval(@shiftdim, A.data, n);
B = tensor(B, size(B));

% The following functionality has not been implemented yet

%   [B,NSHIFTS] = SHIFTDIM(X) returns the array B with the same
%   number of elements as X but with any leading singleton 
%   dimensions removed. NSHIFTS returns the number of dimensions 
%   that are removed. If X is a scalar, SHIFTDIM has no effect.
% 
%   SHIFTDIM is handy for creating functions that, like SUM
%   or DIFF, work along the first non−singleton dimension.
% 
%   Examples:
%      a = rand(1,1,3,1,2);
%      [b,n]  = shiftdim(a); % b is 3−by−1−by−2 and n is 2.
%      c = shiftdim(b,−n);   % c == a.
%      d = shiftdim(a,3);    % d is 1−by−2−by−1−by−1−by−3.
% 
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function m = size(t,idx)
% TENSOR/SIZE Size of tensor.
%  
%   D = SIZE(T) returns the size of the tensor.  Trailing singleton
%   dimensions may or may not be ignored, depending on the type of
%   tensor.
%
%   I = size(T,DIM) returns the size of the dimension specified by
%   the scalar DIM.
%
%   See also ORDER, NDIMS.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

if exist(’idx’,’var’)

    m = t.size(idx);

else

    m = t.size;

end
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function B = squeeze(A)
%SQUEEZE Remove singleton dimensions.
%   B = SQUEEZE(A) returns a tensor B with the same elements as
%   A but with all the singleton dimensions removed.  A singleton
%   is a dimension such that size(A,dim)==1.  2−D tensors are
%   unaffected by squeeze so that row vectors remain rows.
%
%   For example,
%       squeeze( tensor(rand(2,1,3)) )
%   is a 2−by−3 tensor.
% 
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

B = tensor(squeeze(A.data));
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function t = subsasgn(t,s,b)
%TENSOR/SUBASGN Subscripted reference.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

switch s.type    
    case ’.’

error([’Cannot change field ’, s.subs, ’ directly’]);
    case ’()’

data = t.data;
data(s.subs{:}) = b;
t = tensor(data, t.size);

    case ’{}’      
error(’Subscript cell reference not supported for tensor’);

    otherwise
        error(’Incorrect indexing into tensor.’)
end

Page 1/1@tensor/subsasgn.m
function a = subsref(t,s)
%TENSOR/SUBSREF Subscripted reference.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

switch s.type    
    case ’.’
        switch s.subs
            case ’data’
                a = t.data;

    case ’size’
a = t.size;

            otherwise
                error([’No such field: ’, s.subs]);
        end
    case ’()’

a = t.data(s.subs{:});
if prod(size(a)) > 1
    a = tensor(a);
end

    case ’{}’
error([’Subscript cell reference cannot be used for dense tensors.’])

    otherwise
        error(’Incorrect indexing into tensor.’)
end
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function t = tensor(varargin)
% TENSOR Tensor class constructor.
% 
%   TENSOR creates an empty dense tensor object.
%
%   TENSOR(T) creates a tensor by copying the tensor T or
%   converting a CP or Tucker tensor T.
%
%   TENSOR(Z) creates a tensor from the multidimensional array Z.
%
%   TENSOR(Z,DIMS) creates a tensor from the multidimensional array
%   Z. The DIMS argument is used to specify any trialing singleton
%   dimensions.
%
%   TENSOR(A,I,DIMS,TYPE) creates a tensor by  reshaping a matrix A
%   stored as an I−mode matricization. The dimensions of the
%   resulting tensor is specified by DIMS. The TYPE specifies which
%   type of matricization is used; the choices for TYPE are:
%
%   − ’DDV’: Definition 1 in L. De Lathauwer, B. De Moor and
%     J. Vandewalle, SIMAX 21(4):1253−1278 (this is the default)
%
%   − ’Kiers’: Definition from J.A.L. Kiers, J. Chemometrics
%     2000(14):105−122 
%
%   See also TENSOR/MATRICIZE, CP_TENSOR, TUCKER_TENSOR.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

% EMPTY/DEFAULT CONSTRUCTOR
if size(varargin) == 0

    t.data = [];
    t.size = 0;
    t = class(t, ’tensor’);
    return;
    
end

% COPY CONSTRUCTOR    
if isa(varargin{1}, ’tensor’)
    
    t.data = varargin{1}.data;
    t.size = varargin{1}.size;
    t = class(t, ’tensor’);
    return;

end

% COPY CONSTRUCTOR    

Page 1/3@tensor/tensor.m
if isa(varargin{1}, ’cp_tensor’) | isa(varargin{1}, ’tucker_tensor’) 
    
    t = full(varargin{1});
    return;

end

% CONVERT A MULTIDIMENSIONAL ARRAY
if (nargin == 1) | (nargin == 2) 
    
    if ~isa(varargin{1},’numeric’) & ~isa(varargin{1},’logical’)

error(’Z must be a multidimensional array.’)
    end
    
    t.data = varargin{1};

    t.size = [];
    if nargin == 1

t.size = size(t.data);
    else

t.size = varargin{2};

if (length(t.size) > 2) & (size(t.size,1) ~= 1)
    error(’DIMS must be a row vector’);
end

% −− Error Check −−
% First, check that the matching dimensions do indeed math
sz = size(t.data);
j = min( [length(sz),length(t.size)] );
for i = 1 : j
    if (sz(i) ~= t.size(i))

error(’Specified size is incorrect’);
    end
end

% Second, check that the remaining dimensions are okay
for i = j + 1 : length(sz)
    if (sz(i) ~= 1)

error(’Specified size is incorrect’);
    end
end

for i = j + 1 : length(t.size)
    if (t.size(i) ~= 1)

error(’Specified size is incorrect’);
    end
end

    end
    
    t = class(t, ’tensor’);
    return;
end

% REVERSE MATRICIZE
if nargin == 4
    
    if (strcmp(varargin{4},’Kiers’))
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t = tensorize_kiers(varargin{1}, varargin{2}, varargin{3});
    elseif (strcmp(varargin{4},’DDV’))

t = tensorize_ddv(varargin{1}, varargin{2}, varargin{3});
    else

error(’Invalid type in argument 4 of tensor constructor’);
    end

end

t = class(t, ’tensor’);
return;

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% −− Support Functions −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

function [t] = tensorize_ddv(A, i, dims)

if (prod(dims) ~= prod(size(A)))
  error(’Invalid dimensions’);
end

M = length(dims);
indx = circshift([1:M], −[0 i−1]);
indx2 = [indx(1) indx(M:−1:2)];
T = reshape(A, dims(indx2));
T = permute(T, indx2);

t.data = T;
t.size = dims;

%%%%%

function [t] = tensorize_kiers(A, i, dims)

if (prod(dims) ~= prod(size(A)))
  error(’Invalid dimensions’);
end

M = length(dims);
indx = circshift([1:M], −[0 i−1]);
T = reshape(A, dims(indx));
T = shiftdim(T, mod(M−i+1, M));

t.data = T;
t.size = dims;

Page 3/3@tensor/tensor.m
function C = times(A,B)
% TENSOR/TIMES Element−wise multiplication for tensors.
%
%    TIMES(A,B) denotes element−by−element multiplication.  A and B
%    must have the same dimensions unless one is a scalar.
%    A scalar can be multiplied into anything.
% 
%    C = TIMES(A,B) is called for the syntax ’A .* B’ when A or B is
%    a tensor.
% 
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

A = tensor(A);
B = tensor(B);
 
if (prod(size(A)) == 1) | (prod(size(B)) == 1)
    C = tensor(A.data * B.data);
    return;
end

if ~issamesize(A,B)
  error(’Tensor order and size must agree.’);
end

C = A.data .* B.data;
C = tensor(C, size(A));

Page 1/1@tensor/times.m

function t = uminus(t)
%TENSOR/UMINUS Unary minus for tensors.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

t.data = −t.data;

Page 1/1@tensor/uminus.m
function t = uplus(t)
%TENSOR/UPLUS Unary plus for tensors.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

% This function does nothing!
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function C = xor(A,B)
%TENSOR/XOR Logical EXCLUSIVE OR.
%
%   XOR(A,B) is the logical symmetric difference of elements A and B.
%   The result is one where either A or B, but not both, is nonzero.
%   The result is zero where A and B are both zero or nonzero.  A and
%   B must have the same dimensions (or one can be a scalar).
% 
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

A = tensor(A);
B = tensor(B);

if ~( issamesize(A,B)  |  (prod(size(A)) == 1)  |  (prod(size(B)) == 1) )
    error(’Tensor size mismatch.’)
end

C = multiarrayop(@xor,A,B);

Page 1/1@tensor/xor.m
function C = and(A,B)
%CP_TENSOR/AND Logical AND.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use and(full(A),full(B))’);

Page 1/1@cp_tensor/and.m

function t = cp_tensor(varargin)
%CP_TENSOR Tensor stored in CANDECOMP/PARAFAC form.
%
%   CP_TENSOR(T) creates a CP tensor by copying an existing CP tensor.
%
%   CP_TENSOR(lambda,U1,U2,...,UM) creates a CP tensor from its
%   constituent parts. Here lambda is a k−vector and each Um is a
%   matrix with k columns.
%
%   CP_TENSOR(lambda, U) is the same as above except that U is a
%   cell array containing matrix Um in cell m.
%
%   See also TENSOR and TUCKER_TENSOR
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

% Copy CONSTRUCTOR
if (nargin == 1) & isa(varargin{1}, ’cp_tensor’)
    t.lambda = varargin{1}.lambda;
    t.u = varargin{1}.u;
    t = class(t, ’cp_tensor’);
    return;
end

t.lambda = varargin{1};
if ~isa(t.lambda,’numeric’) | ndims(t.lambda) ~=2 | size(t.lambda,2) ~= 1
    error(’LAMBDA must be a column vector’);
end

if isa(varargin{2},’cell’)
    t.u = varargin{2};
else
    for i = 2 : nargin

t.u{i−1} = varargin{i};
    end
end

% Check that each Um is indeed a matrix
for i = 1 : length(t.u)
    if ndims(t.u{i}) ~= 2

error([’Matrix U’ int2str(i) ’ is not a matrix!’]);
    end
end

% Size error checking      
k = length(t.lambda); 
for i = 1 : length(t.u)            
    if  size(t.u{i},2) ~= k

error([’Matrix U’ int2str(i) ’ does not have ’ int2str(k) ’ columns’]);
    end

Page 1/2@cp_tensor/cp_tensor.m
end

t = class(t, ’cp_tensor’);
return;
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function disp(t)
%CP_TENSOR/DISP Command window display.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

fprintf(1,’\n’);
fprintf(1,’CP tensor of size ’);
printsize(size(t))
fprintf(1,’\n’);

disp(’ ’);
disp([’lambda = ’]);
disp(t.lambda);

for j = 1 : order(t)
    disp([’U{’, int2str(j), ’} = ’]);
    disp(t.u{j});
end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function printsize(sz)

for i = 1 : length(sz) − 1
    fprintf(1,’%d x ’,sz(i));
end
fprintf(1,’%d’, sz(length(sz)));
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function display(t)
%CP_TENSOR/DISPLAY Command window display.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

fprintf(1,’\n’);
fprintf(1,’%s is a CP tensor of size ’, inputname(1));
printsize(size(t));
fprintf(1,’\n’);

disp(’ ’);
disp([inputname(1), ’.lambda = ’]);
disp(t.lambda);

for j = 1 : order(t)
    disp([inputname(1), ’.U{’, int2str(j), ’} = ’]);
    disp(t.u{j});
end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function printsize(sz)

for i = 1 : length(sz) − 1
    fprintf(1,’%d x ’,sz(i));
end
fprintf(1,’%d’, sz(length(sz)));
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function a = double(t)
%CP_TENSOR/DOUBLE Convert tensor to double array.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use double(full(t))’);

Page 1/1@cp_tensor/double.m
function t = full(t)
%CP_TENSOR/FULL Convert CP tensor to a dense tensor.
%
%   FULL(T) converts CP tensor to a dense tensor.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

K = length(t.lambda);
M = order(t);
I = size(t);

for k = 1 : K           

    % Add in rank−1 matrix corresponding to
    % lambda(k)

    tmp = 1;
    for m = 1 : M

tmp = tmp * t.u{m}(:,k)’;
tmp = reshape(tmp, prod(I(1:m)), 1);

    end

    if length(I) == 1
tmpI = [I 1];

    else
tmpI = I;

    end
    tmp = reshape(tmp, tmpI);

    if k == 1
a = t.lambda(k) * tmp;

    else
a = a + t.lambda(k) * tmp;

    end            
end

t = tensor(a, I);

return;
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function C = ge(A,B)
%CP_TENSOR/GE Greater than or equal.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use ge(full(A),full(B))’);

Page 1/1@cp_tensor/ge.m
function C = gt(A,B)
%CP_TENSOR/GT Greater than.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use gt(full(A),full(B))’);
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function b = issamesize(A,B)
%CP_TENSOR/ISSAMESIZE
%
%   ISSAMESIZE(A,B) returns true if tensors A and B are the same size.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

if ((ndims(A) == ndims(B)) & (size(A) == size(B))) 
    b = true;
else
    b = false;
end
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function C = ldivide(A,B)
%CP_TENSOR/LDIVIDE Left array divide.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use and(ldivide(A),full(B))’);

Page 1/1@cp_tensor/ldivide.m

MATLAB Tensor Classes by B. W. Bader and T. G. Kolda

14/28 Thursday July 08, 2004



function C = le(A,B)
%CP_TENSOR/LT Less than or equal.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use and(le(A),full(B))’);
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function C = lt(A,B)
%CP_TENSOR/LT Less than.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use and(lt(A),full(B))’);

Page 1/1@cp_tensor/lt.m

function A = matricize(T,idx,version)
%CP_TENSOR/MATRICIZE
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use matricize(full(A),idx,type)’);

Page 1/1@cp_tensor/matricize.m
function C = minus(A,B)
%CP_TENSOR/MINUS Binary subtraction.
%
%    MINUS(A,B) subtracts tensor B from A.  A and B must have the same
%    dimensions.  
% 
%    C = MINUS(A,B) is called for the syntax ’A − B’ when A or B is a
%    CP tensor.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

if (isa(A,’cp_tensor’) & isa(B,’cp_tensor’))    

    if ~( issamesize(A,B) )
error(’Tensor size mismatch.’)

    end

    lambda = [A.lambda; −B.lambda];    
    M = order(A);
    for m = 1 : M
        u{m} = [A.u{m} B.u{m}];
    end 
    C = cp_tensor(lambda,u);
    return;
end

error(’Use minus(full(A),full(B))’);
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function C = mtimes(A,B)
%CP_TENSOR/MTIMES Implement A*B.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

% Note: We can do scalar times a tensor, but anything more complex is
% an error.

if isa(B,’numeric’) & size(B) == [1 1]
    C = cp_tensor(B * A.lambda, A.u);
elseif isa(A,’numeric’) & size(A) == [1 1]
    C = cp_tensor(A * B.lambda, B.u);
else
    error(’Use mtimes(full(A),full(B))’);
end

Page 1/1@cp_tensor/mtimes.m
function n = ndims(t)
%CP_TENSOR/NDIMS Return the number of dimensions 
%
%   NDIMS(T) returns the number of dimensions of tensor T.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

n = order(t);

Page 1/1@cp_tensor/ndims.m

function n = norm(T)
%CP_TENSOR/NORM Frobenius norm.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use norm(full(A))’);

Page 1/1@cp_tensor/norm.m
function B = not(A)
%CP_TENSOR/NOT Logical NOT.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use not(full(A))’);

Page 1/1@cp_tensor/not.m
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function C = or(A,B)
%CP_TENSOR/OR Logical OR.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use or(full(A),full(B))’);

Page 1/1@cp_tensor/or.m
function n = order(t)
%CP_TENSOR/ORDER Return the number of dimensions 
%
%   ORDER(T) returns the number of dimensions of tensor T.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

n = length(t.u);

Page 1/1@cp_tensor/order.m

function b = permute(a,order)
%CP_TENSOR/PERMUTE Permute dimensions.
%
%    B = PERMUTE(A,ORDER) rearranges the dimensions of A so that they
%    are in the order specified by the vector ORDER. The tensor
%    produced has the same values of A but the order of the subscripts
%    needed to access any particular element are rearranged as
%    specified by ORDER.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

lambda = a.lambda(order);

for i = 1 : length(order)
    u{i} = a.u{order(i)};
end

b = cp_tensor(lambda, u);

Page 1/1@cp_tensor/permute.m
function C = plus(A,B)
%CP_TENSOR/PLUS Binary addition.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

if (isa(A,’cp_tensor’) & isa(B,’cp_tensor’))    

    if ~( issamesize(A,B) )
error(’Tensor size mismatch.’)

    end

    lambda = [A.lambda; B.lambda];    
    M = order(A);
    for m = 1 : M
        u{m} = [A.u{m} B.u{m}];
    end 
    C = cp_tensor(lambda, u);
    return;
end

error(’Use plus(full(A),full(B))’);

Page 1/1@cp_tensor/plus.m
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function C = power(A,B)
%TENSOR/POWER
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use power(full(A),full(B))’);

Page 1/1@cp_tensor/power.m
function C = product(varargin)
%CP_TENSOR/PRODUCT Tensor Multiplication.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use product(full(C),...)’);

Page 1/1@cp_tensor/product.m

function C = rdivide(A,B)
%TENSOR/RDIVIDE Right array divide.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use rdivide(full(A),full(B))’);

Page 1/1@cp_tensor/rdivide.m
function m = size(t,idx)
%CP_TENSOR/SIZE Size of tensor.
%  
%   D = SIZE(T) returns the size of the tensor. 
%
%   I = size(T,DIM) returns the size of the dimension specified by
%   the scalar DIM.
%
%   See also ORDER, NDIMS.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

if exist(’idx’,’var’)

    m = size(t.u(idx), 1);

else

    for i = 1 : order(t)
m(i) = size(t.u{i}, 1);

    end

end

Page 1/1@cp_tensor/size.m
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function t = subsasgn(t,s,b)
%CP_TENSOR/SUBASGN Subscripted reference.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

switch s.type    
    case ’.’
        switch s.subs
            case ’lambda’

t = cp_tensor(b, t.u);
            otherwise
                error([’Cannot change field ’, s.subs, ’ directly’]);
        end      
    case ’()’

error(’Cannot change individual entries in CP tensor’)
    case ’{}’      

u = t.u;
u{s.subs{:}} = b;
t = cp_tensor(t.lambda, u);

    otherwise
        error(’Invalid subsasgn’);
end

Page 1/1@cp_tensor/subsasgn.m
function a = subsref(t,s)
%CP_TENSOR/SUBSREF Subscripted reference.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

switch s.type    
    case ’.’
        switch s.subs
            case ’lambda’
                a = t.lambda;
            case ’u’
                a = t.u;
            otherwise
                error([’No such field: ’, s.subs]);
        end
    case ’()’

a = 0;
for k = 1 : length(t.lambda)
    b = 1;
    for i = 1 : length(s.subs)

b = b * t.u{i}(s.subs{i},k);
    end
    a  = a + t.lambda(k) * b;
end          

    case ’{}’
a = t.u{s.subs{:}};

    otherwise
        error(’Invalid subsref’);
end

Page 1/1@cp_tensor/subsref.m

function C = times(A,B)
%CP_TENSOR/TIMES Element−wise multiplication.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use times(full(A),full(B))’);

Page 1/1@cp_tensor/times.m
function t = uminus(t)
%CP_TENSOR/UMINUS Unary minus for tensors.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

t.lambda = −t.lambda;

Page 1/1@cp_tensor/uminus.m
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function t = uplus(t)
%CP_TENSOR/UPLUS Unary plus for tensors.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

% This function does nothing!

Page 1/1@cp_tensor/uplus.m
function C = xor(A,B)
%CP_TENSOR/XOR Logical EXCLUSIVE OR.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use xor(full(A),full(B))’);

Page 1/1@cp_tensor/xor.m

function C = and(A,B)
%TUCKER_TENSOR/AND Logical AND.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use and(full(A),full(B))’);

Page 1/1@tucker_tensor/and.m
function disp(t)
%TUCKER_TENSOR/DISP Command window display.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

fprintf(1,’\n’);
fprintf(1,’Tucker tensor of size ’);
printsize(size(t))
fprintf(1,’\n’);

disp(’ ’);
disp([’lambda = ’]);
disp(t.lambda);

for j = 1 : order(t)
    disp([’U{’, int2str(j), ’} = ’]);
    disp(t.u{j});
end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function printsize(sz)

for i = 1 : length(sz) − 1
    fprintf(1,’%d x ’,sz(i));
end
fprintf(1,’%d’, sz(length(sz)));

Page 1/1@tucker_tensor/disp.m
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function display(t)
%TUCKER_TENSOR/DISPLAY Command window display.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

fprintf(1,’\n’);
fprintf(1,’%s is a Tucker tensor of size ’, inputname(1));
printsize(size(t));
fprintf(1,’\n’);

disp(’ ’);
disp([inputname(1), ’.lambda = ’]);
disp(t.lambda);

for j = 1 : order(t)
    disp([inputname(1), ’.U{’, int2str(j), ’} = ’]);
    disp(t.u{j});
end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function printsize(sz)

for i = 1 : length(sz) − 1
    fprintf(1,’%d x ’,sz(i));
end
fprintf(1,’%d’, sz(length(sz)));

Page 1/1@tucker_tensor/display.m
function a = double(t)
%TUCKER_TENSOR/DOUBLE Convert tensor to double array.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use double(full(t))’);

Page 1/1@tucker_tensor/double.m

function t = full(t,version)
%TUCKER_TENSOR/FULL Convert to a dense tensor.
%
%   A = FULL(B) converts Tucker tensor B to dense tensor A.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

if ~exist(’version’,’var’)
    version = 1;
end

if version == 1
    M = order(t);
    tmp = product(t.lambda, t.u{1}, 1);
    for m = 2 : M

tmp = product(tmp, t.u{m}, m);
    end
    t = tensor(tmp, size(t));
    return;
else
    K = size(t.lambda);
    M = order(t);
    I = size(t);
    % Loop through all combinations of indices (using one loop
    % instead of M)
    for kmult = 1 : prod(K)

% Extract indices
tmpk = kmult − 1;
for m = 1 : M − 1
    tmpi = prod(I(m+1:M));
    k(m) = floor (tmpk / tmpi) + 1;
    tmpk = tmpk − (k(m) − 1) * tmpi;
end
k(M) = tmpk + 1;
% Create string containing indices
for m = 1 : M
    if m == 1

idxstr = int2str(k(1));
    else

idxstr = [idxstr ’,’ int2str(k(m))];
    end
end
% Add in rank−1 matrix corresponding to
% lambda(k1,k2,...,kM) 
tmp = 1;
for m = 1 : M
    tmp = tmp * t.u{m}(:,k(m))’;
    tmp = reshape(tmp, prod(I(1:m)), 1);
end
tmp = reshape(tmp, I);
tmpstr = [’t.lambda.u(’ idxstr ’)’];

Page 1/2@tucker_tensor/full.m
tmplambda = eval(tmpstr);
if kmult == 1
    a = tmplambda * tmp;
else
    a = a + tmplambda * tmp;
end            

    end
    t = tensor(a, size(t));
    return;
end

return;
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function C = ge(A,B)
%TUCKER_TENSOR/GE Greater than or equal.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use ge(full(A),full(B))’);

Page 1/1@tucker_tensor/ge.m
function C = gt(A,B)
%TUCKER_TENSOR/GT Greater than.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use gt(full(A),full(B))’);

Page 1/1@tucker_tensor/gt.m

function b = issamesize(A,B)
%TUCKER_TENSOR/ISSAMESIZE
%
%   ISSAMESIZE(A,B) returns true if A and B are the same size.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

if ((ndims(A) == ndims(B)) & (size(A) == size(B))) 
    b = true;
else
    b = false;
end

Page 1/1@tucker_tensor/issamesize.m
function C = ldivide(A,B)
%TUCKER_TENSOR/LDIVIDE Left array divide.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use and(ldivide(A),full(B))’);
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function C = le(A,B)
%TUCKER_TENSOR/LT Less than or equal.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use and(le(A),full(B))’);

Page 1/1@tucker_tensor/le.m
function C = lt(A,B)
%TUCKER_TENSOR/LT Less than.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use and(lt(A),full(B))’);

Page 1/1@tucker_tensor/lt.m

function A = matricize(T,idx,version)
%TUCKER_TENSOR/MATRICIZE Convert tensor to a matrix.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use matricize(full(A),idx,type)’);

Page 1/1@tucker_tensor/matricize.m
function C = minus(A,B)
%TUCKER_TENSOR/MINUS Binary subtraction.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use minus(full(A),full(B))’);

Page 1/1@tucker_tensor/minus.m
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function C = mtimes(A,B)
%TUCKER_TENSOR/MTIMES Implement A*B.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

% Note: We can do scalar times a tensor, but anything more complex is
% an error.

if isa(B,’numeric’) & size(B) == [1 1]
    C = cp_tensor(B * A.lambda, A.u);
elseif isa(A,’numeric’) & size(A) == [1 1]
    C = cp_tensor(A * B.lambda, B.u);
else
    error(’Use mtimes(full(A),full(B))’);
end

Page 1/1@tucker_tensor/mtimes.m
function n = ndims(t)
%TUCKER_TENSOR/NDIMS Return the number of dimensions.
%
%   NDIMS(T) returns the number of dimensions of tensor T.
%
%   See also ORDER.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

n = order(t);

Page 1/1@tucker_tensor/ndims.m

function n = norm(T)
%TUCKER_TENSOR/NORM Frobenius norm.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use norm(full(A))’);

Page 1/1@tucker_tensor/norm.m
function B = not(A)
%TUCKER_TENSOR/NOT Logical NOT.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use not(full(A))’);

Page 1/1@tucker_tensor/not.m
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function C = or(A,B)
%TUCKER_TENSOR/OR Logical OR.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use or(full(A),full(B))’);

Page 1/1@tucker_tensor/or.m
function n = order(t)
%TUCKER_TENSOR/ORDER Return the number of dimensions 
%
%   ORDER(T) returns the number of dimensions of tensor T.
%
%   See also NDIMS.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

n = length(t.u);

Page 1/1@tucker_tensor/order.m

function b = permute(a,order)
%TUCKER_TENSOR/PERMUTE Permute dimensions.
%
%   B = PERMUTE(A,ORDER) rearranges the dimensions of A so that they
%   are in the order specified by the vector ORDER. The tensor
%   produced has the same values of A but the order of the subscripts
%   needed to access any particular element are rearranged as
%   specified by ORDER.  
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

lambda = permute(a.lambda,order);

for i = 1 : length(order)
    u{i} = a.u{order(i)};
end

b = tucker_tensor(lambda, u);

Page 1/1@tucker_tensor/permute.m
function C = plus(A,B)
%TUCKER_TENSOR/PLUS Binary addition.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use plus(full(A),full(B))’);

Page 1/1@tucker_tensor/plus.m
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function C = power(A,B)
%TUCKER_TENSOR/POWER
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use power(full(A),full(B))’);

Page 1/1@tucker_tensor/power.m
function C = product(varargin)
%TUCKER_TENSOR/PRODUCT Tensor Multiplication.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use product(full(C),...)’);

Page 1/1@tucker_tensor/product.m

function C = rdivide(A,B)
%TUCKER_TENSOR/RDIVIDE Right array divide.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use rdivide(full(A),full(B))’);

Page 1/1@tucker_tensor/rdivide.m
function m = size(t,idx)
%TUCKER_TENSOR/SIZE Size of tensor.
%  
%   D = SIZE(T) returns the size of the tensor. 
%
%   I = size(T,DIM) returns the size of the dimension specified by
%   the scalar DIM.
%
%   See also ORDER, NDIMS.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

if exist(’idx’,’var’)

    m = size(t.u(idx), 1);

else

    for i = 1 : order(t)
m(i) = size(t.u{i}, 1);

    end

end

Page 1/1@tucker_tensor/size.m
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function t = subsasgn(t,s,b)
%TUCKER_TENSOR/SUBASGN Subscripted reference for tensor.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

switch s.type    
    case ’.’
        switch s.subs
            case ’lambda’

t = tucker_tensor(b, t.u);
            otherwise
                error([’Cannot change field ’, s.subs, ’ directly’]);
        end      
    case ’()’

error(’Cannot change individual entries in CP tensor’)
    case ’{}’      

u = t.u;
u{s.subs{:}} = b;
t = tucker_tensor(t.lambda, u);

    otherwise
        error(’Invalid subsasgn’);
end

Page 1/1@tucker_tensor/subsasgn.m
function a = subsref(t,s)
%TUCKER_TENSOR/SUBSREF Subscripted reference.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

switch s.type    
    case ’.’
        switch s.subs
            case ’lambda’
                a = t.lambda;
            case ’u’
                a = t.u;
            otherwise
                error([’No such field: ’, s.subs]);
        end
    case ’()’

error(’Subsref with () not supported for Tucker tensor’);
    case ’{}’

a = t.u{s.subs{:}};
    otherwise
        error(’Invalid subsref’);
end

Page 1/1@tucker_tensor/subsref.m

function C = times(A,B)
%TUCKER_TENSOR/TIMES Element−wise multiplication.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use times(full(A),full(B))’);

Page 1/1@tucker_tensor/times.m
function t = tucker_tensor(varargin)
%TUCKER_TENSOR Tensor stored in Tucker form.
%
%   TUCKER_TENSOR(T) creates a TUCKER tensor by copying an existing
%   TUCKER tensor.
%
%   TUCKER_TENSOR(lambda,U1,U2,...,UM) creates a TUCKER tensor from
%   its constituent parts. Here lambda is a dense tensor of size
%   K1 x K2 x ... x KM and each Um is a matrix with Km columns. 
%
%   TUCKER_TENSOR(lambda, U) is the same as above except that U is a
%   cell array containing matrix Um in cell m.
%
%   See also TENSOR and CP_TENSOR
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

% Copy CONSTRUCTOR
if (nargin == 1) & isa(varargin{1}, ’tucker_tensor’)
    t.lambda = varargin{1}.lambda;
    t.u = varargin{1}.u;
    t = class(t, ’tucker_tensor’);
    return;
end

t.lambda = varargin{1};
if ~isa(t.lambda,’tensor’)
    error(’LAMBDA must be a tensor’);
end

if isa(varargin{2},’cell’)
    t.u = varargin{2};
else
    for i = 2 : nargin

t.u{i−1} = varargin{i};
    end
end

% Check that each Um is indeed a matrix
for i = 1 : length(t.u)
    if ndims(t.u{i}) ~= 2

error([’Matrix U’ int2str(i) ’ is not a matrix!’]);
    end
end

% Size error checking      
k = size(t.lambda); 

if length(k) ~= length(t.u)
    error([’LAMBDA has order ’, int2str(length(k)), ...

   ’ but there are ’, int2str(length(t.u)), ’ matrices’]);

Page 1/2@tucker_tensor/tucker_tensor.m
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end

for i = 1 : length(t.u)            
    if  size(t.u{i},2) ~= k(i)

error([’Matrix U’ int2str(i) ’ does not have ’ int2str(k(i)) ’columns’])
;
    end
end

t = class(t, ’tucker_tensor’);
return;

Page 2/2@tucker_tensor/tucker_tensor.m
function t = uminus(t)
%TUCKER_TENSOR/UMINUS Unary minus for tensors.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

t.lambda = −t.lambda;

Page 1/1@tucker_tensor/uminus.m

function t = uplus(t)
%TUCKER_TENSOR/UPLUS Unary plus for tensors.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

% This function does nothing!

Page 1/1@tucker_tensor/uplus.m
function C = xor(A,B)
%TUCKER_TENSOR/XOR Logical EXCLUSIVE OR.
%
%Brett W. Bader and Tamara G. Kolda, Sandia National Laboratories,
%2004. Please address questions or comments to: tgkolda@sandia.gov.
%Terms of use: You are free to copy, distribute, display, and use this
%work, under the following conditions. (1) You must give the original
%authors credit. (2) You may not use or redistribute this work for
%commercial purposes. (3) You may not alter, transform, or build upon
%this work. (4) For any reuse or distribution, you must make clear to
%others the license terms of this work. (5) Any of these conditions
%can be waived if you get permission from the authors.

error(’Use xor(full(A),full(B))’);
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