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Abstract 

The mathematical and physical foundations and domain of applicability of 
Sandia's GeoModel are presented along with descriptions of the source code 
and user instructions. The model is designed to be used in conventional finite 
element architectures, and (to date) it has been installed in five host codes 
without requiring customizing the model subroutines for any of these different 
installations. Although developed for application to geological materials, the 
GeoModel actually applies to a much broader class of materials, including 
rock-like engineered materials (such as concretes and ceramics) and even to 
metals when simplified parameters are used. Nonlinear elasticity is supported 
through an empirically fitted function that has been found to be well-suited to a 
wide variety of materials. Fundamentally, the GeoModel is a generalized plas- 
ticity model. As such, it includes a yield surface, but the term "yield" is gener- 
alized to include any form of inelastic material response including microcrack 
growth and pore collapse. The geomodel supports deformation-induced anisot- 
ropy in a limited capacity through kinematic hardening (in which the initially 
isotropic yield surface is permitted to translate in deviatoric stress space to 
model Bauschinger effects). Aside from kinematic hardening, however, the 
governing equations are otherwise isotropic. The GeoModel is a genuine unifi- 
cation and generalization of simpler models. The GeoModel can employ up to 
40 material input and control parameters in the rare case when all features are 
used. Simpler idealizations (such as linear elasticity, or Von Mises yield, or 
Mohr-Coulomb failure) can be replicated by simply using fewer parameters. 
For high-strain-rate applications, the GeoModel supports rate dependence 
through an overstress model. 
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Introduction 

THE SANDIA GEOMODEL 
Theory and User's Guide 

Figure 1.0. GeoModel continuous yreldsurface. (4) three-dimensional view in principal stress space with the 
high pressure "cap" shown as a wire frame, (I) the meridional "siden view (thick line) with the cap shown on the 
more compressive right-hand side of the plot using cylindrical coordinates in which i points along the compressiye 
[I l l ]  direction, and (c) the octahedral view, which comesponds to looking down the hydrostat (onto planes perpend~c- 
ular to the [I 111 direction). 

1. Introduction 

Simulating deformation and failure of natural geological materials (such as limestone, 
granite, and frozen soil) as well as rock-like engineered materials (such as concrete [46] 
and ceramics [2]) is at the core of a broad range of applications, including exploration and 
production activities for the petroleum industry, structural integrity assessment for civil 
engineering problems, and penetration resistance and debris field predictions for the 
defense community. For these materials, the common feature is the presence of microscale 
flaws such as porosity (which permits inelasticity even in purely hydrostatic loading) and 
networks of microcracks (leading to low strength in the absence of confining pressure, 
non-negligible nonlinear elasticity, rate-sensitivity, and differences in material behavior 
under triaxial extension compared to triaxial compression). 

For computational tractability, and to allow relatively straightforward model parame- 
terization using standard laboratory tests, the Sandia GeoModel [15] strikes a balance 
between first-principals micromechanics and phenomenological, homogenized, and semi- 
empirical modeling strategies. The over-arching goal is to provide a unified general-pur- 
pose constitutive model that can be used for any geological or rock-like material, that is 
predictive over a wide range of porosities and strain rates. Being a unified theory, the Geo- 
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Model can simultaneously model multiple failure mechanisms, or (by using only a small 
subset of the available parameters) it can duplicate simpler idealized yield models such as 
classic Von Mises plasticity and Mohr-Coulomb failure. Thus, exercising this model can 
require as many as 40 parameters for extremely complicated materials to only 2 or 3 
parameters for idealized simplistic materials. The model parameters are defined in the 
nomenclature table (Appendix B). Appendix A gives step-by-step instructions for using 
experimental data to assign values to the GeoModel parameters. 

GeoModel overview 
The GeoModel shares some features with earlier work by Schwer and Murry [42] in 

that a Pelessone function [34] permits dilatation and compaction strains to occur simulta- 
neously. For stress paths that result in brittle deformation, failure is associated ultimately 
with the attainment of a peak stress and work-softening deformation. Tensile or extensile - 

microcrack growth dominates the micromechanical processes that result in macroscopi- 
cally dilatant (volume increasing) strains even when all principal stresses are compressive. 
At low pressure, porous brittle materials can fail by shear localization and exhibit strain- 
softening behavior. At higher pressures, they can undergo strain-hardening deformation 
associated with macroscopically compactive volumetric strain (i.e. void collapse). Fea- 
tures and limitations of the GeoModel are summarized below. 

Features of the GeoModel 

Depending on how the model parameters are set, the GeoModel is capable of any of 
the following model features 

a Linear and nonlinear, associative or non-associative Drucker-Prager plasticity. 
m Linear and nonlinear, associative or non-associative Mohr-Coulomb plasticity. 
a Linear or nonlinear, associative or non-associative Willarn-Wade plasticity. 

* Von Mises perfect plasticity. 
Tresca perfect plasticity. 

a Sandler-Rubin two-surface cap plasticity (approximated). 
a Three-invariant, mixed hardening, continuous surface cap plasticity. 
a Linear or nonlinear shear failure with or without kinematic hardening. 

a Nonlinear compaction function (pressure-volume) with isotropic hardening. 
a Three Lode-Angle functions (i.e., non-circular or circular octahedral yield profile). 

Linear or non-linear elasticity. 
a Rate-independent or strain-rate-sensitive yield surface. 
a Flexibility that permits reducing the model (and the number of required parameters). 

to other more classical failure models. 
a Pressure and shear dependent compaction (similar to p-a models hydrostatic loading, 

but generalized to include shear effects in general loading). 
a Ubiquitous jointing (i.e., support for a network of many randomly oriented faults). 
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Limitations of the GeoModel. 

r The GeoModel version that is described in this report treats the material as initially 
isotropic. Kinematic hardening is the only mechanism for deformation-induced 
anisotropy. Enhanced versions of the GeoModel that support arbitrary anisotropic 
jointing are available but not documented here. 

* The elasticity model is hypoelastic rather than hyperelastic. 

r While the hydrostatic crush curve is quite general, only an elliptic cap function is 
available for modeling shear effects on pore collapse and other mechanisms of plastic 
volume reduction. Alternative cap models (such as the Gurson function) can be 
incorporated in future revisions if needed. 
The host code is responsible for satisfying frame indifference (by calling the 
GeoModel using conjugate reference stress and strain rate measures). 

* The GeoModel describes material response up to the onset of softening. The host 
code is responsible for handling material post-peak softening and the accompanying 
change in type of the governing equations to ensure mesh-size independence. 
The GeoModel is not extensively parameterized (or even tested) for tensile loading, 
though it is thoroughly validated in compression. 

* Compared with simple idealized models (which are well known to give unsatisfactory 
results in non-trivial structural applications), the GeoModel is computationally - - 
intensive, though less so than many other models of comparable complexity. 

* The GeoModel is limited to relatively small distortional (shape changing) strains, 
though large volume changes are permitted. Arbitrarily large rotations are permitted 
if the host code manages the reference stress and strain measures properly (see 
page 76). 

* The triaxial extension/comprcssion strength ratio is presumed constant. It does not 
vary with pressure, nor does it evolve in time. 

The GeoModel predicts observed material response, without explicitly addressing how 
the material behaves as it does. The GeoModel reflects subscale inelastic phenomena en 
ensemble by phenomenologically matching observed data to interpolation functions. Con- 
siderations guiding the structure of the GeoModel's material response functions are (1) 
consistency with microscale theory, (2) computational tractability, (3) suitability to cap- 
ture trends in characterization data, and (4) physics-based judgements about how a mate- 
rial should behave in application domains where controlled experimental data cannot be 
obtained. 

Fundamentally, the GeoModel is a generalized and unz3ed plasticity model. Here, the 
term "plasticity" is defined very broadly to include any mechanism of inelastic deforma- 
tion. Primarily, the source of inelastic deformation in geological materials (or in rock-like 
materials such as concrete and ceramics) is growth and coalescence of microcracks and 
pores. Under massive confining pressures, inelasticity could include plasticity in its tradi- 
tional dislocation sense or, more generally, might result from other microphysical mecha- 
nisms (internal locking, phase transformation, twinning, etc.). 
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The GeoModel is phenomenological and semi-empirical because the physical mecha- 
nisms of inelastic material behavior are handled in an ensemble manner, without explicitly 
partitioning and modeling each possible contributor to the inelasticity. The GeoModel 
makes no explicit reference to microscale properties such as porosity, grain size, or crack 
density. Instead, the overall combined effects of the microstructure are modeled by casting 
the macroscale theory in terms of macroscale variables that are realistic to measure in the 
laboratory. For example, inelastic compaction followed by shear-enhanced dilatation has 
long been attributed to an initial phase of void collapse followed later by microcracks 
opening in shear. The GeoModel is exceptionally capable of matching this type of 
observed compaction/dilatation data, but it does so without demanding that the user sup- 
ply information about essentially unknowable porosity or microcrack distributions within 
the material. 

Being a generalized plasticity model, the GeoModel presumes that there exists a con- 
vex contiguous "elastic domain" of stress states for which the material response can be 
construed to be elastic. The boundary of the elastic domain is called the yield surface. 
When loading is severe enough that continuing to apply elasticity theory would produce a 
stress state lying outside the yield surface, the material response will instead be inelastic 
and a different set of equations must then be solved. Aside from supporting kinematic 
hardening, the GeoModel is isotropic, which means that the criterion for the onset of plas- 
ticity depends only on the three principal values of the stress tensor, ( a l ,  02, a3 ) ,  but not 
on the principal directions. Consequently, as illustrated in Fig. 1.0 (page l), the yield sur- 
face may be visualized as a 2D surface embedded in a 3D space where the axes are the 
principal stresses. The elastic domain is the interior of this surface. The hydrostat is the 
[I1 11 direction, along which all three principal stresses are equal. Any plane that contains 
the hydrostat is called a meridional plane. Any "side view" cross-section of the yield 
surface on a meridional plane is called a rneridional profile. Any plane perpendicular to 
the hydrostat is called an octahedral plane, and any cross-section of the yield surface 
on an octahedral plane is called an octahedral profile. 

Mathematically, the yield surface may be expressed in terms of a yield function 
Ao,, a2, a3 ) .  When hardening is permitted, the yield function additionally depends on 
internal state variables that quantify the underlying microstructure (e.g. porosity). 
Points on the yield surface satisfy f = 0 and therefore, because the equation 
Ao,, a2, a3)  = 0 is phrased in terms of three independent variables, the yield surface 
may be visualized in the 3D Cartesian space, called stress space*. When the yield func- 
tion additionally depends on internal state variables, different values for the internal state 
variables result in different yield surfaces in stress space. Points within the elastic domain 
satisfy f < 0 .  Brittle materials are very weak in tension, but they can deform elastically 
under a much broader range of stress states in compression. Consequently, the elastic 
domain (and therefore its boundary, the yield surface) resides primarily in the compressive 

* Some people prefer that this be called Haigh-Westergaard space [3 11 so that the phrase "stress- 
space" may be reserved for the higher-dimensional space defined by the set of all tensors that com- 
mute with the stress tensor. 



part of stress space where all three principal stresses are negative. Thus, the typical rock 
yield surface shown in Fig. l.O(a) is actually being viewed from the compressive [ I l l ]  
direction. The "cap" part of that yield surface (shown as a wire h e  in Fig. 1.0) reflects 
the fact that, unlike solid metals, inelasticity can occur in rocks even under purely hydro- 
static compression as a consequence of void collapse. 

A yield surface is the boundary of elastically obtainable stress states, whereas a 
limit surface is the boundary of stresses that are quasi-statically obtainable by any quasi- 
static means, elastic or plastic. Points outside the limit surface can be reached only tran- 
siently in dynamic loading via viscoplastic rate dependence. Points outside a yield surface 
might be attainable through a hardening process, but points outside the limit surface are 
not attainable via any quasistatic process. Points on the limit surface defme the onset of 
material softening. Consequently, a state on the limit surface is attainable at least once, but 
might not be attainable thereafter. The GeoModel simulates material response only up to 
the limit state. The GeoModel does not simulate subsequent softening, if any, because 
softening usually induces a change in type of the partial differential equations for momen- 
tum balance, which therefore requires a response from the host code to alter its solution 
algorithm (perhaps by inserting void or by activating special elements that accommodate 
displacement discontinuities). 

isotropically hardened 

Figure 1. I .  Distinction between g yieldsurface and& limit surface. This sketch shows meridional 
profiles of an initial yield surface along with hardened yield surfaces that might evolve from the initial sur- 
face. All achievable stress states (and therefore all possible yield surfaces) are contained within the limit 
surface. Fig. LO@), for example, depicts a family of yield surfaces, all bounded by the limit surface. 

Since the GeoModel does not include post-softening stress response, the limit surface 
may be regarded as fixed - it does not evolve (i.e., move around in stress space) as a 
yield surface can. Since the limit surface contains all attainable stress states, it follows that 
the set of all possible yield surfaces is contained withim the limit surface (see Fig. 1.1). 
Plasticity induces microstructural changes that permit the yield surface to evolve through 
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time, effectively changing the initial material into a mechanically dflerent material. A 
material can have an infinite number of yield surfaces generated via various path-depen- 
dent hardening processes, but it can have only one limit surface. Limit surface character- 
ization is accomplished by performing numerous experiments all the way to the point of 
material rupture (catastrophic failure). Each such experiment can have only one peak 
stress state. Post-peak softening in a material might lead to a stress at rupture that is 
smaller than at the peak, but it is the collection ofpeak - not rupture - stress states that 
defines the limit surface. Of course, mapping out the limit surface for a given material 
requires using a new sample for every experiment, which itself introduces uncertainty 
regarding variability in material composition and microstructure. Presently, the GeoModel 
treats the limit surface (and each yield surface) as a sharp threshold boundary. Work is 
underway to allow these boundaries in stress space to be "fuzzy" to better account for nat- 
ural material variability. 

The set of all possible yield surfaces is contained within the limit surface. Porous 
materials are capable of inelastic deformation even under purely hydrostatic loading. Con- 
sequently, porous materials tend to have closed convex yield surfaces. Once all pores are 
crushed out, however, a material can withstand an unlimited amount of pressure. Thus, as 
indicated in Fig. 1 . l ,  the limit surface for any material will always be an open convex set. 

Despite being developed primarily for geological applications, the GeoModel is truly a 
unification of many classical plasticity models. For example, by using only a small subset 
of available parameters, the GeoModel can be instructed to behave precisely like a classi- 
cal hardening or non-hardening Von Mises model, in which case the yield surface 
becomes a cylinder centered about the [ I l l ]  direction. Other classical models such as 
Drucker-Prager plasticity, Tresca theory, maximum principal stress theory, and Moh-Cou- 
lomb theory are also supported in the GeoModel by using the simplified input sets sum- 
marized in Appendix B. Replicating analytical results from simplified theories is an 
important aspect of verification of the GeoModel. However, 1 1 1  use of nearly all Geo- 
Model features is often required to adequately validate the model for realistic rock-like 
materials. 

To describe in greater detail how the GeoModel supports its broad range of micro- 
mechanisms of failure in a mathematical and computational framework, Chapters 2 and 3 
first summarize our notation and outline some important concepts and conventions about 
the nature of stress. Chapter 4 describes the GeoModel theory (elasticity, yield surface def- 
inition and evolution, etc.). The computational algorithm, subroutines, and plotable output 
will be discussed in Chapter 6, followed by software quality assurance in Chapter 7. Chap- 
ters 8 and 9 summarize verification and validation tests that have been completed to date 
for a variety of materials. Model parameters (as well as descriptions of internal state vari- 
ables and other symbols used in this report) are defined in Appendix B, along with sample 
input sets for realistic and idealized materials. Instructions for determining appropriate 
model parameters from laboratory data are provided in Appendix A. 
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2. Notation 

Typesetting conventions 

Throughout this report, blue variables are user input parameters and green vari- 
ables are internal state variables available for plotting in the numerical implementation. 
At the discretion of the host code in which the GeoModel is run, several other field vari- 
ables (e.g., stress) may be additionally available for plotting. 

Vector and tensor equations will be presented using indicia1 Cartesian notation in 
which repeated indices within a term are understood to be summed from 1 to 3 while non- 
repeated indices are free and take values 1 through 3. Upon occasion, vectors and tensors 
will be written in symbolic or "direct" notation in which the number of "tildes" beneath a 
symbol equals the tensorial order of that variable. For example, s , c ,  and T would denote - 
a scalar, a vector, and a tensor, respectively. 

Vector and Tensor notation 

For this report, the following standard operations and definitions from vector and ten- 
sor analysis will be employed: 

- Dot product between two vectors: g y = u l v l  + u2v2 + u3v3 - u p k .  

Dot product between a tensor and a vector: y = 4 x means y i  = A i f l k .  

Dot product between a tensor and a tensor: = 4 a means C,; = AikBkJ . (2.3)  

1 if i=j 
Kronecker delta: 4, = 

0 if i + j  

Identity tensor: is the tensor whose i j  components are 4, and whose 

component matrix is therefore the 3 x 3 identity matrix. (2.5) 

Inner product between two tensors: d:$ = AijBi i .  

Magnitude of a vector: 1 1 = fik = F2. 
k =  1 

Magnitude of a tensor: = mj = 15. 



Trace of a tensor 4 : trd = A, ,  +AZz+A3, = A,. (2.9) 

Deviatoric part of a tensor: qdev = 4 - f (tr,4)Z, or A? = At, - ~ A ~ ~ s ~ .  (2 10) 

First invariant (trace) of a tensor 4 : If = trd = A kk. (2 11) 

Second invariant of a tensor 4 : Ji = $ r [ ( p v ) 2 ] .  (2 12) 

Third invariant of a tensor 4 : Jjl = $ r [ ( q d e ~ ) ~ ] .  (2 13) 

Throughout this report, invariants of the stress tensor o will be written without the super- - 
script identifier. For example, J2 means the same thing as J;. The GeoModel supports 

kinematic hardening in which the shifted stress tensor 5 is defmed 5 = 2- %, 
w .I 

where a is the backstress tensor (defined later). The invariants I,, J2, J3 in the non-hard- 

ening theory will become Z{,J$, J$ when kinematic hardening is used. 

In materials modeling, tensors are often regarded as higher-dimensional vectors. The 

inner product between two tensors, 4 and t , is isomorphic to (i.e., geometrically analo- 

gous to) the dot product between two vectors. This permits the "magnitude" of a tensor, 

the "direction" of a tensor, and the "angle" between two tensors to be defmed in manners 

analogous to ordinary vector definitions. The d ic t ion  of a tensor plays a role in the Geo- 

Model by defming the outward normal to the yield surface (which is actually a hyper-sur- 

face in higher-dimensional tensor space). Likewise, the angle between two tensors is used 

to quantify the concept of non-normality, discussed later. 

The derivatives of a scalar-valued function f that depends on a second-order tensor (I 
as well as depending on a scalar K are given by 

d o  
x 2 is a second-order tensor with i j  components . - doi, 

3 is a scalar. 
d~ 

Other derivatives are defined similarly. For example, the derivative of a second-order ten- 

sor 4 with respect to a another second-order tensor t is a fourth-order tensor with ijkl 

components dAl,/dBkl. Fourth-order tensors do not play a significant role in the Geo- 

Model theory. The only truly important fourth-order tensor is the plastic tangent stiffness 

tensor, formally equal to the derivative of the stress rate with respect to the strain rate. 
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3. The Stress Tensor 

This section defines the stress tensor, its principal values, its invariants, and its sign 
convention. This chapter describes four canonical stress paths used to parameterize the 
GeoModel: hydrostatic (HYD), triaxial compression (TXC), triaxial extension (TXE), and 
shear (SHR). For transient dynamics, the GeoModel additionally requires Hugoniot andfor 
Kolsky (split Hopkinson) bar data to parameterize the viscoplasticity*. This chapter 
defines the distinction between the spatial Cauchy stress and the unrotated "reference" 
stress. In preparation for a detailed discussion of the GeoModel theory, this chapter closes 
with a detailed description of "stress space" and Lode coordinates. 

The stress tensor o ,  - is defined such that the traction vector t (i.e., force per unit 
area), acting on any givenplane with unit normal e , is given by 

Of course, the traction and normal vectors may be described in terms of their Cartesian 
components, { t , ,  t2 ,  t 3 }  and { n l ,  n2, n 3 }  with respect to an orthonormal basis. The stress 
tensor has a 3 x 3 Cartesian component matrix such that the above equation may be writ- 
ten in matrix form as 

or in indicia1 form as 

where (recalling the implied summation convention) the repeated index 'y is understood 
to be summed from 1 to 3 and the non-repeated "free" index "i" appearing in each term 
takes values from 1 to 3 so that the above equation is actually a compact representation of 
three separate equations (one for each value of the free index). 

The stress is symmetric, which means that oii = oji. In continuum mechanics, and in 
this report, stress is taken positive in tension. This sign convention can be the source of 
considerable confusion, especially when discussing stress invariants. For example, the 
trace of the stress, I , ,  is positive in tension. However, brittle materials have very low 
strength in tension. Consequently, most of the functions defined in this report are nontriv- 
ial over only a small range of the tensile states where I, is positive. On the other hand, 

* Until rate dependence is discussed separately in Chapter 5, all incremental or rate equations in this 
report are understood to apply only under quasistatic loading and may therefore be regarded as 
"inviscid" equations. Incorporating viscoplastic rate dependence requires, as a prerequisite, solu- 
tion of these quasistatic inviscid equations. 
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most of the GeoModel functions are non-trivial over a relatively large range of compres- 
sive states where Il is negative. To help manage the sign convention problem, we will 
introduce a new notation that an over-bar on a variable denotes the negative. Specifically, 
for any variable x, 

DEFINITION OF THE "OVER-BAR." (3.4' 

In our plots of any variable that varies as a function of 11, we will usually employ an 
abscissa of il , which (being the negative of I, ) is positive in compression. Any variable 
typeset with an overbar will be positive more often than negative in most applications. 

The principal stresses are the eigenvaiues (o l ,  02, 03) of the stress matrix, posi- 
tive in tension. Their negatives (El, E2, ti3) are positive in compression.* When cast in 
terms of the principal basis (i.e., the orthonormal eigenvectors of the stress matrix), the 
diagonal components of the stress matrix will equal the principal stresses, and the off- 
diagonals will be zero. 

The stress deviator $ is the deviatoric part of the stress (see Eq. 2.10): 

Loosely speaking, the stress deviator is a tensor measure of shear stress. An overall scalar 
measure of shear will be defmed later. The quantity i(tro) is called the mean stress, 
and we will denote it by p . The negative of the mean strezs, p = -p , is called the pres- 
sure, and is positive in compression. Noting that the mean stress (or pressure) is simply a 
multiple of II , its value is an invariant, meaning that the sum of diagonal stress compo- 
nents will have the same value regardless of the orthonormal coordinate system used to 
describe the stress components. The principal directions of the stress deviator are the same 
as those for the stress itself, and the principal values for the stress deviator are related to 
the principal stresses by 

The trace of $ is zero, which implies that the numerically largest principal value of 
any nonzero stress deviator will always be positive and the smallest will always be nega- 
tive. In model parameterization tests, a sufficiently high confining pressure p is typically 
superimposed on the stress deviator to make all principal stress components compressive 
even though the principal deviatoric stresses always have mixed signs. 

* Of course, if principal stresses are ordered such that a, 5 a, 5 a3, then the barred principal stresses 
will be ordered El 2 E, 2 S3.  
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Stress invariants 

The trace operator is an invariant, which means its value will be the same regardless of 
which orthonormal basis is used for the stress components. Being symmetric, the stress 
tensor has a total of three independent invariants: 

Il = tro = 0 1 + 0 2 + 0 3  
z 

(3.9) 

The fact that these invariants are computed from the stress tensor o is sometimes empha- 
sized by typesetting them as I?,  J;, and Jf . Similarly defined iniariants for some other 
tensor 5 would be typeset as {If ,  J4, J$} . Invariants for a tensor 5 would be written 
{I?, J$ J?), and so forth. Any invariant written without a clarifying superscript should 
be understood to be a stress invariant. 

The mean stress p is defined to be the average of the principal stresses, whereas pres- 
sure p is just the negative of mean stress: 

I1 mean stress: p = - I; pressure: p = - , where TI = -Il . (3 12) 
3 3 

Superimposing an extra pressure 7 on any stress state causes the pressure to increase 
from p to p + F ,  while having no effect on the stress deviator and therefore no effect on 
the second and third invariants. Because the stress deviator S has a zero trace, it can be 
shown that J3 also equals the determinant of the stress deviator so that J3 = s1s2s3, and 
the second invariant can be written alternatively as J2 = -(sls2 + s2s3 + s3sl) .  

Equation (3.10) shows that the invariant J2 is never negative, which permits us to 
define a supplemental stress invariant, the signed equivalent shear stress z as 

The "transfer of sign" operator* is defined 

As defmed, the equivalent shear stress will have a numerical sign that is positive in triaxial 
extension states (defined below), negative in triaxial compression, and it will be identi- 
cally equal to the applied shear stress if the stress tensor happens to be in a state of pure 
shear (also defined below). 

* which is an intrinsic function in most computing languages 
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For clarity, the values of the invariants have been shown here in terns of the principal 
values of the stress and its deviator. However, because the trace operation gives the same 
result regardless of which basis is used, the invariants are computed in practice directly 
from fully-populated 3 x 3 component matrices, thereby avoiding the need for an expen- 
sive eigenvalue analysis. 

Derivatives of the stress invariants 
For isotropic material modeling, each scalar-value function of stress, $(o), is pre- 

sumed to depend only on the principal stress values, not on the principal stress%rections. 
Equivalently, the function $ ( G )  is isotropic if and only if it may be expressed alternatively 
as a function of the three stre& invariants I,, J2, J 3 .  In situations where the derivative of 
4 with respect to stress is required, the chain rule can be applied as follows: 

In symbolic tensor notation, this expansion is written as 

Because the three invariants are each proper functions of the stress tensor, their derivatives 
may be computed in advance: 

= the identity tensor 

= dev(o) = the stress deviator 

= dev(Z2) = the "Hill" tensor 

Thus, Eq. (3.16) may be written -1. au ar, (3.20) 

Of particular interest is the trace of the above expression, tr(a$/ao). Since both Z and 
s 

are deviatoric, the result is 

The factor of 3 appears simply because tr! = 3 .  This, by the way, is a good example of 
the fallibility of indicia1 notation. Specifically, 

12 
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Special stress states 

This section defines the four main stress states that are used to parameterize the Geo- 
Model. These are hydrostatic loading (HYD), triaxial compression (TXC), triaxial exten- 
sion ('IXE), and shear (SHR). The purpose of the GeoModel is to interpolate realistically 
between known material response at these canonical states to describe material behavior 
under general stress states. 

HYDROSTATIC (HYD). Loading is "hydrostatic" when components of the stress 
tensor are of the form 

for hydrostatic stress states. 

In practice, the pressure p is usually compressive (and therefore positive). Hydrostatic 
testing is very important to parameterization of the GeoModel because it indirectly char- 
acterizes the influence of material porosity. When hydrostatically loaded to a high pres- 
sure and then unloaded, a non-porous material will trace through the same stress states on 
both the loading and unloading curves. Aporous material, on the other hand, will unload 
along a dzfferent path. If possible, hydrostatic testing for the GeoModel should be con- 
ducted to sufficiently high pressures to compress out all pores, as indicated in Fig. 3.1.* 

F 

Partial pore collapse Total pore collapse 

res~dual strain 
1-nitial porosity 4 

Figure 3.1. Fpical hy&osraric (pressure vs. volumetric main) compression dam Total pore col- 
lapse is achieved when the unloading curve (here shown as nonlinearly elastic) is tangent to the loading 
curve. In this case, the residual volurnenic strain approximately equals the initial porosiry. 

p d " l  * Assuming that the matrix material is plastically incompressible, the porosity is 1 - e , 
where B y d d  is the logarithmic (Hencky) residual strain after full void collapse. If the residual 
strain is small, a Taylor series expansion of this formula gives porosity e B y d d .  
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When a material is loaded under hydrostatic tension instead of compression, inelastic 
response is again possible, but the mechanism of failure is catastrophic growth and coales- 
cence of microcracks, resulting in material softening and, ultimately, complete loss of load 
canying ability. 

TRIAXIAL (TXC and TXE): Loading is "triaxial" whenever two principal stresses 
(denoted oL and called the "lateral" stresses) are equal to each other, but distinct from the 
third "axial" principal stress (denoted oA). Thus, with respect to the principal basis, 

for triaxial stress states, (3.24) 

and 

for triaxial stress states. 

Also, 

fI = aA+2aL for triaxial stress states 

for triaxial stress states 

2 
J3 = ~lj(a,--~) 3 for triaxid stress states. 

The signed equivalent shear stress for triaxial loading is 

The invariants defined here may be written alternatively in terms of compressive stress 
measures as 

where 
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Figure 3.2 Triarral compression PXC) and niarial exlension (TXE) Two principal stresses (the 
lateral stress) are eaual. For TXC, the axial stress is more compressive than the lateral stress. For TXE, 
the axial s l~& is l&s compressive than the lateral stress. In t&e labels, a = -o ; stress o is positive in 
tension while stress a is positive in compression. 

The term "triaxial" is a bit of a misnomer because there are not really three indepen- 
dent loads applied - the lateral stresses are equal. These experiments are normally per- 
formed on cylindrical test specimens with the lateral load supplied by a pressure bath. For 
triaxial compression (TXC) the axial stress is more compressive than the lateral stress. 
For triaxial extension (TXE) the axial stress is not necessarily tensile - it is merely 
less compressive than the lateral stress. For TXC, the specimen changes shape such that its 
length-to-diameter ratio decreases. For TXE, the length-to-diameter ratio increases even 
though the length and diameter might individually both decrease. Uniaxial stress compres- 
sion (also called unconfined compression) is a special form of TXC in which the 
axial stress is compressive and the lateral stress is zero. Uniaxial stress extension is a spe- 
cial form of TXE in which the axial stress is tensile and the lateral stress is zero. Uniaxial 
&&I compression,  which is typical in flyer-plate impact experiments is a special case 
of TXC in which the axial stress is compressive, while the lateral strain is zero (making 
the lateral stress also compressive, but less compressive than the axial stress). Biaxial 
tension is a special case of TXC in which the lateral stress is tensile and the axial stress 
is zero. Biaxial compression is a special case of TXE in which the lateral stress is com- 
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pressive and the axial stress is zero. According to Eq. (3.27), the signed shear stress satis- 
fies T > 0 for TXC, whereas ? < 0 for TXE. Consequently, Eq. (3.28) shows that - 
J 3  > 0 (and hence J3 < 0 )  for TXC, while j 3  < 0 (and hence J3 > 0 )  for TXE. Of 
course, J2 > 0 for both TXC and TXE because it is the square of ? . 

In typical triaxial experiments, the lateral stress is held fixed (via a pressure bath) 
while only the axial stress is varied. In this case, Eq. (3.28) implies that 

d.t - I for triaxial stress loading with fixed lateral stress. (3.30) 
di, 43 

- 
7 A typical TXC I load path 

- 
T A typ~cal TXC 

I CSD load path 

A typical TXE 
load path I A typical TXE 

CSD load path 

Figure 3.3. Trimrial and CSD loadpafhs. The material is fvst compressed hydrostatically to a pre- 
selected bath pressure Pb* ; at this point, the value of the fmt stress invariant is I, = -3Pba'h and 
therefore TI = 3 P w .  When the triaxial leg begins, the lateral stress is held constant ( E L  = P w )  
while the axial stress is varied. This causes both the first and second invariants to change such that the 
path in this stress plot is a straight line with slope l / f i  . For simple triaxial loading, the stress differ- 
ence is increased until material failure occurs. For CSD loading, the stress difference is increased to a 
pre-selected value, and then held fixed while all stress components are thereafter varied equally until 
failure occurs. 

Being easily achieved in the laboratory, TXC and TXE data are essential to parameter- 
ize the GeoModel. In a typical triaxial test, the material is first loaded hydrostatically in a 
pressure bath until all three principal stresses reach a compressive pressure pbah. There- 
after, the lateral stresses are held fixed at this value ( B L  = pbath) while the axial stress is 
then increased beyond pbth. For some experiments, the axial stress might be increased 
only until the stress difference reaches a given value, after which all stresses are again 
increased by equal amounts. These are called constant stress difference (CSD) 
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experiments. Typically, these experiments are run to the point of material failure. Periodic 
partial unloading during a test reveals yielding if the unloading stress-strain curve has a 
noticeably different slope than the loading curve (without unloading, it would be impossi- 
ble to definitively distinguish plasticity from non-linear elasticity). 

As illustrated in Fig. 3.3, a series of TXC experiments at various bath pressures andlor 
stress differences results in a family of (TI, ?) stress-at-yield points that map out the TXC 
meridional profile of the GeoModel yield surface. Similar experiments under TXE map 
out the TXC meridional profile. Usually, the TXE failure envelope will be shaped simi- 
larly to the TXC envelope, but lower in magnitude because, at a given value of II , the 
value of f12 at failure is generally lower for TXE than for TXC. A plot of the failure 
envelope in t vs. II space is essentially equivalent to the meridional "side" view of the 
yield surface (Fig. l.Ob), except with the axes scaled differently. The TXE experiments are 
mapping out the cross-section of the yield surface along which pressure varies while stay- 
ing on the "base" of the triangular octahedral profile in Fig. 1 . 0 ~  @age I), whereas TXC 
experiments reveal how the apex of the triangle varies with pressure. For metals, there is 
little difference between the stress intensity required to initiate failure in TXC compared to 
TXE. However, for brittle materials, the difference is quite noticeable and (according to 
idealized microphysical theories) can be attributed to internal frictional resistance to shear 
crack growth. Because friction increases with pressure, the material strengths in TXC and 
TXE tend to increase with pressure but in approximately the same proportions so that the 
ratio of TXC strength to TXE strength is approximately pressure independent. Conse- 
quently, the TXE profiles shown in Fig. 3.3 are shaped identically to the TXC profiles 
except smaller in magnitude. 

Another form of triaxial loading, commonly used for dynamic material testing, is 
uniaxial strain, in which the lateral sbain E~ is held constant. If the lateral strain sL is 
held constant while continuing to compress axially, the lateral compressive stress EL will 
increase to prevent lateral motion. For uniaxial strain, iL = 0 ,  and therefore Hooke's 
law* in rate form reduces to 

V  L Uniaxial strain: .+A = ( K + : G ) ~ ~  and hL = -0 - 2 : 
1 - v  A  - ( K - ~ E A ,  (3 31) 

where K and G are, respectively, the tangent elastic bulk and shear moduli. 

For uniaxial strain, the rate of the signed equivalent shear stress and the rate of the fust 
stress invariant are 

2 ~ k , . j  
Uniaxial strain: = - and Ti = 3 ~ i ~ ,  

d 
and therefore the path through stress space is a straight line with slope 

* The general form of Hooke's law, applicable to any form of triaxial loading, is given in Eq. (4.1 1). 
Eq. (3.3 1)  is a special case of Eq. (4.1 1) in which iL = 0 ,  with Eq. (4.13) used to express Young's 
modulus E and Poisson's ratio v in terms of K and G . 
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- df - - - 2G - - - - (I - - 2v) for triaxial stress with faed lateral strain. (333) 
d l l  Jj3K l + v  

where v is Poisson's ratio. Since Poisson's ratio typically varies between 0 and 1 /2 ,* this 
result shows that the trajectory in the meridional profile will generally have a shallower 
slope under uniaxial strain loading than under uniaxial stress loading. This result should 
make some intuitive sense. Uniaxial strain experiments are conducted by applying 
increasing levels of compression in the axial direction while holding the lateral strain 
fixed. As the axial strain is compressed, the material "wants" to expand laterally, but is not 
permitted to - a lateral compressive force prevents this outward motion. This constrain- 
ing lateral compression makes i1 larger than it would be when lateral expansion is 
unconstrained. The larger i1 results in a shallower slope in the stress trajectory. 

SIMPLE/PURE SHEAR and PRESSURE-SHEAR LOADING (SHR). 

A material is in a state of simple shear with respect to a given coordinate system if 
the stress matrix in that system is of the form 

for simple shear, (3.34) 

where s is the shear stress. The eigenvalues of this matrix are {s, -s, 0)  . In general, any 
stress state that is deviatoric with one eigenvalue being zero is said to be a pure shear 
[27, p. 161. (Thus, simple shear is a special type of pure shear). For an isotropic material 
model like the GeoModel, yield depends only on the principal stresses, so there is no prac- 
tical difference between simple and pure shear (except when the model is anisotropic 
because of kinematic hardening). 

For conducting material characterization experiments, pure shear of the form 

is most convenient. For brittle materials, pure shear is difficult to attain because one of the 
eigenvalues is always tensile. Frequently, pure shear is superimposed with enough confin- 
ing hydrostatic pressure to make all principal stresses negative (compressive). Specifi- 
cally, superimposing the hydrostatic loading of Eq. (3.23) onto the shear stress of 
Eq. (3.35), gives a state of combined pressure-shear (SHR) loading: 

* Strictly speakin& positive defmiteness of the elastic stiffness tensor merely requires -1 < v < 1/2.  
Whereas negative Poisson's ratio has been observed in man-made materials with re-entrant micro- 
structures, it has not (to our knowledge) been reported for naturally occurring materials. Perfor- 
mance of the GeoModel has not been verified for materials with negative Poisson's ratio. 
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for combined pressure-shear loading. (3 36) 

The invariants for combined pressure-shear loading are 

I ,  = -3p for combined pressure-shear loading (3.37a) 

J2 = T*  for combined pressure-shear loading (3.37b) 

J3 = 0 for combined pressure-shear loading (3.37~) 

Spatial and Reference stress (frame indifference) 

The spatial Cauchy stress tensor defined in Eq. (3.1) is the "familiar" stress tensor 
used in everyday engineering applications. Let us now denote that stress by cspatid. The 
elasticity component of solids models requires knowledge of both the initial and current 
configurations. Moreover, the principle of material frame indifference demands that if a 
second problem were considered that had the same initial configuration, but a current con- 
figuration that is identical to the current configuration of the first problem, except also rig- 
idly rotated, then the predicted spatial stresses for the second problem should be identical 
to those of the first problem, except rigidly rotated by the same amount. This concept is 
quite different from a mere basis change because the initial configuration is identical for 
both problems. 

Satisfying material frame indifference in a spatial context can be computationally 
expensive and error-prone because anisotropic internal state variables (such as directions 
of material fibers or orientation of the backstress) must be rotated into the spatial frame, 
and special "objective" rates must be integrated in constitutive models. A mathematically 
equivalent (and numerically more accurate and efficient) strategy instead applies the con- 
stitutive model within an unrotated reference configuration. With this approach, rotation 
of internal variables is not required, and all rates that appear in the constitutive model are 
more easily integrated true rates instead of co-rotational rates. 

If 5 is the proper orthogonal tensor (found from a polar decomposition of the defor- 
mation) that characterizes the material rotation, then the unrotated stress is simply 

By working in the unrotated reference configuration, the GeoModel predicts the 
stresses for the non-rotating problem. Upon receiving the GeoModel's update of the unro- 
tated stress, the host code then rotates the predicted stress back into the spatial frame. 
Roughly speaking, this approach will give results identical to a spatial constitutive model 
that is cast in terms of polar objective rates. 
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For problems involving massive material rotation (e.g., turbine blades, vortices, tum- 
bling rock fragments, etc.), the "unrotation" strategy can give considerably more accurate 
answers because the host code may, optionally, use the rotation tensor 8" at the beginning 
of the time step when computing the starting value of $ ~ ~ o ~ ~ ~ ~ ,  but then the host code 
may use $"+I at the end of the step when recasting the updated value of curnotated (output 
of the GeoModel) to the spatial frame. Hence, this approach supports so-called "strong 
objectivity" [38] in a very natural way. 

Throughout the remainder of this report, the "stress" must be understood to be the 
unrotated stress Likewise all other vector or tensor variables (such as the strain 
rate) mentioned in this report are understood to be cast in the unrotated configuration 
(material frame). Any host code that uses the GeoModel must (I) perform these unrotation 
operations, (2) call the GeoModel, and then (3) re-rotate the result back to the spatial frame 
upon return. For more information, see page 76. 

Lode coordinates 
Any isotropic yield function may be expressed in terms of the principal stresses 

(o,, 02, 0,) .  Therefore, the yield surface may be visualized in a 3D space for which the 
Cartesian coordinates are these principal stresses. The value of the yield function 
Ao,, 02, 03) must be independent of the ordering of the eigenvalues. Therefore, as seen 
in Fig. 1.0 (page l), the yield surface must have 120" rotational symmetry about the [ I l l ]  
(hydrostat) direction and reflective symmetry about the TXE and TXC axes in the octahe- 
dral plane (i.e., the view looking down the [ I l l ]  axis). 

The principal Cartesian coordinates (o,, o,, o,) comprise an adequate choice 
for characterizing stress space, but the yield function is often cast in terms of different 
independent variables to exploit the yield surface's natural symmetries optimally. The nat- 
ural symmetries suggest instead using cylindrical (r, 8, z) coordinates - called Lode 
cylindrical coordinates - for which the z-axis is parallel with the [ I l l ]  symmetry 
axis. We have placed a bar on the symbol 8 for the angular coordinate because we intend 
to define it so that it will be positive in TXC and negative in TXE. A constant 8 plane is a 
meridional plane, and a plot of r vs. z .  at a given value of 8 is called a meridional 
profile. Because most of the yield surface resides in the compressive domain where 
z < 0 ,  we will usually display meridional profiles as r vs. Z (where 5 = -z). Any con- 
stant-~ plane is an octahedral plane, and any cross-section looking down the [ I l l ]  axis 
(i.e., on a plane of constant z)  is in an octahedral profile. Meridional and octahedral 
profiles are illustrated in Fig. 1.0 (page 1). 

In this report, the Lode angle 8 is defined so that it equals zero in SHR. It varies from 
-30" in TXE to +30° in TXC. Superimposing pressure on a stress state changes only the 
axial z-coordinate, leaving the octahedral (r, 8 )  coordinates unchanged, which makes 
Lode coordinates a natural choice when decomposing tensors in to their isotropic and 
deviatoric parts. The radial r coordinate equals the magnitude of the stress deviator. The z 
coordinate is proportional to the mean stress. The angular coordinate is a measure of the 
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relative proportions of the principal values of the stress deviator. Thus, as the Lode angle 
varies from -30" to +30°, the stress transitions through TXE, SHR, and TXC states. 
Cylindrical Lode coordinates are especially useful because they may be expressed in 
terms of stress invariants, thereby eliminating the need for an eigenvalue decomposition. 

The axial z-coordinate is positive on the tensile part of the hydrostat, so 5 is positive 
on the compressive hydrostat. We defme the Lode angle 8 to be positive in TXC and neg- 
ative in TXE. The change in variables from principal coordinates to Lode coordinates per- 
mits the yield function f ( ~ , ,  cr2, 03)  to be alternatively expressed in the form f(r, 6, ;). 
When phrased in terms of Lode coordinates, the yield function needs to be defmed only 
over a 60' sextant on any octahedral plane. The symmetry properties of the yield surface 
may be used to reconstruct the octahedral profile over the full range from 0' to 360'. 

Performing these necessary but tedious coordinate transformations from principal 
stresses to cylindrical Lode coordinates, it can be shown [31] that the cylindrical Lode 
coordinates may be determined directly from the I, , J 2 ,  and J3 scalar stress invariants, 
eliminating the need for an eigenvalue analysis. Specifically, 

The square root coefficients are merely by-products of the coordinate transformations. For 
example, since the z-coordinate is the projection of the stress onto the [ I l l ]  axis, the 8 
appears because the magnitude of the [ I l l ]  vector is 8 . The Lode radius r is zero if 
J2=0.  Also, the Lode angle 6 is undefined when J2=0, which should not be too disturb- 
ing since the angular coordinate for any cylindrical system is undefined when the point in 
question lies on the symmetry axis (which, in this case, is the [ I l l ]  hydrostat). 

Later, when we give the mathematical formulation for the GeoModel yield function, it 
will be phrased as f(r, 8, i). Using the above formulas, the yield function is ultimately 
implemented in the form All, J2, J3) .  The invariant Jj influences only the Lode angle. 
When simpler yield models (Drucker-Prager) are independent of the third stress invariant, 
they are therefore independent of the Lode angle, which makes their octahedral yield pro- 
file a circle. The GeoModel must include a non-circular yield profile to reproduce TXEI 
TXC strength differences clearly evident in the data for geological materials. Thus, the 
GeoModel must necessarily use all three Lode coordinates (equivalently, all three stress 
invariants). 
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Octahedral yield profile visualization. Given a yield function Ar, 8, i) , yield 
profiles may be generated by solving f = 0 to obtain r expressed as a function of (6,i). 
A meridional profile is generated by plotting r vs. i at a fixed value of 8. An octahedral 
profile, which corresponds to a yield surface cross-section at a given value of i, describes 
how the Lode radius at yield varies with the Lode angle. Rather than plotting r vs. 8 ,  
octahedral profiles are obtained by parametrically plotting Cartesian coordinates 

Here, O is an angle that varies over the full range from 0 to 360'. The Lode angle 8 ,  
which is permitted to vary only over the range from -30' to 30°, is generated from the 
full-range angle O by the sawtooth function 

With 8 known, the value of corresponding Lode radius r can be found from the yield con- 
dition, and finally, the family of ( x l ,  x 2 )  points on the octahedral yield profile may be 
generated parametrically as O varies from 0 to 360°, as illustrated in Fig. 3.4. 

- 
0 r 

Figure 3.4. An octahedral yieldprofile. Geological materials tend to be stronger in TXC than in 
TXE, which is why the TXC axes are always on an apexpf the rounded triangle (i.e., farther from the or- 
igin, corresponding to higher strength). The Lode angle 9 alternates cyclically from -30" in TXE to 30" 
in TXC because the yield threshold must be independent of the eigenvalue ordering. 
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Meridional yield profile visualization. To draw a geometrically accurate meridi- 
onal cross-section of the yield surface, the profile should be plotted as r vs. i for a given 
value of 6 .  Typically, we will plot the TXC (0 = 30") profile. Using the r and Z Lode 
coordinates as the axes in a meridional plot ensures that lengths and angles in the meridi- 
onal profile will equal corresponding lengths and angles in stress space. Many times, how- 
ever, we will depict a geometrically distorted view of the meridional profile by instead 
plotting i vs. 71, where the signed equivalent shear stress ? equals f ,& , depending on 
whether the loading is closer to TXE or TXC. Recalling from Eqs. (3.40a) and (3.40~) that 
,& = r/+& and 71 = $Z , a plot of i vs. 71 is equivalent to changing the aspect ratio 
of an r vs. Z plot by a factor of J6 = 2.45, as illustrated in Fig. 3.5. Thus, whenever we 
plot the meridional profile as ? vs. 71, keep in mind that the actual meridional cross-sec- 
tion in stress space is smaller in width by a factor of 2.45. Meridional profile distortion is 
an issue only when ascertaining the direction of the yield surface normal. Figure 3.5 
shows that the normal to the yield profile in a distorted plot does not correspond to the 
normal in stress space. 

Figure 3.5. D~stortion ofthe meridionalprofile when using non-isomorphic stress measures. Only a 
plot of r vs. z will result in a geometrically accurate depiction of a meridional cross-section of stress 
space for which angles and lengths are preserved. The middle plot shows the magnitude of the stress devi- 
ator plotted against the pressure, resulting in a plot eccentricity of l /& = 0 577.  The last plot shows the 
equivalent shear stress plotted against the frst stress invariant, for a plot eccentricity of J6 = 2.45. 
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Closed-form solution for ordered eigenvalues. Recalling that Lode cylindrical 
coordinates merely represent a coordinate change from the principal coordinates 
(ol ,  oZ, 03) to a new set of coordinates (r ,  6, z )  , it follows that inverse transformation 
formulas should exist for obtaining the principal stresses from Lode coordinates. Each dis- 
tinct sextant in Fig. 3.4 merely corresponds to a different eigenvalue ordering. Regardless 
of the sextant in which the stress resides, 8 = 30" falls on the pi-plane axis correspond- 
ing to the smallest eigenvalue, whereas 8 = -30° falls on the axis of the largest eigen- 
value. Therefore, transformation formulas that convert cylindrical coordinates back to 
Cartesian coordinates only need to be defined over the range from -30' through +30° to 
determine the ordered eigenvalues. 

Letting the compressive eigenvalues be ordered a3 5 a2 5 el ,  the tensile eigenvalues 
must be ordered o3 2 o2 2 o, , and the inverse transformation formulas are 

These formulas constitute a closed-form solution for the ordered eigenvalues of any real 
symmetric 3 x 3 matrix, not just a stress! Using these formulas, any yield function that is 
stated in terms of principal stresses, Aol ,  02, 03) ,  can be immediately re-cast into a form 
expressed in terms of stress invariants, AI,, J2, J3) ,  which is more convenient for plastic- 
ity modeling because it can be differentiated without an eigenvector analysis (see 
Eq. 3.16). For example, any material model that seeks to initiate failure when the largest 
tensile principal stress o3 reaches a critical value, 09, can do so by simply substituting 
Eq. (3.43~) into the failure criterion, o3 = oyit. The above closed-form solution for 
ordered eigenvalues is applied in Appendix B (page B-22) to convert the Mohr-Coulomb 
theory of failure into a formulation expressed in terms of stress invariants, as required in 
the GeoModel. 

low: z r 

* The solution quoted here is equivalent to the closed form solution derived by Malvem [32] via a 
trigonometric substitution. Malvem's angle a is a Lode angle, but defmed to be zero in TXE and 
60" in TXC. 
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4. GeoModel theory 

Being a generalized plasticity theory, the GeoModel is founded upon an additive 
decomposition of the strain rate i into separate contributors: ie from elastic straining and 
& from inelastic straining: 

The GeoModel permits the host code to employ any definition of the strain so long as its 
rate is conjugate to the stress o in the sense that the work rate per unit volume is given by 

To satisfy the principle of material frame indifference, the host code must cast the stresses 
and strain rates in an unrotated configuration. At present, all implementations of the Geo- 
Model have approximated the strain rate by the unrotated symmetric part of the velocity 
gradient: 

where t, is the velocity vector, 6 is the current spatial position vector, and the tensor 6 is 
the rotation from the polar decomposition of the deformation gradient. The conjugate 
stress is the unrotated Cauchy stress defined in Eq. 3.39. Henceforth, all references to the 
stress o,, and the strain rate EY must be understood to be the unrotated stress and strain 
rate. 

All GeoModel material parameterizations to date have been based on the above 
approximation for the strain rate. Using a different choice for the conjugate stress and 
strain rate measures would, of course, entail adjusting material parameters appropriately. 
The strain rate in Eq. (4.3) is an approximation because, for general deformations, it is not 
precisely equal to the rate of any proper function of the deformation*. The approximate 
strain rate in Eq. (4.3) exactly equals the unrotated logarithmic (Hencky) strain rate for 
any deformation having stationary principal stretch directions. It is an excellent approxi- 
mation to the Hencky strain rate even when principal stretch directions change orientation 
as long as the shear strains remain small (volumetric strains may be arbitrarily large). For 
geological applications, material rupture generally occurs well before shear strains 
become large, so Eq. (4.3) is a prudent choice for the strain rate measure. If, however, the 
model is to be subjected to significant cyclical loading (e.g. fatigue), then a proper strain 
rate should be used instead of Eq. (4.3) even if the distortional strains are always small. 

* Paths can be devised for which the starting and ending configurations are identical, but the time 
integral of E,, does not evaluate to zero [ll]. 
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Elasticity 
The GeoModel supports both linear and nonlinear hypoelasticity*. The GeoModel 

presumes the material is elastically isotropic and that the elastic stiffiess tensor CUkl is 
itself isotropic (i.e., deformation-induced elastic anisotropy is not included). Conse- 
quently, the stress is governed by a rate form of Hooke's law: 

Because the elastic tangent stiffiess tensor, Cok[ ,  is presumed to be isotropic, Eq. (4.4) 
can be written as two separate and much simpler equations, one for the volumetric 
response and the other for the deviatoric response: 

and 

Here, G and K are the tangent shear and bulk elastic moduli; is the pressure (negative 
of the mean stress); $ is the volumetric elastic strain rate computed by the trace opera- 
tion, 

Sij is the stress deviator; and jfj is the deviatoric part of the elastic strain rate, defined 

We have used the overbar (which, recall, simply denotes the negative of a variable) in our 
equation for the pressure-volume response because the mean stress is typically compres- 
sive (negative) in most applications of the GeoModel and therefore p and E; are typically 
positive. Of course, Eq. (4.5) remains valid for volumetric expansion (E," < 0) and tensile 
mean stresses (ij < 0) as well. No overbar is used in Eq. (4.8) because deviatoric tensors 
always have eigenvalues of mixed signs. 

For linear elasticity, the user merely specifies constant values for the bulk modulus K 
and the shear modulus G. For nonlinear elasticity, the moduli are stress-dependent tan- 
gent moduli (i.e., slopes of the tangents to the stress-strain curves). Tkee parameters are 
available for fitting the nonlinear tangent bulk modulus K to laboratory data obtained 
from unloading curves in hydrostatic compression. Similarly, three parameters are avail- 
able for fitting the nonlinear tangent shear modulus G indirectly from triaxial test data. 
Additional elastic parameters are available for materials whose elastic properties are 
affected by inelastic deformation (see Eqs. 4.33 and 4.34). Step-by-step instructions for 
determining elastic properties from measured data are provided in Appendix A. 

* "Hypoelastic" means the stress can be written as a function of the strain, but is not derivable h r n  
an energy potential. When a potential exists, then the formulation is "hyperelastic." 
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Nonlinear elasticity. At the user's option, the GeoModel supports nonlinear elasticity 
by permitting the elastic tangent moduli to vary with the stress according to 

In these equations, the bk and gk parameters are material constants determined via non- 
linear regression fitting to the unloading portions of hydrostatic compression and triaxial 
compression experiments, as described in Appendix A *  Further descriptions of the physi- 
cal meanings of the parameters in these equations are given Appendix B. The GeoModel's 
functional forms for the nonlinear elastic tangent moduli are phenomenological to permit 
tight empirical fits to experimental data for a wide variety of materials. Suitability of these 
functions for fitting material data is demonstrated in Chapters 8 and 9, starting on page 96. 

Incidentally, it can be shown that an elasticity model of the form in Eq. (4.4) is hyper- 
elastic (i.e., derivable from an isotropic elastic potential) if and only if the shear modulus 
is constant and the bulk modulus depends at most only on I ,  . Because Eq. (4.34) permits 
the shear modulus to vary, the GeoModel is hypoelastic if gl * 0 .  

Assigning values to the elastic constants. The bulk modulus K is determined 
from the local tangent of the elastic part of a pressure vs. volumetric strain plot obtained 
from hydrostatic testing. Rather than determining the shear modulus directly from a shear 
loading experiment (where GeoMaterials tend to be weak), the shear modulus is typically 
found indirectly from triaxial loading data. For triaxial loading, the stress rates are related 
to the strain rates by? 

&a -2v& -vkA + (1 - V)&L 
EA = and EL = 

E E 

where E and v are, respectively, Young's modulus and Poisson's ratio. If E and v are 
known, then the bulk modulus K, the Lame modulus a ,  and the shear modulus G may be 
determined from the well-known elasticity equations [IS], 

Because the GeoModel casts its elasticity model in terms of the bulk modulus K and the 
shear modulus G , the following formulas are convenient for converting various combina- 
tions of elastic constants into expressions involving only K and G (see, for example, Ref. 
[la], page 139): 

* The generalized nonlinear elasticity formulas on page 37 may be used when elastic properties 
appear to be affected by inelastic deformation. 

t Here, we are writing Hooke's Law in rate form to allow for the possibility that the elastic moduli 
might be nonlinear. Thus, the elastic properties used here are the tangent moduli 0.e. based on the 
local slope of an elastic stress vs. strain curve). 
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2  h  = K - - G  
3  

E  - 18KG 
v  3 K - 2 G  

E  - 18KG - 
1 - v  3 K + 4 G  

4  K + - G  = a - v )  
3  ( I + v ) ( l - 2 v )  

v  = 
3 K - 2 G  E =  - 9KG 

3 K + C  
(4.1 3) 

2 ( 3 K +  G )  

= 2 ( 3 ~ +  G )  v - 3 K - 2 G  
v  3  1 - v  3 K + 4 G  

(4.14) 

4 2 G + h  = K + - G  3 KE G  = - 
3  9 K - E  

(4.1 5) 

(uniaxial strain modulus -see Eq. 3.31). (4.16) 

Eq. (4.11) implies that triaxial experiments conducted under constant lateral stress 
(kL = 0) satisfy 

&A = E&.  (this applies if lateral stress is constant) (4 17) 

A fvted lateral stress implies that &,.j = - bL. Thus, when a stress-strain curve is 
obtained by plotting the stress difference EA - EL against the axial strain CA for a triaxial 
loading experiment in which the lateral stress is fixed, the local tangent of the curve equals 
Young's modulus E .  With the bulk modulus K having been obtained separately from 
hydrostatic test data, Eq. (4.1%) may then be used to determine the tangent shear 
modulus G . 

The elastic limit (yield surface) 

Like most plasticity models, the GeoModel begins each solution phase (i.e., each time 
step) by tentatively presuming that the loading is elastic. This produces a trial elastic 
stress, which is then checked to see if it is inside or on the yield surface. If so, the tentative 
assumption of elasticity is validated and the actual updated stress is set equal to the trial 
elastic stress. If, on the other hand, the trial elastic stress falls outside the yield surface, 
then the tentative assumption of elastic response was wrong, and the solution phase is then 
solved anew using the equations governing inelastic deformation. Before discussing these 
inelastic governing equations, we must first characterize the yield surface itself. We will 
begin by discussing yield surfaces in some generality and then progressively work 
towards the precise functional form for the GeoModel yield surface. 

Mathematically, the GeoModel is a generalized plasticity model. The term "plasticity' 
is broadened to include not only the usual flow of material via dislocations (a phenomenon 
that has actually been observed in brittle materials when they are loaded under extraordi- 
narily high confining pressure), but also any other mechanisms that lead to a marked 
departure from elasticity. Examples include crack growth, void collapse, or perhaps even 
phase transition. Rather than explicitly tracking each of these microscale failure mecha- 
nisms explicitly, the "yield" surface itself characterizes them all in an ensemble phenome- 
nological manner. If the stress state ( o l ,  a 2 ,  a3) is "not too severe," then material 
response will be elastic and therefore reversible (non-dissipative). Once the stress 
becomes critically severe, however, the material will undergo irreversible structural 
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changes that manifest as inelastic strains (nonrecoverable upon removal of the load). The 
material response is elastic whenever the stress is on the inside of the yield surface. If con- 
tinuing to apply elasticity theory would move the stress into regions outside the yield sur- 
face, then plasticity equations are applied. 

The GeoModel yield criterion and yield function are 

GEOMODEL YIELD CRITERION: 

The remainder of this chapter is devoted to motivating the functional forms of these equa- 
tions and defming the numerous variables that appear in them. Briefly, the yieldfunction f 
is defined such that elastic states satisfy f c 0. The yield criterion corresponds to f = 0.  
The "building block" functions Ff  and r are used to describe the elastic limit caused by 
the presence of microcracks, wh&eas the function F, accounts for strength reduction by 
porosity. The function Ff represents the ultimate limit on the amount of shear the material 
can support in the absence of pores (i.e., Ff represents the softening transition limit thresh- 
old, sketched in Fig. 1.1, resulting exclusively from microcracks). The material parameter 
N characterizes the maximum allowed translation of the yield surface when kinematic 
hardening is enabled, in which case J$ is the second invariant of the shifled stress tensor 
5 = ; - a, where a is the backstress. When kinematic hardening is disabled (i.e., when 
l? is specked to be"zero), the backstress will be zero and therefore J$ would be simply 
the invariant of the stress deviator. The function Ff describes the limit strength, whereas 
F,- N defines the yield threshold associated with cracks, which can evolve toward the 
&it surface via kinematic hardening as explained later in the context of Fig. 4.7. The 
function I-($), where 65 is the Lode angle of the shifted stress, is used to account for 
differences in material strength in triaxial extension and triaxial compression. By appear- 
ing as a multiple of [ F f  - NI2,  the function F, accommodates material weakening caused 
by porosity. The funct(on FF, depends on an internal state variable K whose value controls 
the hydrostatic elastic limit, as explained later in the context of Figs. 4.4,4.5, and 4.15. 
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The principal goal of this section is to describe in great detail the physical motivations 
of the GeoModel yield criterion cited in Eq. (4.18). This criterion describes the geometri- 
cal shape of the yield surface in stress space. For rocks and rock-like materials, the yield 
surface will have a shape similar to the one illustrated in Fig. 1.0 (page I).* Figure l.O(b) 
shows a "side" meridional profile of the yield surface in bold, along with a family of 
other profiles from which the yield surface might have evolved over time (via continu- 
ously varying values of the u internal state variable); Fig. 4.7 shows a similar plot when 
kinematic hardening is allowed. Very little of the yield surface in Fig. l.O(b) exists in the 
tensile domain (left side of the meridional plot), implying that materials of this type are 
very weak in tension. 

Figure l.O(c) shows the yield surface profile from a perspective looking down onto a 
plane - called an octahedral plane - that is perpendicular to the [ I l l ]  symmetry axis 
and therefore represents a cross-section of the yield surface at a given pressure. Since the 
onset of yield must not depend on the ordering of the principal stresses, the yield surface 
for any isotropic yield model possesses 120' rotational symmetry about the hydrostat 
(i.e., the [ I l l ]  axis), as well as reflective symmetry about any of the triaxial compression 
or triaxial extension axes labeled TXC and TXE in Fig. 1 .O(c). As seen in Fig. l.O(c), the 
octahedral profile is somewhat triangular in shape. This periodic asymmetry corresponds 
to differences in the failure limit under triaxial compression (TXC) and triaxial extension 
(TXE). Because the yield surface is farther from the origin on a TXC axis than on a TXE 
axis, this material has higher strength in TXC than in TXE. The ~ ( 6 )  function character- 
izes the shape of the octahedral profile because r is proportional to 1 K ( 0 ) .  The size of 
the octahedral profile at various pressures is governed by the functions Ff and F, . 

Elastic stress states are "inside" the yield surface (f < 0). Stress states for which f = 0 
are said to be "on the yield surface." Like classical plasticity models, the yield surface in 
the GeoModel characterizes the point of departure from elastic to inelastic behavior. When 
the stress is on the yield surface, and if applying elasticity theory would result in an 
updated stress that falls outside the yield surface, then plasticity equations will be applied. 
Stress states outside the yield surface for which f > 0 are unachievable except through a 
hardening evolution of the internal state variables (u and/or ) corresponding to a funda- 
mental change of the underlying microstructure of the material. Stresses outside the limit 
surface are unachievable by any quasistatic means. 

The internal state variable u controls the location of the yield cap (wire frame in 
Fig. 1.0a on page 1). When u increases in response to pore collapse, octahedral profiles 
that pass through the cap will expand isotropically (i.e., the octahedral profile changes 
size, but not shape, and it does so without translating in stress space). The amount of iso- 
tropic expansion or contraction varies with pressure in such a manner that the family of 
yield surfaces corresponding to various values of u is bounded by the shear limit surface, 
J2 = ~ ' 1 , ) / r ( 6 ) .  

* At the user's option, the GeoModel parameters can be set to alternatively duplicate classical ideal- 
ized Von Mises or Mohr-Coulomb theory. Doing this would be inappropriate when modeling real 
materials, but it can be useful in benchmark testing. 
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Though not needed in many applications, 
the GeoModel supports kinematic hardening for 
which the symmetry axis of the yield surface is 
permitted to shift in stress space so that the 
invariants in the yield function are based on the 
shifted stress tensor, defined 

5 .  ES - 
(I ,I a,I. (4.20) 

As illustrated in Fig. 4.1, the backstress a, 
is a deviatoric tensor-valued internal state vari- 
able that defmes the origin about which the 
yield surface is centered. When the backstress 
tensor changes, the yield surface translates in 
stress space, thereby supporting deformation- 
induced anisotropy Pauschinger effect) in a Figure4.1. Backstress andsh~edsshess. 
limited capacity. The backstress is initially zero, 
but then evolves according to an evolution equation described in detail on page 59. The 
GeoModel is otherwise hlly isotropic, both elastically and plastically. Consequently, the 
yield function is isotropic with respect to the shifted stress deviator tu,  implying that it 
depends on the invariants of the shifted stress deviator, as well as I I  and an internal state 
variable K that characterizes isotropic hardening caused by void collapse or softening 
caused by porosity increases. Specifically, the GeoModel yield function is of the form 

where 

In this section, we seek to describe the size and shape of the yield surface at an instant fro- 
zen in time. Thus, we will focus on how the yield function depends mathematically on the 
stress invariants ( I I ,  J$, J$) , with the internal state variables (K and c) regarded as con- 
stants. The means by which the yield surface evolves in response to time variation of K 

andlor a e is discussed separately. 

Before discussing the physical foundations of the GeoModel yield function in 
Eq. (4.19), we will first discuss qualitative features of any yield function of the more gen- 
eral form in Eq. (4.21). Given that an isotropic yield function possesses alternating 30" 
symmetry about the [ I l l ]  d ic t ion  in stress space, the yield function in Eq. (4.21) is most 
naturally cast in terms of the cylindrical Lode coordinates as 

f = f(r,  6 , ~  x), (4.23) 
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where these Lode coordinates are defined with respect to the kinematically shifted origin 
in stress space. For any given values of 8 ,  Z ,  and K , there must exist only one radius r 
that is a solution to f(r, 8 , j ; ~ )  = 0 (otherwise, the yield surface would not be convex). 
Thus, without loss in generality, elastic stress states for any isotropic yield function always 
can be characterized in the general functional form 

r < g(8, i ; ~ )  , (4 24) 
where g(G, i ; ~ )  is regarded as a material function determined from experimental data and 
is introduced here only to discuss the structure of isotropic yield functions in generality 
(i.e., the GeoModel has an implied "g" function, but does not construct one explicitly). 
The yield function corresponding to Eq. (4.24) may be written 

f = r2 - [ g ( ~ ,  i;K)12 ( ~ n ~  isotropic yield funct~on can be written in this form.) (4.25) 

At present, the GeoModel assumes that the shape of the octahedral yield profile is the 
same at all pressures - only its size varies with Moreover, the GeoModel pre- 
sumes that the shape of the octahedral yield profile is constant in time (i.e., it does not 
evolve to any different shape in response to plastic deformation even though it can permis- 
sibly vary in size and translate in stress space). Consequently, the GeoModel's yield func- 
tion is structured such that g(8, i ; ~ )  is separable into the product of two distinct 
functions, one depending only on 8 and the other depending only on i and K, permitting 
Eq. (4.24) to be structured in the general form: 

r < h, (8)h2(i ;K)  his form results from a separabilify assumption.) (4 26) 

As was the case with the g function, h, and h2 have been introduced here only to illus- 
trate the basic structure of the GeoModel's yield function. The GeoModel's specific for- 
mulations will be discussed soon. A degree of ambiguity exists in the definitions of hl 
and h2 because they may be replaced respectively by qh, and hz/q for any scalar q 
without loss in generality. To remove this ambiguity, the function hl  is scaled such that it 
merely describes the shape of the octahedral profile (i.e., the view of the yield surface 
looking down the [ I l l ]  direction). The function h2 defines the meridional profile of the 
yield function, and therefore this function also defines the size of the octahedral profile. 

The GeoModel aims to model rocks and rock-like brittle materials. The mechanical 
behavior of such materials is typically driven by two underlying mechanisms: porosity 
and microcracks. To date, microphysical research has focused on the effects of only one of 
these mechanisms at a time. Figure 4.2(a) shows the qualitative shape of the meridional 
profile typically that is predicted when only porosity is considered. In this case, the merid- 
ional yield profile is a "cap" function that is essentially flat like a Von Mises profile for a 
large range of pressures ( i  is proportional to pressure), and then the profile drops to zero 
when pressure becomes large enough to collapse voids. Figure 4.2(6) shows the general 

* Some evidence suggests that the octahedral yield profile should in fact vary in shape from strongly 
triangular at low pressures to nearly circular at extraordinarily high pressures [23]. Consequently, 
the GeoModel's current assumption of a constant octahedral profile shape might change in future 
releases. 
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shape of a meridian profile that is typically predicted for theories that consider only the 
influence of microcracks without considering porosity. Microcracks lead to low strength in 
tension, but strength increases as pressure is increased because pressure generates addi- 
tional friction at crack faces, thereby reducing the shear load suffered by the matrix mate- 
rial. The GeoModel, unifies these separate microscale theories to obtain a combined 
porosity and microcrack model as sketched qualitatively in Fig. 4.2(c). Loosely speaking, 
the GeoModel obtains the combined meridional yield function by multiplying the individ- 
ual porosity and microcrack profiles (and scaling the ordinate appropriately to match 
data). 

Figure 4.2. Qualitatrvely meridional profile shapes resultingfrom (a) porosity alone, (b) microcracks 
alone, and (c) porosity and microcracks in combination. 

To date, the combined effect of voids and microcracks remains a poorly developed 
branch of materials constitutive modeling. Some early models simply asserted that a mate- 
rial is elastic (safe from yield) only if it is safe from both crack growth and void collapse, 
with each criterion tested separately. However, as illustrated in Fig. 4.3(a), this approach 
results in a discontinuous slope in the meridional yield profile and fails to account for 
interactions between voids and cracks. The GeoModel [Fig. 4.3(b)], phenomenologically 
permits cracks and voids to interact in a way that results in a continuously differentiable 
meridional profile, making the GeoModel better-suited for reproducing observed data. 

Simple two-surface 
upper bound model bod4 ,5\ 

r && W%<QO~ 

/ 
/v' 

.. 

GeoModel 
(one continuous surface) 

Figure 4.3. Distinction between two-surface upper-bound models and the GeoModel. 
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The GeoModel achieves a combined porous+cracked yield surface by multiplying the 
fracture function rAi) in Fig. 4.216) times the cap function r,(i) in Fig. 4.2(a) so that 

r ( i )  is proportional to r&i)r,(i). (4.27) 

The proportionality factor depends on the Lode angle so that the equivalent shear stress 
at yield (which, recall, is simply a constant multiple of r )  can be made lower in TXE than 
in TXC. Cap functions depend on the porosity level (which controls where the cap curve 
intersects the z-axis). The curvature of a cap function controls the degree to which porosity 
affects the shear response. Although the GeoModel does not explicitly track porosity, it 
does include an internal state variable K that equivalently accounts for the presence of 
porosity. As explained later (page 50), the value of K and one additional material constant, 
R ,  determine both the cap curvature and the location where the cap intersects the 
hydrostat (the i axis). Thus, the cap function r,(i) implicitly depends on K and R . 

Recalling that the Lode cylindrical radius r equals @$ and the Lode axial coordi- 
nate z is proportional to I, , the GeoModel implements the notion of multiplying fracture 
and cap functions by using Eq. (3.40) to express Eq. (4.27) in terms of stress invariants 
instead of Lode coordinates, so the GeoModel yield function is of the form 

Comparing with Eq. (4. IS), the f and F functions are related by 

f j = F f - N  and f,=pe. (4.29 

The invariant J$ is computed using the shifted stress tensor 5 = S - a, where is the 
deviatoric tensor-valued backstress that is nonzero only whgn GneAatic hardening is 
enabled. Thus, in addition to depending explicitly on the stress tensor, the yield criterion 
depends implicitly on material constants and on two internal state variables, K (mentioned 
earlier) and (r. . 

The fracture function f f  characterizes the cracking-related portion of the meridional 
yield profile. The GeoModel cap function fc is normalized to have a peak value of 1. The 
function ~ ( 6 )  characterizes the Lode angle dependence of the meridional profile and is 
normalized to equal 1 in triaxial compression (6 = 30') . At different Lode angles, r usu- 
ally has values greater than 1, which (because it is a divisor in Eq. 4.28) reduces equiva- 
lent shear strength. Rather than regarding l- as a strength reducer, it can be alternatively 
interpreted as a stress intenszBer. Qualitatively, these functions are typically shaped as 
shown in Fig. 4.4. 
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Figure 4.4. Basic shapes of the three key functionr that characterize the composite shape of the yield sgr- 
face (a) Lode angle dependence, (b) porosity cap curve, (c) limit failure curve. The Lode angle function T(6) 
is the reciprocal of the radius in the octahedral plane, making it best regarded as a stress intensifier; ~ ( 6 )  is 
normalized to equal 1 in triaxial compression, which implies that it must equal 1/y in triaxial extension (where 
y~ is the TXEITXC strength ratio). Shear influence on void collapse begins at the point where the cap function 
branches into an ellipse. Since the cap function is multiplied by the fracture curve, this transition point also 
marks where the composite GeoModel failure surface branches away @om 4, beyond which macroscale re- 
sponse is influenced simultaneously by both cracks and voids. For pure (shear-free) hydrostatic compression, 
void collapse begins at the point where the ellipse intersects the horizontal. Only the function ff has dimensions 
of stress (the others are dimensionless). 

As explained on page 43, the precise expression for the r function is determined by 
user-specification of two parameters: the TXEDXC strength ratio yl and an integer-val- 
ued option (J3TYPE), which controls the manner in which the octahedral profile radius 
varies from the value 1/v at TXE to 1 at TXC. As explained below, the porosity (cap) 
function f, is defined by two parametem: the initial intersection p,, on the horizontal axis 
and the eccentricity or "shape factor" R for the ellipse (i.e., the width to height ratio of the 
ellipse). As explained on page 56, the GeoModel internally computes evolution of the cap 
function resulting from void collapse. As explained on page 41, the very important ff 
function, which reflects influence of microcracks, is determined by fitting triaxial com- 
pression data to an exponential spline [up to five parameters ( a ,  , a2,  a3 , a,, N ) ] .  Stan- 
dard experiments (needed to assign values to these parameters) are discussed in 
Appendix A. The remainder of this chapter is dedicated to providing further details about 
the three key functions f,, ff, and r used in the GeoModel. 
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The cap function, f,. Under compression, the pores in a material can irreversibly col- 
lapse, thereby resulting in permanent (plastic) volume changes when the load is removed. 
Plastic volume changes can occur for porous media even if the matrix material is plasti- 
cally incompressible. Permanent volume changes can also occur if a material undergoes 
an irreversible phase transformation. The GeoModel supports plastic volume changes, but 
it does so without explicitly modeling the underlying microphysical mechanisms. None- 
theless, the GeoModel does reflect the influence of micromechanical theory by phenome- 
nologically incorporating plastic volume changes observed in hydrostatic loading. To 
motivate the GeoModel's cap theory, we will explain the equations and their qualitative 
features in the context of porosity, but keep in mind that any other microphysical compac- 
tive mechanisms are equally well accommodated by the phenomenological cap model. 

The cap function f, accounts for the presence of pores in a material by controlling 
where the yield function will intersect the TI axis in compression. This intersection point 
corresponds to J2 = 0 and, because we are considering compressive states, we will 
denote the value of 7, at the intersection point by TI = F, where x/3 is the pressure 
(positive in compression) at which inelastic deformation commences in purely hydrostatic 
loading for a given level of porosity. As voids compress out, the value of X will change, 
as explained later when we discuss the evolution equations for the GeoModel's internal 
state variable K .  Porosity also degrades material shear strength because, recalling 
Eq. (4.28), the cap function effectively reduces the nonporous yield strength, defmed pre- 
viously by the fracture function 4. 

Figure 4.5. GeoModel capfkction 

The GeoModel employs a cap function* defined 

* evaluated in the code by a Pelessone [34] function, E( T , ,  c) = ,-(TI-c)(li, -tI+(T,-c)) 
2 ( X - q 2  
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Neither K nor F are user-supplied material parameters. Instead, these variables are com- 
puted internally within the GeoModel code by enforcing consistency with more intuitive 
user-supplied parameters obtained from hydrostatic testing (see page 55). 

The equation of the elliptical portion of the cap curve is 

The intersection point will be later related to the value of K so that knowledge of the 
internal state variable K will be sufXcient to compute a value for F. For now, while 
describing the geometry of the yield surface, both K and 2 should be regarded as internal 
state variables whose values are computed internally in the GeoModel using evolution 
equations discussed later. Rather than using f, directly, recall that the GeoModel uses the 
function F, that is simply the square of f, given in Eq. (4.30): 

Elastic-plastic coupling. The cap model is used when the material being studied 
contains enough porosity (or highly compliant second phase inclusions) so that inelastic 
volume reduction become possible through irreversible reduction of void space. Intu- 
itively, one might expect the elastic moduli to stiffen as voids collapse, but the material 
might actually become more elastically compliant as shown in Fig. 8.4 (a phenomenon 
that might be explained, for example, by rubblization of a ligament network). Regardless 
of its microphysical origins, the elastic moduli are permitted to vary with plastic strain by 
generalizing the nonlinear elastic moduli expressions in Eqs. (4.9) and (4.10) to 

In the absence of joints, the scale factors fG and fK equal 1.0; otherwise, they are com- 
puted internally within the GeoModel as described in a separate sequel report. In the 
above equations, yGi, is the equivalent plastic shear strain (which, for proportional load- 
ing, is conjugate to the equivalent shear stress, p 2 ) ,  and 8: is the plastic compaction vol- 
ume change. Mathematically, 

Though defined mathematically as stated, the GeoModel computes the plastic volume 
change, 8( indirectly, as explained later in the context of Eq. (4.67). 
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tear m, Ff . In a loose sense, the previous sub-section 
UGSXIUGU LUG UGU~V~UUGI s L ~ J  funcwn f, by considering a material that contained pores, 
but no cracks. In this sub-section, we describe the GeoModel's fracture function f f  by 
considering a material that contains microcracks but noporosity. Numerous microphysical 
analyses (as well as a preponderance of data) suggest that, for microcracked media, the 
onset of "yield" depends on all three stress invariants, which implies that the yield func- 
tion for microcracked media must depend on all three cylindrical Lode coordinates. The 
GeoModel supports this singularly common prediction of microscale damage theory. 
Though they differ in specific details, microphysical damage theories and laboratory 
observations for brittle materials also tend to share the following qualitative features: 

At a given mean stress, yield in triaxial extension (TXE) occurs at a lower stress than 
in triaxial compression (TXC), which implies that octahedral yield profiles are 
generally triangular (or distorted hexagon) in shape, with the triangle apex being 
located on TXC axes, as sketched in Fig. l.O(c) on page 1. 

Brittle materials are very weak in tension. This implies that the meridional yield 
profile will include few if any tensile stress states. Brittle materials are also vulnerable 
to shear cracking at low pressures, but they become able to support increasingly large 
shear stresses as pressure is increased because friction at crack faces helps reduce the 
shear load that must be suffered by the matrix material itself. Thus, in the absence of 
porosity, the meridional profile is expected to monotonically increase with pressure. 

- When microscale theories regard brittle crack fracture to be the only failure 
mechanism, they predict that the material strength (i.e., the Lode radius at failure) will 
increase monotonically with increasing pressure, so that the meridional profile 
expands in an ever-expanding cone-like shape like the limit surface in Fig. 1.1. 
Microphysical idealizations such as Mohr-Coulomb theory predict the meridional 
profile is a straight line whose slope is directly related to the friction coefficient. 
When microscale theories allow for both crack growth and ductility of the matrix 
material, they predict that the increase in strength from friction will continue only 
until ductile yield (at extraordinarily high pressures) becomes more likely; such 
theories correspond to a meridional yield profile that is cone-like at low to moderate 
pressures but asymptotes to a zero slope (like a Von Mises cylinder) at high pressures. 

Given the wide variety of microscale predictions for the meridional profile, the GeoModel 
is equipped with a four-parameter exponential spline that is capable of replicating any of 
these microphysical idealized theories, as well as actual observed material yield and rup- 
ture response at low and moderate pressures (i.e., at pressures well below the cap elastic 
limit) so that observed data primarily reflect microcrack damage rather than combined 
cracking with pore collapse (covered elsewhere in this report). 
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In the meridional plane (i.e., at a given value of the Lode angle), the yield surface 
characterizes the transition boundary for inelastic flow. Stress states that were, at one time, 
outside the yield surface might become realizable through hardening evolution of the yield 
surface. However, the allowable amount of hardening is not unbounded. At some point, 
the material will fail catastrophically (i.e., rupture). Often, the stress at rupture is smaller 
than the peak stress. Stress-strain curves might or might not exhibit post-peak softening, 
depending on whether or not the experiment is stress-controlled or strain-controlled. 

The peak stress (not the stress at rupture) defines the stress-carrying limit of the mate- 
rial. As first mentioned on page 5, the limit surface is the boundary of all stress states 
that the material is capable of supporting. Many of these achievable stress states can be 
reached only through inelastic processes. Appendix A (step 4 on page A-5) describes in 
detail how to determine the limit surface from experimental data. Mathematically, the 
limit surface is characterized by a limit function that is similar in form to the yield func- 
tion. Specifically, the limit surface is defined by F(2)  = 0,  where 

The limit function F(') depends only on 2, not on any internal state variables. A yield 
function f(2, z, K) , on the other hand, depends on the backstress tensor z and on the sca- 
lar internal state variable K . Unlike a yield surface, which can evolve over time because it 
depends on time-varying internal state variables, the limit surface is futed in stress space. 
The yield function is presumed to share some qualitative features with the shear limit sur- 
face, but depends additionally on internal state variables as follows: 

When examining experimental data, it is generally easier to determine the maximum 
limit point than the point at which plasticity first begins. Consequently, the GeoModel 
provides an empirical fitting function Ff for the limit surface in the meridional plane, and 
the initial meridional yield surface is simply Ff - N ,  reduced perhaps by a cap function F, 
if the material initially contains voids. Comparing Eq. (4.38) with (4.37) reveals that the 
yield surface inherits its octahedral profile shape (i.e., its Lode angle dependence) from 
the limit surface. The size of the yield octahedral profile is generally smaller than the limit 
surface profile because of the multiplier (cap) function F, , which represents the effect of 
porosity. The yield surface origin is also offset from the limit surface origin by an amount 
governed by the kinematic hardening backstress tensor 2. The limit surface always has a 
[ I l l ]  symmetry axis passing through the actual (not kinematically shijteed) origin in stress 
space. When kinematic hardening is enabled, the yield surface has a symmetry axis paral- 
lel to [ I l l ]  that is off-set so that it does not pass through the origin. 
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When advancing the solution, the 
initial meridional profile can harden 
kinematically and/or isotropically. The 
equations governing yield surface evo- 
lution are designed to permit only a 
limited amount of hardening. As 
sketched in Fig. 4.6, the initial yield 
surface is permitted to translate upward 
in the meridional plane by no more than 
a user-specified limit N. 

When the yield surface has reached 
the limit surface and when the stress 
itself lies On the limit surface, the mate- shifted down by a user specified amount N .  Kinematic 
rial will begin to soften. At that point, a hardening allows the initial yield surface to translate 

until reaching the ultimate failure surface (at which constitutive-level description of mate- pint, the host code must initiate ''element death" or 
rial response no longer remains possi- perhaps some other strategy for supporting macroscale 

softening. 
ble; the host code must intervene by 
inserting void or by invoking special elements capable of supporting displacement discon- 
tinuities. The limit surface marks the point at which a continuum material model is inade- 
quate to characterize macroscale material response because softening localization 
becomes possible. Before reaching the limit surface, material response is handled entirely 
by the GeoModel. 

The shifted shear limiter function 
FJ(II) - N defines how the shear stress 
at yield varies with pressure for a non- 
porous, but microcracked, material in 
its initial (virgin) state. When this 
microcrack yield function is combined 
with the cap function Fc(II, K) the 
actual shear stress at yield is further 
reduced because porosity makes inelas- 
ticity possible even for purely hydro- 

static compression (i'e'l loading Figure 4.7, Yieldsu$ace evolution both micro- 
the ? I axis). The GeoModel evolves cracking andporosity. For real materials, that contain 
this combined porous yield function in both cracks and voids, it is difficult to identify a single 

envelope for the combmed porous/cracked fracture 
such at way that the yield surface grows yield function 4. However, ultimate failure data can be 
up to the limit surface. The GeoModel mapped Out. 

does not handle material response afier 
reaching the limit surface. Properly, upon receiving a "limit-arrival" signal, the host code 
must, at this time, initiate scale-dependent softening localization through the use of void 
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insertion or special elements that support displacement discontinuities. If the host code 
fails to initiate a softening algorithm, the GeoModel will treat the limit surface as if it were 
a nonhardening yield surface (making its post-peak predictions robust, but undoubtedly 
inaccurate). 

shear limit surface /I i l  

Figure 4.8. Shear limiterfinction (unshifted andshifted). The shifted function should be regarded 
as a nominal shape of the yield surface in the meridional plane, although porosity further lowers and 
distorts the meridional yield profile by multiplying the shifted shear limit function by F, . 

The GeoModel supports modeling microcracked material by providing flexible fitting 
functions that can reproduce octahedral and meridional yield profiles observed for real 
materials. In particular, the shear limit function used in the GeoModel is of the form 

where the ak are user-specified material parameters determined from experimental data as 
explained in Appendix A. The initial (nonporous) meridional yield profile is 

G I , )  = Ff(1,)-N initial yield surface (non-porous). (4.40) 

where N is the user-specified shift factor. Therefore, a l  - N is the zero pressure intercept 
of the nonporous meridional yield surface on the +@ axis. Frequently, N is taken to be 
zero. The shear limiter function, Eq. (4.39), asymptotes to a linear envelope, as indicated 
in Fig. 4.8. To force the material to obey a Von-Mises type yield response at extremely 
high pressures, the slope coefficient a4 is merely set to zero. 

Let us now explain why the shear limiter function has the general shape depicted in 
Fig. 4.8. Then we will list constraints on the model parameters necessary to achieve this 
shape. Brittle materials fail at very low shear stresses when the pressure is low, but they 
are able to sustain higher levels of shear stress without failing if loaded under higher con- 
fining pressures. Consequently, the shear limiter function is expected to increase monoton- 
ically with pressure. Or, since is proportional to the pressure, Ff is expected to 
increase monotonically with 7 1 . Furthermore, a fundamental tenant from plasticity theory 
is that the yield function must be semi-convex, which implies that the second partial deriv- 
ative of F f ( l l )  must be negative or zero. When we speak of the "shear" stress at failure, 
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we are effectively speaking of the value of the Lode radius at failure corresponding to the 
Lode angle for the stress state. For any cylindrical coordinate system - including the 
Lode system - the radius must always be non-negative and therefore F' is defined only 
over the domain for which it yields positive values. Finally, in its virgin state, any material 
should be unfailed at zero stress, which means that the origin must fall below the meridi- 
onal yield profile. All of these physical considerations lead to the following constraints on 
allowable values for the parameters: 

a , - a 3 - N 2 0  unloaded virgin material must be below yield (4 41 J 

a2a3 + a4 2 0 non-negative slope at low pressures (4 42) 

a2 > 0 positive Lode radius (4 43) 

a3 2  0  convexity condition (4 44) 

a4 2  0 .  non-negative slope at high pressures (4 45) 

Specific values for these model parameters are determined from triaxial test data, as 
explained in Fig. 3.3 on page 16 (and in Figs A.4 and A.5 of Appendix A). Sample fits of 
the GeoModel's shear limit function to data can be found in Fig. 8.1 on page 96 and 
Fig. 8.5 on page 99. 

The complete GeoModel yield function. 

Equation (4.28) is the yield criterion. The yield function f must be negative for all 
elastic states (inside the yield surface), zero for all stress states satisfying the yield crite- 
rion (on the yield surface), and positive for all stress states (outside the yield surface) that 
cannot be reached except through an inelastic process -if at all. For computational rea- 
sons, the GeoModel's yield function is based on the square of Eq. (4.28): 

When kinematic hardening is used, the stress invariants, 85 and J$ , are those for the kine- 
matically shifted stress tensor, 5 = $ - a .  Otherwise, when kinematic hardening is dis- 
abled, these are simply the stresf: invariiks. Of course, I ,  is the first invariant I? of the 
stress tensor g . (Since backstress a is deviatoric, IF = 0 ). 

The building block functions f f  and f, are implemented in the GeoModel in a slightly 
altered form by being expressed in terms of the shear limit function Ff and an alternative 
(computationally more efficient) cap function F, : 

@ I I )  = F&I,)-N (4.47) 

The fust of these equations allows the user to specify a maximum amount, N, that the 
yield function is permitted to translate under kinematic hardening. Thus, the function Ff 
can be regarded as a "limit" or "softening" envelope, beyond which stresses can never be 
reached quasistatically (not even via hardening). The second equation recasts the f, func- 
tion as the square root of a different function F, for computational reasons. The second 
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equation also shows explicitly the presence of the intemal state variable K related to the 
isotropic hardening part of the GeoModel associated with void collapse. The internal state 
variable K marks the branch point where combined porous/cracked yield surface deviates 
from the nonporous yield surface. As explained on page 56, this branch point is deter- 
mined internally within the GeoModel in a manner that ensures consistency with mea- 
sured hydrostatic data. 

In terms of the new building block functions, the critical Lode radius in triaxial com- 
pression (TXC), where ~ ( 6 )  = 1 , may be expressed as a function of the Lode axial coor- 
dinate z as 

Plotting rTXC vs. z (at a given value of K ) will produce a geometrically accurate visual- 
ization of the meridional yield profile. Often we instead plot f12 vs. 71 to label the axes 
with more broadly recognized stress measures, but in doing so we are actually showing a 
geometrically distorted view of the yield profile, as explained on page 23. 

Substituting Eqs. (4.47) and (4.48) into (4.46) gives the yield criterion cited at the 
beginning of this section [Eq. 4.181. 

The "J3TYPE" Lode-angle function, I: This section describes available func- 

tional forms for the Lode angle dependence function r ( 6 ) .  This function controls the 

shape of the octahedral yield profile. Since this function controls only the shape, not size, 

of the octahedral profile, its magnitude is inconsequential. The r function is normalized 

to equal unity in TXC (6 = +30°).* At other Lode angles, T(6) > 1 .  Thus, since T(6) 

appears in the yield function as a multiplier of J$ , it acts as a pseudo stress raiser, causing 

yield to occur at smaller values of J5 at Lode angles differing from the fiducial (TXC) 

angle where ~ ( 6 )  = 1. To ensure convexity of the octahedral yield profile, the Lode 

angle function must satisfy 

r f f ( 6 )  + T(6) 2 0 .  (4.50) 

A hallmark trait of rocks and rock-like materials (concrete, ceramics, etc.) is a higher 
strength in triaxial compression than in triaxial tension at any given mean pressure. 
Loosely speaking, this characteristic results from friction at crack faces being able to carry 
a larger portion of the load under compression, therefore sparing the surrounding matrix 
material from having to cany the entire resolved shear stress at crack tips. Classical Mohr- 
Coulomb theory, which is supported by the GeoModel primarily for comparisons with ide- 

* With this normalization, the f f  meridional function then quantifies the pressure-varying size of 
octahedral profiles 
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alized analytical solutions, has an octahedral profile in the shape of a distorted hexagon, 
causing considerable computational difficulties when dealing with the vertices. The com- 
putational attractiveness of removing yield surface corners has motivated numerous pro- 
posals of smoothed three-invariant models for frictional materials [29,28,3,47,7], and 
Lade [30] was among the first efforts to additionally include curvature in the meridional 
plane. According to Boja, et. al. [6], there is evidence that smoothed yield surfaces cap- 
L e  mechanical response more accurately than vertex models, but these authors point to 
no data to back up this claim. The GeoModel presently supports three yield-type options 
(specified by a value of l , 2 ,  or 3 for the user parameter, J3TYPE): 

1.Gudehus (an efficient smoothed profile, with restrictions on convexity) 
2. Willam-Wamke (a relatively inefficient smooth profile with no convexity constraints) 
3.Mohr-Coulomb (distorted hexagon polygon) 

The Gudehus and Willam-Wamke options both correspond to fully differentiable yield 
functions (no vertices). The Mohr-Coulomb option (which is available principally for 
comparisons with analytical solutions) is differentiable everywhye except at triaxial states 
where yield surface vertices require special numerical handling. 

Recognizing logistical constraints of most laboratories, the GeoModel presumes that 
experimental data are available at most only for a limited number of canonical loading 
paths: perhaps triaxial extension (8= -n/6 ), perhaps simple shear (8=0 ), and almost cer- 
tainly triaxial compression (6=n/6). Regardless of which yield-type (Gudehus, Willam- 
Warnke, or Mohr-Coulomb) is selected, the shape of the octahedral yield profile is 
described, in part, by user specification of a parameter yi, equal to the triaxial exten- 
sionlcornpression (TXETTXC) strength ratio at a given pressure. The GeoModel 
presumes that only the size of the octahedral yield profile - not its shape - varies with 
pressure. Consequently, the strength ratio yi equals its user-specified value at all pressures 
and throughout the entirety of the simulation (i.e., yi is a constant, not a time varying 
internal state variable). Appendix A gives instructions for inferring a value of yi from 
experimental data. 

* The GeoModel averages directions on either side of the vertex if the strain rate points within the 
limiting (Koiter) fan of unit normals. If the strain rate points within a sextant of the octahedral 
plane, then the normal in that sextant is used. 
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Precise functional forms of available Lode angle functions are given below: 

1 1. Gudehus: ~ ( 6 )  = 1 + sin38+-(1 -sin381 . 
v I 

7 9 
To satisfy the convexity requirement of Eq. (4.50), the strength ratio must satisfy - < y < - 9 7 '  

2. Willam-Warnke: r(6) = 
4(1 -v2)cos2a* + (214- 1)2 

~ ( 1 -  W*)cosa* + (2I4- 1)J4(1- W2)cos2a* + 5tq2-4ty' 

71 - 1 where a* = - + 8 . The Willam-Wamke option is convex for - 5 y~ < 2 .  
6 2 

3. Mohr-Coulomb: r ( 6 )  = 2-ij (cos6 - -1 . Here, the internal friction 
3 - sin4 d 

angle 4 is the angle of the failure envelope in the Mohr-diagram (tan4 = F ,  where p 

is the coefficient of friction). Within the GeoModel, + is determined from the user- 
1 supplied strength ratio by sin@ = 3 e  . 'Tle Mohr-Coulomb option is convex for - < v 5 2 
2 

These three options are distinguished by how the octahedral yield profile varies in stress space in 
the transition from TXE to simple shear to TXC at a fixed pressure. Graphs of the octahedral yield 
profile corresponding to any of the above options may be constructed by parametrically plotting 

Here, r = -. J2 1 where 6 = 3 ~ r c ~ i n ( s i n 3 @ )  
r(e) ' 

The angle G varies from 0 to 360°, and therefore 8 varies between -30' and +30° 

J3NPE=l J3TYPE=2 J3TYPE=3 
Gudehus Willam-Warnke Mohr-Coulomb COMPARISON 

Figwa 4.9. Ocrahedral J ieldprofles, plotted at al lou~~hlz valazs ofrhe strength ratio. The compari- 
son ~ lo l  corrt.swnds to a strenah ratio of w=0.8. The r(8) function is defined so that all models rerum a 
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As illustrated in Fig. 4.9, the Mohr-Coulomb model (J3TYPE=3) interpolates linearly 
in octahedral stress space, resulting in a distorted hexagon if 1/2 < y~ < 1 , a perfect hexa- 
gon (Tresca) if y= 1 , and a triangle if y~ = 1 /2. For a detailed explanation of the Mohr- 
Coulomb formulation, see Appendix B (page B-22). The Mohr-Coulomb model has yield 
surface vertices at e = h / 6 ,  which results in extra computational effort to determine 
plastic strain rates in triaxial states. The Gudehus and Willam-Warnke options, on the 
other hand, involve no yield surface vertices, which speeds up computations. The Gude- 
hus option is the default because of its computational simplicity, but it supports only a lim- 
ited range of TXEITXC strength ratios, the Willam-Warnke option should be used if a 
rounded but strongly triangular octahedral yield profile is desired. Appendix A (STEP 6) 
provides guidance for selecting the Lode angle option most appropriate for matching 
experimental data. 

The GeoModel subsumes many simpler (classical) models as special cases. For exam- 
ple, if failure is hypothesized to occur when the largest principal stress (or strain) reaches a 
critical value, then the octahedral yield profile will be a triangle. If, on the other hand, fail- 
ure is presumed when the equivalent shear stress reaches a critical value, independent of 
the Lode angle (like a Von Mises or Drucker-Prager criterion), then the octahedral yield 
profile is a circle, which can be modeled with the Gudehus option. As a rule, any classical 
failure criterion that is expressed directly in terms of the principal stresses will imply an 
appropriate J3TYPE option (and an appropriate value for the TXEITXC ratio), but such 
criteria will also imply functional constraints on the meridional failure function fi as well, 
which requires appropriate GeoModel inputs to mimic. Simplified GeoModel input sets, 
corresponding to these classical special-case idealized theories may be found at the end of 
Appendix B. 

Octahedral profile plots like the ones shown in Fig. 4.9 are most illuminating from a 
qualitative perspective. However, for parameterizing the GeoModel to quantitative labora- 
tory data, simple plots of r vs. 8 are more useful. Fig. 4.10 shows the r ( g )  functions for 
each of the J ~ T Y P E  options. In all cases, the lower bound on r is 1.0 at TXC. 

Figure 4 10. Lode anglefinction lfor various y strength ratios) plotted vs. the Lode angle varyingfrom 
-30 degrees (TXE) to +30 degrees (TXC). The larger the value of T, the smaller the radial distance to the 
octahedral yield profile and therefore the smaller the shear failure strength. The Gudehus and Willam- 
Warnke options both predict lowest strength (largest value of r ) at TXE, whereas Mohr-Coulomb theory 
predicts lowest strength at an intermediate Lode angle somewhere between TXE and TXC. For example, 
when = 1 , Mohr-Coulomb theory reduces to Tresca theory and the lowest strength (highest T ) occurs 
at the zero Lode angle (pure shear). 
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Advancing the solution (groundwork discussion) 
So far, we have discussed how some microphysically based, but generally oversimpli- 

fied theories can be used to predict theoretical shapes of yield or failure surfaces. The 
GeoModel implicitly captures microscale phenomena by using macroscale measurable 
variables in phenomenological manner. Direct use of idealized theories would require ini- 
tializing and evolving microscale quantities (such as porosity) that are impractical to mea- 
sure in the laboratory. Therefore, the algebraic structure of functions used in the 
GeoModel is guided by idealized microscale theories, but recast in terms of directly mea- 
surable macroscopic variables. Simplified failure criteria help guide choices for interpola- 
tion fhctions to be fitted to real observed data that likely reflect the specific phenomena 
considered in microscale idealizations and possibly some other "unknown" sources of 
inelastic flow. 

Microphysical theories are also used to guide how the GeoModel treats the partition- 
ing of inelastic flow, once it begins. For example, most theories of inelastic flow (includ- 
ing the GeoModel) presume that the total strain rate i can be partitioned additively as 

where i e  represents the elastic (or recoverable) part of the strain rate and denotes the 

"plastic" part of the strain rate. More correctly, $' represents the inelastic strain rate, 
which reflects contributions from any and all sources of inelastic material response. Many 
classical theories presume that the direction of the plastic strain rate is parallel to the nor- 
mal to the yield surface. In this case, since the normal to the yield surface can be obtained 
by the gradient of the yield function f(a, a, K), the plastic part of the strain rate is pre- 

e B 

sumed to be of the form 

where i is a multiplier (called the consistency parameter) determined by demanding 
that the stress must remain on the yield surface during inelastic loading. The subscripts on 
the partial derivative merely indicate that the internal state variables are held constant. 
When the plastic strain rate direction is determined from the stress gradient of the yield 
function, as shown here, the model is said to be "associative" (to indicate that the plastic 
strain rate is associated with the yield function*). 

* For materials that exhibit elastic-plastic coupling, the terms "associativity" and "normality" can 
have distinct meanings, depending on whether the portion of the total strain rate attributable to rates 
of elastic moduli is absorbed into the elastic strain rate or the inelastic strain rate. When the cou- 
pling terms (from rates of elastic moduli) are incorporated into the inelastic strain rate, normality 
and associativity are not interchangeable terms. If the coupling terms are incorporated into the elas- 
tic strain rate, then associativity and normality are interchangeable, but at the cost that the elastic 
strain rate ceases to be an exact differential with respect to deformation. 
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While the GeoModel does support associativity at user request, many researchers 
report that normality tends to over-predict the amount of volumetric plastic strain [43] .  
Therefore, non-normality is supported in the GeoModel as well. For non-normality the 
user specifies a flow function $(o, a, K) such that* * a 

The plastic strain rate &f;. includes both deviatoric and isotropic parts. If the flow potential 
depends on the first invariant I,, then applying Eq. (3.21),  the volumehic plastic strain 
rate is 

The plastic strain rate points normal to the isosurface I$ = 0 .+ If the flow function is 
associative, then the plastic potential function is identical to the yield function and the 
plastic strain rate will therefore point normal to the yield surface. Flow surface vertices 
reside at points where the flow potential is nondifferentiable, in which case the plastic 
strain rate points within a "cone of limiting normals" (Koiter fan) at the vertex and is 
determined through additionally considering the trial elastic stress rate associated with the 
total strain rate. 

In the GeoModel, the functional form of I$ is the same as that off ,  but with different 
values for material constants. Specifically, the flow potential I$ can be made to differ from 
the yield function by assigning values to a2PF, a4PF, R P F ,  and yPF that differ from their 
counterpart parameters (a2 ,  a4 ,  R, y )  used to define the yield surface. For associativity, 
the potential function parameters should be given values identical to their counterparts in 
the yield function. 

If continuing to apply elasticity theory would result in a predicted stress lying outside 
the yield surface, the governing equations are no longer elastic. At this point, the strain 
rate is decomposed into two parts, elastic plus plastic, as mentioned in Eq. (4.53). The 
stress rate is determined by applying elasticity. That is, 

&, = ~ ~ k l ~ l f i  = cIlkl(Ey -Ef;)3 (4 57) 

* While considerable data does exist to suggest that the inelastic strain rate is not directed normal to 
the yield surface for some materials, such behavior is not well understood. The mathematical valid- 
ity of assuming existence of a non-associated flow potential function bas been called into question 
by Sandler and Puck [40,37], who have demonsmted that such a model is inherently unstable, 
inadmissibly generating unbounded energy from quiescent states. 

t Because the current stress might not reside on the isosurEace 4 = 0, the GeoModel projects the 
stress to the nearest point on this isosurface. The need for such revisions is rarely recognized in 
plasticity programs (and casts doubt on the very notion flow potentials). 
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where CVkl denotes the isotropic tangent elastic stiffness tensor. In Eq. (4.57), our goal is 
to compute the stress rate. The current state is known, and therefore the instantaneous 
stress state and elastic moduli are known. In numerical implementations of constitutive 
models, the strain rate is known (it is provided by the host code after solution of the 
momentum equation). Thus, the only unknown in this equation is the plastic strain rate. 
Equation (4.55) allows us to compute the direction of the plastic strain rate from the 
known instantaneous stress state. Thus, after substitution of Eq. (4.55) into (4.57), the 
stress rate can be written 

Everything on the right-hand-side of this equation is known except the value of the consis- 
tency parameter, i . 

The consistency parameter is obtained by demanding that, not only must the stress be 

on the yield surface during plastic loading Cf= 0), it must also remain on the yield sur- 
face throughout a plastic loading interval. Thus, f = 0 during plastic loading. The yield 

function f depends on the stress, but it also depends on the isotropic hardening internal 

state variable, K and (if applicable) on the kinematic hardening backstress state variable 

tensor all. Thus, the assertion that f = 0 can be written via the chain rule as 

The first term may be simplified through application of Eq. (3.20). The last two terms 
reflect the fact that the yield surface can evolve in shape and translate in stress space dur- 
ing inelastic loading. In what follows, we will present "evolution equations" that govern 
how the state variables change in response to plastic flow. It will be argued that the evolu- 
tion of each internal state variable should be proportional to the plastic strain rate. Equiva- 
lently, these rates must be proportional to our unknown plastic consistency parameter A .  
By substituting Eq. (4.58) and these soon-to-be-derived evolution equations for the inter- 
nal state variables into Eq. (4.59) we will be able to solve Eq. (4.59) for the consistency 
parameter i. Once the consistency parameter is known, it can be substituted into 
Eq. (4.58) to obtain the stress rate, which may then be integrated numerically to update the 
stress. With the consistency parameter i known, then rates of internal state variables 
(ISVs) become known through their evolution equations, allowing the ISVs themselves to 
be updated to the end of the timestep. Thus, the key to advancing the solution is to now 
derive in detail the internal state variable evolution equations. 
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Evolution equations 
Equation (4.59) may be used to determine the plastic consistency parameter k if hard- 

ening evolution laws can be found for which the rate of each internal state variable (K and 
a,,) is proportional to i . Once the plastic consistency parameter is known, the evolution 
laws may be integrated through time to model the time varying hardening evolution of the 
yield surface. 

Initial yield isotropic kinematic compound 
surface hardening hardening hardening 

Figure 4.11. Hardening mechanisms. At a given pressure, isotropic hardening entails an increase in 
size, kinematic hardening translates the yield surface, and compound hardening includes both mecha- 
nisms. Softening corresponds to a yield surface contraction. 

As indicated in Fig. 4.11, isotropic hardening (governed by K and related to void col- 
lapse) causes a change in size of octahedral yield profiles, while kinematic hardening 
(governed by the backstress tensor %) produces a translation of all octahedral yield pro- 
files. In general, both types of hardening can occur simultaneously. 

In this section, we will derive explicit expressions for an isotropic hardening modulus 
h, and a kinematic hardening tensor, ga, such that the evolution of the internal state vari- 
ables may be written in the forms 

and 

Later, substituting these expressions into Eq. (4.59) will lead to an expression for the plas- 
tic consistency parameter i. Once the consistency parameter is known, the above equa- 
tions can be themselves integrated through time to update K and 5. 

Evolution equation for the porosity-related internal state variable, K. 
We begin this section with some background discussion about the meaning of the internal 
state variable K , connecting it to some classical rnicrophysical theories for purely porous 
(non-cracked) materials. The GeoModel's re-interpretation of K for both porous and 
cracked materials will lead ultimately to an evolution law of the desired form, K = h,k 
where h, is called the isotropic hardening modulus. 



GeoModel theory 

In the GeoModel, void collapse commences at different pressures depending on the 
amount of shear stress present. The effect of shear stress on void collapse is characterized 
by the cap function illustrate in Fig. 4.5. Even though void collapse depends on shear 
stress, characterizing this effect requires only specification of two numbers i? and 2 on 
the hydrostat [see Fig. 4.51. In the GeoModel, I? and X are presumed to be interrelated so 
that knowledge of X is sufficient to compute the value of i? . We will discuss this relation- 
ship later. For now, we will focus on how the hydrostat intercept X should vary as porosity 
is reduced. 

If a material is capable of permanent volume change (i.e., if hydrostatic testing exhib- 

its nonzero residual plastic volumetric strain 6$ upon releasing the pressure), then the 

material likely contains voids. The hydrostat intercept X is proportional to the critical 

"elastic limit" pressure required to initiate irreversible void collapse. Therefore, the larger 

the porosity, the smaller X will be. As porosity is crushed out, the hydrostat intercept will 

move to the right so that increasing pressure will be required to continue crushing out the 

pores. Recognizing that sf is an indirect measure of porosity changes, our first goal is to 

describe how the relationship between Ef and X can be inferred from hydrostatic test 

data. Then we will discuss the relationship between i? and X. With these two relationships 

in hand, we will ultimately assert that 

from which substitution of Eq. (4.56), during hydrostatic compression or compaction 
dominated processes, will give the evolution equation in the desired form, 

~ = h , h ,  where h k = 3 -  (3 ($1 - 2. 
During dilatation-dominated processes, a different form is used for hk (see Eq. 4.73). 
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Relationship between k and et, (the hydrostatic crush curve) 
If the matrix material for a porous medium is plastically incompressible, then it can be 

shown [33] that the unloaded porosity II (i.e., the innate porosity at the rest state, not the 
slightly different porosity that reflects reversible elmtic porosity reduction under loading) 
evolves under plastic loading according to 

where II is the void volume in a sample divided by the total volume of the sample (both 
volumes are those in the unloaded state), and E; is the trace of the logarithmic plastic 
strain rate. To second order accuracy, Eq. (4.64) implies that the change in porosity is 
approximately equal to the plastic volumetric strain: 

Considering only hydrostatic loading, early 
research on pore collapse focused on deriving andlor I ', 
experimentally measuring so-called "crush curves" in 
which vorositv in a material is vloned as a function of 
the applied pressure, as in Fig. 4.12. The GeoModel 
uses a similar curve, but inferred directly from hydro- 
static stress-strain data so that porosity measurements 
are not necessary. By using the cap function, the Geo- 
I I - p  

PE 
Model incorporates the results from this specialized ~i~~~~ 4.12, A conventiona~ 
hydrostatic experiment into the general theory in such crush curve (dashed) and state path 

(solid). Porosity is constant until a crit- 
a manner that pore collapse will commence at lower ical elastic limit PE is reached 
pressures in the presence of shear. Recall that the cap Thereafter, porosity is reduced as pres- 
function, loosely speaking, represents material sure is increased. 
response in the absence of microcracks. Porous-only 
theories typically predict meridional cap profiles similar to the GeoModel cap function. 
For example, Gurson [20] reported the following upper-bound yield criterion (expressed 
in terms of Lode cylindrical coordinates): 

where k is a constant (the yield stress of the matrix material) and f ,  is the porosity. Being 
independent of the Lode angle, the Gurson yield function is a circle in the octahedral 
plane; Gurson's meridional profile is compared with the GeoModel's cap function in 
Fig. 4.13 for various porosities. As porosity goes to zero, the meridional profile 
approaches the pressure insensitive Von-Mises profile for the matrix material (in other 
words, in the absence of microcracks, the yield surface becomes a cylinder in stress space 
as the porosity goes to zero). This property holds only in the absence of microcracks. 
When microcracks are later included, the common envelope of yield surfaces will be the 
shearJLacture curve Ff. 
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GeoModel with microcrack 

Figure 4.13. The Gurson theory for porous yield surfaces compared with the GeoModel cap function 
at various values of the internal state variable K Qualitatively, the theories are similar When microc- 
rack effects are included, the GeoModel profiles at various porosities form a pressure-dependent enve- 
lope, as in Fig. l.O(bj on page 1, instead of the horizontal Von-Mises-like envelope shown here. 

Under Gurson theory, the key material properties are microphysical (the yield stress k 
for the matrix material and the porosity f,), which are difficult to measure directly. To 
obtain analytical results, these theories must resort to over simplistic assumptions about 
the matrix material and pore morphology (e.g., Gurson theory presumes perfectly spheri- 
cal voids arranged in a perfectly periodic array). Finally, microphysical theories are typi- 
cally upper bounds, which are of limited use in applications since the tightness of the 
bound is unknown. 

Rather than directly using models like Gurson theory, the GeoModel is guided by the 
general trends they predict. Except at extremely high porosity, the Gurson model predicts 
that the cap surface will be essentially flat for a large range of pressures (2-coordinates). 
The loss in shear strength caused by pores is pronounced over only a small range of pres- 
sures near the hydrostatic limit pressure. This region (beyond which the yield surface 
noticeably branches down to zero) is called the cap region. As seen in Figure 4.13, Gur- 
son theory predicts the yield surface will evolve with porosity in such a manner that the 
cap essentially translates along the pressure (2) axis - the curvature of the cap region 
does not change significantly. The GeoModel supports these general trends by using a 
computationally simpler Rubin-Sandler cap function which is simply constant until a crit- 
ical branch pressure is reached, after which the cap function drops to zero along an ellipse. 
The cap curve evolves by simple translation along the hydrostat without changes in cap 
curvature. 

In the Gurson model, the current location of the translated cap is a function of the 
matrix yield stress and the porosity. Rather than using essentially unknowable matrix 
properties like these as internal state variables, the GeoModel recognizes that the appro- 
priate location for the cap can be determined directly from hydrostatic compression test 



GeoModel theory 

data and the branch point at which shear begins to affect pore collapse is presumed in the 
GeoModel to translate with the hydrostatic limit point. Thus, characterizing how the entire 
cap function evolves in response to plastic loading boils down to characterizing how the 
hydrostat intercept point (i.e., where the cap intersects the z-axis) evolves. 

The GeoModel presumes that it is experimentally tractable to obtain pressure vs. volu- 
metric strain data. If possible, the experiment should be run to the point of total pore col- 
lapse (as in Fig. 3.1 on page 13). The elastic response of the material must be first 
determined by fitting the unloading curve to the nonlinear elasticity fitting function in 
Eq. (4.9). "Copies" of the elastic unloading function may be superimposed anywhere on 
the hydrostatic pressure vs. total strain data. As indicated in Fig. 4.14, the elastic unload- 
ing curves can be used to determine a shift distance that must be applied at any given pres- 
sure to remove the elastic part of the strain. After applying these shifts, the pressure vs. 
total strain plot is converted to a pressure vs. plastic strain plot, called an X-function. The 
X-function in Fig. 4.14 asymptotes to infinity when the plastic volume strain (i.e., the 
change in porosity) has reached its maximum value corresponding to all of the pores hav- 
ing been crushed out. Rotating the X-curve and shifting the origin produces a classical 
crush curve in which porosity is plotted as a function of pressure. The GeoModel never 
explicitly refers to porosity. Instead, the plastic volumetric strain is employed as an indi- 
rect measure of porosity changes. 

copies of the 
Hydrostatic test data,::;: unbding 

J.! 

I 
shii7 distance ; , 

GeoModel X-function 

p = ix I Classical crush curve 

I /  E( initial sl . 

/ 
so = - 3 ~ 3 ~ 1  

Figure 4.14. Relationship between (a) hydrostatic pressure vs. voiumetric strain data, (b) the GeoModel X- 
function and (c) a traditional porosity vs. pressure crush curve Test data are pressure vs. total volumetric 
strain. Once the elastic unloading curves have been parameterized to the GeoModel fining functions, the elastic 
strain at each pressure value may be subtracted fiom the total strain to generate the X-function. This function as- 
ymptotes to a limit value for the plastic swain when all voids have crushed out (and plastic volume changes there- 
fore become negligible). The limit strain is approximately the initial porosity in the material. Rotating the X-plot 
90" and moving the origin as shown will produce a traditional porosity vs. pressure crush curve. 

Parameterizing the GeoModel so that it will adequately model the changes in the yield 
surface resulting from pore collapse requires converting hydrostatic pressure vs. volumet- 
ric strain data as illustrated in Fig. 4.14 to obtain a classical porosity vs. pressure crush 
curve in which the porosity is plotted as a function of the pressure p . Specialized parame- 
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terization software is available from the model developers to perform this conversion task 
and to fit the resulting crush curve to an exponential spline (see Appendix A). The plastic 
volume strain of a virgin (pre-deformation) material is zero. Therefore the user-specified 
parameter p, is approximately equal to the initial porosity in the material. As pressure is 
increased frim zero, the crush curve [Fig. 4.14(c)] shows that the porosity remains 
unchanged for a while until an elastic limit pressure PE is reached. Continuing to apply 
increasing pressure beyond this elastic limit results in irreversible pore collapse and there- 
fore reduction in porosity. The GeoModel allows fitting the post yielding part of the crush 

Here, po , p ,  , p, , and p3 are fitting constants. Referring to the porosity vs. pressure crush 
curve, these parameters are interpreted physically as follows: 

curve according to the crush curve spline formula, 

* po equals -3ijE, where FE is the elastic limit pressure at the initial onset of pore 

-@I +P&S 

collapse. 

, where = x-jjO = 30, - PE). (4.67) 

= p1  equals IsOI/(3p3), where so is the initial slope of the porosity vs. pressure crush 

curve (see Fig. 4.14). 
pZ is an optional fitting parameter that may be used if a measured crush curve has an 
inflection point (i.e., initially concave down, transitioning to concave up at high 
pressures). 
p3 is the maximum achievable plastic volume strain, which corresponds 
approximately to the initial porosity in the material. Complete crushing out of all 
pores in the material is recognized in the hydrostatic pressure vs. total strain curve if 
the elastic release curve is tangent to the loading curve. 

Equation (4.67) coincides with hydrostatic test data only during pore collapse. During the 
initial elastic loading, Eq. 4.67 describes the dashed line in Fig. 4.14, which is not required 
to coincide with the data. At pressures above the elastic limit ( E  > 0), Eq. 4.67 may be 
used to compute the plastic volumetric strain according to 

-@, +P,EE] - - 
EP = p3[ l  - e  v 

where - = 3 @ - P  0 E) (4.68) 

This relationship may be differentiated to obtain the derivative d k / d ~ $  needed in 
Eq. (4.63). Now all we need to compute the isotropic hardening modulus h, is the rela- 
tionship between K and X  so that we can substitute the derivative d d d X  into Eq. (4.63). 
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Relationship between K and k (cap curvature model) 
For a purely porous material, Fig. 4.13 

suggests that ii is simply smaller than X by a 
4 

fixed amount. 'Therefore, knowing X is sufi- 
cient to determine 2. For a material that con- 
tains both pores and microcracks, the 1/ " \:, 
relationship between the branch point 2 and && " 

X is similar, but influenced by the pressure 
sensitivity of the fracture function. Recall / I 
that the continuously differentiable meridi- - 

onal yield function f is constructed by multi- / 

plying a function f f  times a cap porosity I 
function f,. Qualitatively, the fracture func- 
tion f f  marks the onset of shear crack growth, 
with significant pressure strengthening being 
the result of friction at crack faces. This yield 

1 _\ il 
BRANCH 

envelope function f f  might be lower than the 'POINT 

ultimate shear limit envelope Ff if kinematic 
hardening is allowed. The cap porosity func- 
tion f, intersects the hydrostat (7 1 -axis) at - X, marking the point at which pressure I X 
under hydrostatic loading would be sufi- I 
cient to induce pore collapse. Variation of the I 

cap function with shear stress (along the 
ellipse) merely reflects an expectation that 
pore collapse will commence at a lower pres- 
sure than the hydrostatic limit when shear 
assisted. 

Isotropic hardening in the GeoModel is 
cast in terms of the branch point located at 

b 
I, = u (or, equivalently, 71 = K)  where the 
yield function f begins to deviate from the - 
envelope function f f .  The height of the K 

branch point b in Fig. 4.15 is considerably 
lower than the peak height B . 

Between the branch and the peak, mate- 
rial response begins to be influenced by 
porosity, but is still shear crack (dilatation) 
dominated, and therefore plastic volume 

Figure 4.15. Confinuously diffentiable Geo- 
increases because of crack bulking. Between Model yieldfunction and some characteristic di- 
the and the hydrostatic limit point X, mensions. The ratio a / b  is usually largerthan 1, 

whereas A / B  is usually smaller than 1 .  The bold 
porosity dominates the material response, blue curve is F,&. The dashed yield curve is ff fe 
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resulting in plastic volume compaction (from pore collapse). At the critical zero-slope 
point on the yield surface, material response is influenced equally by both cracks and 
pores so that so that no net volume change is apparent at the macroscale. 

Two-surface models [e.g., Ref. 411 typically construct and evolve the yield function by 
making direct reference to the ratio A / B ,  which (referring to Fig. 4.15) is typically 
smaller than unity. The geomodel, however, constructs and evolves its yield function 
based on the ratio R = a / b  , which is typically larger than unity. This distinction between 
the two ratios is important to emphasize in publications and presentations to avoid confu- 
sion between the GeoModel and conventional two-surface models. 

Guided both by trends in observed data and by microphysical theories (e.g., Fig. 4.13), 
the GeoModel presumes that hardening proceeds such that the ratio between the distances 
a and b labeled in Fig. 4.15 remains always equal to a user-specified constant R . The axis 
labels in Fig. 4.15 indicate that a = X- K and b = F ~ K )  . Therefore the c a p  eccen- 
tricity (also called the cap s h a p e  parameter) R = a / b  is given by 
R = (X- K)/Ff(u) or, solving for X, 

When written without the overbar denoting the negative, this equation becomes 

(4.70) 

This expression is evaluated internally within the GeoModel coding to determine X as a 
function of the internal state variable K .  Differentiating both sides of this equation with 
respect to K gives 

The K evolution law 

Substituting Eq. (4.71) into (4.63) gives 

where the "isotropic hardening parameter" h,  is 

compad~on-dammated dllatatlon-dommated 
hardening modulus hardening modulus 

dX/def  
hK = min[ 3@( a1, 1 - R F ~ ( K  $ , (%?( 1 - R F  d X / 7 :  K $ ] (4.73) 
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subject to the constraint, 0 > h, > -m .* For 
numerical convenience, this constraint is 
replaced by 0 > h, > -0.01 b i  , where bo is 
the initial bulk modulus. The derivative 
dX/d&{ is found from crush-curve data fit- 
ted to Eq. (4.68). 

ELASTIC DOMAIN 
The fnst term in the minimum function of 

2 
Eq. (4.73) dominates when the stress state 

Figwe 4.16. Meridional plane in which the falls on the "compaction dominated" part of ofthe stress deviator is plotted 
the yield surface, labeled in Fig. 4.16, while againsf -2 (which is proportional to the pres- 

sure 9 ' 7  The yield surface (solid) demarks 
the second term dominates in the dilatation the onset of inelastic flow, Under continued in- 
regime. The second term in the minimum elastic loading, the yield surface hardens (ex- 

pands andlor mslates) toward the shear limit function is guided by trends in observed data. (dashed), 
Even under monotonic loading, the rela- 

tive position of the stress state on the yield surface can move from compaction to dilata- 
tion regimes. Figure 8.6(a) (page 100) shows a triaxial compression load path (angled red 
arrow) that falls initially on the porosity (compaction) dominated portion of the yield sur- 
face, which therefore results in plastic volume reduction and an isotropic expansion of the 
yield surface. Compaction from void collapse and dilatation from crack bulking are rela- 
tively balanced in the vicinity of the critical point. After the stress passes through the crit- 
ical point, the hardening modulus h,  in Eq. (4.73) transitions from its compaction- 
dominated value to the dilatation-dominated value. 

Evolution equation for the kinematic hardening backstress tensor. The 
GeoModel supports kinematic hardening, but is otherwise isotropic. Kinematic hardening 
entails using a shifted stress tensor 5 = $ - 5 in the yield function instead of the actual 
stress. The deviatoric tensor internal state variable 5 is called the backstress, and it is 
computed using evolution equations described here. 

Recall that the yield criterion with kinematic hardening is given by 

where J5 is the second invariant of the shifted stress, 

The backstress tensor (E. is initialized to zero. Upon onset of yielding, the backstress 
evolves in propoaion to the deviatoric part of the plastic strain rate: 

* When using the overbar to denote the negative, Eq. (4.72) may be written k = irk$ subject to 
0 < hk < m .  Thus, since y is never negative, this constraint ensures that R will never decrease. 
Physically, this is equivalent to demanding that porosity must always decrease. Increases in poros- 
ity (i.e., softening) cannot be accommodated at the material constitutive level - to avoid mesh 
dependencies of the solution, softening must be handled at the field scale by the host code. 
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where T p  - = dev$ = dev 

Hence, comparing with Eq. (4.61), the kinematic hardening modulus tensor is given by 

where H is a material constant and Ga(a) is a scalar-valued decay function designed to 
limit the kinematic hardening such that Ga + 0 as 5 approaches the shear limit surface, 
Ff(1,). Since the yield function itself is defined in terms of FJjI,) - N, the maximum 
kinematic translation that can occur before reaching the limit surface equals the model off- 
set parameter N. The GeoModel uses the Ga function to "slow down" the rate of harden- 
ing as the limit surface is approached so that Fa will equal zero upon reaching the limit 
surface. Specifically, the GeoModel uses the following decay function: 

4% Ga(g) = 1 - - 1 
N '  

where JF = -trc2.  
2 

Kinematic hardening causes the octahedral profile to translate so that it no longer remains 
centered at the origin (See Fig. 4.1 1). Consequently, the yield surface will appear to have 
translated upward in the meridional plane that contains the backstress (see Fig. 4.17). The 
translation distance equals and Eq. (4.79) prevents this distance from ever exceeding 
the user-specified offset limit N. Of course, on the meridional plane perpendicular to the 
backstress, the meridional profile will not appear to have translated. 

Figure 4 
stress. . 
stress sp 
shows nc 

17. The effect of kinematic hardening on the meridional plane that contains the back- 
4ccording to the hardening rule, this meridional profile is permitted to translate in deviatoric 
ace by as much as a shift factor N .  The meridional plane perpendicular to the back stress 
)translation at all. 
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Advancing the solution (final step, consistency parameter) 
Recall from Eq. (4.59) that the consistency parameter i is determined from the con- 

sistency condition, f = 0, applied during plastic loading intervals. Specifically, 

Recall the key equations governing the rates of the field and internal state variables: 

With these, the consistency condition in Eq. (4.80) becomes 

&,. ( )  + H h i  = 0 
doij y k ~  r~ aolj aa, v a~ 

rrom which it follows that 

where 

Formal equivalence with oblique return algorithms. With the plastic parame- 
ter determined from Eq. (4.83), the stress rate may be written 

where 

OG: = C.. ; U qkl kl (trial elastic stress rate) (4.86) 

In the GeoModel, the stress state is updated through direct integration of the GeoModel 
plasticity equations. However, for our upcoming discussion of rate dependence, it is 
important to understand that the update formula in Eq. (4.85) implies that the stress may 
be alternatively integrated through time by first computing a trial elastic stress $at the 
end of the timestep which may be projected back to the yield surface (which itself has 
been updated to the end of the step) to determine the final stress. If the trial elastic stress 



falls outside the yield surface, plastic flow must have occurred during at least part of the 
solution interval. Therefore, after evolving the internal state variables appropriately to 
update the yield surface to the end of the step, it can be shown that Eq. (4.85) implies that 
the stress at the end of the step may be found by obliquely projecting the trial elastic stress 
back onto the updated yield surface. Because 4 is not generally proportional to B,  the 
projection is oblique to the yield surface even if plastic normality is used. As expla&ed in 
Chapter 5, the trial stress is projected only partly back to the yield surface whenever rate 
sensitivity is applied. 

Quasistatic inelastic tangent stiffness tensor. For any constitutive model, the 
inelastic tangent stiffness TVkl is a fourth-order tensor formally equal to the derivative of 
the stress rate with respect to the total strain rate. That is, 

01j = T,jkj~ki. (4 88) 

Therefore, comparing this equation with Eqs. (4.85) and (4.87), the GeoModel's tangent 
stiffness is given by 

Tijkl = Cijkl- iPljQij I quasistatic tangent modulus 

The tangent stiffness is major symmetric (Tokl = TklJj) only for associative models 

(f = 4) .* 
Stability issues. The last term in Eq. (4.89) is subtracted from the positive-definite 
elastic stiffness Cuk1, so inelastic flow can potentially make the inelastic tangent stifhess 
tensor TJjkl non-invertible. In other words, the tangent stiffness tensor might eventually 
have a zero eigenvalue, marking the onset of softening (yield surface contraction). 
Whether or not the occurrence of a zero tangent stiffness results in stress-strain softening 
(i.e., a change from a positive to negative slope in a stress-strain plot) depends on the load- 
ing direction. For example, if the strain rate is orthogonal to the null space of a non-invert- 
ible tangent stiffness tensor, then no stress-strain softening will be observed and no change 
in type of the momentum equation will occur even if the yield surface is contracting. 

A standing wave (i.e., a non-moving discontinuity in displacement or velocity) is 
another form of material instability that has been extensively studied in the literature. The 
acoustic wave speeds (i.e., the speed at which inelastic perturbations can propagate 
through a material in the direction of a given unit vector n )  are given by c = mP, 
where x denotes the eigenvalues of the second-order acoustic tensor, 

* Actually, equivalence of associativity and normality holds only in the absence of elastic-plastic 
coupling. When elastic moduli can change in response to plastic loading, an associative (f = 4) 
model will not exhibit normality and will not have a major-symmetric tangent stiffness [9]. 
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Thus, for the GeoModel, substituting Eq. (4.89) into (4.90): 

where 

aYk = niCijklnl = the elastic acoustic tensor 

and 

If the plastic tangent stiffness Tijkl is not major symmetric, then the acoustic tensor will 
not be symmetric. In this case, not only are standing waves (x = 0) possible, but so are 
imaginary wave speeds (flutter instability). A complete spectral analysis of acoustic ten- 
sors of the form in Eq. (4.91) is provided in Ref. [9] where every possible ordering of the 
inelastic wave speeds relative to elastic wave speeds is derived and where every possible 
acoustic eigenvector is presented. Physically, the eigenvector characterizes the velocity 
jump direction. If the eigenvector is parallel to the wave propagation direction 9 ,  then the 
wave is a compression wave. If the eigenvector is perpendicular to 9 , the wave is a shear 
wave. For elastic materials, these are the only two possible kinds of waves, but for inelas- 
tic tangent tensors of the form (4.89), other modes are possible. 

For rate dependent materials, the question of material stability must be examined anew 
because, as explained in the next section, the dynamic tangent stiffness tensor is generally 
stzffer than the quasistatic tangent stiffness. 
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5. Rate Dependence 

The governing equations discussed so far are rate independent, so they only apply for 
quasistatic loading. Under high strain rates, the elastic response of a material occurs 
almost instantaneously, but the physical mechanisms that give rise to observable inelastic- 
ity can not proceed instantaneously. Materials have inherent "viscosity" or "internal resis- 
tance" that retards the rate at which damage can accumulate. For example, cracks grow at 
a finite speed - they cannot change instantaneously from one size to another. If a stress 
level is high enough to induce crack growth, then the quasistatic solution for material 
damage will not be realized unless sufficient time elapses to permit the cracks to change 
length. Likewise, void collapse takes finite time. Simple inertia also contributes to rate 
dependence. During the time that cracks are growing towards the quasistatic solution, the 
stress will drop down toward the quasistatic solution. Until sufficient time has elapsed for 
the material to equilibrate, the stress state will lie outside the yield surface. If the applied 
strain is released any time during this damage accumulation period, then the total damage 
will be ultimately lower than it would have been under quasistatic loading through the 
same strain path. 

Viscoplasticity model overview 

The evolution of the yield function, and the very character of the inelastic deformation 
itself, can be dramatically altered by the rate at which loads are applied. In the limit of 
extraordinarily high load rates (as near the source of an explosion), material response is 
essentially elastic because insufficient time exists for plasticity to fully develop. At high 
strain rates, the equation of state (i.e., the pressure-volume part of the elasticity) plays the 
predominant role in material response. To allow for rate dependence, an overstress model 
is used. The user specifies a "relaxation" parameter governing the characteristic speed at 
which the material can respond inelastically. If the loads are applied over a time interval 
that is significantly smaller than the characteristic response time, then essentially no 
inelasticity will occur during that interval. If, on the other hand, the loads are applied 
slowly (as in quasistatic testing), then inelasticity will be evident. 

The GeoModel uses a generalized Duvaut-Lions [13] rate-sensitive formulation, illus- 
trated qualitatively in Fig. 5.1. Consider a loading increment At during which the strain 
increment is prescribed to be A E .  Two limiting solutions for the updated stress can be 

* 

readily computed: (I) the low-rate (quasistatic) solution oL which is found by solving the 
rate-independent GeoModel equations described previously, and (2) the high-rate solution 
yH corresponding to insufficient time for any plastic damage to develop so that it is sim- 
ply the trial elastic stress. As explained below and illustrated in Fig. 5.1, the Duvaut-Lions 
rate formulation is based on a viscoplastic differential equation, the solution of which 



shows that the updated stress will be (approximately) a linear interpolation between the 
low-rate quasistatic plasticity solution cL and the high-rate purely elastic solution cH.  In 
other words, there exists a scalar q between 0 and 1 that depends on the strain rate such 
that 

Figure 5.1. Rate dependence For a given strain increment, two limiting solutions can be readily 
found. The "low rate" solution ZL , which lies on the yield surface, is the solution to the rate independent 
GeoModel governing equations. The high rate solution ZH is simply the trial elastic stress. The actual u p  
dated rate-dependent viscoplastic stress 2 falls between these two limiting case solutions so that 
Z = Z L  + q(:H- ZL), The inset graph shows how the scale factor q varies with the loading interval. If the 
loading interval is long relative to the material's characteristic response time 7 ,  then sufficient time exists 
to fully develop plastic response and the updated solution therefore coincides with the quasistatic solution 
Z L .  If the loading interval is considerably shorter than the material's characteristic response time, then the 
solution will be the high-rate elastic solution. 
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The update for internal state variables is structured similarly, but uses a somewhat differ- 
ent weighting factor, as explained below. For both the stress and internal state variable 
updates, the interpolation factor 11 varies from 1 at high strain rates (when At is small) to 
0 at low strain rates (when At is large), as illustrated in the graph inset of Fig. 5.1, where 
the abscissa is normalized by a factor T called the material's "characteristic" response 
time. At the end of this chapter, we will describe how the GeoModel assigns a value for 
the characteristic material response time T .  Incidentally, for simplicity, Fig. 5.1 shows a 
stationary yield surface. In general, the yield surface will evolve in size or translate 
according to the hardening rules described earlier. 

A time interval At is deemed to be "long" if At n T. A time interval is "short" if 
At (( r . Soon we solve the viscoplastic equations to prove that, if the initial stress is on the 
yield surface, then high-rate scale factor internal state variables (ISVs) is 

This is also the rate factor for the stress at the onset ofyielding when (I and (Ilow coincide. 
At the end of a viscoplastic step, the final stress state will not lie on the yield surface. We 
will prove that, in this case, the scale factor is smaller than the value cited in Eq. (5.2). 
Consequently, the "attraction" that the dynamic stress has for the quasistatic solution 
increases somewhat as the stress moves farther from the yield surface. 

Referring to Fig. 5.2, the 11 weighting factor is large when the time step is signifi- 
cantly smaller than the characteristic time required for the material's plasticity solution to 
develop. Effects of plasticity are apparent in the GeoModel only when the time interval is 
long or when the characteristic material response time is short so that q will be small. In 
this case, according to Eq. (5.1), the solution will be near the quasistatic (low-rate) solu- 
tion (IL . 

Figure 5.1 illustrates that the viscoplastic solution will follow a trajectory that is simi- 
lar to the quasistatic solution except displaced from the yield surface. Consequently, 
experimental data for high-rate loading scenarios have the appearance of inducing a 
higher yield stress in the material. Unlike some plasticity models, the GeoModel does not 
alter the material yield stress as a function of strain rate. Instead, the overstress model 
accomplishes the same effect in a much more physically justifiable manner. 
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Viscoplasticity model derivation 
In the context of viscoplasticity, an inviscid (rate-independent) solution crL for the 

stress is presumed to exist. Likewise inviscid (rate-independent) solutions qL are pre- 
sumed available for the internal state variables, here denoted collectively by "q". These 
limiting case solutions are merely the solutions of the rate-independent GeoModel equa- 
tions described in earlier chapters. Viscous effects are incorporated by presuming that the 
strain rate is decomposed as the sum of an elastic part ie plus a viscoplastic part kvp : 

The viscoplastic part of the strain rate includes both the usual plastic strain rate from the 
quasistatic (low-rate) solution as well as additional (retarding) contributions resulting 
from viscosity. The viscoplastic strain rate is governed by 

The fourth-order tensor C& is the elastic compliance (inverse of the stiffness), .c is a 
material parameter called the relaxation time, and is the rate-independent stress solu- 

tion whose value at the beginning of a time increment At is tracked as an extra state vari- 
able (called QSSIGXX, QSSIGYY, etc. in Appendix B).* At the end of the time interval, 

?low - ultimately has the value cL, - which is found by integrating the rate-independent Geo- 
Model equations from the earlier chapters. During viscoplastic loading, each internal state 
variable q is presumed to vary according to 

Here qlow is the value of the internal state variable (K or (r. ) throughout the time interval, - 
initially being equal to qo at the beginning of the step, and (through application of the 
rate-independent GeoModel) ultimately equalling the low rate solution qL at the end of 
the step. Like the inviscid quasistatic stress, the inviscid quasistatic ISVs (QSEL, QSB- 
SXX, etc.) must be tracked as distinct extra state variables. 

The stress rate is, as usual, given by the elastic stiffness acting on the elastic part of the 
strain rate: bij = cijklEe. Thus, using Eq. (5.3), the stress rate may be written 

Here, bf;igh is the elastic trial stress rate, and therefore is the time varying elastic 
trial stress that ultimately equals the high-rate solution o{ at the end of the step. 

* The '"ow" or "inviscid" stresses must be tracked independently. They cannot be inferred by pro. 
jecting the actual stress onto the yield surface. Attempting to do so causes undesirable results in 
rate-dependent load-unload cycles. 
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Eq. (5.6) is a set of linear first-order differential equations which may be integrated 
exactly over a time step with the use of integrating factors [19] provided that o p  is 
known as afunction of time throughout the time step. In principal, we would need to solve 
the rate independent equations analytically over the entire time step to integrate Eq. (5.6) 
exactly, but this is not tractable in practice. In what follows, we will describe how the time 
histo~y of o p  can instead be well approximated over the step. First, let's introduce a 
change of variables by defining 

u . = o  -0  high 
V lJ rJ ' (5 7) 

so that the governing equation for the stress rate may be written 

1 high - ,$ow 
ill = - ; ( u ~  + olj lJ ) .  (5 el 

This equation can be solved exactly if the time variation of ghlgh - glow is known 

throughout the time step. Time variation of glow is governed by known quasistatic rate 

equations. Consequently, the dynamic accuracy can be maximized by presuming that the 

rate of $OW is constant over the step so that $OW itself is approximated to vary linearly 

over the step. 

Recall that the final solution gH- zL can be presumed known at the end of the step 
because gH is found by integrating the elasticity equations and gL is found separately by 
integrating the inviscid quasistatic plasticity equations. Similarly, the difference 

- IFW is known at the beginning of the step because is 9 at the beginning of 
0 

the step and gfPW is retrieved from the saved quasistatic stress extra state variable array. 
The high-rate stress g h i @  is simply the elastic trial stress. Thus, it varies linearly through 
time from its initial to final value (with small higher-order nonlinearities if the strain rate 
and/or elastic moduli are not constant). The quasistatic stress rate $ow is an oblique pro- 
jection of the trial stress rate onto the yield surface, so glow also varies approximately lin- 
early through time (with nonlinear effects from flow potential surface curvature being 
higher order). Thus, we may call on the mean value theorem to assert that 

t - t  
( ~ h i g h  - ~ ' O W )  = ( In -  I~)(-$) + 

I I 

With this approximation, the ODE in Eq. (5.8) may be solved exactly. Since yFgh equals 
at the beginning of the step, the initial condition is that u ,  = 0 when t = t o .  Integrat- I 0  

ing the ODE, evaluating the result at the end of the step, and applying the definition of ulj 
to obtain the updated solution for a, eventually gives 

where 

1 - e - A f / r  
RH = and h = e - A t / ~  -R  H'  

A t / z  
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With the presence of the last term, the solution in Eq. (5.10) is not precisely of the form 
shown in Eq. (5.1) unless !$gh = Q?. As seen in timestep "n-1" in Fig. 5.1, the initial 
values for the "high" and "low" rate paths coincide only at the onset of plasticity. 
Eq. (5.10) can be put into the form of Eq. (5.1) if we approximate that $gh - olow "0 ispar- 
allel to (EH- 2 L .  With this assumption, Eq. (5.1) becomes 

where 1.01 

q = RH+rhY (5.1 3) 

and 

p o " ' "  - '2q 
r = (5.14) At - 

~ ~ ? H - ' 2 L ~ ~  . 2 4 6 8 l o z  
Fig. 5.2 shows how the weighting factor q var- 

Figure 5.2. High-rate weighting factor ies with the stress difference ratio Y appearing in at ,ious initial states, The largest weight 
the last term of Eq. (5.13). For plastic loading, Y factor (upper red curve) applies when the 

initial stress is on the yield surface. The fac- equals 0 only when the initial state is on the yield tor is lower if the initial state is already ,,g 
surface. Otherwise, beyond this onset of yielding the yield surface at the beginning of the step. 

moment, Y increases, eventually asymptoting 
to 1 under steady strain rates. The lowering of the rate factor 11 caused by nonzero Y 
makes the dynamic stress more strongly attracted to the quasistatic solution as the distance 
between them increases. 

For the rate dependent update of internal state variables, Eq. (5.5) can be integrated 
analytically if the time variation of q over the step is approximated by 
q ' ~ w  = 

q~ + (qL - qH)(t - t,)/At. The resulting solution for q is 

= 4~ + R ~ ( q . v - 4 ~ )  3 n (5.15) 

where the high-rate weight factor RH is the same as in Eq. (5.11). The weight factor RH 
for the internal state variables differs from the weight factor q for the stress because the 
two problems have different initial conditions. Recall that the material responds elastically 
at extremely high rates. Hence, because the intemal state variables can evolve only when 
plasticity occurs, the high rate solution qH for any intemal state variables is simply its 
value at the beginning of the time increment. 

Limiting case. If a strain rate is held constant for a long enough period then the differ- 
ence between the dynamic stress o,, and the inviscid stress ofj will sometimes reach a 
steady-state value in the laboratory. In this case, the equations outlined in this chapter 
imply that this steady state stress difference is given by 
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where x , PIJ, and Q ,  are defined in Eq. (4.89). 

In the very simplified context of non-hardening Von-Mises plasticity, this equation 
becomes 

- -  . 
(J . - oL = (2Gr)SvSmn~,, (5.1 7) 

?I v 
where G is the shear modulus and Sg is a unit tensor in the direction of the stress deviator. 
For example, 

for simple shear 

for uniaxial (axisymmetric) loading 

iherefore, in the case of simple shear for non-hardening Von Mises plasticity, Eq. (5.17) 
implies that 

o12 - of2 = ~ G Z E ~ ~  for simple shear (5.20) 

' = yiill for uniaxial (axisymmetric) loading 0 1 1  - 0 1 1  (5 21) 

These simple analytical results can be used to trend-test the numerical implementation of 
rate sensitivity, as described in Fig. 5.3. 

Figure 5.3 Rate dependence in uniaxial strain loading of a nonhmdeningpressure-insensitive 
material. In the stress-srrain plot, the normalizer amL is the quasistatic uniaxial yield stress. The 
dynamic (black) stress-strain plot exhibits an apparent increase in strength relative to the quasis- 
tatic (dashed blue) solution. This rate-induced stress difference is plotted in the second figure 
(normalized by the peak value), where the dashed red l i e  shows the analytical asymptote enve- 
lope from Eq. (5.21). This calculation included a lower strength in tension (interestingly, the dif- 
ference between dynamic and quasistatic strengths is higher in tension). 
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Assigning a value to the characteristic material time 
The GeoModel permits the user to control the value of the characteristic time through the 
use of up to sevenpositive-valued parameters, T I  through T7 which are employed in the 
code to assign a value of the characteristic time according to the following formulas: 

AE"~"> if EC < o 
T = { , (5.22) 

T$(iequiV)(l + ( < T ~ ( ? ~  + T ~ ) > ) ~ )  if E; > 0 and 1 1  2 -T5 

where 

0  i f  x S O  and ex> = 
x  i f  x > O  

(McCauley brackets). 

If a constant characteristic time r is desired, then set T,  = T, and all other T's to zero. 
Fig. 5.3 used a constant T, as did the simple-shear rate-dependent simulation shown in 
Fig. 7.8(b) on page 92. 

Suitability of the GeoModel's overstress rate-dependence theory for predicting labora- 
tory data is illustrated in Fig. 8.9 on page 103. 
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Thermodynamics considerations 

At present, the GeoModel's equation of state is incorporated within the purely 
mechanical model - it contains no thermal terms (i.e., terms involving material proper- 
ties such as the specific heat and Griineisen parameter). Nonetheless, the GeoModel's 
nonlinear elasticity model has been successfully fitted to Hugoniot shock data. How can 
this be? In thermodynamics, pressure is typically expressed as a function of two variables: 
the density p and a thermal variable (usually temperature or entropy). For example, 

In thermodynamics, you can always use a purely mechanical equation of state if you 
restrict the class of allowable problems so that one or two of the thermal variables are 
inter-related in some known way. If, for example, you restrict attention to isothermal load- 
ing, then the pressure will be expressible in the form p = F(p) , where the "material con- 
stants" in the equation (such as the bulk modulus) must be set to their isothermal values. 
Likewise, if you can consider only adiabatic loading, then the pressure is again expressible 
as a mechanical function if the parameters such as the bulk modulus are set to their adia- 
batic values. 

The GeoModel is parameterized at low pressure and low strain rates under isothermal 
conditions (room temperature), but at high pressures and high strain rates under adiabatic 
conditions. Thus, the non-linear fit for the bulk modulus may be regarded to transition 
from isothermal to adiabatic properties as pressure is increased. This implies a vague 
"domain of applicability" for the mechanical GeoModel. Specifically, the model may be 
used for problems where low pressure regions are also isothermal (and near room temper- 
ature) and high pressure regions are adiabatic (high rate). Without information on the ther- 
mal properties of the material, the validity of the mechanical GeoModel in other domains 
cannot be ascertained. In particular, using the model in high-ratellow-pressure applica- 
tions (acoustics) or low-ratehigh pressure problems (e.g., creep of underground salt bod- 
ies) will possibly require re-parameterization. 

A good method for gauging the degree to which the mechanical GeoModel can be 
applied in broad thermodynamic domains would be to compare isothermally measured 
elastic moduli (inferred by the slope of a stress strain curve) with acoustically measured 
moduli, which are the low-pressure isentropic elastic constants. The difference between 
the isothermal and isentropic bulk modulus (at a given pressure) is proportional to the 
square of the thermal expansion coefficient divided by the specific heat. Thus, if no differ- 
ences are observed between the isothermal and isentropic moduli at a given pressure, the 
domain of applicability of the purely mechanical model is likely broad. 
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6. GeoModel Numerical Solution scheme 

Aside from kinematic hardening, the GeoModel is isotropic and therefore the yield 

function depends only on principal stresses. An eigenvalue analysis is avoided by casting 

the yield function in terms of stress invariants. The principal stress directions (eigenvec- 

tors) are not needed to evaluate the yield function. For any isotropic elasticity model, how- 

ever, evolution of plastic response must allow for rotation of principal stress directions 

caused by the elastic portion of the loading. Thus, the governing equations must be cast in 

incremental tensorial form, requiring all six independent components of symmetric ten- 

sors to be passed to the model. Careful numerical integration schemes [6] are required to 

ensure accuracy and convergence. 

This chapter begins with a description of how the GeoModel is to be used within a 

host (finite-element) code, followed by a discussion of the influence of material softening 

onjeld-scale stability (i.e., stability of the spatial finite-element solution, not stability of 

the GeoModel's internal time integration algorithm). Next, GeoModel installation instruc- 

tions are provided that describe the public* subroutines and memory requirements. Fol- 

lowing a summary of plotable GeoModel output, the GeoModel's time integration 

algorithm is briefly summarized. 

Role of the GeoModel within a finite-element program 
The GeoModel is designed for use in host codes (typically finite-element programs) 

that solve the momentum balance PDE, 

where oik is the spatial Cauchy stress tensor (denoted 9spatia' in Eq. 3.39), xk is the spa- 

tial position vector, & is the body force per unit volume, p is the mass density, and ai is 

the material acceleration that is related to the spatial velocity field vi by material time 

derivative 

* i.e., called directly from the host code. 
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Here, 5 is the time-zero reference position vector, which serves to identify Lagrangean 
material points. The spatial position vector 6 is related to the reference position 5 
through the deformation mapping function, such that the deformation gradient tensor is 

ax 
Fb = (2) (6.3) 

33 t 

The stress and velocity fields (as well as displacement or velocity boundary conditions) 

are known at the beginning of each time step, so that application of Eq. (6.1) permits eval- 

uation of the acceleration field. In most host codes, the updated position of a material par- 

ticle is computed to second-order accuracy with respect to the time step At through 

application of 

1 
6" - ' 6" + !"At + -g"(At)2. 2 

Equivalently, 

To date, all installations of the GeoModel have approximated the unrotated strain rate by 

the unrotated symmetric part of the velocity gradient defined in Eq. (4.3), evaluated at the 

half-step by using the velocity field in Eq. (6.7). The GeoModel integrates the unrotated 

strain rate to predict the unrotated stress at the end of the step, which must then be rotated 

into the spatial configuration by the host code. As mentioned on page 20 (and clarified 

later in this chapter), optimizing the accuracy of the spatial solution for problems involv- 

ing massive material rotation requires the host code to apply its unlrotation operations 

using polar rotation tensors that are consistent with the part of the time step (beginning, 

half, or end) at which unlrotation operations are required. 

Of course, once the GeoModel and any other constitutive models in the problem have 

been applied to determine stresses at the end of a time step, Eq. (6.1) may be integrated 

again to update the acceleration field, thus launching a new timestep cycle. 
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Spatial stability (mesh dependencelloss of strong elliptic 
As rock deforms inelastically, the initial yield surface (lower curve in Fig. 4.16) 

evolves toward - and is not permitted to evolve beyond - the limit surface (upper curve 

in Fig. 4.16). If the stress reaches the limit surface, the rock has, in a loose sense, failed 

catastrophically. More correctly, the GeoModel has reached the limit of its applicability 

because large scale cracking and subsequent loss in strength cannot be modeled locally at 

the constitutive level. Material softening generally produces a change in type of the 

momentum equation, requiring intervention from the host code to change its solution 

scheme appropriately (for further details, see page 61). In the GeoModel, the state variable 

"CRACK" is a flag equaling 1.00 whenever a principal stress (or I,) cut-off has been 

applied or 2.00 when the stress has reached the limit surface and can harden no further; 

otherwise "CRACK" equals 0.0. In either case, a positive value of "CRACK" marks the 

onset of softening. 

Because the GeoModel comes equipped with its own flags for failure, this model 

should not be used with other fracture models such as a maximum principal stress crite- 

rion. Instead, the "CRACK" flag should be queried by the host code to determine when it is 

appropriate to add void (when pressure is tensile) or to apply discontinuous shear dis- 

placement element shape functions (when pressure is compressive) or to apply any other 

appropriate response* to material softening that will ensure localization response that con- 

verges as the spatial mesh size is reduced. 

If the host code fails to activate any special response when the "CRACK" flag becomes 

nonzero, the GeoModel will continue to run, but its predictions are suspect. Without a 

meaningful host-code response to failure, the geomodel will handle the inelastic response 

at the limit state in a manner similar to non-hardening plasticity (i.e., rather than properly 

softening down away from the limit state, the GeoModel will force the stress to dwell at 

the limit state). To summarize, the GeoModel is intended to model only the portion of 

material response that is appropriate to compute at the local constitutive level. The Geo- 

Model sends flags back to the host code at the onset of softening (a non-local phenome- 

non). The host code is responsible for responding appropriately to these flags by initiating 

material softening. 

* We are investigating a field-scale softening strategy that introduces a length scale based on Weibull 
perturbations of the material strength field, which is especially appealing because (unlike "element 
death" and cohesive zone models) it can be easily justified physically. Specifically, softening 
results from sub-grid-scale flaw clustering, which can be shown to have a Weibull (or nearly 
Weibull) distribution and can be parameterized via standard laboratory-scale experiments. Prelimi- 
nary investigations [4] have shown that Weibull-like softening strategies lead to very realistic frag- 
ment patterns and are mesh-independent. 
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GeoModel files, subroutines, memory requirements, and 
model installation requirements. 

This section is a software requirements specification that must be followed by anyone 
who installs the GeoModel into a host code.* The GeoModel is designed to be imple- 
mented into multiple host codes without any revision of the source code. As described 
below, the model has three subroutines (GEOCHK, GEORXV, and ISOTROPIC- 
GEOMATERIAL CALC). To support portability, the GeoModel conforms to Sandia's 
Model Interface Guidelines (MIG) [lo]. Therefore, the model presumes that calculations 
entail three distinct phases, the first two of which are performed at start-up while the last 
one is applied for every element at every timestep: 

1. User input. The GeoModel requires the host code to acquire user input values and save 
them into a single array using the keywords and ordering listed in Appendix B. This property 
array must be passed to the subroutine GEOCHK for "domain certification" (i.e., verifying that 
input values fall within allowable ranges, as explained on page 81). Additionally, the routine 
GEOCHK sets defaults for unspecified user inputs. 

2. Storage. To be portable, the GeoModel does not actually allocate storage for internal state 
variables (ISVs) - this is the responsibility of the host because data lay-out varies from code 
to code. The GeoModel provides a list of storage requirements by requiring the host code to 
call subroutine GEORXV. This routine returns physical dimensions, initial values, plot 
keywords, and advection requirements for each internal state variable. To use this routine, the 
host code loops over the lists returned by GEORXV to then allocate the storage, define plot 
options, and initialize the ISV fields. 

3. Execution. Every cycle, ISOTROPIC-GEOWATERIAL_CALC must be called to update 
the stress to the end of the step. Detailed descriptions of the input-output arguments are 
provided below. 

The GeoModel must, upon occasion, relay messages to the user or terminate the calcula- 
tion. Log message protocols and bombing procedures vary among host codes. For porta- 
bility, the GeoModel follows MIG guidelines by calling subroutines LOGMES, FATERR, 
or BOMBED whenever it needs to relay messages to the user, log fatal errors, or terminate 
calculations, respectively. These routines are not part of the GeoModel source code. 
Because these actions require host-code responses that vary from code to code, these rou- 
tines must be written and maintained by the host-code architects. Likewise, a routine 
called TOKENS (used only in the extra variable request routine) is expected to pre-exist in 
the host code. Any host code that already supports MIG models will already have these 
MIG-utilities in their repository. Host code architects of non-MIG-compliant codes may 
request sample MIG-utilities that they may customize to suit their own code's protocols 
for information passing and code termination. 

* Any deviation from these model installation instructions (as well as any modification of the Geo- 
Model source code itself) may result in loss of technical support. Model installers who believe that a 
deviation from these instructions is warranted are encouraged to contact the GeoModel developers. 

t i.e., routines that are called directly from the host code. All other routines in the GeoModel are "pri- 
vate" and should not be called by the host. To serve codes that re-mesh, one additional public rou- 
tine, isotropicqeomaterial_state, is available that will repair advection errors. 
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The GeoModel source code is available in both FORTRAN 77 and 90. To date, large- 
scale production codes have used the F77 version to best ensure portability, so those rou- 
tines will be described here. The F90 routines, which are not significantly different, are 
generated from the F77 master files to ensure consistency. 

Arguments passed to and from the GeoModel driver routine 
The following list describes variables passed between the host code and the Geo- 

Model's driver routine (isotropic - geomaterial - calc): 

INPUT: 
NBLK: The number of cells or finite elements to be processed. Parallel codes send 
only one cell at a time ( N B L K ~ ) .  

* NINSV: The number of internal state variables for the GeoModel. 
DT: The time step 

e PROP: the user-input array, filled with real numbers, as summarized at the top of the 
nomenclature table in Appendix B and also summarized within the source code 
prolog itself. 

e SIG: The unrotated Cauchy stress tensor at time n. The six independent components 
ofthe stress must be passedinthe ordering {a, ,, 02*, 033, oI2, 023, a3, } . Withinthe 
FORTRAN, this array is dimensioned "SIG ( 6 ,  NBLK) " SO that the stress components 
for any given finite element are in six contiguous memory locations. 

e D: The unrotated strain rate tensor, preferably evaluated at time n+I/2 because the 
GeoModel treats the strain rate tensor as constant over the entire interval. Most codes 
approximate the strain rate tensor as the wotated symmetric part of the velocity 
gradient (see Eq. 4.3). Component ordering and contiguous storage are the same as 
for stress. 

e SV: the internal state variable array containing reals, as described in the nomenclature 
table in Appendix B. 

OUTPUT: 
I SIG: The unrotated stress tensor at time n + l .  The component ordering is the same as 

described above. 
* SV: The internal state variable array (updated to time n + l )  
= USM: Uniaxial strain (constrained) elastic modulus equal to H = K + 4G. The host 

code may use the USM output to compute an upper bound on the wave speed (m . 
where p is mass density) when setting the timestep. 

These arguments require unrotation of spatial stress at time n, wotation of the strain rate 
at time n+1/2, and rotation of the updated stress back to the spatial frame at time n + I .  For 
problems involving significant material rotation, this requires using three different polar 
rotation tensors [14]. For moderate rotation problems, it might be acceptable to use the 
rotation tensor evaluated at time n+1/2 for all three operations, but the accuracy conse- 
quences of this simplified approach have not been carefully examined in the computa- 
tional mechanics literature. 
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PLOTABLE OUTPUT 
In addition to the stress, any variable in the S V  state variable array is available for plot- 

ting. The plot keywords (and ordering of variables in the S V  array) are listed in Nomencla- 
ture Appendix B. 

As mentioned earlier, the "CRACK" flag may be plotted to visualize softening regions. 
The "INDEX" flag may be plotted to locate regions that are now or have ever deformed 
inelastically (even if elastic at the given instant). To visualize regions that are currently 
deforming inelastically, the "SHEAR" variable should be plotted. 

The "SHEAR" variable is an informational output, equal to zero during elastic cycles 
and equaling a measure of normality of the trial elastic stress rate during plastic intervals. 
Specifically, as illustrated in Fig. 6.1, "SHEAR" ranges from zero when the trial stress rate 
is tangent to the yield surface to unity when it is normal to the yield surface; an intermedi- 
ate value of "SHEAR" indicates oblique plastic loading relative to the yield surface. While 
"SHEAR" quantifies the plastic loading direction relative to the yield surface, the internal 
state variable "DCSP", which is the plastic consistency parameter k ,  may be plotted as a 
measure of the magnitude or intensity of plastic loading. 

Flgure 6.1 Meaning of the "SHEAR" output variable. This calculation uses a Von Mises yield sur- 
face. The strain rate remains in triaxial extension for half of the calculation, which is why the Lode angle 
(a) is initially constant at -30". During this interval, the stress reaches the yield surface and continues to 
push directly against it, which is why SHEAR (c) jumps to and holds at 1.0. Halfway through the problem, 
the strain rate direction is changed in stress space [as indicated by arrows in (bJ] to move the stress toward 
triaxial compression. At the beginning of this transition, SHEAR fust jumps to 0.5 where the normal and 
tangential components are equal, and moves back toward 1.0 as the tangential component decays. 

The "EQDOT" variable may be plotted to gain an overall sense of intensity of the cur- 
rent strain rate. Small values of "EQDOT" correspond to relatively quiescent regions. Plot- 
ting "EQPS" will show equivalent plastic shear strain, while "EQPV" gives plastic volume 
strain (and is roughly equal to the porosity change from inelastic void collapse). 

The stress invariant "11" is three times the negative of pressure. "ROOTJZ" may be 
regarded as a scalar measure of effective shear stress and is proportional to the radial coor- 
dinate of the stress in the octahedral plane. The Lode angle, "LODE", quantifies the angu- 
lar location of the stress in the octahedral plane, and it varies from 30 for triaxial 
compression to -30 for triaxial extension (0 for simple or pure shear). If kinematic harden- 
ing is enabled, " B A C K W  quantifies the distance that the origin of the octahedral profile 
has sh i ed  in stress space. 

The complete list of other (less useful) plotable output is in Appendix B. 



GeoModel Numerical Solution scheme 

GeoModel algorithm 
The GeoModel presumes that the strain rate is constant throughout the entire step, and 

the stress is integrated as follows: 

Rate independent (inviscid) part of the viscoplasticity equations. 
STEP 1. 

STEP 2. 

STEP 3. 

STEP 4. 

STEP 5. 

STEP 6. 

STEP 7. 

STEP 8. 

STEP 9. 

To guard against unpredictable host-code advection errors (or similar corruption of the 
updated state from the last time step), apply a return algorithm to ensure the initial 
stress is on or inside the yield surface. 

Compute the nonlinear elastic tangent moduli appropriate to the stress at time n. 
Apply Hooke's law in rate form to obtain the elastic stress rate at time n. 
Integrate the elastic stress rate using first-order differencing to obtain an estimate for 
the trial elastic stress at the end of the step. 
Evaluate the yield function at the trial elastic stress. If the yield function evaluates to a 
negative number, the trial elastic stress is accepted as the final updated stress, and the 
inviscid algorithm returns (i.e., go to STEP 16). Otherwise, continue. 

To reach this step, the trial elastic stress state was found to lie outside the yield surface. 
At this point, the time step is divided into an internally determined number of 
subcycles. All subsequent steps described below this point apply to the smaller time 
steps associated with subcycles. 

Evaluate the gradients of the yield function for eventual use in Eq. (4.83). 

Evaluate the flow potential gradients for eventual use in Eqs. (4.87) and (4.85) 

Evaluate the isotropic hardening coefficient h, in Eq. (4.72). 

STEP 10. Evaluate the Ga function in Eq. (4.76). 

STEP 11. Apply Eq. (4.83) to obtain the consistency parameter. 

STEP 12. Use forward differencing (within the subcycle) to integrate Eqs. (4.72) and (4.76), 
thereby updating the internal state variables, K and aij .  Similarly integrate Eq. (4.85) 

to advance the stress to the end of the subcycle. 

STEP 13. The above steps will have directly integrated the governing equations through the end 
of the subcycle, so the updated stress will be inprinciple already on the yield surface. 
However, guard against slight round-off and integration errors by applying an iterative 
return correction to place the stress exactly on the yield surface. 

STEP 14. Increment the subcycle counter, and save the partially updated inviscid internal state 
variables. 

STEP 15. If subcycles remain to be evaluated, go to STEP 7. Otherwise, continue to STEP 16. 

Viscous part of the viscoplasticity equations. 
STEP 16. The previous set of steps govern computation of the equilibrium state. Now apply 

Eq. (5.22) to compute the characteristic material response time. 

STEP 17. Using the trial elastic stress corresponding to an update to the end of the time step, 
apply Eq. (5.10) to compute the dynamic stress. Apply Eq. (5.15) to similarly compute 
the dynamic values of intemal state variables to account for rate sensitivity. 

STEP 18. Save the values of the internal state variables into the state variable array. 

STEP 19. STOP. 
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7. Software "confidence building" activities 

This chapter describes progress towards Software Quality Assurance (SQA), which 
encompasses a broad range of activities including code maintenance, documentation, and 
(most importantly) code verification. "Code verification" is defined by the IEEE [22] as 
"formal proof of program correctness" in the sense that the governing equations are 
numerically solved correctly within a tolerable degree of accuracy. Model validation* will 
not be discussed until Chapter 9. 

We make no claims at this point that the GeoModel software has been exhaustively 
verified. In other words, we cannot state with absolute certainty that the governing equa- 
tions presented in this report are in fact solved correctly. One might challenge the Verifi- 
cation and Validation (V&V) community to prove that "formal proof of program 
correctness" is even possible. Realistically, the confidence one can place in the veracity of 
any model prediction can be based only on the extent to which documented evidence sug- 
gests that the equations are solved correctly. It seems acceptable, therefore, to speak of 
varying degrees ofprogress towards verification?, or, more generally, varying degrees of 
SQA. In this sense, the GeoModel has undergone a higher level of SQA than is normally 
applied to modem material constitutive models of comparable complexity.~ Even though 
we claim that the GeoModel's verification and SQA status is above average, we do not 
assert that such activities have progressed to the point where we consider the job "fin- 
ished." Here in this chapter, we aim only to build confidence in the GeoModel by summa- 
rizing some of the SQA activities that have been applied to the GeoModel to date (a 
comprehensive detailed discourse would fall well outside the scope of this report). 

Once a constitutive model is installed within a host code, it becomes only a single 
component of a much larger and dfferent model (the finite-element code). Constitutive 
SQA should include ensuring that the model can be installed and run in a variety of host 
codes, but verification of the installation is primarily a host code (not constitutive) respon- 
sibility. Constitutive SQA in the context of larger-scale model integration is limited to pro- 

* Whereas "Verification" seeks to c o n f m  that the equations are solved correctly without questioning 
their appropriateness, "validation" compares model predictions against experimental data to deter- 
mine whether or not the equations themselves are indeed suitable for the application. 

t Suppose, for example, that one constitutive model has been verified for both uniaxial strain and 
simple shear, whereas another one has been tested only in uniaxial strain. If these are the only tests, 
neither model is "well verified," but the first one is certainly better verified. 

$ From a practical (rather than philosophical) standpoint, the complexity of a model must be consid- 
ered when speaking about how well a model has been validated. With a given level of fmancial and 
computational resources, solids models cannot be tested to the same level of certainty as fluids 
models. Conclusively demonstrating onlyfirst-order accuracy of an anisotropic solid constitutive 
model would require more than twenty times the effort needed to verify first-order accuracy of a 
simple fluids model (this follows because a general anisotropic stiffness tensor has 21 independent 
components, and therefore 21 independent strain paths would be required to conclusively verify 
accuracy; moreover comprehensive testing for solids models requires coordinate invariance tests 
that are not needed for scalar fluids models). 
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viding adequate model installation instructions (including operational constraints), 
delivering correct solutions to the constitutive governing equations, and ensuring that the 
model will, wherever feasible, "trap" invalid calling arguments (much as a compiler 
"traps" IEEE errors such as division by zero). 

Numerical schemes for solving field PDEs (such as Navier-Stokes equation or Max- 
well's electromagnetism equations) have received considerable attention in the V&V liter- 
ature, while verification of constitutive models has been relatively ignored. Constitutive 
models are sub-components within field-scale calculations. As such, a partitioning of 
responsibility for SQA is needed. (As an analogy, note that the quality assurance responsi- 
bilities for a turn-signal manufacturer must be different from those of an automobile man- 
ufacturer.) Constitutive verification aims to build confidence that the model will return 
correct solutions to the governing equations, presuming that the host code sends inputs 
falling within the admissible domain for the model. SQA may additionally include some 
checking of the inputs themselves, as long as doing so does not compromise efficiency. 
When a host code sends inadmissible inputs (such as corrupted strain rates caused by 
mesh entanglement, advection, or artificial viscosity errors), then correcting such errors is 
not the responsibility of a constitutive modeler unless it can be proved by the host code 
developers that such errors originated from constitutive model output errors. 

Similarly, because the GeoModel is a local constitutive model (i.e., because it does not 
solve space-time PDEs), demonstrating convergence with respect to the spatial mesh is 
not a GeoModel verification responsibility. It is well known that mesh dependence can 
occur when local constitutive models permit material softening. Therefore, we regard sup- 
pression of softening as an implicit software requirement specification because our cus- 
tomers (fmite-element code teams) do not have the code infrastructure that is needed to 
properly handle the change in type of their governing PDEs that occurs upon softening. 
Until such enhancements are made at the host code (not constitutive) level, the GeoModel 
predicts only the onset of catastrophic failure, not its subsequent evolution into macroscale 
fragments and fractures. 
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In the lexicon of Ref. [25], "static" SQA testing is a prerequisite to the verification 
process that encompasses tests that are performed without running the code. To date, the 
GeoModel has undergone the following static SQA: 

r independent* line-by-line review of the source code. The source code was 
aggressively inspected to locate and remove possibilities for IEEE errors (e.g. trying to 
take the ArcSin of a number larger than unity?, dividing by zero, etc.). Another goal was 
to confirm that the equations being solved in the code were indeed the equations 
documented in this report. 

r Model domain certification (preventing "Garbage In Garbage Out"). No function 
or set of equations is well posed without a domain of applicability. The domain for the 
GeoModel includes constraints on run-time subroutine arguments (e.g., the backstress 
must be deviatoric) as well as constraints on the input parameters (e.g., the bulk modulus 
must be positive). Except where computational efficiency would be degraded, SQA 
includes appraising quality of both user input and run-time arguments sent from the host 
code. A new routine (geochk) was recently added to the GeoModel that terminates 
calculations if the user-input falls outside allowable ranges. Run-time testing of this 
routine is discussed in the next section. Direct run-time testing of time varying 
subroutine arguments is computationally inefficient, so the GeoModel's domain 
certification for variable calling arguments relies primarily on our model installation 
instructions (page 75), which serve as software requirement specifications that must be 
obeyed by the host code developers. 
Portability and version control. The GeoModel has been designed such that it can be 
implemented in multiple host codes without altering the source code, thus allowing the 
GeoModel developers to maintain a single master version. A host code owner who 
faithfully obeys the model installation instructions on page 75 may update the 
GeoModel by simply replacing three FORTRAN files (posted on WebFileShare under 
keyword "GeoModel") with the latest GeoModel release and then recompiling. Each 
GeoModel release is identified by a six digit codex that prints to the screen at run time. 
The GeoModel has been compiled on multiple platforms (Sun, Dell, and HP 
workstations or clusters running Linux andlor Windows) in multiple host codes (Alegra, 
Presto, Pronto, JAS3D, and two independent drivers) using multiple commercial 
compilers (gnu, pgfl7, pgf90, and Compaq visual FORTRAN). The source code compiles 
without warnings when using stringent SQA options (such as -Wall -03 in the gnu 
compiler). 

r Model documentation. This report is the first publication that describes the numerical 
algorithm, provides input definitions, and gives model installation instructions that 
describe how SQA responsibilities are partitioned between the model and the host code. 

Technical support. Two stand-alone single-cell codes that exercise the GeoModel 
under prescribed strain and stress paths are available to assist host (finite-element) code 
owners verify their GeoModel installations. The GeoModel includes a "problem- 
resolution" feature that generates a debugging file (geo.barf) and terminates calculations 
whenever unacceptable solution quality is detected. The debugging file may be emailed 

* Here, "independent" (which is not synonymous with "unbiased") means that the source code has 
been inspected by an individual who has not written the code. GeoModel code inspection was fust 
performed by Brannon (the second author of this report) upon joining this modeling effort at the 
beginning of fiscal year 2003-04. Subsequent new code revisions and enhancements have been 
reviewed by the member of the Fossum-Brannon team who did not write the new code. 

t This can happen because of slight round-off errors, as in rsr~cl.ooooool). 
$ The code is simply the release date in the form "yymmdd". 

For example, "GeoModel version 040526" was released in 2004 on May 26. 
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to the GeoModel team, who can import it into their driver to resolve the problem quickly. 

So-called "dynamic" SQA refers to tests performed by actually running GeoModel. Some 
of the dynamic SQA activities to date are summarized here. A detailed documentation of 
all GeoModel SQA would require a second report itself, so the following list should be 
regarded as simply an overview. A small number specific examples will be given later. 

r Model domain certification: The "geochk" feature for checking quality of user inputs 
was tested by confirming that the GeoModel would abort when intentionally sent invalid 
inputs. As explained below, the "geobari" problem-resolution feature can often 
indirectly trap invalid forcing functions (caused, for example, by mesh entanglement). 
However, the responsibility for sending valid forcing functions to the GeoModel 
remains the onus of the host code, not the GeoModel. 

Run-time monitoring of the solution quality: The problem-resolution (geabarf) 
feature has been verified to (1) detect "Garbage Out" predictions such as negative plastic 
work, (2) terminate calculations, and (3) write a debugging file that can be emailed to 
model developers to determine whether the problem was caused by bad user input, bad 
arguments passed from the host code, or a bug in the internal coding. 

Driver regression testing: Two stand-alone drivers are available for exercising the 
GeoModel in a homogenous deformation field.* Considerable dynamic testing was 
performed using our research (non-production) model driver that allows visualizing (and 
algebraically processing) the output within Mathematica [48]. The other driver [36], 
which runs either from a command line or from an Excel front-end (see Fig.7.1), is now 
also deployed in the WISDM materials information database [21], allowing the 
predictions of the GeoModel to be compared directly against experimental calibration 
data. These drivers have been used to assemble a suite of regression tests (hydrostatic 
loading, two types of shear loading, uniaxial strain, uniaxial stress, biaxial plane stress, 
and numerous mixed load-unload problems using a variety of input parameters), several 
of which are simple enough to admit analytical solutions for verification purposes. The 
driver regression problems (15 problems to date) are all re-run and inspected for 
undesirable changes whenever any change is made to the GeoModel. 

* Trend testing: Engineering judgement was used to ensure that solutions vary as 
expected when parameters change. For example, Fig. 6.1 depicted a simple trend test in 
which analytical (exact) arguments could be used to prove that the "SHEAR" should 
equal 1.0 at the onset of yielding and should dwell at 1.0 until the loading direction 
changes, after which it should drop instantaneously to 0.5 and then asymptote to 1.0. 
Similarly, Figs. 5.3 and Figure 7.8b confirmed that increasing the GeoModel's 
characteristic response time (see Eq. 5.22) would indeed produce the analytically 
predicted increase in the apparent strength of the material. These tests were quite 
valuable because they allowed correction of a serious bug in an earlier version of the 
GeoModel where the response trend upon load reversal was clearly flawed. Trend and 
robustness testing also demands that the GeoModel must predict qualitatively 
reasonable trends when subjected to deformations that exceed what is expected in 
applications (e.g., massively large elongations or pressures). For example, one problem 
in our driver regression suite verifies that load/unload curves do indeed asymptote 
toward each other under hydrostatic compression as sketched in Fig. 3.1 and verified in 
Fig. 7.1. Many other trend tests such as these have been conducted, but (for lack of 
space) will not be described in detail in this report. 

* Stand-alone testing obviates many constraints and sources of non-constitutive errors in production 
finite-element simulations (artificial viscosity, hour-glassing, time-step control, boundary-condi- 
tion errors, code compilation and run-time overhead, etc.). 
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Figure 7.1. Screen shot of the MS Excel interface for the GeoModel material-model driver (MMD). 
This tool serves as a reliable platform for exercising the GeoModel under homogeneous deformations in 

a simplified host code architecture that is free kom solution corruption caused by unneeded fmite-element 
code features such as artificial viscosity, wave motion, contact algorithms, etc. 
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I Symmetry testing: Consistent predictions were verified for identical loading applied 
in different directions (e.g. uniaxial strain in the 1-direction compared with the 2- 
direction). Consistency has also been tested for stress paths that intersect the yield 
surface at symmetrically equivalent points and for trial stress rates normal to the yield 
surface (to verify that the stress rate had no tangential component). 

Extensive comparison testing:* To date, the GeoModel has been implemented in 
five finite-element codes: (ALEGRA [8,49], PRESTO [26], JAS3D [5], EPIC [24], 
legacy PRONT03D [45]). A disturbing number of discrepancies (e.g., wave arrival 
times differing by as much as 10% or peak stresses differing by almost an order of 
magnitude) have been identified by comparing predictions for the same problem 
simulated by different finite-element codes. In all but a few cases, these discrepancies 
have been traced to host-code-level (not constitutive-level) errors (e.g., hour-glassing, 
handling of boundary conditions, artificial viscosity, time-step control, etc.). Resolving 
such discrepancies is the model verification responsibility of the host code owners, not 
the GeoModel developersf The ability of the GeoModel to reduce to simpler models 
(eg., nonhardening elastoplasticity) has often proved invaluable in determining if a 
simulation problem originates from the GeoModel or elsewhere in the host code. When, 
for example, an undesired feature in a calculation persists even when the GeoModel is 
run using simplified parameters, a comparison test can be performed using the existing 
(presumably better verified) independent version of that model within the finite-element 
code. We have, for example, often compared a host code's standard elasticity model 
with the GeoModel run in an elastic mode. In one instance where a discrepancy was 
traced to the GeoModel, it was attributed to failure of the code owner to follow the 
GeoModel installation instructions (page 75). In a few cases, comparison testing did 
indeed reveal GeoModel bugs that have since been corrected. 

Comparison with exact analytical solutions: Analytical solutions are not 
available to verify all of the GeoModel's features acting simultaneously. However, each 
GeoModel feature has been individually verified to ensure that the promised 
quantitative material response is delivered (e.g., accurate tracking of a specified porosity 
crush curve, exact apparent strengthening in high rate loading, etc.). Depending on how 
the model parameters are set, the GeoModel can be idealized to a form for which some 
problems admit exact solutions. One example is that of a linear Mohr-Coulomb material 
with an associative or a non-associative flow rule in homogeneous loading. This class of 
problems was recently studied in a verification and benchmarking activity sponsored by 
the Defense Threat Reduction Agency (DTRA) through its Advanced Concepts 
Technology Demonstration (ACTD) Project. These exercises were part of a larger 
Verification and Validation (V&V) effort to increase confidence in prediction of low- 
yield nuclear damage of underground (tunnel) facilities in jointed (in situ) rock mass. 
The problems are designed to increase in complexity, by invoking additional physics in 
the material models, until a level is reached that is deemed sufficient to model precision 
field tests. This work will be described in further detail later in this chapter. 

* Testing a numerical model in multiple host codes has been vital to our SQA process. If two codes 
agree, then no conclusion may be drawn. If, however, two codes predict different answers, then at 
least one of them is not solving the equations properly (or is not solving the same equations). 
Resolving such discrepancies has time and again expedited bug identification and resolution. 

t Incidentally, the disquieting frequency of bugs originating within the host code (not the constitutive 
model) reiterates the importance of specialized constitutive model drivers in constitutive model 
verification. Constitutive models should not use finite-element codes as their primary verification 
platform. 
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Consideration of the method of manufactured solutions (MMS): The MMS 
method of SQA entails first solving an inverse problem in which simple (e.g., 
quadratically varying) analytical time histories for the response functions are substituted 
into the governing differential operators to obtain (probably with the assistance of a 
symbolic mathematics program such as Mathemafica) an expression for the input 
functions that would produce the pre-specified response function. The numerical model 
is then sent this analytically determined input function to verify that the original (pre- 
selected) response function is recovered. For the GeoModel, using MMS would require 
pre-selecting an analytically simple stress history to determine a strain history to use as 
input in the numerical simulation. To date, this technique has not been used in the 
GeoModel verification process. Solving the inverse problem is quite difficult because 
the GeoModel's differential operators are "branched" (one set is used during elastic 
deformation, while another is used during plastic loading, and the internal state variable 
evolution equations themselves are coupled to the location of the stress on the current 
yield surface). However, by using simplified model input parameters, solving the 
inverse problem might be tractable, so MMS might indeed prove useful in the ongoing 
(still incomplete) GeoModel verification process. 

order-of-convergence:* Time steps for complicated plasticity models often must 
be much smaller than the time step used by the host (finite-element) code. The 
GeoModel's goveming equations change upon reaching yield, and this transition 
typically occurs somewhere in the middle of the host code's time step, which implies 
that the constitutive model must break the step into elastic and plastic parts. Moreover, 
further subcycling within the constitutive model is required to avoid "drift" of internal 
state variables into non-physical or inconsistent domainst Subcycling complicates the 
meaning of a convergence study performed at the host code level. Preliminw tests (see 
page 86)  indicate that each subcycle within the GeoModel is first-order convergent, but 
(recall the last footnote on page 79) we have not yet performed sufficient tests to 
consider this claim fully verified for a broad variety of load paths. Subcycling in the 
GeoModel has been massively improved over earlier versions. Problems that formerly 
took 2000 code steps to converge to an acceptable accuracy2 can now be run to the same 
pointwise accuracy in only 10 apparent host-code steps (internally, the GeoModel still 
runs -2000 subcycle steps, but this improvement in allowable host-code step size is 
essential in field-kale finite-element simulations). An independent research effort [16] 
is nearing completion in which an implicit integration scheme has been develoved for a 
sirnpl@ed version of the GeoModel, but verification of its order-of-convergence is not 
yet completed. 

* The term "order-of-convergence" is preferred over "order-of-accuracy" because a converged solu- 
tion is never necessarily a correct solution. For example, if the return direction is incorrect in a clas- 
sical predictor-corrector plasticity scheme, then the algorithm will converge, but to the wrong 
result. The GeoModel, by the way, does not use a return method - it explicitly integrates the equa- 
tions, using suhcycling to assist with the change of goveming equations upon yielding. 

t Of course, higher-order integration is also an option, hut the total computational overhead some- 
times exceed that of a well-written subcycling algorithm. Moreover, higher-order integration algo- 
rithms are notoriously difficult to maintain when the goveming equations themselves are being 
revised during parallel development of the physical theory. 

$ At this stage in our ongoing verification process, we are using so-called "viewgraph" assessment of 
accuracy in which solutions are compared visually by plotting them together. This easy assessment 
method simply bounds the discrepancy between two seemingly overlaying plots to be less than dif- 
ferences perceptible to the human eye relative to the size of the graph. 
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Figure 7.2. Subcycling test for hydro- 
static loading. The ordinate is the first 
stress invariagt il and the abscissa is volu- 
mehic strain E". Red is without subcycling. I 

Green is with subcycling. Black, F ( x )  , cor- 
responds to 215 time steps. I 

I 

Figure 7.3. Rate of convergence. The dashed blue line 
(shown for reference) has a slope exactly equal to -1. 
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Verification: single-element problems (regression suite) 

A single-element problem is one for which the stress and strain fields do not vary in 
space. As summarized below, this section presents four different single-element load 
paths, each separately solved using two different GeoModel parameter sets (associative 
and non-associative linear Mohr-Coulomb - see Appendix B, page B-22). To determine 
corresponding sets of material parameters for the GeoModel, the linear Mohr-Coulomb 
parameters were used to create simulated data pairs for the limit state and plastic potential 
functions. Following the instructions in Appendix A, GeoModel was then fitted to these 
data pairs to determine the limit-state parameters v, a l ,  a2, a3,  a4 and non-associative 
material parameters { , a,  PF , aPF I ) . The compaction parameters 
{R, RPF, po, p ,, p2, p3 } were selected such that no compaction occurred over the stress 
range specified for the load paths. Likewise, hardening and rate dependence were dis- 
abled. Results are summarized in Figs. 7.4 through 7.7. 

&j- 
sigx 

TXCO 
Pant sim=sigy epsz 

1 0 0.000000 
2 0 0.005000 

TxC20 
Pant sigx=sigy epsz 

1 0 0.000000 
2 20 0.000310 

Simple load paths clearly 
demonstrate basic model response 

Run for both full and partial 
associativity 

Triaxial Compression 
3 20 0.m5000 - Activates compression meridian 
4 20 0.002060 - Same load path as a real lab test 

RTXl 00 
Pant sip-sigy epsz Reduced Triaxial Extension 
I o o.moo00 - Activates extension meridian 
2 100 0.001548 
3 100 - 0 . ~ 5 ~ 0  - Same load path as a real lab test 
4 100 -0.032295 

sigx=o Plane Strain 
- Activates meridians at Lode 

PSTRN angle(s) (triaxiality) between 
Pant epsz compression and extension 

1 0.000000 
2 001ooM) 
3 0.008391 

Table 7.1: Mohr-Coulomb Parameters for single-element verification testing 

Poisson's Ratio 
v I 0.26 0.26 

Parameter Symbol 
(Material Properties) 

Young's Modulus E 

Friction angle 29" 

Associative Non-associative 

31.0 GPa 31.0GPa 

Dilation angle I 29' 14" 

Cohesion S, 1 15.7MPa 15.7 MPa 

Dry bulk density / 2.34 ~ p a / t n ~  2.34 M P ~ I T I ~  
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Associative (0) Non-associative 
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aP 
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Associative @) Non-associative 

I 

Figure 7.4, Uncon~nedcompression. Exact (black) solutions compared with ALEGRA GeoModel simulation 
(pink). (a) lateral strain vs. axial strain (b) Stress vs. strain. 
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SINGLE ELEMENT VERIFICATION RESULTS 
20 MPa TRIAXIAL COMPRESSION 

I 

Associative (0) Non-associative 

1 

Associative 

0.0 &z (%) 0 5 
&z (96) 

Figure 7.5. 20 MPa brarial compression. Exact (black) solutions compared with ALEGRA GeoModel simulation 
(pink). (a) lateral strain vs. axial strain (b) Stress vs. strain. 
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Associative (4 Non-associative 
I 

Associative (b) 

Figure 7.6. Reducedtrimial extension Exact (black) solutions compared with ALEGRA GeoModel simulation 
(pink). (a) lateral strain vs. axial strain (5) Stress vs. strain. 
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SINGLE ELEMENT VERIFICATION RESULTS 
PLANE STRAIN 

I 
Associative (a) Non-associative 

I 

-1 
0 

Associative 

Figure 7.7. Plane Strain. Exact (black) solutions compared with ALEGRA GeoModel simulation (pink). 
(a) lateral strain vs. axial strain (b) Stress vs. strain. 
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Discussion. 
In Fig. 7.7, predictions of the GeoModel overlay the analytical results? Though not 

yet proved conclusively, we contend that the slight discrepancy apparent in Figs 7.4 and 
7.5 arises notjivm constitutive model errors, but instead from host code errors in the han- 
dling of stress boundary conditions. The fully strain-controlled problem (Fig. 7.7) exhibits 
no significant solution discrepancy. However, moderate error is apparent in Figs 7.4 and 
7.5, which involve fwo stress boundary conditions (the lateral stresses). Like most consti- 
tutive models, the GeoModel takes strain rate as input and returns updated stress as output. 
If the host finite-element code handles stress boundary conditions improperly, then it will 
have slight errors in the strain rate that it sends to the GeoModel, thereby causing predic- 
tions to deviate slightly from analytical solutions. Such errors are not uncommon when 
dynamic fmite-element codes are used to attempt to simulate homogeneous deforma- 
tionsf To reiterate, we believe boundary condition errors in the host code (not the Geo- 
Model) are responsible for the solution errors, and we anticipate re-running these 
simulations in a true constitutive model driver to verify this claim. 

Other single-element tests. Whenever the source code is changed, we perform 
approximately 20 single-feature single-element verification checks for each of our regres- 
sion tests performed under loading that is simple enough to admit analytical solutions. 

I Pi 

0 .- total volumetric strain 

-P3 
I 
L 

a presiurelp,' 1 

Figure 7 . 8 ~ .  Crush curve and hydrostatic loading veriji- 
calion. 

Figure 7.86. Rate dependence TXBTXC 
ratio verijication for triaxial load/unload 

Fig. 7.8a depicts results from a hydrostatic loading simulation in which plastic volu- 
metric strain (EQPV) is plotted against pressure (-1113). The thick yellow curve in 
Fig. 7.8a is the crush curve (Eq. 4.67) determined independently by user specified values 
of the GeoModel parameters p ,, pZ, p3 . The predicted volumetric strain E$ (black line in 
Fig 7.8a) is verified to remain zero until the pressure reaches the crush curve, after which 

* Precisely quantlfiing verification error lags far behind other more important constitutive SQA pri- 
orities, so we will be satisfied here and throughout this chapter with assessing agreement between 
computed and analytical results via a so-called "viewgraph metric," where the error is nebulously 
bounded by what can be perceived visually, given the plot size. 

t The only way to ensure a precisely homogeneous deformation in a dynamics fnite-element code is 
to bypass solution of the momentum equation. More correctly, homogeneous loading requires a 
body force identically equal to particle acceleration g , making the momentum equation trivial. 
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it drops along the crush curve as it should. The stress-strain curve (inset in 7.8a) unloads 
correctly to the user-specified peak strain parameter p 3 .  For non-hydrostatic loading, we 
have verified (trend-test) that shear-enhanced pore collapse causes inelasticity to com- 
menceprior to the pressure reaching the crush curve. 

Fig. 7.8b simultaneously verifies the GeoModel's ability to predict an apparent 
increase in strength under dynamic loading and its ability to predict different strengths in 
triaxial extension vs. compression. In that problem, pressure dependence of yield was sup- 
pressed and the TXEI'IXC strength ratio was set to 112, resulting in a tensile strength half 
as large as the compressive strength.* 

Verification: Hendren & Ayier pressurized cylinder 

The problem depicted below, solved for subcases of associative and non-associative 
flow, involves a circular tunnel in a Mohr-Coulomb material loaded in a plane strain con- 
figuration. A DTRA contractor provided the analytical solutions. The material parameters 
are the same as those used in the previous verification problems. 

Geometry 

radius 

radius 

I 

Loading 

The results in Fig. 7.9 show that the GeoModel solutions agree with analytical results. 
Though not confirmed conclusively, the very slight discrepancies are hypothesized to 
result from different strain definitions used in the GeoModel and analytical solution (or 
possibly host code traction boundary condition issues similar to those discussed earlier). 

* The TXEiTXC strength ratio applies to TXE and TXC states at the same pressure. When pressure 
dependence of yield is allowed, the TXE peak in a verification test l i e  this will not and should not 
be 112 the magnitude of the TXC peak. 
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Associative 

.m 7 m . m  3 m . m  

Pressure (MPa) 
8 I-m 7- lane 

Pressure (MPa) 

I 
Figure 7.9. . Exact (dash) solutions compared with ALEGRA GeoModel 
simulation (solid). (a) Tunnel closure vs. far-field pressure (b) Stress components vs. normalized range, (c) smin 
components vs, normalized range. 
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Elastic free-field wave form (finite-element verification) 
This section describes a field-scale test for verifying installation of the GeoModel in host 

finite-element codes. As emphasized earlier, verifying a constitutive model is distinct from verify- 
ing its implementation within a finite-element code. After a constitutive model becomes one of 
many components within a much larger finite-element model, the potential sources of solution 
error expand to now include boundary conditions, artificial viscosity, and other aspects of the host 
code's method of solving the partial differential equation that governs momentum balance. 

As indicated in Fig. 7.10, a time varying velocity roller BC 
(identical to the one later discussed on page 107) was 
applied at the boundary of a spherical cavity (radius 
204m). The GeoModel's yield features were disabled I* 
to allow predictions for the velocity at the outer - Gcomechanics m dei TBC 
radius (470m) to be compared with an analytical 
elasticity solution.* Implementations of the Geo- 204 rn 

Model in two finite-element codes were tested. One 
code was unable to reproduce the correct response 

I__ roller BC 

because of bugs in roller boundary conditions. Figure 7.10 Spherrcol cav~ty geometry 
Fig. 7.11 demonstrates that the second code (JAS3D) 
was capable of reproducing the analytical solution well enough to suggest that the GeoModel is 
performing correctly. While the moderate solution error might be attributable to the analytical 
solution's presumption of small strains, further study (by the code owners, not the GeoModel 
developers) is warranted to determine if the solution errors result from under-integration, or some 
other aspect of the finite-element model such as artificial viscosity (both codes' solutions were 
strongly affected by artificial viscosity - default settings for artificial viscosity were insufficient 
to reproduce the analytical results). This elasticity verification problem is revisited and generalized 
in theplasticity validation test on page 107, where code predictions are compared with data. 

llmr (wcondr) 
Figure 7.11. Finite-element vs. analpical/mmerical elastic wave velocity 
at 470 metersfrom a velocity spherical cavity source at 204 meters 

* Aldridge's analytical solution [I] is expressed in terms of integrals that are evaluated numerically 
in the 6equency domain using independent software provided by Aldridge. 
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8. Parameterization (calibration) 

Appendix A describes how to characterize a material for the GeoModel. Using these 
procedures, several materials have already been fit, as summarized in Fig. 8.1 (compare 
these with Figs. 1 . 1  and 3.3). GeoModel parameters for these materials are in Appendix B. 

23 MPa concrete 

400 - 
g 
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0 

Conventional Strength Concrete 

300 - 
5 
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- 
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I 

300 1 
Sidewlnder Tuff 

I 

Salem Limestone 
400 

- 
d 

8 

0 

Climax Stock Granodorite 

.~ , 
Figure 8.1 Meridional limit curves for some materials alreadyparameterized to the GeoModei. 
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Nonlinear elasticity 

Figures 8.2 and 8.3 demonstrate the ability of the GeoModel's nonlinear elasticity fit- 
ting fictions (Eqs. 4.10 and 4.9) to reproduce nonlinear elasticity data. Parameters were 
assigned using the least-squares model calibration tools described in Appendix A. 

Principal Strain Difference 
Figure 8.2. Nonlinear elastrcrq rn shear. This figure shows the GeoModel fit to concrete data [46] 
6om the unload portion of a triaxial compression test conducted at a confming pressure of 200 MPa. Here, 
the principal stress difference is plotted against the principal strain difference, thereby making the slope 
equal to twice the shear modulus. 

0.000 0.020 0.040 0.060 0.080 0.100 

Volume Strain 
Figure 8.3. .Yonlinear elasrrcrry in hydrosraric loading This figure shows the GeoModel f i r  to con- 
crete dara 1461 from the unload portion of a hydrostatic compression tesr from 200 41Pa. Here, the slope 
equals the bulk modulus. 
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Elastic-plastic coupling 
For many materials, elastic moduli are unaffected by inelastic deformation. However, 

Fig. 8.4 shows data for a material whose elastic properties are affected by inelasticity. 
Modeling this effect requires using the enhanced moduli fitting functions, Eqs. (4.33) and 
(4.34), which permit the shear and bulk moduli to vary with equivalent plastic strain 
(determined from data by the residual strain upon unloading to a zero stress, as explained 
in Appendix A). For the GeoModel to be considered a good fit to data, the simulated 
unloading curves merely need to be parallel to experimental unloading curves (not neces- 
sarily overlapping unless the data and simulation unload from the same strain). 

HYDROSTATIC LOADING 

O 0  0 

0 02 0 -0 02 -0 04 -0 06 -0 08 -0 I 
Volume Stnln 

TRIAXIAL LOAD DATA CONVERTED TO SHEAR DATA 
"I I 

Figure 8.4. Elastic-plastic coupling: deformation-induced changes in elastic moduli (Salem Lime- 
stone). (a) the tangent bulk modulus can change in response to changes in porosity (i.e., volumelnc 
plastic strain). (b) Likewise, the tangent shear modulus, especially at low shear stresses, can change in re- 
sponse to plastic deformation. 
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Triaxial Compression 

Triaxial compression (TXC) and triaxial extension (TXE) testing is integral to param- 
eterization of the GeoModel. By performing a series of tests, as described in Fig. 3.3, the 
limit state (onset of softening) can be mapped out. For example, Fig. A.5(a) on page A-6 
shows raw data from a a suite of TXC tests, indicating how the peak values in each test 
provide one data point on the GeoModel limit surface Fig. A.5(b). Data from a similar set 
of experiments for concrete, along with the GeoModel least-squares fit of Eq. (4.8) are 
shown in Fig. 8.5. Figure 8.1 shows similar plots for other materials. Appendix A - . 

describes the least-squares fitting procedures in more detail. 

B 1.93E-04 I/MPa 
= 1248.20 MPa 

Data - 
- Model - 

- I ,  MPa 
Figure 8 5. Shear failure limit curve compared with concrete data Ref. [46]. 

Recall that triaxial testing normally begins with a hydrostatic "load-up" phase, indicated 
by the horizontal red arrow Fig. 8.6a (where = 0). During the hydrostatic leg, defor- 
mation is initially nonlinearly elastic until the virgin yield surface is reached, at which 
time microscale stress concentrations caused by the presence of pores become too large to 
resist elastically. Continuing to push the hydrostatic stress to higher levels results in 
inelastic pore collapse with associated hardening (expansion) of the yield surface. In 
Fig. 8.6, the target hydrostatic stress state for a given experiment (which marks the transi- 
tion from the hydrostatic leg to the triaxial leg) was P = 400 MPa, giving an ZI value of - 
1200 MPa. Pressure-volume data taken during the hydrostatic leg may be used to deter- 
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mine the GeoModel parameters {p,,, p, ,  p2, p3 ) by following instructions in Appendix A. 
Because multiple triaxial experiments must be performed to fully characterize a geologi- 
cal material, variations observed during hydrostatic loading from different tests can be 
used to quantify the material property variability. 

Dilation Failure Critical State Compaction 

Failure 

Dilation 

Critical State 

Compaction 

Figure 8.6. Progression ofthe hardenrng yield surface (family ofblue lines, under a rrimial compres- 
sion re.i/ lrgd oarh,. illustrared wirh corrzsuondence of the meridional plane ro rhe srress-wain diagram. . - 

The srfaight redline segments shown shbw this wd-stage stms trajectory (hydrostatic loading follow_ed 
bv triaxial loadinel in the meridional dot of 6 (which is proportional to the effective shear) versus 1 ,  . 
shear-enhanced matation correspondi to reac%g a zero local yield slope. 

After the hydrostatic leg, the triaxial leg (angled red arrow in Fig. 8.6a) commences by 
increasing the axial load on the specimen while holding the lateral stress constant. As 
explained on page 16, the stress path follows a straight trajectory in the meridional plane 
with a slope given by 
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The transition from hydrostatic to triaxial loading is reflected by a pronounced change 
in slope in the stress-strain plot of Fig. 8.6. As the axial stress is increased during the trim- 
ial leg, the yield surfaces continues to harden outward even more, now further assisted by 
the presence of a nonzero stress deviator. In Fig. 8.6 the slope of the yield surface is ini- 
tially negative at the stress state (i.e., where the straight red load path and curved blue 
yield surface lines intersect). Consequently, the outward normal to the yield surface during 
this early part of the triaxial phase has both a deviatoric component and a comoressive iso- 
tropic component. When the normal to the yield surface is compressive, the inelastic volu- 
metric strain will be compressive as well. However, the isotropic component of the yield 
surface normal changes direction towards the end of the triaxial leg (i.e., the local slope of 
the yield surface changes sign), which means that the inelastic volumetric strain is dilata- 
tional (expanding) even though all stress components are compressive. The "critical state" 
at which the yield surface has a zero local slope on the load path marks the onset of shear- 
enhanced dilatation. Thus, as illustrated qualitatively in Fig. 8.7 and explained in detail in 
Appendix A, triaxial loading is used to determine parameters in the GeoModel that govern 
yield surface evolution and cap curvature. 

- 
T T  

Figure 8.7. Shear-enhanced dilatafion under compression The exaggerated schematic shows that 
crack faces must overcome surface incompatibilities -they cannot slip over each other without opening 
even if they are in compression. Moreover, fragments of broken material can become lodged in the crack 
face and cause crack opening by their rotation. Crack kinking (in the direction of Mode I loading) further 
contributes to the dilatation associated with crack opening. The dark regions in the micrograph [I21 are 
pores (which collapse under sufficient pressure). The cracks in inclusions produce "micro-mbble" that ulti- 
mately generates, through rotation, inelastic volume increase under shear loading even if all principal 
stresses are compressive. 



Physically, an increase in inelastic volume during compression (which is quite commonly 
observed for brittle materials) is typically attributed to the growth of microcracks under 
shear. As the surfaces of these cracks move relative to one another, the crack must open up 
(dilatate) both to overcome geometric incompatibilities in their surface roughness and to 
permit crack kinking. This interpretation of shear-enhanced dilatation is illustrated sche- 
matically and through SEM imaging in Fig. 8.7. 

Parameterization: Rate dependence 
The GeoModel's relaxation parameters (T , ,  . . ., T,) may be determined through a 

series of lab-scale laterally-confined Kolsky bar tests [Fig. 8.81 in which a sample is sub- 

jected to uniaxial compression at various strain rates. 

Axial Confining be-Rods 
I Vessel = 

Figure 8 8. Kolsky (split Hopkinson) bar apparatus used to obtain data in Fig 8.9 

Figure 8.9 shows results for a series of Kolsky (split Hopkinson) bar strain rate tests 

conducted on unconfined compression specimens of Salem Limestone [17]. The peak 
stress in these experiments is used to assign values of the GeoModel relaxation parameters 

to properly correlate apparent strength with strain rate. As seen, the unconfined compres- 

sive strength increases with strain rate and is well-accommodated by GeoModel theory. 

For a discussion of how the data in Fig. 8.9b are used to assign values to { T,, .. ., T,} , 
see Appendix A. 
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Figure 8.9. Suitabilify of the GeoModel overstress rate-dependence model to match observed da- 
t a  (a) Model predictions of stress-strain behavior at various strain rates. @) Corresponding Kolsky 
(Hopkinson) bar unconfmed compressive strength as a function of strain rate 
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9. Building confidence in the physical theory 

In a weak sense, demonstrating (as we did in the previous chapter) that the GeoModel 
is capable of being parameterized from controlled laboratory data lends some credibility 
to the physical foundations of the model. However, truly validating a model after its 
parameters have been determined from standard laboratory data requires showing that the 
model can, without any change in pre-calibrated parameters, predict material response 
under different (non-calibration) loading scenarios. Ideally, to validate a constitutive 
model (not its implementation into a host finite-element code), one would prefer to com- 
pare the model predictions against test data from homogeneous loading experiments that 
were different from the homogeneous loading tests conducted for calibration. 

Thorough testing of any material constitutive model along with its implementation in a 
host code must, of course, include simulation of applications for which model predictions 
can be compared with structural response measurements. The goal is to assess the degree 
to which the integrated model (i.e., its installation into a host code) is capable of predicting 
material system response to non-trivial loading scenarios. 

Parameterization entails fitting to a subset of discrete points in parameterization data 
tables (e.g., as described on page 99, the limit function is parameterized by using only the 
peak stress values, not all values measured in the test). Model validation therefore 
includes assessing the fitted model's ability to interpolate well between other points in 
these stress-strain response curves (i.e., points that were not used in calibration). Similarly, 
the GeoModel's rate dependence parameters are determined by using only the peak stress 
values in Kolsky bar experiments. Therefore, the model's ability to match the other data 
points in those experiments is a validation test. 

In addition to merely ensuring that all data in parameterization tests are well modeled, 
a better validation test should exercise the model in application domains in which multiple 
physical mechanisms are acting simultaneously. The goal is to assess whether or not the 
GeoModel parameterization instructions in Appendix A can lead to a high-quality set of 
material model properties that are predictive in general loading scenarios. This chapter 
describes some validation problems that have been studied to date. In all cases, these prob- 
lems were run using only the single GeoModelparameter set obtainedfrom calibrating to 
&g data for the material - no parameter adjustments were made to improve model 
agreement for these tests. 
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Post-calibration Triaxial loading 
The nonlinear elasticity Eqs. (4.9) and (4.10) are parameterized from shear and hydro- 

static unloading data. The shear limit fimction Eq. (4.39) parameterized through peak 
states in triaxial testing. The crush curve Eq. (4.67) parameterized through purely hydro- 
static testing. Once parameterized in this way, the GeoModel may be applied to predict the 
irreversible plastically-hardening stress-strain response at a variety of other stress paths. 
For example, Fig. 9.1 compares GeoModel predictions with simple triaxial data at various 
confining pressures (these simulations all use a single set of GeoModel parameter values). 
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Figure 9.1. (a) GeoModelpredrction of unraxial strarn loading (b) GeoModelpredictions of himiai 
shess-strain response at various confiningpressures From Ref. [46]. The ability of a single parameter 
set to agree so remarkably well with this suite of data is a validation. 
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Field-scale penetration 
Figure 9.2 shows results from a pre-test prediction of depth of penetration and dis- 

placement histories. In tests like these, material constitutive models are often considered 
"above average" if they are predictive within 20%. As seen, the GeoModel performed 

A Measured 

a 
0 

8 
0 

0 0 
100 150 2W 250 303 350 4W 

Projectile Stnktng Velocity (mls) 

I 
0 time (ms) 5 

10 
.a 

C 
B - 
2 
a, 

0 tlme (ms) 5 

10 
a 

g 
C 
0 .- - 
2 

! 0 
v 

0 time (ms) 6 

(4 (d) 

Figure 9.2. Afier the GeoModei was fitted to laboratopscale material property tests, it was used to 
predict projectile penetration depth using spherical covrty expansion analysis. 
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Free field wave form for spherical shock loading 
Figure 9.4 shows displacement and velocity his- roller BC 

tories for an underground test in which a wave propa- 
gates from an explosive point source. A measured 
velocity history at a point 204 meters i%om the source 
was used as the velocity boundary condition of the 
simulation. The goal was to predict a second mea- 
sured velocity history at a point 470 meters from the ZM m 

source (see Fig. 9.3). Unlike the similar elusticiry 
verification test described on page 95, this validation roller BC 
test used elastic-plustic field-scale parameters that Figure 9.3. Spherzcal cavitygeometry. 
were determined by applying the GeoModel's cali- 
bration procedures described in Appendix A (back-fitting alteration of these independently deter- 
mined calibration parameters was disallowed, as should be the case for QQ validation test). 

Figure 9.4. GeoModel + JAS3D pnite-element prediction (blue) us. 
measured (red) velocity and displacement at 470 m. from a spherical cavity 
velocity source at 204 meters. 

The GeoModel (along with its implementation within the host finite-element code, JAS3D) 
comes far closer to matching data than simpler models such as non-hardening Von Mises plasticity, 
indicating that the GeoModel's advanced physical features (especially pressure sensitivity) are 
important. Because the GeoModel falls short of a compeiling agreement with data, further study is 
warranted. Unlike the verification study presented on page 95, this validation simulation is over- 
predicting peak velocity. As was the case in the verification study, code predictions were strongly 
affected by artificial viscosity, suggesting that disagreement with data might be rooted in host code 
problems as much as shortcomings of the GeoModel. Of course, natural spatial variability of in- 
situ rock (which is neglected in the simulation) may play a role, as might the response time of 
gauges used to acquire the data, or myriad other possible error sources. 

This concludes our overview of preliminary validation testing. More extensive model val- 
idation activities (now underway) require publication of this theory and user's guide to pro- 
vide a resource document that allows analysts to apply the GeoModel properly. 
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10. Closing Remarks 

The preceding chapters have attempted to elucidate the physical foundations and 
domain of applicability of Sandia's GeoModel. This model was developed in response to 
the need for a predictive model that could be used for a wide range of applications while 
maintaining numerical tractability in the context of Sandia's solid mechanics finite- 
element software. Three key applications for this work are in projectile penetration 
research, analysis of hard and deeply buried targets, and reservoir-scale modeling of 
formation compaction caused by pore pressure drawdown during oil or gas production. 
With the emergence of the capability to simulate the large-scale mechanical behavior of 
complex geosystems by virtue of recent advances in software and hardware, Sandia 
recognized the need to enhance the material modeling capabilities for geomaterials. A 
large-scale, long-term effort was begun that brings together activities in laboratory testing, 
basic research, software development, verification, validation, documentation, and quality 
assurance. The goal is to provide a rock mechanics predictive capability that fully 
accounts for the complex nature of in situ rock masses. While this is an on-going program, 
the GeoModel has reached a stage of maturity that warrants documentation of the effort to 
date. The GeoModel is a genuine unification and generalization of simpler models, and as 
such it is capable of satisfying the needs of almost any structural application involving 
geomaterials. While "first-principles" microscale theories have influenced the general 
model framework, physically motivated phenomenological judgements about relations 
between stress and strain have been given ultimate priority to more accurately match 
observed laboratory behavior. 

In the laboratory, most rocks exhibit nonlinear elastic deformation upon unloading 
and re-loading, hysteresis loops, different behavior in extension than in compression, 
strain-rate sensitivity, pressure dependence, and post-peak softening. Moreover, high 

~ - 

porosity rocks under compressive mean stresses and non-zero deviatoric stresses, involve 
a complex interplay of deformations from competing mechanisms including pore collapse 
and microcrack-microvoid development, which occur simultaneously allowing 
macroscopic pre-failure dilatation to occur even as pores continue to collapse. In addition, 
the strain-rate sensitivity of some porous rocks depends on the predominant deformation 
mechanism, e.g., the strain-rate sensitivity of shear and extensional failure is different 
from that of pore collapse, and the strain-rate sensitivity itself may be pressure dependent. 
This report summarizes the progress toward achieving a realistic rock constitutive theory 
that can be calibrated via standard laboratory experiments and is numerically tractable for 
massively parallel calculations using tens of millions of three-dimensional finite elements 
and loading conditions that involve ground shock and other non-quiescent processes. 
While the GeoModel has achieved many of the stated objectives, there is still much to be 
accomplished. Current model-enhancement activities (to be documented in future reports) 
include pressure dependence of the extension/compression strength ratio, softening and 
failure (fracture), anisotropic jointed rock behavior (as observed in situ), and natural 
spatial variability resulting in localization. 
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APPENDIX A. 
Parameterizing the GeoModel 

The following steps describe how to determine values for parameters used in the Geo- 
Model. In many cases, specialized parameterization software (e.g., HYDROPIT, 

SHEARFIT, etc.) was used to perform nonlinear regression to determine optimized param- 
eter values. This supplemental software, which applies nonlinear least squares fitting is 
available from Arlo Fossum. Alternatively, nonlinear optimization is available via the 
"Solver" add-in of MS Excel. 

STEP 1.Use hydrostatic pressure vs. total volumetric strain data to obtain 
the nonlinear elastic bulk modulus parameters ( b , ,  b , ,  and b , )  as well 
as the crush curve parameters p,,  p , ,  p ,  , p 2 .  Hydrostatic data are used to 

obtain the nonlinear bulk modulus parameters in Eq. (4.9), 

as well as the parameters in the crush curve, Eq. (4.68), 

First express data as a column or space delimited table with the first column being 
total volume strain E F ~  and the next column = 3 j ,  where j is the pressure 

(positive in compression). Determine the parameters in Eq. (A.l) using Fossum's 

HYDROPIT program* (which assumes linear elasticity when y<jo) .  The HYDROPIT 

program employs standard nonlinear regression fitting procedures [35] and includes 

parameter sensitivities [i.e., derivatives of Eq. (4.68) with respect to each 
parameter]. The input file for the ~ R O P I T  program contains one line with five 

values (initial guesses for the parameters p3 , p ,  , p,  , p,, bo in that order) and a 
second line that contains five integers, each having a value 1 or 0 to indicate 

whether that parameter is to be optimized (if not, its value is fixed). The peak 

inelastic volume strain, p3 , roughly equals the initial porosity. Refer to Fig. 4.14 for 
guidance on how to set initial guesses for the other crush parameters. The HYDROPIT 

program outputs optimized values for po ,  p ,  , p ,  , p,,  b o ,  b ,  , and b 2 .  

* HYDROFIT is available upon request. At present, thii software presumes linear elasticity when 
X<&. If the data show nonlinear elasticity, as in Fig. A.l, HYDROFIT will provide only approxi- 
mate parameter values. At present, fitting nonlinear parameters is not automated. 
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Figure A. I .  Ideal hy&mtaticparameteruation data. The unloading portion is used to obtain the 
elastic bulk modulus parameters bo , bl , and b, . With these parameters, the HYDROPIT pmgram con- 
verts the loading portion of the data to a crush curve (see Fig. 4.14), and employs nonlinear regression 
to obtain the crush parameters po, p, , pl , and p, . For this material (a ceramic powder, zucoa), the ini- 
tial elastic loading curve is so small m comparison to the scale that it is not visible. 

Figure A.2. Less-preferable hy&ostaticparameterization data. Like the data for the materi- 
al shown in Fig. A.1, this hydrostatic compression test (for h z e n  soil) was conducted nearly to 
full pore collapse, but the loading curve shows signs of material creep, which is not included in 
the GeoModel. 
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STEP 2.Use triaxial compression data to obtain the shear modulus 
parameters go, g, , and g2 . This step determines the parameters in Eq. (4.10), 

Arrange the triaxial data as a two-column table, the first column being the axial 
strain and the second column being the stress difference (oA - cL) .  Then use 
nonlinear least squares regression analysis to obtain the shear modulus parameters 
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Tnaxdl Comprea8on Teat 

75 M P ~  Confining Pressure mn 

f l ~ a s t i c  
-150 loading 
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elastic 

initial elastic loading unloadin 
-50 can be dZEcult to Gistinguish 
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0 

Figure A.3. Data representative of a Piaxial compression parameterization test. The slope of the 
unloading curve is the nonlinear tangent Young's modulus. Through standard moduli conversion formu- 
las from linear elasticity, the previously determined bulk modulus parameters are used to obtain the 
elastic shear modulus parameters go,  g, , and g, . 

As illustrated in Fig. 3.3 in the main text, triaxial testing is typically performed as a 
two-stage process in which the material is first compressed hydrostatically to a 
given pressure. Then, during the second (triaxial) leg, the lateral stress is held fixed 
while the axial stress is varied. Only the elastic unloading data should be used for 
determining the nonlinear elastic shear modulus parameters. As explained on 
page 28, the plot of stress difference (oA - oL) vs. axial strain E~ will have a slope 
equal to Young's modulus E. Rather than directly using Young's modulus E as a 
user-specified material parameter, the GeoModel requires the shear modulus G. 
Recall that the nonlinear elastic bulk modulus K was found previously in step 1. 
The SHEARFIT program computes the shear modulus G from K and E by using the 

3KE cited in Eq. (4.15). If fitting to rock standard linear elasticity formula, G = - 
9K-E' 
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data, Poisson's ratio, v = ( 3 ~ - E ) / ( ~ K ) ,  is typically in the neighborhood of 0.2 (this 
is a useful "sanity" check). 

STEP 3.(optional) maintain a record of all peak stress states ever measured 
for every available quasistatic load-to-failure experiment ever 
performed for the material of interest. The softening threshold (peak limit) 
envelope is the boundary of any and all stress states quasistatically achievable for 
the material, including both elastically obtainable stress states and stress states that 
can be reached only through inelastic deformation. Unlike a yield surface, which is 
the boundary of elastically obtainable stresses (and which therefore will, in general, 
evolve as the microstructure is altered in response to inelastic deformation), the 
limit envelope is fixed in time (see Fig. 1.1 on page 5). All achievable yield surfaces 
(an infinite set) are contained withii the single limit envelope. Characterizing the 
limit envelope requires numerous different experiments. Typically, each individual 
experiment has precisely one stress state at which the second stress invariant J2 
achieves a peak value. If the material softens before rupturing, the value of J2 at 
failure might be lower than q*. It is the peak that is of interest, not the post- 
softening value at failure. 

For every available quasistatic load-to-failure experiment, fmd the stress state at 
which J2 is larger than for any of the other stress states in that experiment. 
Construct a table of data triplets (ippeak, @, 6@peak), where Tapeak and 
8@peak are the values of 7, and 8 at the stress state for which J2 is at its peak 
value. The number of entries in your peak stress table will equal the number of 
experiments run to failure. The goal here is to gather sufficient data to parameterize 
both the Lode angle function ~ ( 8 )  and the shear limit envelope in Eq. (4.39), 

F ' I , )  = ( a ,  - a3e 2 )  + a , I, when 7 ,  = -I, (shear limit function) (A 4) 
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STEP 4.Use peak stresses from a family of triaxial compression tests to 
determine the shear failure envelope parameters a ,  , a,, a,,  and a,. 

Recall that the Ff function represents a peak shear limit envelope in the meridional 

plane for which p2 is plotted against 7 ,  for triaxial compression (TXC) stress 

states. Thus, the set of all stress states ever observed in TXC (Lode angle 

e = +30° ) must fall below the curve ,& = F ' l , )  , modulo experimental scatter. 
Stated differently, this curve defines boundary of all stress states that ever have been 

(or ever can be) observed in quasistatic TXC loading. A sufficient number of TXC 
experiments must be conducted under various confining pressures so that the 

bounding surface begins to take form. On other meridional planes (i.e., at other 
Lode angles), the GeoModel theory presumes the bounding curve is adequately 

described by ,& = F~(z , ) /T (~ ) ,  which simply means that the GeoModel 
presumes that the limit function at non-TXC Lode angles is simply a scalar multiple 

of the TXC function. Once the Ff function has been determined in this 
parameterization step, the peak stress data at other Lode angles will be used later to 

determine the r proportionality function. 

Using only the TXC ( e  = 30" ) data create a scatter plot of all ever-achieved TXC 

values of ,& and 7 , . A scatter plot of all TXC stress data measured at various 

Figure A.4. A family of TXC tests conducted to failure. The boundary of data 
points defmes the F, function. All other (sub-peak) data points fall below this line. 
Plots like the are shown for various materials in Fig. 8.1. 

-@peak = 300 In Fig. A.4, the peak data pairs (darkened dots) correspond to the 9 
values from your table of peak-stress invariants collected in STEP 3. A suite of actual 

TXC experiments for porcelanite is shown in Fig. AS, along with further 
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illustration of how discrete peak points from these experiments are transferred to a 
limit surface meridional plot for fitting to Eq. (A.4) 

c n m a r r r ~  
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Figure A. 5. TXC stress-strain plots and exnaction of theirpeak values to construct the rneridional 
limit curve (data are forporcelanite). (a) Each shear stress f12 vs. axial strain plot has exactly one 
peak value, as labeled. The value of I, at this peak is found by applying Eq. (3.28), 1; = &i + 3EL 
with .i = and 5L equal to the lateral confming pressure for the test. (b) The peak states are 
transferred to a plot of J& vs. T,  for fitting to the F, meridional h i t  function. 

Once enough TXC experiments have been conducted for a well-defined shear limit 
boundary to emerge, the next step is to determine values of a,, a2 ,  a 3 ,  and a4 that 
best fit the Ff function to this boundary. 

Given triaxial stress difference eA - E L  vs. axial strain E L  data, Eqs. (3.28) and 
(3.29) show that value of J2 at peak is given by @ = laA - aLl@/& and the value 
of I I  (i.e., the trace of the stress) at peak equals IP& = 3aL + ( B ~  - sL)pe&, where eL 
is the (constant) lateral confining pressure. The (7@pd, p) data pairs from TXC 
experiments (i.e., those for which 6@pk = +30°) may be fed into a nonlinear 
regression parameterization program, SHEARPIT (available upon request) to 
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optimize the parameters in Eq. (A.4). To use this program, create an input file 
containing, in the first line, your initial guesses for a , ,  a2, a3, a4 and, in the second 
line, four logical integers (0 or 1) to indicate whether or not to optimize on the 
corresponding parameter. Refer to Fig. 4.l(a) to help decide appropriate initial 
guesses. If the data suggest a linear envelope at high pressures, then your fmt guess 
for a4 should be an approximation of the slope of this envelope. If in doubt, take 
a4 = 0.0 (i.e., assume the data asymptote to a constant value as pressure goes to 
infinity). Eyeball the data to set your first guess for a* equal to the zero-pressure 
value of the linear asymptote line (extrapolate visually if necessary), set a3 to equal 
a l  minus your best estimate for the actual ordinate intercept of the low-pressure 
data (again, extrapolate if necessary). Finally, set a2 to equal an estimate for the 
initial (low-pressure) slope of the data divided by a3 . Using these initial guesses, 
the SHEARFIT program applies nonlinear regression and outputs values for the a ,  , 
a , ,  a 3 ,  and a4 parameters. 

BEWARE: In typical TXC experiments, all principal stresses are compressive, 
making it is possible that SHEARFIT will return a meridional fit to the available data 
that corresponds to a shear limit envelope that does not corral the origin (implying 
nonphysically that zero stress is "unachievable"). If this occurs, you might want to 
append your table of observed (rape&, p) data with an entry (-Ifmit, 0) , where 
Ifrn" is your best estimate for the theoretical hydrostatic tensile strength of the 
material (therefore -Ifmit is a negative number). Include this entry multiple times 
if necessary to force it to have greater weight in the nonlinear regression (or, 
preferably, perform more experiments to obtain a larger number of real data points 
at low values of I, ). 

sTEp5.u~~ peak stresses from a family of triaxial extension tests to 
determine the extension to compression ratio y ~ .  As was done above for 
TXC tests, construct a table of (?Ie", F) data pairs corresponding to peak 
attained stresses in triaxial extension (TXE). These are the data pairs in your peak 
data table from STEP 3 that correspond to Gape" = -30°. For each of these TXE 
data pairs, compute 

'4' = Fh 7 p peak in TXE 
) 

where Ff is the TXC shear limit function parameterized in the previous step. Of 
course, each TXE experiment is likely to result in slightly different values for yr . 
At present, the GeoModel presumes that the TXEITXC ratio yr is constant. 
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Therefore, set the GeoModel parameter \y equal to the average of each \y computed 
using Eq. (AS) for each available TXE experiment. 

It is possible that the data might imply that the strength ratio y must vary with 
pressure, but the GeoModel presently assumes that yr is the same at allpressures. 
Thus, until the GeoModel is enhanced to support pressure-varying strength ratios, 
modeling errors must be managed by measuring the parameter yr at a confining 
pressures in the neighborhood where the GeoModel is likely to be applied. Similar 
statements can be made regarding any and all parameters used to define the 
GeoModel yield function. 

Sometimes, it might be impractical - or overly expensive - to obtain TXE data. 
In this case, an engineering approach for estimating \y presumes that it obeys the 
same coupling to the meridional profile slope as predicted in classical Mohr- 
Coulomb theory. Using Eq. (A.4) to set the TXC slope in Eq. B.19 in Appendix B. 
an estimate for the pressure-varying strength ratio is 

(A 6) 
1 + & [a4 + a2a3e-azIl] m 

In the future, we hope to thoroughly explore the merits of this formula, which 
correlates the strength ratio with the TXC meridional slope. At present, the 
GeoModel presumes the strength ratio is constant. If, however, the above 
correlation formula can be substantiated, then we will likely incorporate it into 
future releases, thereby possibly eliminating the need for a user-specified yr 
altogether. Until then, you may evaluate the above formula at a value of 7, in the 
neighborhood where you plan to apply the GeoModel to obtain a reasonable 
estimate for v. 

A-L 
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STEP 6.Determine the  appropriate Lode function option J3TYPE. Recall that the 
GeoModel's function T(6) defines the shape of the octahedral profile shape for 
Lode angles spanning the range from TXE ( 8  = -30') to TXC (0 = +30°). The 
GeoModel parameter J~TYPE (see page 45) dictates the functional form to be used 
for the r function. Non-triaxial data are difficult to acquire. If no such data are 
available, you will need to use engineering judgement a s  to an appropriate choice 
for J~TYPE. This parameterization step aims to guide the choice in the happy 
circumstance that non-triaxial data are available. 

As illustrated in Fig. 4.10, the GeoModel's r function is defined to equal 1 in TXC 
and 1 /I+/ in TXE. Large values of T correspond to small shear strengths. In this 
model parameterization step, all available peak-state data obtained in non-triaxial 
loading paths are considered to help decide an appropriate choice for the J3TYPE 
option. Looping over your table (collected in STEP 3) of "all-observed" peak stress 
invariant triplets (?yak, p, Opeak), especially those at non-triaxial states, 
create a new two-column table of (8, r) data pairs, where 

By comparing a scatter plot of these (6, T) data to the graphs in Fig. 4.10, an 
appropriate choice for J~TYPE should be more clear. To assist in the decision, it 
might be easier to instead scale the ordinate as shown in Fig. A.6. By overlaying 
data with the family of plots in Fig. A.6 an appropriate choice for J~TYPE should be 
apparent, as illustrated in Fig.A.7. If non-triaxial data are unavailable (a common 
problem), select J~TYPE-1 if the material is judged to be moderately ductile; 
otherwise, select J~TYPE-3. 
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Figure A.6. The Lode function information original& shown in Fig. 4.10 of the main report, now dis- 
playedwith a transformed ordinate. Knowing that r = I/yr in TXE and r = 1 in TXC, it makes sense 
to scale the ordinate as shown so that, regardless of the value of y , the scaled ordinate equals 1 in TXE 
and 0 in TXC. With this scaling, all Gudehus Lode functions overlap; the others vary with yr . 

of data 1s l~kely to be 
available) 

- 0  4 -0 2 0 2 0 1 
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Frgure A. 7. A sketch of how data might be distributed at non-triarial states. In this contrived 
example, most of the data at non-triaxial states falls in the red Willam-Warnke region and therefore 
J3TYPE-2 would be appropriate for this material. In practice, data at non-triaxial Lode angles are 
rarely available. In this case, the user must resort to engineering judgement to decide which J3TYPE 
option to select. 
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STEP 7.Hardening parameters. In the previous steps, we determined the GeoModel 
parameters that define the outer limit surface. No stress state outside this fixed (non- 
evolving) limit surface can be achieved through any load path. Consequently, the 
infinite set of all possible yield surfaces must be contained within this limit 
envelope. Unlike the limit surface, which bounds all possible stress states, the yield 
surface merely bounds the set of elastically obtainable stress states. Unlike the limit 
surface, a yield surface evolves (hardens) through time as a result of microstructural 
changes induced in the material under inelastic loading. The initial yield surface is 
typically much smaller than the limit surface (see Fig. 1.1 in the main text). 
Isotropic hardening permits the initial yield surface to expand on octahedral planes 
(by amounts that vary with pressure) up until the limit surface is reached. Kinematic 
hardening permits the yield surface to translate in stress space until the limit surface 
is reached. Both types of hardening may occur simultaneously. 

As a rule, the amount of kinematic hardening relative to total stress is high at lower 
pressures. Therefore, kinematic hardening data are best inferred ftom unconfined 
compression tests. In the previous parameterization steps, we determined crush 
parameter values (po,pI,p2),  elastic parameters (b,, b,, b2, go, g,, g,), the limit 
surface parameters (a l ,  a*, a3, ad, \v), and J ~ T Y P E .  NOW these values should be 
used in a finite-element (or single cell driver) implementation of the GeoModel, to 
obtain a simulated table of axial stress vs. volume strain to compare with available 
experimental data. The goal is to determine values for the as-yet-unknown 
GeoModel parameters through a systematic simulation sequence. As a first guess, 
set the "yet-to-be-determined" GeoModel parameters as follows: 

offset RN=N=O (i.e. suppress hardening) 
kinematic hardening parameter nc=le5 
shape parameter c~=R=l0  
plastic potential function parameters for non-associativity nzps==A2, 
A ~ P F = = A ~ ,  RKPB=RK, CRPF=CR (i.e., tentatively assume associativity) 
joint spacing RJS=S=O.O 
rate sensitivity parameters TI through ~7 =0.0 (no rate sensitivity). 

Run the finite-element code for unconfined 
compression and output axial stress vs. volumetric 
strain (EVOL). It is unlikely that this result will 4 .- 
replicate observed unconfined compression data on t 
the first try. We ultimately hope to assign values to 
the above parameters so that the volume strain will 
"turn around" as Fig. 8.6@) (even though axial strain - 
increases monotonically, the volume strain turns 
around because of the lateral bulking strains). 

L volume strain 
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The phenomenological fitting functions employed in the GeoModel are designed to 
extrapolate reasonably well into regions where data are not available, but these 
functions are also selected in part for computational tractability and they therefore 
serve only as approximations. Consequently, there will certainly be modeling error. 
Ideally, one should use regression fitting procedures to select GeoModel hardening 
parameters that minimize modeling error relative to available data. We have already 
described the programs "HYDROFIT" for regression optimization of the elastic 
parameters and SHEARPIT for finding the limit surface parameters, but no similar 
fitting software has yet been developed to determine the hardening parameters. 
Consequently, for these parameters, a more traditional exploratory manual search 
method must be used as described below. 

In the following, we will be exploring adjustments of CR, RN, and HC to try to 
achieve a strain "turn around" at the correct (observed) strain and stress. 

If no turn around is apparent in your simulation, try decreasing CR. Continue to 
decrease CR until turn around occurs. If you get no turn around, bring down the 
initial yield surface. The intercept on the ordinate on the meridional profile is 
located at J2 = a ,  -a ,  . Try increasing N to a value no larger than a ,  - a3 (our initial 

guess of N = 0 presumed that the initial yield surface coincided with the shear 
limit surface. By setting N to a nonzero value, we are now permitting kinematic 
hardening). You will likely see "turn around" start to occur. 
Next try changing HC. Increasing (say, doubling) HC will increase the strain value 
at which turn-around occurs. Lowering HC lowers the turn-around strain. If you 
continue to have trouble getting turn around, double check that you have correctly 
entered the previously determined (known) parameter values. 
If the turn around stress is too high, try lowering HC. 

........................................... 
Once shear-induced dilatation (turn-around) has been 
adequately modeled for unconfined TXC, go then to $ e high-confinement data. Try changing CR (e.g., from 
7 to 10 if computed peak strain is too large). 
.................................. 
Go back to unconfined, and work on HC and RN. 

Continue to go back and forth until you are satisfied 
with both confined and unconfined results. 

This concludes our guidance for parameterizing new materials to the GeoModel. Further 
revisions of this manual will likely include additional tips and parameterization experi- 
ment suggestions. 
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APPENDIX B. 
Nomenclature and Data Sets 

This appendix contains three tables defining (1) model parameters, (2) plotable vari- 
ables, and (3) other symbols or acronyms used internally within this manual. In each table, 
the first column shows the typeset symbol for the variable. The next column contains the 
ASCII string used for the variable in code input files andlor within the source code. In the 
SI units column, a "1" indicates that the variable is dimensionless. A "-" indicates that 
dimensions vary, while NIA means dimensions are not applicable. The defining equation 
(or page number) in the last column of the tables cites the location in this report where the 
quantity is defined or discussed. 

Reminder: in mechanics, stress and strain are typically taken positive in tension. How- 
ever, in applications, they are taken positive in compression. To manage this potentially 
confusing conflict of conventions, recall 

X E - x  0 DEFINITION OF THE "OVER-BAR" (B.1) 

For example, I, denotes the trace of stress (positive in compression). Therefore, 71 = -1- 

is positive in compression. 
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Model Parameters 
(User input) 

PROP (1) 
(BO) 

PROP (2 )  
(Bl) 

ing joints). The tangent bulk modulus is given by I 

I 

High pressure coefficient in nonlinear elastic (intact) bulk I Pa 
moduius function (see above formula). For linear elastic- 
ity, set b,=O. For nonlinear elasticity, set b, so that the 

Bulk modulus K will asymptote to a value b, + b ,  at high I 
pressures. I 
Curvature parameter in nonlinear elastic (intact) bulk 
modulus function (see above formula). For linear elastic- 
ity, set b2 = 0 . For nonlinear elasticity, set b, to a small 1 pa 

value to transition rapidly from the low pressure bulk 
modulus to the high pressure modulus. Larger values of 
b, will result in a broader transition range. 

Coefficient in nonlinear elastic bulk modulus to allow for Pa 
plasticity-induced changes in the elastic properties. To 
neglect this effect, set b3 = 0. When this parameter is 
nonzero, the elastic tangent bulk modulus is computed by I 

Power in nonlinear elastic bulk modulus to allow for plas- 1 
ticity-induced changes in the elastic properties. To neglect 
this effect, set b, = 0 .  Otherwise, see above formula. 

Initial elastic shear modulus (for intact material if model- Pa 
ing joints). The tangent shear modulus is computed by 

Parameter used to define the elastic (intact) shear modulus 1 
at large shears (see above formula). Specifically, the shear 
modulus will asymptote to a value g,/(l -g,) as shear 
stress increases. Must be less than 1.0. For linear elastic- 
ity, set g, = 0 .  For the shear modulus to decrease with 

shearing, set 0 <g, < 1 . For the shear modulus to increase 

with shearing, set g, < 0 .  

- 
Eq. 4.9 

Eq. A. 1 

- 
Eq. 4.9 

Eq. A.l 

- 
Eq. 4.9 
Eq. A.l 

- 
Eq. 4.33 

Eq. 4.33 

- 
Eq. 4.10 
Eq. A.3 

- 
Eq. 4.10 
Eq. A.3 
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or 
Acronym 
- - 

g2 

PROP ( 9  
(03 

- 
Curvature parameter in nonlinear elastic :t) shear 
modulus function (see above formula). For linear elastic- 
ity, set g, = 0 .  For nonlinear elasticity small values of g, 

cause the shear modulus to transition rapidly fiom its ini- 
tial value go to its high shear value g, / ( l  - g , ) .  Larger 

values of g, make this transition more gradual. 

Coefficient in nonlinear elastic shear modulus to allow for 
plasticity-induced changes in the elastic properties. To 
neglect this effect, set g3 = 0 .  When nonzero, the tangent 

shear modulus is computed by 

Power in nonlinear elastic shear modulus to allow for 
plasticity-induced changes in the elastic properties. To 
neglect this effect, set g4 = 0 .  Otherwise, see above for- 

mula. 

Joint spacing. Set this parameter to zero if the material has 
no geilogical (or rock-like) faults. 

Joint shear stiffiess. Set this parameter to zero if the mate- 
rial has no geological (or rock-like) faults. 

Joint normal stiffness. Set this parameter to zero if the 
material has no geological (or rock-like) faults. 

Constant term in the fitting function for the meridional - 
profile, F&I1) = a ,  -a,e-"l'l + a 4 7 ,  , for the ultimate 

shear limit surface. Here, 7 ,  = -trg and therefore 7 ,  is 
three times the pressure. At zero pressure, - 
FA],) = a ,  -a3  while at high pressure (large I I  ), 

F&II) - a,  + ad?, . Thus, a ,  is the vertical intercept of the 

h e a r  asymptote, whereas a ,  -a3  is the vertical intercept 

of the limit function itself: These are parameters defme the 
ultimate limit curve, at which the maximum possible 
hardening has occurred and softening is imminent. The 
initial onset of yield is dexrihed by / A l l )  = FA']) - N .  

Thus if fitting to data for yield onset, recognize that the 
constant term will he lower than a,  by an amount A'. 

- 
Eq. 4.34 

Eq. 4.34 

- 

- 
Eq. 4.39 
Fig. A.4 
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. . 
. . . 

ASCII .,.. 
h e  and meaning 

Curvature decay parameter in the fitting function for the Eq. 4.39 
Fig. A.4 

Eq. 4.39 
Fig. A.4 

-*:Symbol 
or 

Acronym - - 
Name 

PROP (15) 
(A2 I 

PROP (16)  
(A3 I 

P R O P ( l 7 )  
(A4 I 

- - 
meridional profile, Ft(1,) = ( a ,  - a3e"z1 1) + a ,  I  I . Keep 

in mind that = - 3 j ,  where p is pressure. Set a, = 0 

for a linear meridional profile as in Mohr-Coulomb the- 
ory. Assign a, a large value to quickly asymptote to the 
high-pressure profile slope. 

Parameter in the shear limit meridional fit function, - - 
F/(I1)  = ( a l - a 3 e ~ ' " ~ ) + 0 4 1 1 .  

High-pressure meridional slope parameter in the fit func- 
- - 

tion, FA[,)  = ( a ,  -a3e-'"1)+ a4 I  . 
Eq. 4.39 
Fig. A.4 

PROP (10)  
(POI 

Value of r, at the onset of pore collapse for hydrostatic 

compression of virgin material. This parameter will be 
negative because II is negative in compression. In the 

lexicon of traditional p - a  crush models, this variable 
would equal -3P,, where P, is the elastic limit pressure 

in hydrostatic compression. In many other publications 
about the GeoModel, this parameter is denoted X,  . 

Eq. 4.67 
Fig. 4.1 

4 
Eq. A.2 

One third of the slope of a porosity vs. pressure crush 
curve at the elastic limit. In many other publications about 
the GeoModel, this parameter is denoted Dl . 

Eq. 4.67 
Fig.4.14 
Eq. A.2 

PROP (20) 
( P a )  

PROP (211 
lP3) 

Extra fitting parameter for hydrostatic crush curve data, 
used when the crush curve has an inflection point. In 
many other publications about the GeoModel, this param- 

eter is denoted D2.  

Eq. 4.67 
Fig. 4.14 
Eq. A.2 

Asymptote (limit) value of the absolute value of the plas- 
tic volume strain. This parameter is approximately equal 
to the initial porosity in the material and may be inferred 
'om hydrostatic crush data. In many other publications 
about the GeoModel, this parameter is denoted W .  

Eq. 4.67 
Fig. 4.14 
Eq. A 2  
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- - 
PROP (22 

(CR 

PROP I24 
I EN 

PROP (25 
(HC 

IF" PROP (26 
( C T I 1  

Shape parameter that allows porosity to affect shear 

strength. R equals the eccentricity (width divided by 
height) of the elliptical cap function, so it is the ratio a / b  

(not A / B )  in Fig. 4 15. This parameter affects the Stress 
level at which dilatation will occur in triaxial compres- 
sion. If dilatation is occurring too soon, increase the value 
of R . Decreasing R will decrease the influence of poros- 
ity on shear strength and therefore enhance the effect of 
void space creation associated with crack growth. To rep- 
licate older classical pore collapse models (which initiate 
pore collapse only at a critical pressure, regardless of the 
level of shear stress), set R to a very small number. 

TXWTXC (triaxial extension to compression) strength 
ratio. Convexity of the yield surface requires that 
1/2 s yr s 2  (or 7/9 s yr s 9/7 if using J~TYPE-I). Real 
materials generally satisfy 1 / 2  s yr s 1 . Fume releases of 
the GeoModel will likely allow yr to be pressure-depen- 
dent. 

Off-set parameter. Must be non-negative. Set N = 0 to 
suppress kinematic hardening. For problems with kine- 

matic hardening, the backstress invariant f i  will not be 

permitted to grow any larger than N .  The initial yield sur- 
face is defined by Fj"'"*(I,, N) = FkI , )  -N ,  where F, 

describes the shear limit surface (softening threshold). 
Roughly speaking, the shear strength can increase by an 
amount N before softening will commence. 

Kinematic hardening parameter. Set H = 0 and N = 0 to 
suppress kinematic hardening. Otherwise, this parameter 
affects how "quickly" the yield surface evolves toward the 
ultimate shear failure surface. 

Tensile cut-off in allowable value of the first stress invari- 
ant I, . Value must be positive. If the fmt invariant (which 

is proportional to the negative of pressure) reaches this 
cut-off value, the isotropic part of the stress is replaced 
with this value. This parameter is available only tempo- 
rarily to permit reasonable strength predictions in tension. 
Current enhancements of this model are focused on more 
physically rigorous tensile failure modeling. In principle, 
the y~eld function should limit achievable values of I, . 
This option is available if the yield function is not cutting 
off strength at a tensile pressure low enough for the appli- 
cation at hand. 

t 
e 

- 
Fig. 4.15 
?q. 4.69 
pg. A-11 

page 45 
Fig. 4.4 
Eq. A.5 

- 
Fig. 4.6 

Eq. 4.40 
page 59 
pg. A-11 

- 
Eq. 4.76 
pg. A-ll 
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- 
defining 
equation 
- - 

PROP(Z7)  
(CTPS) 

PROP (28)  
( T l )  

uc a d  meaning 

- 
Principal stress tensile cut-off. If a predicted principal 
stress is found to exceed this value, then it is replaced with 
this value. See discussion regarding the state variable 
"CRACK in the next table. 

Primary rate dependence parameter. To specify a constant 
intrinsic material response time, set this user input equal 
to the characteristic response time. Use the other "T' 
parameters to enable dependence on strain rate and pres- 
sure. 

Eq. 5.22 

Rate dependence parameter. See main text. Eq. 5.22 
- 
Eq. 5.22 No longer used. Set to zero. 

No longer used. Set to zero. Eq. 5.22 

Rate dependence parameter. See main text. Eq. 5.22 

PROP (33) 
(T6) 

Rate dependence parameter. See main text. Eq. 5.22 
- 
Eq. 5.22 Rate dependence parameter. See main text. 

Integer-valued control parameter for specifying the 
desired type of 3 1 ~  -invariant yield surface: 
I - Gudehaus 
2 - Willam-Wade 
3 - Mohr-Coulomb 

page 45 
Fig. A.7 

Potential function parameter (=A2 for associative). Assign 
this parameter in the same way you would assign a value 
to a,, except that this parameter is used to generate the 

page 48 

flow potential surface (i.e., the plastic strain rate will be 
normal to the flow potential surface). Be sure to set afF 

to a, if pla d. 

Potential function parameter ( = ~ 4  for associative). Assign 
this parameter in a manner similar to a4 except that this 

PROP (37) 
(A4PF) 

page 48 

parameter will be used to generate the flow potential. Be 
aiF eet 
- - 

Potential function parameter (=CR for associ v 
potential analoe of the vield surface varamete 
to set RE ( to R i 
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Potential function parameter (=RK for associative). Flow 
potential analog of the yield surface parameter y .Be sure 
to set y*f equal to y if plastic normality is desired. 

Subcycle control parameter. If zero, the GeoModel will 
select an appropriate subcycle step size. If s w x  is non- 
zero, then the GeoModel's default subcycle increment will 
be multiplied by lo**svex (ten raised to the power). If, 
for example, you want the code to decrease its subcycle 
size by a factor of 10, then set SUBX=-1. If you want the 
subcycle size altered by a factor "x", then set swx to the 
base ten log of "x" [log,,x = (Inx)/(lnlO)]. 
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Internal State Variables 
(Plotable Output) . - . 

Name and mewing 

- 
f l ing 

equation 
l)age). - - 

Fig. 4.5 
Eq. 4.30 
Fig. 4.15 
Eq. 4.70 

The value G. ., at which the meridional yield profile first 
branches away h m  the crack failure surface and begins 
to morph into the cap function associated with porosity. 
Recalling that K = -K , the internal state variable K typi- 
cally will be negative. As a rule of thumb: increasing the 
user-input parameter R will increase K (and therefore 
decrease K). Recalling Fig. 4.15, K is not the point at 
which the meridional profile has a z m  slope - it is the 
branching location. The zero slope point is reached at a 
higher pressure. Isotropic hardening is controlled by the 

evolution of K . In the GeoModel physics source code, K 
is denoted by ELN or by EL in the subcyclig. 

Indicator for isotropic plastic hardening. This flag will 
equal zem up until the first time isotropic hardening (i.e., 
evolution of the K state variable) occurs. Thereafter, this 
flag will equal 1.0 even ifthe stress later becomes elastic. 

page 77 

L2 (Frobenius) norm of input strain rate tensor. page 77 

First stress invariant (positive in tension). Eq. 3.9 
page 77 
- 
Eq. 3.10 
Eq. 3.13 
page 77 

Square mot of the second stress invariant p2 (always 

positive). This the equivalent shear stress in the material. 

11 component of the backstress page 58 

EV(7)  
[ALYYI 

22 component of the backstress Page 58 
- 
page 58 33 component of the backstress 

12 component of the backstress (= 21 component) page 58 S V ( 9 )  
[ALXYI 

S V ( 1 0 )  
[AXYZl 

23 component of the backstress (= 32 component) page 58 

3 1 component of the backstress (= 13 component) page 58 

- 
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- 
Eq. 4.79 
page 58 

- 

Eq. 4.35 

- - 
Kinemw~r: nlimenmg decay function, equal tn 1.0 initially 
and then decays down to 0.0 as the max allowable kine- 
matic hardening (determined by the shift parameter N) is 
approached. 

Equivalent uniaxial plastic shear strain (conjugate to 

A). Specifically, yhiv = ~ + & l l f d t ,  where g is 

the deviatoric part of the plastic strain rate . 

page 77 
Equivalent plastic volume strain: EC = Pdf. 
Calculated initial value for K (the cap branch value of 

I l  ). This is not really an internal state variable. Its value 

will remain constant throughout the calculation. Keep in 

mind: k is typically positive and therefore K = -i? is 
typically negative. 

Fig. 4.15 

(Isotropic hardening parameter) Proportionality factor 
appearing in the relationship K = i h x .  

Total volume strain, 

Eq. 4.73 

page 77 

Square mot of the second backstress invariant. This is like 
the equivalent shear stress, except applied to the back- 
stress. The value of BACKRN is not permitted to exceed 
the user specified limit value of N 

Flag that equals 1.0 at the onset of softening whenever the 
maximum tensile cut-off has been applied (or when the 
limit surface is reached). The geomodel simply replaces 
the stress with the cut-off stress (user input CUTPS). Phys- 
ically, complete loss in load-canying ability in the appro- 
priate direction is actually desired. However, simply 
replacing the principal stress with zero at the constitutive 
level would result in mesh-dependencies in host codes that 
lack macroscale fracture services. More advanced codes 
should examine the internal state variable flag "CRACK" 
to determine when this cut-off is being applied (and it is 
therefore appropriate to initiate void insertion, element 
death or, preferably, more advanced hcture response). 

Eq. 4.79 

page 77 
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- 
dYi 

Symbol 

from 0.0 if the trial swess rate is tangent to the yield sur- 
face to 1.0 if the trial stress rate is normal to the yield sur- 
face (i.e., pushing directly against it). 

sv (21 )  Value of the yield function 
WIELD1 

sv (22) Lode angle in degrees ranging from -30 in triaxial exten- deg Eq. 3.40 
[LODE] pinn in +?0 in triaxial comnrewinn. The Lode angle is fie- page 77 

b 1 ~ubl~cations about the 

SV (23)  mernal GeoModel variable (quasistatic "low" stress) Pa Eq. 5.10 
IQSSIOXII 

sv (14) Internal GeoModel variable (quasistatic "low" stress) Pa Eq. 5.10 
[QSSIalYl 

sv (25) Internal GeoModel variable (quasistatic "low" stress) Pa Eq. 5.10 
~QSSIaZZl 

8V (16)  Internal GeoModel variable (quasistatic "low" stress) Pa Eq. 5.10 
[QS~IGXYI 

s v  (17) Internal GeoModel variable (quasistatic "low" stress) 1 pa 1 ~ q .  5.10 
[QSSIaYZl 

SV(18) Internal GeoModel variable (quasistatic "low" stress) Pa Eq. 5.10 
[QSSIGZXI 

SV (29)  Plastic consistency parameter. - Eq. 4.55 
[DCSPI Pa.s 

Eq. 4.83 

SV(30)  Internal GeoModel variable (quasistatic "low" value of Pa Eq. 5.15 
K), In Eq. 5.15, q,  stands for any internal state variable. 

This is the particular instance for which qL = K, , which is 

the quasistatic value of the isotropic hardening ISV. 

sv(31) Quasistatic backstress. In Eq. 5.15, q, stands for ah. I Pa 1 Eq. 5.15 
[QSBSXXI 

sv(32)  Quasistatic backstress. In Eq. 5.15, q, stands for ah. 1 p a I ~ q . 1 . 1 5  
[QSBSrn 

SV'"' Quasistatic backstress. In Eq. 5.15, q, stands for a;. Pa Eq. 5.15 
[ ~ s ~ s z z l  

SV'") Quasistatic backstress. In Eq. 5.15, q, stands for a;. Pa Eq. 5.15 
[QSBSXYI 

y[Gasistatic ~QSBSYZI backstress. In Eq. 5.15, qL stands for a$ . 1 Pa lEq.5 .15  

SV'"6' Quasistatic backstress. In Eq. 5.15, q, stands for a;. 1 Pa IEq.5 .15  
[QSBSZXl 
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Other symbols 
(used only in this report) 

lame and meanin; 

- - 
Fourth-order elastic stiffness tensor 

Kronecker delta 

Deviatoric plastic strain increment = ( k c  - $ k k ~ l l ) ~ t  

Plastic volume strain increment = k f k ~ i  

Derivative of the plastic potential with respect to stress 

time 

time increment 

Young's modulus 

The part of the meridional yield profile function associ- 
ated with microcracks; f /  = F,-A' 

Meridional shear limiter function 

The part of the meridional yield profile function associ- 

ated with porosity; f, = PC 
Meridional nominal yield function (Pelessone function) 

Friction angle (for Mohr-Coulomb theory) 

Flow potential function 

Octahedral yield shape function (depends on J3TYPE) 

Kinematic hardening modulus tensor 

Acronym: Hydrostatic loading. The stress is diagonal (no 
shears). 

First stress invariant, I ,  = tro . This is positive in ten- - 
sion. 

Negative of I, . This is positive in compression 

SI 
unib 

- 
defining 
equation 
(01 page) 
- - 
Eq. 4.4 
- 
Eq. 2.4 
- 

- 

Eq. 4.12 

Fig. 4.6 
Eq. 4.29 

Eq. 4.39 

Fig. 4.5 
Eq. 4.29 

Eq. 4.32 
Eq. 4.30 

Eq. B.3 

Eq. 4.55 

page 45 

Eq. 4.78 

page 13 

Eq. 3.9 

Eq. 3.9 
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1 Second stress invariant, J2 = jtr$ (never negative). 

Geometrically, equals the magnitude of the stress I I 
deviator, and it therefore equals the "length" of the projec- 
tion of the pseudo stress vector in 3D Haigh-Westergaard 

Eq. 4.22 

(stress) space onto the octahedral-plane (i.e., f i  is the 

Second invariant of the shifted stress 

I Third stress invariant, J3 = jtr.$3. This is positive when 
Pa3 Eq.3.11 

the stress deviator is closer to TXE than to TXC. 

Negative of J, . This is positive when the stress deviator is 

closer to mc than to TxE. 

I p a 3 ~ E q . 3 . i i  

T h i i  invariant of the shifted stress 

Poisson's ratio I 1 I Eq.4.12 

1 I Mean stress, p = +a = A. The mean stress is positive 
3 -  3 I 

in compression. The pressure p , which is positive in com- 
pression is the negative of the mean stress: p = -p . 1 1 

- 
1 I1 Pa page 11 

Pressure =negative of mean stress, .B = --ho = - 
3 3 1 1 Eq. 3.12 

Porosity (unloaded). 1 Eq. 4.65 

Code parameter equal to 1.0 1 

Code parameter equal to 2.0 1 

Code parameter equal to 4.0 1 

Polar rotation tensor 1 Eq. 3.39 
Eq. 4.3 

mass density w m 3  

1 Stress deviator, S = 8 - -(trc)I 3 

The stress tensor. I P a l  Eq.3.1 
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quatioa 
w e )  

- - - 
Acronym: Shear loading (one principal value of the stress 
deviator is zero and the others are therefore negatives of 
each other). SHR applies even when all principal stresses 
are compressive - all that matters is the nature of the 
stress deviator. 

page 18 

- 
page 15 Acronym: Triaxial extension: Two "lateral" principal 

stresses are equal and the distinct eigenvalue is more ten- 
sile than the lateral stresses. A stress state can be in TXE 
even when all principal stresses are compressive - the 
axial stress merely needs to be less compressive than the 
lateral stresses. 

Acronym: Triaxial compression (two "lateral" principal 
stresses are equal and the distinct eigenvalue is more com- 
pressive than the lateral stresses) 

page 15 

The Hill tensor, defined to be the deviatoric part of S2 and 

2 therefore given by T = S2 - ?J2I 

Plastic tangent stifhess tensor 

Signed equivalent shear stress, r = sign[&, J 3 ] .  This 

equals *PI. It is positive when J3 2 0,  and negative 

when J3 < 0. 

Negative of r . This is positive when the stress is closer to 
TXC, and negative when closer to TXE 

Eq. 3.4 

Characteristic material response time second Eq. 5.4 - 
3q. 3.40 Lode angle associated with the shifted stress tensor 

5 = 9-g (85 = 30" when 5 is TXC and 85 = +30° 
when 5 is TXE). 

radian 
:or deg 
in plot 
ultput) 

Sine of three times the Lode angle 85 
Shifted stress tensor, 5 = g - p . When kinematic harden- 
ing is activated, the yield surface origin will be at $ = Q 
instead of at the zero stress origin. The backstress tensor 
g represents the amount by which the origin has trans- 
lated. 

page 58 
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Datasets 

This section cites parameters for some materials that have already been fit to the Geo- 
Model. Datasets undergo continual refinement as additional material data become avail- 
able, so consult the model developers to obtain the latest values. This section concludes 
with simplified datasets for mimicking simpler classical theories (Von Mises plasticity, 
Mohr-Coulomb theory, etc.) 

NOTE TO ALEGRA USERS: The GeoModel must be run using the "Generic EOS". 
Appropriate EOS parameters are quoted at the bottom of each dataset. 

Dataset for Salem Limestone 
$ 
$ GeoModel parameters for Salem Limestone 
$ 
BO - 13.0e9 
B1 = 42.47e9 
B2 = 0.4107e9 
83 = 12.0e9 
B4 s 0.021 
GO = 9.86e9 
01 = 0.0 
02 = 0.0 
03 = 0.0 
04 = 0.0 
RJS = 0.0 
RKS r 0.0 

A3 = 821.92e6 
A4 = 1.e-10 
PO = -314.4e6 
P1 = 1.22e-10 
P2 = 1.28e-18 
P3 = 0.084 
CR = 6.0 
RK = .72 
RN = 12.e6 
HC = 100000.e6 
CTI1 = 3.e6 
CTPS E l.e6 
T1 - 4 .e-4 
T2 = 0.835 
T3 = 0.0 

J3NPE = 3 $~iiensionless 
AZPF = 0.0 $$$$$ = zero means AZPF defaults to A2 for normality 
A4PF = 0.0 $$$$$ = zero means A4PF defaults to A4 for normality 
CRPP = 0.0 $$$$$  = zero means CRPF defaults to CR for normality 
RKPF = 0.0 $$$$$  = zero means RKPF defaults to RK for normality 
SUBX r 0. $Dimensionless 

$model 2 generic eos 
$ rho ref = 2300. $ kg/mA3 
$ tref = 298. $ K 
$ ref sound speed = 5400.0 $ m/s 
Send 
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Dataset for Sidewinder Tuff 
$ GeoModel parameters for Sidewinder Tuff 

$ units are SI 

BO = 4.0e9 

B1 = 6.5e9 
B2 = 0.1~9 

B3 = 0.0 

84 = 0.0 

GO = 3.69~9 

G1 n 0.0 

02 - 0.0 
03 = 0.0 

0 4  = 0.0 

RJS = 0.0 

RKS = 0.0 

RKN = 0.0 
A1 = 496.83e6 

A2 = 6.293s-10 

A3 = 481.08~6 

A4 = 1.e-10 

PO = -70.e6 

P1 = 1.8e-11 

P2 = 2.15~-19 

P3 = 0.08 

CR = 15.0 
RK = 0.7 

RN = 0.0 

HC = 0.0 

CTI1 = 3.e6 

CTPS = l.e6 

T1 = 0.0 

T2 = 0.0 

T3 = 0.0 

T4 = 0.0 

T5 = 0.0 

T6 = 0.0 

T7 = 0.0 

J3TYPE = 3 

A2PF = 0.0 

A4PF = 0.0 

CRPF = 0.0 

RKPF = 0.0 

$Pa 

$Pa 

$Pa 

$Pa 
$Dimensionless 

Spa 

$Dimensionless 

$1/Pa 

$Pa 
$Dimensionless 

$Meters 

$Pa/Meter 

$Pa/Meter 

$Pa 

$l/Pa 

$Pa 
$Radians 

$Pa 

$l/Pa 
$1/PaA2 

$strain 

$Dimensionless 

$Dimensionless 

$Pa 

$Pa 

$Pa 

$pa 
$sec 

$l/sec 

$Dimensionless 

$l/sec 

$Pa 
$sec 

$1/Pa 
$Dimensionless 

$$$$$ default = A2 for normality 

$$$$$ default = A4 for normality 

$$$$$ default = CR for normality 

$$$$$ default = RK for normality 

$model 2 generic eos 

$ rho ref = 1870. $ kg/mA3 
$ tref = 298. $ K 

$ ref sound speed = 2800.0 $m/s 

$end 
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Dataset for lab scale intact Climax Granite 
S 
$ OeoModel parameters for Lab-scale Intact Climax Granite 

$ 
B0 = 43.0089 $Pa 
Bl = 750.089 $Pa 

B2 - 100.0e9 $Pa 
~3 = 0.0 $pa 
B4 - 0.0 $Dimensionless 

00 = 34.7389 $Pa 
01 = 0.0 $Dimensionless 
oa = 0.0 $pa 
03 = 0.0 $pa 
04 = 0.0 $Dimensionleas 

RJS = 0.0 $Meters (Joint spacing) 
RKS = 0.0 $Pa/Meter (Joint shear stiffness) 
RKN = 0.0 $Pa/Meter 
A1 - 1355.e6 $Pa 
A2 = 3.438-10 $l/Pa 

A3 - 1328.e6 $Pa 
A4 = 3.82e-2 $Dimensionless 

PO = -556.86 $Pa 
P1 - 9.e-14 $l/Pa 
pa = 0. $1/PaA2 
p3 = 0.05 $strain 
CR = 227.5 $Dimensionless 
RK = 0.72 $Dimensionless 
EN = 17.086 $Pa 
HC = 150000.e6 $Pa 
CTI1 = 30.86 $Pa 

CTPS - 10.e6 $Pa 

T1 = 0.0 $sac 
T2 - 0.0 $l/sec 
T3 = 0.0 $Dimensionless 
T4 - 0.0 $l/sec 
~5 = 0.0 Spa 

T6 = 0.0 Ssec 
~7 = 0.0 $l/Pa 

J3TYPE - 3 $dimensionless 
$ Plow potential parameters (for associativity, equate with yield parameters) 

A2PP - 0.0 $zero means will default to equal A2 (associative) 

A4PF = 0.0 $zero means will default to equal A4 (associative) 
CRPP - 0.0 $zero means will default to equal CR (associative) 
RKPF = 0.0 $zero means will default to equal RK (associative) 

$model 2 generic eoe 

$ rho ref - 2635 $kg/mA3 
$ tref - 298 $ K 
$ ref sound speed - 17847 $m/e 
$ end 
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Dataset for field scale jointed Climax Granite 
$ 
$ GeoModel parameters for field-scale JOINTED Climax Granite 

$ 
BO = 43.00e9 
B1 = 750.0e9 
B2 = 100.0e9 
B3 = 0.0 
B4 = 0.0 
GO = 34.73e9 
GI = 0.0 
G2 = 0.0 
03 = 0.0 
04 = 0.0 
RJS = 0.06 
RKS = 8.0e10 
RKN = 1.6ell 
~1 = 1379.e6 
A2 = 6.51e-11 
A3 = 1328.e6 
A4 = 0.0 
PO = -556.e6 
PI = 9.e-14 
P2 = 0. 
P3 = 0.05 
CR = 227.5 
RK = 0.80 
RN = 17.0e6 
HC = 150000.e6 
C T I ~  = 30.e6 
CTPS = 10.e6 
T1 = 0.0 
T2 = 0.0 
T3 = 0.0 
T4 = 0.0 
T5 = 0.0 
T6 = 0.0 
T7 = 0.0 
J3TYPE = 3 

$ plow potential 
A2PF = 0.0 
A4PF = 0.0 
CRPF = 0.0 
RKPF = 0.0 

$model 2 generic 
$ rho ref = 2635 
$ tref = 298 

$Pa 
$Pa 
$Pa 
$Pa 
$Dimensionless 

$Pa 
$Dimensionless 

$Pa 
$Pa 
$Dimensionless 
$Meters (Joint spacing) 
$Pa/Meter (Joint shear stiffness) 
$Pa/Meter 

$Pa 
$1/Pa 
$Pa 
$Dimensionless 

$Pa 
$1/Pa 
$1/PaA2 
$strain 
$Dimensionless 
$Dimensionless 

$Pa 
$Pa 
$Pa 
$Pa 
$sec 
$l/sec 
$Dimensionless 
$l/sec 

$Pa 
$sec 

$1/Pa 
$dimensionless 
parameters (for associativity, equate with yield parameters) 
$zero means will default to equal A2 (associative) 
$zero means will default to equal A4 (associative) 
$zero means will default to equal CR (associative) 
$zero means will default to equal RK (associative) 

$ ref sound speed = 17847 $m/s 
$ end 
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Dataset for 23MPa Concrete 
BO = 5.5e9 

B1 = 28.7809 

82 = 0.62309 

83 - 0.0 
B4 = 0.0 

GO - 1.9026e9 
01 - 0.890513 
02 - 3.550-9 
03 = 0.0 

04 = 0.0 

RJS = 0.0 

RKS = 0.0 

RICN . 0.0 
A1 = 1255.706 
A2 = 1.930-10 

A3 = 1248.2e6 

A4 = 0.0 

PO - -1.067e8 
P1 - 7.660-10 
P2 = 3.880-20 

P3 - 0.1538 
CR - 10.0 
RK = 1. 

RN - 3.006 
HC - 1.Oell 
CTI1 I 306 

CTPS = 1.e6 

TI = 0.0 

T2 = 0.0 

T3 - 0.0 
T4 - 0.0 
T5 - 0.0 
T6 = 0.0 

T7 = 0.0 

J3TYPE-3 

$Pa 

$Pa 

$Pa 

$Pa 
$Dimensionless 

$Pa 
$Dimensionless 

$1/Pa 

$pa 
$Dimensionless 

$Meters 

$Pa/m 

$Pa/m 

$pa 

$l/Pa 

$Pa 
$Radians 

$Pa 

$l/Pa 
$l/PaAZ 

$Dimensionless (strain) 

$Dimensionless 

$Dimensionless 

$Pa 

$Pa 

$Pa 

$Pa 
$see 

$l/sec 

$Dimensionless 

$l/sec 

$pa 
$sac 

$l/Pa 

A2PF = 0.0 $zero defaults to A2 (associative) 

A4PF . 0.0 $zero defaults to A4 (associative) 

CRPP I 0.0 $zero defaults to CR (associative) 

RKPF = 0.0 $zero defaults to RK (associative) 

SUBX = 0.0 

$model 2 generic eos 

$ rho ref - 2030. $ kg/mA3 
$ tref - 298. $ K 

$ ref sound speed = 4500.0 $ m/s 

$end 
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Dataset for Conventional Strength Portland Concrete 
BO = 1.0954e10 

B1 = 0.0 

B2 = 0.0 

B3 = 0.0 

B4 = 0.0 

GO = 7.5434e9 

01 = 0.0 

G2 = 0.0 

03 = 0.0 

04 = 0.0 

RJS = 0.0 
RKS = 0.0 

RKN = 0.0 

A1 = 4.26455e8 

A2 = 7.51e-10 

A3 = 4.19116e8 

A4 = 1.0~-10 

PO = -1.95520e8 

P1 = 1.2354e-9 

P2 = 0.0 

P3 = 0.065714 
CR = 12.0 

RK = 1. 

RN = 0.0 
HC = 0.0 

CTI1 = 3.0e6 

CTPS = 1.0e6 

T1 = 0.0 

T2 = 0.0 

T3 = 0.0 

T4 = 0.0 

T5 = 0.0 

T6 = 0.0 

T7 - 0.0 
J3TYPE=3 

$Pa 

$Pa 

$Pa 

$Pa 

$Dimensionless 

$Pa 
$Dimensionless 

$1/Pa 

$Pa 

$Dimensionless 

$Meters 

$Pa/m 

$Pa/m 

$Pa 

Sl/Pa 

Spa 
$Radians 

$Pa 

$l/Pa 

$1/PaA2 

$Dimensionless (strain) 

$Dimensionless 

$Dimensionless 

$Pa 

$Pa 

$Pa 

$Pa 

$Sec 

$l/Sec 

$Dimensionless 

$l/sec 

$Pa 
$sec 

$1/Pa 

A2PF = 0.0 $zero defaults to A2 (associative) 

A4PF = 0.0 $zero defaults to A4 (associative) 

CRPF = 0.0 $zero defaults to CR (associative) 

RKPF = 0.0 $zero defaults to RK (associative) 

SUBX = 0.0 

$model 2 generic eos 

$ rho ref = 2250. $(kg/cubic meter) 

$ tref = 298. 

$ ref sound speed = 3056.0 

Send 
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Datasets for mimicking classical (simplified) models 
The GeoModel is truly a unification of many simpler theories. By appropriately setting 
parameters, the GeoModel can be made to exactly replicate results from simpler idealized 
theories, as illustrated below. 

Von Mises Max stress Ma-- -'ear (T----a) Mohr-Coulomb 

Von Mises 
Max 

stress 

A 

I 

Frgure B.1. Other yieldsurface shapes supported by the GeoModel The grid lines shown on these 
sketches correspond to lines of constant z and constant 0 .  

Tresca 
Mohr 

Coulomb 

Fieure 8.2. Classicalsim~lifiedvieldsurfaces in the octahedral  lane. None of these models ade- 
quate~) describes rock fail& s;rf&s, but t6e failure surfaces for red rocks sometimes share some qual- 
itative features \r ith these models, depending on the level of confining pressure. ln these figures, the axes 
represent projections of the compressive principal stress axes onto the octahedral plane, taking stress to 
be oositive in remion. For the max stress and Mob-Coulomb models. the size of the octahedral profile 
incieases with pressure. For all of these models, the meridional profileis a straight line. 

In most finite-element codes, you can modify an existing data set (e.g., one for a real 
material) by simply redefining a material parameter in a separate input line, leaving the 
original value unchanged. By deviating from a correct input set to a "toy" input set in this 
way (rather than over-writing preferred values), you can retain a record of what the mate- 
rial parameters should be, thereby mitigating unintentional dissemination of physically 
bad input sets. 

The following specialized input sets use an "aprepro" syntax to show where you neeu 
to provide values. Specifically, all required or computed values appear in braces {I. Spec- 
ify numerical values wherever VALUE" appears, and then ensure all other values in 
braces are computed as shown (they can be computed by hand or piped into aprepro). 
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Von-Mises material. Von Mises theory can be duplicated by using the following sim- 
plified set of GeoModel input values: 

$ 
$ GeoModel parameters for replicating non-hardening Von-Mises plasticity 
$ All parameters not listed are defaulted to zero. 
$ Items in braces must be replaced with numbers 
$ 
A1 = {yield-stress-in-shear = VALUE) 
BO = {linear~elastic~bulk~modulus = VALUE) 
GO = {linear~elastic~shear~modulus = VALUE) 

J3TYPE = 1 $Use Gudehaus, which is capable of a circular octhedral profile 
RK = 1 $Set TXE/TXC ratio = 1.0 to make a circlular octahedral profile 
PO = -1.e99 $make yield in hydrostatic compression impossible 
CTI1 = l.e99 $ set pressure cut-off to "infinity" 
CTPS = 1.e99 $ set shear cut-off to "infinity" 
CR = 0.001 $ minimize the size of the curved part of the cap 
A2 = 0.0 
A4 = 0.0 
P3 = 0.0 
HC=O.O 
T1 = 0. $sec 
T2 = 0. $l/sec 
T3 = 0. $Dimensionless 
T4 = 0. $l/sec 
~5 = 0. $Pa 
T6 = 0. $sec 
~7 = 0. $l/Pa 

RN=O. 
PO=-l.ell 
AZPF = 0.0 
A4PF = 0.0 
CRPF = 0.0 
RKPF = 0.0 

This listpresumes that your implementation of the GeoModel sets defaults for unlistedparameters 

Maximum Principal Stress failure. The very simplistic fracture criterion that ini- 
tiates failure when the largest principal stress reaches a critical value can be modeled in 
the GeoModel by using the following parameter set: 
$ GeoModel parameters for duplicating a maximum principal stress criterion 
$ 
${max~allowedgrincipal~stress = VALUE) 
BO = {VALUE) $bulk modulus 
GO = {VALUE) $shear-modulus 
PO = -1.e99 $ turn off the cap function 
J3TYPE=3 

RK = 0.5 
A4PF = {l/SQRT(3.0)) 
RKPF = 0.5 

This listpresumes that your implementation of the GeoModel sets defaults for unlistedparameters. 
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Tresca. The simplistic criterion that a material fails when its largest shear stress reaches 
a critical value can be modeled by using the following GeoModel parameters: 
S User must specify values in braces 
BO = bulk modulus) 
GO = {sheaGodulus) 
PO = -1.~99 S turn off the cap function 
J3TYPE.3 
~l={Z.O**yield-stress-in-shear/sqrt(3.0)} 
RK = 1.0 
RKPF = 1.0 

This list presumes that your implementation of the GeoModel sefs &faults for unlistedparameters. 

Mohr-Coulomb. 5 

Classical Mohr-Coulomb theory for brit- 
tle failure can be derived from an idealization 
that the material contains a large population 
of equal sized cracks. Being all the same size, 
any given crack loaded in pure shear will fail 
(grow) if the resolved shear stress r on the 
crack face exceeds a critical threshold value 
So. If a crack face is additionally subjected to 
a normal compressive stress EN, then the 
applied shear z needed to induce crack 
growth must be larger than So by an amount 
rfiiC = pE,, where p is the coefficient of 
friction. Stated differently, a given crack is ~i~~~~ B.J. A the limit state 

safe from failure if under Mohr-Coulomb theory. 

or, recalling that zfnc = pEN, 

This criterion must be satisfied by all cracks in the material. Since Mohr-Coulomb theory 
arises from an idealization that the material contains a large population of cracks (uni- 
formly random in orientation), a material is safe from failure under general stress states 
only if all points on the Mohr's diagram for the stress fall below the "failure line" defined 
by 5 = So + tan@,. Failure is therefore deemed to occur when the outer Mohr's circle 
first "kisses" the failure line. Working out the geomem of Fig. B.3, a circle of radius R , 
centered at EN = C, will be tangent to the failure line if and only if 

For the outer Mohr's circle, 
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- - 
'J1-03 and R = - 0, + 0 3  

2 
C = 

2 (8.5) 

or, removing the overbars (defined such that Ek = -ok), 

Substituting these into Eq. (B.4) gives 

This is the Mohr-Coulomb failure criterion cast in terms of principal stresses. Eqs. (3.43a) 
and (3.43~) on page 24 of the main report imply 

Therefore, the stress invariant version of Eq. (B.7) is 

or, solving for p2, 
I1 Socos$ - - sin$ 

= 
3 

1 
(B.11) 

cos6 - -sinesin$ 
Js 

Recall from Eq. (4.39) that the GeoModel's limit function Ff fits the triaxial compression 
(TXC) meridional profile to the following hctional form 

- p2 = al - a3e-a2z1 + a 4 ? 1 in TXC (e = 30') (8.12) 

In triaxial compression (TXC), the Lode angle is = 30' so that 

Js cos6 = cos30° = - and 1 
2 

sin6 = sin30° = - 
2 

(6.13) 

Therefore, Eq. (B. 11) specializes to TXC loading as 

(Mohr-Coulomb in TXC) (6.lrl 

Being careful to note that T I  = -Il, comparing this result with Eq. 03.12) implies that 
the GeoModel limit surface parameters for Mohr-Coulomb theory should be set as 
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2& a = ( 3 - sin J ~ ~ c o s +  (B. 15a) 

(B.15b) 

Therefore, the general Mohr-Coulomb criterion in Eq. (B.11) may be written in the form 
required for the GeoModel as 

Naturally, J3TYPE=3 is appropriate. Moreover, to make the cap function f, equal to 1, 
the cap and crush curve features should be disabled as described on page B-26. Classical 
Mohr-Coulomb theory is meant to apply to brittle rupture, so kinematic hardening should 
be disabled as described on page B-26. An appropriate value for the TXEITXC strength 
ratio y~ must be determined by evaluating Eq. (B.ll) in TXE where 8 = -30" : 

(Mohr-Coulomb inTXE) (B.17) 

The TXEITXC strength ratio is then given by the ratio of the right-hand sides of 
Eqs. (B.17) and (B.14): 

For this classical Mohr-Coulomb theory, the slope of the TXC meridional profile, 
d.&/dl ,  , equals a 4 .  Therefore, sin$ may be eliminated from Eqs. (B.15d) and (B.18) to 
reveal that the TXE/TXC strength ratio is coupled to the slope of the TXC meridional pro- 
file according to 

This relationship will be explored in future releases of the GeoModel for allowing pres- 
sure dependence of the octahedral profile shape when (unlike Mohr-Coulomb theory) the 
meridional profile has a non-constant slope. 
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Below, we show the skeleton required for setting the GeoModel inputs to run classical 
Mohr-Coulomb theory. This input set also shows how to set parameters if you wish to run 
with non-associativity (where the flow potential function differs from the yield function 
only by having a different value for 4). Values for ( a l ,  a2, a3, a4) and for (agF, aiF)  are 
set by using Eq. (B.15). Values for y~ and vPF are set by using Eq. (B.18). 

$ GeoModel parameters for duplicating a classical Mohr-Coulomb material 

$ in BOTH the octahedral and meridional profiles. 

$ 

$ Replace every occurance of "VALUE" in this file with the appropriate 

$ Mohr-Coulowb parameter. You may generate GeoModel input values for the 

$ by using the c m a n d  'aprepro this-file output-file*. Preferably, if 

$ your finite element code supports embedded aprepro directives, then 

$ drop this file DIRECTLY into your finite element GeoModel input block. 

$ 

$ {friction-angle = VALUE) $angle "phi" in GeoModel Appendix B 

$ {dilation-angle = VALUE} $for associativity, this equals "phi" 

S 
$ {cohesion = VALUE) $parameter "S-sub0" in GeoModel Appendix B 

$ $This equals yield stress in simple shear. 

$ Let Aprepro ccunpute some helper quantities 

$ {scalef = 2.0+sqrt (3) / (3.0-sin(friction-angle) ) )  

$ {scaleg = 2.0*sqrt(3)/(3.0-sin(di1ation-angle))} 

$ 

BO = {VALUE} $bulk modulus 

GO = {VALUE) $shear modulus 

J3TYPE=3 

A1 = {scalef~cohesion*cos(friction~angl~~~ 

A2 = 0.0 

A3 = 0.0 
A4 = {scalef*sin(friction-angle)/3.0) 

RK = {O.O-sin(friction~angle))/(3.O+sin(friction~angle))) 

AlPF = {scaleg*cohesion*cos(dilation~angle)} 

A4PF = {scaleg*sin(dilation-angle)/3.0) 

RKPF = {(3.O-sin(dilation~angle))/(3.O+sin(dilation~angle))} 

PO = -1.e99 $ turn off the cap and crush-curve features 

P1 = 0.0 $ no cap 

P2 = 0.0 $ no cap 

P3 = 0.0 $ zero porosity 

CR = 0.001 $ prevent cap influence on shear response 

CRPF = 0.001 $ prevent cap influence on shear response 

HC = 0.0 $ disable kinematic hardening 

RN = 0.0 $ disable kinematic hardening 

This listpresumes that your implementation of the GeoModel sets &fhults for unlistedparamefers. 
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To conclude this appendix, sub-input sets are summarized for controlling various fea- 
tures of the GeoModel. 

Sub-input set for elasticity. 

Ser BO lo rhe concmnr bulk modulus and wr GO ro rC comranr shear modulus To addtrrona1l)~disable an) form ofplas- 
aery set A1 roo t,eq laqe number anddrwhle rur-oJfs as  ell a? rhe cap anrlrrush ctme as desrrtbed below 

Sub-input set for "turning off" all rate dependence. 

T4 = 0.0 
T5 = 0.0 
T6 = 0.0 
TI - 0.0 
For LINEAR rate dependence, set T I  to the material's characteristic response time and all other Tparameters torero. 

Sub-input set for disabling kinematic hardening. 

Sub-input set for associativity. 

AZPF=O. 0 
A4PF=O. 0 
This listpresumes that your implementation ofthe GeoModel sets defaults for unlistedparameters. Ifnot, associativity 
requires that allparameters that end in "PF" be set equal to their yieldparameter counterparts. 

Sub-input set for disabling cap and crush curve. 
PO -1.e99 $put the cap at infinity 
PI = 0.0 
P2 = 0.0 
p3 1 0.0 $set porosity to zero 
CR = 0.001 $ minimize the size of the curved part of the cap 

This Itsr presumes i h x )  oar rmplzmrnraoon qfrhr Geo.\f&l .szrs defatdr~far unbsredparamerzrs Tire Geo34del urer- 
rnpur procrssor and miria11:rr ,I i l l  recognize rhese inpkrs as "cap dfsablers ' and adJusr rllr m d e l  appropriarel) 

Sub-input set for disabling tensile cut-off limits. 
CTI1 r 1.e99 $ set pressure (11) cut-off to "infinity" 
CTPS = 1.e99 $ set principal stress cut-off to "infinity" 

This'listpresumes that your implementation of the GeoModel sets defaults for unlistedparameters. 
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