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Abstract

The SSP is a hardware implementation of a subset of the JVM for use in high consequence
embedded applications. In this context, a majority of the activities belonging to class loading, as it
is defined in the specification of the JVM, can be performed statically. Static class loading has the
net result of dramatically simplifying the design of the SSP as well as increasing its performance.
Due to the high consequence nature of its applications, strong evidence must be provided that all
aspects of the SSP have been implemented correctly. This includes the class loader. This article
explores the possibility of formally verifying a class loader for the SSP implemented in the strategic
programming language TL. Specifically, an implementation of the core activities of an abstract class
loader is presented and its verification in ACL2 is considered.
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1 Introduction

At Sandia National Laboratories, a subset of the Java Virtual Machine (JVM) has been developed in
hardware for use in high-consequence embedded applications. The implementation is called the Sandia
Secure Processor (SSP) [11][24] and supports a subset of Java bytecodes as its native instruction set.

This paper has three objectives: (1) to informally describe the core functionality of the class loader
for the SSP, (2) to demonstrate how the abstract functionality of this core class loader can be imple-
mented using higher-order strategic programming techniques, and (3) to discuss how the correctness of
the class loader can formally verified. The paper is organized as follows. We begin with an introduction
to the goals of the SSP class loader. Section 2 gives an overview of the Java class file structure and
restricts our attention to the subset of class files impacted by the SSP class loader core. This section
also gives an informal description of the core activities of the SSP class loader. Section 3 gives an
overview of the higher-order strategic programming language TL. Section 4 presents and discusses a TL
implementation of an abstract class loader core. Section 5 describes preliminary efforts at verifying and
validating the transformations.

1.1 The ROM Images Executed by the SSP

An application program for the SSP is called a ROM image and consists of a collection of class file
images stored on a Read-Only Memory (ROM). The image of a class file in the ROM contains (1) a
ROM constant pool and (2) a method table and methods section. For the purposes of this article,
there are two major differences between ROM constant pools and the constant pools found in Java
class files. The first major difference is that in ROM constant pools, class, field, and method entries are
represented in terms of absolute addresses or offset addresses together with additional data that, broadly
speaking, provides type information describing the entry. In contrast, in Java class files such entries are
represented as encodings of symbolic references. In this article, we refer to the aggregation of one or
more constant pool indexes as an encoding of a symbolic reference. The second major difference is that,
unlike the constant pools in Java class files, ROM constant pools do not contain any name and type,
name, and Utf8 entries. Thus constant pools in the ROM are limited to the following entries: constant
integer, constant long, static field, instance field, class, and method. Among the method entries, in
this article, we restrict our consideration only to virtual methods. That is, methods that are invoked
within an application program using the invokevirtual bytecode. In this article, we do not consider
static or special methods whose invocations are respectively achieved through the invokestatic and
invokespecial bytecodes. This restriction to virtual methods is essentially without loss of generality.
The one exception being an anomalous case involving dynamic binding of a method that has been
invoked using the invokespecial bytecode [10][19].

In a ROM image, the methods section of class files have also been modified. In particular, within the
bytecode of a method, constant pool indexes (i.e., encodings of symbolic references) have been replaced
with offset addresses into the ROM constant pool. These are the major differences between class files
as produced by a Java compiler and as they appear on the ROM.

Due to the similarity between the JVM and the SSP, the primary goal of the class loader for the
SSP can be simply stated:
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The Primary Goal of the SSP Class Loader:

Resolve encoded symbolic references (indexes) in class files to absolute addresses
or offset addresses.

Though the focus on this paper is on the primary goal as stated above, we would like to mention
that there are numerous secondary goals a class loader for the SSP must satisfy. These secondary goals
include the construction of various kinds of type data associated with constant pool entries, padding
method bodies so methods begin and end on word boundaries, and so on.

Within the SSP, absolute addresses belong to one of two domains. These domains model the
address spaces of the ROM and heap respectively. The first domain, DROM , describes the location
of bytes within the ROM image. Addresses belonging to DROM are used to describe the location of
immutable structures associated with a class such as the location of a ROM constant pool, the starting
address of a method, and the method table associated with a class. The second domain, DHEAP ,
describes the location of bytes within the SSP’s heap memory. From the perspective of the class
loader, absolute addresses belonging to DHEAP are used solely to describe the location of static fields.
All other assignments of absolute addresses in DHEAP occur during runtime. For example, during
execution bytecodes such as new are responsible for heap memory allocation. These allocations yield
absolute addresses in DHEAP belonging to objects (i.e., object references).

In contrast to absolute addresses, offset addresses are used to describe the location of data in a
relative fashion. Adding an offset address to an appropriate absolute address (such as the start of a
constant pool) yields an absolute address that describes the location of a particular data item within
an absolute address space (e.g., the address of a constant pool entry). The design of the SSP makes
use of three types of offset addresses: constant pool offsets, method table offsets, and object offsets.
Constant pool offset addresses are values belonging to the domain DCP and describe offsets relative to
the start of a ROM constant pool. Semantically speaking, constant pool offset addresses are used to
describe the location of ROM constant pool entries. Method table offset addresses are values belonging
to the domain DMT and describe offsets relative to the start of a method table residing in the ROM.
Semantically speaking, method table offset addresses are used to describe the location of entries in a
method table. Method table entries contain information needed to execute a particular virtual method.
This information includes the starting address of the virtual method, the absolute address of the constant
pool associated with this virtual method, and type information defining the number of local variables
and parameters used by the method. And lastly, object offset addresses are values belonging to DOBJ

and describe offsets relative to the start of an object (i.e., an instance of a class). Semantically speaking,
object offset addresses are used to describe the location of data within an object. This data consists
primarily of the object’s instance fields. However, the first data entry of an object is an absolute address
belonging to DROM describing the location of the class from which this object is an instance (this is
needed when a method for this object is invoked).
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Context where Index Occurs Interpretation of Resolution
within a bytecode in the body of a method ROM constant pool offset address where the

type of the constant pool entry can be inferred
from the bytecode

this class absolute address in ROM
super class absolute address in ROM
class entry in ROM constant pool absolute address in ROM
static field entry in ROM constant pool absolute address in heap
static field entry in fields section of class file absolute address in heap
instance field entry in ROM constant pool object offset address
instance field entry in fields section of class file object offset address
virtual method entry in ROM constant pool ROM method table offset address
virtual method entry in ROM method table absolute address of method in ROM

Figure 1: Resolution of indexes (aka. encoded symbolic references)

Given an index, the type of address to which it should be resolved can be uniquely determined from
the context in which it is used. Figure 1 lists the contexts that must be considered.

1.2 An Overview of Class Loader Requirements

Within an application program, classes may be ordered to form inheritance hierarchies through the Java
“extends” directive. The subtype relation resulting from inheritance hierarchies impose constraints on
how object offsets and method table offsets must be calculated. These constraints as well as others can
be expressed in the form of properties that a resolved collection of encoded symbolic references must
possess in order to be correct. A non-exhaustive list of these properties follows.

• Unique-Offset: Within the scope of an inheritance hierarchy, all instance fields must be resolved
to unique object offsets. Rationale: This property ensures that two instance fields are not mapped
to the same offset.

• Consistent-Offset: Instance fields must be resolved to offsets in a manner that is consistent
with upcasting. Rationale: This property ensures that the mapping of instance fields to offsets is
treated in a consistent fashion for all classes belonging to an inheritance hierarchy.

• Non-Overlapping-Addresses: The values of primitive types supported by the SSP must be
mapped to memory regions that are sufficiently large to hold all legal values of that type. For
example, an integer field must be mapped to a memory region that is at least 32-bits wide.
Rationale: This property prevents instance fields from being packed so tightly within an object
that their memory spaces overlap. This property also prevents static fields from being packed so
tightly in the heap that their memory spaces overlap. Note that simply requiring that instance
fields have unique offsets is not sufficient to ensure this property.
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• Unique-Address: Within an application, all static fields must be resolved to a unique absolute
address within the heap. Rationale: This requirement ensures that two static fields are not
mapped to the same absolute address within the heap.

• Consistent-Method-Invocation: Virtual method invocations must be referred to indirectly
via an offset to a method table. Furthermore, within an inheritance hierarchy all method tables
must be consistent with respect to the positioning of method table entries. Rationale: Positional
table entry consistency among method tables within an inheritance hierarchy ensures that proper
method invocation will result in the presence of upcasting.

• Address Units

– Constant pool offset addresses must be in word units (i.e., 32-bit quantities) in the range
0 ≤ cp offset < 216. The only range exception being that of the ldc bytecode which has the
range 0 ≤ cp offset < 28. Rationale: This requirement ensures that spacial requirements of
constant pool indexes in bytecodes match the spatial requirements of offset addresses into
a ROM constant pool. This requirement also guarantees that the addressing scheme of the
SSP will be able to handle all Java constant pools having 215 elements or less, with 215 being
a conservative (guaranteed achievable) lower bound. The class loader must flag as an error
all constant pools whose element count exceed this threshold.

– Method table offsets must be in word units in the range 0 ≤ mt offset < 216. Rationale:
This design decision enables the addressing scheme of the SSP to handle Java classes whose
total number of virtual methods (both declared and inherited) is less than or equal to 216.
The class loader must flag as an error all classes whose virtual method count exceeds this
threshold.

– Absolute addresses in the heap must be in byte units in the range 0 ≤ address < 224.
Rationale: This enables a Java constant pool entry containing a symbolic reference to a
static field to be resolved to a one-word ROM constant pool entry describing the type (8-
bits) and absolute heap address (24-bits) of the static field.

The list given above is not meant to be complete, but rather to give the reader a feeling for the
necessary kinds of properties that must be satisfied in order for the resolution performed by a class
loader to be considered correct. Taking a more rigorous approach, correctness properties of the kind
just described can be formalized and expressed in terms of a formula C in first-order logic. Abstractly
speaking, this formula defines properties and relationships between (1) encoded symbolic references and
addresses, and (2) addresses within an address space.

In addition to correctness properties, the resolution of encoded symbolic references must also satisfy
a number of efficiency-based constraints. A number of these constraints are related to optimization of
memory usage and access. However, fault-tolerance, safety, and security constraints are also possible.
A non-exhaustive list of these constraints follows.

• Spatial-Efficiency:
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– Instance fields should be packed as tightly as possible in objects and static fields should be
tightly packed in the heap. Rationale: This is a necessary condition to assure that heap
memory is efficiently utilized.

– Object offset addresses must be in byte units (i.e., 8-bit quantities). Rationale: This design
decision enables sequences of short, char, byte, and boolean fields to be closely packed within
an object.

• Temporal-Efficiency:

– 64-bit values (i.e., longs) should not span 32-bit boundaries within the heap or ROM address
space. For example, a long may be stored at byte address 0x0000 or 0x0004 but should not
be stored at byte address 0x0002 because retrieving a long value stored in this manner would
require 3 memory fetches instead of 2. Rationale: This is a necessary condition to assure
that the SSP executes efficiently.

– 32-bit values such as integers and references should not span 32-bit boundaries within the
heap or ROM address space. For example, an integer value may be stored at byte address
0x0000 or 0x0004 but should not be stored at byte address 0x0002 because retrieving a value
stored in this manner would require 2 memory fetches instead of 1. Rationale: This is a
necessary condition to assure that the SSP executes efficiently.

– 16-bit values such as shorts and chars should not span 16-bit boundaries within the heap
or ROM address space. Rationale: This is a necessary condition to assure that the SSP
executes efficiently.

This list of hardware constraints is not meant to be exhaustive, but rather it demonstrates the
nature of the constraints imposed by the SSP hardware. Taking a more rigorous approach, hardware
constraints can be expressed in terms of a formula H in first-order logic. Abstractly speaking, this
formula defines properties and relationships between (1) encoded symbolic references and addresses,
and (2) addresses within an address space.

Given the formula CH def
= C ∧H an interpretation I is a mapping from encoded symbolic references

in CH to the domain D def
= DHEAP ∪ DROM ∪ DCP ∪ DMT ∪ DOBJ of absolute addresses and offset

addresses. In this setting, resolution for the SSP can be defined as a function that constructs an
interpretation I over D satisfying the formula CH. From an operational perspective, the interpretation
I is an assignment of address values to indexes (i.e., encoded symbolic references). In this article,
the terms resolution and resolve are used to describe the processes behind the construction of such
assignments.

We are now in a position to give a high-level definition of the class loader core that is the focus of
this article.

Definition 1 The core of the class loader for the SSP is an interpretation Icore mapping indexes to
(1) offset addresses in DMT ∪ DOBJ , and (2) absolute addresses in the space DHEAP such that Icore

satisfies CH.
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Notice that the definition of the core, as we have defined it, excludes the offset address space DCP

and the absolute address space DROM . The reason for excluding these address spaces from consideration
by the core is mainly for simplicity and space considerations. For example, calculating offsets for the
constant pool entries is essentially the same as calculating offsets for method table entries. Since method
table construction is included in the core the notion of calculating offsets for tables is already covered
in the core. The calculation of absolute addresses for immutable objects in the ROM is also abstractly
similar to table offset calculation and is also therefore omitted.

2 Overview of the Structure of Class Files

Figure 2 gives a top-level view of the components contained in a Java class file. Components such as
cp info, interfaces, field info, and method info are highly complex and contain of a number of subcom-
ponents which are not shown in Figure 2. For more information about the structure of these components
as well as class files in general see [10][19].

In this paper we restrict our attention to class loading activities for the SSP pertaining to the subset
of Java class files shown in Figure 3. In particular, we will look at (1) index resolution, (2) static field
address calculation, (3) offset address calculation, (4) method table construction, and (5) inter-class
absolute address and offset address distribution. Collectively, we will refer to this set of class loading
activities as the class loader core. In the following sections we informally describe each of these activities
in detail.

2.1 Index Resolution

In Java class files, references to field, method, this-class, and super-class information are abstractly
encoded as indexes into the class file’s constant pool. Within a constant pool, such indexes directly or
indirectly denote information that is ultimately expressed symbolically in terms of Utf8 strings. We will
refer to the symbolic information denoted by an index as the abstract meaning otherwise known as the
symbolic reference of that index. We use the term index resolution to denote the process of constructing
the abstract meaning of indexes.

Consider the constant pool fragment shown in Figure 4. In this example, much detail has been
abstracted away from the structure of the constant pool, and only the salient portions remain. For
example, Java constant pool entries have tags that indicate the type of the entry, and Utf8 entries are
realized in terms of a list of bytes. However, regardless of the presence or absence of such detail the
concept of index resolution remains the same.

Given the abstracted constant pool in the Figure 4, we ask “What is the symbolic reference of
the index 1 with respect to this constant pool”? To determine the meaning of an index, the chain of
index/value pairs are followed until a collection of Utf8 values are reached. The concatenation of these
Utf8 values forms the symbolic reference. The value at index 1 in the constant pool contains an entry
of type CONSTANT Fieldref info, which indicates that the index 1 denotes an encoding of a symbolic
reference to a field. When resolved this symbolic reference will consist of the name of the class in which
the field is declared, the name of the field, and a descriptor describing the type of the field (e.g., integer,
short, long). The contents of the CONSTANT Fieldref info entry at position 1 consists of two indexes.

12



magic The hex value 0xCAFEBABE indicating that this file
is a Java class file.

minor version The minor version of the compiler that produced this class.
major version The major version of the compiler that produced this class.
constant pool count The number of entries in the constant pool.
cp info The constant pool.
access flags Modifiers associated with this class or interface

(e.g., private, final, abstract, etc.).
this class A constant pool index that when resolved yields the

name of the class.
super class The value 0 or a constant pool index that when resolved

yields the name of the super class.
interfaces count The number of direct super interfaces of the class or interface.
interfaces The interfaces implemented by the class.
fields count The number of fields explicitly declared in the class.
field info The fields explicitly declared in the class.
methods count The number of methods explicitly declared in the class.
method info The methods explicitly declared in the class.
attributes count The number of attributes of the class.
attribute info The attributes of the class.

Figure 2: The components of a Java class file

Java Structure Name SSP Structure Name Description
cp info cp the constant pool
this class this the name of this class
super class super the name of the parent class
field info sfields & ifields fields are separated into a list of static fields

sfields and a list of instance fields ifields
method info mt & methods methods are associated with a method table mt

Figure 3: The subset of the Java class file structure relevant to the class loader core
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Index Entry Type Contents
1 CONSTANT Fieldref info 2 3
2 CONSTANT Class info 4
3 CONSTANT NameAndType info 5 6
4 CONSTANT Utf8 info B
5 CONSTANT Utf8 info y
6 CONSTANT UTF8 info I

Figure 4: A constant pool description of the integer field B.x

The Java class file specification requires that the first index be interpreted as a class index denoting the
class in which the field is declared. The second index should be interpreted as a name and type index
which provides information about the name and type of the field. Thus the first step in the index
resolution process is: 1 ⇒ 2 3. Next, index resolution is individually performed on the indexes 2 and
3. The constant pool entry having index 2 contains a name index 4. Thus, the current state of the
resolution is: 1 ⇒ 2 3 ⇒ 4 3. Now, the constant pool entry having index 4 contains an entry of type
CONSTANT Utf8 info whose value is “B”. Thus, “B” is the name of the class in which the field denoted
by index 1 is declared.

The second part of the value located at index 1 in the constant pool is the index 3. The constant
pool entry at index 3 contains a name index 5 that in this context denotes the name of the field, and
a descriptor index 6 denoting the type of the field. Thus, 3 ⇒ 5 6. The contents of the constant pool
at index 5 tells us that the name of the field is the Utf8 value “y”. The contents at index 6 indicates
that the field is of type “I”. Thus, the symbolic reference of index 1 with respect to the given constant
pool is B y I, that is, index 1 denotes the field y of type integer that is declared in class B. The index
resolution of 1 can be summarized by the following rewrite sequence:

1 ⇒ 2 3 ⇒ 4 3 ⇒ B 3 ⇒ B 5 6 ⇒ B y 6 ⇒ B y I

In general, index resolution concerns itself with the replacement of indexes with their symbolic
references. The scope of this type of rewriting is limited to individual class files and is based solely
on information found in the constant pool for the class. Complete details on the structure of constant
pools can be found in the literature [10][19].

2.2 Static Field Address Calculation

The goal of static field address calculation is to assign a unique absolute address to each static field
within a Java application. Since static fields are associated with a class rather than an object (i.e.,
an instance of a class), their number remains constant during runtime. Consider the Java application
program shown in Figure 5 consisting of the classes B, C, and D .

If we assume a byte-addressable memory in the range 0x0000...0xFFFF, then the static fields in
the application could be assigned to the absolute addresses as shown in Figure 6. From a semantic
perspective this class loader activity can be seen as providing an interpretation (i.e., a concrete meaning)
for the symbolic references of static fields.

14



class B { ... static int x, b2; ... }
class C { ... static int c1, x, c3; ... }
class D { ... static int d1; ... }

Figure 5: Classes and their static fields

Static Field Absolute Address
B.x 0x0000
B.b2 0x0004
C.c1 0x0008
C.x 0x000C
C.c3 0x0010
D.d1 0x0014

Figure 6: Mapping static fields to absolute heap addresses

2.3 Instance Field Offset Calculation

Instance fields, in contrast to static fields, are associated with objects rather than classes. Each object
contains its own copy of every instance field declared in its corresponding class plus all of the instance
fields inherited from its super class. Figure 7 shows the instance field declarations in a number of Java
class fragments.

Figures 8 and 9 show possible offset calculations respectively for the instance fields of class C and
E. We would like to point out that the class loader does not actually construct objects of the kind
shown in Figures 8 and 9. That functionality is entrusted to the microcode implementation of the
bytecode new. Instead, the purpose of the class loader is to construct an interpretation (i.e., assign
a concrete semantics) in the form of a mapping from symbolic references of instance fields to object
offset addresses in a manner that is consistent with the formula CH mentioned in Section 1.2. The
interpretation provided by the object offset addresses must be sound with respect to all dynamic uses of
objects. For example, in Java objects can be dynamically upcast and downcast. Thus all objects within
an inheritance hierarchy must have a consistent interpretation for all shared (i.e., inherited) instance
fields.

2.4 Method Table Construction

Encoded symbolic references to methods must ultimately be resolvable to the address where the bytecode
for the method resides. However, this resolution is complicated by the interplay of two aspects of Java’s
subtype system. First, within an inheritance hierarchy multiple definitions for a single method may
occur. Second, Java’s upcast operation provides a mechanism by which the type of an object may be
cast to that of any ancestor belonging to the inheritance chain.

Within such a fluid inheritance hierarchy, methods must utilize symbolic method references in a
consistent fashion. Consistency here means that a symbolic reference to a method such as B.foo must
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class B { ... int x, b2; ... }
class C extends B { ... int c1, x, c3; ... }
class D extends B { ... int d1; ... }
class E extends D { ... int x, e2; ... }

Figure 7: Classes and their instance fields

Object is Instance of C
Instance Field Offset from Base of Object Comment
B.x 0x0000 inherited from B
B.b2 0x0004 inherited from B
C.c1 0x0008 declared in C
C.x 0x000C declared in C
C.c3 0x0010 declared in C

Figure 8: Mapping instance fields to object offsets

Object is Instance of E
Instance Field Offset from Base of Object Comment
B.x 0x0000 inherited from B
B.b2 0x0004 inherited from B
D.d1 0x0008 inherited from D
E.x 0x000C declared in E
E.e2 0x0010 declared in E

Figure 9: Mapping instance fields to object offsets

have the ability to denote any redefinition of foo in every descendent of B. This capability is needed
because during runtime, an object that is an instance of a descendent of B may be upcast to B after
which the method foo could be invoked on the upcast object. In such a case, the constant pool of the
class in which B.foo is invoked will contain a symbolic reference to B.foo. However, because multiple
definitions of foo may exist throughout the inheritance hierarchy this symbolic reference cannot be
directly resolved to a single absolute address. A standard solution to this problem is to construct
a method table for each class [10][19]. This method table forms a layer of indirection that enables
methods to be referenced in a consistent fashion. The entries in a method table contain data necessary
to execute the bytecode corresponding to the implementation of a method as seen from the perspective
of a particular class. For example, data in a method table may include the address of the first bytecode
in the method as well as the address the method’s corresponding constant pool. Symbolic references
to methods such as B.foo are now resolved to offsets into the method table. Of course in order for the
indirection provided by the method table solve our problem, all classes that inherit or redefine foo must

16



store data related to foo in the same relative position (i.e., offset) in their method table.
Figure 10 shows a class B and a class C which extends B. Note that although the method foo is

redeclared in C, the method tables for B and C, shown in Figure 11, place the data for foo in the same
relative location in their method tables. As a result, the symbolic reference to B.foo can be uniformly
resolved to the method table offset 0x0008. Which method table this offset is applied to depends on
the class from which an object is derived (e.g., B or C in Figure 10). For example, the expression
((B)(new C())).foo() will access the data at offset 0x0008 in C’s method table while the expression
(new B()).foo() will access the data at offset 0x0008 in B’s method table.

class B { ...
int f1(int x) {...}
int foo() {...}
int g1() {...}

...}

class C extends B { ...
int foo() {...}
int g2() {...}

...}

Figure 10: Classes and their virtual methods

Offset Method Table for B Comment
0x0000 data for B.f1(I)I declared
0x0008 data for B.foo()I declared
0x0010 data for B.g1()I declared

Offset Method Table for C Comments
0x0000 data for B.f1(I)I inherited
0x0008 data for C.foo()I redeclared
0x0010 data for B.g1()I inherited
0x0018 data for C.g2()I declared

Figure 11: Method table construction

2.5 Inter-class Absolute Address and Offset Address Distribution

Inter-class distribution is concerned with the distribution of absolute addresses and offset addresses
between the various class files that make up a Java application. Within a single class file, symbolic
references to locally declared fields and methods can be resolved to absolute addresses (for static fields),
object offsets (for instance fields), and method table offsets (for methods). However, within a Java
application, a class file X may have a symbolic reference to fields and methods that have been declared
in another class file Y . References external to X show up as symbolic references in the constant pool of
X and must be resolved using information originating from the class Y . Specifically, absolute address
and offset address information must be distributed from the class in which the declarations occur (e.g.,
Y ) to all classes referencing these declarations (e.g., X).
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Figure 12 shows two class files B and C. The constant pool of class file B contains symbolic (non-
local) references to a field and method declared in (local to) C, and the constant pool of C contains
symbolic references to a field and method declared in B.

Class B
Index Constant Pool Entries Fields Method Table Offset Method Table Info

1 B.x I local B.w I 0x0000 0x00 B.g (I)I ...
2 C.x I non-local B.x I 0x0004 0x01 B.f (I)I ...
3 B.f (I) local B.y I 0x0008 0x02 B.foo (I)I ...
4 C.g (I) non-local – – –

Class C
Index Constant Pool Entries Fields Method Table Offset Method Table Info

1 B.x I non-local C.x I 0x0000 0x00 C.bar (I)I ...
2 C.x I local C.y I 0x0004 0x01 C.f (I)I ...
3 B.f (I) non-local C.z I 0x0008 0x02 C.g (I)I ...
4 C.g (I) local C.k I 0x000C 0x03 C.h (I)I ...

Figure 12: An examples of two classes having external symbolic references to fields and methods

Figure 13 shows the class files B and C after the inter-class distribution phase. Note that field
address and method table offset data has been propagated between the classes.

Class B
Index Constant Pool Entries Fields Method Table Offset Method Table Info

1 B.x I 0x0004 B.w I 0x0000 0x00 B.g (I)I ...
2 C.x I 0x0000 B.x I 0x0004 0x01 B.f (I)I ...
3 B.f (I) 0x01 B.y I 0x0008 0x02 B.foo (I)I ...
4 C.g (I) 0x02 – – –

Class C
Index Constant Pool Entries Fields Method Table Offset Method Table Info

1 B.x I 0x0004 C.x I 0x0000 0x00 C.bar (I)I ...
2 C.x I 0x0004 C.y I 0x0004 0x01 C.f (I)I ...
3 B.f (I) 0x01 C.z I 0x0008 0x02 C.g (I)I ...
4 C.g (I) 0x02 C.k I 0x000C 0x03 C.h (I)I ...

Figure 13: Inter-class distribution of field offset/address and method table offsets

3 An overview of TL

The specification of the JVM enables class loading to occur dynamically (e.g., during runtime). However,
from the perspective of class loading, the SSP can be considered a closed system because all the class
files in an application must be stored on the ROM prior to execution. The closed nature of the SSP’s
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execution environment enables the class loading activities of the SSP to be performed statically, prior to
execution. Under these conditions, the functionality of a class loader is well suited to a transformation-
oriented implementation [25]. This section gives an overview of the strategic programming language TL
which we will use to implement an abstract version of the class loader core.

In general, strategic programming systems are rewriting systems that have been extended with a
variety of constructs enabling explicit control over the application of rewrite rules. Such control is
typically necessary when dealing with rule sets that are non-confluent and/or non-terminating. When
constructed appropriately, rewriting systems and strategic programming systems have properties that
make them well-suited to formal verification. Our research goal into the development of TL has been
to provide a framework whereby strategic programs can be written to realize complex functionality in
a manner which nevertheless remains within the grasp of formal automated verification.

3.1 The Basic Constructs of TL

TL is a higher-order strategic programming language [26][29][27][28]. In TL, conditional rewrite rules
can be combined to form expressions called strategies. Strategies define controlled sequences of rewrites
and can be applied to tree structures to produce other tree structures. Thus, a strategy can be viewed
as a function that rewrites or transforms one tree into another.

The primary constructs and abstractions in a first-order strategic programming language typically
include:

1. patterns – A pattern is a notation for describing the tree structures that are being manipulated.
This notation typically includes variables, potentially typed, that are quantified over a variety of
tree structures.

2. rewrite rules – A rewrite rule is a construct for specifying that one pattern is to be replaced by
another pattern. In a strategic system, rewrite rules are also considered to be a degenerative form
of strategy.

3. conditions – A condition is a construct associated with a rewrite rule that restricts its application.

4. combinators – A combinator is an operator (generally unary or binary) that can be used to
compose one or more strategies into a new strategy.

5. generic traversals – A generic traversal can be thought of as a curried function parameterized on
a strategy s and a tree t. As the name suggests, a generic traversal will traverse its input tree
structure t and apply its input strategy s at one or more points along the traversal. A typical
and very useful generic traversal is one that performs a top-down left-to-right traversal of a tree
structure and uniformly applies its input strategy to all sub-trees encountered.

6. strategies – In its purest sense, a first-order strategy can be characterized as any function that
transforms one tree into another tree. Structurally speaking however, a strategy is an expression
composed of rewrite rules, combinators, and generic traversals.

7. labels – A strategy can be bound to a label for the purposes of abstraction.
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In addition to the first-order constructs mentioned above, TL also supports the following higher-
order constructs:

1. higher-order strategies – A higher-order strategy is a strategy that when applied to a tree will
return a strategy rather than a tree. For example, when applied to a tree, a second-order strategy
s2 will yield a first-order strategy s1. In general, the application of a strategy of order n to a term
t will yield a strategy of order n− 1. For the purposes of uniformity, in this framework, a tree is
considered to be a strategy of order 0.

2. higher-order generic traversals – A higher-order generic traversal can be thought of as a curried
function that is parameterized on a higher-order strategy sn (where n denotes the order of the
strategy) and a tree t. Its application to t yields a strategy of order n − 1. Higher-order generic
traversals are very useful for creating specific strategies that are “tuned” the data occurring within
a particular tree. In other words, they are a mechanism for dynamically generating strategies
customized for a given input tree.

In the following sections we briefly describe each of the constructs mentioned above.

3.2 Tree/Term Notation

Let G = (N,T, P, S) denote a context-free grammar where N is the set of nonterminals, T is the set of
terminals, P is the set of productions, and S is the start symbol. Given an arbitrary symbol B ∈ N
and a string of symbols α = X1X2...Xm where for all 1 ≤ i ≤ m : Xi ∈ N ∪ T , we say B derives α iff
the productions in P can be used to expand B to α. Traditionally, the expression B

∗⇒ α is used to
denote that B can derive α in zero or more expansion steps. Similarly, one can write B

+⇒ α to denote
a derivation consisting of one or more expansion steps.

In TL, we write B[[α′]] to denote an instance of the derivation B
+⇒ α whose resulting value is a

parse tree having B as its root symbol. In TL, expressions of the form B[[α′]] are referred to as parse
expressions. In the parse expression B[[α′]] the string α′ is an instance of α because nonterminal symbols
in α′ are constrained through the use of subscripts. Subscripted nonterminal symbols are referred to as
schema variables or simply variables for short. TL also considers a schema variable (e.g., Bi) to be a
parse expression in its own right. Within a rewrite rule all occurrences of schema variables having the
same subscript denote the same variable.

Figure 14 shows a BNF grammar fragment describing a small portion of an imperative language. In
the context of this grammar, the parse expressions stmt[[ id1 = 5 ]] and stmt[[ id2 = 5 ]] both describe
instances of the derivation stmt

+⇒ id = 5.
When the specific structure of a parse expression is unimportant the parse expression will be denoted

by variables of the form t, t1, ... or variables of the form tree, tree1, tree2, and so on. Parse expressions
containing no schema variables are called ground and parse expressions containing one or more schema
variables are called non-ground. And finally, within the context of rewriting or strategic programming,
trees as described here can and generally are viewed as terms. When the distinction is unimportant,
we will refer to trees and terms interchangeably.
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prog ::= stmt list
stmt list ::= stmt “;” stmt list | stmt
stmt ::= assign | cond | ...
assign ::= lvalue “=” expr
...
lvalue ::= id
expr ::= int | int + int
...

Figure 14: A concrete syntax fragment

3.3 Conditional Rewrite Rules

Figure 15 defines the structure of TL rules in terms of an extended-BNF. The meta-symbols of this
BNF are [, ] and ::=. Symbols enclosed in square brackets denote optional portions of a production.
For example, rewrite rules in TL have the form lhs → rhs and may have optional labels and conditions
associated with them.

rule ::= [ label : ] lhs → rhs [ if condition ]
label ::= identifier
lhs ::= a parse expression
rhs ::= a strategic expression whose evaluation yields a parse tree

Figure 15: The syntactic structure of rewrite rules in TL

Based on the tree grammar given in Figure 14, we can write the following condition-less rewrite
rule:

r1 : stmt[[id1 = 4 + 1]] → stmt[[id1 = 5]]

This rule states that an assignment statement having the expression 4 + 1 as its right-hand side should
be rewritten to an assignment statement having the constant 5 as its right-hand side.

3.3.1 Conditions

The conditional portion of a rule is a match expression consisting of one or more match equations. The
symbol ¿, adapted from the ρ-calculus [6], is used to denote first-order matching modulo an empty
equational theory. Let t2 denote a ground tree and let t1 denote a parse expression which may contain
one or more schema variables. A match equation is denoted t1 ¿ t2. A match equation is a boolean
valued operation that produces a substitution σ as a by-product. A substitution σ binding schema
variables to ground parse expressions is a solution to t1 ¿ t2 if σ(t1) = t2 with = denoting a boolean
valued test for syntactic equality.
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A match expression is a boolean expression involving one or more match equations. Match expres-
sions may be constructed using the standard boolean operators: ∧,∨,¬. A substitution σ is a solution
to a match expression m iff σ(m) evaluates to true using the standard semantics for boolean operators.

Based on the tree grammar given in Figure 14, we can write the following conditional rewrite rule:

r2 : stmt1 → stmt[[id1 = 5]] if stmt1 ¿ stmt[[id1 = 4 + 1]]

The conditional rule r2 says that a statement stmt1 should be rewritten to the statement stmt[[id1 = 5]]
only if the condition stmt1 ¿ stmt[[id1 = 4 + 1]] is satisfied. In other words, if stmt1 is an assignment
statement whose right-hand side is the expression 4 + 1.

The rule r3 shown below gives a trivial example of a rule condition consisting of two match equations.

r3 : stmt1 → stmt[[id1 = 5]] if stmt1 ¿ stmt[[id1 = expr1]] ∧ expr1 ¿ expr[[4 + 1]]

The conditional rule r3 says that a statement stmt1 should be rewritten to the statement stmt[[id1 = 5]]
only if the condition stmt1 is an assignment statement whose right-hand side is expr1 and expr1 is 4+1.

3.3.2 Rule Application

The application of a conditional rewrite rule r to a tree t is expressed as r(t) where r is either an
abstraction of a rewrite rule (i.e., a label) or an anonymous rule value e.g., lhs → rhs. We adopt
a curried notation in the style of ML where application is a left-associative implicit operator and
parentheses are used to override precedence or may be optionally included to enhance readability. For
example, r t denotes the application of r to t and has the same meaning as r(t).

Let us consider the rules r1, r2, and r3 described in the previous sections. The application
r1 stmt[[x = 4+1]] yields stmt[[x = 5]] as do the applications r2 stmt[[x = 4+1]] and r3 stmt[[x = 4+1]].
In contrast, the application r1 stmt[[y = 6]] is said to fail and in TL will yield stmt[[y = 6]] as its result.

Let r : lhs → rhs if condition denote an abstract rule. In TL, the application of r to t proceeds
as follows: First, the match-equation lhs ¿ t is evaluated. If lhs ¿ t evaluates to false, the rule
application fails and t is left unchanged. Otherwise, lhs ¿ t evaluates to true and the computation
proceeds to the evaluation of the condition associated with r. Again, if this condition evaluates to false,
the rule application fails and t is returned unchanged. Otherwise the rule application succeeds and the
value of rhs is returned.

3.4 Combinators

TL provides three binary combinators enabling (1) the sequential composition of strategies which is
denoted by the semi-colon symbol, (2) the left-biased composition of strategies which is denoted by the
symbol <+, and (3) the right-biased composition of strategies which is denoted by the symbol +>.

Let s1 and s2 denote two first-order strategies. The strategy s1; s2 denotes the sequential composition
of s1 and s2. When applied to a term t the strategy s1; s2 will first apply s1 to t yielding t′ and then
apply s2 to t′ yielding t′′.

The strategy s1 <+ s2 denotes the left-biased composition of s1 and s2. When applied to a term t
the strategy s1 <+ s2 will first try to apply s1 to t. If the application s1 t succeeds, and produces t′ as
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its result, then t′ is returned as the final result and s2 is not used. However, if the application s1 t fails,
then the result of s2 t is returned as the final result.

The strategy s1 +> s2 denotes the right-biased composition of s1 and s2. Semantically speaking, s1

+> s2 is equivalent to s2 <+ s1.
In addition to the three binary combinators previously mentioned, TL also provides the unary

combinators transient and hide. The semantics of these combinators are described in Section 4.2.

3.5 Generic First-Order Traversals

TL supports a number of generic first-order traversals including: TDL, FIX TDL, and TDL B. The
traversal TDL accepts a first-order strategy s and a tree t as input and performs a single top-down
left-to-right traversal over t applying s to every sub-tree encountered. The traversal FIX TDL accepts
a first-order strategy s and a tree t0 and performs the evaluation TDL s t0 yielding t1. If one or more
rewrites occurred during the evaluation of TDL s t0, then FIX TDL will perform the evaluation TDL
s t1 yielding t2. Additional evaluations of the form TDL s ti will continue until a tree tj is reached
such that the evaluation TDL s tj completes without a single rewrite being performed on tj . If such a
tree tj is found, then this is the value of the evaluation of FIX TDL s t0. Otherwise the evaluation of
FIX TDL s t0 does not terminate.

The generic first-order traversal TDL B is described in Section 4.4.

3.6 Higher-Order Rules and Strategies

In TL, a conditional rewrite rule of order n + 1 has the form:

label : lhs → sn if condition

where sn is a strategic expression whose evaluation yields a strategy of order n. As was the case with
first-order rules, the label and conditional portion of higher-order rules are optional.

The combinators in TL can be applied to first-order as well as higher-order strategies. For example,
let sn

1 and sn
2 denote two order n strategies. The expressions sn

1 ; sn
2 and sn

1 <+ sn
2 respectively denote

the sequential and left-biased conditional composition of sn
1 and sn

2 . For various practical reasons, TL
imposes the restriction that only strategies having the same order may be composed with one another.

3.7 Higher-Order Generic Traversals

TL supports a number of generic higher-order traversals including: seq tdl and lcond tdl. The traversal
seq tdl accepts a higher-order strategy sn and a tree t1 as its input and performs a top-down left-to-right
traversal of t1 applying the strategy sn to each (sub)tree encountered. Let t1, t2, ..., tm denote the trees
encountered during the traversal of t1. Let sn−1

i denote the strategy obtained from applying sn to the
tree ti. Given these assumptions, the evaluation of seq tdl sn t1 will produce the strategy

sn−1
1 ; sn−1

2 ; ...; sn−1
m

Similarly, the evaluation of lcond tdl sn t1 will produce the strategy
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sn−1
1 <+ sn−1

2 <+ ... <+ sn−1
m

Having described the basics of TL we are now in a position to discuss a strategic implementation
of the class loader core.

4 A Strategic Implementation of the Class Loader Core

In this section we look at a strategic solution, written in TL, to an abstract version of the class loader core
as defined in Section 1.2. In this abstract example, the structure of a class file has been greatly simplified
and in several places its structure has even been altered. In spite of these changes, we nevertheless make
the claim that, when seen from a strategic perspective, the abstractions below still contain the essence of
the class loader core. This claim is based on our experience in successfully developing a strategic-based
implementation of an actual class loader for the SSP. This implementation has been developed using
the HATS system, an IDE for strategic programming supporting a restricted version of TL in dialect
form. The HATS system is freely available [7].

Noteworthy characteristics of the class file structure described in Figure 16 include:

• Additional terminal symbols have been added to enable the class file structure to be described by
a context-free grammar.

– Constant pool entries have been enclosed in parenthesis.
– The @ symbol is used to tag absolute addresses belonging to DHEAP .
– The : symbol is used to tag object offset addresses belonging to DObj .
– The # symbol is used to tag method table offset addresses belonging to DMT .

• Explicit indexes have been given to the entries in the constant pool.

• The structure of a class file has been extended with a children list which is initially empty.

• Fields have been partitioned into a list of static fields and a list of instance fields.

• The methods section consists of a method table and a list of methods.

• Methods consist only of a method name. In particular, they do not contain a descriptor and they
do not contain any bytecodes.

• All fields are tacitly assumed to be of type integer.

• Fields are denoted by a single index whose resolution yields the name of the field and the class in
which it is declared.

• Address and offset units are words.

In the context of these constraints and alterations we present a strategic implementation of the
class loader core. Figure 17 shows three abstract class files before class loading, and Figure 18 shows
the same three class files after class loading. In order to construct a sufficiently rich example that is
nevertheless small in size, the class file examples shown are not proper class files. For example, a super
type makes a reference to its subtype.
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app ::= app class | ε
class ::= { class id parent id info children }
children ::= children class | ε
info ::= cp fields methods
class id ::= id
parent id ::= id
cp ::= cp c entry | ε
c entry ::= ( index , data )
fields ::= statics instance
statics ::= statics sfield | ε
sfield ::= data @ addr
instance ::= instance ifield | ε
ifield ::= data : addr
methods ::= mt , method list
mt ::= mt entry mt | ε
mt entry ::= key # addr
method list ::= m entry method list | ε
m entry ::= data ( )
data ::= key | d | key address type addr
key ::= d . d
d ::= id | index
address type ::= @ | # | :
index ::= integer
addr ::= integer
id ::= ident

Figure 16: An extended-BNF grammar describing a simplified application in terms of a list of class files
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This class 1
Super class 19
CP (1,A)(2, 1.3)(3, x1)(4, 1.5)(5, x2)(6, 1.8)(7, 1.9)(8,a1)(9, a2)(10, 11.3)

(11, B)(12, 11.13)(13, foo)(14, x3)(15, bar)(16, 1.14)(17,1.13)(18,1.15)(19, Obj)
Static fields 2@- 4@- 16@-
Instance fields 6:- 7:-
MT
Methods 17() 18()
This class 3
Super class 19
CP (1, x1)(2, 3.1)(3, B)(4, x2)(5, 3.4)(6, x3)(7,3.6)(8, b1)(9, 3.8)(10, b2)

(11, 3.10)(12, foo)(13, 3.12)(14, f)(15, 3.14)(16, C)(17, 16.1)(18, 16.4)(19,A)
Static fields 2@- 5@- 7@-
Instance fields 9:- 11:-
MT
Methods 13() 15()
This class 3
Super class 21
CP (1, x1)(2, 3.1)(3, C)(4, x2)(5, 3.4)(6, x3) (7, 3.6)(8, c1)(9, 3.8)(10, c2)

(11, 3.10)(12, bar)(13, 3.12)(14, f)(15, 3.14)(16, B)(17, 16.1)(18,16.4)
(19, b1)(19, 16.19)(20, b2)(21, 16.20)(21,A)

Static fields 2@- 5@- 7@-
Instance fields 9:- 11:-
MT
Methods 13() 15()

Figure 17: Three abstract class files prior to class loading
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This class A
Super class Obj
CP (1, A)(2, A.x1@0)(3, x1)(4, A.x2@1)(5, x2)(6, A.a1:0)(7, A.a2:1)(8, a1)

(9, a2)(10, B.x1@3)(11, B)(12, B.foo#0)(13, foo)(14, x3)(15, bar)
(16, A.x3@2)(17, A.foo#0)(18, A.bar#1)(19, Obj)

Static fields A.x1@0 A.x2@1 A.x3@2
Instance fields A.a1:0 A.a2:1
MT A.foo#0 A.bar#1
Methods A.foo() A.bar()
This class B
Super class A
CP (1, x1)(2, B.x1@3)(3, B)(4, x2)(5, B.x2@4)(6, x3)(7, B.x2@5)(8, b1)

(9, B.b1:2)(10, b2)(11, B.b2:3)(12, foo)(13, B.foo#0)(14, f)
(15, B.f#2)(16, C)(17, C.x1@6)(18, C.x2@7)(19,A)

Static fields B.x1@3 B.x2@4 B.x3@5
Instance fields B.b1:2 B.b2:3
MT B.foo#0 A.bar#1 B.f#2
Methods B.foo() B.f()
This class C
Super class A
CP (1, x1)(2, C.x1@6)(3, C)(4, x2)(5, C.x2@7)(6, x3) (7, C.x3@8)(8, c1)

(9, C.c1:2)(10, c2)(11, C:x2:3)(12, bar)(13, C.bar#1)(14, f)
(15, C.f#2)(16, B)(17, B.x1@3)(18,B.x2@4)
(19, b1)(19, B.b1:2)(20, b2)(21, B.b2:3)(21,A)

Static fields C.x1@6 C.x2@7 C.x3@8
Instance fields C.c1:2 C.c2:3
MT A.foo#0 C.bar#1 C.f#2
Methods C.bar() C.f()

Figure 18: The three abstract class files shown in Figure 17 after class loading
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index resolution : class0 → FIX TDL (seq tdl cp normalize class0) class0

cp normalize : c entry [[ ( index 1 , d1 ) ]] → d[[ index 1 ]] → d1

Figure 19: Index Resolution

4.1 Index Resolution in TL

As described in Section 2.1, the goal of index resolution is to rewrite constant pool indexes into their
symbolic references. In the abstract example that we are considering a constant pool entry has the
form ( index 1 , data1 ), where index 1 denotes the position of the entry and data1 denotes its value
(e.g., an encoding of a symbolic reference or a symbolic reference). Conceptually speaking, our strategic
approach to index resolution is as follows. For every constant pool entry ( index 1 , data1 ) we would
like to create a rewrite rule of the form index 1 → data1. Once this has been accomplished all that
remains to be done is to exhaustively apply the resulting rules to all data indexes within the class file.
We would like to point out that the structure of the constant pool entries ( index 1 , data1 ) is such that
index 1, the positional denotation of the entry, is not in-and-of-itself a data index. Data indexes occur in
a variety of places throughout a class file such as within the description of fields, within the description
of methods including their bytecodes, and within the data portion of constant pool entries.

The grammar in Figure 16 has been defined in such a way to enable an ordinary use of an index
to be distinguished from a data index. In particular, all data indexes are derived from the nonterminal
symbol d. Thus, it is only in this structural context that index resolution should be performed. This
constraint is captured by the parse expression d[[ index1 ]], yielding the rewrite rule d[[ index 1 ]] → d1.

Figure 19 gives an implementation of index resolution in TL. The behavior of the strategy in-
dex resolution is as follows. When applied to a class file structure class0 the strategy index resolution
will first evaluate the strategic expression seq tdl cp normalize class0. Within this expression, the strat-
egy seq tdl is a higher-order generic traversal that will traverse a term in a top-down left-to-right (tdl)
fashion. In this case, the term being traversed is class0. The fact that seq tdl is higher-order means
that it expects to apply a higher-order strategy to the sub-terms of the term it is traversing. In this
case, the higher-order strategy being applied is cp normalize, a second-order strategy that converts a
constant pool entry of the form c entry [[ (index 1, d1) ]] into a first-order rewrite rule of the form: d[[
index 1 ]] → d1. When applied to the entries of the constant pool of class0 a number of instances of
the rule d[[ index 1 ]] → d1 will be generated. These rule instances are then composed by seq tdl using
TL’s sequential composition operator. This composition is part of the semantics of seq tdl – which
sequentially composes the results generated generates from its tdl traversal. The resulting first-order
strategy is of the form r1; r2; ...rn where ri is the instance of d[[ index 1 ]] → d1 corresponding to the
ith constant pool entry. This first-order strategy is then exhaustively applied to class0 in a top-down
left-to-right fashion by the first order generic traversal FIX TDL. The result is that all data indexes are
rewritten to their symbolic references.
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4.2 Static Field Address Calculation in TL

As described in Section 2.2, the goal of static field address calculation is to assign each static field in
an application a unique absolute address taken from the address space DHEAP . In TL, this can be
accomplished with a strategy that makes use of the strategic combinators transient [26][27]and hide
[28][29]. Both of these combinators are unique to TL.

When applied to a strategy s, the transient combinator has the effect of “erasing” s after the first
successful application of s. Thus, the transient combinator can be used to create a strategy that can
be applied at most once. For example, let s1 denote the strategy transient(addr[[ 0 ]] → addr[[ 1 ]]).
The strategic expression TDL s1 class0 states that the term class0 should be traversed in a top-
down left-to-right fashion and that the current value of strategy s1 should be applied to every term
encountered during this traversal. Due to the use of the transient combinator in s1, the strategic
expression TDL s1 class0 will have the effect of rewriting the first term matching addr[[ 0 ]] to addr[[ 1 ]]
and will leave unchanged all other terms.

Generalizing this example, let si denote a strategy of the form transient(addr[[ 0 ]] → addr[[ i ]]),
and let s1..n denote a strategy of the form s1; s2; ...; sn. The strategic expression TDL s1..n class0 will
rewrite the first occurrence of addr[[ 0 ]] to addr[[ 1 ]], the second occurrence of addr[[ 0 ]] to addr[[ 2 ]],
and the nth occurrence of addr[[ 0 ]] to addr[[ n ]]. Suppose we are given a Java application whose
class files collectively contain m static fields, all of which are of type integer and whose initial default
address has been set to 0. When controlled properly, the application of a strategy of the form s1..m can
be used to correctly assign a unique address to each static field in the application. In spirit, this is the
transformational effect that we want to accomplish. However, for a variety of reasons, in practice it
is difficult to attempt to construct such a strategy directly. Thus, we will use the hide combinator to
construct a slightly different strategy whose net effect is equivalent to s1..m.

In strategic programming, the left-biased choice combinator <+ is used to specify the conditional
application of two or more strategies. When applied to a term t, the strategy s1 <+ s2 specifies that
first the application of s1 to t should be attempted. If this application succeeds and yields t′, then
the result of (s1 <+ s2) t is t′. On the other hand, if the application of s1 to t fails, then the left-
biased choice combinator indicates that the application of s2 to t should be tried next. In light of this,
let us consider the strategy hide(s1) <+ s2. The hide combinator is a combinator that restricts the
ability of the left-biased (or right-biased) choice combinator to observe whether or not the application
of s1 has succeeded or failed. More specifically, the hide combinator always gives the left-biased choice
combinator the impression that the application of s1 has failed. Thus, the strategy hide(s1) <+ s2 is
equivalent to s1; s2.

When considered in isolation, the hide combinator is not very interesting. However, when combined
with the transient combinator it becomes possible to construct strategies having interesting behaviors,
such as a strategy that implements a sum. For example, consider the following strategy:

sum =





hide(addr[[ i ]] → addr[[i + 1]]) <+ transient(addr1 → addr1) <+
hide(addr[[ i ]] → addr[[i + 1]]) <+ transient(addr2 → addr2) <+
hide(addr[[ i ]] → addr[[i + 1]]) <+ transient(addr3 → addr3)
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When applied to a term t, the strategy sum will increment the first addr it encounters by one, the
second addr it encounters by two (i.e., 1 + 1), and the third addr it encounters by three (i.e., 1 + 1 + 1).
All remaining instances of addr encountered will be incremented by three. The informal explanation of
this is as follows. Within t, when applied to the first occurrence of addr, the first hide encapsulated rule
in sum will apply, incrementing the address by one. Due to the encapsulation of the hide combinator,
the conditional operator <+ immediately to the right of the hide strategy is led to believe that the
application of hide(addr[[ i ]] → addr[[ i + 1 ]]) failed. Thus, the application of the next strategy
within sum is attempted, which in this case is transient(addr1 → addr1). The rule addr1 → addr1

is an identity that rewrites the term addr1 to itself. From the perspective of <+ the application of
the transient encapsulated rule succeeds, completing the application of sum to addr. However, since
transient strategies can only be applied once, all future applications of this first transient strategy will
fail, which in the context of sum will cause the application of sum to move on to its next rule. Thus,
when sum is applied to a second addr, the first two hide encapsulated rules will apply, after which
the second transient encapsulated rule is encountered (for the first time), which again completes the
application of sum to the second addr. By similar reasoning, the application of sum to a third addr
will result in three hide encapsulated increments.

static addresses : app0 → TDL( lcond tdl sfield sum app0) app0

sfield sum : sfield0 →
hide(sfield [[key1 @ addr1]] → sfield [[key1 @ addr1 + 1]] ) <+ transient(sfield1 → sfield1)

Figure 20: A TL strategy for absolution address calculation

Figure 20 gives a TL implementation of static field address calculation. The absolute address for
static fields are realized via a strategic sum that is based on the increment technique described by
the sum strategy discussed previously. In particular, the higher order strategy sfield sum performs a
sum that applies only to static fields. Within the body of static addresses, the higher-order strategic
expression lcond tdl sfield sum app0 will traverse app0 in a tdl fashion and apply the strategy sfield sum.
This will produce one instance of the strategy

hide(sfield [[key1 @ addr1]] → sfield [[key1 @ addr1 + 1]] ) <+ transient(sfield1 → sfield1)

for each static field encountered. These strategy instances are then combined using the left-biased choice
combinator. The resulting composition is an sfield sum which is then applied to app0 using the generic
traversal TDL. This has the effect of assigning a unique absolute offset to each static field in app0.

4.3 Instance Field Offset Calculation in TL

Instance field offset calculation (see Section 2.3) is similar to static field address calculation. The primary
difference is that the assignment of offset addresses is constrained by the subtype (i.e., inheritance)
relationships between the class files within an application. In static field address calculation, the static
fields of all classes in the application could be collected (in any order) and aggregated into a sum, which
could then be applied to the entire application (in the same order as collected). In instance field offset
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calculation, the instance fields of each class in an inheritance chain must be collected according to the
order/position of the class in the inheritance chain. The resulting sum must then be applied only to
the instance fields of that chain.

In TL, there are several ways to construct strategies whose application is restricted to individual
inheritance chains. The approach taken in this article requires that an application first be restructured so
that the new structure explicitly reflects the inheritance hierarchy of the class files. This is accomplished
by adding a children element to each class file (see Figure 16). This children structure denotes a list
of class files and creates the possibility of restructuring the class files from an application (which are
initially list form) into an inheritance tree. After this has been accomplished an iterative process can
be specified whereby a strategy realizing a partial sum is created using the instance fields belonging to
a given class file class1 and the resulting partial sum strategy is applied to all the classes belonging to
the inheritance tree having class1 as its root (i.e., class1 and all its descendants). During the course of
a top-down traversal, each class file will in turn become the root of its own inheritance (sub)tree and
have a partial sum created for it. The cumulative result is that each instance field will eventually be
assigned a proper offset address (i.e., a fully totaled sum).

instance offsets : app1 → app3

if app2 ¿ TDL (seq tdl create hierarchy app1) app[[ {Obj Obj } ]]
∧ app3 ¿ TDL sum offsets app2

create hierarchy : class1 → class[[ {id2 id3 info2 children2} ]] → class[[ {id2 id3 info2 children2 class1} ]]
if class1 ¿ class[[ {id1 id2 info1 children1} ]]

sum offsets : class0 → TDL (lcond tdl partial sum instance1 ) class0

if class0 ¿ class[[ {class id1 parent id1 cp1 statics1 instance1 methods1 children1} ]]

partial sum : class0 → TDL( lcond tdl local ifield sum class0) class0

local ifield sum : ifield0 →
hide( ifield [[key1 : addr1]] → ifield [[key1 : addr1 + 1]] ) <+ transient(ifield1 → ifield1)

Figure 21: Offset address calculation

Figure 21 gives a TL strategy that implements the approach to instance offset calculation just
described. When applied to app1, the strategy instance offsets will first restructure app1 into an in-
heritance tree. The evaluation of the strategic expression seq tdl create hierarchy app1 will perform a
top-down left-to-right traversal on app1 and apply the higher-order strategy create hierarchy to each
class file encountered. The application of create hierarchy to class1 will produce a first-order strategy
that places class1 into the children list of its parent class. Notice that in the strategy create hierarchy,
id1 and id2 respectively denote the class name and parent class name of class1. By definition, the parent
class of class1 is that class which has id2 as its class name. Thus, in create hierarchy the strategy

class[[ {id2 id3 info2 children2} ]] → class[[ {id2 id3 info2 children2 class1} ]]

will place class1 into the children list of its parent class.
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For each class in app1 such a first-order strategy is created and the resulting strategies are sequen-
tially composed. The resulting composition is then applied in a top-down left-to-right fashion to an
application structure consisting of the single class Obj, which is initially empty (i.e., Obj contains no
constant pool, no fields, no methods, and no children). This application has the effect of growing an
inheritance tree rooted at Obj. For example, first the children of Obj will be inserted into the children
list of Obj. In turn, the children of Obj will have their children inserted into their children list, and so
on. The resulting structure is then bound to app2 via a match equation.

After the application has been restructured into an inheritance tree, the calculation of instance
field offsets can begin. In the strategy instance offsets, the evaluation of the strategic expression TDL
sum offsets app2 will traverse the inheritance tree app2 in a top-down left-to-right fashion and apply the
strategy sum offsets to each class file encountered. In turn, the strategy sum offsets will traverse the
instance fields of the class file class1 to which it is applied and create an instance of local ifield counter
for each field encountered. The instances of local ifield counter are then conditionally composed and
the resulting strategy is applied to in a top-down left-to-right fashion to the inheritance tree rooted
at class1. This has the effect of (1) assigning proper (i.e., completed) offsets for the instance fields in
class1, and (2) assigning partially completed offsets for the instance fields of all the classes which are
descendants of class1. In general, the partially completed offsets for instance fields local to a given
classi are completed when the strategy sum offsets is applied to classi (i.e., it is treated as the root of
an inheritance tree).

4.4 Method Table Construction in TL

Method table construction (see Section 2.4) is similar to instance field offset calculation in the sense
that strategies are applied along inheritance chains. In the case of method table construction the goal
is to construct a method table for each class within an application. The general algorithm implemented
is as follows. One begins at the class Obj with an empty method table. This table is then propagated
to all the descendants of Obj after which, method table construction begins for the children of class
Obj. Let class1 denote a arbitrary child of class Obj. The methods declared in class1 are “added”
to the method table of class1 as well as to the method tables of all the descendants of class1. This
distribution represents the methods that are initially inherited by the descendants of class1. In general,
the methods in classi are added to the method table of classi and all of its descendants. The “addition”
of a method m to the method table of classi can take one of the following three forms:

1. A method table entry m′ is encountered corresponding to the method m. This means that m′ has
been redefined by m in classi. In this case, m replaces (overwrites) the entry for m′.

2. The last entry of a (non-empty) method table is reached without encountering an entry corre-
sponding to m. This means that, m is a new (i.e., previously unseen) method declared in classi.
In this case, a new entry is added to the end of the method table and its offset is assigned the
value of the previous offset plus one.

3. An empty method table is encountered. In this case, an entry for m is added to the method table
and given an offset of zero.
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mt construction : app1 → TDL add methods app1

add methods : class1 → TDL B (seq tdl insert method method list1) class1

if class1 ¿ class[[ {class id1 parent id1 cp1 fields1 mt1 method list1 children1} ]]

insert method : m entry [[ id1.id2 () ]] →
transient(

mt[[id3.id2 # addr2 mt2]] → mt[[id1.id2 # addr2 mt2]]
<+ mt[[id3.id4 # addr2]] → mt[[id3.id4 # addr2 id1.id2 # addr2 + 1]]
<+ mt[[ ]] → mt[[id0.id1 # 0]]

)

Figure 22: Method table construction

Figure 22 shows how the method table construction strategy described can be implemented in TL.
When applied to a method declaration, the strategy insert method creates a transient strategy that,
though the use of the left-biased choice combinator, captures the three ways a method can be added to
a method table. The rule

mt[[id3.id2 # addr2 mt2]] → mt[[id1.id2 # addr2 mt2]]

accounts for the case where a local method definition overwrites an inherited method definition. In this
case, id3 denotes the most recent ancestor where the method id2 has been declared and id1 denotes the
name of the current class in which the method is being redeclared. The rule

mt[[id3.id4 # addr2]] → mt[[id3.id4 # addr2 id1.id2 # addr2 + 1]]

accounts for the case where a previously unseen method is declared and must therefore be added to the
end of the method table with an offset of addr2 + 1. And finally, the rule

mt[[ ]] → mt[[id0.id1 # 0]]

accounts for the somewhat special case where a method is added to an empty method table. In this case
the offset address is set to 0. Notice that the aggregation of the above rules needs to be encapsulated
within a transient in order to assure that a method m will only be added to a method table once. For
example, it would be incorrect to overwrite an existing method and also add a new (i.e., duplicate)
entry to the end of the same method table.

Within the strategy add methods, the evaluation of the strategic expression seq tdl insert method
method list1 will result in the creation of a method table insertion strategy for each method in method list1,
which is the list containing the methods that are declared in class1. The insertion strategies are se-
quentially composed by seq tdl and the resulting strategy is ready to be applied to a method table. Let
s denote this strategy. The trick that needs to be worked out now is how to apply this value of s to the
method table in class1 as well as the method tables of every class which is a descendant of class1. The
problem is that s contains transient strategies and the moment a transient strategy applies the value
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of s will be forever changed. For example, adding an entry to the method table of class1 will change
s so that this element cannot in the future be added to the method tables of any of the descendants
of class1. To solve this problem what we need is some way of making a copy of the current value of
s (i.e., the value before any transient strategies have been applied). The first-order generic traversal
TDL B does just that! In general, the evaluation of a strategic expression of the form TDL B s t will
perform a top-down left-to-right traversal over the term t and do the following: First, s is applied to
the current term t producing a (possibly) new term t′ and a (possibly) new strategy s′. Next, a copy
of the strategy s′ is applied to each of the children of t′, at which point the process repeats until the
entire tree is traversed. As a result the evaluation of the strategic expression

TDL B(seq tdl insert method method list1) class1

will correctly insert the methods declared in method list1 into the method table of class1 as well as
in the method tables of all the descendants of class1. And finally, the strategy mt construction, when
applied to an application app1 that is in the form of an inheritance tree, will create the proper method
tables for each class in app1. It accomplishes this by traversing app1 in a top-down left-to-right fashion
and applying the strategy add methods to every inheritance tree encountered.

4.5 Inter-class Absolute Address and Offset Address Distribution in TL

At this point, all data indexes within the application have been resolved to symbolic references, all
static fields in the application have been assigned absolute addresses in DHEAP , all instance fields in
the application have been assigned offset addresses in DOBJ , and all methods in the application have
been assigned method table offset addresses in DMT . Given these preconditions, inter-class absolute
address and offset address distribution concerns itself with the distribution of the aforementioned address
values to their corresponding symbolic references in constant pool entries. Note that such references
are not particularly constrained by inheritance chains. That is, a class file belonging to one inheritance
chain may reference static fields, instance fields, and methods declared in a class file belonging to another
inheritance chain.

Figure 23 shows a TL implementation of inter-class absolute address and offset address distribution.
The evaluation of the strategic expression lcond tdl collect ifields app1 will create an instance of the rule

c entry [[ (index1,key1) ]] → c entry [[ (index 1,key1 : addr1) ]]

for each instance field in the application app1. This rule adds the offset associated with the instance
field key1) to a constant pool entry containing the symbolic reference key1). These rule instances are
composed using the left-biased choice combinator and the resulting strategy is then applied to app1 using
the generic traversal TDL. The effect is that all constant pool entries containing symbolic references to
instance fields will be updated so they also contain the corresponding offset address for that instance
field. The result of this transformation is then bound to app2 via a match equation. Next the absolute
addresses for all static fields is app2 is distributed by the same mechanism that was used to distributed
instance field offsets. The result is then bound to app3 via a match equation. And finally, method table
offsets are distributed, completing the class loader core as defined in Section 1.2.
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distribute all : app1 → app4

if app2 ¿ TDL ( lcond tdl collect ifields app1) app1

∧ app3 ¿ TDL ( lcond tdl collect sfields app1) app2

∧ app4 ¿ TDL ( lcond tdl collect methods app1) app3

collect ifields : ifield [[key1 : addr1]] → c entry [[ (index1,key1) ]] → c entry [[ (index 1,key1 : addr1) ]]
collect sfields : sfield [[key1 @ addr1]] → c entry [[ (index1,key1) ]] → c entry [[ (index 1,key1 @ addr1) ]]
collect methods : mt entry [[key1 # addr1]] → c entry [[ (index1,key1) ]] → c entry [[ (index 1,key1 # addr1) ]]

Figure 23: Inter-class distribution

5 Verification and Validation

One motivating factor in the development of TL in general and the SSP specifically is the attainment
of strong evidence of correctness. In this section we present current efforts to construct a framework for
proving the correctness of TL transformations using the automated theorem prover ACL2.

The goal with respect to the SSP class loader is to prove formally and automatically that the TL
implementation of the class loader preserves the properties identified in Section 1.2. To this end, we
are beginning to model the behaviors of strategies, traversals, combinators, and conditional rewrites
in ACL2. The work described here is only the initial steps towards proving the correctness of the TL
implementation of the class loader core. The long-range goal of this work is to reason not only about
specific transformations, but also about the internal mechanisms of TL and transformation systems
in general. ACL2 has the capability to reason about combinators and traversal strategies, and this
reasoning can be reused in other applications that utilize transformation-oriented programming.

5.1 The ACL2 Theorem Prover

ACL2 [8] [9] is a first order, quantifier-free mathematical logic based on recursively defined total func-
tions. It is also a programming language based on the applicative subset of Common Lisp in which
users can build executable models of software systems and prove that these models have certain proper-
ties. To use ACL2, a user first builds an executable model by writing functions in the ACL2 language.
Before a function definition is accepted, ACL2 must prove that the function is total, i.e., it eventually
terminates for any input. Once a function is accepted, a user may execute the function to test it or
prove theorems about the function.

Theorems are specified using the construct defthm. While ACL2’s theorem prover is fully auto-
matic, it is usually necessary for a user to supply lemmas to guide the proof. Once a theorem has been
proved, it can be used in subsequent proofs. Theorem conjectures have the following general form:

(defthm theorem-name
(implies cond1

(equal expression1 expression2))
:rule-classes :rewrite))
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To prove theorems, ACL2 uses six proof techniques: simplification, elimination of destructors, use
of equivalences, generalization, elimination of irrelevance, and induction. The two most important
techniques are simplification and induction. After proving a theorem, ACL2 will store the result as a
rewrite and use it during simplification. In this case, whenever ACL2 encounters expression1, it will
try to rewrite expression1 to expression2 given that cond1 is true.

To prove a theorem, T (n), by classical induction, we have to show as a base case that T (0) holds,
then as the induction step that T (n) → T (n + 1). The induction used in ACL2 restates the classical
one: to prove T (n) we have to show that T (0) holds, then as the induction step we have to show that
(n 6= 0) and T (n − 1) → T (n). Thus, ACL2 attempts to prove a theorem T (n) by induction from a
smaller instances of the theorem, T (n− 1).

5.2 Modelling TL in ACL2

We are beginning to model the semantics of TL in ACL2. Our approach is to model the class loader as
a function that takes a Java application (set of Java class files) as input and produces a ROM image as
an output. The goal is to show the equivalence of these two representations. To prove the equivalence,
we create a function that maps a Java application APP to a semantic expression EAPP . A second
semantic function takes a ROM image and maps it to a semantic expression EROM . Our conjecture is
that EAPP is equivalent to EROM modulo class loading. Rather than show this equivalence for some
finite number of test cases, we want to prove that equivalence holds for any valid Java application.
We begin by assuming that the Java application and the transformation rules have corresponding tree
representations that are inputs to the TL model. The model supports the combinators FIX TDL, TDL,
and transient ; we are currently working on supporting the remaining combinators.

ACL2 requires that functions be total. It is therefore impossible to directly model some computa-
tional systems. For example, it is not possible to directly model the Java virtual machine since it is
possible to write Java programs that do not terminate. The approach to modelling the TL in ACL2
is based on the approach taken to model possibly non-terminating systems [12] [17] [13] [14]. In this
approach, a system is described in terms of states and a state transition function. (This approach has
been used to verify parts of implementations of the Java Virtual Machine [12] [17][13].)

A state transition function takes a state as input and returns a new state. The new state is derived
from the input state by advancing the system by some number of atomic steps. For example, in the
Java virtual machine models, a single step is the execution of a single byte code.

We define a step in the ACL2 model of TL to be the application of a single conditional rewrite
rule to a specific node in a tree. Our transition function has two inputs: an input state and a number
representing how many steps should be taken to produce the output state. Recall that the application
of a first-order strategy to a tree generally defines a number of rewrites on that tree. Thus, given a
proper number of steps, our transition function implements a strategy.

A state of TL is modeled as a tuple <CFI , T, C, TP, CFP, H > where CFI is an input class file; T
is a set of rewrite rules; C is a control strategy that controls the application of the transformation rules
to the class file; TP is a rewrite pointer that keeps track of the next rewrite rule to be applied; CFP
is a Class file pointer that keeps track of the class file entry to which the current rewrite rule will be
applied; and a halt flag, H, to show when an execution session ends.
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The SSP class loader can be viewed as a function that takes Java application app0 as input and
produces a ROM image CFROM as output. In Section 2 this core functionality has been decomposed
into a sequence of canonical forms. The five canonical forms correspond to index resolution, static field
address calculation, instance field offset calculation, method table construction, inter-class absolute
address and offset address distribution.

Given a set of state transition functions STFformn that convert intermediate applications from one
canonical form to another, the sequence of intermediates is given below:

Form1 = STFform1(CF0, nstep1) Index Resolution
Form2 = STFform2(Form1, nstep2) Static Field Address Calculation
Form3 = STFform3(Form2, nstep3) Instance Field Offset Calculation
Form4 = STFform4(Form3, nstep4) Method Table Construction
CFROM = STFform5(Form4, nstep5) Inter-class Absolute Address and Offset Address Distribution

Here STFform1 represents the transition function that given the correct number of steps nstep1 converts
an input class file CF0 into the first canonical form Form1. Similarly, STFform2 converts a file from
the first to the second canonical form. Each transition function will apply a set of rewrite rules to
the state according to the specified control strategy. After the appropriate number of steps have been
executed, the halt flag, H, is set. The resulting application is stored. This application represents either
the resulting ROM image or one of the intermediate forms.

5.3 Verification of the Correctness of the Transformation Rules

In this section, we sketch the proof of the correctness of the rewrite rules that embody the functionality
of the SSP class loader. A crucial part of the verification effort is to define a semantic function that
determines the equivalence of the input and the output of each transition function. Therefore, for each
transition function, there is a semantic function, SemanticEquivn. Our main conjecture is as follows:

∀(CF0)SemanticEquiv(CF0) = SemanticEquiv(STFform∗(CF0), nstep∗),

which can be proved using transitivity of the following sequence of conjectures:

∀(CF0)SemanticEquiv(CF0)= SemanticEquiv1(STFform1(CF0, nstep1))
= SemanticEquiv2(STFform2(STFform1(CF0, nstep1)), nstep2)
. . .
= SemanticEquivn(STFform∗(CF0, nstep∗))

where STFform∗ is the composition of the individual transition functions and number∗ is the total
number of steps needed in the transformation of CF0 to CFROM . This allows the proof to be constructed
incrementally, and therefore, reduces the complexity of the proof.

The goal of the transition function STFform1 is to remove all indirection in the constant pool
sections of the class files in CF0, i.e., perform index resolution. We will also define the accompanied
SematicEquiv1 function. Our goal in the example is to prove the following conjecture:
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SemanticEquiv(CF0) = SemanticEquiv1(STFform1(CF0, nstep1))

In the proofs shown below, we present the SemanticEquiv1 function. We prove that this function
is correct, i.e., it has some desired property. Then we show the conjecture that is required to prove the
TL implementation computes an equivalent value.

The goal in this example is to establish a transformational environment that is capable of resolving
the pointers in the second column of the table, i.e., to replace each index with the string to which it
points. The model shown here is greatly simplified from a true SSP class file. In our current ACL2
model, we represent the constant pool as a list of pairs. Each pair has an index and a value. This
format illustrates the notion of indirection within the constant pool. As shown below, the first entry
has index 1, and its value is the string “Hello”.

CP = ((1 “Hello”)
(2 “World”)
(3 2)
(4 3))

Each CP entry consists of two components: the first is a natural number, and the second is either
a string (Utf8) or a natural number that is smaller than the first component. In this case, the second
component is a pointer to some previous entry in the pool. We require that such references be strictly
decreasing, that is, such indirection must point to an earlier entry in the table. This simplifies the proof
of termination of the function that follows the resolution chain.

To resolve CP , a rule is needed for each entry of CP that contains a pair (i j). This rule relates
i and j in a specific context. A second-order transformation rule simplifies the resolution of CP . The
rule TR1 = (i j) → (x i) → (x j) generates as set of rules that transform CP . TR1 states that for
each entry in the table, create a new first-order rule that replaces the right-hand side of the pair. The
generated rules for CP are:

TR1.0 = (x 1) → (x “Hello”)
TR1.1 = (x 2) → (x “World”)
TR1.2 = (x 3) → (x 2)
TR1.3 = (x 4) → (x 3)

Rule TR1.3, for example, says to replace any entry in the table that has a right-hand value of 4 with
an entry that has the same left-hand value, but the right-hand value is set to 3.

The use of the TDL strategy is not enough to resolve all the pointers in CP . Applying all four of
the transformation rules to the table once leaves the final table entry as (4 2). Thus, the TDL strategy
must be applied as many times as necessary to have all the pointers in the table resolved. This is the
FIX TDL strategy.

The function fixStrategy simulates the behavior of the FIX TDL strategy in TL. This function
takes as input a class file and generates dynamically the corresponding transformation rules. Thereafter,
the transformation rules are exhaustively applied to the class file until all the pointers are resolved. The
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function fixStrategy achieves this by calling the function that implements the TDL strategy repeatedly
until there are no more pointers to resolve.

To verify the transformation rules, we define a semantic function, resolveLinks, which copies a table
replacing the second component of every entry by the (Utf8) string at the end of the pointer chain. This
function uses the function (getConstant n cp), which takes a natural number n and a constant pool
table cp. n is an index that is followed until a (Utf8) string is reached. The definition of the function
getConstant in ACL2 is as follows.

(defun getConstant (n cp)
(let ((temp (assoc n cp)))

(cond ((null temp) nil) ; return nil if no entry
((stringp (cadr temp)) (cadr temp)) ; done if utf8
((or (not (natp n)) ; nil if table is broken

(not (natp (cadr temp)))
(<= n (cadr temp)))

nil)
(t (getConstant (cadr temp) cp)))))

The function resolveLinks calls the function resolveLinks1, which iterates down CP replacing each
second component by its associated string value from the original table.

(defun resolveLinks1 (tail cp)
(cond ((endp tail) nil)

(t (cons (list (car (car tail))
(getConstant (car (car tail)) cp))

(resolveLinks1 (cdr tail) cp)))))

(defun resolveLinks (cp) (resolveLinks1 cp cp))

The following theorem verifies the function resolveLinks:

(defthm getConstantResolveLinks
(implies (and (natp n)

(alistp cp))
(equal (getConstant n (resolveLinks cp))

(getConstant n cp))))

ACL2 is not able to prove this theorem directly. In order to prove the theorem, it is first necessary to
show that the function resolveLinks1 computes the same thing that resolveLinks1 does. The following
lemma states that if we are given an index (a natural number n) and a table (the association list tail),
then looking up the index in a resolved table is the same as extracting the constant from the original
table.
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(defthm assocResolveLinks1
(implies (and (natp n)

(alistp tail))
(equal (assoc n (resolveLinks1 tail cp))

(if (assoc n tail)
(list n (getConstant n cp))

nil))))

An association list is a list of pairs. The first element of the pair is a key, and the second is the
value. The function assoc takes a key and an association list and returns the first pair that matches
the key. To prove assocResolveLinks1, ACL2 chooses an induction schema suggested by the definition
of assoc. The essential part of the assoc function is given below.

(DEFUN ASSOC (X ALIST)
(COND ((ENDP ALIST) NIL)

((EQL X (CAR (CAR ALIST))) (CAR ALIST))
(T (ASSOC X (CDR ALIST)))))

The induction has two base cases and one induction step. The base case correspond to the conditions
(ENDP ALIST ) and (EQL X (CAR (CAR ALIST ))) in the assoc definition. Either of these cases
will cause the function to halt. The proofs of the base cases are trivial.

The induction step corresponds to the last condition in the assoc definition. This condition leads
to the recursive call of assoc. Let F (cp, n, tail) denotes the main conjecture, i.e.,

(implies (and (natp n)
(alistp tail))

(equal (assoc n (resolveLinks1 tail cp))
(if (assoc n tail)

(list n (getConstant n cp))
nil))))

The induction step can be written as

(implies (and (not (endp tail))
(not (eql n (caar tail)))
(F cp n (cdr tail)))

(F cp n tail))

ACL2 proves this by simplification appealing to the definitions. With this lemma, ACL2 is able to
prove the theorem getConstantResolveLinks.

At this point, we have proved the correctness of the semantic function resolveLinks. The next
step is to use resolveLinks to prove that the semantic of CP is preserved after applying the function
STFform1 to it. Our main conjecture is as follows:
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(defthm resolveLinks-using-trnsf-is-resolveLinks
(implies

(and (natp n)
(alistp cp))

(equal (getConstant n (fixStrategy cp))
(getConstant n (resolveLinks cp)))))

This theorem claims if fixStrategy and resolveLinks are given the same constant pool table, then the
results of following the resolution chains for an index in both tables are identical. While this result
may seem trivial, it provides significant insight into how this approach can be used to verify significant
applications written in TL.

6 Related Work

In this section we discuss related work in the areas of rewriting/strategic programming as well as the
verification style we are pursuing.

6.1 Rewriting and Strategic Programming

There are a number of rewriting and strategic systems where a rewrite-based implementation of the class
loader core could be considered. Among these systems are ELAN [2], Stratego [22], and ASF+SDF [1].
One of the unique features of TL is its use of higher-order strategies as the mechanism to aggregate data
(e.g., all indexes in a constant pool and the Utf8 data to which they resolve) and first-order strategy
application as the mechanism to distribute data (e.g., index resolution) throughout a term structure
(e.g., a class file or application). In contrast, both ELAN and ASF+SDF [5], use parameterization to
collect and distribute data throughout a term structure. That is, parameters are added to rewrite rules
which can then be passed down and applied at various points within a term structure. In a parameter-
based approach, aggregations of data (e.g., all indexes in the constant pool) are typically converted into
an internal representation such as a list and must be accompanied with an associated lookup function.

In contrast to parameterization, Stratego supports an approach that arguably can be considered
the first-order cousin of higher-order strategy construction mechanisms of TL. Stratego is a first-order
strategic programming system that has two constructs related to the higher-order strategies presented
in the paper: contextual rules and scoped dynamic rewrite rules. In [21], contextual rules are used to
distribute data within a term structure and can be seen as a first-order cousin of the higher-order rules
presented in this paper.

In [20], an approach to the distributed data problem is taken that is similar to what we have de-
scribed. Here the distributed data problem is viewed from a context-free/context-sensitive perspective.
In particular, semantic relationships between portions of a term are seen as representing context-sensitive
relationships. Dynamic rewrite rules are developed as a mechanism for capturing context-sensitive re-
lationships between portions of a term. Dynamic rewrite rules are named rewrite rules that can be
instantiated at runtime (i.e., dynamically) yielding a rule instance which is then added to the existing
rule base. Similar to the higher-order approach taken by TL, in Stratego the program itself is the driver
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behind the instantiation of dynamic rule variables. The lifetime of dynamic rules can be explicitly
constrained in strategy definitions by the scoping operator {| ... |}.

Primary differences between our approach and the scoped dynamic rules described in [20] are the
following:

1. In our approach, we view the rule base as a strategy that is created dynamically. The ⊕ combinator
provides the user explicit control over the structure of this strategy.

2. Though the transient combinator has no direct analogy within scoped dynamic rewrite rules, its
effects can be simulated in Stratego [23]. However, it is somewhat unclear whether a single ap-
proach/method can be used in Stratego to simulate all the behaviors resulting from the interaction
between higher-order strategies and transients.

3. The hide combinator has no analogy in Stratego.

6.2 Verification

State transition approach was investigated in [12] [17] [13] [14] In [4], Boyer and Yu used Nqthm [3], the
predecessor of ACL2, to formalize a substantial subset of a commercial microprocessor, the Motorola
MC68020 [M85]. Based on this model, they were able to verify many binary machine code programs
produced by commercial compilers from source code in such high-level languages as Ada, Lisp, and
C. In [14], Moore also used the same approach to model Piton, an assembly programming language
that is implemented on a microprocessor, the FM8502, via a compiler, an assembler, and a linker. A
piton interpreter was coded in the ACL2 logic in which given an initial state p0 you obtain state pn by
running piton forward n steps. However, the alternative approach is to map p0 to down to a FM8502
state (or core image), through a function defined in ACL2, run the FM8502, and map the resulting
state back up. The compiler, assembler and linker were also defined as functions in the ACL2 logic.
The implementation of Piton was mechanically proved correct. In [12] [17][13] ACL2 has been used
in verifying the JVM by analyzing the bytecode produced for it. The general approach was to model
a significant subset of the JVM operationally using ACL2. This model was used to execute certain
Java programs by compiling them into bytecode. The model consists of a state of the JVM and state
transition function for each JVM bytecode instruction in the subset. Basically, the state is a triple
containing a thread table, a heap, and a class table. The transition function takes an instruction, a
thread, and a state, and returns a new state that is the result of executing the given instruction on the
given thread in the given state. The new state is a modification of the previous state.

7 Conclusion

From a conceptual standpoint, we believe that transformation provides a natural framework in which
the functionality of the class loader core can be considered. However, the intricacy of data interactions
as well as the structural complexity of Java class files presents a number of challenges to traditional
rewriting and strategic frameworks. Foremost among these challenges is the treatment of term-specific
data and its distribution throughout a term structure. Though table construction and parameterization
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are techniques capable of realizing data distribution, their use departs from rewriting in its purest sense.
Our research is based on the premise that higher-order rewriting provides a mechanism for dealing with
the treatment and distribution of term-specific data conforming to the tenets of rewriting. In a higher-
order framework, the use of such data is expressed as a rule. Instantiation of such rules can be done
using standard (albeit higher-order) mechanisms controlling rule application (e.g., traversal). Typically,
a traversal-driven application of a higher-order rule will result in a number of instantiations. If left
unstructured, these instantiations can be collectively seen as constituting a rule base whose creation
takes place dynamically. However, such rule bases again encounter difficulties with respect to confluence
and termination. In order to address this concern the notion of strategy construction is lifted to the
higher-order as well. That is, instantiations result in rule bases that are structured to form strategies.
Nevertheless, in many cases, simply lifting first-order control mechanisms to the higher-order does not
permit the construction of strategies that are sufficiently refined. This difficulty is alleviated though the
introduction of the transient and hide combinators. The interplay between these combinators, higher-
order rules, and more traditional control mechanisms enables a the functionality of the class loader core
to be concisely expressed. In spite of this, reasoning about the correctness of higher-order strategies
is conceptually somewhat of a departure from the reasoning used when considering first-order rewrite
rules. Our current efforts in using ACL2 reflects our initial efforts in formalizing our reasoning process
in an automatable fashion. This effort involves mapping our approach to reasoning about TL strategies
onto proven approaches to reasoning about software.
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