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Abstract 

The modeling of fluidlstructure interaction is of growing importance in both energy and environmental 
applications. Because of the inherent complexity, these problems must be simulated on parallel machines 
in order to achieve high resolution. The purpose of this research was to investigate techniques for coupling 
flow and geomechanics in porous media that are suitable for parallel computation. In particular, our main 
objective was to develop an iterative technique which can be as accurate as a fully coupled model but 
which allows for robust and efficient coupling of existing complex models (software). 

A parallel linear elastic module was developed which was coupled to a three phase three-component black 
oil model in IPARS (Integrated Parallel Accurate Reservoir Simulator). An iterative de-coupling technique 
was introduced at each time step. The resulting nonlinear iteration involved solving for displacements and 
flow sequentially. Rock compressibility was used in the flow model to account for the effect of deformation 
on the pore volume. Convergence was achieved when the mass balance for each component satisfied a 
given tolerance. This approach was validated by comparison with a fully coupled approach implemented in 
the British PetroledAmoco ACRES simulator. 

Another objective of this work was to develop an efficient parallel solver for the elasticity equations. A 
preconditioned conjugate gradient solver was implemented to solve the algebraic system arising from 
tensor product linear Galerkin approximations for the displacements. Three preconditioners were 
developed: LSOR (line successive over-relaxation), block Jacobi, and agglomeration multi-grid. The latter 
approach involved coarsening the 3D system to 2D and using LSOR as a smoother that is followed by 
applying geometric multi-grid with SOR (successive over-relaxation) as a smoother. Preliminary tests on a 
64-node Beowulf cluster at CSM indicate that the agglomeration multi-grid approach is robust and 
efficient. 
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Introduction 

The modeling of fluid/structure interaction is of growing importance in both energy and environmental 
applications. 1) high 
computational cost; 2 )  selection of a coupling method to optimize run times and accuracy for different type 
of physical applications; 3) solvability and stability of a discretized linear system. The purpose of this 
research was to investigate techniques for coupling flow and geomechanics in porous media that are 
suitable for parallel computation. In particular, our main objective was to develop an iterative technique 
which can be as accurate as a fully coupled model but which allows for robust and efficient coupling of 
existing complex models (software). Stability issues will be our primary goal in the future. 

In coupled geomechanics and reservoir modeling, the finite element discretization of the force balance 
equation leads to very large linear systems, whose solution is both time and memory consuming. ICCG 
(Incomplete Cholesky Factorized Conjugate Gradient) is a popular technique for solving for displacements, 
but the technique is limited to about 60,000 nodal points on desktop machines. Most large 3D field scale 
problems will have to be run on parallel machines. In this project we use a reduced-communication, super 
coarsening multigrid method that can be used in a combinative way with other domain decomposition- 
based preconditioners to achieve faster convergence with high parallel scalability. A preliminary test case 
of 1.5 million grid blocks with up to 59 processors shows a parallel efficiency of above 90%. 

Computational challenges in solving a coupled system of equations include: 

The second computational issue we addressed is the efficiency and accuracy of different operator splitting 
techniques. We compare three methods for coupling multiphase porous flow and geomechanics. Sample 
simulations are constructed to highlight the similarities and differences in the techniques. One technique 
uses an explicit algorithm to couple porous flow and displacements where flow calculations are performed 
every time step and displacements are calculated only during selected time steps. A second technique uses 
an iteratively coupled algorithm where flow calculations and displacement calculations are performed 
sequentially for nonlinear iterations during time steps. The third technique uses a fully coupled approach 
where the program’s linear solver must solve simultaneously for fluid flow variables and displacement 
variables. Comparison problems are run for both single-phase and three-phase flow problems involving 
poroelastic deformations. 

Among these coupling schemes, the iterative approach is more attractive due to the fact that 1) it is accurate 
and stable; 2 )  it preserves software’s modularity; 3) it provides a straightforward way to couple an existing 
porous flow simulator with an existing geomechanics simulator. The primary drawback to this method is 
that the calculations may display a first order convergence rate in the nonlinear iterations. However we 
reformulate the classical iterative method in a more general framework and show that the method can be 
viewed as performing one preconditioned Richardson iteration on a fully coupled system. The rock 
compressibility term used in a flow model is nothing but a preconditioner for the Schur complement 
pressure equation. We gain two folds by this interpretation. First an iterative coupling implementation can 
be more easily adapted to a fully coupled scheme. In this setup, solving the two coupled field equations 
simultaneously is from an implementation point of view not more complicated than using a classical 
operator splitting method repeatedly. This is worth noticing because people tend to implement and use the 
loosely coupled or iteratively coupled methods because they are numerically more explicit compared to a 
fully coupled scheme. Second it provides us the possibility to analyze convergence behavior of the iterative 
coupling method. The pressure mass matrix scaled by rock compressibility term can also be generalized as 
a preconditioner to other iterative linear solvers in a fully coupled scheme. 

Two papers written in support of this work are presented the appendices. Appendix A is a paper published 
in the proceedings of the Society of Petroleum Engineers Reservoir Simulation Symposium that compares 
three techniques for coupling multiphase porous flow and geomechanics. Appendix B contains a second 
paper published in the same proceedings of the Society of Petroleum Engineers Reservoir Simulation 
Symposium that looks at issues related to the parallelization of software for coupled geomechanics and 
reservoir modeling. 
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A Comparison of Techniques for Coupling Porous Flow and Geomechanics 

Rick H. Dean, SPE, and Xiuli Gai, University of Texas at Austin, Charles M. Stone, Sandia 
National Laboratories, and Susan E. Minkoff, University of Maryland, Baltimore County 

Abstract 
This paper compares three techniques for coupling multiphase porous flow and geomechanics. Sample 
simulations are presented to highlight the similarities and differences in the techniques. One technique uses 
an explicit algorithm to couple porous flow and displacements where flow calculations are performed every 
time step and displacements are calculated only during selected time steps. A second technique uses an 
iteratively coupled algorithm where flow calculations and displacement calculations are performed 
sequentially for nonlinear iterations during time steps. The third technique uses a fully coupled approach 
where the program's linear solver must solve simultaneously for fluid flow variables and displacement 
variables. The techniques for coupling porous flow with displacements are described, and comparison 
problems are presented for single-phase and three-phase flow problems involving poroelastic deformations. 
All problems in this paper are described in detail so the results presented here may be used for comparison 
with other geomechanicaVporous flow simulators. 

Introduction 
Many applications in the petroleum industry require both an understanding of the porous flow of reservoir 
fluids and an understanding of reservoir stresses and displacements. Examples of such processes include 
subsidence, compaction drive, wellbore stability, sand production, cavity generation, high-pressure 
breakdown, well surging, thermal fracturing, fault activation, and reservoir failure involving pore collapse 
or solids disposal. It would be useful to compare porous flow/geomechanics techniques for all of these 
processes, since some of these processes involve a stronger coupling between porous flow and 
geomechanics than others. However, this paper looks at a subset of these processes and compares three 
coupling techniques for problems involving subsidence and compaction drive. All of the sample problems 
presented in this paper assume that the reservoir absolute permeabilities are constant during a run. 
Displacements influence fluid flow through calculation of pore volumes and fluid pressures enter the 
displacement calculations through the poroelastic constitutive equations. 

Several authors have presented formulations for modeling poroelastic, multiphase flow. Settari and 
Walters' discuss the different methods that have been used to combine poroelastic calculations with porous 
flow calculations. They categorize these different methods of coupling poroelastic calculations with porous 
flow calculations as decoupled,' explicitly coupled, iteratively coupled, and fully coupled. The techniques 
discussed in this paper are explicitly coupled, iteratively coupled, and fully coupled. 
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For an explicitly coupled approach,24 a simulator performs computations for multiphase porous flow each 
time step and performs geomechanical calculations for displacements during selected time steps. The 
frequency of geomechanical updates is driven by the magnitude of the pore volume changes during the 
time steps. If the pore volumes change slowly during time steps then few geomechanical updates are 
required. The ability to perform geomechanical calculations for selected time steps is a very attractive 
feature of the explicitly coupled approach because a major portion of the computational time for a porous 
flow/geomechanics run is often spent in calculating displacements. Another attractive feature of the 
explicitly coupled approach is that it is very straightforward to use this technique to couple an existing 
porous flow simulator with an existing geomechanics simulator. One shortcoming of the explicitly coupled 
approach is that the explicit nature of the coupling can impose time step restrictions on runs because of 
concerns about stability and accuracy. However, for many subsidence problems the fluid flow calculations 
require time steps that are smaller than those imposed by the explicit coupling calculations. 

For the iteratively coupled approach, multiphase porous flow and displacements are coupled through the 
nonlinear iterations for each time step. During each nonlinear iteration, a simulator performs computations 
sequentially for multiphase porous flow and for displacements. The flow and displacement calculations are 
then coupled through calculations of pore volumes at the end of each nonlinear iteration. An iteratively 
coupled approach will produce the same results as a fully coupled approach if both techni ues use 
sufficiently tight convergence tolerances for iterations. Settari and Mourits,’ and Fung, et al. present 
examples of the iteratively coupled approach for multiphase flow. The primary attraction of the iteratively 
coupled approach is that it is very straightforward to couple an existing porous flow simulator with an 
existing geomechanics simulator. The primary drawback to the iteratively coupled approach is that the 
calculations may display a first order convergence rate in the nonlinear iterations and therefore may require 
a large number of iterations for difficult problems. 

P 

For the fully coupled approach, porous flow and displacement calculations are performed together, and the 
program’s linear solver must handle both fluid flow variables and displacement variables. Tortike and 
Farouq Ali,7 Li and Zienkiewicz,* and Lewis and Sukirman’ have presented formulations of the fully 
coupled approach for poroelastic, multiphase flow. The primary attraction of the fully coupled approach is 
that it is the most stable approach of the three techniques and preserves second order convergence of 
nonlinear iterations. Drawbacks to the fully coupled approach are: it may be difficult to couple existing 
porous flow simulators and geomechanics simulators, it requires more code development than other 
techniques, and it can be slower than the explicit and iterative techniques on some problems. 

The three techniques for coupling porous flow and geomechanics were incorporated into the same program 
so differences in the calculations could be attributed to the different techniques for coupling. If one were to 
compare three different programs each using a different technique for coupling, then it might be difficult to 
differentiate between differences due to coupling and differences due to basic algorithms in the separate 
programs. Comparison problems are presented for single-phase and three-phase flow problems involving 
poroelastic deformations. All techniques should produce the same results when using small time steps and 
tight convergence tolerances, so the choice between techniques is determined by ease of implementation, 
program availability, numerical stability, and computational efficiency. 

A short review of the equations coupling porous flow and deformations is presented, followed by details of 
the algorithm for explicit coupling. Four problems are then presented and the results are compared using 
the three techniques. The first two problems are simple single-phase depletion problems that illustrate the 
role that stress and displacement boundary conditions play in porous flow calculations. The third problem 
is a single-phase depletion example where a soft reservoir is contained within a stiff nonpay region. The 
final problem is a three-phase, black-oil, five-spot pattern with a production well in one corner of the grid 
and a water injection well in the opposite comer. The coupling between geomechanics and fluid flow is 
fairly straightforward in problems 1, 2 and 4 and pressure histories for these runs can be reproduced by 
typical reservoir simulators with proper choices of compressibilities; however, problem 3 exhibits 
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geomechanical effects that cannot be seen in reservoir simulations that do not include geomechanical 
calculations. 

Coupled Flow and Deformation 
For the problems in this paper, displacements enter the fluid flow equations through the calculation of 
reservoir pore volumes, and fluid pressures enter the displacement calculations through the stress/strain 
constitutive equations. A typical porous flow simulator expresses the pore volume for a grid block as 

....................................... v, =V,”[l+c,(p-p,)] (1) 

where p is the fluid pressure and c, is a compressibility-like term that must be entered by the user as part of 
the input data. However, for linear poroelastic calculations the pore volume for infinitesimal displacements 
may be expressed as 

........................... v,=v,. (p+a~&+G(p-po)  ( 2 )  [ l l  

where 0 and 1/M are Biot’s parameters and Eq. 2 assumes expansion is positive. For the comparisons in 
this paper, 0 and l/Mare set equal to one and zero, respectively. For this choice of Biot’s parameters, Eq. 
1, a typical equation for flow simulators, expresses the pore volume in terms of the fluid pressure while Eq. 
2 expresses the pore volume in terms of bulk strains, rJkk. Flow simulators that are coupled to 
geomechanics programs may use an equation similar to Eq. 1 to approximate pore volume changes for the 
flow calculations and use an equation similar to Eq. 2 to calculate corrected pore volumes based upon 
reservoir deformations. 

Logic that couples flow simulators to geomechanics programs must somehow account for the discrepancies 
between Eq. 1 and Eq. 2 .  Many coupling techniques will normally use a c, term similar to that in Eq. 1 to 
enhance the coupling between flow calculations and displacement calculations. For explicitly coupled 
techniques, modified forms of Eq. 1 may be used to calculate pore volumes for those time steps where 
geomechanical updates are not performed. For iteratively coupled techniques, a c, term may be included in 
the Jacobian for the flow equations, but Eq. 2 is always used to calculate pore volumes. For fully coupled 
techniques, a c, term may be used in a preconditioning matrix for the flow equations when solving the 
linear system for flow variables and displacement variables. 

The fluid pressure enters the deformation calculations through the linear poroelastic constitutive equation 

............... = 0,; -k hkk$ + 2p&, -a(p - p, )s ,  (3) 

where tensile stresses are positive in Eq. 3. For the three-phase simulation included in this paper, the oil- 
phase pressure is used in Eqs. 1-3. For explicitly coupled and iteratively coupled techniques, the fluid 
pressure in Eq. 3 may be included in the equilibrium equation as a forcing function similar to the effects of 
a gravity head term. For a fully coupled technique, the fluid pressure in Eq. 3 generates a coefficient that 
must be included in the Jacobian for the system of flow variables and displacement variables. 

Explicit Coupling 
The coupling algorithm for the explicit technique is described in more detail here because the algorithm 
uses both Eq. 2 and a modified form of Eq. 1 to calculate pore volumes for grid blocks during simulations. 
The iteratively coupled and fully coupled techniques may use a c, term for the Jacobian or in a 
preconditioner to accelerate iterative calculations, but never actually use Eq. 1 to calculate pore volumes. 

The explicit coupling algorithm allows a program to perform geomechanical calculations on a time scale 
that is different from the time scale for the flow calculations. This is very useful for subsidence problems 
because a large portion of the computational time in a simulation can be spent in performing 
geomechanical calculations. For many problems, fluid fronts may propagate or well changes may occur 
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F; = vp" + c:fv;(pn - p"i) .............................. . (4) 

over very short time frames while subsidence may progress very slowly throughout the course of a 
simulation. 

One can use Eqs. 1 and 2 to develop an algorithm for determining how often geomechanical calculations 
must be performed during a simulation. Let Vpm be the pore volume for a grid block at time step m that 

was calculated using the geomechanical expression in Eq. 2 .  If the last geomechanical calculation was done 
for time step m, then for time step n > m, the pore volume in a grid block may be approximated by 

where p" and pm are the pressures for the grid block at time steps n and m, respectively. One may replace 
the V," term in Eq. 4 by Vpm ; however, this does not change the accuracy of the approximation since terms 

at step m are constant in Eq. 4. Using V; in place of V; merely modifies the formula that one would 

develop for estimating values for the compressibility, cp' , at step m. Several techniques may be used to 
estimate compressibilities during a simulation. One approach derives analytical estimates of 
compressibilities using simple assumptions concerning stress and strain variations for a problem while a 
second approach uses pressure and pore volume changes between previous geomechanical updates during a 
simulation to estimate compressibilities. A third approach might calculate numerical estimates from the 
geomechanical equilibrium equations by calculating how variations in fluid pressures affect displacements. 
When estimating compressibilities, one may need to establish bounds for these estimates because values 
that are too large generate significant numerical errors and values that are too small give rise to oscillations 
or instabilities. 

The explicitly coupled simulations in this paper use compressibilities in Eq. 4 that are derived from simple 
assumptions concerning stress and strain variations. For example, when a reservoir is deforming in the 
vertical direction and horizontal displacements are zero, uniaxial strain, then Eqs. 2 and 3 become 
approximately AVp = V,"AE, andAE, = &/ (A+2p)  when i = 1  and 1/M= 0. So Eq. 2 and 3 may be 

combined as hvp = v,OAp/(it + 2p). But Eq. 4 may be written as AF; = c;'~,,v;&, which produces an 

estimate for c,~" that is [(A + 2p)v70]-1 . This may also be written in terms of the elastic modulus and 
Poisson's ratio as (1 + V)(I - 2v)/[(1- v)v7,,~]. 

If one uses the geomechanical expression in Eq. 2 to calculate the pore volume Vpn at step n, then one can 

compare Vp" with F; to determine errors in using Eq. 4 in place of Eq. 2. The relative error in pore 

volume for step n may be written as 

........................................ 

During an explicitly coupled simulation, one does not have a value of EI,1 for every time step, but only has 
values for those steps where geomechanical calculations are performed. It is natural to assume that the error 
in Eq. 5 is related to the relative change in pore volume since the last geomechanical update at step m, 
where the relative change in pore volume between steps m and n is approximated by 



If one assumes that Ere/ is proportional to (AV,) for those time steps where geomechanical calculations 

are not performed, then one can implement an algorithm that determines when displacements must be 
updated. One may estimate the parameter i; in E,  

re/ 

p ( ~ v , ) ~ = ~ a s  
t 

where values of E,,/ and (av,) are determined from the two most recent time steps that included 

geomechanical updates. Prescribing a tolerance for Ere/, one may then use ~ ( A v , )  to determine when 

geomechanical updates need to be performed during subsequent time steps. The algorithm above is 
concerned with errors in pore volumes; however, similar logic may be applied to permeabilities if 
permeabilities change during a simulation. For the problems in this paper, the tolerance for Ere/ is set to 
0.001. The program also has options to specify updates for displacements after a prescribed number of time 
steps or after a presecribed pressure change since the last update, but neither option was used for the 
problems in this paper. 

re/ 

re/ 

Program Description 
The three techniques for coupling flow and geomechanics are available in the program ACRES" (ARCO's 
Comprehensive REservoir Simulator). The program uses masses and a fluid pressure as primary variables 
for the flow equations and displacements as primary variables for deformations. The program contains 
IMPEM (IMplicit Pressure Explicit Mass) and implicit time stepping algorithms; however, all coupled runs 
are currently restricted to using the IMPEM technique for the flow calculations. The program uses finite 
differences (mixed finite elements with piecewise constant pressures) for the flow variables and finite 
elements for deformation variables. The program is capable of performing poroelastic and poroplastic 
calculations for black-oil and fully compositional applications. The displacement calculations use trilinear 
basis functions with eight Gaussian integration nodes for forming the stiffness matrix and a single 
integration node for integrating the fluid pressure in the equilibrium equation. 

Comparison Problems 
Four problems are used to compare the three techniques for coupling porous flow and geomechanics. The 
first two problems are simple single-phase depletion problems that illustrate the role that stress and 
displacement boundary conditions play in porous flow calculations. The third problem is a single-phase 
depletion example where a soft reservoir is contained within a stiff nonpay region. The final problem is a 
three-phase, black-oil, five-spot pattern with a production well in one corner of the grid and a water 
injection well in the opposite comer. Biot's parameters 0 and l/M are set equal to one and zero, 
respectively, for all problems. All stresses described below are compressive and represent total stresses for 
the systems (include forces for fluid and solid). 

All problems in this paper use a nonlinear convergence tolerance of 0.01 for volume errors, and a relative 
residual reduction tolerance of 0.01 for linear iterations, unless stated otherwise. The volume error is 
expressed as (VrV,)/V, and the maximum is calculated for all grid blocks, where Vf and V, are the fluid 
and pore volumes for a cell, respectively. All computing times presented in this paper are for a 700 Mhz 
Intel Mobile Pentium 111. 

Problems 1 and 2. Problems 1 and 2 are identical in description except problem 1 enforces zero 
displacement boundary conditions at the vertical faces of the grid and problem 2 applies constant horizontal 
stresses at the vertical faces of the grid. Figs. l a  and l b  show the stress and displacement boundary 
conditions for the two problems. 

The grid is 11 x 11 x 10 with Ox=Uy=200 ft in the horizontal directions and Ez=20 ft in the vertical 
direction. The top of the grid is at a depth of 6000 ft, the initial in situ reservoir porosity is 20%, and the 
reservoir permeabilities are 50 md and 5 md in the horizontal and vertical directions, respectively. The fluid 
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is single phase with a formation volume factor of-1.0, a viscosity of 1 cp, a fluid density of 62.4 lbdft3, 
and zero fluid compressibility. The initial fluid pressure is 3000 psi at a depth of 6000 ft. 

6 0 0 0  psi  

u =  

Fig. l a  - Constrained displacements for problem 1 

6 0 0 0  p s i  

4 0 0 0  p s i  

4 0 0 0  psi  

Fig. l b  - Unconstrained displacements for problem 2 

The elastic modulus is 1 x lo4 psi, Poisson's ratio is 0.3, and the initial in situ solid density (solid material 
without pores) is 2.7 gm/cm3. Initial horizontal stresses are 4000 psi over the entire reservoir depth while 
the initial vertical stress is 6000 psi at 6000 ft with a vertical stress gradient of 1.023 1 psi/ft throughout the 
reservoir. The bottom of the grid has a zero vertical displacement constraint and all faces of the grid have 
zero tangential stresses. Both problems apply a normal stress of 6000 psi at the top of the grid while 
problem I enforces zero normal displacements at the four vertical faces of the grid and problem 2 applies a 
normal stress of 4000 psi at these same faces. Assuming uniaxial strain behavior for problem 1 and 
constant total stresses for problem 2, the explicitly coupled simulations in this paper use constant values of 
3.71 x IO4 psi-' and 6.00 x 

A vertical well with a wellbore radius of 0.25 ft is completed in the center of the pattern in all ten layers of 
the grid, cells (6,6,1-10), The well is produced at a rate of 15,000 b/d for 500 days with a time step size of 
10 days. No flow boundary conditions are assumed for the fluid at all faces of the grid. 

psi-' for the compressibility in Eq. 4. 

Fig. 2 shows average pore-volume-weighted reservoir pressures for problems 1 and 2 using the three 
different techniques. All techniques produced nearly identical results for each problem. Fig. 2 shows how 
geomechanical stress or displacement boundary conditions influence the pressure response in the reservoir. 
Problem 2 shows much less pressure drop than problem 1 because of the support provided by the constant 
stress boundary conditions on the sides of the reservoir. 

The runtime information for problems 1 and 2 are displayed in Tables 1 and 2. The column for iterations is 
the number of nonlinear iterations during a simulation. The explicitly coupled technique is faster than the 
other two techniques for this problem because it performs a small number of updates for the displacements 
when using an Eye/ tolerance of 0.001. The explicitly coupled technique performs 18 and 15 updates for the 
displacements for problems 1 and 2, respectively. 
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Fig. 2 - Average pressures for problems 1 and 2 

Technique CPU Time Time Steps Iterations 
Explicit 8.0 seconds 50 53 
Iterative 10.7 50 51 
Full 13.3 50 51 

Table 1 - Runtime information for problem 1 

Table 2 - Runtime information for problem 2 

Fig. 3 shows the subsidence at the top of the reservoir at the well for problems 1 and 2. The two problems 
produce similar displacements at early times, but the problems deviate substantially at later times. The 
change in subsidence in Fig. 3 is not a linear function of the average pressure drop in Fig. 2 until later in the 
run when a pseudo-steady state is reached for the pressure behavior. 

15 
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Fig. 3 - Subsidence for problems 1 and 2 

The total subsidence for problem 1 is 12.2 ft after 500 days. This corresponds to an average vertical strain 
of 6.1%, which is very large considering that the calculations are based upon infinitesimal strain 
assumptions. Even though the pressures in Fig. 2 are based upon calculations using infinitesimal strains; it 
is expected that the results should not change substantially if the calculations are repeated using a finite 
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strain formulation. Based upon a simple uniaxial strain analysis, a finite strain simulation should predi 
final average pressure for the constrained case that is about 10 psi larger than the 

Problem 3. Problem 3 is modeled afker a problem presented by M. Gutierrez and RW. Lewis." Problem 3 
includes a soft productive reservoir that is contained withii a stiff nonpay region as shown in Fig. 4. 
Problem 3 displays a geomechanical effect at the boundary of the reservoir that cannot be seen in reservoir 
simulations that do not include geomechanical calculations. For this problem, geomechanical effects caw 
the fluid pressures to increase at the boundary of the reservoir during the initial stages of depletion. 

Fig. 4 -Reservoir and nonpay regions for problem 3 

The grid is 21 x 21 x 12 and includes both the remvoir and nonpay regions. Grid block lengths in the x- 
direction are 4000 ft each for the f a t  5 grid blocks, 2000 A each for the next 11 grid blocks, and 4000 ft 
each for the last 5 grid blocks. Grid block lengths for the y-direction are half the corresponding values in 
the x-direction. The top of the grid is at a depth of 0 A and the thicknesses in the vertical direction are 
4000,3000,2000,800, and 200 ft for the fmt.5 layers that represent the overburden. The next five layers 
have thicknesses of 50 ft each and represent the reservoir. The last two layers have thicknesses of 100 ft 
each and represent the underburdm The horizontal and vertical permeabilities are 100 and 10 md, 
respectively, in the reservoir, cells (6-16,6-16,6-10). Permeabilities are zero in the nonpay region. The 
initial in situ porosity is 25% in both the reservoir and nonpay regions. 

The fluid is single phase with a formation. volume factor of 1.0 at 14.7 psi, a viscosity of 1 cp, a fl&d 
density of 62.4 I b d p  at 14.7 psi, and fluid compressibility of 3 x 10" psi-'. A nonzero fluid 
compressibility is used for this problem because a zero fluid compressibility makes the pomu~ solid 
incompressible in the nonpay region. The initial fluid pressure is 14.7 psi at the surface. 

The elastic moduli are 1 x 104 psi in the reservoir and 1 x IO6 psi in the nonpay region, Poisson's d o  is 
0.25 everywhere, and the initial in situ solid density (solid material without pores) is 2.7 gdcm3. The 
initial vertical stress is 0 psi at the surface with a v d c a l  stress gradient of 0.9869 psi/ft thoughout the 
grid, and initial horizontal stresses are equal to half of the ver!ical stress. The bottom and sides of the grid 
have zero nonnal displacement constraints and all faces of the grid have zero 
uniaxial strain behavior for this problem, the explicitly coupled simulation uses 
and 3.33 x 10" psi-' for the compressibility in Eq. 4 in the reservoir and nonpay regions, respectively. 

A vertical well with a wellbok radius of 0.25 ft is completed in the center of the reservoir in all five layers, 
cells (1 1,11,6-10). The well is produced at a rate of 50,000 stb/d for 4000 days with a time step size of 20 
days for the fmt 400 days, followed by time steps of 200 days stopping at 4000 days. Smaller time steps 
are taken at the beginning of the m to produce an accurate solution for the pressure increase ai the 
reservoir boundary. Iteratively coupled and fully coupled techniques should be able to produce accurate 
results Using the time steps spedied for thii problem, but explicitly coupled techniques may require time 
steps that are smaller than 20 days because of time discretization e m  that arise due to the explicit 
coupling. 
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Fig. 5 shows average pore-volume-weighted pressures in the reservoir (excluding nonpay region) usmg the 
three different techniques. The three techniques produce significantly different results in Fig. 5 after the 
tlme step size increases from 20 days to 200 days 

Fig. 5 -Average reservoir pressures for problem 3 

The three techniques also predict large differences in pressures at the boundary of the reservoir at early 
hmes. The iteratively coupled technique requires a tighter tolerance on the nonlinear iterations and the 
explicitly coupled technique requires smaller time steps to reproduce the fully coupled results. For this 
problem, the iteratively coupled technique requires a nonlmear volume error tolerance of 0.0001 and the 
explicitly coupled technique requires a time step size of about one day. One can improve the explicitly 
coupled results by using a smaller value of estimated compressibility for this problem; however, values that 
are too small will produce oscillations in well pressures. 

Fig. 6 shows the subsidence at the top of the reservor and at the surface for all three techniques. The 
explicitly coupled results included in Fig. 6 use a time step size of one day for the simulation. The original 
explicitly coupled results using time step sizes of 20 days and 200 days did not agree well with the results 
in Fig. 6 predicting a final subsidence of 6.47 A at the top of the reservoir. The fmal subsidence in Fig. 6 at 
the top of the reservoir is 7.76 A. 

0 1000 2000 Jooo lOD0 

rime. &ya 

Fig. 6 - Subsidence for problem 3 

Fig. 7 shows the pressure behavior at the boundary of the reservoir in cell (6,11,6). Initially the reservou 
pressure increases as the reservoir is depleted because some of the vertical load that was supported at the 
center of the reservoir ib transferred to the edges of the reservoir. This pressure increase cannot be 
observed in a reservoir depletion problem that does not include geomecbanical calculations. The iteratively 
coupled results in Fig. 7 use a volume error tolerance of 0.0001, and the explicitly coupled results use a 
time step size of one day updating displacements every time step. 
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Fig. 7 -Pressure at boundary of reservoir for problem 3 

t'he runtime results for problem 3 are shown in Table 3. The explicitly coupled technique is much slower 
. ,  , . . han the other two techniques for this problem because it requires much smaller time step sizes. The l l l y  

:.coupled and iteratively coupled techniques also exhibit time discretization errors, but time discretization 
; 

~ i: ..i 
. , .. . ,. 

. .  . .  . . 

Technique CPU Time Time Steps Iterations 
51.8minutes 4000 4000 

Table 3 - Runtime information for problem 3 

production well in the 
injection rate so the reservoir pressure deqeases thmughou~ the simulation. 

The grid for problem 4 is displayed in Fig. 8 showing water saturations at the end of 25 
21 x 21 x 11 with Ox=Oy-60 ft in the horizontal directions and 0 ~ 2 0  ftinthe vertical 



Fig. 8 -Water saturations after 25 years for problem 4 

The initial remvoir pressure is 3010 psi at 4010 ft and initial fluid saturations are 20%, 80% and 0% for 
water, oil and gas, respectlvely. The oil is initially undersaturated with a bubblepoint pressure of 3000 psi 
and an oil compressibility of IO" psi'' in all layers. 

The elastic modulus is 5 x IO4 psi, Poisson's ratio is 0.35, and the initial in situ solid density (solid material 
without pores) is 2.7 gm/cm3. The initial vertical stress is 4000 psi at the top of the reservoir with a vertical 
stress gradient of 0.9256 psi/ft throughout the grid and initial horizontal stresses are equal to half of the 
vertical stress. The bottom and sides of the grid have zero normal displacement consbaints and all faces of 
the grid have zero tangential stresses. Assuming uniaxial strain behavior for this problem, the explicitly 
coupled simulation uses a value of 4.15 x 

Vertical wells are completed in diagonally opposite corners of the grid in all 11 layers. The water injector 
has a prescribed rate of 500 stb/d &of the well's total rate), and the production well has a prescribed liquid 
rate of 750 stb/d (% of the well's total rate) with a limiting bottomhole pressure of 500 psi. Wellbore radii 
of 0.069 ft (instead of 0.25 ft) are used to represent wells of radii 0.25 ft that are at the corners of the grid 
blocks," and a multiplying factor of 0.25 is used for the wellbore constants since only % of a well's 
production is being simulated in the pattern. Simulations are performed for 25 years using time step sizes 
that are controlled by stability considerations for the IMPEM technique. 

The three techniques produce nearly identical results for problem 4. Fig. 9 shows average pore-volume- 
weight4 oil-phase pressures and subsidence in the center of the pattern at the top of the reservoir. Fig. 10 
shows the wellbore pressure, gadoil ratio, and water/oil ratio at the production well. 

psi'' for compressibility in Eq. 4. 

#-I \ /  

-1 / 
I /  \ 
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Fig. 9 -Average pressure and subsidence for problem 4 
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Time, days 
Fig. 10 - Production history for problem 4 

Technique 
Explicit 
Iterative 
Full 

The runtime information for problem 4 is displayed in Table 7. The explicitly coupled technique is much 
faster than the other two techniques for this problem because it performs a small number of geomechanical 
updates during the simulation. The explicitly coupled technique requires only 33 updates for displacements 
throughout the simulation. A minimum of 25 updates are required because displacements are printed each 
year during the simulation. The iteratively coupled and fully coupled techniques would perform better for 
this problem if they were combined with the implicit time stepping option in the program, rather than with 
the IMPEM option, but it is expected that the explicitly coupled option would still be the best option 
because few geomechanical updates are required. 

CPU Time Time Steps Iterations 
9.0 minutes 3324 3325 
40.6 3326 3326 
47.5 3326 3326 

Table 7 - Runtime information for problem 4 

A run was performed without geomechanical calculations using a value of 4.15 x psi-' for c, in Eq. 1 
and the results reproduced the pressure and fluid histories in Figs. 9 and 10. The simulation without 
geomechanical calculations took 7.2 minutes; so for this problem, geomechanical calculations add only 
25% to the overall computational time for the model when using the explicitly coupled technique. 

Conclusions 
Explicitly coupled, iteratively coupled, and fully coupled techniques have been applied to four sample 
problems. The three techniques produce nearly identical results on problems 1, 2, and 4 using the same 
time step sizes and the same convergence tolerances. Problem 3 involves geomechanical effects that are not 
present in the other three problems and the three techniques initially produced different results for this 
problem; however, all three techniques produced similar results when a tight tolerance was used for the 
nonlinear iterations for the iteratively coupled technique, and when small time steps were used for the 
explicitly coupled technique. All problems in this paper are described in detail so the results presented here 
may be used for comparison with other geomechanicallporous flow simulators. 

The three coupling techniques produce similar results and one's selection of a technique is determined by 
ease of implementation, program availability, numerical stability, and computational efficiency. No 
technique worked best on all four problems presented in this paper. The fully coupled technique worked 
best for problem 3 running twelve times faster than the explicitly coupled technique, and the explicitly 
coupled technique worked best for problem 4 running five times faster than the fully coupled technique. 
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Nomenclature 
reservoir compressibility, L?/m, psi-’ 
elastic modulus, d?, psi 
relative difference in pore volumes 
Biot’s poroelastic parameter, m/Lt2, psi 
fluid pressure, m/Lt2, psi 
initial fluid pressure, m/Lt2, psi 
initial grid block volume, L3, ft3 

pore volume, L ~ ,  ft3 

pore volume estimate from pressure equation, L ~ ,  ft3 

initial pore volume, L ~ ,  ft3 
Biot’s poroelastic parameter, dimensionless 
Kronecker delta, dimensionless 
change in a variable, dimensionless 
strain, expansion is positive, dimensionless 
volumetric strain, dimensionless 
Lame constant, m/Lt2, psi 
Lame constant, m/Lt2, psi 
Poisson’s ratio, dimensionless 
total stress, tension is positive, m/~tz ,  psi 
initial total stress, m/Lt2, psi 

initial porosity, dimensionless 
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Metric Conversion Factors 
bblx 1.589874 E-01 = m3 
cp x 1.0* E-03 = Pa s 
ft x 3.048* E-01 = m 
lbmx4.535924 E-01 = kg 
mcfx 2.831 685 E+01 = m3 
mdx9.869233 E-04 = c m2 
psix6.894757 E+OO = kPa 
psi-’ x 1.450 377 E-01 = kPa-’ 
*Conversion factor is exact. 

s w  Krw Krow Pwc 
0.2 0.0 0.5102 6.4 
0.25 0.0039 0.4133 5.6 
0.3 0.0156 0.3266 4.9 
0.35 0.0352 0.2500 4.2 
0.4 0.0625 0.1837 3.6 
0.45 0.0977 0.1276 3.0 
0.5 0.1406 0.0816 2.5 

Table 4 - Waterloil data for problem 4 



. 
sw+so I Krog I Krg I Pgc 
0.2 I 0.0 I 0.6303 I 3.2 
0.25 0.0 0.5511 I 2.8 
0.3 0.0 0.4772 I 2.5 

1 :li5 1 0.0026 1 0.4086 1 2.1 I 
0.0104 0.3454 1.8 

0.45 0.0234 0.2874 1.5 
I 0.5 I 0.0416 I 0.2348 I 1.3 I 

0.55 0.0651 0.1875 1.0 
0.6 0.0937 0.1455 0.8 1 ::;5 1 0.1275 1 0.1089 1 0.6 1 

0.1666 0.0775 0.5 
0.75 0.2108 0.0514 0.3 
0.8 I 0.2709 I 0.0307 I 0.2 
0.85 I 0.3149 I 0.0153 I 0.1 

0.3748 0.0052 0.0 11 
I 1.0 I 0.5102 I 0.0 I 0.0 I 
Table 5 - Gadoil data for problem 4 

Table 6 - Pressure dependent oil and gas data for problem 4 
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Coupled Geomechanical and Reservoir Modeling on Parallel Computers 

Xiuli Gai, University of Texas at Austin, Rick H. Dean, SPE, Mary F. Wheeler and 
Ruijie Liu, University of Texas at Austin 

Abstract 
In coupled geomechanics and reservoir modeling, the finite element discretization of the force balance 
equation leads to very large linear systems, whose solution is both time and memory consuming. ICCG 
(Incomplete Cholesky Factorized Conjugate Gradient) is a popular technique for solving for displacements, 
but the technique is limited to about 60,000 nodal points on desktop machines. Most large 3D field scale 
problems will have to be run on parallel machines. In this paper, we present a reduced-communication, 
super coarsening multigrid method that can be combined with other domain decomposition-based 
preconditioner to achieve faster convergence with high parallel scalability. A preliminary test case of 1.5 
million grid blocks with up to 59 processors shows a parallel efficiency of above 90%. 

Introduction 
The modeling of fluid-structure interactions is of growing importance for both energy and environmental 
applications. Due to complexities, nonlinearities, phase behavior, and the number of partial differential 
equations required to describe a coupled system of poro-elasticity andor poro-plasticity with multiphase 
flow, extending a conventional reservoir model to a coupled fluid-flow and geomechanical model is not 
trivial, though considerable success has been achieved in recent years. 
Several have presented mathematical and numerical formulations for the coupled equations. 
Different coupling techniques have been in~estigated~,~ that are applicable to existing reservoir flow models 
and one’s choice normally depends on speed, accuracy, or ease of implementation. Comparisons have been 
done between coupled and uncoupled simulations, and between different coupling techniques for accuracy 
and efficiency. Recently, stability issues have also been discussed concerning oscillations in low 
permeability zones. Individual models are becoming more sophisticated, and coupling methods are 
becoming more accurate and more stable. However, the computational bottleneck of solving the large 
linear system still remains. The finite element formulation of the geomechanics model has a 27-point 
stencil compared to the standard 7-point stencil in the finite difference formulation of multiphase flow 
equations. More than 70 percent of the total CPU time for a coupled simulation is spent in the 
geomechanics model solving the system of linear equations. So it is very important to develop efficient 
linear solvers to reduce the computational cost without losing scalability on parallel computers, so that 
coupled analyses can be economically and numerically feasible for practical field applications. Thomas et 
aZ.* describe a coupled procedure running on multiple processors, but the parallel efficiency with 16 
processors is less than 50 percent. 

In this work, we present a parallel poroelastic model combined with a multiphase flow model using the 
iteratively coupled technique. The linear solver we employ is PCG preconditioned by Incomplete Cholesky 
Factorization (IC) or block Jacobi. Faster convergence and higher scalability is achieved by calling a super 
coarsening multigrid routine to make further global corrections after each preconditioning step. 

The rest of the paper is organized as follows. First the governing flow and deformation equations are 
described briefly. Instability issues are also briefly discussed. Then the super coarsening multigird 
preconditioner and its parallel implementation are presented. Results of numerical experiments conducted 
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regions. Detail discussion on the theory and numerical results of this method will appear soon in another 
paper. 

Super coarsening Multigrid Preconditioner 
In iterative coupling, rock deformation and reservoir flow equations are solved independently. The 
advantage is that fast and efficient linear solvers can be developed for each individual model. Even in a 
fully coupled scheme, a fast and efficient solver for the elasticity equations could be useful. It can produce 
good estimates for the displacements before an updated solution for the total system is computed. Finite 
element discretizations of elasticity equations lead to large systems of linear equations with sparse matrices. 
A typical numerical method for such a system is the preconditioned conjugate gradient method (PCG). The 
PCG method is valued in that it is very suitable for parallel computing and even an ill-conditioned problem 
can be easily solved with the help of a good preconditioner. The multigrid method is also a well-known 
scalable method whose convergence rate is independent of problem size and the number of iterations 
remains fairly constant. Several authors have investigated different combinations of multigrid and the 
conjugate gradient methods. Kettler et aZ13, l4 used multigrid as a preconditioner for the PCG method while 
Bank and Douglas'' treated PCG as a relaxation method of the multigrid solver. BraessI6 considered these 
two combinations and reported that the conjugate gradient method with multigrid preconditioning is 
effective for elasticity problems. Here, we propose a new combination that uses super coarsening multigrid 
together with incomplete Cholesky factorization or block Jacobi as preconditioners for the BiCGSTAB 
(biconjugate gradient stabilized) method. Using additional multigrid preconditioning at low computation 
cost, an efficient method with high parallelism and fast convergence is obtained. 

Super Coarsening Multigrid V-cycle 
Super coarsening multigrid method was developed by Wheeler""* who took advantage of the fact that 
most reservoir problems have a vertical dimension that is much smaller than the horizontal dimensions. In 
his multigrid implementation, a 3D fine grid is collapsed to a coarser 2D grid after the first coarsening step 
(Fig. 1). He has applied this method to reservoir multiphase flow equations, and it appears to be very fast 
and efficient. In this work, we adopt the same idea for the elasticity equations. 

The basic idea of multigrid method is to solve linear systems based on restricting and extrapolating 
solutions between a series of nested grids. Simple iterative methods (such as Gauss-Seidel) tend to damp 
out high frequency components of the error fastest, but low frequency error is left. Multigrid can eliminate 
low frequency errors efficiently on coarse grids. Recursive application of this idea to each consecutive 
system of coarse-grid equations leads to a multigrid V-cycle (Fig. 1). If the components of the V-cycle are 
defined properly, the result is a method that uniformly damps all error frequencies with a computational 
cost that depends only linearly on the problem size. In other words, multigrid algorithms are scalable. For 
more details and discussions, we refer to available introductory publications on multigrid methods; in 
particular, ref. 19 and ref. 20. The four basic components employed for the multigrid method in our 
implementation are listed as follows: 

Full weighting restriction operator maps h-grid defects to 2h-grid. Its stencil reads 

Bilinear interpolation prolongation operator maps 2h-grid corrections to h-grid corrections. Its 
stencil notation reads 
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Galerkin coarse grid operator A2h is used and defined as 
A,, = IihAhI,h, 

4-color Gauss-Seidel relaxation performs both pre-smoothing and post-smoothing on the coarse 
grids. 

Preliminary tests show that the above super coarsening multigrid method does not work well for elasticity 
equations if used directly as a preconditioner for a PCG solver, since it solves only for 2D problems. 
However, if we can apply it as an extra correction step for the generally used PCG preconditoners, the 
resulting algorithm is robust, efficient and scalable. To account for the unsymmetric preconditioning 
matrix, BiCGSTAB method is used instead of conjugate gradient method. 

Model Problem 
We now consider the above method for the solution of a three-dimensional, three-phase waterflooding 
problem in a quarter of a five spot pattern. The size of reservoir is 1056x1056~160 ft. A uniform grid, 
16x16~8 is used. Initial reservoir pressure is 3020 psi at a depth of 4650 ft. Initial in-situ porosity is 0.3. 
Initial oil saturation is 0.8. No free gas is present. The permeability field varies by layer. With the same 
reservoir model, two different sets of boundary conditions are enforced for the stress model. While both 
cases apply a load of 6000 psi on top of the reservoir, the first case runs with rigid side and bottom 
boundaries (Fig. 2) and second case applies a normal stress of 2600 psi on the side boundaries and keeps 
the bottom boundary fixed (Fig.3). Both cases are run with block Jacobi and incomplete Cholesky 
factorization preconditioner. Total number of iterations and running time with multigrid correction are 
compared with the results running without multigrid correction. Linear solver tolerance is set to be 1 .O-'. 

The first case, constrained displacement case, runs for 20 time steps and takes 86 Newton iterations, which 
means that the linear elasticity system is solved 86 times during the simulation. With block Jacobi 
preconditioner, the computation domain is divided into several subdomains in horizontal directions. Each 
subdomain problem is solved directly. Comparison results are show in Table 1. The first column in Table 1 
shows the numbers of rows and columns in each subdomain. The extreme case is 1 x 1 subdomain case or 
line Jacobi, by which a vertical line is solved simultaneously. The second and third columns show the total 
number of iterations and elapsed time using block Jacobi preconditioned PCG method. The last two 
columns show the total number of iterations and elapsed time using block Jacobi preconditioned 
BiCGSTAB method with multigrid corrections. Corresponding results for CG solver and direct solver are 
also given in Table 1. The direct method is fastest for this linear elastic problem because the stiffness 
matrix is only factored once. The direct method would be much slower for plastic problems where the 
stiffness matrix must be reformulated and factored at every time step. Our first observation is that no matter 
how the problem domain is divided, multigrid corrections can greatly reduce the number of iterations and 
cut the total running time. The second observation is that the total number of subdomains and the shape of 
each subdomain affect the convergence behavior, but the degradation can be reduced by the multigrid 
method. 

Similar runs using IC preconditioner with different fill levels are shown in Table 2. The IC preconditioner 
works better than block Jacobi. However there is the multigrid method still improves the results, no matter 
how many fill levels are used 
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1 Num.of 1 Time 1 Num.of 1 Time I 
I iterations I (sec.) I iterations I (sec.) 

1 x 1  I 4336 I 118.4 I 746 I 68.6 
2 x 2  3448 121.1 602 68.4 
2 x 4  3539 137.5 596 70.4 
4 x 2  3277 152.1 580 87.1 

2 x 2  3448 121.1 602 68.4 
2 x 4  3539 137.5 596 70.4 
4 x 2  3277 152.1 580 87.1 
4 x 4  2035 I 121.8 I 531 I 83.3 
8 x 8  1520 I 172.9 I 454 I 112.4 
CG Takes 12891 iterations and 249.1 seconds 

Direct solver Takes 34.4 seconds 

Table 1: Total number of iterations and elapsed time using block Jacobi preconditioner with I 
without multigrid corrections for the model problem with constrained displacement B.C. 

BiCGSTAB 

1 1599 I 77.7 I 439 I 59.0 
2 534 1 88.4 1 303 1 62.5 

CG Takes 12891 iterations and 249.1 seconds 
Direct solver Takes 34.4 seconds 

Table 2: Total number of iterations and elapsed time using IC preconditioner with I without 
multigrid corrections for the model problem with constrained displacement B.C. 

Unlike the first case, which is close to a uniaxial strain problem because of the fixed horizontal and bottom 
boundaries, the unconstrained case is a little bit harder to solve. It takes more iterations for the linear solver 
to converge even with the incomplete Cholesky factorization method. From Table 3 and Table 4, it can be 
seen that the multigrid corrections dramatically reduce the total number of iterations for both block Jacobi 
and IC preconditioner. The resulting BiCGSTAB solver is at least two times faster than the PCG method 
without multigrid corrections. It is also interesting to see that ICCG method with two fill levels is faster 
than zero and one fill levels. However, after combining with multigrid method, IC with zero fill is the 
fastest one, which is good because the zero fill level takes much less memory space. 

PCG BiCGSTAB 
Block Jacobi (Multigrid) 

(N,,N,) Num. of Time Num.of Time 
iterations (sec.) iterations (sec.) 

1 x 1  15292 411.5 1372 154.9 
2 x 2  11378 388.7 1085 136.8 
2 x 4  10186 429.5 1073 142.7 
4 x 2  949 1 441.8 1062 156.8 
4 x 4  7137 I 4032 I 937 I 159.9 
8 x 8  4424 I 459.4 I 806 I 213.6 
CG Takes 57330 iterations. 1140.9 seconds 

I Direct solver I Takes 49.8 seconds I 
Table 3: Total number of iterations and elapsed time using block Jacobi preconditioner with I 
without multigrid corrections for the model problem with unconstrained displacement B.C. 
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ICCG BiCGSTAB 
IC (Multigrid) 

(Filllevel) Num. of I Time 1 Num. of I Time 
iterations (sec.) iterations (sec.) 

0 883 1 258.8 893 108.3 
1 5236 248.1 780 119.6 
2 2897 247.8 667 152.1 

CG Takes 57330 iterations, 1140.9 seconds 
Direct solver Takes 49.8 seconds 

Table 4: Total number of iterations and elapsed time using IC preconditioner with / without 
multigrid corrections for the model problem with unconstrained displacement B.C. 

Parallel Multigrid Preconditioner 
A parallel version of the coupled reservoir and geomechanics model was developed under the framework 
called IPARS21 (Integrated Parallel Accurate Reservoir Simulator), based on the message-passing interface 
(MPI). The parallel work for this reservoir flow model has already been done. Parallel performance 
analysis for a three-dimensional, three-phase example with one million grid blocks shows an almost linear 
speedup (Fig 4). In the following sections, we focus on parallel implementation and performance 
evaluation for the geomechanics model. In particular, we will deal with the question of how multigrid 
algorithm is implemented on parallel computers. 

Grid Partitioning 
The IPARS framework applies the domain decomposition method to divide the original grid into as many 
subgrids as processors employed. We chose the partition in such a way that every grid point belongs to only 
one subgrid or subdomain. Each processor is then assigned to one subgrid. To handle the dependency of a 
grid point on its adjacent interface points, one overlapping boundary (ghost point) is placed around each 
subgrid. To eliminate the necessity of data exchange between the flow and geomechanics model both 
models are assigned to the same subgrid and share the same memory slots for pressure, saturation and 
porosity variables. The solution proceeds by solving the original problem in each subdomain followed by 
data exchanges of the overlapping boundary conditions on the artificial interfaces. 

The mapping of the subgrids on different multigrid levels to individual processors is based on the 
decomposition of the fine grid levels. Since the coarse grid problem is a direct analog of the fine grid 
problem, we can perform grid partitioning on the coarse grid accordingly. In general, there is no reason to 
change the partitioning of the subdomains or the mapping to individual processors. In other words, the 
same geometric points, with the exception of boundary points, on different grid levels are allocated to the 
same processor. Otherwise, additional communication among processors would be required during the 
intergrid transfer. 

In terms of data communication, two types of overlapping are required by the multigrid components (Lang 
et aLZ2). 

Horizontal Overlap (HGhost): After each coarse grid level is divided into subdomains, one 
overlapping boundary needs to be placed around each subdomain on each level. Of course, the 
overlapping concept has to be adapted according to the different grid levels. On each grid, at least 
one overlap region is needed in order to be able to perform the parallel smoothing step and defect 



calculations. Since the distance between two adjacent grid points increases on coarse grids, the 
“geometric size of overlap regions” will be different on different grid levels. 

Vertical Overlap (VGhost): Between two multigrid levels, whenever a coarse grid element requires 
information of its neighboring fine grid elements, which belongs to other processors, this coarse 
grid element must have local copies of those fine grid elements. For example, in Fig. 5,  the coarse 
grid element in processor 0 has dependency on the three fine grid elements, which are allocated to 
processors 1, 2 and 3 respectively. 

Parallel Multigrid Communications 
There are five algorithmic steps on each multigrid level that may require data communications. They are 
smoothing, defect calculation, the fine-to-coarse grid transfer, coarse-to-fine grid transfer and coarse grid 
operator generation. 

Relaxation 
Assume that some initial guess is given and the HGhost nodes are updated. Then, with some 
smoothers (like Gauss-Seidel) each processor may independently perform one relaxation sweep 
over its subgrid. After all processors have completed this sweep, the information at HGhost nodes 
must be updated either for the next sweep or for the defect calculation. 

Defect calculation 
The pre-smoothing steps are followed in the coarse grid correction scheme by defect calculation. 
Since we have already updated the HGhost nodes after each relaxation sweep, there is no need for 
any update prior to defect calculation, and the processors may complete this task independently. 

Restriction 
If full weighting is used as a restriction operator each coarse grid point must know the defect values 
of all neighboring fine grid points. For example, in a 2D problem, a coarse grid point has totally 
eight neighboring fine grid points. Local copies are required if some of those grid points belong to 
other processors. To solve this problem one could simply transfer the missing defect values from 
the fine grids processor to coarse grid processor and store them at the VGhost nodes. However, a 
more efficient method allows each processor to calculate its share of the restricted defects; and then 
send it to the master processor, where all the defects collected from other processors are summed 
together. In Fig. 6, the defect calculations of a coarse grid point in processor 3 (squared black point) 
need the defect data of eight neighboring fine grid points, five of which are allocated to other 
processors, including one point to processor 0, two points to processor 2, and 2 points to processor 
1. Instead of sending the data of these five grid points to processor 3, all processors involved will 
calculate their own share of the restricted defects at the coarse point. Later, processors 0, processor 
1, and processor 2 send their computed defects to the master processor 3, where all the values are 
summed together. 

Prolongation 
With bilinear interpolation, if the HGhost nodes on the coarse grid have already been updated after 
the last smoothing step on that level, there is no need for additional communication to calculate the 
correction in each subdomain on the fine grid. If the HGhost nodes on the fine grid have not been 
changed since the last smoothing step we can perform the correction to the HGhost nodes on the 
fine grids without data transfer between processors. 

Coarse Grid Operator Generation 
If a Galerkin coarse grid operator is employed, a coarse grid point needs the coefficient data of its 
neighboring fine grid points. It is quite similar to the full weighting restriction. The stencil here, 
however, is larger than a 9-point full weighting stencil. For symmetric matrices a 12-point stencil is 
employed. Again, a better way to handle this is to use a coarse-to-coarse grid data transfer scheme 
instead of a fine-to-coarse grid scheme. Passing stiffness matrix coefficients among processors 
seems unconventional, but with half stored symmetric matrices it is necessary. 



It should be noted that all the communication required in the defect calculation and coarse grid operator 
generation may be totally avoided by using the non-overlapping domain decomposition method. 

Communication Reduction Techniques 
Parallel efficiency of an algorithm depends on the ratio of communication time to computation time; it is 
directly proportional to the ratio of volume to surface area of each subdomain. In a multigid cycle, as the 
grid becomes coarser and coarser, the volume to surface area ratio decreases. In addition, as fewer and 
fewer grid points are mapped to multiple processors, more and more processors are left without any grid 
point to compute on the very coarse grids. Finally, only one or a few processors have one (or a few) grid 
point. Whereas the idling processors on the very coarse grids appear to be the main problem at first sight, 
experience and theoretical considerations show that the large communication overhead on the very coarse 
grids is usually of greater concern than the idling processors. Special techniques developed to reduce the 
coarse level communication include coarse grid agglomeration, employing multiple coarse grids, and using 
different cycle schemes. However, as long as one demands that the results of the parallel algorithm be 
identical with those of the sequential algorithm, a substantial reduction of the communication cost will not 
be achieved. 

Generally, the time needed to send a message of length L in one packet is modeled by the formula 

Here a is the so-called start-up time, which is required for each message. p i s  the time required to transfer 
one word. It is determined by the bandwidth of the respective communication channel. So if a is large, the 
number of messages should be minimized; if ,B is large, the communication volume is of primary concern. 
Here we discuss some simple and easily implemented techniques based on reducing both the number of 
messages and the volume of each message. 

Intergrid-level communications from fine grid to coarse grid are replaced by intra-grid-level 
communications in the defect and coarse grid operator calculations. Here the total number of 
messages stays the same, but the amount of data transferred is reduced. 
On very coarse grids, as the number of grid points decreases, the start-up time a dominates the 
communication overhead. To reduce the number of messages, one can pack several variables in the 
same packet instead of sending one variable at a time. 

If RB Gauss-Seidel method is used for smoothing the data volume L in Eq. 6 may be reduced by 
RB updates after each sweep. 

The communication overhead consists of message handling, as described in Eq. 6, and network 
latency. Overlapping the communication with computation can hide the network latency. For 
example, the Gauss-Seidel relaxation can be separated into two parts: local computation that 
involves only inner points and non-local computation that requests ghost point’s information. The 
first part can be done while a processor is waiting for the incoming data. After receiving all the 
ghost node data, the processor may continue with the second part of the computation. If remote 
data reaches a processor during the process of the local computation, network latency can be 
hidden. 

Parallel Performance Evaluation 
In this section, we will show two examples to illustrate the parallel performance of our coupled 
geomechanical and reservoir flow models. The first one is a single-phase ground water pumping problem. 
The second one is a three-phase waterflooding problem. All the parallel runs are performed on a 64-node 
Beowulf PC cluster on a 1.28 gigabiusec Myrinet network. Each node is a Pentium I1 300 MHz processor. 
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The cluster has 32 GB of aggregate RAM and over 200 GB of collective storage. 

3 
4 

Single Phase Example 
The total reservoir dimensions are 113,600 x 113,600 x 1016 ft. The domain is discretized with uniform 
128 x 128 x 11 rectangular meshes. The maximum interval length in horizontal directions is 1875 ft, while 
the minimum one is 200 ft. Vertical layers have varying thicknesses, ranging from 154 ft  in the 
overburdens and underburdens to 6 ft  in the seal layers. No flow occurs on any of the reservoir boundaries. 
With the exception of a free surface on top, all the other reservoir boundaries are rigid. Horizontal 
permeability is 2000 md throughout the reservoir. Vertical permeability is 10 percent of the horizontal one. 
Porosity values vary from 0.43 to 0.05 by layers. The initial pressure is 14.7 psi at the ground surface. 
Sixteen production wells are located at the reservoir center with a variant pumping rate from 339 stb/day to 
15562 stblday. The simulation was originally set up to run for 50 years with a constant time step of 365 
days; but in this parallel scaling study, it runs for only 20 time steps and takes 39 Newton iterations. Linear 
solver tolerance is lo4. 

12215 3 09 8576 264 
11575 3 13 7745 284 
i m 8 9  3 7.6 831 1 27 3 

First, we run the problem with BiCGSTAB solver preconditioned by line Jacobi combined with multigrid 
corrections to see whether the communication reduction techniques can improve the parallel efficiency. 
The multigrid cycle consists of six grid levels. The coarsest one has only 2 x 2 elements. Fig. 7 and Fig. 8 
show that parallel performance is dramatically improved using our communication reduction techniques. 
Parallel efficiency is greatly increased from 66 percent to 90 percent with 32 processors. 

16 
24 
32 

In the next couple of runs, we use the incomplete Cholesky factorization as a subdomain solver, and 
compare the total running time between ICCG method without multigrid preconditioning and BiCGSTAB 
method with the multigrid preconditioning. At least three processors are required to provide enough 
memory for the incomplete the Cholesky factorization. The total running time with different number of 
processors is shown in Fig. 9 and Fig. 10. As seen in the former, single processor test case, the multigrid 
method greatly improves the convergence rate of the BiCGSTAB solver for both zero and one fill levels. 
Fig. 11 shows good speedups for both ICCG method and BiCGSTAB method. From Table 5, it can be seen 
that the influence of grid partitioning on the linear solver behavior is not significant for this problem. Fig. 
12 shows that the IC preconditioner with zero fill level performs even better than IC (I), when used 
together with the multigrid method. 

12185 342 8004 305 
12025 343 8180 300 
12233 3 62 8576 345 

Total Number of Iterations 
BiCGSTA 

(Multigrid (Multigrid 
ICCG (0) 

Number of 
Processors 

This is a waterflooding problem. The grid configuration is 256 x 256 x 22 with Ox=Cly=300 ft in the 
horizontal directions and varying thicknesses in the vertical direction. In total, there are 1.5 million grid 
points with 9 million unknowns. Both porosity and permeability fields vary in layers. Initial reservoir 
pressure is 3500 psi and initial oil saturation is 0.8. There is no free gas. A water injection well is located in 
one comer of the reservoir. Twenty-five production wells are spread out through the entire domain. The 
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injection rate is 4000 stblday. Production rates are 2000 stblday. The simulation is run with up to 59 
processors for 12 time steps and 36 Newton iterations. Linear solver tolerance for the geomechanics model 
is lo”. For this example, we use IC (0) combined with the multigrid method. The multigrid V-cycle 
consists of seven grid levels, and the coarsest one has only 2 x 2 grids. Fig. 13 and Fig. 14 show a good 
parallel speedup with 90 percent parallel efficiency. The parallel efficiency and speedup are normalized by 
the total running time of 16 processors. The little bumps in Fig. 13 are caused by grid partitioning for 
different number of processors, including different number of subdomain and the different shape of each 
subdomain. 

Discussion 
The convergence rate of the super coarsening multigrid method may be deteriorated when the material 
property is anisotropic or a reservoir has great heterogeneity in the vertical direction. However, in our 
implementation, since the method does not work as a stand alone preconditioner, the deterioration may not 
cause significant convergence problem. 

For nonlinear geomechanical problems, the stiffness matrix needs to be reformulated at each nonlinear 
iteration. One may concern that the data communications required in generating the Galerkin coarse grid 
operators may cause unbearable overhead. We rerun the three-phase problem assuming a nonlinear 
behavior with a changing stiffness matrix, so that all the matrix related operations will be conducted at each 
nonlinear iteration. The parallel speedup shown in Fig. 15 is even better than the linear elasticity case (Fig. 
14). Fig. 16 shows that above 90 percent of parallel efficiency is achieved. It appears that the additional 
communication overhead has been hidden up by the high computation intensity in the incomplete Cholesky 
factorizations and coarse grid matrix calculations. 

Conclusion 
1. 

2. 

3. 

A parallel version of a coupled reservoir flow and geomechanics model is developed using 
overlapping domain decomposition and MPI. 
A fast, efficient and scalable parallel linear solver is implemented to solve the large, sparse system 
of linear equations arising from Galerkin finite element formulation of the force balance equation. 
A reduced-communication, super coarsening multigrid procedure is applied to the elasticity 
equations. It can be combined with other domain decomposition-based preconditioners to achieve a 
faster convergence rate with high parallel scalability. 
A field scale, three-phase example with 1.5 million grid points, and total 9 million unknowns is run 
with up to 59 processors. Above 90 percent of parallel efficiency is achieved. 
The parallel solution presented in this paper is based on the formulation of a continuous linear 
displacement and piece-wise constant pressure. This finite element scheme may result in pressure 
oscillations in the low permeability regions. We recently coupled the continuous Galerkin with a 
Non-Symmetric Interior Penalty method to successfully remove the pressure oscillations. The 
theory and numerical results of this new formulation scheme will appear in another paper soon. 
Special considerations for the parallel implementation of this new formulation will also be 
investigated. 

4. 

5.  

Nomenclature 
I s =  
u =  

D =  
f =  

“0 = 
u =  

o =  
M =  

stress tensor 
strain tensor, expansion is positive 
gravity force 
stress-strain relationship matrix 
displacement 
initial displacement vector 
Biot’s poroelastic constant 
Biot’s poroelastic constant 
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p = fluidpressure 
p0 = initial fluid pressure 
4* = fluidfraction 

v: = 

Vp = porevolume 

initial grid block volume 

No = 

N, = 
Ng = 

u, = 
u, = 
ug = 

R, = 

40 = 
q w  = 

qg - 
- 

oil concentration 
water concentration 
gas concentration 
oil phase velocity 
water phase velocity 
gas phase velocity 
solution gas oil ratio 
well oil flow rate ver unit volume 
well water rate ver unit volume 
well gas rate ver unit volume 
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Figure 1: A super coarsening multigrid V-cycle 
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conditions for the model problem 
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Figure 6: Special intra-grid level communications in the 
defect calculation 
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Figure 9: Total running time using IC (0) with / 
without multigrid cycles for the single-phase problem 
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Figure 10: Total running time using IC (1) with / 
without multigrid cycles for the single-phase problem 
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Figure 11: Parallel speedup for the single-phase 
problem 
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Figure 12: Total running time using IC (0) and IC (1) 
with multigrid cycles for the single-phase problem 
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Figure 13: Parallel efficiency for the three-phase 
problem with 1.5 million grid bloeks 
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Figure 14: Parallel speedup for the three-phase 
problem with 1.5 million grid blocks 
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Figure 15: Parallel speedup for the three-phase 
problem with 1.5 million grid blocks, assuming 
stiffness matrix changes at each nonlinear 
iteration. 
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