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Abstract

Existing approaches in multiscale science and engineering have evolved from a range of
ideas and solutions that are reflective of their original problem domains. As a result, research
in multiscale science has followed widely diverse and disjoint paths, which presents a barrier to
cross pollination of ideas and application of methods outside their application domains. The sta-
tus of the research environment calls for an abstract mathematical framework that can provide
a common language to formulate and analyze multiscale problems across a range of scientific
and engineering disciplines. In such a framework, critical common issues arising in multi-
scale problems can be identified, explored and characterized in an abstract setting. This type
of overarching approach would allow categorization and clarification of existing models and
approximations in a landscape of seemingly disjoint, mutually exclusive and ad hoc methods.
More importantly, such an approach can provide context for both the development of new tech-
niques and their critical examination. As with any new mathematical framework, it is necessary
to demonstrate its viability on problems of practical importance. At Sandia, lab-centric, proto-
type application problems in fluid mechanics, reacting flows, magnetohydrodynamics (MHD),
shock hydrodynamics and materials science span an important subset of DOE Office of Science
applications and form an ideal proving ground for new approaches in multiscale science.

∗Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United
States Department of Energy under Contract DE-AC04-94AL85000.
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A Mathematical Framework for Multiscale
Science and Engineering:

The Variational Multiscale Method and
Interscale Transfer Operators

1 Introduction

Multiple scales co-exist in virtually all science and engineering applications. For some applications,
accurate computational modeling is possible by neglecting all but one dominant scale. However,
many physical systems of importance to the DOE Office of Science exhibit multiscale behavior that
requires resolution of several scales and their concomitant coupled interactions. Such systems are
characterized by important coupled multiple length-scales and time-scales that can vary by many
orders of magnitude. Examples include turbulent fluid flow and reacting flows, geophysical flow
systems, plasma systems that include magnetically-driven coupled plasma-hydrodynamic phenom-
ena, materials science applications such as fracture, and biological systems modeling. Conventional
modeling techniques replace small scales by constitutive models and empirical closures that are
incapable of capturing the complexity of coupled scale interactions. For these reasons, multiscale
approaches to modeling complex physical systems are becoming increasingly important.

In the ensuing discussion, which briefly motivates and describes a mathematical framework for
multiscale science, we focus on two main application categories of multiscale problems. The first
category includes problems that allow application of the same continuum model at all scales with
the primary barrier to simulation being computing resources. The second category of multiscale
problems encompasses applications where detailed physics at the atomistic or molecular level must
be simulated to resolve the small scales, but the effect on and coupling to the continuum level is
frequently unclear. We believe these two canonical categories span an important subset of DOE/SC
applications of interest.

Today, current approaches to multiscale problems often involve ad hoc modeling assumptions,
incomplete mathematical formulations, and numerical implementations that are inconsistent with
both the mathematical and physical properties of the system. In general, multiscale research ef-
forts remain largely disjoint across disciplines and typically focus on only one of the two multiscale
categories. For example, in homogenization [16], heterogeneous multiscale [7], and some quasicon-
tinuum methods [18], small scales are subordinate to a conventional coarse-grain model and serve to
replace empirical closures by more accurate estimation procedures. Likewise, ab initio molecular,
atomistic and particle modeling approaches [1, 8] focus on small scale interactions and less on their
interface with coarse-grain models.

In contrast, the key mathematical and physical issues arising in multiscale problems: scale rep-
resentation, scale separation, and inter-scale communication; are common, and occur across a wide
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range of scientific disciplines. Consequently, there is a real and existing need for a mathemati-
cal framework that unifies these common principles and helps to analyze multiscale problems in a
rigorous and systematic way.

A framework for multiscale analysis can identify and correct ad hoc assumptions and inconsis-
tencies, and lead to a common mathematical formalism and structure to describe multiscale prob-
lems across multiple scientific disciplines. The variational multiscale method (VMS) of Hughes
et al. [10] appears to be an especially promising foundation for a unifying multi-disciplinary math-
ematical formalism. VMS can provide the needed mathematical rigor and level of abstraction in
dealing with issues common to multiscale problems such as scale representation, scale separation,
and interscale communication.

A key element in extending VMS to address these issues is the formulation of generalized trans-
fer operators for interscale communication that encompass the ideas of projection, subgrid model-
ing, and information creation/destruction at generalized scale interfaces. This formalism enables
exploration of important issues in a general setting that is readily applicable to an extensive class
of problems in fluid dynamics, reacting flows, geophysical flows, MHD, plasma systems, shock
hydrodynamics, solid mechanics, materials science and biological systems that are relevant to DOE
Office of Science applications. Such an effort is particularly timely both because of theoretical
advances and the availability of large-scale computing platforms.

The viability of such an overarching new approach can be assessed by focusing initially on
problems that exemplify the challenges facing multiscale science and engineering. Lab-centric,
prototype application problems in fluid mechanics, shock hydrodynamics/plasma MHD and materi-
als science are an important subset of DOE Office of Science applications and can serve as an ideal
proving ground for this purpose.

In the following, we have selected three application areas from this subset that illustrate both the
challenges and the potential payoffs from the new VMS framework, and that span both categories
of multiscale problems.

• Fluid Dynamics and Reacting Flows: the framework can be applied to model turbulent
transport and interface dynamics arising in a wide range of fluid systems. Important appli-
cations include turbulent fluid flow, combustion systems and general transport/reaction sys-
tems. This application area is representative of the category of problems where large and
small scales are governed by the same PDE set, but where direct simulation demands tremen-
dous computational resources. Additionally the turbulent reacting flow problem is an example
where chemical species mixing, non-equilibrium chemical reactions, heat release and volu-
metric expansion occur at the small scales. As a result physical mechanisms in combustion
are dominated by small scales and strongly interact and often drive large scales. Therefore
mathematical models that do not correctly capture the complex small scale dynamics will be
unsuccessful.

• Materials Science: the framework can be applied to model complex materials science prob-
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lems that exhibit interactions ranging from continuum to nanoscales such as MEMS systems,
fracture, crack propagation, and material fatigue. The range of scales and their interaction
in these problems demands a coupled atomistic/continuum approximation. This application
area highlights issues specific to the second category of multiscale problems, specifically,
interfaces for coupling and interaction between qualitatively different models operating at
vastly different length and time scales.

• Shock Hydrodynamics/Plasma MHD Applications: the framework can also be applied to
model complex material behavior in the context of plasma systems and strong shocks for high
energy deposition systems. Important DOE/SC applications in this area include the simula-
tion of complex materials under high strain-rates, coupled plasma-hydrodynamic processes,
and MHD turbulence. These applications exhibit features of both categories of multiscale
problems requiring modeling of unresolved scales, bi-directional interscale coupling and in-
teraction between different models that will exercise multiple facets of the interscale transfer
mechanisms.

2 A Perspective on two Illustrative Multiscale Applications

In this section we offer a brief overview of current approaches to multiscale modeling as applied
to the first two prototypical application areas identified above. The extant work is representative
of both the type of ideas applied to multiscale problems and their limitations. Other target prob-
lems share features of these examples, but we note in passing that multiscale efforts in the third
application area has been limited.

2.1 Fluid Turbulence

The predictive numerical modeling of fluid turbulence, even in non-reacting systems, remains an un-
solved scientific problem. Turbulence simulation has traditionally taken one of three routes: Direct
Numerical Simulation (DNS) where all scales in space and time are resolved, Large Eddy Sim-
ulation (LES) where only the large scales are represented, and Reynolds Averaged Navier–Stokes
(RANS) where all turbulent motions are modeled and only the mean flow is predicted. Usually DNS
and LES are too computationally expensive for complex large-scale analysis while RANS often has
insufficient accuracy and reliability.

Pressured by the need to predict the largest scales of turbulent motions, there have recently
been a number of efforts that attempt to merge RANS with LES in an effort to achieve an efficient
multiscale simulation capability. These methods go by a variety of names including: Very Large-
Eddy Simulation (VLES), Unsteady Reynolds Averaged Navier–Stokes (URANS), and Detached
Eddy Simulation (DES) (see e.g., Refs. [2, 14, 19–21, 24]).

However, all these approaches, to varying degrees, are unsatisfactory for the following reasons:
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Figure 1. Schematic of interscale transfers in VMS modeling of turbu-
lence. Left: no model, Right: model.

1) The models are often developed and tuned for mean-flow solutions. 2) The models are typically
developed with little regard to discretization errors. 3) Solutions do not converge in any meaningful
way to the exact solution (DNS). 4) Ad hoc modeling techniques may be used such as blending
functions between RANS regions and LES regions. 5) Spatial filters are often required that present
difficulties for flows in complex geometries using unstructured meshes and for flows near bound-
aries. 6) Complex subgrid scale models may be used that can limit computational efficiency. And, 7)
many models introduce effects across all the relevant scales (e.g. dissipation effects are introduced
in both the large, supposedly resolved scales, as well as the small unresolved scales). In general
these methods have scale separation characteristics that are difficult to characterize rigorously.

Recently, the Variational Multiscale approach to LES has been introduced (Hughes et al. [10])
that resolves many of the issues raised above for traditional RANS and LES. In particular, the VMS
formulation provides a solid mathematical foundation for turbulence modeling where the exten-
sion to complex geometries is free from the issues related to commutativity and homogeneity that
arise when using traditional spatial filters. Likewise, VMS allows for the “surgical” application of
subgrid-scale models to model specific scale-to-scale interactions; e.g., one approach is to apply
models only to the smallest resolved scales in a simulation, leaving large scales unaffected by direct
modeling approximations/errors. This approach is demonstrated in Figure 1, which shows the po-
tential inter-scale interactions in both a full DNS representation and in a VMS-LES model. The key
modeling assumptions in this approach are discuss by Hughes et al. [10] and Collis [5]. By leaving
the large scales untainted by direct modeling, VMS-LES has been shown to be more accurate than
traditional LES methods for isotropic turbulence [11], wall bounded turbulence [12, 15], and even
for controlled turbulent flows [17].
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Figure 2. Overlap region in a coupled FE-MD model

2.2 Materials Modeling

Nearly all of the most difficult problems in solid mechanics, including the essential one of predicting
material failure, involve the localization of the deformation to scales that are too small for the
application of standard continuum models. Instead, the physics is dominated by interactions at the
atomic or molecular scale, which are in turn strongly coupled to the macroscale deformation and
stress fields. Although many ad hoc continuum models have been developed to try to capture these
atomic scale effects, with varying levels of success, true understanding and accurate prediction of
these phenomena for complex problems require computational techniques that couple continuum
descriptions of materials with localized atomistic treatments.

One attempt to achieve this coupling is the Quasicontinuum Method [13], in which deformation
fields are represented through interpolation among a selected subset of atoms. Adaptivity criteria
are used to refine the interpolation in regions of high deformation, to the point where all atoms are
represented where necessary. A major shortcoming of this approach is that it has only been devel-
oped for quasi-static problems at zero temperature. A method that can be used for dynamics is that
introduced by Broughton et al. [4] for coupling finite elements (FE), classical molecular dynamics
(MD), and tight binding (TB) quantum calculations in a single simulation of brittle fracture. In this
technique, the finite element and molecular dynamics regions are coupled in an overlap region in
which every atom in the MD simulation has a corresponding node in the FE mesh; see Figure 2. The
result is an extremely fine FE mesh in the overlap region, which complicates meshing and adaptiv-
ity, increases computational expense, and limits the stable time step size that can be used for explicit
time integration in the FE simulation. Fine scale energy in the MD simulation passes directly into
the FE region, where it is subject to the dispersion errors inherent in a sharply graded mesh.

Recently, a bridging-scale coupling method was developed by Wagner and Liu [22] in which
the coarse FE solution exists everywhere, while the MD simulation is used in localized regions
without a need for node-to-atom matching. This method shares many characteristics with VMS
as presented for the fluids turbulence modeling described above, and in fact can be reformulated
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as a VMS system of equations. In this method a decomposition of the solution space by a special
projection was used that partitioned the large scale and small scale kinetic energy contribution as
a direct sum. Boundary conditions on the MD region allow fine-scale energy to pass cleanly out
of the MD simulation. However, no satisfactory technique has yet been found for the treatment of
this fine scale energy (perhaps as a temperature) in the FE-only region, nor is it understood how
fine-scale information (e.g. fluctuations) should be created and introduced into the MD simulation
at the boundaries. Scales are separated both in wavenumber and physical space, and a consistent
mathematical treatment is needed to understand the correct interaction of these scale regions.

3 Mathematical Framework

This section begins with a very brief review of the Variational Multiscale (VMS) method that serves
to form the foundation of our mathematical framework. With this background, we then discuss the
important issues of identifying multiscale problems, scale representation/separation, and modeling
interscale coupling.

3.1 Variational Multiscale (VMS) Method

Initial applications of VMS focused on problems where there exist one global scale of interest; see
Hughes [9]. VMS has also been used to extract a model for the unresolved scales so as to provide a
correction term for the resolved scales. Likewise, VMS [10] and related methods [6], have also been
applied with good success to help model and improve the understanding of large eddy simulation
(LES) for turbulent flows (see e.g., Refs. [5, 11, 12, 17]). The success and versatility of VMS
indicates a unifying potential for the purposes of multiscale applications.

In VMS, the solution spaces are partitioned as a direct sum with the definition of an appropriate
projection operator. The solution is then represented as U = U +U′ where U are the large scales
and U ′ are the small scales. As an example, consider each scale as a range of Fourier modes in
wavespace (as shown in Figure 1), although other bases may be used in practice. One can readily
derive the exact equations of motion for each scale range and appropriate modeling assumptions can
be introduced for each equation (see Refs. [5, 10] in the context of LES).

Formally, the discrete, modeled equation takes the form

B(W ,U)Ω = M(W ,U)Ω +M′(W ′,U)Ω +F(W ,U ,Ub)∂Ω +F ′(W ′,U ,Ub)∂Ω ∀W ∈ V

where B(W ,U) denotes the standard Galerkin variational operator, M and M′ denote subgrid scale
model terms acting on the large and small scales, respectively; F and F′ are modeled flux terms
integrated over the boundary of the domain; and Ub are prescribed boundary values. In this for-
malism, the model terms, M and M′, replace interscale transfer operators1 that explicitly depend

1These are the Reynolds and cross stresses in turbulent fluid flows
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Figure 3. Two-scale energy landscape. Left: scale-uncoupled; Mid-
dle: scale-coupled; Right: scales-hopelessly-coupled. The ground state
is denoted by • .

on unresolved scales of motion (i.e. subgrid scales). Likewise, the model flux terms also replace
interscale transfer operators that represent the flux of unresolved scales across the boundary of the
domain. These modeled flux terms provide a means for the transfer of multiscale information from
outside the domain (through Ub) to the interior of the domain (see §3.4 for additional discussion).

The VMS framework allows one to readily identify scale-to-scale interactions and to surgically
replace those interactions that depend on unresolved physics by appropriate model terms. Theoret-
ical properties of the interaction of modeling assumptions on the various scales can be developed
by use of the variational equations, the properties of the spaces and the associated projection oper-
ators. Of course, the particular choice of basis functions used to represent the solutions as well as
the number and partitioning of this basis are important numerical algorithmic design issues that are
discussed in more detail below. However, before doing so, it is first useful to discuss what we mean
by a “multiscale problem.”

3.2 Problems with multiple scales vs. multiscale problems

In the computational modeling of multiscale systems it is important to discriminate between prob-
lems with multiple active scales and problems that require explicit multiscale modeling. We address
such questions in the context of a simple atomistic system in some detail, we then present a summary
table as a brief organizing principle for broader classes of problems.

In atomistic simulations of molecular motions, the correct ground state configuration of a molecule
is given by the solution to a global minimization. However, these physical systems operate within
a multiscale energy landscape. The larger scales approximately correspond to modes of collective
behavior at different groupings of their sub-scale modes. As a simple example with two scales only,
consider a small molecule that is a covalently bound small group of atoms. The molecule evolves
by individual atomic motions as well as by rotations around certain bonds.2

2Rotations about bonds can be decomposed into individual atomic motions, but are retained as a convenient represen-
tation, because the physics of the problem identifies them as a preferred mode.
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In this context, the energy landscape can be decomposed into two distinct scales: atomic mo-
tions (small scale) and torsional motions (large scale). When viewed in phase-space, the large-scale
mode has a set of minima in the angular dimension, while oscillations of atoms about their idealized
torsional representation serve as a sub-scale oscillation. This problem can occupy three regimes in
the energetic/thermal space: scale-uncoupled, scale-coupled, and scales-hopelessly-coupled. Fig-
ure 3 shows a schematic of these three configurations and we consider each in turn.

To begin, postulate that bond stretching and bond angles are much stiffer then torsions. Then
we can have thermally activated torsions with bonds and angles nearly completely rigid. In this
case the scales are decoupled—the system finds a ground state in the torsional coordinate alone and
the influence of the atomic vibrations can be averaged out. No modeling of the individual atomic
motions is needed and the left frame of Figure 3 represents this case.

Now, reduce the bond-stretching and bond-bending potentials to the point where the fluctua-
tions in these quantities contributes to the determination of the ground state. This happens when
fluctuations in the small-scale degree of freedom are on the order of the distinction between the
metastable states in the larger (torsion) coordinate. Specifically, imagine that a particular torsional
angle is favored because the atoms can assume the best bond-length. In this case, the scales are
coupled and the small-scale needs to be modeled explicitly, although the larger scale remains a con-
venient representation and needs to be retained for efficiency. This is the scenario represented by
the middle frame of Figure 3 where the inclusion of small-scale interactions leads to a slight, but
important change in the ground state. In this case, inclusion of small-scale effects through some
form of subgrid scale model is appropriate.

If the bond stretching and bending potentials are reduced even further, then the collective de-
scription of the torsion begins to lose meaning. The fluctuation in the torsional degree of freedom
becomes so large that the individual scales are no longer distinct. This case requires explicit solu-
tion at the smallest scale since no purpose is served by collective representation. The right frame
of Figure 3 represents this case where the inclusion of small-scale interactions leads to a radical
change in the ground state.

While this example has been cast in the context of statics, conceptually, dynamical systems
operate on a similar free energy landscape where the kinetic-energy barriers in different scales
determine time-scales of collective modes.

To conclude this discussion, Table 1 summarizes the relationship between several essential prop-
erties of multiscale systems (scale-to-scale coupling strength, scale separation, and the length-scale
of the driving mechanism) in order to highlight situations when coupled, multiscale modeling are
required. A more complete description of this relationship is beyond the scope of the current dis-
cussion.
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Narrow: Multiscale

e.g. polymer physics, protein
folding, ….

Wide: Atomistic, Molecular,
etc.

e.g. ideal gases, hard single
sphere interactions,

Weak

Strong

LargeSmall

Homogenization,
Heterogeneous

Multiscale,

Quasi-continuum

e.g. porous media
flow systems, linear

elasticity with
constitutive models, ..

Scale Separation Details are
critical

Multiscale

e.g. Fluid turbulence
with discontinuous
boundaries and/or

initial conditions etc.,
Crack propagation,

….

Multiscale

e.g. Combustion processes,
coupled rigid body problems,

Torsional dynamics of
molecules, ….

Scale
Interaction
Strength

Driving Scale

Table 1. Notional matrix of applicability of multiscale mathematical
framework for coupled problems.

3.3 Scale Representation/Separation

As alluded to above, the VMS framework allows one to identify and model scale-to-scale interac-
tions. However, before doing so, one must first select a basis with which to represent the solution
(scale representation) and then decide how to separate or partition this basis in such a way that
important scale ranges are identified and modeled in an appropriate manner.

Interscale coupling can be complex. How complex often depends on the choice of the basis. In
our previous example (see §3.2), torsions were chosen in order to decouple the scales under common
circumstances. Much of theoretical physics development owes its progress to just such choices,
where a clever collective mode is identified that reduces interscale coupling, and thus simplifies the
problem. However, for many problems, such a separation strategy is not obvious or may not even
exist.

The last distinction can be critical: is the separation strategy hidden or simply does not exist? We
would like to formulate an approach that would reveal the difference. For example, the choice of a
Fourier basis has been found particularly useful in periodic systems, where periodic basis functions
conform to the shape of the problem. However, a Fourier basis is known to produce unsolvable
difficulties near non-periodic discontinuities. In those regions, scales couple strongly, producing
undesirable artifacts. Numerous wavelet approaches have been invented that group scales (and wave
numbers) in order to better represent localized features. An attractive quantitative approach is to use
Renormalization Group (RNG) methods as a systematic approach to the multiple scale resolution
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and coupling problem. The method was formalized for the 2-D Ising model by Wilson [23]. We
wish to build on this foundation in order to understand the scale separation and representation issues
inherent in a number of difficult multiscale applications.

Once a discrete basis is selected, how does one measure its quality? In a numerical simulation,
we can test such issues by exciting each discrete mode and recording its dispersion relation into all
other modes. The coupling constants form a weighted graph of connectivity between modes, cast
as graph nodes. Such a graph can be analyzed for existence of components. If the graph partitions
nicely into clusters, that are sparsely, or not at all, connected to each other, we have an excellent
choice of basis, where individual scale divisions have been defined by the partition.

Figure 4. Examples of interscale communications: multigrid, mortar
space and conservative finite difference methods.

3.4 Interscale Communication

How is information communicated across scales? In general this communication occurs at an inter-
face that may be either in physical-space or in scale-space. Critical issues include how information is
compressed and created at the interface. Existing methods such as multigrid, mortar finite elements,
domain decomposition and conservation laws provide important examples of interface operators
and regions; see Figure 4. In geometric multilevel methods, transfer of information occurs between
grids with different spatial resolutions by virtue of restriction and prolongation operators. A rel-
evant example are algebraic multilevel methods where scale separation and interscale transfer are
effected by using the matrix graph. Note that in principle, this process is not dissimilar to the pro-
cess suggested in the last section for assessing the strength of scale couplings; indeed, aggregation
in algebraic multilevel methods follows essentially the same idea of edge clustering. This idea is
shown graphically in Figure 5.

An example of a functional interface is provided by mortar elements that glue together disjoint
approximations occupying different regions is space. Domain decomposition methods are another
important prototype where interface communication is effected by Poincare-Steklov operators at the
variational level and by the Schur complement at the algebraic level.
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Figure 5. Aggregation in algebraic multilevel methods [3].

These examples encompass a range of ideas that may prove useful in the design of interscale
communication operators. For instance, the compression/creation process at an interface is similar
to finding an appropriate numerical flux, or creating the proper mortar space. The flux analogy
seems especially appropriate in the light of the close parallels between reconstruction and averaging
operators and the creation/compression process. Ultimately, the design of these operators must be
guided by the physics of the problem that sets the effective dispersion relation governing the transfer
of information either in physical or wave space.

As an example, consider of the interface between RANS and LES in a turbulent flow simulation.
If information is convecting from the LES to RANS then some form of compression or elimination
of the small-scale information is required. However, if information flows from RANS to LES, then
small-scale turbulent fluctuations must, somehow, be generated that have the correct statistical prop-
erties. An analogous situation exists with atomistic (or molecular) small scale physics interacting
with large scale continuum models in materials

4 Summary

The state of research in multiscale science and engineering has progressed to the point where there is
a definitive need for an overarching mathematical framework that unifies common principles across
disciplines in a systematic and rigorous fashion. To this end, the variational multiscale method has
been identified as a viable candidate for such a mathematical framework and, in fact, has already
been demonstrated on problems spanning the two primary categories of multiscale problems dis-
cussed here. Additionally, the key mathematical and physical issues of scale representation, scale
separation, and inter-scale communication have been pointed out and discussed. We believe that a
sustained focus on these issues will provide a general mathematical framework for multiscale prob-
lems. Finally a broad set of applications that are relevant to the DOE Office of Science and that can
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provide the proving grounds for assessing a multiscale framework have been outlined.
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