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Abstract 

This document is intended to contain a detailed description of the mathematical 
formulation of Xyce, a massively parallel SPICE-style circuit simulator developed at 
Sandia National Laboratories. The target audience of this document are people in 
the role of "service provider". An example of such a person would be a linear solver 
expert who is spending a small fraction of his time developing solver algorithms for 
Xyce. Such a person probably is not an expert in circuit simulation, and would benefit 
from an description of the equations solved by Xyce. In this document, modified nodal 
analysis (MNA) is described in detail, with a number of examples. Issues that are 
unique to circuit simulation, such as voltage limiting, are also described in detail. 
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1 Introduction 
This document describes how circuit problems are formulated and solved in Xyce, a mas
sively parallel analog circuit simulator. This document was motivated by the need to ad
dress common questions, asked by people new to the Xyce research/development effort. 
The prerequisite for understanding this document is some experience in numerical simula
tion , but not necessarily circuit simulation. 

This is not intended to be an exhaustive treatment of circuit theory. What is presented 
here is a detailed summary (with examples) of how circuit problems are posed in Xyce. 
This includes how the problem is formulated, what equations are solved, and some of the 
techniques for obtaining the solution. There are many time integration, nonlinear and linear 
solver solution techniques available inside of Xyce, and most of them are not described 
in this document. The solution techniques described have been limited to those for which 
one or more of the following is true: 

1. The technique changes the set of equations being solved . 

2. The technique is (apparently) unique to circuit simulation . 

3. The technique is not well described by the literature. 

One such technique, voltage limiting, is described in the nonlinear solver section . Another 
such technique, state variable condensation , is described in the time integration section. 

2 Basics 
If viewed abstractly, transient circuit problems are solved similarly to transient implicit partial 
differential equation (POE) problems. There are three nested solvers: a time integrator, a 
nonlinear solver, and a linear solver. The relationship between the three nested solvers is 
illustrated in Figure 1. 

Like a POE problem, a circuit problem is based upon a topology. However, unlike a POE 
problem, the topology is derived from an arbitrary circuit network connectivity, rather than a 
mesh. As such , the circuit topologies are generally much more heterogeneous than mesh
based POE topologies. Strang [13] describes some of the analogies between circuits and 
POE problems. 

3 Circuit Problems 
In this section , Kirchhoff's Laws, are described. Also, Modified Nodal Analysis (MNA) is 
introduced. The end of this section includes a linear circuit example. 
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Linear Solver 

Figure 1. Xyce solver structure. 

3.1 Kirchhoff's Laws 

Circuit networks are subject to Kirchhoff's Current Law (KCL) and Kirchhoff's Voltage Law 
(KVL). Kirchhoff's current law specifies that at any node in a circuit the sum of the branch 
currents int%ut of the node must equal zero. This is expressed by equation (1). 

(1 ) 

where Nl is the number of branch currents int%ut of a circuit node. An illustration this 
equation for a single circuit node can be found in Figure 2. Equation (1) enforces the 
conservation of charge, as current is a measure of how much charge flows through a wire. 
It is also equivalent to stating that the divergence of current around a circuit node equals 
zero. Equation 1 will hold for every node in a circuit. This naturally leads to a set of coupled 
simultaneous equations, one for each circuit node. 

Kirchhoff's voltage law (KVL) states that the sum of the branch voltage drops around a 
closed loop of a circuit should equal zero. A graphical representation of KVL can be found 
in Figure 3. In the figure, there are four circuit nodes, and three closed loops. The three 
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loops are defined by nodes (1,2,4), nodes (2,3,4), and nodes (1,2,3,4). As with KCL, KVL 
can lead to a large set of coupled simulataneous equations, similar to Equations 3- 5. 

~=O 

V 12 + V 24 + V41 = 0 

V23 + V34 + V42 = 0 

V 12 + V 23 + V 34 + V 41 = 0 

(2) 

(3) 

(4) 

(5) 

where Bl is the number of branches in a closed loop. The subscripts used in Equations 3- 5 
denote the two nodes defining the respective branch. 

~ 
Node 1 

Figure 2. KCL for a single circuit node. 

0= Device 

• = Node 

Figure 3. KVL for closed circuit loops. Equations 3- 5 correspond 
to this figure. 

There are many different ways of formulating a system of equations to solve circuit prob
lems. Some formulations, like the tableau formulation, explicitly include a full set of KCL 
and KVL equations. However, it is possible to combine KCL and KVL laws into a com
pact formulation because most branch currents are directly functions of their respective 
branch voltages. The formulation described in the next section, the modified KCL formu
lation, doesn't include any explicit KVL equations, as they are implicitly enforced by the 
formulation. 
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3.2 The modified KCL formulation 

Circuit problems are usually solved on a computer using the "modified KCL formulation". 
This is also sometimes referred to as modified nodal analysis (MNA). This is the formulation 
used in all of the common circuit simulators, such as Spice3f5 , as well as Xyce. Modified 
nodal analysis, as well as several other types of circuit analysis, is described in detail by 
Vlach [14] and Chua [6]. The original paper describing this technique is by Ho [12] . 

To best describe the modified KCL formulation , the unmodified KCL formulation (hence
forth the KCL formulation) will be described first. In the KCL formulation , for every node 
(except the ground node) of the circuit, one KCL equation must be satisfied . For a circuit of 
N nodes, there will be a minimum of N - 1 equations. There will also be a voltage variable 
for each node of the circuit, resulting in a minimum of N - 1 variables. Most currents be
tween circuit nodes can be expressed as a function of the voltage drop between the nodes. 
The simplest example of this is the current through a linear resistor. Consider the resistor 
in Figure 4, which is connected between 2 circuit nodes. 

Node 1 

Figure 4. Resistor device. 

The current through this resistor is defined by Ohm's law, or I = G . VI 2. G is the con
ductance of the resistor (or 1/ R, where R is the resistance of the resistor) , I is the current 
through the resistor, and VI2 = VI - V2 is the voltage drop across the resistor. 

Most currents in a circuit can be expressed using this same type of expression (I = G . V, 
or more generally I = G(V) · V ), in which currents are a function of voltage. Devices whose 
currents can be expressed in this way are also sometimes said to have conductance or, 
in the case of small signal analysis, admittance representations. Likewise, a matrix that 
consists of nothing but conductance (G ) terms is sometimes referred to as a conductance 
matrix or (respectively) an admittance matrix. In the circuit simulation literature, these 
terms are often used instead of the term Jacobian matrix. Devices that have a conductance 
(Ohm's law) representation include resistors, capacitors, diodes as well as most transistor 
models. 

3.3 The "modified" part of "modified KCL' 

The modified KCL formulation is similar to the KCL formulation , but requires at least one 
equation that is not a KCL equation. There are almost always non-Ohmic devices in a 
circuit, so additional non-KCL equations have to be added to the equation set. New vari-
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abies are added to compliment these new auxiliary equations, and are generally current 
variables, rather than voltage variables. 

The most common example of a non-Ohmic device is the independent voltage source, 
which imposes a predefined voltage drop across two circuit nodes, and is analogous to a 
Dirichlet boundary condition in a POE problem. Because the current through the source 
is completely independent of this voltage drop, one cannot use an Ohm's law expression 
to describe it. That is, unlike most currents in the circuit, it cannot be inferred from nodal 
voltages. As a result, the current has to be included as a solution variable. 

Vdrop 

Figure 5. Independent voltage source. 

Consider the voltage source illustrated in Figure 5. This source is connected to nodes 1 
and 2, and so it has to be accounted for in the KCL equations for each of these nodes. 
The auxiliary, non-KCL equation enforces the voltage drop: V2 - VI = Vdrop ' The source 
current, which is the auxilliary solution variable, is summed into the KCL equation for each 
of the two nodes. This enforces that the current flowing into the source from node 1 is 
equal to the current flowing out of the source to node 2. 

3.4 A simple modified KCL example 

For this example, a very simple linear circuit is illustrated in Figure 6 (For simplicity, all the 
example circuits in this document are variations of this circuit) . The circuit is assumed not 
to have any time dependent elements (e.g. capacitors) and all of the devices in the circuit 
are linear, so it is not necessary to consider time integration or nonlinear solver issues. 

In this example there two linear resistors and one independent voltage source. The three 
solution variables are the voltage at node 1 (Vj ), the voltage at node 2 (V2 ) and the current 
through the voltage source ( I Vsrc). The voltage of the ground node (node 0) is assumed 
to be zero volts, so Va is not needed as a solution variable. The ground node is never 
included as a variable in an analog circuit simulation. The reason for this is that voltage 
(electrostatic potential) is a relative quantity, and it isn't meaningful without a reference 
point. By convention, the ground node is always considered to be the reference, at zero 
volts. Without it, there would be an infinite number of solutions to the problem. 

For the three solution variables there are three corresponding equations - the KCL equa
tions for node 1 and 2, and the voltage drop equation for the voltage source. These three 
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Node 1 
~ 

Vsrc 

Node 0 
(ground) 

Figure 6. Simple linear, steady-state circuit. 

equations are given by: 

KCL equation for node 1: 

N I 

L 1i = 0, 
i=O 

Circuit Problems 

(6) 

where Nl is the number of branch currents going int%ut of node 1. The current through 
resistor RA is given by: 

(7) 

where G A is the conductance: 

(8) 

The current through the voltage source is assumed to be whatever is required to satisfy 
the KCL equation. Thus, the total KCL equation is given by: 

(9) 
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KCL equation for node 2: 

The sum of the currents into node 2 also must sum to zero, but now instead of the voltage 
source, the second branch current is through RB. So the total KCL equation for node 2 is 
given by: 

(10) 

Since Vo is the ground node and assumed to be zero, this simplifies to: 

(11 ) 

Voltage drop equation : 

The voltage source simply enforces that the voltage difference between node 1 and ground 
is held to a predefined constant: Vdrop . Voltage source values may vary with time (as a sine 
wave, for example) , but for this example we assume it to be constant in time. The voltage 
drop equation is given by: 

(12) 

Linear system : 

This system of three equations can be represented by a matrix equation , which is given 
by: 

(13) 

where Vi is the voltage at node 1, V2 is the voltage at node 2, and I v src is the current 
through the independent voltage source. These are the three solution variables of this 
formulation of the problem. Most circuit problems are nonlinear and are typically solved 
with some form of Newton's method. Even though this example is linear, it is instructive to 
show how this problem would be set up for the more general nonlinear case. Recall that 
for Newton's method , a linear system is solved for each step of a Newton loop: 

J~x = - f (14) 

where J is the Jacobian matrix for j, ~x is the update vector to be applied to the solution 
vector, x , and j is the residual vector. At each Newton step, equation (14) is solved to 
obtain ~x, and the solution vector is updated by evaluating this expression : 

(15) 

15 



™ Math Formulation Circuit Problems 

where k is the step index. For the current example, the terms in (14, 15) are given as 
follows : 

f 

J 

~x 

[ 
h j [ KCL equation , node 1 1 
12 = KCL equation, node 2 
13 Voltage Drop constraint equation 

[ 

I vsrc - (V2 - Vd . G A ] 

(V2-Vd ·GA +V2 · GB 
VI - V drop 

[

OjI/OVI ojI/oV2 
Oj2 / 0VI Oj2/0VI 
Oj3/ 0Vl Oj3/ OV2 

and x = [ ~~ ] . 
I Vsr c 

(16) 

~ ] (17) 

(18) 

Please note that the subscripts on j are meant to denote the index into the vector f . The 
subscripts on V are meant to denote the nodal index for the respective voltage. Finally, 
the subscripts on G are meant to refer to the resistor index. In this document, resistors will 
always be denoted by letters (A, B, C) rather than numbers. 

The KCL equations are current (1) equations, and their respective solution variables are 
voltage (V ) variables, so most of the oj/ ox terms that comprise the Jacobian matrix are 
going to be of the general form: 

(19) 

Where G is a conductance. It is only for non-Ohmic terms in f , such as the voltage source 
equation, that Jacobian elements will not be in units of conductance. 

Therefore, the presence of the voltage source (which necessitates a modified KCL form) 
changes the structure of the Jacobian matrix, J , a great deal. There are now some non
conductance matrix contributions, which are of a fixed magnitude, 1.0. Also, the third 
diagonal element is zero. Both of these issues can result in the linear system being more 
difficult to solve, but can be addressed by scaling the problem and by matrix reordering . 
This example illustrates part of why circuit matrices are often ill conditioned , as for a typical 
digital circuit most conductances are much smaller than 1.0. A typical conductance could 
be around 1.0e-08 or smaller. Furthermore, the respective magnitudes of the voltage and 
current variables in the solution may be quite different (many orders of magnitude) and this 
is reflected in their associated matrix entries. 

As noted, in this particular example, the two resistors are linear, so the problem is solved 
with a single Newton iteration. Most circuit problems, however, have nonlinear elements, 
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requiring multiple iterations. Some simple examples of nonlinear circuits can be found in 
the next section. 

4 Nonlinear circuits 
Most circuits contain nonlinear elements. A common example of a nonlinear device is the 
diode, shown in Figure 7. Like resistors and capacitors, they exist in circuit models both as 
stand-alone devices and also as sUb-components of larger, more complex devices, such 
as transistors. 

ID 

Node 1)..--_ ...... 1 ~<NOde 2 

Figure 7. Diode. 

Diodes are good conductors when the current flows in one direction, but poor conductors 
when the current flows in the opposite direction. In the simplest approximation , the current 
through a diode is modeled as an exponential function of the voltage drop across the two 
terminals. The diode current is given by: 

(20) 

Is is a constant known as the saturation current (a typical value is 1.0 x 1O- 14 ) . V12 = 

(Vi - V2) is the voltage drop across the diode. vth is the thermal voltage and is, essentially, 
temperature expressed in units of eV. At room temperature it has a value of about 0.025. 
A plot of a typical diode current with respect to voltage is given in Figure 8. (Note that in 
circuit modeling, most devices are modeled using current as a function of voltage. If you 
read the circuit simulation literature, you will see a lot of plots of this nature). Note also, 
that the figure includes a breakdown current for voltages below -4.0 volts, but the example 
equations presented here do not include breakdown current effects. 

4.1 Example: Nonlinear Circuit Problem 

An example diode circuit is shown in Figure 9. This is the same circuit as was described 
in the previous section , with the exception that the linear resistor RA has been replaced 
with a diode (which can be thought of as a nonlinear resistor) . The system of equations is 
similar to that of the linear problem. The main difference comes from the handling of the 
current between node 1 and node 2. 

17 
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20 -

10 -

« .s 
c o -
Cll .... .... 
::l 
U 

-10 -

-20 ~~-_~41----------_~~--~~--~~--------~~ 

Vo ltage [V] 

Figure 8. Diode I-V characteristic. 

KCL equation for node 1: 

Recall : 

(21 ) 

As before, Nl is the number of branch currents going int%ut-of node 1. The current 
through the diode is given by equation (20). The current through the voltage source, like 
in the previous example, is assumed to be whatever it needs to be to satisfy the KCL 
equation. The total KCL equation for node 1 is therefore given by: 

I v src + I D = Iv src + Is [exp (~~) - 1] = 0 (22) 

KCL equation for node 2: 

The sum of the currents into node 2 also must sum to zero, but now instead of the voltage 
source, the second branch current is through RB . So the total KCL equation for node 2 is 
given by: 

18 
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Example: Nonlinear Circuit Problem 

Node 1 
~ 

+ 

Vsrc 

-

Voltage drop equation : 

Node 0 
(ground) 

Figure 9. Diode circu it. 

The voltage drop equation is the same as before (12): 

Linear system: 

™ Math Formulation 

Node 2 
/' 

(24) 

The linear system to be solved at each Newton step is similar to that of the linear case and 
can be represented by: 

J .6.x = - f (25) 

19 
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-GD 
GD+GB 

o 

Nonlinear circuits 

(26) 

However, now G D (formerly GA in the linear example) is a nonlinear, rather than constant, 
quantity. G D is given by: 

The system of nonlinear equations is solved in Xyce using Newton's method. Generally, 
circuits including lots of exponential I-V relationships require some enhancement to New
ton's method, such as a line search . A discussion of the various nonlinear solver options 
in Xyce is beyond the scope of this document (see [8] for the available options and their 
use) . 

One nonlinear solution method is worth special attention: voltage limiting. This approach 
is somewhat unique to circuit simulation and is covered in the next section. In many cir
cuit codes (almost any code based on SPICE) , voltage limiting is the only Newton solver 
enhancement. 

4.2 Voltage Limiting 

Voltage limiting is a method for enhancing the nonlinear solve portion of a circuit simula
tion . The idea behind it is to prevent voltage drops in some of the semiconductor devices 
from changing too much from one Newton step to the next. It is the only nonlinear solver 
enhancement available in Spice3f5 , and it is hardcoded to always be invoked. It appears 
to have been used in some of the earliest circuit simulators [10] . For a Xyce developer, it 
is important to understand voltage limiting , as it is an unusual technique with a number of 
consequences. In practice, it has proven to be a very effective method for obtaining difficult 
solutions, but it is incompatible with most conventional nonlinear solver enhancements. As 
will be shown in this section , there are three reasons for this incompatibility. 

1. Voltage limiting directly changes the right hand side vector used by the Newton it
eration , so that it contains more than just f . It changes the set of equations to be 
solved. 

2. Voltage limiting results in a different Newton update to the solution vector, but it does 
so in an inconsistent way. As a result , it is difficult to reproduce it using a techn ique 
applied to the entire solution vector. For example, using Xk+ l = X k + Q . 6.x and 
varying the magnitude of the scalar Q will not yield the same result. 
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3. The limiting relies on the previous Newton step size, meaning that it is a function of 
the path taken to the current solution. This means that any technique using back
tracking would be subject to hysteresis. 

As Xyce and Spice3f5 use different formulations for the Newton solve, there are algebraic 
differences between the two codes in voltage limiting implementation . In this section , the 
Spice3f5 implementation of voltage limiting will be described first, followed by a description 
of the implementation in Xyce. 

Voltage Limiting in Spice3f5 

In Spice3f5, the solver solves directly for the new value of the solution at each nonlinear 
step, rather than solving for the update, which is more standard for nonlinear solvers. Most 
traditional nonlinear solvers will solve this nonlinear system: 

(28) 

(29) 

The index, k, is the Newton iteration step number. In contrast, the Spice3f5 nonlinear 
iteration is accomplished by solving this equivalent linear system: 

(30) 

Recall that most of the elements of are nodal voltages, most of the elements of fare 
currents and most of the elements of J are in units of conductance. 

Unfortunately, the Spice3f5 approach to Newton's method means that it is impossible (or 
at least difficult) to apply traditional nonlinear solver libraries (such as NOX [3]) . The right 
hand side of the Equation 30 can no longer be assumed to be - f , as it contains the Jxk 
terms. 

In Spice3f5, to implement voltage limiting , an analysis is performed at the beginning of each 
Newton step, to determine if the previous step resulted in any junction voltage changes that 
were too large. (A junction voltage is the difference between two connected nodal voltages. 
An example would be a voltage drop across a diode) In the event that some of them were 
too large, portions of X i are replaced with values that are acceptable to the limiting scheme. 
Then afterxi has been modified , the calculation proceeds as though this modified Xi is the 
correct one. J and f are both calculated using this modified version of X i . In a sense, the 
code goes into denial. 
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It should be noted that this is slightly more complicated than it may first appear, because 
all of this is done in terms of junction voltages (voltage drops between nodes), not nodal 
voltages. Nodal voltages are what actually exist as distinct elements of the solution vector 
Xi, but junction voltages are what most devices actually care about. If we consider the 
diode, again, recall the expressions for diode current and the Jacobian contribution are: 

(31 ) 

(32) 

Both ID and G D are functions of VI2 = VI - V2, which is a junction voltage. When a 
circuit code calculates the contributions of a diode to J and f, it first obtains VI and V2 

from the solution vector, and then immediately obtains V12 . From that point onward in the 
calculation, VI and V2 are ignored and everything is calculated as a function of V12. This is 
typical in all Spice3f5-style analytical device models. 

Node 1 
~ 
+ 

Vsrc 

RA 

aI--'-' 

10 

Node 0 
(ground) 

Node 2 
/' 

Figure 10. Diode circuit with resistor in parallel. 

In practice, the Jxk term on the right hand side of (30) is not handled by doing a formal 
matrix-vector multiply, so it is easy to implement a junction voltage based limiting scheme. 
To illustrate this, consider the diode example from Figure 10. This is the same diode circuit 
as from Figure 9, only an extra nonlinear resistor, RA, has been added in parallel with the 

22 



Voltage Limiting TM Math Formulation 

diode. (The extra resistor has been added in order to illustrate one of the more subtle 
aspects of voltage limiting.) The number of nodes is the same as before, and the number 
of solution variables is also the same, but the number of branch currents to be considered 
for the KCL equations of node 1 and 2 has increased. 

The difference between the nonlinear resistor RA, and the linear resistor RB, is that for 
RA: IA =1= GA' V12, but for RB : IB = G B · V20 . To solve this problem in Spice3f5, the linear 
system from equation (30) to be solved at each Newton step (without voltage limiting) is: 

JXk+l = 
[ I~,," +fs[CXP(VMV,h) -I] +fA 1 

- GB . V2
k 

- Is [exp (Vl~/vth) - 1J - IA 
V1

k - Vdrop 

[ GD+GA -GD - GA 
1 ][ v,' 1 1 

+ -G
D1

- GA GD+GA+GB o v,k (33) 
0 o I~~rc 

where: 

~ 1 
(34) 

and: 

(35) 

Note that the Jacobian elements are all evaluated in terms of old (iteration k) variables. 
That is: 

(36) 

Recall that G A and G B are constant for the linear resistor. This next linear system is slightly 
more representative of the way the problem is actually implemented in the code: 

(37) 

The right hand side terms have been combined. Rewriting, in terms of junction voltages, 
and after canceling terms: 
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[

Is [exp (Vlk2Ivth) - 1] + IA - GD . Vl~ - GA' Vl~ ] 
Jxk+l = - -Is [exp (Vl~/vth) - 1] - IA + GD · Vl~ + GA . Vl~ 

-Vdrop 

(38) 

Note that the linear resistor contributions have vanished from the right hand side, but the 
nonlinear ones remain. In practice, there are no linear resistor contributions to the right 
hand side in Spice3f5 implementation. 

In most codes, the matrix equation is set up on a device-by-device basis. The simulation 
program stores all of the devices for a given circuit and loops through them in the process 
of setting up the matrix and right hand side vector by way of summation. In this example, 
if the order that the four devices appear in the list is: diode, voltage source, RA, and RB, 
then the linear system would be at each stage: 

After the diode load: 

After the voltage source load: 

After the nonlinear resistor, RA load: 

[ 

GD+GA -GD-GA 1] 
-GD-GA GD+GA 0 xk+l= 

1 0 0 

[

Is [exp (Vl~/vth) - 1] - GD' Vl~ + IA - GA . Vl~ ] 
- -Is [exp (Vl~/vth) - 1] + GD . Vl~ - IA + GA . Vl~ 

-Vdrop 

And, finally, after the resistor, RB, load: 
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[

Is [exp (Vl\/vth) - 1] - GD· Vl~ + IA - GA· v1\ 1 
- -Is [exp (Vl\/vth) - 1] + GD · V1\ - IA + GA· V1\ 

-Vdrop 

(42) 

The main reason for describing the device-by-device load is to illustrate that the load cal
culations for each device are largely independent of each other. 

As noted, voltage limiting involves the code checking the old junction voltages, such as 
v1oid, and replacing them with different values if necessary. The voltage limiting procedure 
for a single device, at each nonlinear step is illustrated in the flow chart in Figure 11. 

Loop over all 
devices. 

Each device sums 
into J and f 

Solve 
J><;+rr -f+JX 

Load procedure for a 
single diode device 

Obtain (\() V) 
from ~ 

Calculate junctio 
voltage, \(2 

Check \{% Replace 
with ~f needed. 

Perform load 
calculations usin 

V12• 

Sum results 
to J and f 

Figure 11. Voltage limiting flowchart. 

As the load procedure is done on a device-by-device basis, the decision to replace an old 
junction voltage is also done on a device-by-device basis. Not all devices have voltage lim
iter functions and those that do generally do not all have the same voltage limiter functions. 
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For example, consider the current example in which voltage limiting is applied in the diode 
but not in RA. The resulting linear equation is: 

-GD-GA 1] 
G D + ~A + G B ~ x

k
+

1 
= 

(43) 

Note that for all the terms associated with the diode, Vl~ has been replaced by ~~ . As 
such , the voltage drop used in the diode calculation is different than that used in the RA 
calculation , even though they are attached to the same nodes of the circuit. It does not 
modify the old (iteration k) solution vector in a consistent manner. It was to demonstrate 
this issue that RA was added to this example circuit. Voltage limiting is very similar to con
ventional nonlinear enhancements, such as constraint backtracking. However, a constraint 
backtracking scheme (which is applied outside of the load procedure, and could not easily 
include this inconsistency) would not be able to exactly reproduce it. Of course, it may be 
preferable to avoid such an inconsistency. 

Generally, the voltage-limiting technique is used for semiconductor device models only, 
such as diodes and transistors (e.g. , BJTs and MOSFETs) , which may be highly nonlinear. 
Voltage limiting rules are designed to prevent junction voltages from changing too much 
between iterations, and the extent to which they are allowed to change is usually a function 
of the device's I-V characteristic. In general , if the device is in a regime in which 1[ is 
large, the limits are more restrictive than if the device is in a regime in which 1[ is small. 

As such , the limit imposed on Vl~+ l is a function of Vl~ and because the point is to constrain 
the change from Newton step to Newton step, it is also a function of Vl~- l. This points to 
another important issue. This particular type of constraint is dependent not just on the 
current values in the solution vector, but the path taken by the solver to get there. As a 
result , there is hysteresis in the solution technique. 

Voltage Limiting in Xyce 

As noted, for a variety of reasons Xyce uses a more traditional approach to obtain the 
solution to the nonlinear problem f (x ) = 0: 

J .6.x !.:+l = - f where , (44) 

(45) 
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Initially, voltage limiting was not a planned feature for Xyce, in part because the nonlin
ear solver was designed to use the traditional Newton iteration, as described by Equa
tion 44. Once the value of voltage limiting became apparent, it was necessary to reformu
late Spice3f5 implementation to work in Xyce. 

For the nonlinear iteration k, the original "unlimited" solution vector is given by xk, the 
intermediate limited solution vector is given by xk+l, and the final solution vector at the 
end of the iteration is given by xk+l. Thus, for a Newton step that includes voltage limiting, 
the total change from the beginning of the step to the end is: 

(46) 

where: 

(47) 

and: 

(48) 

~Xk+l represents the change in the solution due to voltage limiting, ~x~t2ton represents 
the change due to the solution of the matrix equation, and ~x~o~~l is the total change over 
the course of the Newton step. The linear equation to be solved is now: 

(49) 

This equation has been obtained by adding J~xk+l to both sides of the original Newton 
step equation. 

The calculations performed at each Newton step are very similar using this approach as 
they were for the Spice3f5 case. The Xyce version of equation (43) is given by: 

(50) 

Or, alternatively: 
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(51 ) 

J " k+l -L..:l.Xtotal - -

+ (52) 

One nice feature of this formulation is that as the Newton algorithm approaches conver
gence, the values for ~x~oi~l become much smaller. By solving for ~xk+ l rather than x k+ l, 

it is easier to resolve the small changes in the solution that occur during the final iterations. 
Also, as most nonlinear solver libraries and algorithms are designed for this (~x) approach , 
it is much easier to take advantage of them. Finally, the final (J ~xk+l ) term on the right 
hand side of equation (52) can easily be stored in a separate vector than the first (- f) term , 
so algorithms depending upon f are impacted less than in the other case. 

Additional Notes 

Xyce has a large number of different nonlinear solver options, including damped Newton, 
modified Newton, inexact-Newton, constraint backtracking , and gradient-based methods. 
A complete list of options, and a guide to usage is contained in [8]. In general , most 
nonlinear solver strategies are incompatible with voltage limiting , either because of the 
unorthodox right hand side vector, or because of the hysteresis introduced by the limiters. 
Some future work may include finding ways to combine the effect of the limiters with some 
of the other methods. The voltage limiter technique has been one of the most effective 
techniques, especially for semiconductor circuits. 

5 Time Dependent Circuits 
In practice, most circuits contain a number of time dependent elements, and many of 
those elements (capacitors and inductors) are described by ordinary differential equations 
(ODEs) that include time derivative terms. For example, the current in a linear capacitor is 
given by: 

I _ dq 
C - dt 
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Capacitors are particularly ubiquitous, as not only are they usually present as distinct de
vices, but they also appear as subcomponents in every semiconductor device model. While 
the inclusion of such devices requires that the mathematical formulation include ODEs, the 
overall formulation is still based upon modified nodal analysis, and as such, the set of 
equations to be solved contains a number of purely algebraic equations. These include 
the voltage drop equation for a voltage source, or any KCL equation that includes only re
sistor currents . The set of equations, therefore, is a set of differential-algebraic equations 
(DAEs) , where those that are purely algebraic are considered to be the constraints. 

There is a lot of literature devoted to describing DAEs and methods for their solution [5 , 4] . 
For the most part, that material will not be described here as it is beyond the scope of 
this document. Most systems of equations resulting from circuit theory can be cast as 
DAEs of index one, and fortunately the techniques for solving DAEs of index one are fairly 
well understood. It is possible, particularly in circuits containing operational amplifiers, to 
obtain DAEs of much higher index [5] , but at the moment such circu its are not possible 
to simulate in Xyce, so they will not be considered here. Xyce and Spice3f5 both use a 
condensed form of the circuit equations that will be described in the third subsection of this 
section. This condensed form appears to be a standard technique for circuit simulation , 
and has some obvious advantages, but for the most part this condensed form has not 
been described in the literature. In practice, it appears to work reasonably well , but the 
numerical implications (stability, accuracy, etc.) of using such a form are not entirely clear 
at this point. 

5.1 Traditional Index-1 DAE Formulation for the Linear 
Case 

Differential Algebraic Equations (DAEs) generally have the form : 

f ( x , ~: , t) = 0 

For the linear case, this is often presented in the form of a matrix equation: 

dx 
f = Ax + B - + r ( t) = 0 

dt 

(54) 

(55) 

In equation (55), A and B are matrices and r (t) is a source term. This formalism can 
easily be applied to the linear circuit that is presented in Figure 12. This circuit is the same 
as all of the previous example circuits, except that now a capacitor sits between nodes 1 
and 2 . The capacitor, CA , is a time dependent device, and has a current defined to be: 

(56) 
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where q is the charge stored by the capacitor, which is defined to be: 

(57) 

where C A is the capacitance and V12 = Vl - V2 is the voltage drop across the capacitor. 
For the linear case (where C A is constant), equation (56) can be simplified to be: 

(58) 

For the linear case, the linear system consists of three equations and three unknowns. 
The system is very similar to that described by equations (6) through (13), except that a 
capacitor has replaced one of the resistors . Thus, the three solution variables are given 
by: (Vl l V2, I vsTc ) The three equations, like before, consist of KCL equations for nodes 1 
and 2, plus a voltage drop equation for the independent source. 

Node 1 
~ 

o 
s... 
tn 
> 

.... --~ I---~ 

Node 0 
(ground) 

Node 2 
/ 

Figure 12. Linear time dependent circuit. 

KCL equation for node 1: 
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KCL equation for node 2: 

c . ~ (Vi+ 1) + V i+1 . G = C . ~ (Vi+1 - V i+1) + Vi+1 . G = 0 
A dt 21 2 B A dt 2 1 2 B 

Voltage drop equation : 

Full system: 

This set of equations can be rewritten in the form of equation (55) . 

[ ~ 
o 

GB 
o 

(60) 

(61) 

(62) 

The addition of the capacitor requires that dV12 1dt be evaluated. Typically, this is done 
using a backward differentiation formula (BDF) . For the purposes of this example we will 
use the backward Euler method. 

dV12 _ (Vi+1 _ V i ) 
dt - Ct 12 12 (63) 

Where Ct = I l h, and h is the time step size. The factor, Ct, is the leading coefficient of 
the BDF formula , and will have a different form depending on the choice of BDF. Incorpo
rating equation (63) into equations (59-61) results in the KCL equations being recast as 
differential algebraic equations: 

KCL equation for node 1: 

Ji+1 _ Ct . C . [(Vi+1 - V i+ 1) - (Vi - V i )] = 0 
VSTC A 2 1 2 1 (64) 

KCL equation for node 2: 

(65) 
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Voltage drop equation : 

Full system : 

The matrix equation then becomes (for the backward Euler case): 

( 
dx ) . I . f x , dt ,t = [A + a B] x~+ + aBx~ + r (t) = 0 

[[ ~ 
o 

GB 
o 

This is a linear problem, so the Jacobian matrix is given by: 

(66) 

(67) 

(68) 

(69) 

This example formulation is a DAE system of index zero. Recall that Petzold [5] defines 
the index of a DAE to be, the minimum number of times that all or part of (54) must be 
differentiated with respect to t in order to determine dx/ dt as a continuous function of (x , t ), 
is the index of the DAE (54) . Also, she defines a DAE with an index of 0 to be equivalent 
to a system of ODEs. In this example, the two KCL equations are differential equations 
and the voltage drop equation from the voltage source is a constraint equation. However, 
the one constraint equation can be removed easily, without performing any differentiations. 
The voltage source sets the first node to a particular voltage, so including VI and I Vsrc in 
the set of equations isn't necessary. The problem can thus be represented as: 

or : 

dv, i+ l 
f = CA' _2_ + V~+ l. GB = 0 

dt 
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Equation (71) is a single impliCit ODE. This conversion to an ODE, which removes the 
algebraic constraints, results in the need for an initial condition on V2 . It should be noted 
that most circuit problems do not result in a DAE of index zero. Instead, the systems are 
typically of index one, and some examples of higher index systems will be given in following 
sections. For linear circuits, the DAE formulation just described (before the removal of the 
voltage source equation) matches that of Xyce. In the next section , the most obvious way 
of handling the nonlinear case will be addressed. 

5.2 Traditional Index-1 DAE Formulation for the Nonlinear 
Case 

The linear example can be extended to the nonlinear case by assuming the capacitor is 
a nonlinear capacitor, and that Ci+l = f(V1i+ l , Vr l) . The simplification of equation (58) 
is no longer valid , and dq/dt =I- CdV/dt, so it is necessary to keep track of q as a variable 
with respect to time. From a physical standpoint, q must be calculated as a function of time 
in order to enforce charge conservation . The easiest way to accomplish this is to add q to 
the system of solution variables, x, and add the equation defining q as a function of V to 
the system of equations, f . The DAE form is extended for the nonlinear case: 

dx 
f = Ax + B - + p ( x ) + r ( t ) = 0 

dt 
(72) 

The term p (x) represents the nonlinear terms. For the purposes of this example, assume 
that the charge on C A , q, is given by: 

(73) 

Co is a constant prefactor and not representative of the entire capacitance. The capaci
tance for C A is given by: 

C - q - Co + Co vl1 _ Co C T 7 
A - - - - - + o· V21 

V21 V21 V21 

Equation (73) is added to f . The full system of equations is now: 

o 1 
GB 0 
o 0 
o 

o 0 
o 0 
o 0 
o 0 
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(75) 

If, like before, we assume backward Euler (dq/dt = a(qi+l - qi)), the set of equations can 
be rewritten as: 

[A + aBJ xi+l +,BB + p (xt+l) + r(t) = 0 (76) 

where: 

A=[! 
0 1 0] GB o 0 

(77) 
0 o 0 
0 o 1 

[ ~ 
0 0 

~1 ] 
B= 

0 0 
0 0 
0 0 

(78) 

[ ~' ] Vi 
,B = -a 2 

I~rc 
(79) 

0 

I 0 
p(x) = 0 

-Co [1 + (V2 - Vl)2] 

(80) 

r(t) = [J ] 
drop 

0 

(81 ) 

Unlike in the linear case, this set of equations is a set of DAEs of index one. The con
version of this DAE to an index zero DAE will be described in the next section. It should 
be noted that if a different BDF formula (other than backward Euler) were used to obtain 
time derivatives, the only thing that would change in the above set of equations would be 
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equation (79) , the equation for (3 . For the nonlinear case, the Jacobian matrix is defined 
as: 

5p 
J = A + a B + 5xi+ l 

In the current example, the last term of equation (82) is given by: 

o 0 j o 0 
o 0 
o 0 

The final form for the Jacobian in this example is: 

1 a j o -a 
o 0 
o 1 

(82) 

(83) 

(84) 

The formulation described here is not the one used in Xyce or Spice3f5, but it is related . 
The time integration package used within Xyce was originally designed with the intention 
of using this formulation . For a variety of reasons (explained in the next section) , a differ
ent, more compact formulation is used instead. The consequences of using this compact 
scheme, in terms of its effect on error analysis, step-size control , stability, etc., are not clear 
at this point. 

5.3 Condensed DAE formulation in Xyce: State Variables 

The formulation used in Xyce (and Spice3f5) is more compact than that of the previous 
section, in that is not considered as a member of the solution vector, x. Removing q 

requires that the charge equation (73) be combined into some of the other equations of the 
system. If one takes the time derivative of the charge equation, and then substitutes the 
result into the appropriate KCL equations, the resulting set of equations is: 

f (x dx t) = 0 = , dt ' 

[ ~ (85) 
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This procedure appears to have the effect of reducing the index from one to zero, because 
now equation (85) is in a similar form to that of equation (62) before the application of the 
BDF. It is still a DAE, however, and not an ODE system . To reduce it further to an ODE 
system, one should follow the same procedure as outlined in equations (70) and (71), and 
remove the constraint equation for the voltage source. 

Generally the lower the index of a DAE, the easier it is to solve, although there can be 
unintended consequences. Another (perhaps more important) benefit of this condensation 
is that the size of the linear system has been reduced . As will be explained later, this type 
of equation elimination results in a very significant problem size reduction for most large 
circuits . This reduction bears some similarity to the derivation of the pressure-Poisson 
equation in fluid mechanics [4], and the use of the range-space method in constrained 
optimization problems [11] . In the case of circuit equations, this reduction does not remove 
all the constraint equations of the system, so the set of equations is still a set of DAEs, but 
with index zero. 

One issue of interest is that now the variables that are part of the solution vector, x, are 
no longer the same as the variables for which we need time derivatives. In this particular 
example, we need the time derivative of the capacitor charge, q, but we do not need time 
derivatives for VI, V2 or I vsrc . In this document, variables that are part of x will be referred 
to as solution variables , while variables that are not part of x but are needed by the time 
integration algorithm will be referred to as "state variables". 

This choice of naming convention is consistent with that of the data structures in Spice3f5, 
but it has the potential to cause confusion . The term , state variable, is often used as 
the equivalent of the term, solution variable, in much of the circuit simulation literature 
[9 , 7], and other contexts. Additionally, there exists a mathematical formulation of the 
circuit equations known as the "state variable formulation", in which the circuit equations 
are an implicit ODE system. Chua and Lin describe this formulation in detail [6] . This 
formulation is not commonly used in modern circuit simulators, as it has been proven that 
some circuits cannot be represented in this form. 

The inexact Jacobian used with the condensed form 

The condensed form described in the previous section has been implemented with one 
type of approximation made in the calculation of the Jacobian matrix. There is nothing 
about the condensed form that requires the use of this approximation , but it facilitates the 
implementation . This approximation is made in Spice3f5 and Xyce for the Jacobian matrix 
contributions associated with a nonlinear capacitor. The two-terminal nonlinear capacitor 
contributes the following stencil to the linear system: 
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I e 

(86) 

-Ie 

Generally, fJ!e/8Vl = -fJ!e / 8V2, so all the terms in the Jacobian stencil are of the same 
magnitude. Recall that the capacitor current is given by: 

I _ dq 
e - dt 

For the linear capacitor, this can be simplified to: 

I _ dV12 
e - dt 

Time derivatives are approximated , in general using a BDF: 

(87) 

(88) 

(89) 

For the purposes of calculating the Jacobian terms, only the leading term of the BDF is 
needed, as the partial derivatives used in the matrix are all in terms if new (i + 1) variables. 
So, for the linear capacitor, the form of the Jacobian term is: 

fJ! 
8V =a.C (90) 

For the nonlinear capacitor, C is dependent upon the capacitor voltage at i + 1, so for 
that case, equation (90) is not correct. However, in Spice3f5 and Xyce it is often (but not 
always) used anyway. For nonlinear problems it is often not necessary that the Jacobian 
be perfect, and that appears to be the case for circuit problems. However, this may turn 
out to be inadequate for optimization studies in the future [11] . It is not necessary to use 
this approximation in the compact state variable formulation, but implementation is easier, 
as it is not necessary to calculate the partial derivative of C with respect to V . Also, all 
capacitors types, both linear and nonlinear, are now handled in the same way. 

Reduction in Jacobian size resulting form the condensed form 

The impact of using the condensed formulation is significant enough that real life circuit 
codes (such as commercial implementations of SPICE [1] , and non-SPICE circuit codes 
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Gate 
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Figure 13. MOSFET model equivalent circu it. 

such as SABER [2]) always use it. The Jacobian matrix size can often be reduced by an 
order of magnitude, especially for highly interconnected digital circuits. For example, most 
MOSFET models are based on the equivalent circuit shown in Figure 13, which includes 
five internal nonlinear capacitors. 

A large circuit recently simulated in Xyce contained about 70,000 MOSFETs, and (com
paratively speaking) not much else. If the condensed formulation had not been used, the 
number of solution variables would have been over 350,000, requiring a 350,000 x 350,000 
sparse Jacobian matrix. However, with state variables, the total number of equations was 
on the order of 25 ,000, requiring (obviously) a much smaller 25 ,000 x 25,000 sparse Jaco
bian matrix. Unlike charge variables, which are not shared between devices, nodal voltage 
variables can be shared by many devices. As a result , if charge variables are eliminated, 
the number of solution variables can often be surprisingly small , possibly much smaller 
than the total number of devices in the circuit. 

Additional Notes 

As in the case of the nonlinear solver, Xyce also has many different options for time in
tegration. Time integration algorithms include backward Euler, BDF2, and Trapezoid rule. 
Additionally, the time integration package in Xyce employs a robust discontinuity capturing 
scheme. A complete list of current features, as well as instructions, is contained in the 
Xyce User's Guide [8]. 
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It should be noted that currently, the only option in Xyce is the condensed DAE form. 
The option for using the non-condensed traditional formulation, presented in the previous 
section, is not currently available (Xyce Release 2.0). As of this writing, the Xyce time 
integrator is in the process of being redesigned, so other formulations may be available in 
the future. 
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