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Abstract 
Obfuscation protects software by making the code more difficult to 
understand. We review a collection of obfuscation techniques. We then 
consider what would constitute a theory of obfuscation. Several 
possibilities that could lead to such a theory are explored. 
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1. Introduction 

This paper introduces a software protection approach known as obfuscation.* As the name implies, obfuscation protects software 
by obscuring, by making the code more difficult to understand. 

A theory of obfuscation has yet to be developed.' So at the moment we have to be satisfied with a list of techniques that appear to 
obfuscate. The bulk of this paper is therefore a list, developed by Collberg [3] 2, of such techniques. As one would expect in a field 
without a theory, Collberg's list is not exhaustive. This is highlighted by the inclusion later in this paper of obfuscation techniques 
described by several other researchers. The collection of techniques described in this paper seem adequate to introduce the concept of 
obfuscation. 

This paper is organized as follows: 

In Section 2. "Context" on page 2, we first provide context by explaining the three general approaches to software protection, 
based on Collberg [3]. 

In Section 3. "Threat Model" on page 2, we present a general obfuscation threat model. 

In Section 4. "What Does Obfuscated Code Look Like?" on page 3, we show by example how obfuscated code differs from 
encrypted code, exemplifying along the way the use of deception and complexity for obfuscation. 

In Section 5. "A Taxonomy of Obfuscation Techniques" on page 6, which constitutes the bulk of this paper, we present Collberg's 
taxonomy of obfuscation techniques referred to in the previous paragraph. 

In Section 6. "Other Obfuscation Techniques" on page 25, we present several obfuscation techniques by current researchers, 
namely Wroblewski, Wang, Hohl, and Ng. 

In Section 7. "Secure Function Evaluation" on page 32, we note briefly an alternative to obfuscation. 

In Section 8. "Towards a Theory of Obfuscation" on page 33, we present ideas on what a theory of obfuscation would look like. 

And in Section 9. "Conclusions" on page 37, we present conclusions. 

1. As Loureiro notes, " [Obfuscation's] major drawback is the lack of theoretical foundations in order to establish precise definitions of security, and accordingly to be able to quantify the 
security of the underlying transformations" ([5], page 21). 
2. For ease of reference we refer to Collberg, Thomborson, and Low's paper as though Collberg were the sole author. 
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2. Context 

There are three general approaches to software protection, according to Collberg [3], when the software owner does not have 
physical control of the executing machinery3: 

1. server-side execution, 
2. encryption, and 
3. obfuscation. 

Server-side execution protects software by never letting it leave the owner’s control. 

Encryption enables the owner to relinquish some control but not all. Encryption protects software by changing the bits comprising 
the code so that a key is needed to determine the nature of each bit. However, encrypted code must be decrypted before it is 
executable. This means that the code is available in plaintext on the executing machine. And this means that encrypted code is 
intended to be executed only within the owner’s sphere of trust. In other words only people the owner trusts should be allowed to 
have the decryption key. 

Obfuscation, on the other hand, protects software not by keeping it under the owner’s control and not by encrypting it but rather by 
making the code hard to understand. Obfuscation uses deception and complexity for this purpose. Obfuscated code can run 
anywhere (assuming portability). Obfuscated code is unlike encrypted code in that the obfuscated code remains in plaintext. 

Unfortunately there is at present no theory that would provide a path to determining the quantitative strength of current obfuscation 
techniques. Current qualitative comparison of techniques is based on little more than intuition. Even worse, since obfuscation as it is 
usually understood involves deceiving a human, it is likely that as the field develops so will the humans! So today’s obfuscation may 
not be tomorrow’s. 

A summary of these three approaches is shown in Table 1. 

3. Threat Model 
Any defense, such as obfuscation, is meaningful only in terms of an offense. Accordingly we provide a Threat Model. In this paper 
we presume that the adversary has possession of the obfuscated code in its entirety. We also presume that the adversary has the 
capability to execute the code, step-by-step if desired. The adversary’s initial goal is to understand both what the code is doing and 
how it is doing it. We presume that understanding the code is of interest to the adversary only within some span of time. The goal of 

3. Note that the approaches that Collberg describes are a proper subset of possible approaches. 
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Approach 

Server-side execution 

Encryption 

Obfuscation 

Description Advantages Disadvantages 
Never let the code leave the 
owner’s machine. owner’s control. web.a 

The code is always in the The code cannot traverse the 

The code should only be 
allowed to execute on 
machines owned by people 
trusted by the owner of the 
code. 

There is no theory of strength. 

Transform the bits constitut- 
ing a code. The code is unintelligible. 

Transform the code so that it 
is hard to understand. The code remains in cleartext. 

~~ 

a. If the code accepts input from outside then it may be possible for the adversary to corrupt the server via that input. 

obfuscation is therefore to deny the adversary that understanding within that span of time. We do not specify the length of that time 
span, just as we did not specify what kinds of automated tools are at the adversary’s disposal, and thus our Threat Model remains 
general. 

4. What Does Obfuscated Code Look Like? 

Encrypted code might look something like that shown in Figure 1. 

zl d R jQ53sjeluD @ sl dpw. R 

s@a# 
rgbuj & i#jwkmu*wd 

jfvpiz d3efkhvn#s 

I I 

Figure 1 Encrypted code (properly formatted) 
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The corresponding obfuscated code, on the other hand, might look like that shown in Figure 2. 

if ( ( (7*y*y)-1 == (X*X) 

printf ( ’hello” 1 ; 

printf ( “goodbye“ 1 ; 
else 

I I 

Figure 2 Obfuscated code 

The code in Figure 2 could pass for normal code. There are no glaring signs that it is obfuscated. This is not coincidence. However, 
what prints when the code in Figure 2 runs? If you answer that it obviously depends on the values of x and y, then you have fallen 
into the obfuscator’s trap: you will waste time chasing down the values for x and y. If the obfuscator4 can keep you in that or in 
similar traps for enough time then, based on our general Threat Model, the obfuscator benefits. The ideal for the obfuscator is to 
make the code look like normal code but upon inspection appear so complex that you eventually give up the task and call off the 
attack. This is the goal of obfuscation, within the constraint that the functionality of the original code remains in the obfuscated code. 

Figure 3 shows input from which the obfuscator could have generated the code for Figure 3. 

if ( false 

else 
printf (‘hello”) ; 

printf ( “goodbye” ) ; 
I 

Figure 3 An input for Figure 2 

In this example the obfuscator exploits the fact that 7y2 -1 f x2, for all integer values of x and y. The strength of this particular 
obfuscation technique depends upon the obscurity of that fact. Collberg’s note that this fact is well-known” ([3], page 23) may 
actually be bad news as far as its value for obfuscation is concerned. 

4. We use the term ” obfuscator” to denote a person who is most likely using a tool to protect software via the application of obfuscation. 
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However, consider the code in Figure 4. 

if ( ( (6*y*y) -1 == (X*X) 

else 
a += 2; 

a = a + 2 ;  

Figure 4 The predicate is unimportant 

In this example the predicate is sometimes true and sometimes false but it looks suspicious enough and enough like the predicate in 
Figure 2 that perhaps you would decide that you again have to figure out values for x and y. Perhaps the predicate is always true or 
always false for certain ranges of x and y? The predicate is complex enough that making those determinations would require 
significant time. But the values for x and y again do not matter because the effect of the code in both arms of the conditional is the 
same. The syntax of the statements in the arms in this example is simple enough to conclude their equivalence by inspection. 
However, imagine how difficult that conclusion would be to make in the face of an arbitrary amount of additional complexity. 

Or consider the code in Figure 5. 

goto 1; 
if ( ( (6*y*y)-1 ) == (x*x) ) 

else 

1: 

a += 2; 

a = a + 2 ;  

Figure 5 The If statement is unimportant 

In this case the entire IF statement is unimportant because the goto directs control around it: the IF statement never executes. 

As you may suspect, with obfuscation anything goes. There are no holds barred. If the obfuscator can deceive you into spending 
enough time trying to figure out extraneous complexities, then the obfuscator benefits. Deception usually is a matter of distracting 
you so that you focus your attention away from whatever is important. Meanwhile the complexity holds your attention. To succeed, 
the deception itself must not be noticed; the additions should blend in with the original code: they should be ” stealthy.” 
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5. A Taxonomy of Obfuscation Techniques 
A number of obfuscation techniques have been identified. The only taxonomy of obfuscation techniques of which we are aware is the 
one by Collberg [3].5 However, a general method to determine the strength of these techniques has not yet surfaced. We believe that 
the removal of information, such as comments, is effective to some degree and irreversible as well, but we can only make guesses 
about most of the rest. In a similar vein, we intuitively presume that applying additional techniques will result in additional 
obfuscation, but this may not be the case. There is no theory to guide us here. 

Collberg presents obfuscation techniques as transformations," emphasizing the change in the code that an application of the 
techniques will effect. The notation used in the presentation of Collberg's taxonomy is first presented in Table 2. 

Table 2 Notation (Sheet 1 of 2) 

Notation I T  
_ _ _ _ ~  

Meaning 

A predicate. In Java this is a boolean expression. In C this is an expression that 
evaluates to 0 (meaning false) or non-zero (meaning true). 

A predicate that always evaluates to true, independent of the values of any 
variables and functions used in the predicate. 
The first exam le at the right is of little value because it is obvious by inspec- 
tion that it is P . However, it is not so obvious that the second is also PT. 
The second predicate, shown above in Figure 2, is an example of what Collberg 
calls an " opaque" predicate. A predicate qualifies for this if it has some prop- 
erty q which is known a priori to the obfuscator but which is difficult for the 
deobfuscator to deduce" ([ 31, page 10). 

? 

A predicate that always evaluates to false. 

A predicate that sometimes evaluates to true and sometimes evaluates to false. 

Examples 
if ( P ) ... 
if ( Q ) ... 
if ( R )  ... 

if ( 1 ) ... 

if ((7 * y * y - 1) != (x*x) ) ... 

if ( 0 ) ... 

int i, j; 
read ( i, j ); 
if ( i  > j )  ... 

5. Viega & McGraw summarize " simple tricks" for obfuscation into three bullets: " 1. Add code that never executes, or that does nothing. 2. Move code around. 3. Encode your data 
oddly." (1131, pp. 422-3). They note that" these techniques amount to applying poor programming techniques" (ibid.) and that obfuscation is a "relatively uncharted area" ([13], page 74). 

6 ........................................... 
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Notation 

<name,=<value> 

S<integer> 

Table 2 Notation (Sheet 2 of 2) 

Meaning Examples 
i n t i = O , j =  1; 
i=0 

j=l 
s1; 
s2; 

A variable whose runtime value is known at compile time to be <value>. 

A series of statements, the precise nature of which is not important. 

Layout 

We present the structure of Collberg’s taxonomy in Table 3. 

Table 3 Collberg’s Taxonomy of Obfuscation Transformations (Sheet 1 of 3) 

Scramble identifiers 
Change formatting 
Remove comments 

7 



Table 3 Collberg’s Taxonomy of Obfuscation Transformations (Sheet 2 of 3) 

Aggregation 

Control 

Clone methods 
Block loop 

Transformation 
Inline method 
Outline statements 

Ordering 

I Interleave methodsa I 

Reorder loops 
Reorder expression 
Insert dead or irrelevant code 
Extend loop condition 

Computations 

I Unroll loop I 

Remove library calls and programming idioms 
Table interpretation 

Loop fission 
Reorder statements 

I [Convert] reducible to non-reducible flow graphs I 

I Add redundant operands I 
I Parallelize code I 

8 
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Table 3 Collberg’s Taxonomy of Obfuscation Transformations (Sheet 3 of 3) 

Data 

Preventive 

Storage & Encoding 

Transformation 
Change encoding 
Promote scalars to obiects 

Aggregation 

Ordering 

Targeted 

Inherent 

Change variable lifetimes 
Split variables 
Convert static data to Drocedure 
Merge scalar variables 
Modify inheritance relations: factor class, false refactor 
classes. or add bonus class 
Split, merge, fold, flatten arrays 
Reorder instance variables 
Reorder methods 
Reorder arrays 

~~ 

(Specific to a particular deobfuscator) 
Add aliased formals [i.e., parameters] to prevent slicing 
Add variable dependencies to prevent slicing 
~~ 

Add bogus datadependencies 
Use oDaaue medicates with side-effects 
Make opaque predicates using difficult theorems 

a. i.e., interleave procedures1 subroutineslfunctions. 

In Table 4 we again present Collberg’s taxonomy, but this second presentation is augmented with examples. For pedagogical 
purposes the examples are presented in a high-level pseudo-code- sometimes to look like C and sometimes to look like Java- 
thereby sidestepping advanced issues involving compiler optimizations and decompilers. Most of the examples are Collberg’s. Some 
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of the examples are adaptations of Collberg’s examples. The examples we have invented are denoted with a superscripted dagger 6). 
Table 4 Collberg’s Taxonomy (with Examples) (Sheet 1 of 12) 

Before 
tint i, j ,  key; 

Transformation 
After 

int ml, functions, m2; 

U 

6 
cl 

Scramble identifiers 

Change formatting 

Remove comments 

Inline method 

Outline statements 

Example 

f o r  (i= 
0;i 

<n; i++ 
) {  j+= 

i; 1 
// keep your eye on variable i 

Replace the call to a method with the body of the method. The grouping of statements into a method 
represents information about those statements as a group. Inlining the method removes that infor- 
mation. In the very simple example below we presume that there is something important about the 
statements in method g for the programmer to take the time to make them into a separate method. 
By inlining those statements we have removed the aggregation and thus some of the information as 
well. 
tclass d 

void f 0 
{ 

I 

1 

{ 

g 0; 

void g 0 

s1; 
1 

class d 

void f 0 

s1; 

{ 

I 

1 
1 

1 
Replace one or more contiguous basic blocksa with a call to a method (and define the new method so 
that it contains those basic blocks). This transformation works by inserting extraneous information 
in the form of the construction of a new method that is not present in the original code. The adver- 
sary must expend effort to determine that the information represented by this new method is extra- 
neous. 

10 
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Table 4 Collberg’s Taxonomy (with Examples) (Sheet 2 of 12) 

Transformation 

Interleave methodsb 

Clone methods 

Block loop 

Unroll loop 

Examule 

Before 

+f ( x 1 ;  
g ( Y  1 ;  

private f (int i) { . . . } 
private g (int j )  { . . . } 

. . .  

Duplicate methods, then arrange inheritance SUC 
code. 
class d 
I 
1 

f0 { s1; } 

d a = new d() ; / /  declares and 
instantiates a to be of 
type d; 

a.f 0 ;  

+for ( int i = o ; i < n ; i++ 
b += a[i] ; 

+for ( int i = o ; i < n ; i++ 
b += a[i] ; 

After 

h ( 0, x 1 ;  
h ( 1, Y 1 ;  
private h ( int k, int ij ) 

if ( k = =  0 )  

else 

{ 

f ( ij 1 ;  

g ( ij 1 ;  
1 
iat syntactically different calls execute the same 

class 
class 
d a =  
e b =  
a.f 0 
a.gO 

e { g o { s 1 ; }  } 
d extends e { f 
new d o ;  
new e() ; 
/ /  executes S1 
/ /  executes S1 

b.g() ; / /  executes S1; 

int k = . . .  ; / /  k >= 0; 
for ( int j=O ; j<n/k ; j++ ) 
for ( int i=j*k; i<j*k+k ; i++ ) 
b += a[i] ; 

for ( int i=(n/k)*k ; i<n ; i++ ) 
b += a[il ; 

b = a[Ol ; 
if ( n > 0 ) b += a[ll; 
if ( n > 1 ) b += a[21 ; 
for ( int i = 3 ; i < n ; i++ ) 

b += a[i] ; 

11 



Table 4 Collberg’s Taxonomy (with Examples) (Sheet 3 of 12) 

Before After 
i n t  c = 0 ,  d = 0 ;  

Loop fission 

t f o r  ( i n t  i = o ; i < n ; i++ ) 
f o r  ( i n t  j =  0 ; j < n ; j + +  ) 

f o r  ( i n t  k = 0 ; k < n ; k++ ) 

z *=  a [ i l  [ j l  [ k l ;  

f o r  ( i n t  i = 0 ; i < n ; i++ ) 
a [ i ]  += j ;  

t i n t  c = 0 ;  
f o r  ( i n t  i = 0 ; i < n ; i++ ) 

c += a [ i l  + b [ i l  ; 

f o r  ( i n t  k = 0 ; k < n ; k++ ) 
f o r  ( i n t  i = 0 ; i n ; i++ ) 

f o r  ( i n t  j =  0 ; j < n ; j + +  ) 
z *= a [ i l  [ j l  [ k l ;  

f o r  ( i n t  i = n-1 ; i >= 0 ; i-- ) 
a [ i ]  += j ;  

f o r  ( i n t  i = 0 ; i < n ; i++ ) 

f o r  ( i n t  i = 0 ; i < n ; i++ ) 

c += d; 

c += a [ i l  ; 

d += b [ i ]  ; 

These transformations depend upon there being information in the original, lexical order. 

Reorder statements 

Reorder loops 

Reorder expression tares = 2 * p i  * r * r; I area  = r * 2 * r * p i ;  

12 
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Table 4 Collberg's Taxonomy (with Examples) (Sheet 4 of 12) 

3 E 
Y c s 

Transformation 

Insert dead or irrelevant 
code 

Extend loop condition 

Exa 

Before 

'Insert dead code : 

s1; 

Insert irrelevant code: 

+for ( int i = o ; i < n ; 
I 

1 
s1; 

i++ ) 

int i = 1; 
while ( i < 100 

s1; 
{ 

1 

After 
if ( pF) 

{ 

1 

{ 

1 

S2; / /  dead code; 

else 

s1; 

int j = 83; / /  83 is prime and thus 
highly suspicious and invites 
investigation, don't you think?; 
this comment placed here by your 
friendly obfuscator;' 

for ( int i = 0 ; i < n ; i++ ) 

s1; 
j += 7 ; //another suspicious 

{ 

number? ; 

/ /  no use of i here; 
1 

int i = 1, j = 100; 
while ((i<lOO) && ( ( j * j * ( j + l )  * 

( j + l ) )  % 4 == o ) ~ )  
/ /  x2 ( ~ + 1 ) ~  mod 4 = 0 for all positive 
integer values of x; 

s1; 
j *= i+3; 

/ /  no use of j here; 

{ 

1 



Table 4 Collberg’s Taxonomy (with Examples) (Sheet 5 of 12) 

Example 
Transformation 

[Convert] reducible to 
non-reducible flow graphs 

Remove library calls and 
programming idioms 

Table interpretation 

Before 

do 

s1; 
{ 

} while ( P ) ;  

After 
1: if ( Q? ) 

2: s1; 
if ( P ) goto 3; 
goto 4; 

3: s1; 
if ( P )  
I 

1 

if ( R? goto 2; 
goto 1; 

~~ 

It may not be possible to remove calls to library routines since the routines are called using the name 
of the routine. However, new calls could be added such that, for example, a call to subtract is actu- 
ally a call to pow, as we show below. 

x = pow( a, b ) ;  / /  x = ab; 

float subtract ( int i, int j ) 

{ 
I return (pow(i, j ) ) ;  

. . .  
x = subtract (a, b); 

Convert a subset of the target code such that the subset must be unconverted prior to its execution. 
In its simplest form this requires calling a method, possibly embedded in the full program some- 
where, that at runtime unconverts the converted code. This could be done in Java by using the 
equivalent of an additional virtual machine: the original bytecodes would be converted, then, at 
runtime, the additional virtual machine would unconvert them and pass them on to the normal vir- 
tual machine. This approach is akin to encryption and to Aucsmith [2]. 

14 
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Table 4 Collberg's Taxonomy (with Examples) (Sheet 6 of 12) 

(d 
U 

6 

Transformation 

Add redundant operands 

Parallelize code 

Change encoding 

Promote scalars to objects 

Example 

Before After 
x = x + v ;  x = x + v * i='; 
z = m + 1 ;  z = m +  (-J / k ) / 2; 

This can obscure the control flow if the sequence in which the parallel elements execute is deter- 
mined at runtime. Two routines that could run in either order are an example of where this transfor- 
mation could be applied. 

int i = 1; 
while ( i < 1000) 

. . .  a[il . . .  ; 
{ 

1 

int i = 1; 
while ( i < 9 ) 

. . . a[il . . .  ; 
i++; 

I 

1 

int i = 11; 
while ( i < 8003 1 

. . . a[(i-3)/81 . . . ; 
i += 8; 

I 

1 
myInt ( ) extends Object 

int k; 
myInt (int j) { k=j; } 
public inc ( )  { k++; } 
public int get ( )  

{ 

{return k;) 
1 
. . .  
myInt i = new myInt ( 1 ) ;  
while ( i.get() < 9 ) 

. . . a[i.getOl . . .  ; 
i.inc0; 

I 
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Table 4 Collberg’s Taxonomy (with Examples) (Sheet 7 of 12) 

Transformation 

Change variable lifetimes 

Split variables 

Exa 

Before 

/ /  i is not globally defined; 
f 0 

int i = 10; 
. . .  i . . .  ; / /  no call to g; 

{ 

1 

{ 
0 

/ /  i is not defined here; 
int k = 20; 
. . .  k . . .  ; / /  no call to f; 

1 

boo1 a, b; 
a = true; 
b = false; 
if ( a ) . . .  ; 
if ( b ) . . .  ; 

After 
int i; 
f 0 

i = 10; 
... i . . .  ; 

I 

1 

{ 
0 

i = 20; 
. . .  i . . .  ; 
/ /  k is changed to i throughout 

routine ; 
1 
short al, a2, bl, b2; 
a1 = 0 ;  a2 = 1; / /  a = true; 
bl = 0; b2 = 0; / /  b = false; 
/ /  or: a1 = 1; a2 = 0 ;  / /  a=true; 
/ /  or: bl = 1; b2 = 1; / /  b=false; 
int x = 2*al+a2; 
if ((x==l) I I (x==2)). . .; //if (a) 
if ( val (bl, b2) ) . . .  ; //if(b) 

int val ( int i, int j ) 

if ( i = = O )  

else 

{ 

return ( j ) ;  

return ( ( j  + 1) % 2 1 ;  
1 
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Table 4 Collberg's Taxonomy (with Examples) (Sheet 8 of 12) 

Transformation 

Convert static data to pro- 
cedure 

Merge scalar variables 

Example 

Before 

System.out.prir In ( "ABA" ; 

After 
myprint (1) ; 
/ /  myPrint(2) does not terminate; 
String myprint( int k ) 

int i=O; char c; String s; 
while ( 1 ) { 

{ 

switch ( k ) 

case ( 0 )  : c='A'; k=4; 
{ 

break ; 
case (1 
break ; 
case (2 
break ; 
case (3 
break ; 
1 
s .append (c) ; 
if ( k>3 ) return ( s ) ;  

1 

This transformation assumes that the combined ranges of the original variables fit within the range 
of the new variable. In this example two 32-bit values, x and y, are stored in one 64-bit value, z. x is 
stored in the least significant bits; y is stored in the most significant bits: z = Z3' + (y * 232) + x. So, if z 
= 4294967296 then this represents x = y = 0 since Z3' = 4294967296. 

int x = 45, y = 100; 
x += 4; 
y += 10; 

long z = 433791696941; 
/ /  z = 4294967296 + 429496729600 + 45 

z += 4; 
/ /  z = 433791696945 
z += 42949672960; 
/ /  z = 433791696945 + 42949672960 = 

= 232 + (100 * 232) + 45; 

+ 10 * 232; 
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Table 4 Collberg’s Taxonomy (with Examples) (Sheet 9 of 12) 

Before 
Transformation 

After 

Modify inheritance rela- 
tions: factor class, false 
refactor classes or add 
bogus class 

Split, merge, fold, flatten 
arrays 

‘class a extends b 

void f ( 1  { . . . }  
void g 0 { . . . }  

{ 

1 

class c extends b 

1 

{ 

1 

class a extends c 

void g ( )  { . . . }  
void h 0 { .  . . }  / /  bogus 

Shown below is an example of splitting an array making multiple arrays out of one. Merging arrays 
is the inverse operation, making one array out of many. Folding (flattening) involves increasing 
(decreasing) an array’s dimensions. Note that splitting and folding add extraneous information and 
merging and flattening remove existing information. 

I int a1 [41,  a2 [41 ; 
if ( ( i % 2 ) = = 0 )  

. . .  al[i/2] . . .  
else 

. . .  a2[i/2] . . .  

int a [91 ; 
. . .  a[il . . .  ; 
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Table 4 Collberg's Taxonomy (with Examples) (Sheet 10 of 12) 

Example 
Transformation I 

Before After 
These transformations refer to declarations. Their effectiveness depends upon there being information in that original, lexical 
ordering. Changing the ordering is intended to remove that information. 

Reorder instance variables 

Reorder methods 

Reorder arrays 

Targeted 

As an example assume that there are several pairs of variables where each pair works in tandem and 
is independent of the other pairs. Mixing up the declaration order may remove some of this informa- 
tion. 
+int i, j; int 1, m, k; 
int k, 1; int i; 
int m, n; int n, j; 
As an example assume that the order of the appearance of the methods in a given class is from gen- 
eral to specific. Mixing up that order forces the adversary to determine the generality or specificity 
of each method. 
As an example assume that the order of the declaration for a given collection of arrays is the order in 
which operations are performed on the arrays and that execution ordering is important in some way. 
Mixing up that order forces the adversary to determine that execution ordering. 
The purpose is to " explore known problems in current deobfuscators" ([3], page 24). Collberg gives 
an example from HoseMocha that adds " extra instructions after every return statement in the source 
program" which does not change the behavior of the program but causes the Mocha decompiler to 
crash. 

The purpose is to " make known automatic deobfuscation techniques difficult" ([3], page 24). 
Add aliased formals [i.e., 
parameters] to prevent 
[i.e., inhibit] slicing 

{ . . .  f ( &i ) ;  . . .  } { . . .  f ( &i, &i 1 ;  . . .  } 
f ( int *j  ) { . . . } f ( int *j, int *k ) { . . .  } 

f 0 Y c 

,-c int x = 1; 
if ( pF) 

, -  x++ ; 

{ f 0 ; 
5 Add variable dependen- { 

cies to prevent [i.e., int x = 1; 
x = x x  5 ;  x = x + y=o; 

x = x * 3 ;  
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Table 4 Collberg's Taxonomy (with Examples) (Sheet 11 of 12) 

Before 
Transformation 

After 

Add bogus data depend- 
cies 

Use opaque predicates 
with side-effects 

Example 

In this example if the adversary removes one but not both of the predicates, k will overflow and 
crash the executable, assuming that an int is stored in 32 bits using 2s complement. 

.. s1; . . .  5 2 ;  . . .  } 

- 
i n t  k = 0 ;  

k += 2147483647;  
/ /  2147483647 = 231-1 
re turn  (pT)  

k -=  2147483647;  
r e t u r n  (pT)  
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Table 4 Collberg's Taxonomy (with Examples) (Sheet 12 of 12) 

Before 

........................................... 
After 

Transformation 

Make opaque predicate 
using difficult theorems 

sion, of course]), but difficult to deobfuscate" ([3] 

{ . . .  s1; . . .  s 2 ;  . . .  } 

,age 26). 

{ 
. . .  
s1; 
i n t  n = random ( 1, 2147483647 1 ;  
/ /  2147483647 =231-1 
do 

n = ( ( n % 2 )  ! = O ) ? ( 3 * n  
+ 1) : ( n / 2 ) ;  

while ( n 1 ) ;  
s 2  ; 
. . .  
1 

a. A "basic block" is a sequence of statements such that if the first statement executes then every other statement in the block will execute. 
b. i.e., interleave procedures1 subroutineslfunctions. 
c. Adding misleading comments is not in Collberg's taxonomy, perhaps because it would be so hard to automate effectively. 

As we noted above, neither Collberg nor anyone else that we know of has arrived at a theory that would determine the strength of an 
obfuscation. This is a limiting situation. If it is not clear how strong a given obfuscation technique is, if it is not even clear how strong 
the technique is relative to another technique, then obfuscation is still a curiosity and not ready for the marketplace, though this has 
not stopped a number of companies from offering obfuscators (and deobfuscators) for sale. 

Although Collberg has not provided a theory of strength, he has provided categories that such a theory might use. Collberg 
considers that the quality" of a given obfuscation transformation is a function of what he refers to as " potency," resilience," and 
" cost." Collberg defines potency as a measure of the strength of a given transformation against a human de-obfuscator. Resilience is a 
measure of the strength of a given transformation against an automated de-obfuscator. And cost is a measure of both the anticipated 
increased execution time and increased code size of a given transformation (and not the time or space required to perform the 
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obfuscation). Collberg provides a scale for each category, as shown in Table 5 (see [3], Table 2). 

Table 5 Performance 

(No description provided.) 

Reauires an exDonentia1 amount of resources: 0(~1. whe 
I I I  \1 I ~ 

Quality 1 1  Quality is a functiona of Potency, Resilience, and Cost. 

a. There is no point in asking what function quality is a function of since we do not have values for the measures. 

Using intuition Collberg then applies the performance categories shown in Table 5 to the taxonomy of obfuscation transformations 
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...... ...................................... 
Transformation 

Scramble identifiers 

shown in Table 3, which we show in Table 6. 

Potency 
medium 

Table 6 Quality of Collberg's Transformations (Sheet 1 of 2) 

Remove comments 
Inline method 
Outline statements 

Layout 
~ 

high 

medium 

Aggregation 

Table interpretation 

Ordering 

high 

Computations 

Parallelize code high strong costly 

Change formatting II low 

Quality 

Resilience I cost 

one-way 
free 

strong 
Interleave methodsa 
Clone methods 

Depends on the quality of the opaque predicateb 

Block loop 
Unroll loop 
Loop fission 
Reorder statements 
Reorder loops 
Reorder expression 

low 

weak cheap 

free 
one-way 

Insert dead or irrelevant code II 

I Depends on the quality of the opaque predicate 
and the nesting; depth at which the construct is inserted. Extend loop condition 

- 1  

[Convert] reducible to non-reducible flow araDhs 1 1  

Remove library calls and programming idioms 1 1  medium 
strong 

Depends on 
issues outside the 
scope of this table. 

I costlv 
Depends on the quality of the opaque predicate I( and the nesting depth at which the construct is inserted. 
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Table 6 Quality of Collberg’s Transformations (Sheet 2 of 2) 

Transformation 

Change encoding 

Storage & 
Encoding 

Quality 

Potency Resilience cost 
Depends on the complexity of the encoding function. 

Aggregation 

Promote scalars to objects 
Change variable lifetimes 

low 

Ordering 

strong free 

Targeted 

Merge scalar variables 

Inherent 

low weak 1 1  medium Modify inheritance relations: factor class, false refac- 
tor classes, or add bogus class 

Depends on 
issues outside the 
scope of this table. 

Convert static data to procedure 1 1  Depends on the complexity of the generated function. 

Split, merge, fold, flatten arrays 
Depends on 

issues outside the weak 
scope of this table. 

v 

Add variable dependencies to prevent slicing 
Add bogus data dependencies 
Use opaque predicates with side-effects 
Make opaque predicates using difficult theorems 

I 

Depends on the quality of the opaque predicate. 
cheap 

medium weak 
free 

Depends on issues outside the scope of this table. 

Reorder instance variables 
Reorder methods 
Reorder arrays 
(Specific to a particular deobfuscator) trivial 

1 1  medium strong I Add aliased formals [i.e., parameters] to prevent slic- 
ing 

free 

free 
(fold is cheap) 

free 

a. i.e., interleave procedures1 subroutineslfunctions. 
b. See Table 2 on page 6 for an explanation of “opaque predicates.” 

24 ........................................... 



6. Other Obfuscation Techniques 

Name 

Wroblewski 

Wang 

Hohl 

In this Section we present the obfuscation techniques presented by several other people, namely Wroblewski, Wang, Hohl, and Ng. 
These particular researchers represent what we believe to be a sample of the current work in obfuscation. They also span the 
spectrum from addressing very low level code (Wroblewski) to addressing very high level code (Ng). In Table 7 we show how these 
approaches fit within Collberg’s taxonomy presented in Section 5.. It is significant that for as many transformations as Collberg has 
fleshed out there appear to be a few more. We have no way now of knowing how many more there might yet still be. 

~~ 

Techniques 

From Collberg’s Taxonomy Not Included in Collberg’s Taxonomy 
replacement; 
complex insertion 
flattening; 
aliasing 
conversion of control flow elements into 

deDosited kevs 

control ordering 

(Collberg has one mention of aliasing but it is 
a severe subset of Wang.) 

split variables value-dependent jumps; 

Table 7 Relationship to Collberg’s Taxonomy 

6.1 Wroblewski 

Wroblewski [16] operates on assembly language code and uses four obfuscation techniques: 
1. reordering of instructions and blocks, 
2. replacement, 
3. simple insertion, and 
4. complex insertion6 

The first and third techniques fit in Collberg’s control ordering” category, with a little stretch. The other two techniques are not 
explicitly in Collberg’s taxonomy. 

........................................... 

6. Wroblewski does not name his two insertion types. 

25 



Instructions and blocks that share no dependencies can be reordered. If dependencies are shared, then additional control structure 
will need to be added in the form of jumps to preserve the original ordering. Code that has no relevance to the current context can 
always be inserted. This is simple insertion. If for a sequence of statements there is an equivalent sequence, then that equivalent 
sequence can replace the original one. For example, the following two code fragments (from [2]) 

temp = a ;  
a = b; 
b = temp; 

and 
a = a O b ;  
b = a @ b ;  
a = a O b ;  

where a, b, and temp are all of the same scalar type and 0 denotes XOR, are functionally equivalent but not equivalent in terms of 
the ease with which the general programmer will understand that they both swap values. 

If the effect of the code on the current context can be later undone, then code that changes the current context can also be inserted, 
along with, at some other point in the program, the code that will undo that addition. This is complex insertion. 

Note that Wroblewski presumes more analysis on a larger scale than does Collberg. 

6.2 Wang 
Wang [ 151 uses two techniques: 

1. flattening” and 
2. aliasing. 

Collberg does not include flattening in his taxonomy. Collberg includes one mention of aliasing, but it is a severe subset of the 
technique Wang uses. 

Flattening, as Wang describes it, is the process of converting the control structure of a procedure to a ” universal” structure, as shown 

7. Not to be confused with Collberg’s array flattening. 

26 ........................................... 



in Figure 6 (taken from Wang, Figure 4.4, page 66). 

while ( 1  

switch ( )  
{ 

<procedure body> 
{ 

I 
1 

Figure 6 Universal Control Structure 

The blocks' of the procedure become the statements of the switch. The statements that are at the same time both inside of the while 
statement and outside of the switch statement control the variable that determines which statement in the switch is executed next. 
For example, consider the procedure shown in Figure 7. 

int a, b; 
a = 1; 

while ( a c 10 ) 

b = a + b ;  
if ( b > 1 0 )  

a++ ; 

b = 2 ;  

{ 

b--; 

I 
use (b) ; 

Figure 7 Sample Procedure 

8. A "block" is a sequence of instructions for which both of the following two conditions hold: (1) no instruction in the sequence is the target of ajump except pos- 
sibly the first instruction, and (2 )  there is no jump instruction in the sequence except possibly the last instruction. That is, blocks are defined such that (a) jump tar- 
gets are always at the beginning of a block and (b) jump instructions are always at the end of a block. 
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An equivalent universal structure for the code in Figure 7 is shown in Figure 8. 

i n t  swVar = 1; 
while ( swVar < 7 

switch (swVar) 
{ 

{ 
case 

case 

case 

case 

case 

case 

(1) : 
a = 1; b = 2 ;  
swVar = 2 ;  break: 
( 2 )  : 
i f  ( !  (a  < 1 0 ) )  swVar = 6 ;  
e l s e  swVar = 3 ;  
break; 
(3) : 
b = b + a ;  
i f  ( !  (b  > 10)) swVar = 5;  
e l s e  swVar = 4 ;  
break; 
( 4 )  : 
b-- ;  swVar = 5;  
break ; 
( 5 )  : 
a++;  swVar = 2 ;  
break; 
( 6 )  : 
use (b) ; swVar = 7 ;  
break ; 

I 
1: 

Figure 8 Universal Structure Equivalent of Figure 7a 
a. Wang uses goto statements instead of a switch in this example. 
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Note that the control-flow in Figure 7 has been converted into the data-flow in Figure 8. The code in Figure 8 is not difficult to 
decipher because the values assigned to swVar are hardcoded. However, consider replacing statements such as swVar = 2;” with 
swVar = g[g[5] +g[g[23]]];” where g is a global integer array whose values are changed every so often during execution. (And now 

imagine adding several levels of indirection, as in &[***ill, where *i happens at the moment to be g[2] and **i happens to be &i.) 

The other technique that Wang uses is aliasing: using more than one name for the same memory location. In general resolving aliases 
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is undecidable. Several examples are shown in Figure 9. 

Global and local reference aliasing: 
int *i = . . . ;  
main0 { f(&i); . . .  } 
f (int **j)  { 

int *k = * j ;  
ck and i now point to the same location> 
. . .  

Parameter aliasing: 
f (&i, &i); 

Aliasing through return values: 
f 0 { 

int *i = . . . /  *j  = . . .  ; 
j = g  ( & i  1 ;  
ci and j now point to the same location> 
. . .  

1 
int *g (int **a { return ( *a ) ;  } 

Aliasing through side effects: 
f 0 { 

* '  int *i = . . . /  J = . . .  ; 
g ( &ir & j  1 ;  
ci and j now point to the same location> 
. . .  

1 
g ( int **ar int **b ) { a = b; } 

Figure 9 Alias Examples 
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6.3 Hohl 

In this early paper Hohl [4] suggests the use of the following techniques: 
1. variable recomposition," 
2. conversion of control flow elements into value-dependent jumps," and 
3. deposited keys." 

Variable recomposition is what Collberg would call " split variables." The second approach approximates what Wang would call 

the code could fetch the values that determine control flow. Riordan & Schneier use a similar approach [9]. 
flattening." The third approach gets values at runtime from some external source, thereby hindering static analysis. For example, 

6.4 Ng 

Ng [7] uses one technique: 
1. intention obfuscation. 

This technique does not appear in Collberg's taxonomy. 

Ng operates within the context of agents and he is interested in the intention" of the code: what is the information that the owner 
wants to know? The easiest way to understand what Ng is talking about is to give an example. Consider the shopping agent shown 
in very high-level pseudo-code in Figure 10. 

What i s  the pr ice  of your apples? 

Figure 10 A Shopping Agent 

We presume that the intention" of the agent's owner (i.e., what the owner of the agents wants to know) is self-evident from the code 
in Figure 10, that the price of apples is really the information that is wanted. This intention could be a little obscured- or, as Ng 



would say, the entropy would be increased- if the agent owner sent the agent shown in Figure 11 instead. 

The intention woulc 

What is the price of your apples and the 
price of your oranges? 

Figure 11 A Second Shopping Agent 

be further obscured if the owner sent agents as shown in Figure 12 to additional stores, stores from which the 
agent owner would not consider buying (perhaps their quality is low). 

What is the price of your pears and the 
price of your grapefruits? 

Figure 12 A Third Shopping Agent 

Even if an adversary were to receive the results of all of the agents, that adversary would still not be able to determine the intention 
of the agent owner. 

Note that Ng is operating at a level above the code, at what he might call the intention" level. 

7. Secure Function Evaluation 

Another approach to the problem of software protection is what is known as secure function evaluation" or computing with 
encrypted functions." For example the scheme that Sander & Tschudin [12] present uses additive and mixed multiplicative 
homomorphic properties of the Goldwasser-Micali probabilistic encryption scheme. That is, if we let E(x)" denote the encryption of 
data item x, then there are efficient algorithms to compute E(x + y) given E(x) and E(y) and to compute E(xy) given E(x) and y. These 

9. There are generally two types of problem involved with the protection of data as opposed to function. One type, known as ' secure multi-party computation" or " hiding data from 
an oracle," is typified by Yao's "Millionaire's Problem" [17]: two millionaires want to find out who is wealthier but do not want to reveal to the other their wealth. The other type of 
problem is known as a computing with encrypted data" [111 (see also [l]) and uses homomorphic encryption schemes: E(x) op Ek) = E(x op y), where E(x)" represents the encrypted 
value of data item x and ' op" represents an operation. The code owner encrypts x and y, obtaining E(x) and Ek) respectively, and sends E(x) and Ek) to an adversary who executes op 
on them and sends back z = E(x) op E O ,  whereupon the code owner decrypts the return value to get the plaintext result: D(z) = D(E(x) op E O )  = D(E(x op y)) = x op y. Both types suffer 
from high complexity and are currently considered open research problem. 
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........................................... 
properties enable Sander & Tschudin to protect computations with polynomials. The scheme is restricted to polynomial/rational 
functions. Loureiro notes that whereas obfuscation lacks a theoretical foundation this approach applies to more limited models such 
as circuits" and they have a large complexity associated with each bit of outputn ([5], page 27). 

8. Towards a Theory of Obfuscation 

As we have already noted a theory of obfuscation is not available today. If and when we have one, we will have more than intuition 
at our disposal when we compare two obfuscated programs. We would like to be able to determine which program provides more 
obfuscation. This would enable us to rank order obfuscations. The goal, unfortunately, is more grandiose: we would like to be able to 
determine the lower bounds in time for an adversary to break the obfuscation. In this section we consider different possibilities for 
such a theory. 

To begin, consider the list of techniques that Collberg has provided (see Section 5. "A Taxonomy of Obfuscation Techniques" on 
page 6). It is logical to presume that if one of these techniques is good, then two might be better. But it is possible that some sets of 
techniques work against each other, weakening the set, possibly reducing the obfuscation, maybe even making the program easier to 
understand.We have no guide here- we are flying blind, so to speak- so we do not know what will happen. Instead of applying a 
set of techniques, perhaps we could iteratively obfuscate and deobfuscate, choosing obfuscation techniques at each iteration. Given 
the reasonable assumption that deobfuscators do not always generate the original program, this approach might mimic the " wearing 
out" of code that makes legacy code eventually unmaintainable. This appears to use entropy to our advantage- an unusual 
arrangement. For this application we would like to know the relationship between number of iterations and obfuscation strength. 
But again we have no guide. Worse, the inevitable bugs in the obfuscators and deobfuscators work against us. What confidence do 
we have that the final obfuscated product has the same input/output behavior as the original program? This line of reasoning 
suggests that for a theory of obfuscation we need to get below" the techniques and look for an ideal, for a perfect obfuscation 
sys tem . 

Cryptography has a model of a perfect cryptosystem, namely the Vernam cipher, also known as the one-time pad: a random and 
never re-used key stream of zeros and ones is XORed with the input, which also consists of zeros and ones. Presuming that the key 
stream is random and is never re-used, then the cipher stream is perfectly secure. This system has actually been used, though it is 
impractical for most purposes. The value of the scheme is primarily its ideal nature. Is there a similar ideal scheme for obfuscation 
that would serve as a starting point? 

Yes, as a matter of fact, there is such an ideal scheme for obfuscation. Unfortunately it is even less practical than the Vernam cipher. 
Here is the scheme: ask the adversary to run all ossible programs for n steps- the length of our program- on all possible inputs, 
reporting the output whenever a program halts!' when the input and program we want halts, then we have our answer. At some 
point thereafter we tell the adversary to stop charging us for compute cycles. We could call this Vernam obfuscation," to suggest 
that this is a perfect method of obfuscation. Surprisingly there is no obfuscation involved! Our program is run as is. We protect our 
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program by hiding it amongst many other programs. Although this is a completely impractical approach it does provide us with a 
starting point. 

We can make Vernam obfuscation increasingly efficient" by limiting the size and the range of the input or the number of programs 
executed, but as we do so we provide the adversary with more information, narrowing the adversary's search space. Does this 
process narrow the adversary's search space faster than what we gain in efficiency? What is the shape of the function that describes 
the trade-off between efficiency and security? 

Unfortunately, the Vernam obfuscation approach seems to lack a workload advantage." We want to show two results 
simultaneously. First, we want to show that for a given program with n steps that the adversary has to pay an exponential price to 
break the obfuscation. That is, the adversary has to consider m" programs, where m > 1. We could call this " possible program 
explosion." Second, we want to show that for the same program we have to pay only a linear price, or maybe only a polynomial 
price, to create the obfuscation and execute the resulting obfuscated program. If we can show these two results, then we have the 
adversary over a barrel," as the expression is, and we are on our way to a theory of obfuscation. 

Perhaps we could construct Vernam obfuscation by building a program that uses p instructions for each instruction in the original 
program. Rivest [lo] presents a cryptographic approach, called winnowing," that provides privacy via integrity that is similar to 
this. The idea of winnowing, in the extreme, is that the sender sends both a zero and a one for each bit in the message. For each zero 
and for each one, the sender includes a Message Authentication Code (MAC) such that for each pair of bits only one MAC will 
authenticate. The receiver recovers the message by winnowing," by discarding as chaff" the bit in each pair that does not 
authenticate. The message, like an obfuscated program, is in plaintext, but the message is afforded privacy because it is hidden, in a 
sense: the adversary does not know which bit of each pair is part of the message. So the adversary has to consider all 2" possible 
messages. This is the workload advantage. Can we make this approach work for obfuscation? 

We could begin by considering an approach that for simplicity uses two instructions for each of the n instructions in the original 
program. We obfuscate by adding a phony" instruction for each real instruction. The adversary is forced to winnow the real 
instructions from the phony ones. 

The problem we have that the winnowing message-sender does not have is state: state persists between instructions. The adversary 
in the winnowing case has to consider all 2" possible messages because either the zero or the one of each pair can be in the message. 
But this is not the case with our program. For example, the following shows pairs of instructions for each step in the obfuscated 
program: 

10. Of course any reasonable adversary would run the programs using dovetailing so that he is not caught trying to complete a program that does not halt. 
11. Or perhaps it is better to say, " decreasingly inefficient." 
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........................................... 
step i: load register 1 from address ... 

(another instruction that does not use or load register 1) 

step i+l: load register 1 from address ... 

(another instruction) 

The adversary knows that the instruction in step i from the original program is not the load, simply because that load is immediately 
overwritten in the next step.” The first load is dead“ code. 

Our task is to construct a program such that any (or at least enough) of the instructions at step i could be part of a program that uses 
any (or at least enough) of the instructions at step i+l (or some subsequent step), for any (or at least enough) i in the range of n. This 
is the first piece of the puzzle. 

The second piece of the puzzle is the use of a key. Like cryptography the same obfuscation algorithm operating on the same program 
should produce a different obfuscated program given a different key. Using Kerckhoff’s assumption, the security of the scheme 
should rest as much as possible on the security of the key alone. If we can align obfuscation with that assumption, then we can use 
results from cryptography to help with a theory of obfuscation. 

Assuming the simplest approach, namely that the obfuscator adds one instruction for each instruction in the original program, the 
key could be used to determine whether the original or the phony (i.e., the added instruction) instruction comes first, as suggested in 
Table 8. 

12. Unless, of course, the instruction at step i in the original program is not the equivalent of a no-op. 
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Step Sample Key Bit a 

(real instruction 0) 
(phony instruction 0) 

0 0 

Instruction Sequence 

(phony instruction 1) 
(real instruction 1) 

3 

(phony instruction 2) 
(real instruction 2) 

1 2 

(real instruction 3) 
0 (phony instruction 3) 

I ... I ... I ... I 
a. If the i* bit of the key is 0, then the real instruction for the i* pair is the first in the pair, otherwise 
it is the second in the pair. 

We presume that the key would be necessary to extract the results of program execution. This would suggest that a superset of the 
output of the original program should be sent back as a result of execution to the obfuscator’s computer. Perhaps that superset could 
be something like a trace [ 131. Although this suggests that this approach could provide execution integrity, and privacy of execution, 
code, and data,13 it is not clear what output should be generated. 

The key could, like a one-time pad, have as many bits as the program has instructions and thus be just as random as keys for the 
Vernam cipher. Unlike the Vernam cipher the key never has to leave the owner’s control. 

Unfortunately we have not addressed how we get a sufficient possible program explosion via this approach. That is, which 

13. This approach is too loosely defined to determine if it precludes the adversary from violating execution integrity by returning bogus output. Since some of the instructions inserted 
for obfuscation will execute, perhaps they could also serve to generate a result that provides a check on execution integrity. 
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instructions do we use for the phony ones? 

Is either puzzle piece possible? To our knowledge these are open questions. 

However, before we leave this topic, consider another twist. Rivest points out that what we consider chaff" could actually be 
another message.14 In fact there could be m messages all interleaved in some random way known only to the sender.15 Each of the m 
recipients, using its unique key, can separate its wheat (the bits in the message intended for that recipient) from the chaff (the bits 
intended for some other recipient, or the bits that really are chaff, included to confuse the adversary). As the broadcast stream 
continues, some messages complete while new ones begin as the quantity of true chaff waxes and wanes. Applying this to 
obfuscation, can we combine two programs such that it is infeasible for the adversary to untangle them? 

........................................... 

The problem again is state. The state of a program includes the contents of some registers (at least the program counter) and some 
portion of memory (at least the data that is contributing to the output). We are tempted at this point to appeal to functional 
programming [6] because of referential transparency: a functional programming function depends only on its inputs. The same 
function always returns the same results given the same inputs; it is independent of state. This is a step toward messages that consist 
of zeros and ones that also carry no state. This suggests that instead of considering instructions as our basic unit of obfuscated 
programs, as we have in the discussion above, we should consider functional programming functions. l6 This is counter-intuitive 
because these objects are at a higher level of abstraction than instructions and thus more likely to be easier to understand.17 But such 
functions are more mutually-independent and thus more amenable to winnowing. Recall that the zeros and ones in winnowing are 
by themselves perfectly easy to understand. Is there light ahead? 

Finally we need to consider steganography. This is the study of hidden messages. The goal is for the adversary to be unaware of even 
the existence of a hidden message. Would this work for obfuscation? That is, could there be such things as hidden programs? 

9. Conclusions 

We have taken a quick tour of obfuscation, starting with its context and a general threat model, to a brief understanding of the use of 
deception and complexity, to Collberg's taxonomy of obfuscation transformations, to a summary of the techniques used by four 

14. That is, one man's wheat is another man's chaff. 
15. The collecting of many programs in order to protect each has some similarities to the Crowds system for anonymity of web transactions [8]. 
16. There is a subtlety here. What the adversary sees could consist of assembly language statements generated by a compiler, just as we have tacitly assumed in the discussion further 
above. But if we are using functional programming functions, then alternatively and without loss of protection what the adversary sees could consist of high-level language statements 
since we presume that the adversary could decompile that assembly language into a high-level language. If the obfuscation is done properly, then the high-level language form would 
still be too difficult to understand. 
17. Indeed, the intent of functional programming is to make programs easier to understand, not harder. 
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representative researchers in the field, to a passing note on an alternative to obfuscation, and finally to thoughts on a theory of 
obfuscation. 

Conventional software wisdom holds that obfuscation is the natural state of software, that like entropy, obfuscation in software tends 
to monotonically increase over time. Of all man-made artifacts software may be unique in that it never wears out. But oddly enough 
it still has to be maintained." And even with careful attention it can still slip through our fingers into oblivion, forcing an entire re- 
write of the code at sometimes enormous expense. The whole field of software engineering can be seen as an effort to hold in check 
that constant drift. So it is curious that when we willfully attempt to push that drift along to some impenetrable state that we find 
ourselves without tools or gauges, without maps or signposts or even milestones, moving about in a kind of software Sargasso Sea. 
Perhaps the more we learn about obfuscation the more we will learn about the true nature of software. 
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