
I ...
SAND REPORT

Unlimited Release
Printed June 2004

SAN D2004-2 1 98

An

Philip L. Campbell

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, Cal
Sandia is a multiprogram laboratory operated by San

94AL85000.
National Nuclear Security Administration under Contract DE-ACO

Y
Approved for public release; further dissemination unlimited.
An Introduction to Software Obfuscation

on

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily

state or reflect those of the United States Government, any agency thereof, or any of their contractors

0

...
SAND2004-2198

Unclassified Unlimited Release
Printed June 2004

An Introduction
to

Software Obfuscation
Philip L. Campbell

Networked Systems Survivability & Assurance Department
Sandia National Laboratories

P. 0. Box 5800
Albuquerque, New Mexico 87185-0785

Abstract
Obfuscation protects software by making the code more difficult to
understand. We review a collection of obfuscation techniques. We then
consider what would constitute a theory of obfuscation. Several
possibilities that could lead to such a theory are explored.

I-

...
Table of Contents

1 . Introduction .. 1

2 . Context ... 2
3 . Threat Model ... 2

4 . What Does Obfuscated Code Look Like? ... 3

5 . A Taxonomy of Obfuscation Techniques .. 6

6 . Other Obfuscation Techniques ... 25
6.1 Wroblewski .. 25
6.2 Wang ... 26
6.3 Hohl .. 31
6.4 Ng .. 31

7 . Secure Function Evaluation .. 32

8 . Towards a Theory of Obfuscation ... 33
9 . Conclusions ... 37

References .. 39

i

List of Figures
Figure 1 . Encrypted code (properly formatted) ... 3

Figure 2 . Obfuscated code .. 4
Figure 3 . An input for Figure 2 .. 4

Figure 4 . The predicate is unimportant ... 5
Figure 5 . The If statement is unimportant .. 5
Figure 6 . Universal Control Structure ... 27

Figure 7 . Sample Procedure .. 27
Figure 8 . Universal Structure Equivalent of Figure 7 ... 28

Figure 9 . Alias Examples ... 30

Figure 10 . A Shopping Agent ... 31

Figure 12 . A Third Shopping Agent .. 32

Figure 11 . A Second Shopping Agent ... 32

List of Tables
Table 1 . Three Approaches to Software Protection ... 3

Table 2 . Notation .. 6

Table 3 . Collberg's Taxonomy of Obfuscation Transformations ... 7

Table 4 . Collberg's Taxonomy (with Examples) .. 10

Table 6 . Quality of Collberg's Transformations ... 23

Table 7 . Relationship to Collberg's Taxonomy .. 25
Table 8 . Initial Part of an Obfuscated Program .. 36

Table 5 . Performance .. 22 . 11

0

...
1. Introduction

This paper introduces a software protection approach known as obfuscation.* As the name implies, obfuscation protects software
by obscuring, by making the code more difficult to understand.

A theory of obfuscation has yet to be developed.' So at the moment we have to be satisfied with a list of techniques that appear to
obfuscate. The bulk of this paper is therefore a list, developed by Collberg [3] 2, of such techniques. As one would expect in a field
without a theory, Collberg's list is not exhaustive. This is highlighted by the inclusion later in this paper of obfuscation techniques
described by several other researchers. The collection of techniques described in this paper seem adequate to introduce the concept of
obfuscation.

This paper is organized as follows:

In Section 2. "Context" on page 2, we first provide context by explaining the three general approaches to software protection,
based on Collberg [3].

In Section 3. "Threat Model" on page 2, we present a general obfuscation threat model.

In Section 4. "What Does Obfuscated Code Look Like?" on page 3, we show by example how obfuscated code differs from
encrypted code, exemplifying along the way the use of deception and complexity for obfuscation.

In Section 5. "A Taxonomy of Obfuscation Techniques" on page 6, which constitutes the bulk of this paper, we present Collberg's
taxonomy of obfuscation techniques referred to in the previous paragraph.

In Section 6. "Other Obfuscation Techniques" on page 25, we present several obfuscation techniques by current researchers,
namely Wroblewski, Wang, Hohl, and Ng.

In Section 7. "Secure Function Evaluation" on page 32, we note briefly an alternative to obfuscation.

In Section 8. "Towards a Theory of Obfuscation" on page 33, we present ideas on what a theory of obfuscation would look like.

And in Section 9. "Conclusions" on page 37, we present conclusions.

1. As Loureiro notes, " [Obfuscation's] major drawback is the lack of theoretical foundations in order to establish precise definitions of security, and accordingly to be able to quantify the
security of the underlying transformations" ([5], page 21).
2. For ease of reference we refer to Collberg, Thomborson, and Low's paper as though Collberg were the sole author.

1

2. Context

There are three general approaches to software protection, according to Collberg [3], when the software owner does not have
physical control of the executing machinery3:

1. server-side execution,
2. encryption, and
3. obfuscation.

Server-side execution protects software by never letting it leave the owner’s control.

Encryption enables the owner to relinquish some control but not all. Encryption protects software by changing the bits comprising
the code so that a key is needed to determine the nature of each bit. However, encrypted code must be decrypted before it is
executable. This means that the code is available in plaintext on the executing machine. And this means that encrypted code is
intended to be executed only within the owner’s sphere of trust. In other words only people the owner trusts should be allowed to
have the decryption key.

Obfuscation, on the other hand, protects software not by keeping it under the owner’s control and not by encrypting it but rather by
making the code hard to understand. Obfuscation uses deception and complexity for this purpose. Obfuscated code can run
anywhere (assuming portability). Obfuscated code is unlike encrypted code in that the obfuscated code remains in plaintext.

Unfortunately there is at present no theory that would provide a path to determining the quantitative strength of current obfuscation
techniques. Current qualitative comparison of techniques is based on little more than intuition. Even worse, since obfuscation as it is
usually understood involves deceiving a human, it is likely that as the field develops so will the humans! So today’s obfuscation may
not be tomorrow’s.

A summary of these three approaches is shown in Table 1.

3. Threat Model
Any defense, such as obfuscation, is meaningful only in terms of an offense. Accordingly we provide a Threat Model. In this paper
we presume that the adversary has possession of the obfuscated code in its entirety. We also presume that the adversary has the
capability to execute the code, step-by-step if desired. The adversary’s initial goal is to understand both what the code is doing and
how it is doing it. We presume that understanding the code is of interest to the adversary only within some span of time. The goal of

3. Note that the approaches that Collberg describes are a proper subset of possible approaches.

2 ...

...
Approach

Server-side execution

Encryption

Obfuscation

Description Advantages Disadvantages
Never let the code leave the
owner’s machine. owner’s control. web.a

The code is always in the The code cannot traverse the

The code should only be
allowed to execute on
machines owned by people
trusted by the owner of the
code.

There is no theory of strength.

Transform the bits constitut-
ing a code. The code is unintelligible.

Transform the code so that it
is hard to understand. The code remains in cleartext.

~~

a. If the code accepts input from outside then it may be possible for the adversary to corrupt the server via that input.

obfuscation is therefore to deny the adversary that understanding within that span of time. We do not specify the length of that time
span, just as we did not specify what kinds of automated tools are at the adversary’s disposal, and thus our Threat Model remains
general.

4. What Does Obfuscated Code Look Like?

Encrypted code might look something like that shown in Figure 1.

zl d R jQ53sjeluD @ sl dpw. R

s@a#
rgbuj & i#jwkmu*wd

jfvpiz d3efkhvn#s

I I

Figure 1 Encrypted code (properly formatted)

3

The corresponding obfuscated code, on the other hand, might look like that shown in Figure 2.

if (((7*y*y)-1 == (X*X)

printf (’hello” 1 ;

printf (“goodbye“ 1 ;
else

I I

Figure 2 Obfuscated code

The code in Figure 2 could pass for normal code. There are no glaring signs that it is obfuscated. This is not coincidence. However,
what prints when the code in Figure 2 runs? If you answer that it obviously depends on the values of x and y, then you have fallen
into the obfuscator’s trap: you will waste time chasing down the values for x and y. If the obfuscator4 can keep you in that or in
similar traps for enough time then, based on our general Threat Model, the obfuscator benefits. The ideal for the obfuscator is to
make the code look like normal code but upon inspection appear so complex that you eventually give up the task and call off the
attack. This is the goal of obfuscation, within the constraint that the functionality of the original code remains in the obfuscated code.

Figure 3 shows input from which the obfuscator could have generated the code for Figure 3.

if (false

else
printf (‘hello”) ;

printf (“goodbye”) ;
I

Figure 3 An input for Figure 2

In this example the obfuscator exploits the fact that 7y2 -1 f x2, for all integer values of x and y. The strength of this particular
obfuscation technique depends upon the obscurity of that fact. Collberg’s note that this fact is well-known” ([3], page 23) may
actually be bad news as far as its value for obfuscation is concerned.

4. We use the term ” obfuscator” to denote a person who is most likely using a tool to protect software via the application of obfuscation.

4 ...

...
However, consider the code in Figure 4.

if (((6*y*y) -1 == (X*X)

else
a += 2;

a = a + 2 ;

Figure 4 The predicate is unimportant

In this example the predicate is sometimes true and sometimes false but it looks suspicious enough and enough like the predicate in
Figure 2 that perhaps you would decide that you again have to figure out values for x and y. Perhaps the predicate is always true or
always false for certain ranges of x and y? The predicate is complex enough that making those determinations would require
significant time. But the values for x and y again do not matter because the effect of the code in both arms of the conditional is the
same. The syntax of the statements in the arms in this example is simple enough to conclude their equivalence by inspection.
However, imagine how difficult that conclusion would be to make in the face of an arbitrary amount of additional complexity.

Or consider the code in Figure 5.

goto 1;
if (((6*y*y)-1) == (x*x))

else

1:

a += 2;

a = a + 2 ;

Figure 5 The If statement is unimportant

In this case the entire IF statement is unimportant because the goto directs control around it: the IF statement never executes.

As you may suspect, with obfuscation anything goes. There are no holds barred. If the obfuscator can deceive you into spending
enough time trying to figure out extraneous complexities, then the obfuscator benefits. Deception usually is a matter of distracting
you so that you focus your attention away from whatever is important. Meanwhile the complexity holds your attention. To succeed,
the deception itself must not be noticed; the additions should blend in with the original code: they should be ” stealthy.”

5

5. A Taxonomy of Obfuscation Techniques
A number of obfuscation techniques have been identified. The only taxonomy of obfuscation techniques of which we are aware is the
one by Collberg [3].5 However, a general method to determine the strength of these techniques has not yet surfaced. We believe that
the removal of information, such as comments, is effective to some degree and irreversible as well, but we can only make guesses
about most of the rest. In a similar vein, we intuitively presume that applying additional techniques will result in additional
obfuscation, but this may not be the case. There is no theory to guide us here.

Collberg presents obfuscation techniques as transformations," emphasizing the change in the code that an application of the
techniques will effect. The notation used in the presentation of Collberg's taxonomy is first presented in Table 2.

Table 2 Notation (Sheet 1 of 2)

Notation I T
_ _ _ _ ~

Meaning

A predicate. In Java this is a boolean expression. In C this is an expression that
evaluates to 0 (meaning false) or non-zero (meaning true).

A predicate that always evaluates to true, independent of the values of any
variables and functions used in the predicate.
The first exam le at the right is of little value because it is obvious by inspec-
tion that it is P . However, it is not so obvious that the second is also PT.
The second predicate, shown above in Figure 2, is an example of what Collberg
calls an " opaque" predicate. A predicate qualifies for this if it has some prop-
erty q which is known a priori to the obfuscator but which is difficult for the
deobfuscator to deduce" ([31, page 10).

?

A predicate that always evaluates to false.

A predicate that sometimes evaluates to true and sometimes evaluates to false.

Examples
if (P) ...
if (Q) ...
if (R) ...

if (1) ...

if ((7 * y * y - 1) != (x*x)) ...

if (0) ...

int i, j;
read (i, j);
if (i > j) ...

5. Viega & McGraw summarize " simple tricks" for obfuscation into three bullets: " 1. Add code that never executes, or that does nothing. 2. Move code around. 3. Encode your data
oddly." (1131, pp. 422-3). They note that" these techniques amount to applying poor programming techniques" (ibid.) and that obfuscation is a "relatively uncharted area" ([13], page 74).

6 ...

...
Notation

<name,=<value>

S<integer>

Table 2 Notation (Sheet 2 of 2)

Meaning Examples
i n t i = O , j = 1;
i=0

j=l
s1;
s2;

A variable whose runtime value is known at compile time to be <value>.

A series of statements, the precise nature of which is not important.

Layout

We present the structure of Collberg’s taxonomy in Table 3.

Table 3 Collberg’s Taxonomy of Obfuscation Transformations (Sheet 1 of 3)

Scramble identifiers
Change formatting
Remove comments

7

Table 3 Collberg’s Taxonomy of Obfuscation Transformations (Sheet 2 of 3)

Aggregation

Control

Clone methods
Block loop

Transformation
Inline method
Outline statements

Ordering

I Interleave methodsa I

Reorder loops
Reorder expression
Insert dead or irrelevant code
Extend loop condition

Computations

I Unroll loop I

Remove library calls and programming idioms
Table interpretation

Loop fission
Reorder statements

I [Convert] reducible to non-reducible flow graphs I

I Add redundant operands I
I Parallelize code I

8

0

Table 3 Collberg’s Taxonomy of Obfuscation Transformations (Sheet 3 of 3)

Data

Preventive

Storage & Encoding

Transformation
Change encoding
Promote scalars to obiects

Aggregation

Ordering

Targeted

Inherent

Change variable lifetimes
Split variables
Convert static data to Drocedure
Merge scalar variables
Modify inheritance relations: factor class, false refactor
classes. or add bonus class
Split, merge, fold, flatten arrays
Reorder instance variables
Reorder methods
Reorder arrays

~~

(Specific to a particular deobfuscator)
Add aliased formals [i.e., parameters] to prevent slicing
Add variable dependencies to prevent slicing
~~

Add bogus datadependencies
Use oDaaue medicates with side-effects
Make opaque predicates using difficult theorems

a. i.e., interleave procedures1 subroutineslfunctions.

In Table 4 we again present Collberg’s taxonomy, but this second presentation is augmented with examples. For pedagogical
purposes the examples are presented in a high-level pseudo-code- sometimes to look like C and sometimes to look like Java-
thereby sidestepping advanced issues involving compiler optimizations and decompilers. Most of the examples are Collberg’s. Some

9

of the examples are adaptations of Collberg’s examples. The examples we have invented are denoted with a superscripted dagger 6).
Table 4 Collberg’s Taxonomy (with Examples) (Sheet 1 of 12)

Before
tint i, j , key;

Transformation
After

int ml, functions, m2;

U

6
cl

Scramble identifiers

Change formatting

Remove comments

Inline method

Outline statements

Example

f o r (i=
0;i

<n; i++
) { j+=

i; 1
// keep your eye on variable i

Replace the call to a method with the body of the method. The grouping of statements into a method
represents information about those statements as a group. Inlining the method removes that infor-
mation. In the very simple example below we presume that there is something important about the
statements in method g for the programmer to take the time to make them into a separate method.
By inlining those statements we have removed the aggregation and thus some of the information as
well.
tclass d

void f 0
{

I

1

{

g 0;

void g 0

s1;
1

class d

void f 0

s1;

{

I

1
1

1
Replace one or more contiguous basic blocksa with a call to a method (and define the new method so
that it contains those basic blocks). This transformation works by inserting extraneous information
in the form of the construction of a new method that is not present in the original code. The adver-
sary must expend effort to determine that the information represented by this new method is extra-
neous.

10

0

.

Table 4 Collberg’s Taxonomy (with Examples) (Sheet 2 of 12)

Transformation

Interleave methodsb

Clone methods

Block loop

Unroll loop

Examule

Before

+f (x 1 ;
g (Y 1 ;

private f (int i) { . . . }
private g (int j) { . . . }

. . .

Duplicate methods, then arrange inheritance SUC
code.
class d
I
1

f0 { s1; }

d a = new d() ; / / declares and
instantiates a to be of
type d;

a.f 0 ;

+for (int i = o ; i < n ; i++
b += a[i] ;

+for (int i = o ; i < n ; i++
b += a[i] ;

After

h (0, x 1 ;
h (1, Y 1 ;
private h (int k, int ij)

if (k = = 0)

else

{

f (ij 1 ;

g (ij 1 ;
1
iat syntactically different calls execute the same

class
class
d a =
e b =
a.f 0
a.gO

e { g o { s 1 ; } }
d extends e { f
new d o ;
new e() ;
/ / executes S1
/ / executes S1

b.g() ; / / executes S1;

int k = . . . ; / / k >= 0;
for (int j=O ; j<n/k ; j++)
for (int i=j*k; i<j*k+k ; i++)
b += a[i] ;

for (int i=(n/k)*k ; i<n ; i++)
b += a[il ;

b = a[Ol ;
if (n > 0) b += a[ll;
if (n > 1) b += a[21 ;
for (int i = 3 ; i < n ; i++)

b += a[i] ;

11

Table 4 Collberg’s Taxonomy (with Examples) (Sheet 3 of 12)

Before After
i n t c = 0 , d = 0 ;

Loop fission

t f o r (i n t i = o ; i < n ; i++)
f o r (i n t j = 0 ; j < n ; j + +)

f o r (i n t k = 0 ; k < n ; k++)

z *= a [i l [j l [k l ;

f o r (i n t i = 0 ; i < n ; i++)
a [i] += j ;

t i n t c = 0 ;
f o r (i n t i = 0 ; i < n ; i++)

c += a [i l + b [i l ;

f o r (i n t k = 0 ; k < n ; k++)
f o r (i n t i = 0 ; i n ; i++)

f o r (i n t j = 0 ; j < n ; j + +)
z *= a [i l [j l [k l ;

f o r (i n t i = n-1 ; i >= 0 ; i--)
a [i] += j ;

f o r (i n t i = 0 ; i < n ; i++)

f o r (i n t i = 0 ; i < n ; i++)

c += d;

c += a [i l ;

d += b [i] ;

These transformations depend upon there being information in the original, lexical order.

Reorder statements

Reorder loops

Reorder expression tares = 2 * p i * r * r; I area = r * 2 * r * p i ;

12

0

Table 4 Collberg's Taxonomy (with Examples) (Sheet 4 of 12)

3 E
Y c s

Transformation

Insert dead or irrelevant
code

Extend loop condition

Exa

Before

'Insert dead code :

s1;

Insert irrelevant code:

+for (int i = o ; i < n ;
I

1
s1;

i++)

int i = 1;
while (i < 100

s1;
{

1

After
if (pF)

{

1

{

1

S2; / / dead code;

else

s1;

int j = 83; / / 83 is prime and thus
highly suspicious and invites
investigation, don't you think?;
this comment placed here by your
friendly obfuscator;'

for (int i = 0 ; i < n ; i++)

s1;
j += 7 ; //another suspicious

{

number? ;

/ / no use of i here;
1

int i = 1, j = 100;
while ((i<lOO) && ((j * j * (j + l) *

(j + l)) % 4 == o) ~)
/ / x2 (~ + 1) ~ mod 4 = 0 for all positive
integer values of x;

s1;
j *= i+3;

/ / no use of j here;

{

1

Table 4 Collberg’s Taxonomy (with Examples) (Sheet 5 of 12)

Example
Transformation

[Convert] reducible to
non-reducible flow graphs

Remove library calls and
programming idioms

Table interpretation

Before

do

s1;
{

} while (P) ;

After
1: if (Q?)

2: s1;
if (P) goto 3;
goto 4;

3: s1;
if (P)
I

1

if (R? goto 2;
goto 1;

~~

It may not be possible to remove calls to library routines since the routines are called using the name
of the routine. However, new calls could be added such that, for example, a call to subtract is actu-
ally a call to pow, as we show below.

x = pow(a, b) ; / / x = ab;

float subtract (int i, int j)

{
I return (pow(i, j)) ;

. . .
x = subtract (a, b);

Convert a subset of the target code such that the subset must be unconverted prior to its execution.
In its simplest form this requires calling a method, possibly embedded in the full program some-
where, that at runtime unconverts the converted code. This could be done in Java by using the
equivalent of an additional virtual machine: the original bytecodes would be converted, then, at
runtime, the additional virtual machine would unconvert them and pass them on to the normal vir-
tual machine. This approach is akin to encryption and to Aucsmith [2].

14

0

Table 4 Collberg's Taxonomy (with Examples) (Sheet 6 of 12)

(d
U

6

Transformation

Add redundant operands

Parallelize code

Change encoding

Promote scalars to objects

Example

Before After
x = x + v ; x = x + v * i=';
z = m + 1 ; z = m + (-J / k) / 2;

This can obscure the control flow if the sequence in which the parallel elements execute is deter-
mined at runtime. Two routines that could run in either order are an example of where this transfor-
mation could be applied.

int i = 1;
while (i < 1000)

. . . a[il . . . ;
{

1

int i = 1;
while (i < 9)

. . . a[il . . . ;
i++;

I

1

int i = 11;
while (i < 8003 1

. . . a[(i-3)/81 . . . ;
i += 8;

I

1
myInt () extends Object

int k;
myInt (int j) { k=j; }
public inc () { k++; }
public int get ()

{

{return k;)
1
. . .
myInt i = new myInt (1) ;
while (i.get() < 9)

. . . a[i.getOl . . . ;
i.inc0;

I

15

Table 4 Collberg’s Taxonomy (with Examples) (Sheet 7 of 12)

Transformation

Change variable lifetimes

Split variables

Exa

Before

/ / i is not globally defined;
f 0

int i = 10;
. . . i . . . ; / / no call to g;

{

1

{
0

/ / i is not defined here;
int k = 20;
. . . k . . . ; / / no call to f;

1

boo1 a, b;
a = true;
b = false;
if (a) . . . ;
if (b) . . . ;

After
int i;
f 0

i = 10;
... i . . . ;

I

1

{
0

i = 20;
. . . i . . . ;
/ / k is changed to i throughout

routine ;
1
short al, a2, bl, b2;
a1 = 0 ; a2 = 1; / / a = true;
bl = 0; b2 = 0; / / b = false;
/ / or: a1 = 1; a2 = 0 ; / / a=true;
/ / or: bl = 1; b2 = 1; / / b=false;
int x = 2*al+a2;
if ((x==l) I I (x==2)). . .; //if (a)
if (val (bl, b2)) . . . ; //if(b)

int val (int i, int j)

if (i = = O)

else

{

return (j) ;

return ((j + 1) % 2 1 ;
1

16

Table 4 Collberg's Taxonomy (with Examples) (Sheet 8 of 12)

Transformation

Convert static data to pro-
cedure

Merge scalar variables

Example

Before

System.out.prir In ("ABA" ;

After
myprint (1) ;
/ / myPrint(2) does not terminate;
String myprint(int k)

int i=O; char c; String s;
while (1) {

{

switch (k)

case (0) : c='A'; k=4;
{

break ;
case (1
break ;
case (2
break ;
case (3
break ;
1
s .append (c) ;
if (k>3) return (s) ;

1

This transformation assumes that the combined ranges of the original variables fit within the range
of the new variable. In this example two 32-bit values, x and y, are stored in one 64-bit value, z. x is
stored in the least significant bits; y is stored in the most significant bits: z = Z3' + (y * 232) + x. So, if z
= 4294967296 then this represents x = y = 0 since Z3' = 4294967296.

int x = 45, y = 100;
x += 4;
y += 10;

long z = 433791696941;
/ / z = 4294967296 + 429496729600 + 45

z += 4;
/ / z = 433791696945
z += 42949672960;
/ / z = 433791696945 + 42949672960 =

= 232 + (100 * 232) + 45;

+ 10 * 232;

17

Table 4 Collberg’s Taxonomy (with Examples) (Sheet 9 of 12)

Before
Transformation

After

Modify inheritance rela-
tions: factor class, false
refactor classes or add
bogus class

Split, merge, fold, flatten
arrays

‘class a extends b

void f (1 { . . . }
void g 0 { . . . }

{

1

class c extends b

1

{

1

class a extends c

void g () { . . . }
void h 0 { . . . } / / bogus

Shown below is an example of splitting an array making multiple arrays out of one. Merging arrays
is the inverse operation, making one array out of many. Folding (flattening) involves increasing
(decreasing) an array’s dimensions. Note that splitting and folding add extraneous information and
merging and flattening remove existing information.

I int a1 [41, a2 [41 ;
if ((i % 2) = = 0)

. . . al[i/2] . . .
else

. . . a2[i/2] . . .

int a [91 ;
. . . a[il . . . ;

18 ...

Table 4 Collberg's Taxonomy (with Examples) (Sheet 10 of 12)

Example
Transformation I

Before After
These transformations refer to declarations. Their effectiveness depends upon there being information in that original, lexical
ordering. Changing the ordering is intended to remove that information.

Reorder instance variables

Reorder methods

Reorder arrays

Targeted

As an example assume that there are several pairs of variables where each pair works in tandem and
is independent of the other pairs. Mixing up the declaration order may remove some of this informa-
tion.
+int i, j; int 1, m, k;
int k, 1; int i;
int m, n; int n, j;
As an example assume that the order of the appearance of the methods in a given class is from gen-
eral to specific. Mixing up that order forces the adversary to determine the generality or specificity
of each method.
As an example assume that the order of the declaration for a given collection of arrays is the order in
which operations are performed on the arrays and that execution ordering is important in some way.
Mixing up that order forces the adversary to determine that execution ordering.
The purpose is to " explore known problems in current deobfuscators" ([3], page 24). Collberg gives
an example from HoseMocha that adds " extra instructions after every return statement in the source
program" which does not change the behavior of the program but causes the Mocha decompiler to
crash.

The purpose is to " make known automatic deobfuscation techniques difficult" ([3], page 24).
Add aliased formals [i.e.,
parameters] to prevent
[i.e., inhibit] slicing

{ . . . f (&i) ; . . . } { . . . f (&i, &i 1 ; . . . }
f (int *j) { . . . } f (int *j, int *k) { . . . }

f 0 Y c

,-c int x = 1;
if (pF)

, - x++ ;

{ f 0 ;
5 Add variable dependen- {

cies to prevent [i.e., int x = 1;
x = x x 5 ; x = x + y=o;

x = x * 3 ;

19

Table 4 Collberg's Taxonomy (with Examples) (Sheet 11 of 12)

Before
Transformation

After

Add bogus data depend-
cies

Use opaque predicates
with side-effects

Example

In this example if the adversary removes one but not both of the predicates, k will overflow and
crash the executable, assuming that an int is stored in 32 bits using 2s complement.

.. s1; . . . 5 2 ; . . . }

-
i n t k = 0 ;

k += 2147483647;
/ / 2147483647 = 231-1
re turn (pT)

k -= 2147483647;
r e t u r n (pT)

20

0

Table 4 Collberg's Taxonomy (with Examples) (Sheet 12 of 12)

Before

...
After

Transformation

Make opaque predicate
using difficult theorems

sion, of course]), but difficult to deobfuscate" ([3]

{ . . . s1; . . . s 2 ; . . . }

,age 26).

{
. . .
s1;
i n t n = random (1, 2147483647 1 ;
/ / 2147483647 =231-1
do

n = ((n % 2) ! = O) ? (3 * n
+ 1) : (n / 2) ;

while (n 1) ;
s 2 ;
. . .
1

a. A "basic block" is a sequence of statements such that if the first statement executes then every other statement in the block will execute.
b. i.e., interleave procedures1 subroutineslfunctions.
c. Adding misleading comments is not in Collberg's taxonomy, perhaps because it would be so hard to automate effectively.

As we noted above, neither Collberg nor anyone else that we know of has arrived at a theory that would determine the strength of an
obfuscation. This is a limiting situation. If it is not clear how strong a given obfuscation technique is, if it is not even clear how strong
the technique is relative to another technique, then obfuscation is still a curiosity and not ready for the marketplace, though this has
not stopped a number of companies from offering obfuscators (and deobfuscators) for sale.

Although Collberg has not provided a theory of strength, he has provided categories that such a theory might use. Collberg
considers that the quality" of a given obfuscation transformation is a function of what he refers to as " potency," resilience," and
" cost." Collberg defines potency as a measure of the strength of a given transformation against a human de-obfuscator. Resilience is a
measure of the strength of a given transformation against an automated de-obfuscator. And cost is a measure of both the anticipated
increased execution time and increased code size of a given transformation (and not the time or space required to perform the

21

obfuscation). Collberg provides a scale for each category, as shown in Table 5 (see [3], Table 2).

Table 5 Performance

(No description provided.)

Reauires an exDonentia1 amount of resources: 0(~1. whe
I I I \1 I ~

Quality 1 1 Quality is a functiona of Potency, Resilience, and Cost.

a. There is no point in asking what function quality is a function of since we do not have values for the measures.

Using intuition Collberg then applies the performance categories shown in Table 5 to the taxonomy of obfuscation transformations

22

0

......
Transformation

Scramble identifiers

shown in Table 3, which we show in Table 6.

Potency
medium

Table 6 Quality of Collberg's Transformations (Sheet 1 of 2)

Remove comments
Inline method
Outline statements

Layout
~

high

medium

Aggregation

Table interpretation

Ordering

high

Computations

Parallelize code high strong costly

Change formatting II low

Quality

Resilience I cost

one-way
free

strong
Interleave methodsa
Clone methods

Depends on the quality of the opaque predicateb

Block loop
Unroll loop
Loop fission
Reorder statements
Reorder loops
Reorder expression

low

weak cheap

free
one-way

Insert dead or irrelevant code II

I Depends on the quality of the opaque predicate
and the nesting; depth at which the construct is inserted. Extend loop condition

- 1

[Convert] reducible to non-reducible flow araDhs 1 1

Remove library calls and programming idioms 1 1 medium
strong

Depends on
issues outside the
scope of this table.

I costlv
Depends on the quality of the opaque predicate I(and the nesting depth at which the construct is inserted.

23

Table 6 Quality of Collberg’s Transformations (Sheet 2 of 2)

Transformation

Change encoding

Storage &
Encoding

Quality

Potency Resilience cost
Depends on the complexity of the encoding function.

Aggregation

Promote scalars to objects
Change variable lifetimes

low

Ordering

strong free

Targeted

Merge scalar variables

Inherent

low weak 1 1 medium Modify inheritance relations: factor class, false refac-
tor classes, or add bogus class

Depends on
issues outside the
scope of this table.

Convert static data to procedure 1 1 Depends on the complexity of the generated function.

Split, merge, fold, flatten arrays
Depends on

issues outside the weak
scope of this table.

v

Add variable dependencies to prevent slicing
Add bogus data dependencies
Use opaque predicates with side-effects
Make opaque predicates using difficult theorems

I

Depends on the quality of the opaque predicate.
cheap

medium weak
free

Depends on issues outside the scope of this table.

Reorder instance variables
Reorder methods
Reorder arrays
(Specific to a particular deobfuscator) trivial

1 1 medium strong I Add aliased formals [i.e., parameters] to prevent slic-
ing

free

free
(fold is cheap)

free

a. i.e., interleave procedures1 subroutineslfunctions.
b. See Table 2 on page 6 for an explanation of “opaque predicates.”

24 ...

6. Other Obfuscation Techniques

Name

Wroblewski

Wang

Hohl

In this Section we present the obfuscation techniques presented by several other people, namely Wroblewski, Wang, Hohl, and Ng.
These particular researchers represent what we believe to be a sample of the current work in obfuscation. They also span the
spectrum from addressing very low level code (Wroblewski) to addressing very high level code (Ng). In Table 7 we show how these
approaches fit within Collberg’s taxonomy presented in Section 5.. It is significant that for as many transformations as Collberg has
fleshed out there appear to be a few more. We have no way now of knowing how many more there might yet still be.

~~

Techniques

From Collberg’s Taxonomy Not Included in Collberg’s Taxonomy
replacement;
complex insertion
flattening;
aliasing
conversion of control flow elements into

deDosited kevs

control ordering

(Collberg has one mention of aliasing but it is
a severe subset of Wang.)

split variables value-dependent jumps;

Table 7 Relationship to Collberg’s Taxonomy

6.1 Wroblewski

Wroblewski [16] operates on assembly language code and uses four obfuscation techniques:
1. reordering of instructions and blocks,
2. replacement,
3. simple insertion, and
4. complex insertion6

The first and third techniques fit in Collberg’s control ordering” category, with a little stretch. The other two techniques are not
explicitly in Collberg’s taxonomy.

...

6. Wroblewski does not name his two insertion types.

25

Instructions and blocks that share no dependencies can be reordered. If dependencies are shared, then additional control structure
will need to be added in the form of jumps to preserve the original ordering. Code that has no relevance to the current context can
always be inserted. This is simple insertion. If for a sequence of statements there is an equivalent sequence, then that equivalent
sequence can replace the original one. For example, the following two code fragments (from [2])

temp = a ;
a = b;
b = temp;

and
a = a O b ;
b = a @ b ;
a = a O b ;

where a, b, and temp are all of the same scalar type and 0 denotes XOR, are functionally equivalent but not equivalent in terms of
the ease with which the general programmer will understand that they both swap values.

If the effect of the code on the current context can be later undone, then code that changes the current context can also be inserted,
along with, at some other point in the program, the code that will undo that addition. This is complex insertion.

Note that Wroblewski presumes more analysis on a larger scale than does Collberg.

6.2 Wang
Wang [151 uses two techniques:

1. flattening” and
2. aliasing.

Collberg does not include flattening in his taxonomy. Collberg includes one mention of aliasing, but it is a severe subset of the
technique Wang uses.

Flattening, as Wang describes it, is the process of converting the control structure of a procedure to a ” universal” structure, as shown

7. Not to be confused with Collberg’s array flattening.

26 ...

in Figure 6 (taken from Wang, Figure 4.4, page 66).

while (1

switch ()
{

<procedure body>
{

I
1

Figure 6 Universal Control Structure

The blocks' of the procedure become the statements of the switch. The statements that are at the same time both inside of the while
statement and outside of the switch statement control the variable that determines which statement in the switch is executed next.
For example, consider the procedure shown in Figure 7.

int a, b;
a = 1;

while (a c 10)

b = a + b ;
if (b > 1 0)

a++ ;

b = 2 ;

{

b--;

I
use (b) ;

Figure 7 Sample Procedure

8. A "block" is a sequence of instructions for which both of the following two conditions hold: (1) no instruction in the sequence is the target of ajump except pos-
sibly the first instruction, and (2) there is no jump instruction in the sequence except possibly the last instruction. That is, blocks are defined such that (a) jump tar-
gets are always at the beginning of a block and (b) jump instructions are always at the end of a block.

27

An equivalent universal structure for the code in Figure 7 is shown in Figure 8.

i n t swVar = 1;
while (swVar < 7

switch (swVar)
{

{
case

case

case

case

case

case

(1) :
a = 1; b = 2 ;
swVar = 2 ; break:
(2) :
i f (! (a < 1 0)) swVar = 6 ;
e l s e swVar = 3 ;
break;
(3) :
b = b + a ;
i f (! (b > 10)) swVar = 5;
e l s e swVar = 4 ;
break;
(4) :
b-- ; swVar = 5;
break ;
(5) :
a++; swVar = 2 ;
break;
(6) :
use (b) ; swVar = 7 ;
break ;

I
1:

Figure 8 Universal Structure Equivalent of Figure 7a
a. Wang uses goto statements instead of a switch in this example.

28 ...

Note that the control-flow in Figure 7 has been converted into the data-flow in Figure 8. The code in Figure 8 is not difficult to
decipher because the values assigned to swVar are hardcoded. However, consider replacing statements such as swVar = 2;” with
swVar = g[g[5] +g[g[23]]];” where g is a global integer array whose values are changed every so often during execution. (And now

imagine adding several levels of indirection, as in &[***ill, where *i happens at the moment to be g[2] and **i happens to be &i.)

The other technique that Wang uses is aliasing: using more than one name for the same memory location. In general resolving aliases

29

is undecidable. Several examples are shown in Figure 9.

Global and local reference aliasing:
int *i = . . . ;
main0 { f(&i); . . . }
f (int **j) {

int *k = * j ;
ck and i now point to the same location>
. . .

Parameter aliasing:
f (&i, &i);

Aliasing through return values:
f 0 {

int *i = . . . / *j = . . . ;
j = g (& i 1 ;
ci and j now point to the same location>
. . .

1
int *g (int **a { return (*a) ; }

Aliasing through side effects:
f 0 {

* ' int *i = . . . / J = . . . ;
g (&ir & j 1 ;
ci and j now point to the same location>
. . .

1
g (int **ar int **b) { a = b; }

Figure 9 Alias Examples

30 I

6.3 Hohl

In this early paper Hohl [4] suggests the use of the following techniques:
1. variable recomposition,"
2. conversion of control flow elements into value-dependent jumps," and
3. deposited keys."

Variable recomposition is what Collberg would call " split variables." The second approach approximates what Wang would call

the code could fetch the values that determine control flow. Riordan & Schneier use a similar approach [9].
flattening." The third approach gets values at runtime from some external source, thereby hindering static analysis. For example,

6.4 Ng

Ng [7] uses one technique:
1. intention obfuscation.

This technique does not appear in Collberg's taxonomy.

Ng operates within the context of agents and he is interested in the intention" of the code: what is the information that the owner
wants to know? The easiest way to understand what Ng is talking about is to give an example. Consider the shopping agent shown
in very high-level pseudo-code in Figure 10.

What i s the pr ice of your apples?

Figure 10 A Shopping Agent

We presume that the intention" of the agent's owner (i.e., what the owner of the agents wants to know) is self-evident from the code
in Figure 10, that the price of apples is really the information that is wanted. This intention could be a little obscured- or, as Ng

would say, the entropy would be increased- if the agent owner sent the agent shown in Figure 11 instead.

The intention woulc

What is the price of your apples and the
price of your oranges?

Figure 11 A Second Shopping Agent

be further obscured if the owner sent agents as shown in Figure 12 to additional stores, stores from which the
agent owner would not consider buying (perhaps their quality is low).

What is the price of your pears and the
price of your grapefruits?

Figure 12 A Third Shopping Agent

Even if an adversary were to receive the results of all of the agents, that adversary would still not be able to determine the intention
of the agent owner.

Note that Ng is operating at a level above the code, at what he might call the intention" level.

7. Secure Function Evaluation

Another approach to the problem of software protection is what is known as secure function evaluation" or computing with
encrypted functions." For example the scheme that Sander & Tschudin [12] present uses additive and mixed multiplicative
homomorphic properties of the Goldwasser-Micali probabilistic encryption scheme. That is, if we let E(x)" denote the encryption of
data item x, then there are efficient algorithms to compute E(x + y) given E(x) and E(y) and to compute E(xy) given E(x) and y. These

9. There are generally two types of problem involved with the protection of data as opposed to function. One type, known as ' secure multi-party computation" or " hiding data from
an oracle," is typified by Yao's "Millionaire's Problem" [17]: two millionaires want to find out who is wealthier but do not want to reveal to the other their wealth. The other type of
problem is known as a computing with encrypted data" [111 (see also [l]) and uses homomorphic encryption schemes: E(x) op Ek) = E(x op y), where E(x)" represents the encrypted
value of data item x and ' op" represents an operation. The code owner encrypts x and y, obtaining E(x) and Ek) respectively, and sends E(x) and Ek) to an adversary who executes op
on them and sends back z = E(x) op E O , whereupon the code owner decrypts the return value to get the plaintext result: D(z) = D(E(x) op E O) = D(E(x op y)) = x op y. Both types suffer
from high complexity and are currently considered open research problem.

32

0

...
properties enable Sander & Tschudin to protect computations with polynomials. The scheme is restricted to polynomial/rational
functions. Loureiro notes that whereas obfuscation lacks a theoretical foundation this approach applies to more limited models such
as circuits" and they have a large complexity associated with each bit of outputn ([5], page 27).

8. Towards a Theory of Obfuscation

As we have already noted a theory of obfuscation is not available today. If and when we have one, we will have more than intuition
at our disposal when we compare two obfuscated programs. We would like to be able to determine which program provides more
obfuscation. This would enable us to rank order obfuscations. The goal, unfortunately, is more grandiose: we would like to be able to
determine the lower bounds in time for an adversary to break the obfuscation. In this section we consider different possibilities for
such a theory.

To begin, consider the list of techniques that Collberg has provided (see Section 5. "A Taxonomy of Obfuscation Techniques" on
page 6). It is logical to presume that if one of these techniques is good, then two might be better. But it is possible that some sets of
techniques work against each other, weakening the set, possibly reducing the obfuscation, maybe even making the program easier to
understand.We have no guide here- we are flying blind, so to speak- so we do not know what will happen. Instead of applying a
set of techniques, perhaps we could iteratively obfuscate and deobfuscate, choosing obfuscation techniques at each iteration. Given
the reasonable assumption that deobfuscators do not always generate the original program, this approach might mimic the " wearing
out" of code that makes legacy code eventually unmaintainable. This appears to use entropy to our advantage- an unusual
arrangement. For this application we would like to know the relationship between number of iterations and obfuscation strength.
But again we have no guide. Worse, the inevitable bugs in the obfuscators and deobfuscators work against us. What confidence do
we have that the final obfuscated product has the same input/output behavior as the original program? This line of reasoning
suggests that for a theory of obfuscation we need to get below" the techniques and look for an ideal, for a perfect obfuscation
sys tem .

Cryptography has a model of a perfect cryptosystem, namely the Vernam cipher, also known as the one-time pad: a random and
never re-used key stream of zeros and ones is XORed with the input, which also consists of zeros and ones. Presuming that the key
stream is random and is never re-used, then the cipher stream is perfectly secure. This system has actually been used, though it is
impractical for most purposes. The value of the scheme is primarily its ideal nature. Is there a similar ideal scheme for obfuscation
that would serve as a starting point?

Yes, as a matter of fact, there is such an ideal scheme for obfuscation. Unfortunately it is even less practical than the Vernam cipher.
Here is the scheme: ask the adversary to run all ossible programs for n steps- the length of our program- on all possible inputs,
reporting the output whenever a program halts!' when the input and program we want halts, then we have our answer. At some
point thereafter we tell the adversary to stop charging us for compute cycles. We could call this Vernam obfuscation," to suggest
that this is a perfect method of obfuscation. Surprisingly there is no obfuscation involved! Our program is run as is. We protect our

33

program by hiding it amongst many other programs. Although this is a completely impractical approach it does provide us with a
starting point.

We can make Vernam obfuscation increasingly efficient" by limiting the size and the range of the input or the number of programs
executed, but as we do so we provide the adversary with more information, narrowing the adversary's search space. Does this
process narrow the adversary's search space faster than what we gain in efficiency? What is the shape of the function that describes
the trade-off between efficiency and security?

Unfortunately, the Vernam obfuscation approach seems to lack a workload advantage." We want to show two results
simultaneously. First, we want to show that for a given program with n steps that the adversary has to pay an exponential price to
break the obfuscation. That is, the adversary has to consider m" programs, where m > 1. We could call this " possible program
explosion." Second, we want to show that for the same program we have to pay only a linear price, or maybe only a polynomial
price, to create the obfuscation and execute the resulting obfuscated program. If we can show these two results, then we have the
adversary over a barrel," as the expression is, and we are on our way to a theory of obfuscation.

Perhaps we could construct Vernam obfuscation by building a program that uses p instructions for each instruction in the original
program. Rivest [lo] presents a cryptographic approach, called winnowing," that provides privacy via integrity that is similar to
this. The idea of winnowing, in the extreme, is that the sender sends both a zero and a one for each bit in the message. For each zero
and for each one, the sender includes a Message Authentication Code (MAC) such that for each pair of bits only one MAC will
authenticate. The receiver recovers the message by winnowing," by discarding as chaff" the bit in each pair that does not
authenticate. The message, like an obfuscated program, is in plaintext, but the message is afforded privacy because it is hidden, in a
sense: the adversary does not know which bit of each pair is part of the message. So the adversary has to consider all 2" possible
messages. This is the workload advantage. Can we make this approach work for obfuscation?

We could begin by considering an approach that for simplicity uses two instructions for each of the n instructions in the original
program. We obfuscate by adding a phony" instruction for each real instruction. The adversary is forced to winnow the real
instructions from the phony ones.

The problem we have that the winnowing message-sender does not have is state: state persists between instructions. The adversary
in the winnowing case has to consider all 2" possible messages because either the zero or the one of each pair can be in the message.
But this is not the case with our program. For example, the following shows pairs of instructions for each step in the obfuscated
program:

10. Of course any reasonable adversary would run the programs using dovetailing so that he is not caught trying to complete a program that does not halt.
11. Or perhaps it is better to say, " decreasingly inefficient."

34

0

...
step i: load register 1 from address ...

(another instruction that does not use or load register 1)

step i+l: load register 1 from address ...

(another instruction)

The adversary knows that the instruction in step i from the original program is not the load, simply because that load is immediately
overwritten in the next step.” The first load is dead“ code.

Our task is to construct a program such that any (or at least enough) of the instructions at step i could be part of a program that uses
any (or at least enough) of the instructions at step i+l (or some subsequent step), for any (or at least enough) i in the range of n. This
is the first piece of the puzzle.

The second piece of the puzzle is the use of a key. Like cryptography the same obfuscation algorithm operating on the same program
should produce a different obfuscated program given a different key. Using Kerckhoff’s assumption, the security of the scheme
should rest as much as possible on the security of the key alone. If we can align obfuscation with that assumption, then we can use
results from cryptography to help with a theory of obfuscation.

Assuming the simplest approach, namely that the obfuscator adds one instruction for each instruction in the original program, the
key could be used to determine whether the original or the phony (i.e., the added instruction) instruction comes first, as suggested in
Table 8.

12. Unless, of course, the instruction at step i in the original program is not the equivalent of a no-op.

35

Step Sample Key Bit a

(real instruction 0)
(phony instruction 0)

0 0

Instruction Sequence

(phony instruction 1)
(real instruction 1)

3

(phony instruction 2)
(real instruction 2)

1 2

(real instruction 3)
0 (phony instruction 3)

I ... I ... I ... I
a. If the i* bit of the key is 0, then the real instruction for the i* pair is the first in the pair, otherwise
it is the second in the pair.

We presume that the key would be necessary to extract the results of program execution. This would suggest that a superset of the
output of the original program should be sent back as a result of execution to the obfuscator’s computer. Perhaps that superset could
be something like a trace [131. Although this suggests that this approach could provide execution integrity, and privacy of execution,
code, and data,13 it is not clear what output should be generated.

The key could, like a one-time pad, have as many bits as the program has instructions and thus be just as random as keys for the
Vernam cipher. Unlike the Vernam cipher the key never has to leave the owner’s control.

Unfortunately we have not addressed how we get a sufficient possible program explosion via this approach. That is, which

13. This approach is too loosely defined to determine if it precludes the adversary from violating execution integrity by returning bogus output. Since some of the instructions inserted
for obfuscation will execute, perhaps they could also serve to generate a result that provides a check on execution integrity.

36 ...

instructions do we use for the phony ones?

Is either puzzle piece possible? To our knowledge these are open questions.

However, before we leave this topic, consider another twist. Rivest points out that what we consider chaff" could actually be
another message.14 In fact there could be m messages all interleaved in some random way known only to the sender.15 Each of the m
recipients, using its unique key, can separate its wheat (the bits in the message intended for that recipient) from the chaff (the bits
intended for some other recipient, or the bits that really are chaff, included to confuse the adversary). As the broadcast stream
continues, some messages complete while new ones begin as the quantity of true chaff waxes and wanes. Applying this to
obfuscation, can we combine two programs such that it is infeasible for the adversary to untangle them?

...

The problem again is state. The state of a program includes the contents of some registers (at least the program counter) and some
portion of memory (at least the data that is contributing to the output). We are tempted at this point to appeal to functional
programming [6] because of referential transparency: a functional programming function depends only on its inputs. The same
function always returns the same results given the same inputs; it is independent of state. This is a step toward messages that consist
of zeros and ones that also carry no state. This suggests that instead of considering instructions as our basic unit of obfuscated
programs, as we have in the discussion above, we should consider functional programming functions. l6 This is counter-intuitive
because these objects are at a higher level of abstraction than instructions and thus more likely to be easier to understand.17 But such
functions are more mutually-independent and thus more amenable to winnowing. Recall that the zeros and ones in winnowing are
by themselves perfectly easy to understand. Is there light ahead?

Finally we need to consider steganography. This is the study of hidden messages. The goal is for the adversary to be unaware of even
the existence of a hidden message. Would this work for obfuscation? That is, could there be such things as hidden programs?

9. Conclusions

We have taken a quick tour of obfuscation, starting with its context and a general threat model, to a brief understanding of the use of
deception and complexity, to Collberg's taxonomy of obfuscation transformations, to a summary of the techniques used by four

14. That is, one man's wheat is another man's chaff.
15. The collecting of many programs in order to protect each has some similarities to the Crowds system for anonymity of web transactions [8].
16. There is a subtlety here. What the adversary sees could consist of assembly language statements generated by a compiler, just as we have tacitly assumed in the discussion further
above. But if we are using functional programming functions, then alternatively and without loss of protection what the adversary sees could consist of high-level language statements
since we presume that the adversary could decompile that assembly language into a high-level language. If the obfuscation is done properly, then the high-level language form would
still be too difficult to understand.
17. Indeed, the intent of functional programming is to make programs easier to understand, not harder.

37

representative researchers in the field, to a passing note on an alternative to obfuscation, and finally to thoughts on a theory of
obfuscation.

Conventional software wisdom holds that obfuscation is the natural state of software, that like entropy, obfuscation in software tends
to monotonically increase over time. Of all man-made artifacts software may be unique in that it never wears out. But oddly enough
it still has to be maintained." And even with careful attention it can still slip through our fingers into oblivion, forcing an entire re-
write of the code at sometimes enormous expense. The whole field of software engineering can be seen as an effort to hold in check
that constant drift. So it is curious that when we willfully attempt to push that drift along to some impenetrable state that we find
ourselves without tools or gauges, without maps or signposts or even milestones, moving about in a kind of software Sargasso Sea.
Perhaps the more we learn about obfuscation the more we will learn about the true nature of software.

38

0

..............

References

[l] Mikhail J. Atallah, K. N. Pantazopoulos, John R. Rice, Eugene E. Spafford, " Secure Outsourcing of Scientific Computations." Advances in Com-
puters, Vol. 54, pp. 215-272. 2001.

[21 David Aucsmith, 'I Tamper Resistant Software: An Implementation." Lecture Notes in Computer Science. Vol. 11 74. Springer-Verlag, Berlin. pp.
316-333. 1996. 2 refs.

[3] Christian Collberg, Clark Thomborson, Douglas Low, " A Taxonomy of Obfuscating Transformations." Technical Report 148, Department of
Computer Science, University of Auckland. 1997.36 pages. 33 refs.

[4] Fritz Hohl, " Time Limited Blackbox Security: Protecting Mobile Agents from Malicious Hosts." Mobile Agents and Security. G. Vigna, editor.
Lecture Notes in Computer Science, Volume 1419, pp. 92-114, 1998. Springer-Verlag , Berlin. 13 refs.

[5] Sergio Loureiro, " Mobile Code Protection." Ecole Nationale Superieure des Telecommunications. Paris, France. January 26, 2001. 142 pages.

[6] Bruce J. MacLennan, Functional Programming: Practice and Theorv. Addison-Wesley, New York. 1990.

[7] Sau-Koon Ng, Protecting Mobile Agents Against Malicious Hosts," Masters Thesis. Division of Information Engineering. The Chinese Univer-
sity of Hong Kong. June 2000.123 pages. 95 refs.

[8] Mark K. Reiter, Aviel D. Rubin, " Crowds: Anonmymity for Web Transactions." ACM Transactions on Information and System Security, June
1999.

[9] James Riordan, Bruce Schneier, Environmental Key Generation Towards Clueless Agents," Mobile Acents and Security. G. Vigna, editor. Lec-
ture Notes in Computer Science, Volume 1419, pp. 15-24, 1998. Springer-Verlag , Berlin. 8 refs.

[lo] Ronald L. Rivest, " Chaffing and Winnowing: Confidentiality without Encryption." MIT Lab for Computer Science. March 18, 1998. (http:i/
theory.lcs.mit.edu/-rivest/chaffing.txt) .

[ll] Ronald L. Rivest, Leonard Adleman, and M. Dertouzos, On data banks and privacy homomorphisms." In Demilllo, Dobkin, Jones, and Lip-
ton, editors, Foundations of Secure Computation, pp. 169-80. New York: Academic Press, 1978.

[12] Tomas Sander, Christian E Tschudin, "Towards Mobile Cryptography." 1998 IEEE Symposium on Security and Privacy. May 3-6,1998, Oak-
land, CA. pp. 215-24.

[13] John Viega, Gary McGraw, Building Secure Software: How to Avoid Security Problems the Right Way. Addison-Wesley, 2002.493 pages. ISBN
020172 152X.

39

http:i

[141 Giovanni Vigna, " Protecting Mobile Agents Through Tracing." 3rd ECOOP Workshop on Mobile Object Systems, Jyvalskyla, Finland, June
1997.

[151 Chenxi Wang, " A Security Architecture for Survivability Mechanisms," Ph.D. Dissertation, University of Virginia, Department of Computer
Science, October 2000. 209 pages. 82 refs.

[16] Gregory Wroblewski, " General Method of Program Code Obfuscation." (draft) Ph.D Dissertation. Wroclaw 2002. 112 pages. 77 refs.

[17] A. C. Yao, " Protocols for secure computations." IEEE Symposium on Foundations of Computer Science 82, pp. 160-4, Chicago, Illinois, 1982.

40

0 o 0 0 0 0 0 0 0 e 0 0 0 0 0 0 0 0 0 0 0

...
Distribution

1 0455

1 0455

1 0708

1 0784

1 0784

1 0784

1 0784

1 0784

1 0785

1 0785

10 0785

1 0785

1 0785

1 0785

1 0785

1 0785

1 0785

1 0785

R. D. Pollock, 5501

R. S. Tamashiro, 5517

J. M. Covan, 6202

J. M. DePoy, 5512

R. D. Halbgewachs, 5501

M. J. Skroch, 5512

R. E. Trellue, 5501

C. M. Villamarin, 5512

W. E. Anderson

C. L. Beaver, 5514

P. L. Campbell, 5516

J. D. Dillinger, 5516

D. L. Harris, 5516

R. L. Hutchinson, 5516

A. J. Lanzone, 5514

T. S. McDonald, 5514

W. D. Neumann, 5514

R. C. Schroeppel, 5514

1

1

1

1

1

1

1

1

1

1

2

1

0785

0785

0785

0806

1030

1351

1371

1411

1411

9018

0899

0612

M. E. Senglaub, 5516

J. E. Stamp, 5516

B. P. Van Leeuwen, 5516

L. G. Pierson, 9336

W. F. Hossley, 12870

J. J. Torres, 5517

B. G. Varnado, 4142

C. C. Battaile, 1834

M. E. Chandross, 1834

Central Technical Files, 8945-1

Technical Library, 9616

Review & Approval Desk, 96 12
For DOE/OSTI

0

	An Introduction to Software Obfuscation
	Abstract
	Table of Contents
	1 Introduction
	2 Context
	3 Threat Model
	4 What Does Obfuscated Code Look Like?
	5 A Taxonomy of Obfuscation Techniques
	6 Other Obfuscation Techniques
	6.1 Wroblewski
	6.2 Wang
	6.3 Hohl
	6.4 Ng

	7 Secure Function Evaluation
	8 Towards a Theory of Obfuscation
	9 Conclusions
	References

