
SAND2004-2188 C.2
REFERENCE COPY

SANDIA REPORT
SAND2004-2 188
Unlimited Release
Printed May 2004 SCANNED

Approv er dissemination unlimited.

ational Laboratories

uide

1 SANDIA NATIONAL
LABORATORIES

TECHNICAL LIBRARY I

TOTAL PAGES: 24

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: httphww.doe.gov/bridge

Available to the public from
US. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http:llwww.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http:llwww.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND20042188
Unlimited Release
Printed May 2004

Amesos 1.0 Reference Guide

Marzio Sala
Computational Math & Algorithms

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1 110

Ken Stanley
322 W. College St.
Oberlin OH 44074

LIBRARY DOCUMENT
D O N O T DESTROY

RETURN TO
LIBRARY VAULT

Abstract

This document describes the main functinalities of the Amesos package, version 1.0.
Amesos, available as part of Trilinos 4.0, provides an object-oriented interface to several serial
and parallel sparse direct solvers libraries, for the solution of the linear systems of equations

A X = B t 1)

where A is a real sparse, distributed matrix, defined as an EpetraRowMatrix object, and X
and B are defined as EpetraMultiVector objects.

Amesos provides a common look-and-feel to several direct solvers, insulating the user
from each package’s details, such as matrix and vector formats, and data distribution.

3

Acknowledgments

The authors would like to acknowledge the support of the ASCI and LDRD programs that funded
development of Amesos.

4

Amesos 1.0 Reference Guide

Contents

Introduction ... 6
Confi guring and Installation Amesos .. 6
AmesosBaseSolver: A Generic Interface to Direct Solvers 8
Amesos Interface to KLU .. 14
Amesos Interface to UMFPACK 4.3 ... 14
Amesos Interface to SuperLUDIST 2.0. ... 14
Amesos Interface to MUMPS 4.3.1 .. 16
Example Code ... 19

5

1 Introduction

Aim of the Amesos package is to provide an object-oriented interface to several sparse direct
solvers’. For each solver, Amesos provides a C++ interface. All the interfaces have the same
look-and-feel, and accept matrices defi ned as EpetraRowMatrix objects, and vectors defi ned as
EpetrahlultiVector objects. Amesos makes easy for users to switch from one direct solver library
from another.

Amesos contains several classes, as reported in table 1. The classes covered in this guide are:

0 Amesos-KLU: Interface to Amesos’s internal solver KLU (in Section 4);

0 Amesos-Umfpack: Interface to Tim Davis’s UMFPACK [4], version 4.3 (in Section 5);

0 Amesos-Superludist: Interface to Xiaoye S. Li’s distributed SuperLU [9] (in Sec-
tion 6);

0 Amesos-Mumps: Interface to MUMPS 4.3.1 [l] (in Section 7).

All the Amesos classes are derived from a base class mode, Amesos-Basesolver. This
abstract interface provides the basic functionalities for all Amesos solvers, and allows users to
choose different direct solvers very easily - by changing an input parameter. See Section 3 for
more details.

Once an Amesos object is defi ned, the direct solution of the linear system simply reads, for all
interfaces,

or, more generally, by

AmesosObject.SymbolicFactorization0;
AmesosObject.NumericFactorization0;
AmesosObj ect . Solve (1 ;

This sequence of commands applies to serial, as well as distributed libraries. All necessary data
redistribution is automatically managed by Amesos.

2 Configuring and Installation Amesos

Amesos is distributed through the Trilinos project, and can be downloaded from the web site

http://software.sandia.gov/trilinos/packages/amesos

‘Amesos is an interface to other packages, mainly developed outside the Trilinos framework. In order to use those
packages, the user should carefully check copyright and licensing of those third-party codes. Please refer to the web
page or the documentation of each particular package for details.

6

http://software.sandia.gov/trilinos/packages/amesos

Class
Ame so s Xlu
Amesos-Umf pack
Ame so s Supe r 1 u
Ame s o s -Super 1 udi s t
Ame s os Mump s
AmesosS calapac k

Table 1. Supported interfaces. “serial” means that the supported direct
solver is serial. When solving with more than one processor, the linear
problem is exported to process 0, here solved, then the solution is broad-
casted to the distributed solution vector. “parallel” means that a subset or
all the processes in the curfent communicator will be used by the solver.
“general” means general unsymmetric matrix, If “sym” (symmetric ma-
trix) or “SPD” (symmetric positive definite), the direct solver library can
take advantage of that particular matrix property.

Interface to
serial general KLU
serial general UMFPACK 4.3
serial general SuperLU 3.0
parallel general SuperLUDIST 2.0
parallel SPD, sym, general MUMPS 4.3.1
parallel general ScaLAPACK

Each of the Amesos classes provides an interface to a third-party direct sparse solver code2.
In order to confi gure and compile a given interface, the user must fi rst install the underlying direct
sparse solver code. Generally, the BLAS library is required. Some solvers may need CBLACS,
LAPACK, BLACS, ScaLAPACK. Amesos requires Epetra and Teuchos (both part of Trilinos).

Amesos is confi gured and built using the GNU autoconf [6] and automake [7] tools. To confi g-
ure Amesos from the Trilinos top directory, a possible procedure is as follows. Let STRILINOS-HOME
be a shell variable representing the location of the Trilinos source directory, and % the shell prompt
sign. In order to confi gure Trilinos with Amesos, for instance on a LINUX machine with MPI,
one may do the following:

% cd STRILINOS-HOME
% mkdir LINUX-MPI
% cd LINUX-MPI
% ../configure --with-mpi-compilers \

--prefix=$TRILINOS-HOME/LINUX-MPI \
--enable-amesos \
FLAGS \
AMESOS-FLAGS

% make
% make install

Here, FLAGS represents the set of confi gure options for other Trilinos packages, and AMESOS-FLAGS
the confi gure options specifi c to Amesos. The confi gure options required to enable a specifi c in-
terface are reported in each third-party package’s section. A complete list of them can be obtained
by w i n g

*Exception to this rule is KLU, which is distributed within Amesos.

7

% STRILINOS-HOME/packages/amesos/configure --help

3 AmesosBaseSolver: A Generic Interface to Direct Solvers

All Amesos objects are derived from the pure virtual class AmesosBaseSolver, and can be con-
structed using the function class Amesos. Amesos allows a code to delay the decision about
which concrete class to use to implement the Amesos-BaseSolver interface. The main goal of this
class is to allow the user to select any supported (and enabled at confi guration time) direct solver,
simply changing an input parameter. Another remarkable advantage of Amesos Basesolver is that
users does not have to include the header fi les of the third-party libraries in their code?.

An example of use of this class is as follows. First, the following header fi le must be included:

#include "Amesos. h"

Then, let A be an EpetraBowMatrix object (for instance, and EpetraCr~Matrix)~.
We need to defi ne a linear problem,

Epetra-Linearproblem * Amesos-Linearproblem =

Amesos-Linearproblem->Setoperator(A ;
new Epetra-Linearproblem;

Now, let Choice be a char array variable, with one of the values reported in the fi rst column of
table 1. We can construct an Amesos-Basesolver object as follows:

Amesos-Basesolver * A-Base;
Amesos Amesos-Factory;

A-Base = Amesos-Factory.Create(Choice, *Amesos-Linearproblem);
assert (A-Base ! =O ;

If the class requested by Choice is not available (because is not installed, or Choice is mis-
pelled), Create () returns 0.

Symbolic and numeric factorizations are computed using methods

A-Base->SymbolicFactorization~);
A - Base->NumericFactorizationo;

The numeric factorization phase will check whether a symbolic factorization exists or not. If not,
method SymbolicFactorization () is invoked. Solution is computed, using

A Base- >Solve (; -
'Using AmesosBaseSolver, third-party libraries header fi les are required in the compilation of Amesos only.
4Some solvers can take advantage if the matrix is an Epetra-CrsMatrix or an Epetra-VbrMatrix; this is reported in

Table 3.

8

Architecture
LMUX
LINUX, GNU
LINUX, Intel
SGI 64
DEC/Alpha
MAC OS WG4
Sandia Cplant
ASCI Red

KLU UMFPACK
0 0

8 0

0 0

0 0

8 0

0

0 0

8 0

-

Communicator
SERIAL
LAWMPI
MPICH
MPI
MPI
MPICH
MPI
MPI

SuperLUDIST 2.0
-

8

-
0

-
-

0

0

MUMPS4.3.1 ScaLAPACK

Table 2. Supported architectures for various interfaces. ‘a’ means that
the interface has been successfully compiled, ‘-’ means that it has not
been tested.

Class I Epetra-RowMatrix 1 Epetra-CrsMatrix I Epetra-VrbMatrix
AmesosXlu
Amesos-Umfpack
Amesos-Superlu
Amesos-Superludist
AmesosMumps
Amesos-Scalapack

- 0 0

0 0

0 0

0 0

0 0 0

0 0

-
-
-

-

Table 3. Supported matrix formats. ‘0’ means that the interface can
take advantage of the given matrix format, ‘-’ means that it doesn’t.

set (Name, Value)

get (Name, DefValue)

subL i s t (Name

The solution phase will check whether a numeric factorization exists or not. If not, method
NumericFactorization () is called.

Users must provide the nonzero structure of the matrix for the symbolic phase, and the actual
nonzero values for the numeric factorization. Right-hand side and solution vectors must be set
before the solution phase, for instance using

Add entry Name with value and type specifi ed by Value. Any
C++ type (like int, double, a pointer, etc.) is valid.
Get value (whose type is automatically specifi ed by DefValue).
If not present, return DefValue.
Get a reference to sublist List . If not present, create the sublist.

Amesos - Linearproblem->SetLHS(x);
Amesos - Linearproblem->SetRHS(b);

Specifi c parameters can be set using a Teuchos parameters list, whose defi nition requires the
input fi le Teuchos-ParameterList . hpp. For a detailed description, we refer to the Teuchos
documentation. We report the most important methods of this class in Table 4.

Table 4. Some methods of Teuch0s::ParameterList class.

Here, we simply recall that the parameters list can be created as

Teuch0s::ParameterList AmesosList;

and parameters can be set as

AmesosList.set(ParameterName,ParameterValue);

Here, ParameterName is a string containing the parameter name, and Parametervalue is
any valid C++ object that specifi es the parameter value (for instance, an integer, a pointer to an
array or to an object).

10

Amesos parameters can (possibly) affect all the solvers, or being specifi c to a given interface.
In this latter case, they are defi ned in a sublist.

We now list all the parameters that may affect all the Amesos solvers. To know whether a
specifi c interface supports a given parameter, we refer to table 5 .

UseTranspose

MatrixType

Threshold

AddZeroToDiag

PrintTiming

Printstatus

If false, solve linear system (1). Otherwise, solve the
linear system with the transpose matrix AT.

Set it to S P D ifthe matrix is symmetric positive defi nite,
to symmetric if symmetric, and to general is the
matrix is general unsymmetric. At this stage of devel-
opment, only the MUMPS interface can take advantage
of SPD and symmetric.

In the conversion from EpetraXowMatrix to a pack-
age’s format, do not include elements whose absolute
value is below the specifi ed threshold.

If true, in the conversion from EpetraXowMatrix to a
package’s format, a zero element will be added to the
diagonal if not present.

Print some timing information when the Amesos object
is destoyed.

Print some information about the linear system and the
solver when the Amesos object is destoyed.

ComputeVectorNorms After solution, compute the 2-norm of each vector in
the EpetrahlultiVector B and X .

ComputeTrueResidual After solution, compute the real residual IIB - AX112
for all vectors in EpetraNultiVector.

11

MaxProc s If positive, the linear system matrix will be distributed
on the specified number of processes only (or the all
the processes in the MPI communicator if the specifi ed
number is greater). If MaxProcs=-1, Amesos will
estimate using internal heuristics the optimal number of
processes that can effi ciently solve the linear system. If
MaxProcs= - 2, Amesos will use the square root of the
number of processes. If MaxProcs= - 3, all processes
in the communicator will be used.
This option may require the conversion of a C++
MPI communicator to a FORTRAN MPI communi-
cator. If this is not supported, the specified value of
MaxProcs will be ignored, and all the processes in
MPI-COMM-WORLD will be used.

MaxProcsMatrix The linear system matrix will be distributed over
the specified number of processes. This num-
ber must be less or equal to MaxProcs. See
Maxprocs. If MaxProcsMatrix=-4, then
the value of MaxProcsMatrix equals that of
MaxProcs.

OutpuLevel If 0, no output is printed on the standard output. If
1, output is reported as specified by other param-
eters. If 2, all output is printed (this is equivalent
to PrintTiming == true, Printstatus
-- -- true, ComputeVectorNorms == true,
ComputeTrueResidual == true).

DebugLevel If 1, some debugging information are printed on the
standard output.

Solver-specifi c parameters are reported in each package's subsection. The general procedure
is to create a sublist with a given name (for instance, the sublist for MUMPS is 'tnumps'J, then
set all the solver's specifi c parameters in this sublist. An example is as follows:

int ictnl[401 ;
/ / defines here the entries of ictnl
Teuch0s::ParameterList & AmesosMumpsList =
AmesosList . sublist (tlmumpsll ;

AmesosMumpsList. set (I'ICTNL" , ictnl) ;

Parameters and sublists not recognized are simply ignored. Recall that spaces are important, and
that parameters list is case sensitive!

12

L
w

default value
false
general
0.0
false
false
false
-1
-4
false
false
1
0

option
UseTranspose
Mat r ixType
Threshold
AddZeroToDiag
PrintTiming
Printstatus
MaxProcs
MaxProcsMatrix
ComputeVectorNorms
ComputeTrueResidual
OutputLevel
DebuqLevel

KLU
a
-
-

-

a

a
-
-

a

a

a

a

type
bool
string
double
bool
bool
bool
int
int
bool
bool
int
int

UMFPACK
a

SuperLUDIST MUMPS
a

a

0

a

a

a

a

0

e

a

a

0

ScaLAPACK

Table 5. Supported options. ‘0’ means that the interface supports the
options, ‘-’ means that it doesn’t.

4 Amesos Interface to KLU

KLU is a serial, unblocked code ideal for getting started. Particular classes of matrices, such as
circuit matrices, may perform well with KLU.

KLU is Tim Davis’ implementation of Gilbert-Peierl’s left-looking sparse partial pivoting al-
gorithm, with Eisenstat and Liu’s symmetric pruning. It doesn’t exploit dense matrix kernels, but
it is the only sparse LU factorization algorithm known to be asymptotically optimal, in the sense
that it takes time proportional to the number of floating-point operations. It is the precursor to
SuperLU, thus the name (‘Clark Kent LU’). For very sparse matrices that do not suffer much
fi 11-in (such as most circuit matrices when permuted properly) dense matrix kernels do not help,
and the asymptotic run-time is of practical importance.

In order to use KLU, Amesos must be confi gured with the options

--enable-amesos-klu

The KLU souces are distributed with the Amesos package.

5 Amesos Interface to UMFPACK 4.3

UMFPACK is a C package copyrighted by Timothy A. Davis. More information can be obtained
at the web page

http://www.cise.ufl.edu/research/sparse/umfpack

In order to use UMFPACK, Amesos must be confi gured with the options

--enable-amesos-umfpack
--with-amesos-umfpacklib=<LTMFPACK library>
--with-amesos-umfpackincdir=<UMFPACK include files>
--with-amesos-umfpackamdlib=<AMD library>
--with-amesos-umfpackamdincdir=cAMD include files>

UMFPACK is a serial solver. Amesos will take care of moving matrix, solution and right-
hand side to processor 0 (using Epetralmport objects), solve the linear system on processor 0,
then broadcast the solution as required.

6 Amesos Interface to SuperLUDIST 2.0

SuperLUDIST, written by Xiaoye S . Li, is a parallel extension to the serial SuperLU library.
SuperLUDIST is written in ANSI C, using MPI for communication, and it is targeted for the
distributed memory parallel machines. It is copyrighted by The Regents of the University of
California, through Lawrence Berkeley National Laboratory. We refer to the web site

http://www.nersc.gov/-xiaoye/SuperLU

14

http://www.cise.ufl.edu/research/sparse/umfpack
http://www.nersc.gov/-xiaoye/SuperLU

and to the SuperLUDIST manual [5] for more information.
SuperLUDIST includes routines to handle both real and complex matrices in double preci-

sion. However, as Amesos is currently based on the Epetra package (that does not handle complex
matrices), only double precision matrices can be considered.

Amesos-Superludist can solve the linear system on a subset of the processes, as specifi ed in
the parameters list. This is done by creating a new process group derived from the MPI group of
the Epetra-Comm object, with function superlu-gridinit (1 .

In order to interface with SuperLUDIST 2.0, Amesos must be confi gured with the options

--enable-amesos-superludist
--with-amesos-superludistlib=eSuperLU-DIST library>
--with-amesos-superludistincdir=cSuperLU-DIST include files>

The SuperLUDIST constructor will look for a sublist, called Superludist. The follow-
ing parameters reflect the behavior of SuperLUDIST options argument, as specifi ed in the Su-
perLUDIST manual [5 , pages 55-56]. The user is referred to this manual for a detailed explana-
tion of the reported parameters. Default values are as reported in the SuperLUDIST manual.

Fact (string) Specifies whether or not the fac-
tored form of the matrix A is supplied onen-
try and, if not, how the matrix will be fac-
tored. It can be: DOFACT, SamePattern,
SamePatternSameRowPerm, FACTORED.
Default: SamePat ternSameRowPerm.

Equil

Col Perm

perm-c

RowPerm

perm-r

(bool) Specifi es whether to equilibrate the system of
not. Default: true.

(string) Specifies the column ordering strategy. It
can be: NATURAL, MMDAT-PLUSA, MMDATA,
COLAMD, MYJERMC. Default: MMDATTLUSA.

(int *) Specifies the ordering to use when ColPerm
= MY-PERMC.

(string) Specifi es the row ordering strategy. It can
be: NATURAL, LargeDiag , MY-PERMR. Default:
LargeDiag.

(int *) Specifies the ordering to use when RowPerm
= MY-PERMR.

ReplaceTinyPivot (bool) Specifi es whether to replace the tiny diagonals
with E [[All during LU factorization. Default: true.

15

IterRefine (string) Specifies how to perform iterative refine-
ment. It can be: NO, DOUBLE, EXTRA. Default:
DOUBLE.

7 Amesos Interface to MUMPS 4.3.1

MUMPS (‘MUltifiontal Massively Parallel Solver’) is a parallel direct solver, written in FOR-
TRAN 90 with C interface, copyrighted by P. R. Amestoy, I. S. Duff, J. Koster, J.-Y. L‘Excellent.
Up-to-date copies of the MUMPS package can be obtained from the Web page

http://www.enseeiht.fr/apo/MUMPS/

Here, for the sake of completeness, we briefly present a broad view of the MUMPS package, so that
the reader can better understand the AmesosMumps interface. For details about the algorithms
and the implementation, as well as of the input parameters, we refer to [2]

MUMPS can solve the original system (l), as well as the transposed system, given an assem-
bled or elemental matrix. Note that only the assembled format is supported by AmesosMumps.
Mumps offers, among other features, error analysis, iterative refi nement, scaling of the original
matrix, Schur complement with respect to a prescribed subset of rows. Reordering techniques can
take advantage of PORD (distributed within MUMPS), or METIS [8J5.

Amesos-Mumps is based on the distributed double-precision version of MUMPS (which re-
quires MPI, BLAS, BLACS and ScaLAPACK [3]).

In order to interface with MUMPS 4.3.1, Amesos must be confi gured with the options6

--enable-amesos-mumps
--with-amesos-mumpslib=cMUMPS library>
--with-amesos-mumpsincdir=cMUMPS include files>

The MUMPS constructor will look for a sublist, called mumps. The user can set all the
MUMPS’S parameters, by sticking pointers to the integer array ICNTL and the double array CNTL
to the parameters list, or by using the functions reported at the end of this section.

I CTNL

CTNL

PermIn

(int [4 01) Pointer to an integer array, containing the
integer parameters (see [2, pages 13-17]).

(double [5]) Pointer to an double array, containing
the double parameters (see [2, page 171).

(int *) Use integer vectors of size NumGlobalEle-
ments (global dimension of the matrix) as given order-
ing. PermIn must be defined on the host only, and
allocated by the user, if the user sets ICNTL(7) = 1.

’At this time, METIS ordering is not supported by Amesoshlumps.
6The MUMPS interface can take be used on a subset of the processes. To that aim, it must be possible to convert from

a C++ MPI communicator to a FORTRAN MPI communicator. Such a conversion is not always possible. In you experi-
ence compilation problems with Amesos-Mumps, you can try the option - -disable-amesos -mumpsmpir2f.

16

http://www.enseeiht.fr/apo/MUMPS

Maxis

Maxs

ColPrecScaling

RowPrecScaling

(int) Set Maxis value.

(int) Set Maxis value.

(double *) Use double precision vectors of size
NumGlobalElements (global dimension of the matrix)
as scaling for columns and rows. The double vector
must be defi ned on the host only, and allocated by the
user, if the user sets ICNTL(8) = -1.

(double *) Use double precision vectors of size
NumGlobalElements (global dimension of the matrix)
as scaling for columns and rows. The double vector
must be defi ned on the host only, and allocated by the
user, if the user sets ICNTL(8) = -1.

Other functions are avaiable to retrive the output values. The following AmesosMumps meth-
ods are not supported by the AmesosBaseSolver class; hence, the user must create an Ame-
soslvlumps object in order to take advantage of them.

double * GetRINFOO

Gets the pointer to the RINFO array (defi ned on all processes).

int * GetINFO (1

Gets the pointer to the INFO array (defi ned on all processes).

double * GetRINFOG (1

Gets the pointer to the RINFOG array (defi ned on host only).

int * GetINFOG (1

Gets the pointer to the INFOG array (defi ned on host only).

A functionality that is peculiar to MUMPS, is the ability to return the Schur complement
matrix, with respect to a specifi ed set of nodes.

int ComputeSchurComplement(boo1 flag,
int NumSchurComplementRows,
int * SchurComplementRows) ;

17

This method computes (if flag is true) the Schur complement with respect to the set of indices in-
cluded in the integer array SchurComplementRows , of she NumSchurComplementRows.
This is a global Schur complement, and it is formed (as a dense matrix) on processor 0 only.

Epetra-CrsMatrix * GetCrsSchurComplementO;

This method returns the Schur complement in an Epetra-CrsMatrix, on host only. No checks are
performed to see whether this action is legal or not (that is, if the call comes after the solver has
been invocated). The returned Epetra-CrsMatrix must be freed by the user.

Epetra-SerialDenseMatrix * GetDenseSchurComplementO ;

This method returns the Schur complement as a EpetraSerialDenseMatrix (on host only).

As an example, the following frament of code shows how to use MUMPS to obtain the Schur
complement matrix with respect to a given subsets of nodes. First, we need to create an parameter
list, and an AmesosMumps object.

Teuch0s:::ParameterList params;
Amesos-Mumps * Solver;
Solver = new Amesos-Mumps(*Problem,params);

Then, we defi ne the set of nodes that will constitute the Schur complement matrix. This must be
defi ned on processor 0 only. For instance, one may have:

int NumSchurComplementRows = 0;
int * SchurComplementRows = NULL;
if(C o m m . ~ y ~ 1 ~ 0 == o {
NumSchurComplementRows = 4;
SchurComplementRows = new int[NumSchurComplementRowsl;
SchurComplementRows [OI = 0;
SchurComplementRows[ll = 1;
SchurComplementRows[21 = 2;
SchurComplementRows[3] = 3;

I
Now, we can ask for the Schur complement using

Solver->ComputeSchurComplement(true, NumSchurComplementRows,
SchurComplementRows) ;

The Schur complement matrix can be obtain after the solver phase:

Solver- >Solve (1 ;
Epetra-CrsMatrix * SC;
SC = Solver->GetCrsSchurComplement();
Epetra-SerialDenseMatrix * SC-Dense;
SC-Dense = Solver->GetDenseSchurComplementO;

18

8 Example Code

In this section we report a complete code that can be used to compare the performances of various
direct solvers. The code is based on the AmesosBaseSolver interface described in Section 3.

First, we need to include the appropriate headers. The variable HAVE-CONFIG-H must have
been defi ned - in the fi le, or at compilation time.

#ifndef HAVE-CONFIG-H
#define HAVE-CONFIG - H
#endi f
#include "Epetra-Conf igDefs. h"
#ifdef HAVE-MPI
#include Ilmpi. h"
i nc lude
#else
#include " Epetra-SerialComm. h"
#endi f
#include "Epetra-Vector. h"
#include "Epetra-Time .h"
#include "Amesos-Conf igDef s . hll
#include "Teuchos-ParameterList.hppIl
#include "Amesos . h"
#include "Trilinos-Util-CrsMatrixGa1lery.h"

Epe t r a-Mp i Comm . h

The code can be run with or without MPI; however, the supported versions of MUMPS and Su-
perLUDIST requires MPI.

int main (int argc, char *argv [I) {

i f de f HAVE-MPI
MPI Init(&argc, &argv);
Epetra - MpiComm Comm (MPI-COMM-WORLD) ;

Epetra-SerialComm Comm;
#else

#endi f

Here we use the class Trilinos-Util: :CrsMatrixGallery to read and HarwelVBoeing matrix from
file, whose name is hardwired in the code for simplicity (see [lo, Chap 51). The name can be
read from the input line using class Trilinos-Util-CommandLineParser (see [lo]), or the Teuchos
package.

Trilinos-Util: : CrsMatrixGallery G (I I h b " , Comm) ;
G.Set ("matrix-name", "662 bus.rsa") ; -

Class Trilinos-Uti1::CrsMatrixGallery automatically defi nes an Epetra Linearproblem, that can be
obtained as follows:

19

Epetra-Linearproblem * Problem = G.GetLinearProblem0 ;

Now, we defi ne a Teuchos parameters list, and set the maximum number of processes by

Teuch0s::ParameterList AmesosList;
AmesosList . set ('IMaxProcs" ,8) ;

At this point, we can create an AmesosBaseSolver object, depending on the run-time choice (here
hardcoded for the sake of simplicity as a string):

Amesos-Basesolver * Solver;
Amesos Amesos-Factory;
/ / change this as required
char SolutionLib [I = rtumfpackll;

Solver = Amesos-Factory.Create(SolutionLib, *Problem, params) ;
if (Solver == 0) cerr cc "library not available" cc endl;

We can solve the linear problem:

Epetra-Time Time (Comm) ;
Solver->SymbolicFactorizationO ;
double TimeForSymbolicFactorization = Time.ElapsedTime0 ;

Time. ResetStartTime (;
Solver->NumericFactorizationO;
double TimeForNumericFactorization = Time.ElapsedTime0;

Time. ResetStartTime (;

Solver- >Solve (;

double TimeForSolve = Time.ElapsedTime0 ;

and fi nally delete the Amesos Basesolver object, and exit the code.

delete Solver;

#ifdef HAVE-MPI

#endif
MPI Finalize 0 ;

return (EXIT-SUCCESS ;

20

References

[l] P. R. Amestoy, I. S. Duff, J.-Y. L‘Excellent, and J. Koster. MUMPS home page.
http://www.enseeiht.fr/lima/apo/MUMPS, 2003.

[2] P.R. Amestoy, I.S. Duff, J.-Y. L‘Excellent, and J. Koster. MUItifrontal Massively Parallel
Solver (MUMPS Versions 4.3.1) Users’ Guide, 2003.

[3] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Jemmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK
Users ’ Guide. SIAM Pub., 1997.

[4] T .A. Davis. UMFPACK home page. http://www.cise.ufl.edu/research/sparse/umfpack,
2003.

[5] J. W. Demmel, J. R. Gilbert, and X. S . Li. SuperLU Users’ Guide, 2003.

[6] Free Software Foundation. Autoconf Home Page. http://www.gnu.org/software/autoconf.

[7] Free Software Foundation. Automake Home Page. http://www.gnu.org/software/automake.

[SI G. Karypis and V. Kumar. METIS: Unstructured graph partitining and sparse matrix ordering
sy stem. Technical report, University of Minnesota, Department of Computer Science, 1998.

[9] X. S. Li and J. W. Demmel. SuperLU home page. http://crd.lbl.gov/ xiaoye/SuperLU/, 2003.

[101 M. Sala, M. A. Heroux, and D. Day. Trilinos Tutorial, 4.0 edition, 2004.

21

http://www.enseeiht.fr/lima/apo/MUMPS
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.gnu.org/software/autoconf
http://www.gnu.org/software/automake
http://crd.lbl.gov

Distribution list

1
1
1
1
1
1
10
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

MS 1111
MS 0316
MS 0316
MS 9217
MS 1110
MS92 1 7
MS 1110
MS 1110
MS 1110
MS 1110
MS 1110
MS 0316
MS 0316
MS 0316
MS 1110
MS 9217
MS 9217
MS 0835
MS 0826
MS 9915
MS 9915
MS 1110
MS 1152
MS 1166
MS 0819
MS 0827
MS 0316
MS 1110
MS 0316
MS 1110
MS 0819
MS 1110
MS 1111
MS 0316
MS 0316
MS 0316
MS 0835
MS 9217
MS 0835
MS 0826
MS 0826
MS 0835
MS 0834
MS 0662

John Shadid, 9233
Scott Hutchinson, 9233
Eric Keiter, 9233
Jonathan Hu, 9214
James Willenbring, 92 14
Kevin Long, 8962
Marzio Sala, 9214
Michael Heroux, 9214
Ross Bartlett, 921 1
Richard Lehoucq, 9214
Robert Heaphy, 921 5
Russell Hooper, 9233
Robert Hoekstra, 9233
Roger Pawlowski, 9233
Ray Tuminaro, 92 14
Tamara Kolda, 8962
Vicki Howle, 8962
Kendall Pierson, 9 142
Alan Williams, 8961
Noel Nachtigal, 8963
Andrew Rothfuss, 8964
Heidi Thornquist, 9214
Joseph Kotulski, 1642
Clifford D r u m , 15345
Allen Robinson, 923 1
Carter Edwards, 9143
Steve Plimpton, 92 12
Cindy Phillips, 92 15
Mike Eldred, 921 1
Karen Devine, 92 15
Mark Christon, 923 1
Andy Salinger, 9233
Eric Phipps, 9233
Gary Hennigan, 9233
Curt Ober, 9233
Bill Spotz, 9233
Alfred Lorber, 9 14 1
Paul Boggs, 8962
Sam Subia, 9141
Jim Stewart, 9143
Steve Bova, 9141
Randy Schunk, 91 14
Rekha Rao, 91 14
Phil Sackinger, 9623

1 MS 0834 Matt Hopkins, 91 14
1 MS 0834 Harry Moffat, 91 14
1 MS 0847 Garth Reese, 9 142
1 MS 11 10 David Day, 9214
1 MS 1110 Bart van Bloemen Waanders, 92 1 1
1 MS 9217 Patty Hough, 8962

1 MS 9018 Central Technical Files, 8945-1
2 MS 0899 Technical Library, 9616

External distribution:

Ken Stanley
322 W. College St.
Oberlin OH 44074

Matthias Heinkenschloss
Department of Computational and Applied Mathematics - MS 134
Rice University
6100 S. Main Street
Houston, TX 77005 - 1892

Dan Sorenson
Department of Computational and Applied Mathematics - MS 134
Rice University
6100 S. Main Street
Houston, TX 77005 - 1892

Yousef Saad
Department of Computer Science and Engineering
University of Minnesota,
4-192 EE/CSci Building, 200 Union Street S.E.
Minneapolis, MN 55455

Kris Kampshoff
Department of Computer Science and Engineering
University of Minnesota,
EE/CSci Building, 200 Union Street S.E.
Minneapolis, MN 55455

.
Eric de Sturler
23 12 Digital Computer Laboratory, MC-258
University of Illinois at Urbana-Champaign
1304 West Springfield Avenue
Urbana, IL 6 1 80 1-2987

Jason Cross
Box 429
St. John’s University
Collegeville, MN 56321

Paul Sexton
Box 1560
St. John’s University
Collegeville, MN 56321

Mike Phenow
PO Box 1392
St. John’s University
Collegeville, MN 56321

Tim Davis, Assoc. Prof.
Room E338 CSE Building
P.O. Box 116120
University of Florida
Gainesville, FL 326 1 1-6 120

Padma Raghavan
Department of Computer Science and Engineering
308 Pond Laboratory

The Pennsylvania State University
University Park, PA 16802-6106

Xiaoye Li
Lawrence Berkeley Lab

1 Cyclotron Rd
Berkeley, CA 94720

50F-1650

Richard Barrett
Los Alamos National Laboratory
Mail Stop B272
Los Alamos, NM 87545

Victor Eijkhout
Department of Computer Science,
203 Claxton Complex, 1122 Volunteer Boulevard,
University of Tennessee at Knoxville,
Knoxville TN 37996, USA

Jack Dongarra
Computer Science Department
1122 Volunteer Blvd
Knoxville, TN 37996-3450

David Keyes
Appl Phys & Appl Math
Columbia University
200 S. W. Mudd Building
500 W. 120th Street
New York, NY, 10027

Lois Curfman McInnes
Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

Barry Smith
Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

Paul Hovland
Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

Jeffrey J. Derby
CEMS Department, U. of MN
421 Washington Ave SE
Minneaplolis, MN 55455-0132

Carol Woodward
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA 9455 1
BOX 808, L-561

Craig Douglas
325 McVey Hall - CCS
Lexington, KY 40506-0045

Juan Meza
Department Head, High Performance Computing Research
Lawrence Berkeley National Laboratory
Mail Stop 50B-2239
Berkeley, CA 9472

C.T. Kelley
Department of Mathematics, Box 8205
Center for Research in Scientific Computation
North Carolina State University
Raleigh, NC 27695-8205

Chuck Romine
Program Manager, Applied Mathematics
U.S. Department of Energy
1000 Independence Ave., SW
Washington, DC 20585-1290

Prof. Luca Formaggia
Mathematics Department
"F. Brioschi" Politecnico di Milano
Piazza L. da Vinci 32,20133 MILANO, Italy

Prof. Alfio Quarteroni

EPFL
CH- 10 1 5 Lausanne (VD) Switzerland

IACS-CMCS

LIBRARY DOCUMENT
DO NOT DESTROY

RETURN TO
LIBRARY VAULT

	Amesos 1.0 Reference Guide
	Acknowledgments
	Contents
	1 Introduction
	2 Configuring and Installation Amesos
	3 Amesos_BaseSolver: A Generic Interface to Direct Solvers
	4 Amesos Interface to KLU
	5 Amesos Interface to UMFPACK
	6 Amesos Interface to SuperLUDIST
	7 Amesos Interface to MUMPS
	8 Example Code

