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Abstract

A linear elastic constitutive equation for modeling fiber-reinforced laminated com-

posites via shell elements is specified. The effects of transverse shear are included

using first-order shear deformation theory. The proposed model is written in a rate

form for numerical evaluation in the Sandia quasi-statics code ADAGIO and explicit

dynamics code PRESTO. The equation for the critical time step needed for explicit

dynamics is listed assuming that a flat bilinear Mindlin shell element is used in the

finite element representation. Details of the finite element implementation and usage

are given. Finally, some of the verification examples that have been included in the

ADAGIO regression test suite are presented.
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1 Constitutive Model

The small to moderate material distortion response of laminated plates and shells com-

posed of fiber-reinforced polymer matrix laminae is consistent with generalized plane

stress assumptions. However, even under generalized plane stress assumptions, there

are two general approaches to modeling the constitutive response of the lay-up. The

first approach is to handle the material response of each lamina separately. The second

approach is to determine an equivalent laminate constitutive model corresponding to

pre-integrating the material response through the thickness under an assumed varia-

tion of strain through the thickness. The first approach requires the analyst to specify

a stacking sequence, whereas the second approach does not. However, the orientation

of the laminate as a whole still must be specified for the second approach. This report

describes the elastic laminate model which follows the second approach.

1.1 Constitutive Equations for the kth Layer

Before reducing to plane stress conditions, the 3-D orthotropic linear elastic material

law for the kth layer is written in rate form as follows:

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(1.1)

where 1 and 2 denote the inplane principal material directions, 3 denotes the thickness

direction, σ̇ij is the ij component of mechanical stress rate, ε̇ij is the ij component of

the total strain rate, and Ek
i , ν

k
ij , G

k
ij , and α

k
i are the engineering properties. Here it is

observed that the total strain rate has been decomposed into mechanical and thermal
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parts. Because an elastic potential or strain energy density function exists for such

an orthotropic model, the constitutive matrix is symmetric and the following relations

hold:
νk

ij

Ek
i

=
νk

ji

Ek
j

for i, j = 1, 2, 3 (1.2)

Applying generalized plane stress conditions (σ33 = 0) to Eq. (1.1) yields the

following thickness strain rate:
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3Ṫ (1.3)

However, the effects of thickness strain will be assumed to be negligible in integrating

the material response through the thickness.

Eliminating σ̇k
33 and ε̇k33 from Eq. (1.1) and inverting gives
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Note that the mechanical stress rate depends linearly on the mechanical strain rate

which is determined as the difference between the total/kinematic and thermal strain

rates.

The reduced stiffnesses Qk
ij are given in terms of the engineering properties as

follows:
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Figure 1.1: Material (1k-2k-3k) and user-defined (x-y-z) coordinate systems. The ma-

terial and user-defined coordinate systems share a common axis which is perpendicular

to the shell surface (3k & z) and differ by a rotation of θk
1 about this axis.

Using standard tensor transformation techniques, the constitutive equation for each

lamina given by Eq. (1.4) can be rewritten using a single user-defined x-y-z coordinate

system. This x-y-z system is related to the 1k-2k-3k system by a single rotation

of magnitude θk
1 about the 3k axis as shown in Fig. 1.1. Both of these coordinate

systems share an axis (3k and z) which is perpendicular to the shell surface. Although

not shown, a Xg-Yg-Zg global coordinate system exists. Note that since the user-

defined system has the x-y plane tangent to the shell surface, the user-defined system

is usually not aligned with the global coordinate system. Also note that it is likely

that the material directions for each layer differ from each other.

Standard tensor transformations are used to transform the constitutive equation

for the kth layer to the x-y-z user-defined coordinate system. The following decoupled

sets of equations result:
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The transformed reduced stiffnesses (Q̄k
ij ’s) are given by
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The transformed coefficients of thermal expansion (CTE’s) are determined from those

in the principal material directions as follows:
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Equation (1.17) shows that non-zero αk
xy can result for a chosen x-y-z coordinate

system, even though, physically, thermal variations only lead to extensional strains

when observed in a coordinate system aligned with the principal material directions.

Equations (1.11) and (1.12) are written in condensed notation as follows:

{

σ̇k
}

=
[

Q̄k
]{{

ε̇k
}

− Ṫ
{

αk
}}

(1.18)

and
{

σ̇k
ts

}

=
[

Q̄k
ts

]{

ε̇kts

}

(1.19)

where the transverse shear quantities are differentiated from the inplane quantities by

the ts subscript.
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1.2 Laminate Response In User-defined Coordinate System

First-order shear deformation theory is used to express the thickness variation of the

strain rates in terms of midplane quantities. The user-defined coordinate system is

now restricted to the case where the midplane location is described by z = 0. The total

inplane kinematic strain rates vary linearly through the thickness as follows:


















ε̇xx

ε̇yy

2ε̇xy



















=



















ėxx

ėyy

2ėxy



















+ z



















κ̇xx

κ̇yy

2κ̇xy



















(1.20)

where eij and κij , respectively, are midplane strains and bending curvatures. The

transverse shear strains are assumed to be constant throughout the thickness and are

expressed as






2ε̇yz

2ε̇zx







=







2ėyz

2ėzx







(1.21)

Equations (1.20) and (1.21), respectively, are written in compacted notation as

{ε̇} = {e}+ z {κ} (1.22)

and

{ε̇ts} = {ėts} (1.23)

Recall that when thermal variations are applied, only the mechanical portion of the

total strain rate will result in mechanical stress.

The laminate material behavior is described in terms of force resultants Nij and

force-couple resultants Mij which are defined as follows:



















Nxx

Nyy

Nxy



















=

∫ h/2

−h/2



















σxx

σyy

σxy



















dz or {N} =

∫ h/2

−h/2
{σ} dz (1.24)







Nyz

Nzx







=

∫ h/2

−h/2







σyz

σzx







dz or {Nts} =

∫ h/2

−h/2
{σts} dz (1.25)



















Mxx

Myy

Mxy



















=

∫ h/2

−h/2
z



















σxx

σyy

σxy



















dz or {M} =

∫ h/2

−h/2
z {σ} dz (1.26)
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where h is the laminate thickness. Note that integrating z {σts} through the thickness

produces no net moments, because {ε̇ts} is uniform through the thickness.

Using the kinematic assumptions expressed in Eqs. (1.20) and (1.21) and incorpo-

rating thermal strains, the following laminate material model results:























































Ṅxx

Ṅyy

Ṅxy

Ṁxx

Ṁyy

Ṁxy























































=





























A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66



















































































ėxx

ėyy

2ėxy

κ̇xx

κ̇yy

2κ̇xy























































− Ṫ























































N th
xx

N th
yy

N th
xy

M th
xx

M th
yy

M th
xy























































(1.27)

and






Ṅyz

Ṅzx







=





A44 A45

A45 A55











2ėyz

2ėzx







(1.28)

where

Aij =

∫ h/2

−h/2
Q̄k

ij dz (1.29)

Bij =

∫ h/2

−h/2
zQ̄k

ij dz (1.30)

Dij =

∫ h/2

−h/2
z2Q̄k

ij dz (1.31)

and the constant portion of the thermal force and force-couple resultants are given by



















N th
xx

N th
yy

N th
xy



















=

∫ h/2

−h/2

[

Q̄k
]



















αk
xx

αk
yy

2αk
xy



















dz (1.32)

and


















M th
xx

M th
yy

M th
xy



















=

∫ h/2

−h/2
z
[

Q̄k
]



















αk
xx

αk
yy

2αk
xy



















dz (1.33)

In compacted notation, Eqs. (1.27) and (1.28), respectively, are given by











{

Ṅ
}

{

Ṁ
}











=







[A] [B]

[B] [D]

















{ė}

{κ̇}











− Ṫ











{

N th
}

{

M th
}











(1.34)
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and
{

Ṅts

}

= [Ats] {ėts} (1.35)

The material properties for each layer are constant. Hence, the integrals indicated in

Eqs. (1.29)-(1.33) are easily evaluated given a chosen stacking sequence.

1.3 Laminate Response in Co-rotational Coordinate System

The isoparametric shell and membrane elements in ADAGIO and PRESTO use a co-

rotational coordinate system in order to automatically remove the rigid-body rotations

from the deformations before the material model is evaluated. The r-s-t co-rotational

system is constructed for each element as follows. The r-direction or material line A

corresponds to connecting the midpoints of sides 1-4 and 2-3 as shown in Fig. 1.2.

Material line B is constructed by connecting the midpoints of sides 1-2 and 3-4. Be-

cause this material direction is not necessarily perpendicular to the first one, it is

necessary to construct the s-direction by first finding the t-direction from the cross-

product of vectors aligned with material lines A and B. Then, the s-direction results

from crossing vectors aligned with the t- and r-directions. It should be obvious that

because the s-direction is constructed from the r- and t- directions, it does not track

a single material line as an isoparametric element deforms. Hence, the linear elastic

material model to be posed in the co-rotational coordinate system will assume that the

inplane shear deformations remain small. Furthermore, since the stacking sequence

is unknown, the laminate matrices are taken to be constant for all times, as it is not

possible to track the fiber orientations of each individual layer. That is, the stacking

sequence relative to the r-s-t system is assumed to be constant which is appropriate for

small normal and shear strains. Also note that the particular r-s-t system used for an

element depends on the ordering of nodes in the element connectivity. Furthermore,

the r-s plane is taken to coincide with the element midplane.

It should be apparent that the element co-rotational r-s-t system and the user-

defined x-y-z system are not necessarily aligned with each other. Hence, it is necessary

to transform the constitutive equations to correspond to the r-s-t system. This trans-

formation is performed internally in the material model initialization coding without

any additional user input required. Except in the case of a flat shell, the t-direction

will not necessarily be exactly perpendicular to the shell element at its centroid. Recall
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1
2

3
4

r

s

B
A

Figure 1.2: Co-rotational coordinate system for a sample element having a connectivity

array ordered as {1, 2, 3, 4 }.

that the user-defined system was previously defined to have the z-direction normal to

the shell surface. However, an individual x-y-z system is created for each shell element

in a mesh as described later in Section 4. Note that in a mesh fine enough for proper

finite element convergence, the t- and z-directions for each element should be nearly

perpendicular to the shell surface at the element centroid. Let the angle between the

r-s-t and x-y-z systems be denoted by θ2 and positive as shown in Fig. 1.3.

The constitutive equations in the r-s-t system can be determined by applying the

appropriate tensor transformations to Eqs. (1.27) and (1.28) to give























































Ṅrr

Ṅss

Ṅrs

Ṁrr

Ṁss

Ṁrs























































=





























Â11 Â12 Â16 B̂11 B̂12 B̂16

Â12 Â22 Â26 B̂12 B̂22 B̂26

Â16 Â26 Â66 B̂16 B̂26 B̂66

B̂11 B̂12 B̂16 D̂11 D̂12 D̂16

B̂12 B̂22 B̂26 D̂12 D̂22 D̂26

B̂16 B̂26 B̂66 D̂16 D̂26 D̂66



















































































ėrr

ėss

2ėrs

k̇rr

k̇ss

2k̇rs























































− Ṫ























































N̂ th
rr

N̂ th
ss

N̂ th
rs

M̂ th
rr

M̂ th
ss

M̂ th
rs























































(1.36)

and






Ṅst

Ṅtr







=





Â44 Â45

Â45 Â55











2ėst

2ėtr







(1.37)
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Figure 1.3: Co-rotational (r-s-t) and user-defined (x-y-z) coordinate systems. These

systems share a common axis which is (nearly) perpendicular to the shell element at

its centroid.

where

[

Â
]

= [P1(θ2)]
−1 [A] [P1(θ2)]

−T (1.38)

[

B̂
]

= [P1(θ2)]
−1 [B] [P1(θ2)]

−T (1.39)

[

D̂
]

= [P1(θ2)]
−1 [D] [P1(θ2)]

−T (1.40)

[

Âts

]

= [P2(θ2)]
−1 [Ats] [P2(θ2)]

−T (1.41)

{

N̂ th
}

= [P1(θ2)]
−1
{

N th
}

(1.42)

{

M̂ th
}

= [P1(θ2)]
−1
{

M th
}

(1.43)

In condensed notation, Eqs. (1.36) and (1.37), respectively, are written as











{

˙̂
N
}

{

˙̂
M
}











=







[

Â
] [

B̂
]

[

B̂
] [

D̂
]

















{

˙̂e
}

{

˙̂κ
}











− Ṫ











{

N̂ th
}

{

M̂ th
}











(1.44)

and
{

˙̂
Nts

}

=
[

Âts

]{

˙̂ets

}

(1.45)

1.4 Strain Kinematics

It is now necessary to relate the total/kinematic strain rates used in Eqs. (1.44) and

(1.45) to the nodal degrees-of-freedom. In the r-s-t system for an element, these nodal



16

degrees-of-freedom consist of three translational velocities for the shell midplane (vr,

vs, and vt) and two rotational velocities (ωr and ωs). The rotational velocities ωr and

ωs are taken to be positive about the r- and s-axes, respectively. This results in the

total translational velocity at any point through the thickness being given by


















Vr(r, s, t)

Vs(r, s, t)

Vt(r, s, t)



















=



















vr(r, s)

vs(r, s)

vt(r, s)



















+ t



















ωs(r, s)

−ωr(r, s)

0



















(1.46)

The velocity gradient is defined as

[l] =

















∂Vr

∂r

∂Vr

∂s

∂Vr

∂t
∂Vs

∂r

∂Vs

∂s

∂Vs

∂t
∂Vt

∂r

∂Vt

∂s

∂Vt

∂t

















(1.47)

Substituting Eq. (1.46) into Eq. (1.47) gives

[l] =











vr,r + tωs,r vr,s + tωs,s ωs

vs,r − tωr,r vs,s − tωr,s −ωr

vt,r vt,s 0











(1.48)

where (·),r = ∂(·)/∂r and (·),s = ∂(·)/∂s. The rate-of-deformation tensor is defined as

the symmetric part of [l] and is given by

[d] =
1

2

(

[l] + [l]T
)

(1.49)

=











drr drs dtr

drs dss dst

dtr dst dtt











(1.50)

with

drr = vr,r + tωs,r (1.51)

dss = vs,s − tωr,s (1.52)

dtt = 0 (1.53)

dst =
1

2
(vt,s − ωr) (1.54)

dtr =
1

2
(vt,r + ωs) (1.55)

drs =
1

2

(

vr,s + vs,r + t
(

ωs,s − ωr,r

)

)

(1.56)
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The co-rotational total strain rates are taken equal to the appropriate rate-of-

deformation tensor components such that the midplane strain rates for inplane behav-

ior are given by


















ėrr

ėss

2ėrs



















=



















vr,r

vs,s

vr,s + vs,r



















(1.57)

The bending curvature strain rates are expressed as












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



k̇rr

k̇ss

2k̇rs



















=



















ωs,r

−ωr,s

ωs,s − ωr,r



















(1.58)

Finally, the transverse shear strain rates are determined as







2ėst

2ėtr







=







vt,s − ωr

vt,r + ωs







(1.59)

Note that these transverse shear strain rates are constant in the thickness direction

and will result in the corresponding transverse shear stresses being constant as well. It

is known that modeling both of these as constant results in a transverse shear energy

which is too large compared to that coming from a realistic parabolic distribution.

Another potential problem that can result from using unmodified shear behavior as

given above is that as a shell element becomes thin (small thickness compared to

inplane element dimensions), the element may exhibit shear locking. Hence, transverse

shear correction factors are used in ADAGIO/PRESTO to achieve better behavior.

Because the square root of the transverse shear correction factor is applied to the

gradient operator (used to compute the scaled transverse shear strains) and divergence

operator (used to compute the element internal forces) outside of the material model

coding, the material model itself does not need to apply these shear correction factors in

computing the force and force-couple resultants. However, when computing a critical

time step for PRESTO, these transverse shear correction factors need to be explicitly

taken into account.1
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2 Numerical Evaluation

Over each time step, the velocity is taken to be constant. However, many choices exist

for which configuration to use in evaluating the strain rates which are expressed in

terms of the rate-of-deformation tensor. In ADAGIO and PRESTO, the configuration

at the middle of the time step is used. Then, the material response is determined as

follows:











{

N̂
}

{

M̂
}











n+1

=











{

N̂
}

{

M̂
}











n

+∆tn+1






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Â
] [

B̂
]

[

B̂
] [

D̂
]


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







{

˙̂e
}

{

˙̂κ
}











n+1/2

−∆Tn+1











{

N̂ th
}

{

M̂ th
}











(2.1)

and
{

N̂ts

}n+1
=
{

N̂ts

}n
+∆tn+1

[

Âts

]{

˙̂ets

}n+1/2
(2.2)

where ∆tn+1 = tn+1 − tn and ∆Tn+1 = Tn+1 − Tn. As typically done in ADA-

GIO/PRESTO, the body is assumed to be stress free at the initial time/temperature,

unless explicitly set otherwise.

3 Critical Time Step for Explicit Dynamics

It is well-known that the critical time step for central difference method when applied

to linear finite element analysis is determined as2

∆tcr =
2

ωmax
(3.1)

where ωmax is the maximum eigenvalue determined from the free vibration of the

assembled finite element system. That is, ωmax is determined from considering

∣

∣[K]− ω2 [M ]
∣

∣ = 0 (3.2)

where [K] and [M ] are the assembled stiffness and mass matrices. For nonlinear

analysis, the upper limit on the time step necessary to prevent instability is taken to

be equal to that computed using Eqs. (3.1) and (3.2) with [K] and [M ] evaluated at
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the start of the time step in question. It can be shown that2

ωmax ≤ max
(n)

ω(n)
max (3.3)

where ω
(n)
max is the maximum frequency of the nth element. Hence, it is sufficient to

consider the eigenvalue problem for a single element.

The complete development of the eigenvalue problem for a laminated flat shell is

given in Ref. 1. Only the final results of the derivation will be presented here. Note

that in determining the critical time step, the thermal force and force-couple resultants

from thermal changes can be considered as part of the applied load and hence ignored

when considering the free vibration of the assembled finite element system.

The eigenvalue problems are derived by considering a single 4-noded flat bilinear

element. When viewed in the plane of the element, each node only has 5 degrees-of-

freedom (DOF) (the drilling DOF is missing) for a total of 20 DOF for the element.

Using a methodology based on the presented in Refs. 3 and 4, finding the maximum

eigenvalue of the resulting (20× 20) system is reduced to finding the maximum eigen-

value of an asymmetric (6×6) matrix corresponding to membrane and bending waves

which may act in a coupled manner and the maximum eigenvalue of an asymmetric

(2×2) matrix corresponding to transverse shear waves. These two eigenvalue problems

are uncoupled. The 12 eigenvalues that are eliminated from consideration correspond

to rigid body and hourglass modes.

3.1 Eigenvalue Problem Arising From Inplane Stresses

The following (6× 6) eigenvalue problem results from the inplane stresses:
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(3.4)
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where ρ is the material density, A is the element area, β is the rotational inertia scaling

factor for a lumped mass matrix and

[

Ã
]

=













a11Â11 + a12Â16 a22Â12 + a12Â16 a12

(

Â11 + Â12

)

+ (a11 + a22) Â16

a11Â12 + a12Â26 a22Â22 + a12Â26 a12

(

Â12 + Â22

)

+ (a11 + a22) Â26

a11Â16 + a12Â66 a22Â26 + a12Â66 a12

(

Â16 + Â26

)

+ (a11 + a22) Â66













(3.5)

with

aij = {bi}
T {bj} (3.6)

and

{b1}
T = A

∂ {Φ}T

∂r

∣

∣

∣

∣

∣

c

=
1

2

{

s24 s31 s42 s13

}

(3.7)

{b2}
T = A

∂ {Φ}T

∂s

∣

∣

∣

∣

∣

c

=
1

2

{

r42 r13 r24 r31

}

(3.8)

{b3}
T = A {Φ}T

∣

∣

∣

∣

∣

c

=
A

4

{

1 1 1 1
}

(3.9)

where {Φ} is the vector of bilinear shape functions and |c indicates evaluation at the

element centroid. Here rij is determined in terms of the nodal ri coordinates as

rij = ri − rj (3.10)

Similar equations hold for sij . The element area A is given by

A =
1

2
(r31s42 + r24s31) (3.11)

Equations for
[

B̃
]

and
[

D̃
]

are obtained by replacing Âij by B̂ij and D̂ij , respectively,

in Eq. (3.5).

Several choices exist for determining the rotational inertia scaling factor β. One

possibility is to take β as the ratio of the area moment of inertia to the area as follows:5

β =
I

A
=
h2

12
(3.12)

An alternative choice for β is

β =
A

12
(3.13)

which when multiplied by ρAh/4 gives the mass moment of inertia of one-fourth of a

rigid square element. In PRESTO, Eq. (3.13) is used in determining the rotational

inertia.
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3.2 Eigenvalue Problem Arising from Transverse Shear Stresses

As noted previously, the transverse shear correction factors applied to the gradient and

divergence operators must be taken into account for the transverse shear eigenvalue

problem. In ADAGIO and PRESTO, separate correction factors denoted by κst and

κtr are computed for the st and tr transverse shear behaviors as follows:

κ2
st = min

{

5/6, 6h2/L2
st

}

(3.14)

κ2
tr = min

{

5/6, 6h2/L2
tr

}

(3.15)

where Lst and Ltr are characteristic lengths of the element in the s- and r-directions,

respectively. A complete discussion of using these shear correction factors is given

in Ref. 1. However, for the present discussion, it suffices to point out that 5/6 is

the traditional value used to give the same strain energy as a parabolic distribution

of transverse shear stresses and strains, whereas the 6h2/L2 value is used to recover

Kirchhoff bending behavior for thin shell elements without shear locking the element.

Taking all of this into account, the following (2× 2) eigenvalue problem results for

transverse shear behavior:
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(3.16)

where
[

Ãts

]

is a (2× 2) matrix given by
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

(3.17)

If equal transverse shear factors are applied to both transverse shears (κst = κtr = κ),

the transverse shear eigenvalue problem can be simplified by factoring κ2 out of
[

Ãts

]

.

3.3 Critical Time Step Estimation

Obviously, the critical time step is calculated using the maximum of the frequency

eigenvalues determined from Eqs. (3.4) and (3.16). Because the geometrical aij factors

change with element deformation, it is necessary at every time step to calculate a value

for the critical time step.
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In the current implementation in PRESTO, the (2 × 2) eigenvalue problem for

transverse shear given in Eq. (3.16) is solved exactly. On the other hand, the maximum

eigenvalue from the (6 × 6) system given in Eq. (3.4) is only estimated in order to

minimize the computational cost. In fact, three independent bounds are computed.

The first two bounds correspond to Gerschgorin circles estimates operating on the

(6×6) matrix and its transpose. The third bound is determined using the matrix norms

induced from L1 and L∞ vector norms. Because these three bounds for the maximum

membrane/bending frequency are independent, the minimum of these bounds is used

as the conservative estimate for the maximum membrane/bending frequency to give

an estimated critical time step for membrane/bending behavior which is as large as

possible. The final critical time step is the minimum of the those corresponding to

membrane/bending and transverse shear waves.

4 Material Orientation Initialization

Although internally the material parameters for each element are transformed to cor-

respond to the element’s r-s-t co-rotational coordinate system, the material properties

are specified at the material block level on the input deck with respect to a user-defined

x-y-z coordinate system.

A general capability for defining rectangular, cylindrical, and spherical coordinate

systems is available for the elastic laminate model. In each case, the user-defined

coordinate system is created as follows. First, the user inputs three points A, B,

and C which define the origin, a point on the user-defined Z ′-axis and a point on

the user-defined X ′-Z ′ plane, respectively, as shown in Fig. 4.1. Typically, point C is

simply given as a point on the user-defined X ′ axis. Note that for the case of either

a cylindrical or spherical coordinate system, point C does not affect the coordinate

system definition, except for the reference of where angles in the coordinate system

are defined to be zero. That is, the Z ′-axis defines the cylindrical and polar axes of

cylindrical and spherical systems, respectively. The definition of the X ′-Y ′-Z ′ system

is general and is given outside of the material block on the ADAGIO/PRESTO input

deck.

In order to allow for easier definition of the initial material orientation, additional
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Yg
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Xg
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Y’

Z’
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B

Figure 4.1: User-defined system X ′-Y ′-Z ′ specified via points A, B, and C. Also

shown is the global Xg-Yg-Zg coordinate system.
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Table 4.1: Selection of axis of the X ′′-Y ′′-Z ′′ system for projection onto the shell

surface. In the event that the first axis chosen for projection is (nearly) perpendicular

to the shell surface, the second choice axis becomes the one that is projected.

Axis Chosen First Choice Second Choice
for Rotation of Axis of Axis
to Create to Project to Project
X ′′-Y ′′-Z ′′ onto Surface onto Surface

X ′ Y ′′ Z ′′

Y ′ X ′′ Z ′′

Z ′ X ′′ Y ′′

manipulations of the user-defined X ′-Y ′-Z ′ system are allowed. First, once the X ′-

Y ′-Z ′ system has been created, the user has the ability to specify a X ′′-Y ′′-Z ′′ system

defined by rotating the X ′-Y ′-Z ′ system by angle α about one of its coordinate axes

as shown in Fig. 4.2. For many curved shell structures, it is unlikely that the shell

surface is always parallel to any one of the axes of the X ′′-Y ′′-Z ′′ system. Hence,

it is necessary to project one of these axes onto the shell surface. The axis chosen

for projection is the selected as follows. First, the axis used to create the X ′′-Y ′′-

Z ′′ system by rotating the X ′-Y ′-Z ′ system is eliminated from consideration. Of the

remaining two axes, the one chosen is the alphabetically first axis that has a non-zero

projection. This selection procedure is explicitly given in Table 4.1. For example, if

the X ′′-Y ′′-Z ′′ system is created by rotating the X ′-Y ′-Z ′ system about the Y ′-axis,

the X ′′-axis will be the one projected, unless its projection is (nearly) zero in which

case the Z ′′-axis will be projected instead.

After this projection operation, the user-defined system is known in terms of the

projected axis and the element normal. The user is allowed one final manipulation

which is to rotate the resulting system by angle θ about the element normal to give the

final x-y-z system used in specifying the material properties as shown in Fig. 4.3. The

first direction corresponds to the rotated projected axis, while the third direction is

aligned with the element normal and the second direction completes the right-handed

system. The material parameters are then specified by the user with respect to this

x-y-z coordinate system.
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Figure 4.2: Creation of X ′′-Y ′′-Z ′′ coordinate system by rotation of the X ′-Y ′-Z ′

system about one its axes by angle α: (a) rotation about X ′; (b) rotation about Y ′;

(c) rotation about Z ′.
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Figure 4.3: Creation of x-y-z coordinate system by rotation of the projected system

by angle θ about the element normal.

In summary, the x-y-z system is created individually for each element as follows.

First the user inputs three points defining the X ′-Y ′-Z ′ system. The user also specifies

whether the X ′-Y ′-Z ′ is a rectangular, cylindrical, or spherical coordinate system. For

cylindrical and spherical systems, the global directions of X ′-, Y ′-, and Z ′-axes depend

upon the location of the centroid of the element in question. Next, the X ′′-Y ′′-Z ′′

system is created by rotating the X ′-Y ′-Z ′ system about one of its axis by a user-

defined angle α. After this, one of the axes of the X ′′-Y ′′-Z ′′ system is projected onto

the element surface. The resulting coordinate system is rotated about the element

normal by user-specified angle θ to give the final x-y-z system.

5 Stress Output

Although layer information must be known to generate appropriate values for [A], [Ats],

[B], and [D], this layer information is not used inside either ADAGIO or PRESTO and,

hence, is not specified on the input deck. Therefore, it is not possible for either code

to generate layer stresses corresponding to the actual layer properties. Nevertheless,

an equivalent linear stress distribution through the thickness is computed. When this

equivalent stress variation is integrated through the thickness it gives the same force

and force-couple resultants as the actual laminate lay-up.

The equivalent stress distribution is shown in Fig. 5.1 and is given in terms of

the average stress σ̄ij and δσij which is one-half the total stress variation through the
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ij = σ̄ij − δσij

σm
ij = σ̄ij

σt
ij = σ̄ij + δσij

Figure 5.1: Equivalent linear stress distribution through the laminate thickness. The

values at the bottom, middle, and top are marked.

thickness. Equating the force and force-couple resultants coming from the equivalent

stress distribution to those from the unknown real stress distribution, the average

stress and stress variation are given by

σ̄ij =
Nij

h
(5.1)

and

δσij =
6

h2
Mij (5.2)

The resulting values of the equivalent stress at the bottom, middle, and top are then

σb
ij =

Nij

h
−

6

h2
Mij (5.3)

σm
ij =

Nij

h
(5.4)

σt
ij =

Nij

h
+

6

h2
Mij (5.5)

Because the middle stress is equal to the average stress, it is reported as the “mem-

brane” stress value. The stress values reported on output are given with respect to

the global coordinate system.

6 ADAGIO/PRESTO Input and Output Keywords

Sample input decks for several problems discussed in the next section are given in

the Appendices. Here, the keywords needed to use the elastic laminate model will be

defined.
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6.1 Definition of X ′-Y ′-Z ′ System

Points A, B, and C that define the X ′-Y ′-Z ′ are input using the following syntax:

DEFINE POINT <string>point_name

WITH COORDINATES <real>Xg_value <real>Yg_value <real>Zg_value

The X ′-Y ′-Z ′ coordinate system is then defined as follows:

DEFINE COORDINATE SYSTEM <string>coord_sys_name

<string>RECTANGULAR|CYLINDRICAL|SPHERICAL

WITH POINT <string>ptA_name POINT<string>ptB_name

POINT<string>ptC_name

The completion of the user-defined x-y-z system used for input of material properties

is completed in the model definition block by specifying angles α and θ and the axis

about which the α rotation is to be applied.

6.2 Elastic Laminate Model Definition

Parameters for the elastic laminate material model are given using the following input

syntax:

BEGIN PARAMETERS FOR MODEL ELASTIC_LAMINATE

A11 = <real>a11_value

A12 = <real>a12_value

A16 = <real>a16_value

A22 = <real>a22_value

A26 = <real>a26_value

A66 = <real>a66_value

A44 = <real>a44_value

A45 = <real>a45_value

A55 = <real>a55_value

B11 = <real>b11_value

B12 = <real>b12_value

B16 = <real>b16_value

B22 = <real>b22_value
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B26 = <real>b26_value

B66 = <real>b66_value

D11 = <real>d11_value

D12 = <real>d12_value

D16 = <real>d16_value

D22 = <real>d22_value

D26 = <real>d26_value

D66 = <real>d66_value

COORDINATE SYSTEM = <string>coord_sys_name

DIRECTION FOR ROTATION = 1|2|3

ALPHA = <real>alpha_value

THETA = <real>theta_value

NTH11 FUNCTION = <string>nth11_function_name

NTH22 FUNCTION = <string>nth22_function_name

NTH12 FUNCTION = <string>nth12_function_name

MTH11 FUNCTION = <string>mth11_function_name

MTH22 FUNCTION = <string>mth22_function_name

MTH12 FUNCTION = <string>mth12_function_name

END PARAMETERS FOR MODEL ELASTIC_LAMINATE

The values for Aij , Bij , Dij , N
th
ij , and M th

ij are given with respect to the x-y-

z coordinate system created for each element as previously explained. Note that

both alpha value and theta value in the user coordinate system definition are given

in degrees. The user is required to ensure that all of the material parameters are

consistent with the chosen laminate stacking sequence, as no such explicit checking is

performed in the code.

Here the NTHIJ and MTHIJ FUNCTION’s specify the components of the relative ther-

mal force and force-couple resultants at a given temperature. That is, these functions

are populated with values determined using

NTHIJ FUNCTION value at T = (T − Tref )N
th
ij (6.1)

MTHIJ FUNCTION value at T = (T − Tref )M
th
ij (6.2)
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where Tref is the temperature at which the thermal force and force-couple resultants

are defined to be zero.

The model was implemented such that when thermal strains are to be included, not

only must nonzero functions be specified for the thermal force and force-couple resul-

tants, but the THERMALSTRAIN option must be given in the ADAGIO region definition

as follows:

OPTIONS = THERMALSTRAIN

If this option is not given, then the thermal force and force-couple resultants will be

set to zero regardless of the values specified in their respective functions. This choice

was made to allow thermal strains to be turned-on and off easily without having to

change function definitions.

6.3 Output of Relevant Results

A number of results variables are available for this model. Some of these variables are

specific to the elastic laminate model, while others are general variables available

for all shell/membrane material models. Accessing some of the most useful variables

is achieved by giving the following commands in the results output block of the ADA-

GIO/PRESTO region:

ELEMENT VARIABLES = BOTTOM_STRESS

ELEMENT VARIABLES = MEMBRANE_STRESS

ELEMENT VARIABLES = TOP_STRESS

ELEMENT VARIABLES = AR

ELEMENT VARIABLES = AS

ELEMENT VARIABLES = AXIS1_DIR

ELEMENT VARIABLES = AXIS2_DIR

ELEMENT VARIABLES = ELEMENT_THICKNESS

ELEMENT VARIABLES = ELEMENT_AREA

Here the stress variables that are output for the elastic laminate model are as

defined in Section 5. Recall, these stresses are output in component form using the

global coordinate system. The variables AR and AS give the direction cosines of the
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user-defined x-axis relative the r- and s-axes of the co-rotational system, respectively.

The global direction cosines of the user-defined x- and y-axes are, respectively, given in

variables AXIS1 DIR and AXIS2 DIR. Variables ELEMENT THICKNESS and ELEMENT AREA

are self-explanatory.

7 Verification Examples

Although a dozen or more verification tests have been implemented as SIERRA re-

gression tests, only a couple of the examples will be presented here. In each case, the

analysis problem will be described and comparison of the numerical results to analytic

solutions will be presented. The input decks for these examples are included in the

Appendices.

7.1 Fully Constrained Laminated Plate Under Thermal Loading

A 1” x 1” plate which is 0.04” thick is subjected to a 100◦F temperature change. The

plate is initially stress free at the initial temperature of 82◦F. This initial temperature

is different than the temperature at which the thermal force and force-couple resultants

are chosen to be zero. This reference temperature for zero thermal force and force-

couple resultants is specified as 72◦F. The square plate has its edges aligned with the

global coordinate directions with its thickness in the Zg-direction. All edges are fully

constrained with no displacements or rotations allowed.

The laminate is composed of layers of a contrived orthotropic material having the

following properties:

E1 = 7.8× 106 psi (7.1)

E2 = 2.6× 106 psi (7.2)

ν12 = 0.25 (7.3)

G12 = 1.25× 106 psi (7.4)

G23 = G12 (7.5)

G31 = G12 (7.6)

α1 = 3.5× 10−6 /◦F (7.7)

α2 = 11.4× 10−6 /◦F (7.8)
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A stacking sequence of [20/40/ − 15/ − 30] relative to the Xg-axis of the global

coordinate system is used with each of the four layers having a thickness of 0.01.

Relative to the global coordinate system, the laminate has the following laminate

matrices:










A11 A12 A16

A12 A22 A26

A16 A26 A66











=











248.07 52.1327 1.29792

52.1327 125.622 5.6476

1.29792 5.6476 75.5795











× 103 lb/in (7.9)











B11 B12 B16

B12 B22 B26

B16 B26 B66











=











−29.6388 15.598 −580.464

15.598 −1.55715 −217.625

−580.464 −217.625 15.598











lb (7.10)











D11 D12 D16

D12 D22 D26

D16 D26 D66











=











33.7379 6.89019 −0.422002

6.89019 16.2093 −0.532016

−0.422002 −0.532016 10.0164











lb · in (7.11)





A44 A45

A45 A55



 =





50.0 0.0

0.0 50.0



× 103 lb/in (7.12)

with the following nominal thermal force and force-couple resultants



















N th
11

N th
22

N th
12



















=



















1.39376

1.32794

0.00373322



















(lb/in)/◦F (7.13)



















M th
11

M th
22

M th
12



















=



















−7.54694× 10−6

7.54694× 10−6

−0.000428973



















lb/◦F (7.14)

In order to demonstrate the use of the user-defined coordinate system, the material

properties are actually input relative to a coordinate system which is created as the

global coordinate system rotated by 15◦ about the Zg-axis. Relative to this coordinate

system, the laminate has a stacking sequence of [5/25/ − 30/ − 45]. The laminate
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properties relative to this coordinate system are











A11 A12 A16

A12 A22 A26

A16 A26 A66











=











243.513 51.9604 −9.82541

51.9604 130.524 −14.7717

−9.82541 −14.7717 75.4072











× 103 lb/in

(7.15)










B11 B12 B16

B12 B22 B26

B16 B26 B66











=











−576.117 164.913 −419.274

164.913 246.291 −264.871

−419.274 −264.871 164.913











lb (7.16)











D11 D12 D16

D12 D22 D26

D16 D26 D66











=











32.3781 6.59888 −2.15462

6.59888 18.1518 −3.05374

−2.15462 −3.05374 9.72512











lb · in (7.17)





A44 A45

A45 A55



 =





50.0 0.0

0.0 50.0



× 103 lb/in (7.18)

and the corresponding nominal thermal force and force-couple resultants are



















N th
11

N th
22

N th
12



















=



















1.39122

1.33049

−0.0132209



















(lb/in)/◦F (7.19)



















M th
11

M th
22

M th
12



















=



















−0.000221022

0.000221022

−0.000367728



















lb/◦F (7.20)

Because the plate is constrained along all of its edges, the kinematic strains are

zero and the following force and force-couple resultants are obtained:

{N} = −∆T
{

N th
}

(7.21)

{M} = −∆T
{

M th
}

(7.22)

The results computed using a single element in ADAGIO are compared to the an-

alytic results in Table 7.1. Excellent agreement is achieved, as expected for such a

straightforward analysis.
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Table 7.1: Analytic and numerical results for global stress components of a fully

constrained laminated plate under thermal loading.

Result Analytic (psi) ADAGIO (psi)

σb
XX -3487.23 -3487.23

σm
XX -3484.40 -3484.40

σt
XX -3481.57 -3481.57

σb
Y Y -3317.03 -3317.02

σm
Y Y -3319.86 -3319.85

σt
Y Y -3322.69 -3322.68

σb
XY -170.198 -170.2009

σm
XY -9.33304 -9.336119

σt
XY 151.532 151.5287

7.2 Antisymmetric Angle-Ply Plate Under Uniform Pressure

A rectangular antisymmetric angle-ply laminated plate is subjected to a uniform

pressure load of q = 0.003 psi. The plate has its edges aligned with the global

directions and measures 12.0 × 8.0 in. in the Xg- and Yg-directions. The plate is

simply supported on each edge. The antisymmetric angle-ply stacking sequence is

[∓302]A = [−30/30/ − 30/30/ − 30/30/ − 30/30]. A thickness of 0.01 in. is used for

each of the eight layers.

The following properties corresponding to T300/5208 Gr/Ep are used:

E1 = 26.25× 106 psi (7.23)

E2 = 1.49× 106 psi (7.24)

ν12 = 0.28 (7.25)

G12 = 1.04× 106 psi (7.26)

G23 = G12 (7.27)

G31 = G12 (7.28)

For this verification example, the user-defined x-y-z coordinate system for material

parameter input is identical to the global coordinate system.
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A closed-form solution is developed using classical lamination theory including

application of the Kirchhoff condition of zero transverse shear strains. Denoting the

inplane displacements in the x and y directions by u and v and the transverse deflection

by w, the governing equations for a flat laminated plate under pressure are

A11u,xx +A66u,yy +(A12 +A66)v,xy −3B16w,xxy −B26w,yyy = 0 (7.29)

(A12 +A66)u,xy +A66v,xx +A22v,yy −B16w,xxx−3B26w,xyy = 0 (7.30)

D11w,xxxx +2(D12 + 2D66)w,xxyy +D22w,yyyy

−B16(3u,xxy +v,xxx )−B26(u,yyy +3v,xyy ) = q (7.31)

where Aij , Bij , and Dij denote laminate stiffnesses and (·) ,x and (·) ,y denote spatial

derivatives.

The simply supported boundary conditions are chosen as

x = 0, a : u = 0 (7.32)

w = 0 (7.33)

Nxy = 0 (7.34)

Mxx = 0 (7.35)

and

y = 0, b : v = 0 (7.36)

w = 0 (7.37)

Nxy = 0 (7.38)

Myy = 0 (7.39)

where a and b are plate lengths along the x- and y-directions, respectively, and Nij and

Mij are the usual force and force-couple resultants, respectively. Using the constitutive

law, the strain-displacement relations, and the conditions on u, v, and w given above,

the boundary conditions can be written strictly in terms of the the displacements and

their derivatives as

x = 0, a : u = 0 (7.40)

w = 0 (7.41)

v,x = 0 (7.42)

w,xx = 0 (7.43)
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and

y = 0, b : v = 0 (7.44)

w = 0 (7.45)

u,y = 0 (7.46)

w,yy = 0 (7.47)

The uniform pressure load can be written as a Fourier series as follows:

q =
∞
∑

m=1,3,5

∞
∑

n=1,3,5

16q0
π2mn

sin
mπx

a
sin

nπy

b
(7.48)

where q0 is the pressure magnitude.

The governing equations and boundary conditions are satisfied exactly by choosing

u=
∞
∑

m=1,3,5

∞
∑

n=1,3,5

Imn sin
mπx

a
cos

nπy

b
(7.49)

v=
∞
∑

m=1,3,5

∞
∑

n=1,3,5

Jmn cos
mπx

a
sin

nπy

b
(7.50)

w=
∞
∑

m=1,3,5

∞
∑

n=1,3,5

Kmn sin
mπx

a
sin

nπy

b
(7.51)

The Imn, Jmn and Kmn coefficients are determined by substituting Eqs. (7.48)-(7.51)

into Eqs. (7.29)-(7.31) and solving.

In the finite element solution, the quarter of the panel for which 0 ≤ x ≤ a/2 and

0 ≤ y ≤ b/2 is modeled with symmetry boundary conditions enforced on the two edges

x = a/2 and y = b/2. The essential or kinematic boundary conditions to be applied

in determining the finite element solution are

x = 0 : u = 0, w = 0 (7.52)

y = 0 : v = 0, w = 0 (7.53)

x = a/2 : u = 0, θy = θz = 0 (7.54)

y = b/2 : v = 0, θx = θz = 0 (7.55)

The spatial discretization uses a total of 260 elements and 294 nodes. The input deck

listing in Appendix B shows how to use the full tangent preconditioner in conjunction

with the FETI linear solver for the conjugate gradient solution method employed

by ADAGIO. The shell drilling stiffness is an adjustable parameter used to

create a positive definite matrix for the linear solver. Although more costly than a
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Table 7.2: Analytic and numerical results for transverse deflection at center of anti-

symmetric angle-ply plate under uniform pressure.

Analytic I (in)∗ Analytic II (in)+ ADAGIO (in)

0.000238069 0.000238099 0.000237272

∗using m = 1, 3, 5, 7 and n = 1, 3, 5, 7

+using m = 1, 3, . . . , 19 and n = 1, 3, . . . , 19

nodal preconditioner, the full tangent preconditioner allows the solution of a broader

range of composite problems than does the nodal preconditioner. In fact, for this

particular problem, convergence was not achieved for several options tried with the

nodal preconditioner.

The analytical and numerical results for the midpoint transverse deflection are

given in Table 7.2. Note that using 100 terms in the Fourier series expansion gives

converged analytical results, as using 100 terms gives a midpoint deflection value that

is only 0.0126% different from that computed using 16 terms. Shown in Figs. 7.1

and 7.2 are results for the transverse deflection along the lines x = a/2 and y = b/2,

respectively. Because the response is symmetric, only one-half of the centerline results

are shown. In these figures, the analytic results correspond to using m = 1, 3, . . . , 19

and n = 1, 3, . . . , 19. The numerical and analytical results are in excellent agreement.
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w
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Figure 7.1: Transverse deflection of antisymmetric angle-ply plate along the x = a/2

centerline.
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Figure 7.2: Transverse deflection of antisymmetric angle-ply plate along the y = b/2

centerline.
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7.3 Cross-Ply Cylindrical Panel Under Uniform Pressure

A cylindrical panel is subjected to a uniform pressure load of q3 = 0.003 psi. The

pressure is applied on the concave side of the panel pointing away from the center

of curvature of the panel cross sections. The length of the panel is 80 in., while the

arc length of the other side is 41.89 in. corresponding to a half-angle of φ = 12◦

and a radius of 100 in. On each edge, the cylindrical panel rests on diaphragms

which are rigid in their plane, but perfectly flexible otherwise. These diaphragms are

perpendicular to the panel surface along its edges. The symmetric cross-ply stacking

sequence is [0/90]S = [0/90/90/0] with the thickness of each layer taken to be 0.08 in.,

giving a total laminate thickness of 0.32 in.

The following properties corresponding to a graphite epoxy are used for each layer:

E1 = 18× 106 psi (7.56)

E2 = 1.4× 106 psi (7.57)

ν12 = 0.34 (7.58)

G12 = 0.9× 106 psi (7.59)

G23 = 107 psi (7.60)

G31 = 107 psi (7.61)

A closed-form solution for this problem using shallow shell theory is computed as

follows. Consider the curvilinear shell coordinate system to be as shown in Fig. 7.3a.

The first shell coordinate ξ1 varies along the direction having zero curvature, while

the second shell coordinate ξ2 varies along the direction having constant non-zero

curvature. The third shell coordinate ξ3 (the shell normal) is determined from the

right-hand rule and points away from the center of curvature of the ξ1-constant arcs.

As chosen, the shell coordinates are principal coordinates.

The symmetric cross-ply stacking sequence [0/90]S has the fibers in the 0◦ layers

aligned with the ξ1-axis, whereas the 90◦ layers have fibers aligned with the ξ2-axis.

The laminate matrices are input into ADAGIO relative to a user-defined cylindrical

system created in a way such that the user-defined x-axis is aligned with ξ1-axis and

the user-defined y-axis is aligned with the ξ2-axis. This user-defined cylindrical system

is defined as shown in Appendix C. The origin of this system is chosen as the center of
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curvature of the ξ1 = 0 (Xg = 0) edge. The second point which along with the origin

defines the cylindrical axis is determined by adding ∆Xg to the global coordinates of

the origin of the cylindrical system. Using this construction with the Z ′-axis chosen

as the axis of rotation to create the X ′′-Y ′′-Z ′′ system with α = 0, the Y ′′ axis of

the X ′′-Y ′′-Z ′′ system is projected onto the shell surface to give an axis aligned in the

negative ξ2-direction. Hence, an additional rotation of θ = 90◦ is applied about the

shell normal to give the user-defined x-axis aligned with ξ1.

Let v1, v2, and v3 be the translational displacements in the directions of the three

shell coordinates. Using the Love-Kirchhoff hypothesis and other approximations ap-

propriate for thin elastic laminated shallow shells as described by Leissa and Qatu6

the governing equations in terms of v1, v2, and v3 for a shallow elastic cylindrical panel

with a symmetric cross-ply stacking sequence under uniform pressure are

A11 v1,11 +A12

(

v2,12 +
v3,1

R2

)

+A66 (v1,22 + v2,12) = 0 (7.62)

A12 v1,12 +A22

(

v2,22 +
v3,2

R2

)

+A66 (v1,12 + v2,11) = 0 (7.63)

A12
v1,1

R2
+A22

(

v2,2

R2
+

v3

R2
2

)

+D11 v3,1111

+2(D12 + 2D66) v3,1122 +D22 v3,2222 = q3 (7.64)

Here R2 is the radius associated with the panel and (·),i denotes differentiation with

respect to shell coordinate ξi.

The uniform pressure load q3 is written as

q3 =
∞
∑

m=1,3,5

∞
∑

n=1,3,5

16q0
π2mn

sin
mπξ1
l1

sin
nπξ2
l2

(7.65)

where the magnitude is denoted by q0. The boundary conditions are

ξ1 = 0, l1 : v2 = v3 = 0 and N11 = 0, M11 = 0 (7.66)

ξ2 = 0, l2 : v1 = v3 = 0 and N22 = 0, M22 = 0 (7.67)

where Nij and Mij are the usual force and force-couple resultants in the directions

of the shell coordinates. Using the constitutive law, the strain-displacement relations,

and the conditions on v1-v3 given above, the boundary conditions can be written
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ξ2 ξ1

ξ3

(a)
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Y

(b)

Figure 7.3: Coordinate systems for cylindrical panel under uniform pressure: (a) shell

coordinate system; (b) global X-Y -Z (Xg-Yg-Zg) coordinate system.
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strictly in terms of v1-v3 as

ξ1 = 0, l1 : v2 = v3 = 0 and v1,1 = 0, v3,11 = 0 (7.68)

ξ2 = 0, l2 : v1 = v3 = 0 and v2,2 = 0, v3,22 = 0 (7.69)

The boundary conditions and governing equations are satisfied exactly by the fol-

lowing Fourier series expansions:

v1=
∞
∑

m=1,3,5

∞
∑

n=1,3,5

Imn cos
mπξ1
l1

sin
nπξ2
l2

(7.70)

v2=
∞
∑

m=1,3,5

∞
∑

n=1,3,5

Jmn sin
mπξ1
l1

cos
nπξ2
l2

(7.71)

v3=

∞
∑

m=1,3,5

∞
∑

n=1,3,5

Kmn sin
mπξ1
l1

sin
nπξ2
l2

(7.72)

The constant coefficients Imn, Jmn, andKmn are determined by substituting Eqs. (7.70)-

(7.72) into Eqs. (7.62)-(7.64) and solving.

In the finite element solution, the quarter of the panel for which l1/2 ≤ ξ1 ≤ l1

and l2/2 ≤ ξ2 ≤ l2 is modeled with symmetry boundary conditions enforced on the

two edges ξ1 = l1/2 and ξ2 = l2/2. The global coordinate system for the finite element

analysis is shown in Fig. 7.3b. The geometric or essential boundary conditions to be

applied in the finite element solution are

ξ1 = l1/2 : u = 0, θy = θz = 0 (7.73)

ξ2 = l2/2 : v = 0, θx = θz = 0 (7.74)

ξ1 = l1 : v = w = 0 (7.75)

ξ2 = l2 : u = 0, w cosφ+ v sinφ = 0 or w = −v tanφ (7.76)

where u, v, w, θx, θy, and θz refer to displacements and rotations expressed using

the global coordinate system. The material properties are input using a user-defined

cylindrical coordinate system. A total of 200 elements and 231 nodes are used in

the spatial discretization. Once again, the full tangent preconditioner with the FETI

linear solver is used in conjunction with the conjugate gradient method in ADAGIO.

Although using the nodal preconditioner will work for this example, better iterative

convergence behavior results from using the full tangent preconditioner.
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Table 7.3: Analytic and numerical results for transverse deflection at center of cross-ply

cylindrical panel under uniform pressure.

Analytic I (in)∗ Analytic II (in)+ ADAGIO (in)

0.000695030 0.000694982 0.00070012

∗using m = 1, 3, . . . , 13 and n = 1, 3, . . . , 13

+using m = 1, 3, . . . , 19 and n = 1, 3, . . . , 19

Values for the midpoint transverse deflection computed analytically and using

ADAGIO are shown in Table 7.3. Once again, using 100 terms in the Fourier se-

ries expansion of the analytical solution is deemed to be sufficient, as the midpoint

deflection value decreases by only 0.0069% in going from 16 to 100 terms.

Transverse deflection profiles along the ξ1 = l1/2 and ξ2 = l2/2 centerlines are

shown in Figs. 7.4 and 7.5, respectively. The analytical solutions shown correspond

to using 100 terms in the Fourier expansion (m = 1, 3, . . . , 19 and n = 1, 3, . . . , 19).

Reasonable agreement has been achieved for the chosen mesh size.
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Figure 7.4: Transverse deflection of cross-ply panel along the ξ1 = l1/2 centerline.

ξ1 (in)

v 3
(in

)

0 5 10 15 20 25 30 35 40
0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

Analytic II
ADAGIO

Figure 7.5: Transverse deflection of cross-ply panel along the ξ2 = l2/2 centerline.
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8 Summary

A linear elastic composite shell model has been implemented in ADAGIO and PRESTO.

Previously, Sandia has not had a composites capability in its quasi-static and explicit

dynamics analysis codes. This new capability will be used in the near future by several

customers. Moreover, this model and the orthotropic nonlinear viscoelastic model be-

ing implemented by the present author will allow Sandia to pursue partnerships with

external customers on various composite topics.

The elastic laminate model can handle any chosen lay-up sequence including

the effects of anisotropic thermal expansion. The laminate matrices and thermal force

and force-couple resultants are input relative to a user-defined coordinate system which

has a lot of flexibility in terms of its construction. Because this model does not require

stacking sequence information to be input, the exact layer-wise distribution of stresses

cannot be computed. However, an equivalent stress distribution is calculated and

available for output for post-processing purposes. The model implementation has

been verified using numerous regression tests with analytical solutions. Several of

these tests have been presented in this report.
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Appendix A. Input for Fully Constrained Laminate Under

Thermal Loading

begin sierra elastic_lam_thermal_strain2

begin definition for function unit

type is piecewise linear

ordinate is unit

abscissa is time

begin values

0.0 0.0

1.0 1.0

end values

end definition for function unit

begin definition for function zero

type is constant

begin values

0.0

end values

end definition for function zero

begin definition for function TEMPERATURE

type is piecewise linear

ordinate is temperature

abscissa is time

begin values

0.0 82.0

1.0 182.0

end values

end definition for function TEMPERATURE

begin definition for function n11

type is piecewise linear

abscissa is temperature

ordinate is nth11

begin values

72.0 0.0

182.0 153.034

end values

end definition for function n11

begin definition for function n22

type is piecewise linear

abscissa is temperature

ordinate is nth22

begin values

72.0 0.0

182.0 146.353

end values

end definition for function n22

begin definition for function n12

type is piecewise linear

abscissa is temperature

ordinate is nth12
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begin values

72.0 0.0

182.0 -1.4543

end values

end definition for function n12

begin definition for function m11

type is piecewise linear

abscissa is temperature

ordinate is mth11

begin values

72.0 0.0

182.0 -0.0243124

end values

end definition for function m11

begin definition for function m22

type is piecewise linear

abscissa is temperature

ordinate is mth22

begin values

72.0 0.0

182.0 0.0243124

end values

end definition for function m22

begin definition for function m12

type is piecewise linear

abscissa is temperature

ordinate is mth12

begin values

72.0 0.0

182.0 -0.0404501

end values

end definition for function m12

define direction x with vector 1.0 0.0 0.0

define direction y with vector 0.0 1.0 0.0

define direction z with vector 0.0 0.0 1.0

define point ptO with coordinates 0.0 0.0 0.0

define point ptZ with coordinates 0.0 0.0 1.0

define point ptXZ with coordinates 1.0 0.0 0.0

define coordinate system lam_coord rectangular with point ptO point ptZ point ptXZ

begin property specification for material linear_elastic

density = 1.0

begin parameters for model elastic_laminate

youngs modulus = 7.8e6

poissons ratio = 0.25

a11 = 243.513e3

a12 = 51.9604e3

a16 = -9.82541e3

a22 = 130.524e3

a26 = -14.7717e3

a66 = 75.4072e3
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a44 = 50.e3

a45 = 0.0

a55 = 50.e3

b11 = -576.117

b12 = 164.913

b16 = -419.274

b22 = 246.291

b26 = -264.871

b66 = 164.913

d11 = 32.3781

d12 = 6.59888

d16 = -2.15462

d22 = 18.1518

d26 = -3.05374

d66 = 9.72512

coordinate system = lam_coord

direction for rotation = 3

alpha = 10.0

theta = 5.0

nth11 function = n11

nth22 function = n22

nth12 function = n12

mth11 function = m11

mth22 function = m22

mth12 function = m12

end parameters for model elastic_laminate

end property specification for material linear_elastic

begin finite element model mesh1

Database Name = elastic_lam_thermal_strain2.g

Database Type = exodusII

begin parameters for block block_1

material linear_elastic

solid mechanics use model elastic_laminate

shell integration points = 5

shell integration scheme = trapezoid

shell scale thickness = 0.04

# element strain formulation = strongly-objective

end parameters for block block_1

end finite element model mesh1

begin adagio procedure Agio_Procedure

begin time control

begin time stepping block p1

start time = 0.0

begin parameters for adagio region adagio

time increment = 0.1

end parameters for adagio region adagio

end time stepping block p1

termination time = 1.0

end time control
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begin adagio region adagio

use finite element model mesh1

options = thermalstrain

prescribed nodal temperature using function TEMPERATURE

### output description ###

begin Results Output output_adagio

Database Name = elastic_lam_thermal_strain2.e

Database Type = exodusII

At Step 0, Increment = 1

nodal Variables = displacement as displ

element Variables = bottom_stress as stress_bot

element Variables = memb_stress as stress_memb

element Variables = top_stress as stress_top

element Variables = element_thickness as thick

element Variables = element_area as area

element Variables = axis1_dir as axis1

element Variables = axis2_dir as axis2

element Variables = ar as ar

element Variables = as as as

global Variables = timestep as timestep

end results output output_adagio

### definition of BCs ###

# bottom left node

begin fixed displacement

node set = nodelist_1

components = x y z

end fixed displacement

begin fixed rotation

node set = nodelist_1

components = x y z

end fixed rotation

# bottom right node

begin fixed displacement

node set = nodelist_2

components = x y z

end fixed displacement

begin fixed rotation

node set = nodelist_2

components = x y z

end fixed rotation

# top right node

begin fixed displacement

node set = nodelist_3

components = x y z

end fixed displacement

begin fixed rotation

node set = nodelist_3

components = x y z

end fixed rotation
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# top left node

begin fixed displacement

node set = nodelist_4

components = x y z

end fixed displacement

begin fixed rotation

node set = nodelist_4

components = x y z

end fixed rotation

### ------------------###

### Solver definition ###

### ------------------###

Loadstep predictor using line search type secant

Begin adagio solver cg

Target Residual Tolerance = 1.0e-12

Maximum Iterations = 5000

Minimum Iterations = 0

Orthogonality measure for reset = 0.1

Line Search type secant

# preconditioning type nodal translational rotational

nodal preconditioning type = probe

end adagio solver cg

end adagio region adagio

end adagio procedure Agio_Procedure

end sierra elastic_lam_thermal_strain2
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Appendix B. Input for Antisymmetric Angle-Ply Plate

Under Uniform Pressure

begin sierra laminate_plate_pressure2

begin definition for function zero

type is constant

begin values

0.0

end values

end definition for function zero

begin definition for function pressure

type is piecewise linear

begin values

0.0 0.0

1.0 -1.0

end values

end definition for function pressure

define direction x with vector 1.0 0.0 0.0

define direction y with vector 0.0 1.0 0.0

define direction z with vector 0.0 0.0 1.0

define point ptO with coordinates 0.0 0.0 0.0

define point ptZ with coordinates 0.0 0.0 1.0

define point ptXZ with coordinates 1.0 0.0 0.0

define coordinate system lam_coord rectangular with point ptO point ptZ point ptXZ

begin property specification for material shell_material

density = 1

begin parameters for model elastic_laminate

youngs modulus = 26.25e6

poissons ratio = 0.28

a11 = 1.26889e6

a12 = 0.376513e6

a16 = 0.0

a22 = 0.274158e6

a26 = 0.0

a66 = 0.426188e6

a44 = 0.426188e6

a45 = 0.0

a55 = 0.426188e6

b11 = 0.0

b12 = 0.0

b16 = 3143.99

b22 = 0.0

b26 = 1163.74

b66 = 0.0

d11 = 676.792

d12 = 200.807

d16 = 0.0

d22 = 146.218

d26 = 0.0

d66 = 227.3
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coordinate system = lam_coord

direction for rotation = 3

alpha = 0.0

theta = 0.0

nth11 function = zero

nth22 function = zero

nth12 function = zero

mth11 function = zero

mth22 function = zero

mth12 function = zero

end parameters for model elastic_laminate

end property specification for material shell_material

begin finite element model shell_model

Database Name = laminate_plate_pressure2.g

Database Type = exodusII

begin parameters for block block_1

material shell_material

solid mechanics use model elastic_laminate

shell scale thickness = 0.08

end parameters for block block_1

end finite element model shell_model

begin feti equation solver feti

local solver = sparse

end

begin adagio procedure shell_procedure

begin time control

begin time stepping block p1

start time = 0.0

begin parameters for adagio region shell_region

number of time steps = 1

end parameters for adagio region shell_region

end time stepping block p1

termination time = 1.0

end time control

begin adagio region shell_region

use finite element model shell_model

begin results output shell_output

Database Name = laminate_plate_pressure2.e

Database Type = exodusII

At Step 0, Increment = 1

nodal Variables = displacement as displ

element Variables = element_thickness as thick

end results output shell_output

# bottom curve

begin fixed displacement

node set = nodelist_10
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components = y z

end fixed displacement

# right curve

begin fixed displacement

node set = nodelist_20

components = x

end fixed displacement

begin fixed rotation

node set = nodelist_20

components = y z

end fixed rotation

# top curve

begin fixed displacement

node set = nodelist_30

components = y

end fixed displacement

begin fixed rotation

node set = nodelist_30

components = x z

end fixed rotation

# left curve

begin fixed displacement

node set = nodelist_40

components = x z

end fixed displacement

# applied load

begin pressure

surface = surface_100

function = pressure

scale factor = 0.003

end pressure

Loadstep predictor using line search type secant

begin adagio solver cg

Target Residual Tolerance = 1.e-4

Maximum Iterations = 200

Minimum Iterations = 5

Orthogonality measure for reset = 0.1

Line Search type secant

Begin full tangent preconditioner

linear solver = feti

shell drilling stiffness = 1.0

End full tangent preconditioner

end adagio solver cg

end adagio region shell_region

end adagio procedure shell_procedure

end sierra laminate_plate_pressure2
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Appendix C. Input for Cross-Ply Cylindrical Panel Under

Uniform Pressure

begin sierra laminate_cyl_panel_press

begin definition for function zero

type is constant

begin values

0.0

end values

end definition for function zero

begin definition for function pressure

type is piecewise linear

begin values

0.0 0.0

1.0 -0.003

end values

end definition for function pressure

define direction x with vector 1.0 0.0 0.0

define direction y with vector 0.0 1.0 0.0

define direction z with vector 0.0 0.0 1.0

define direction dirA with vector 0.0 0.207912 0.978148

define point ptO with coordinates 0.0 20.7912 -98.8148

define point ptZ with coordinates 1.0 20.7912 -98.8148

define point ptXZ with coordinates 0.0 20.7912 1.0

define coordinate system lam_coord cylindrical with point ptO point ptZ point ptXZ

begin property specification for material shell_material

density = 1

begin parameters for model elastic

youngs modulus = 18.e6

poissons ratio = 0.34

end parameters for model elastic

begin parameters for model elastic_laminate

youngs modulus = 18.e6

poissons ratio = 0.34

a11 = 3.13216e6

a12 = 153702.

a16 = 0.0

a22 = 3.13216e6

a26 = 0.0

a66 = 288000.0

a44 = 3.2e6

a45 = 0.0

a55 = 3.2e6

b11 = 0.0

b12 = 0.0

b16 = 0.0

b22 = 0.0

b26 = 0.0

b66 = 0.0
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d11 = 43880.4

d12 = 1311.59

d16 = 0.0

d22 = 9575.16

d26 = 0.0

d66 = 2457.6

coordinate system = lam_coord

direction for rotation = 3

alpha = 0.0

theta = 90.0

nth11 function = zero

nth22 function = zero

nth12 function = zero

mth11 function = zero

mth22 function = zero

mth12 function = zero

end parameters for model elastic_laminate

end property specification for material shell_material

begin finite element model shell_model

Database Name = laminate_cyl_panel_press.g

Database Type = exodusII

begin parameters for block block_1

material shell_material

solid mechanics use model elastic_laminate

shell integration points = 5

shell integration scheme = trapezoid

shell scale thickness = 0.32

end parameters for block block_1

end finite element model shell_model

begin feti equation solver feti

local solver = sparse

end

begin adagio procedure shell_procedure

begin time control

begin time stepping block p1

start time = 0.0

begin parameters for adagio region shell_region

number of time steps = 1

end parameters for adagio region shell_region

end time stepping block p1

termination time = 1.0

end time control

begin adagio region shell_region

use finite element model shell_model

begin results output shell_output

Database Name = laminate_cyl_panel_press.e

Database Type = exodusII



57

At Step 0, Increment = 1

nodal Variables = displacement as displ

element Variables = element_thickness as thick

# element variables = axis1_dir as axis1

# element variables = axis2_dir as axis2

end results output shell_output

# right curve

begin fixed displacement

node set = nodelist_20

components = y z

end fixed displacement

# top curve

begin prescribed displacement

node set = nodelist_30

direction = dirA

function = zero

scale factor = 1.0

end prescribed displacement

begin fixed displacement

node set = nodelist_30

components = x

end fixed displacement

# left curve

begin fixed displacement

node set = nodelist_40

components = x

end fixed displacement

begin fixed rotation

node set = nodelist_40

components = y z

end fixed rotation

# bottom curve

begin fixed displacement

node set = nodelist_10

components = y

end fixed displacement

begin fixed rotation

node set = nodelist_10

components = x z

end fixed rotation

# applied load

begin pressure

surface = surface_100

function = pressure

end pressure

Loadstep predictor using line search type secant

begin adagio solver cg

Target Residual Tolerance = 1.e-4

Maximum Iterations = 200
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Minimum Iterations = 5

Orthogonality measure for reset = 0.1

Line Search type secant

Begin full tangent preconditioner

linear solver = feti

shell drilling stiffness = 1.0

End full tangent preconditioner

end adagio solver cg

end adagio region shell_region

end adagio procedure shell_procedure

end sierra laminate_cyl_panel_press



Distribution

1 MS 0372 J. Jung, 9127

1 MS 0372 R. May, 9126

1 MS 0380 K. Alvin, 9142

1 MS 0380 M. Blanford, 9142

1 MS 0380 J. Hales, 9142

1 MS 0380 M. Heinstein, 9142

1 MS 0380 A. Gullerud, 9142

1 MS 0380 S. Key, 9142

1 MS 0380 R. Koteras, 9142

1 MS 0380 J. Mitchell, 9142

1 MS 0380 K. Pierson, 9142

1 MS 0380 V. Porter, 9142

1 MS 0380 G. Reese, 9142

1 MS 0555 M. Garrett, 9122

1 MS 0557 T. Baca, 9125

1 MS 0615 D. Roach, 6252

1 MS 0847 H. Morgan, 9120

1 MS 0847 J. Redmond, 9124

1 MS 0847 H. Walther, 9127

1 MS 0888 D. Adolf, 1811

1 MS 0893 File Copy

1 MS 0893 R. Chambers, 9123

1 MS 0893 J. Cox, 9123

1 MS 0893 C. Lo, 9123

15 MS 0893 D. Hammerand, 9123

1 MS 0893 C. Lavin, 9123

1 MS 0893 M. Neilsen, 9123

1 MS 0893 J. Pott, 9123

1 MS 0893 E. Reedy, 9123

1 MS 0893 W. Scherzinger, 9123


	Laminated Composites Modelling in ADAGIO/PRESTO
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	1. Constitutive Model
	1.1 Constitutive Equations for the kth Layer
	1.2 Laminate Response In User-defined Coordinate System
	1.3 Laminate Response in Co-rotational Coordinate System
	1.4 Strain Kinematics

	2. Numerical Evaluation
	3. Critical Time Step for Explicit Dynamics
	3.1 Eigenvalue Problem Arising From Inplane Stresses
	3.2 Eigenvalue Problem Arising from Transverse Shear Stresses
	3.3 Critical Time Step Estimation

	4. Material Orientation Initialization
	5. Stress Output
	6. ADAGIO/PRESTO Input and Output Keywords
	6.1 Definition of X'-Y'Z' System
	6.2 Elastic Laminate Model Definition
	6.3 Output of Relevant Results

	7. Verification Examples
	7.1 Fully Constrained Laminated Plate Under Thermal Loading
	7.2 Antisymmetric Angle-Ply Plate Under Uniform Pressure
	7.3 Cross-Ply Cylindrical Panel Under Uniform Pressure

	8. Summary
	References
	Appendix A. Input For Fully Constrained Laminate Under Thermal Loading
	Appendix B. Input for Antisymmetric Angle-Ply Plate Under Uniform Pressure
	Appendix C. Input for Cross-Ply Cylindrical Panel Under Uniform Pressure
	Distribution

