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Abstract 

 

This document describes ROCIT, a neural-inspired object recognition 
algorithm based on a rank-order coding scheme that uses a light-weight 
neuron model.  ROCIT coarsely simulates a subset of the human ventral 
visual stream from the retina through the inferior temporal cortex.  It was 
designed to provide an extensible baseline from which to improve the fidelity 
of the ventral stream model and explore the engineering potential of rank-
order coding with respect to object recognition.  This report describes the 
baseline algorithm, the model’s neural network architecture, the theoretical 
basis for the approach, and reviews the history of similar implementations.  
Illustrative results are used to clarify algorithm details.  A formal benchmark 
to the 1998 FERET fafc test shows above average performance, which is 
encouraging.  The report concludes with a brief review of potential 
algorithmic extensions for obtaining scale and rotational invariance. 
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1. Introduction 

Object recognition in cluttered, uncontrolled environments is a fundamental need across 
myriad problem domains, from the mundane to critical national security applications.  
Competent computational assistance with this task would be welcome, especially in light of 
expanding acquisition of imaging data.  Consequently, object recognition is an outstanding 
problem in computer science and an active area of research in the computer vision, digital 
image processing, pattern recognition, and computational neuroscience disciplines.   

Biomimetic approaches to engineering and computation have proven effective for some 
problems, for example, biomimetic engineered materials, genetic/evolutionary optimization 
algorithms, and neural networks for pattern recognition and classification.  They are 
appealing because there is usually a natural existence proof for justification, and if the natural 
analogue can be understood, then it can be exploited as a technical road map.  The 
remarkable vision system common to humans and primates is an example of how object 
recognition can be accomplished in nature, and critical understanding of this system has 
reached a threshold level suitable for developing computational models.  The work presented 
here takes inspiration from this foundational knowledge for the purposes of developing 
computational object recognition system. 

This SAND report documents ROCIT, a MATLAB® implementation of a neural-inspired 
object recognition algorithm.  ROCIT uses the Rank-Order neural Coding scheme of 
Gautrais and Thorpe [1998], a new and novel neuroscience hypothesis, to simulate the 
ventral pathway of the human vision system that extends from the retinae to the Inferior 
Temporal cortex (IT).  This coding scheme uses the latency of the first spike in a neuron’s 
spike train as a way of encoding visual information.  This is in contrast to temporal or 
frequency coding schemes, and attempts to explain the rapid activation times (80-120ms) 
reported for cells in the inferior temporal cortex where cells implicated in object recognition 
are found (See, for example, Logothetis and Sheinberg  [1996]; Tanaka [1996]; Thorpe et al. 
[1996]). 

ROCIT is a prototype application designed to enable rapid algorithm exploration and 
development.  A faster C++ implementation, SpikeWave, has also been developed for the 
purpose of running computationally-intensive benchmarks.  Both implementations share a 
common baseline algorithm as described in this report. 
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2. Background 

Humans and primates share a similar neuroanatomy for visual processing.  Intensive study 
over the past several decades has led to a general consensus as to the basic function of this 
system [Hubel and Weisel, 1977]1, although fundamental questions remain.  In general, the 
visual system consists of a hierarchical arrangement of neuron groups having increasingly 
complex preferred stimuli and receptive field sizes2 as the synaptic distance from the eyes 
increases.  

2.1 Visual Streams 
Visual information enters through the pupils and is transformed into neural impulses by the 
neuronal layers that comprise the retinae, the complex sheets of neural cells forming the 
posterior wall of the posterior chamber of the eye.  The transformation begins with light 
sensitive rod and cone cells.  Cones are sensitive to color but are restricted primarily to the 
region of the fovea, a small area of very high cell density at the centers of the retinae.  Rods, 
on the other hand, are found throughout the retinae.  They are color insensitive and have a 
much larger dynamic range than cone cells with respect to illumination.  Rods and cones 
form synaptic connections with several cell types in the retinae, the output of which are 
approximately 1,000,000 retinal ganglion cells per eye whose axons form the optic nerve.   

The spatial resolution (i.e., receptive field) of retinal ganglion cells at the fovea is about 0.03º 
and decreases to nearly 3º at the periphery.  Of the neurons that make up the retinae, only 
retinal ganglion cells produce action potentials (a.k.a., “spikes” in membrane voltage), whose 
temporal spike pattern presumably encodes visual information.  The optic nerves project to 
the brain stem where they synapse onto various projections, primarily the lateral geniculate 
nucleus (LGN) (See Figure 2-1.).  Within the LGN, connections originating from retinal rod 
and cone cells are segregated into distinct layers.  These are referred to as the magnocellular 
and parvocellular pathways, respectively.  Since rods and cones respond to different stimuli 
(black and white vs. color) and illumination contrast, as well as having differing degrees of 
spatial resolution and response times, this segregation results in an early stage of information 
routing that is used for specialized processing in later stages. 

From the LGN the optic radiations project to the occipital cortex in the posterior of the brain, 
an area termed the primary visual cortex or V1.  It is a thin (~2 mm thick) cortical area 
consisting of six distinct layers and having about 200,000,000 neurons.  This is the first of 
several functionally-defined brain regions referred to as visual areas.  Visual areas are 
defined by their retinotopic3 cell arrangement and neuronal stimulus preferences.  There are 
                                                 

1 In 1981, David H. Hubel and Torsten N. Wiesel were awarded the Nobel Prize in Physiology or Medicine for 
their work on the neuroscience of vision. 

2 A neuron’s receptive field is the portion of the visual field that a neuron will respond to.  The level of 
response, as defined by spike rate or latency, depends on the similarity between a cell’s preferred stimulus 
and the presented stimulus.  

3 Retinotopic refers to a neuron arrangement where adjacent neurons respond to adjacent regions of the visual 
field.  The visual areas are, in part, defined by possessing retinotopically-arranged neuron layers. 
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several distinct cell types in V1.  Simple cells respond to oriented edges, line segments, and 
end-stopped lines.  Complex cells in V1 respond to moving lines and edges, while “blob” 
cells respond to color patches.  Simple and complex cells receive input from the 
magnocellular pathway while blob cells receive input from the parvocellular pathway, 
although the cell types have extensive interconnections.  Raizada and Grossberg [2003] and 
Grossberg [2003] provide and excellent reviews of synaptic connections in the cortex 
together with an interpretation of their functional roles. 

Beyond V1, two functionally-distinct pathways of visual processing have been identified:  
the dorsal stream and the ventral stream (See, for example, Ungerleider and Haxby [1994].).  
The dorsal stream, also referred to as the “where” stream, is responsible for sensing types of 
motion relative to the viewer.  The dorsal stream receives the majority of its input from the 
magnocellular pathway via a feed forward circuit through the visual areas V1, V2, V3, and 
the Middle Temporal Area (a.k.a., MT or V5) before terminating in the posterior parietal 
cortex.  The ventral stream, also known as the “what” stream, is responsible for object 
recognition and terminates in the inferotemporal cortex (a.k.a., the inferior temporal cortex  
or IT).  It receives most of its input from the parvocellular pathway in a feed forward circuit  
through V1, V2, and V4 terminating in the IT.   

Figure 2-1 shows a simplified version of these processing pathways.  While the dorsal and 
ventral streams are usually described in terms of their forward connections, the actual 
synaptic connections of the visual areas are far more complex.  There are extensive feedback 
and lateral connections, some of which are shown.  The roles played by the various 
connections are not fully understood.  Lamme and Roelfsema [2000] provide an excellent 
review of current scientific thoughts on this topic, while Raizada and Grossberg [2003] 
review ideas on the detailed connections between and within the LGN, V1, and V2.4   

2.2 Object Recognition in the IT 
The IT is not a visual area, by definition, since it no longer contains retinotopically–arranged 
neurons.  Within it are spatially-distinct areas of neurons that are selective to specific types of 
objects or object primitives.  Direct neural recording and functional magnetic resonance 
imaging (fMRI) in primates5 and humans have been used to delineate these regions based on 
their preferred stimuli.  In humans there are groups of cells selective to physical places 
(parahippocampal place area), human faces (fusiform face area), body parts (extrastriate 

 

                                                 

4 It is also worth noting that there are many other visual areas whose roles and involvement with the ventral and 
dorsal streams are not yet clear.  See Felleman and Van Essen [1991], and/or  “Functional Brain Areas in 
the Human” at: 

 http://defiant.ssc.uwo.ca/Jody_web/fMRI4Dummies/functional_brain_areas.htm#retinotopic%20and%20visual%20areas 
 (Accessed April, 2004). 

5 The posterior and anterior IT in humans correspond roughly to the anterior inferotemporal cortical area (TE) 
and the temporal-occipital area (TEO) of the primate brain, respectively. 
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Figure 2-1.  Primary visual pathways in the human vision system.  The optic nerves project 
from the eyes to the lateral geniculate nucleus.  From the LGN the optic radiation 
proceeds to the primary visual cortex (V1).  Beyond V1 the dorsal stream leads to the 
parietal cortex whereas the ventral stream terminates in the inferotemporal cortex. 

body area), and text (visual word form area), among others.  Another area, the lateral 
occipital complex, seems to respond to lower-level object features (primitives) and may be 
used as a population code from which to build representations of novel objects.  Excellent 
reviews of this work, together with foundational insights can be found in Grill-Spector et al. 
[1999; 2001], and Grill-Spector [2003].  Neurons of the IT that respond to complete objects  

are selective to specific views and illumination conditions of an object, but have invariant 
responses with respect to object position, scale, and representation (e.g., a line drawing or 
silhouette vs. a color photograph).  These results bolster the theoretical perspective that 
object recognition is assembled from a set of 2D views (e.g., Poggio and Edelman [1990], 
Edelman [1999]), rather than from 3D object-centered representations (e.g., Biederman 
1987]). 

V1 

V3 

V4 

V2 

MT 

Posterior Parietal Cortex 

Inferotemporal 
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Ventral Stream 
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This interpretation is strengthened by neuronal recordings from primates.  Tanaka et al. 
[1991] found that cells in the TEd (dorsal TE) are sensitive to orientation6 with responses 
dropping by more than 50% with rotations of +/- 90º.  Ito et al. [1991] found variability in 
responses to objects of different sizes, but with considerable ranges of scale invariance.  
Some cells had stable responses with four octaves of scale change, while others showed 
response drop-off after two octaves of scale.  Tanaka [1996] provides and excellent review of 
the state of knowledge of the primate IT at the time.  N.K. Logothetis and co-workers 
[Logothetis et al., 1994; Logothetis and Pauls, 1995; Logothetis et al., 1995] measured 
sensitivity to object viewpoints and found that cells were tuned to a specific viewpoint with 
invariance for out of plane rotations to about +- 40º.  They found that macaques could learn 
to recognize an object at any rotation given as few as three training views spaced at 120º 
rotation. 

Our brains provide a seamless percept of objects that is invariant to changes in translation 
(position in the visual field), scale, rotation, and representation even when the object is 
embedded in a cluttered scene, when lighting conditions vary, or when the object is wholly 
novel.  The fundamental challenge is to understand how a set of view-specific object/feature-
tuned cells can be coupled to accomplish this miraculous feat. 

2.3 Modeling Approaches to Object Recognition 
This foundational understanding has led researchers to develop variety of computational 
models of the visual system.  These include the Neocognitron [Fukishima, 1980; Fukushima 
and Miyake, 1982], the adaptive resonance theory based networks of Stephen Grossberg 
[Carpenter and Grossberg 1987a, 1987b; Bradski and Grossberg, 1995], VisNet/VisNet2 
[Wallis and Rolls, 1997; Rolls and Milward, 2000], HMAX [Riesenhuber and Poggio, 1999], 
and SpikeNET [Delorme et al., 1999], among others. 

The primary focus has been on object recognition rather than motion, and the dominant 
motivation has been to validate our theoretical understanding through modeling.  All use a 
neural network composed of hierarchical neuron layers representing the visual areas along 
the ventral stream of the human/primate vision system with differing degrees of fidelity, and 
none can be considered a complete representation.  With the exception of SpikeNET, all use 
a frequency code to model neural spike trains.  SpikeNET uses the Rank-Order Coding 
(ROC) scheme developed by Gautrais and Thorpe [1998] and represents a recent break from 
this modeling tradition.   

Figure 2-2 depicts a generic spike train and is typical of those measured in retinal ganglion 
cells and pyramidal cells of the visual cortex.  As can be seen, there is a delay (a.k.a. 
“latency”) between the presentation of the stimulus and the first neuron spike.  This latency 
increases to approximately 120-150 milliseconds at the IT where recognition is believed to 
take place.  A frequency code perspective interprets the spike frequency as an encoding of 
information.  A time window is required over which a frequency can be computed since 
spike frequency exists only for multiple action potentials, but this implies that a delay is  

                                                 

6 Orientation is the rotation of an object within the viewing plane.   
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time  

Figure 2-2.  Notional schematic of a typical spike train of action potentials from a retinal 
ganglion cell.  The dark bar indicates the presentation of visual stimulus and time 
progresses to the right.  Vertical and horizontal scales are not defined. 

required before the computation could be complete.  It is difficult to reconcile frequency 
coding with the short activation latencies measured in humans and primates along the ventral 
stream (e.g., Oram and Perrett [1992]; Logothetis and Sheinberg  [1996]; Tanaka [1996]; 
Thorpe et al. [1996]; Li et al. [2002].  See also Wyeth [1999] and Thorpe et al. [2001] for 
reviews.). 

Rank-order coding [Gautrais and Thorpe, 1998] operates on the latency of the first spike in a 
spike train.  This helps explain the short latencies observed in the primate/human visual 
streams.  It also provides a mechanism of expediting the most “salient” information in a 
scene [Van Rullen and Thorpe, 2001] where saliency is defined as the optimal stimulus of a 
neuron group at any stage of the ventral stream [Van Rullen, 2003]. ROC does not explain 
the function of the remainder of the spike train and there are severe problems in defining 
“first” in real systems where time is continuous, but ROC is attractive from an engineering 
perspective for systems deriving their input from static images. 

We are aware of two previous ROC scheme implementations for visual object recognition.  
The first implementation was by Simon Thorpe et al. who implemented a model they named 
SpikeNET [Delorme et al., 1999].  SpikeNET uses a three-layer architecture and an event 
driven algorithm for propagating spikes through the system.  The first layer can be 
interpreted as the output of the rod cell portion of the retinal circuit.  The second layer 
consists of orientation selective cells that correspond to the simple cells of V1.  These feed 
object selective cells that conceivably correspond to some area in the IT.  Raul Muresan has 
implemented a very similar model, RetinotopicNET, with minor extensions [Muresan, 
2002a; Muresan, 2003].  The key extension is the implementation of competition between 
layers of different scales in order to achieve a degree of scale independence [Muresan, 
2002b].   
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3. Algorithm Description 

ROCIT’s algorithm is similar to that of SpikeNET (See Delorme et al. [1999]; Delorme and 
Thorpe, [2001a, 2001b]; Thorpe et al. [2001] for algorithm details.), but with a few 
exceptions that are noted below.  It uses a simple network of retinotopically-arranged, 
rectangular neuron layers.  The neuron model is so lightweight as to have no explicit 
governing equation.  Likewise, only the first spike of a neuron is propagated to efferent 
neurons so that the remainder of the spike train is not explicitly modeled and is ignored.  
There are two distinct modes of operation:  training and recognition.  These algorithmic 
details are described more fully in the following sections. 

3.1 Network Architecture 
ROCIT uses the same layered architecture as SpikeNET [Delorme and Thorpe, 2001a].  It 
consists three sets of neuron layers:  a set of input layers loosely representing the retina 
(a.k.a. on/off layers), a set of orientation layers with neurons selective to oriented edges or 
lines similar to simple cells of V1, and a set of recognition layers, one for each target7 
(Figure 3-1).  Because target layers have a retinotopic neuron arrangement and are only two 
synapses from the input, they cannot be seen as representing cells in the inferior temporal 
cortex.  However, they are the locus of recognition in this modeling scheme.  Input layers 
occur in pairs (an “on” and an “off”) while orientation layers occur in sets of eight.  During 
training there is a single target layer, while in recognition mode there may be any number of 
targets each with a corresponding target layer. 

Within ROCIT each layer shares the same dimensions as the input image, i.e., there is a 
neuron for each pixel in the image.  This is a different implementation than SpikeNET, which 
halves the number of neurons in orientation layers and again in the target layers so that target 
layers have one fourth the number of neurons as the input image has pixels.  There is no 
explicit neurological basis for the coarsening used in SpikeNET, and it causes a loss of detail 
in target recognition.  For these reasons, ROCIT does not follow SpikeNET’s example for 
this algorithmic detail. 

Each layer has an associated kernel that defines its preferred stimulus.  A kernel is a 
rectangular array of floating point values, also referred to as a weight matrix or selectivity 
matrix.  Every neuron in a given layer shares the kernel matrix with all other neurons in the 
layer.  The kernels serve as synaptic weights and define the pattern of connections between 
afferent (upstream) and efferent (downstream) layers relative to a firing neuron.  Figure 3-2 
shows how the selectivity kernel defines synaptic connections between an afferent and 
efferent layer.  By sharing kernels and using them to define a relative pattern of synapses, 
memory usage is minimized and computational efficiencies are achieved.  The kernels are  

                                                 

7 Delorme et al. [1999] describe assembling a target layer from intermediate features.  For example, they have 
eye, nose, and mouth recognition layers that are used as input to a fourth layer that recognizes faces.  
ROCIT could easily be reconfigured to use a more complex recognition scheme that takes advantage of 
smaller-scale intermediate features. 
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Figure 3-1.  Layered architecture used by ROCIT.  An image is presented to the on/off 
layers of the network.  On/off layers occur in pairs of two (one pair for each kernel 
size/scale) and any number of on/off layer .sets may be used.  On/off layers feed forward 
to sets of orientation layers.  On/off layer sets of a given scale are coupled with 
orientation layer sets that always occur in groups of 8 orientations at 45º increments.  
Orientation layers feed forward to target layers.  During training there is a single target 
layer, while in recognition mode there may be any number of targets. 
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(a) Region of an afferent layer that can affect an efferent neuron relative to its selectivity 
kernel.  This can be interpreted as the receptive field of an efferent layer. 

 

 

(b) Region of the efferent layer that can be affected by a particular neuron in an afferent 
layer relative to the efferent layer’s selectivity kernel. 

 

Figure 3-2.  Relationship between an efferent layer’s selectivity kernel and the synaptic 
pattern between afferent and efferent layers.  The synaptic pattern is shared by all 
neurons in the layers, as is the associated weight matrix.  The gray neuron aligns across 
the layers and kernel. 

Afferent Layer Efferent Layer 

Efferent Layer 
Selectivity Kernel 
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Figure 3-3.  Examples of discrete Laplacian of Gaussian kernels for on/off layers:  (a) On 
Layer, 5x5, s=0.5, (b) Off Layer15x15, s=0.5, (c) On Layer, 15x15, s=2.5, (d) Off Layer, 
15x15, s=2.5.  

used during training and recognition to update voltage and sensitivity values in efferent 
layers.   

3.1.1 On/Off Layer Kernels 

On and off layers have Laplacian of Gaussian (LoG) kernels.  These are defined by 
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where s  is a parameter that defines the scale of Gaussian smoothing applied, and where 
{ }2,1∈n .  The LoG operator approximates the second spatial derivative of an image and the 

sum of values of a discrete version is zero.  Therefore, it is sensitive to edges in an image, 
while providing a zero response where image intensity is constant or changing linearly.  
On/off layers are used in pairs having a common scale parameter (s ).  ROCIT may have any 
number of on/off pairs, while SpikeNET typically uses three scales [Delorme et al., 1999]. 
As well, SpikeNET uses difference of Gaussian (doG) kernels [Delorme et al., 1999], which 
are an approximation to LoG kernels.  On layers are defined by 2=n , giving them a positive 
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circular center with a negative surround.  Off layers use 1=n , making them the inverse of on 
layers.  This function is commonly referred to as a “Mexican hat” function because of its 
shape.  Convolving the input image with a LoG kernel accentuates regions of bright values 
with dim surrounds and vice versa.  This mimics the selectivity of retinal ganglion cells. 

Examples of discrete on/off layer kernels are shown in Figure 3-3.  The kernels are seen to be 
radially symmetric, to possess a surround region having the opposite sign of the center, and 
to decay to zero beyond the surround. 

3.1.2 Orientation Layer Kernels 

Orientation layers are designed to be selective to oriented line segments or edges mimicking 
simple cells in the visual cortex.  This is accomplished via Gabor kernels.  A Gabor kernel is 
defined by 

( ) ( )φπ
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where xσ  and yσ  are Gaussian envelopes in the x and y directions, 0u  is the frequency of a 
sinusoidal plane wave along the x-axis, and φ  is a phase offset.  This represents an oriented  
planar wave having an exponential decay with distance from the origin.  A set of Gabor 
filters at other rotations and scales can be obtained through the generating function 

( ) ( )ykxkfkyxf mm
Gabor

m
mn ′′= −−− ,,' ,   1≥k  (3) 

where m and n are integers such that 1,,1,0 −= Mm K  and 1,,1,0 −= Nn K , respectively, 
and where M and N are the total number of scales and rotations, respectively.  The 
parameters k and m are used for scaling, while a transformation is applied to the coordinate 
axes to rotate the kernel: 

θθ sincos yxx +=′  (4) 

θθ cossin yxy +−=′  (5) 

with Nnπθ 2= .   

ROCIT uses orientation layers in sets of eight at 45º rotations, a symmetric Gaussian 
envelope ( )yx σσ = , and all layers share common parameters with the exception of their 
rotation angles.   

An edge selective kernel arises from a phase angle ( )φ  of 90º, while a phase angle of 0º 
yields line detection cells.  Figure 3-4 shows examples of several discrete orientation layer 
kernels.  Note that all kernels have been normalized to have a maximum amplitude of one.  
This is done to simplify the target recognition process, as discussed below. 
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Figure 3-4.  Examples of Gabor kernels associated with orientation layers.  (a) Edge 
Selective Kernel, spatial frequency = 15 cycles per 100 pixels, 90º phase, s=1.5, (b) 
Edge Selective Kernel, spatial frequency = 15 cycles per 100 pixels, 90º phase, s=1.5, 
(c) Bright  Line Selective Kernel, spatial frequency = 20 cycles per 100 pixels,  0º phase, 
s=4.0, (d) Dark Line Selective Kernel spatial frequency = 20 cycles per 100 pixels,  0º 
phase, s=4.0.  The kernel size is given above the respective figure. 

3.1.3  Layer/Kernel Bias 

The algorithm used by ROCIT is loosely based on the constructive hierarchical model of 
Hubel and Wiesel [1977].  In this paradigm, sets of adjacent retinal ganglion cells oriented 
along a particular trajectory project to a simple cell of layer 4 in the visual cortex, causing it 
to be selective to oriented edges8, and higher level features are constructed from lower ones 
as information is transmitted along the ventral stream.  Figure 3-5 shows how three spatially 
adjacent on- or off-kernels can be summed to produce a kernel that would be selective for a  

                                                 

8 For an alternative and modern interpretation of this simplistic formulation, see Martin [2002].  He reviews the 
important role played by inhibitory interneurons in producing the selectivity of simple and complex cells in 
layers 3 and 4, respectively.  As well, he emphasizes the need to understand the processing role of lateral 
and feedback connections as opposed to a purely feed forward model. 
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Figure 3-5.  Construction of simple cells through a linear combination of on and off kernels.  
A linear arrangement of on kernels (a) can produce a kernel that will be selective to bright 
line segments (c), while a linear arrangement of off kernels (b) produces a kernel 
selective to dark line segments (e).  These may be combined to produce an edge 
selective kernel (d).  

 

Layer Selectivity Bias Layer Selectivity Bias 
On +1 -  
Off -1 -  

 0º Line +1  0º Edge +1 
 45º Line +1  45º Edge +1 
 90º Line +1  90º Edge -1 
 135º Line +1  135º Edge -1 
 180º Line -1  180º Edge -1 
 225º Line -1  225º Edge -1 
 270º Line -1  270º Edge +1 
 315º Line -1  315º Edge +1 
 

Table 2-1.  Bias values for on/off layers and for line- and edge-selective orientation layers. 
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horizontal line segment (Figure 3-5 (c), (e)).  A combination of these can produce an edge 
selective cell (Figure 3-5 (d)). 

The challenge is to develop a synaptic weight pattern that can take ranked spikes coming 
from on/off layers and use them as “evidence” matching the selectivity of a given orientation 
layer.  ROCIT adopts the method of SpikeNET, which uses the synaptic weights of the 
efferent layer.  This is counterintuitive and requires the introduction of a “bias” in the 
synaptic connection so that the nature of the afferent layer (on vs. off) can be taken into 
account.  Spikes from the on layer are evidence of a bright line segment whereas those from 
off layers are evidence of a dark one.  Since on and off layers use kernels that differ by a 
factor of –1, a “bias” value of –1 is introduced for the off layer.  With this formulation, the 
spike from an off layer neuron causes a linear inhibition in an orientation layer selective to 
bright line segments while a on layer spike causes excitation, and vice versa. 

The same reasoning leads to the use of a bias associated with orientation layers.  Line 
selective orientation layers sharing the same orientation but opposite amplitudes have 
opposite biases.  Edge selective orientation layers with 180º different orientations also have 
opposite biases (e.g., Figure 3-4 (a) and (b)).  A summary of the bias values used by ROCIT 
are given in Table 2-1.  There is no mention of bias in the SpikeNET publications [Delorme 
et al., 1999; Delorme and Thorpe, 2001a & 2001b; Thorpe et al., 2001], however, in a GNU 
public license release of an early version SpikeNET9 there are kernels of opposite sign used 
for synaptic connections between the on/off layers and any single orientation layer.  This 
indicates that the bias has been built into the selectivity kernel.  In ROCIT the bias value is 
used in two critical algorithm components:  updating target kernels and voltage updates.  
This is discussed in more detail in subsequent sections. 

3.2 Algorithm Components 
The rank order coding algorithm is straightforward and consists of a few simple components 
shown in Figure 3-6.  The four primary components are (1) converting the image into ranked 
spikes in the on/off layers, (2) updating the target kernel (Training Mode only), (3) updating 
voltage values, and (4) updating sensitivity values.  The following sections document the 
details of these portions of the algorithm. 

3.2.1 On/Off Layer Preprocess 

The image is converted into ranked spikes by convolving it with a given on/off kernel, 
sorting the resulting values, and assigning them to bins of equivalent rank.  Figure 3-7 shows 
an example of the convolution process.  As can be seen, edges are enhanced as are small 
areas of brightness contrast such as  eye reflections (Figure 3-7 (b)), and nostrils (Figure 3-7 
(c)). 

The values of the convolved images are sorted and then divided into a fixed number of bins.  
The number of bins is referred to as the “Maximum Time Steps”, although time is only  

                                                 

9 There is a GNU general public license, version 2 release of SpikeNET available at Arnoud Delorme’s web 
page at:  http://sccn.ucsd.edu/~arno/spikenet/index.html, Accessed April, 2004. 
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(a) Training Mode Algorithm 

 

Convert the Image into Ranked Spikes in the On/Off Layers 

while (Spikes Occur || Stopping Criteria is Reached) 

{ 

 Gather Spike Lists from Afferent Layers 

 Process Spikes in Efferent Layers: 

  if Efferent Layer == Target Layer 

   Update Target Kernel 

   Update Sensitivities 

  else 

   Update Voltages 

   Check Voltage Thresholds for New Spikes 

   Update Sensitivities 

  end 

} 

 

(b) Recognition Mode Algorithm 

 

Convert the Image into Ranked Spikes in the On/Off Layers 

while (Spikes Occur || Stopping Criteria is Reached) 

{ 

 Gather Spike Lists from Afferent Layers 

 Process Spikes in Efferent Layers: 

  Update Voltages 

  Check Voltage Thresholds for New Spikes 

  Update Sensitivities 

} 

 

 

Figure 3-6.  Essential components of the rank order coding algorithm. (a) Training Mode, 
(b) Recognition Mode. 
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Figure 3-7.  Example convolutions used to generate ranked spikes for the on/off layers.  (a) 
Raw Image, (b) On Layer Convolution, and (c) Off Layer Convolution.  Note:  The on/off 
kernels used were those of Figure 3-3 (a) and (b), respectively.   

relative in the algorithm.  This value is typically set to 500.  If, however, pixels have the 
same value, then they are forced to share the same bin.  This is the same algorithm as used by 
SpikeNET [Delorme et al., 1999] with the exception of the bin sharing.  Failure to put similar 
values into the same bin would result in the spikes having different impacts on their efferent 
layers.  This is because an efferent neuron may have undergone desensitization between the 
arrival of the two spikes.  Another difference is that SpikeNET only allows either the on or 
off neuron at a given layer location to fire [Delorme and Thorpe, 2001a].  This constraint  

was omitted from ROCIT because there was no physiological basis for it.  It should also be 
noted that neurons along a border of the same width as the on/off kernel are excluded from 
the spike ranking process since the convolution values there suffer from edge effects.  These 
edge effects can be seen in Figure 3-7 (b) and (c). 

3.2.2 Voltage Updates 

A neuron’s voltage is modified if a spike occurs in any afferent layer that the neuron has a 
synaptic connection to.  Figure 3-8 depicts the geometry associated with voltage updates.  
The voltage change at the efferent neuron ( )jiVeff ,∆ , is proportional to the selectivity kernel 
of the efferent layer and is given by: 
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Figure 3-8.  Synaptic geometry associated with voltage updates.  The afferent layer has a 
spiking neuron at the location with cross-hatching.  Note that h is the half width of the 
kernel minus one, assuming an odd sized, square kernel. 
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Indices ( )ji,  indicate a position within a neuron layer while ( )nm,  indicate a position within 
the efferent layer selectivity kernel.  ( )nml

aff ,δ  is a Dirac delta function defined over the 
relevant neurons of afferent layer l such that 

 

( ) ( )

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=
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aff 0
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,δ  (7) 

l
affb  is the bias of the afferent layer, effk  is the selectivity kernel of the efferent layer, and 

( )nmSeff ,  is the sensitivity of the efferent neuron at the location of the afferent spike.  Note 
that this formulation assumes that the kernel has an odd dimension and is and square, 
although these assumptions are relaxed in ROCIT for the target layers. 

While this formulation appears complex, the results are straightforward.  Figure 3-9 shows 
examples of how afferent spikes coming from on and off layers affect the voltage of an 
orientation layer selective to a vertical edge.  Because of the “symmetric” synaptic 
connections used by ROCIT (see Figure 3-2), an afferent spike causes voltage changes in a  
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Figure 3-9.  Details of how spike propagation from on/off layers affect voltage values in an 
orientation layer.  (a) Detail of an input image, locations of afferent spikes from the on (a) 
and off (b) layers, (d) corresponding voltage changes in the orientation layer, and (e) the 
selectivity kernel of the orientation layer. 

kernel shaped area in each of its efferent layers.  The voltage update appears as a selectivity 
kernel that has been flipped up and down as well as left to right.   

Bias values act to reverse the resulting pattern.  As seen in 3-9 (d), spikes from different 
afferent layers produce reversed voltage updates since they have opposite bias values (+1 for 
the on layer and –1 for the off layer).  Adjacent spikes act to reinforce each other one 
another’s voltage effects.  In this example, the two spikes from the on layer are aligned 
vertically, so the voltage updates overlap, causing reinforcement in both the positive and 
negative regions.   

Voltage values are compared to a threshold.  Those neurons whose voltage exceeds the 
threshold fire a spike and are reset to zero.  The spike is placed in the next rank bin for 
propagation to its layer efferent layers. 

Figure 3-10 shows an orientation layer after 40 of 500 rank bins have fired from the on/off 
layers.  The orientation layer is sensitive to horizontal edges with dark shading above light 
(Figure 3-10 (d)).  As can be seen in the voltage pattern, the on/off spikes have originated 
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Figure 3-10.  Voltage development in a horizontal orientation layer.  (a) Input image, (b) 
voltage after 40 of 500 rank bins have been propagated from the on/off layers, (c) 
neurons firing in the orientation layer, and (d) selectivity kernel of the orientation layer. 

from the dominant facial features (eyes, nose, ears, etc.), the hair, and the chin.  The mouth 
and nostrils are seen to have dark-above-light horizontal edges, which has caused the 
corresponding orientation layer neurons to fire.  Other, less distinct areas of horizontal edges 
are seen near the eyes and in the hair.   

3.2.3 Target Kernel Development (Training Mode Only) 

A training algorithm, distinct from the recognition algorithm, is used to develop a custom 
kernel for a specified target, and only a single target can be trained at a time.  During training 
a single target layer is added to the network.  This layer is initialized with a kernel matrix of 
zero values.  Only sensitivity is modeled for the target layer since the training algorithm is 
dedicated toward constructing the target kernel rather than developing a voltage pattern for 
target detection.  Figure 3-11 depicts the geometry associated with custom kernel updates.   

The kernel is modified according to 
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Figure 3-11.  Synaptic geometry associated with custom target kernel training.  The afferent 
layer has a spiking neuron at the location of the shaded square.  This results in target 
kernel modifications in an area corresponding to the afferent layer’s selectivity kernel.  
Note that h is the half width of the kernel minus one, assuming an odd sized, square 
kernel. 

where ( )nmk t ,∆  is the change in the target kernel at position ( )nm, , ( )jil
aff ,δ  is a Dirac delta 

function over the afferent layer l as defined by 

( ) ( )

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=
otherwise
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effk  is the selectivity kernel of the efferent layer, and ( )nmSt ,  is the sensitivity of the target 
neuron at the location of the kernel update.  Note that this formulation assumes that the 
kernel is odd and square.  ROCIT uses odd, square kernels in the orientation layers and these 
layers are typically the only afferent layers for a target layer. 

This formulation has the effect of adding a weighted afferent kernel to the target kernel at a 
point centered at the locus of the afferent spike.  The weight consists of the product of the 
afferent layer bias and the sub-matrix of sensitivity values of the target layer that aligns with 
the afferent layer’s selectivity kernel.  Figure 3-12 shows the development of a custom target 
kernel at a series of time steps.  Each step corresponds to propagating all spikes in a 
particular rank bin.  The earliest spikes arrive from the area around the eyes.  These spikes 
result in the highest weights in the custom kernel.  Later spikes highlight the left ear, neck, 
and mouth.   
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Figure 3-12.  Custom target kernel development.  The target kernel resembles its target 
image, but areas lacking lines or edges are de-emphasized.  Areas having the earliest 
spike arrivals have the highest weight development. 

When this kernel is used for recognition, spikes arriving from locations of high weight values 
will cause the greatest voltage increases.  This behavior is enhanced by the use of 
desensitization produced by mechanism that mimics shunting inhibition. 

3.2.4 Sensitivity Updates 

Shunting inhibition is the key mechanism invoked by Gautrais and Thorpe [1998] both to 
encode and decode spike sequences.  Conceptually, shunting inhibition is the desensitizing of 
neurons after they receive an excitatory stimulus.  If spikes do not arrive in order from 
highest to lowest synaptic weight, then the voltage increase at the efferent neuron will not be 
maximal because of the impact of shunting inhibition.  Figure 3-13 shows how this can occur 
via a lateral inhibitory connection.   
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Figure 3-13.  Synaptic circuit implicated in shunting inhibition.  Shunting inhibition causes a 
neuron to be desensitized after it receives an excitatory stimulus.   

ROCIT’s algorithm applies desensitization following the voltage updates and threshold 
checking.  There are two distinct modes of desensitization:   global and local.  Global 
desensitization is when an entire layer of neurons is desensitized whenever any neuron in the 
layer receives an afferent spike.  Local desensitization is when only those neurons whose 
voltages were modified undergo desensitization. 

Global desensitization is used to develop new target kernels and was used in the simulation 
shown in Figure 3-12.  This form uses a homogeneous scalar value of sensitivity for an entire 
target layer that decreases with spike rank: 

( ) rank
tt SjiS α=≡,  (10) 

subject to  10 ≤< α .  Here α  is the initial sensitivity and rank is the rank of a given spike 
rank bin.  Figure 3-14 shows how the sensitivity decays with rank as a function of the initial 
sensitivity, α .  Global desensitization will bias the custom target kernel by spike rank, thus 
encoding spike order as per Equation (8).   

Local desensitization is only used during recognition mode, and only if the targets exist in a 
cluttered scene.  If global desensitization were used, and if the spikes associated with a target 
were located late in the ranked bins, then the target layer would be desensitized by the time 
its spikes arrived and the target would be missed.  Local desensitization overcomes this  
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Figure 3-14.  Global desensitization as a function of rank and initial sensitivity, a. 

 

Figure 3-15.  An example local desensitization kernel and its corresponding target kernel. 
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Figure 3-16.  Synaptic geometry associated with sensitivity updates.  The afferent layer has 
a spiking neuron at the location with cross-hatching.  Note that h is the half height of the 
kernel minus one, and w is the half width of the kernel minus one, assuming an odd 
sized. 

problem.  It uses a “desensitization kernel” that is developed from the custom target kernel 
by: 

( ) ( )
( )( ) ( ) 1,
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again, where the initial sensitivity is 10 ≤< α .  This formulation assigns a value of α  to the 
peaks (max or min) of the target kernel and decreases to a background value of one as the 
absolute value of the target kernel decreases.  Figure 3-15 shows a typical desensitization 
kernel. 

The sensitivity update for local desensitization is similar to voltage updates.  Figure 3-16 
depicts the geometry associated with sensitivity updates.  The sensitivity change at the target 
layer neuron is proportional to its desensitization kernel.  It is given by: 
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Indices ( )ji,  indicate a position within a neuron layer while ( )nm,  indicate a position within 
the efferent layer selectivity kernel.  As before, ( )nml

aff ,δ  is a Dirac delta function defined 
over the relevant neurons of afferent layer l such that 
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Figure 3-17.  Target layer desensitization development under local sensitivity updates.  
Desensitization becomes proportional to the weight associated with a voltage update.  
This focuses desensitization to the neuron corresponding to the center of the target. 
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and sens
tk  is the desensitization kernel for the target layer.  Note that this formulation assumes 

that the kernel is odd and rectangular, although these assumptions may be easily relaxed. 

Figure 3-17 shows the development of neuronal desensitization in a target layer using local 
desensitization.  As can be seen, the region of desensitization is localized to the center of the 
target.  One can also see that ROCIT does not update the sensitivity (or voltage) of a target 
layer in a border region equal to one quarter of the target width and height.  This is solely for 
the purpose of speed, and risks missing targets near the edge of an image. 

ROCIT allows the initial sensitivity of all layers to be set independently.  This enables the 
user to choose which layers should undergo desensitization.  It is not presently clear how 
desensitization of orientation layers impacts recognition, so this flexibility was added to 
enable future studies. 
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Figure 3-18.  Examples of training images, their kernels, and the voltage pattern they 
produce when run through recognition mode.  Note the pairing of a positive peak and 
negative trough at the center of the target. 

3.2.5 Kernel Normalization and Voltage Thresholds 

Different targets have different sizes and shapes, resulting in different target kernels.  Each 
target kernel creates a unique voltage pattern when the training image is run through 
recognition mode.  The voltage pattern contains a peak at the center of the voltage layer with 
a trough just below.  Figure 3-18 shows two examples of this voltage pattern. 

The paired peak-trough results from the asymmetry of the bias values used for the edge-
selective orientation layers as shown in Figure 3-19.  There is no way of eliminating this 
asymmetry with eight layers at 45º increments, so the bias values have been chosen to create 
a voltage pattern that is nearly symmetric about the vertical for objects having lateral 
symmetry. 

Ideally, a single voltage threshold should be applied to all target layers, otherwise, the 
neurons in the target layers are not homogeneous.  To accomplish this, ROCIT first performs 
recognition of a training image using its raw target kernel.  Then, the kernel is normalized by 
the maximum voltage that develops when it is used in recognition mode.  In this way, target  
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Figure 3-19.  Bias values associated with edge-selective orientation kernels.  Note the 
asymmetry of the bias pattern.  This is responsible for the paired peak-trough patterns 
that develop in target layer voltages. This asymmetry is unavoidable with eight orientation 
layers at 45º increments. 

kernels can be counted on to produce a maximum voltage of 1.0 when their respective 
training image is presented.  Lower voltage values should develop whenever the image is 
degraded with noise or occlusion. 

As noted previously, on/off kernels are normalized to have a maximum absolute peak of +1 
as are orientation layer kernels.  Voltage increases in the orientation layers depend on the 
constructive interference of their respective kernels.  ROCIT typically uses a voltage 
threshold of 2.5 for orientation layers implying at least three spatially-coherent on/off 
afferent spikes to activate a given orientation layer neuron. 

3.2.6 Recognition Algorithm 

The recognition algorithm is identical to the training algorithm for the on/off and orientation 
layers.  However, a target layer is instantiated for each target to be sought.  During 
recognition, the voltage, voltage threshold, and sensitivity of each target layer is fully 
modeled.  There are several ways of detecting a target:  when a voltage exceeds a prescribed 
threshold, when a voltage pattern matches the one known to be caused by the target, or 
associating local voltage maxima with target detections.  ROCIT allows the user to choose 
between these three algorithms. 

Using voltage maxima is straight-forward, but risks mislocating the target by a pixel or two 
since the true target center lies between the peak and trough of the voltage pattern.  This can 
be seen in the upper right image in Figure 3-18 and stems from the bias values associated  
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Figure 3-20.  Voltage development, sensitivity development, and target detections for a 
diagnostic image containing multiple, partially occluded, shaded targets (a) Raw target 
used for training, (b) Target kernel, (c) Input image, (d) Voltage development, and (e) 
Sensitivity development.  White squares indicate where the target was detected and 
located by the recognition algorithm. 
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with the orientation layers. As discussed in Section 3.1.3, there are bias values, 
{ }1,1 +−∈bias , associated with orientation layer kernels that are used during target layer 

voltage updates.  The asymmetry of these values (See Figure 3-18) causes the peak/trough 
pair and the way the biases are arranged determines whether the pair with be vertical, 
horizontal, or some other orientation.  

This pattern can be leveraged to improve recognition.  In this case the known target pattern is 
first cross-correlated with the target layer voltage.  The resultant values may then be 
thresholded.  The result will place a target center between the peak/trough pair.   

With either method, ROCIT iteratively finds the maximum peak, masks out an area of one 
fourth the target kernel size centered on the peak, and searches for the next.  This continues 
until either a fixed number of targets is found or until a minimum peak magnitude is 
encountered.  Figure 3-20 shows a typical example including voltage development, 
sensitivity development, and target locations in a cluttered scene of shaded circles and 
squares.  The white squares mark the outlines of where the target was found in the input 
image.  At this point all six targets are correctly detected and located.  Distinct voltage peaks 
indicate the center of the targets (Figure 3-20(d)).  Desensitization has also been focused on 
these locations (Figure 3-20(e)). 
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4. Implementation Overview 

ROCIT is implemented in MATLAB® 6.5.  There is an accompanying graphical user 
interface (GUI), also in MATLAB® (See Figure 3-21).  MATLAB® is an excellent algorithm 
prototyping framework, and has enabled us to easily explore modifications to and extensions 
of the rank order coding algorithm.  A faster C++ implementation (SpikeWave) with a JAVA 
GUI is also under development. 

Both ROCIT and SpikeWave use three types of input files:  a network specification file, an 
image file, and a custom target file.  All are written in XML to provide easy parsing, clear 
parameter labels, and extensibility while providing a common format for both 
implementations.  An example network specification file is given in Appendix C.  Image files 
formats include JPEG, GIF, TIFF, PGM, BMP, or text data embedded in a ROCIT XML file.  
When custom targets are trained, their kernels are saved in a target file that includes all the 
network specifications used in its development.  The training image and expected voltage 
pattern are included in the custom target file.  By including network metadata in the target 
files, the current network settings may be compared to the target’s to ensure that they are 
consistent.  An example target file is listed in Appendix D. 

 

Figure 4-1.  Screenshot of the ROCIT GUI  implemented in MATLAB. 
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5. Initial Benchmarking 

To date, the performance of ROC schemes with respect to object recognition have been 
anecdotal (e.g., Delorme and Thorpe [2001a], Van Rullen et al. [1998], Muresan [2002a], 
Muresan [2003]).  We explored the issue of recognition performance using a benchmark 
problem developed for the object recognition domain of biometrics.  We are not interested in 
biometrics, per se, but the benchmark chosen explores recognition capabilities across a wide 
set of similar objects (faces) with variable lighting and moderate plasticity (facial 
expressions), which is a subset of the general problem of object recognition in cluttered, 
uncontrolled environments.  SpikeWave, the C++ implementation of the baseline ROCIT 
algorithm was used for the benchmark calculations. 

5.1 FERET Database 
The Face Recognition Technology10 (FERET) program was initiated to develop automatic 
systems that could be used to assist law enforcement, security, and intelligence personnel 
perform face recognition and verification tasks [Phillips et al., 1996].  The program ran from 
1993 through 1997 with sponsorship from the U.S. Department of Defense Counter Drug 
Technology Development Program.  During this five year span, a large database of facial 
images and a number of testing protocols were developed to gauge the performance of face 
recognition algorithms.  The tests have been administered on various face recognition 
algorithms from laboratories and universities across the United States, and the results for 
each algorithm are well published.   

5.2 FERET Verification Testing Protocol 
The FERET Verification Testing Protocol [Rizvi et al., 1998] was one of the tests developed 
and administered by the FERET program.  A verification system confirms the claimed 
identity of a face presented to it.  The FERET test uses a database of images to test 
recognition performance with a number of different constraints.  In the FERET Verification 
Testing Protocol, the image of the person claiming an identity is termed a probe image.  The 
set of known individuals the system searches through to confirm the identity of the probe is 
known as the gallery image set.  Various image sets exist within the FERET database, and 
each tests algorithm performance under different circumstances.   

We chose the fafc subset of the image dataset to benchmark because it tests algorithm 
performance with variable lighting conditions and moderate pose and expression variations.  
Example images from this benchmark may be seen in Figure 5-1.  The images are eight bit 
grayscale stored in Portable Network Graphics (PNG) format, and are 384 pixels high by 256 
pixels wide.  The fafc test uses 1196 gallery images from the fa subset of the FERET 
database, and 194 probe images from the fc subset.  The fc probe images were taken on the 
same day as the fa images, however the fc images were taken with a different camera under 
different lighting conditions.  In the test, the system is first trained to recognize all 1196  

                                                 

10 The Facial Recognition Technology (FERET) Database, NIST, 
http://www.itl.nist.gov/iad/humanid/feret/feret_master.html, Accessed April, 2004. 



  44 

 

Figure 5-1.  Example images of individuals taken from the FERET fafc benchmark.  The 
images on top are used for training and the bottom images are presented to the system 
for identification. 

gallery images.  Then, each probe is compared against each image in the known set of gallery 
images.  Each comparison produces a match score.  If this match score is above a threshold, 
then recognition system returns true, otherwise the match is false.  This output can be 
classified in one of four categories based on the actual identity of the individual.  These 
categories are shown in Table 5-1.   

The results from the FERET Verification Test can be compared by a receiver operating 
characteristic (roc) curve (not to be confused with Rank Order Coding).  The y-axis of a roc 
curve represents the verification probability, denoted by PV as defined by Equation (14).  The 
x-axis represents the false alarm rate, denoted by PF as defined by Equation (15): 

 

System Output Actual Identity Output Classification 
( ) ( )igip =  ( ) ( )igip =  True  Positive  (TP) 
( ) ( )igip ≠  ( ) ( )igip =  False  Negative  (FN) 
( ) ( )igip =  ( ) ( )igip ≠  False  Positive  (FP) 
( ) ( )igip ≠  ( ) ( )igip ≠  True  Negative  (TN) 

Table 5-1.  The four different possible outcomes as a function of the output classifications 
and the actual identity, and actual system output.  p(i) refers to the identity of a probe 
image while g(i) refers to the identity of the gallery image with the highest recognition 
score. 
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FNTP
TP

PV +
=  10 ≤≤ VP  (14) 

FPTN
TN

PF +
−=1  10 ≤≤ FP  (15) 

A roc curve is generated by computing PV and PF across a range of parameter variables or 
algorithm variations, each adding a point to the curve.  We used two different methods.  The 
first used the ratio of the maximum target layer voltage to the maximum voltage developed 
during training for that gallery image as our roc curve variable: 

)(:
)(:
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iginputV
kpinputV
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jg

ROC =
=

∝  (16) 

Because of this, the custom target kernels of the gallery set were not normalized as per the 
method described in Section 3.2.5.   

A second curve, ROCIT with DOT, was used by creating a threshold that used information 
across the entire gallery population.  This threshold is a measure of how many standard 
deviations away a given gallery image’s maximum voltage is from the mean of the 
population:  
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threshold
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∝  (17) 

where 
maxVµ  is the mean of the maximum voltages achieved by all the gallery images for a 

given probe and 
maxVσ  is the standard deviation of the maximum voltages. 

If a gallery image’s maximum voltage threshold exceeds this value, then the probe is 
assumed to match the gallery image.  Because  population statistics are used in the analysis, 
this method is termed domain optimized.  In general, this knowledge is not known unless an 
comparison of a probe against the entire gallery is performed 

The parameters used for the algorithm are given in Appendix C and Appendix D, which list 
the network specification input file and an example custom target kernel file, respectively.  
Another notable detail was that we scaled down the images to 138 pixels high by 92 pixels 
wide using bicubic interpolation.  This is less than 35% of the original image size.  This 
reduction causes a loss of information, but was necessary to run the benchmark problem in a 
reasonable amount of time.  ROCIT version v1_5 was used for training in the benchmark 
calculations and SpikeWave version 1.5 was used for recognition.. 
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Figure 5-2. Receiver operating characteristic (roc) curve for the baseline ROCIT algorithm.  
Numbers along the curve represent the voltage ratio thresholds. 

5.3 Baseline Algorithm Benchmark Results 
Figure 5-2 shows the roc curves for the baseline ROCIT algorithm.  Note that the y-axis 
begins at 0.5.  Numbers along the lower curve represent voltage ratio thresholds.  A 45º roc 
curve would indicate random chance, and the more area under the curve, the better the 
algorithm’s performance.  The baseline ROCIT algorithm achieves approximately 92% true 
positives and 10% false alarms near a threshold of 0.24.  The domain optimized thresholding 
method (ROCIT with DOT) performs slightly better for false alarm rates below 0.3, but the 
difference is not dramatic. Figure 5-3 compares ROCIT with results of a number of 
recognition algorithms from universities and laboratories across the nation11.  Note that the 
ARL Correlation curve represents straight-forward cross-correlation, which is outperformed 
by all other methods for false alarm rates below 0.5. 

ROCIT performed quite well against the other algorithms and only the USC algorithm 
appears to consistently outperform it (except at the smallest false alarm rates).  Given that  

                                                 

11 Performance results for the FERET fafc test have been compiled at:                                           
http://www.itl.nist.gov/iad/humanid/feret/perf/score_roc/fafc/, Accessed April, 2004. 
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Figure 5-3.  Roc curves for various recognition algorithms.  ROCIT is the baseline version of 
the ROCIT algorithm.  ROCIT with DOT refers to ROCIT with domain optimized 
thresholding.  Note:  The x-axis has been plotted on a log scale. 

 

 

Recognition Algorithm Equal Error Rate 

USC - March 97 0.051 

ROCIT with DOT 0.082 

ROCIT 0.093 

UMD - March 97 0.100 

Excalibur Corp. 0.145 

ARL Eigenface 0.176 

MIT - Sept 96 0.180 

MIT - March 95 0.193 

ARL Correlation 0.248 

Table 5-2.  Equal error rates of the various algorithms in order from highest to lowest.   
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Probe 1039 0.310.22

Probe 1019 0.360.18

Probe Image Training Image
Mistaken 

Gallery Image

 

Figure 5-4.  Examples of mistaken identity from the FERET fafc benchmark using the 
baseline ROCIT algorithm.  The left column is the probe image to be validated.  The 
center column is the training image from the gallery for the same individual as the probe.  
The right column is the gallery image with the highest score.  Note:  Numbers indicate 
scores (ratio of the maximum voltage to the maximum voltage for the training image). 

eye coordinates were used by UMD, Excalibur Corp., and both ARL algorithms and that 
ROCIT used downscaled images, this is encouraging..   

It is difficult to rank the algorithms based solely on roc curves because they often overlap at 
multiple points along the curve.  For this reason, roc curves are often compared through a 
derived quantity known as the equal error rate.  The equal error rate is defined as the point at 
which the false negative rate equals the false positive rate.  The lower the equal error rate, the 
better the algorithm.  ROCIT with DOT and ROCIT placed second and third overall with  



  49 

Figure 5-5.  A second set of examples of mistaken identity.  Both probes are mistaken for 
several individuals (multiple false positives). 

equal error rates of 0.082 and 0.093, respectively.  This data is shown in Table 5-212. These 
results are consistent with the roc curve performance rankings.   

It should be emphasized that facial recognition technology has advanced considerably since 
the FERET benchmarks were developed.  However, newer tests no longer provide raw 
images, just feature vectors, so they are unsuitable for the ROC algorithm approach.  Still, 
the baseline ROCIT algorithm is derived from publications from the late 1990s and so is 
contemporaneous with the other results.  In this light, we can be encouraged with these 
comparisons and anticipate that modification could continue to improve ROCIT’s 
recognition performance. 

                                                 

12 Equal error rate results for the FERET fafc test have been compiled at:                                           
http://www.itl.nist.gov/iad/humanid/feret/perf/score_roc/score_roc.html, Accessed April, 2004 

Probe Training 
Mistaken 
Gallery 

Mistaken 
Gallery 

Mistaken 
Gallery 

Probe 1036 0.40 0.25 0.36 0.37 

Probe 1033 0.39 0.28 0.39 0.39 
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We have attempted to explore when and why ROCIT failed on some probe images of this 
benchmark test, but strong conclusions remain elusive.  Figure 5-4 shows two examples 
where ROCIT failed to properly identify a probe image.  The top example is puzzling since 
the training image appears to be very similar in pose, scale, and head orientation.  The only 
differences seem to be lighting and overall contrast.  Still, this short haired man was 
mistakenly identified with a woman who bears almost no resemblance other than her nose.  It 
is easier to explain why the lower example failed to recognize the individual since the 
training image was at a different scale, but the person who was mistakenly taken to be the 
probe is very different.  Again, this is hard to explain.   

Another set of problematic results involving multiple false-positives is shown in Figure 5-5.  
The upper probe probably fails because of head rotation, and the lower probe is at a different 
scale and head orientation than the individual’s training image.  Both probe individuals have 
distinctive silhouettes as do most of the gallery images that they are mistaken for.  These 
images were run through the ROCIT GUI and the voltage development was followed on a 
spike by spike basis, and it in no case was it clear exactly which facial or silhouette features 
of the probe image were aligning with the features of the gallery image target kernels.   

An attempt was made to discover fundamental differences between the histogram statistics of 
probe image and associated false-positive images and those who had been properly 
identified.  These studies were also inconclusive.   
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6.  Potential Algorithm Extensions 

The baseline ROCIT algorithm described here has obvious performance weaknesses 
stemming from its low fidelity representation of the ventral stream.  It has only a limited 
number of neuron types all derived from local brightness contrast.  Because of this, it is 
overly sensitive to brightness contrast in the form of edges or lines.  A more detailed model 
would take advantage of color, gradient, and other textural information in an image. 

In line with these issues is the observation that all afferent spike information is “lumped” into 
a single target kernel.  If, during recognition mode, a spike arrives from an afferent position 
corresponding to a high kernel weight, then a large voltage increase will result, regardless of 
the selectivity of the afferent layer.  A more robust algorithm should result if the target kernel 
is split into the number of afferent layers.  In that way, only spikes arriving with the proper 
“flavor” will cause a significant voltage change in a target layer.  This modification will be 
essential if color, gradient, or other texture cells are added to the algorithm. 

Another limitation of the baseline ROCIT algorithm, as seen in the benchmark results, is its 
brittleness to changes in in-plane rotation and scale.   This probably accounts for a significant 
portion of the benchmark failures.  Scale and rotation invariance could be achieved in one of 
three ways: 

Multiple Target Kernels – Multiple custom target kernels could be developed for the 
training image at a series of scales and rotations.  This method has been implemented in 
the COTS version of SpikeNET13.  However, this approach is computationally expensive 
and would limit a recognition system to a small set of known objects unless significant 
speed-up could be achieved through a hardware implementation. 

Simple Cell / Complex Cell Hierarchy – Several models of object recognition use a 
hierarchy of “simple” and “complex” cell layers.  This approach was pioneered by 
Fukishima and Miyake [1982] in their Neocognitron model that was developed for 
recognizing handwriting.  In this approach, “simple cells” recognize a similar feature, but 
at with variations (e.g., multiple scales, multiple orientations, etc.).  “Complex” cells 
downstream take input from a set of simple cells and produces a single response that is 
has a degree of invariance to the simple cell variations.  How this is accomplished varies 
between models.  Wallis and Rolls [1996] emphasize neurologically-inspired competition 
between neuron groups as do Grossberg and coworkers [Carpenter et al., 1989; Bradski 
and Grossberg, 1995].  Most recently, Reisenhuber and Poggio [1999] adopted a “max” 
operator to define response of complex cell layers with moderate success [Schneider and 
Riesenhuber, 2002].  Recent experimental work may bolster this mechanism [Gawne and 
Martin, 2002] (See also Rousselet et al. [2003] for a broader discussion these results.).  
Reisenhuber and Poggio [2000] provide a more detailed review of approaches to 
achieving invariance.  Muresan’s [Muresan, 2002b] hierarchical approach using a rank-
order coding framework emulates, to some degree, a max operation.  It is essentially a 

                                                 

13 SNVision, ©2003-2004 SpikeNET Technology, http://www.spikenet-technology.com/, Accessed April, 2004. 
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race condition between simple cell sets.  It is possible that this approach could be 
extended further. 

Foveation With Invariant Transform – A third approach is to sequentially “foveate” on 
a small regions of an image.  At each point of focus, an invariant transformation would be 
performed upon the image.  Options include a log-polar transform as used by Bradski and 
Grossberg [1995] or a combination Fourier-Mellin transform [Derrode and Ghorbel, 
2001], both of which were successful in recognizing isolated objects against a simple 
backdrop.  Gonzales [2003] has confirmed that ROCIT can discriminate faces after they 
have been log-polar transformed while providing scale and rotational (in-plane) 
invariance.  An example of how log-polar transforms affect images is shown in Figure 
6-1.  In log-polar space rotation results in translation along the x-axis (center and right), 
while scale variations produce translations along the vertical (not shown).  Since ROCIT 
is already invariant with respect translation, it could recognize scaled and rotated targets 
anywhere in an image using a log-polar transforms given a center coordinate.  This is 
currently a stumbling block to the approach since it implies that you must know where to 
look for a target before recognizing it. 

The primary challenge to this approach, whether using log-polar transforms or a 
combination Fourier-Mellin transform is the choice of where to foveate.  Each point that 
is chosen involves a transformation followed by a complete spike propagation 
computation for the image subset.  This is computationally expensive.  Random choices 
could lead to the entire image being sampled.  An alternative is to try and use some sort 
of saliency calculation (e.g., Koch and Ullman [1985], Itti [1998]) at sequentially explore 
“salient” regions of the image.  In general, such calculations are expensive and often 
require some sort of top-down mechanism. 

Li [2002] proposes a saliency map in V1 based on firing rates of feature selective cells.  It 
uses no top-down mechanisms, but appears to be a compelling explanation of 
fundamental psychoophysics observations including pop-out and segmentation.  If a 
method could be developed to implement this saliency map within a ROC framework, 
then this could provide a foveation mechanism suitable for ROCIT. 

If any of these approaches could be developed and implemented for a rank-order coding 
framework, then there seems to be a strong chance that ROCIT’s recognition performance 
could improve.  Multiple sets of on/off and orientation layers have already been built into the 
code,  so implementing layers having different spatial scales of sensitivity is complete.   

Preliminary benchmarking results are encouraging, especially in light of the relative 
computational simplicity of the method.  Future efforts will confront these issues and attempt 
to explore more complex portions of the problem space of generalized object recognition. 
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Figure 6-1.  Examples of how log-polar transforms affect an image.  The top row is the raw 
image while the bottom is the corresponding transformed image.  Rotation results in 
translation along the x-axis (center and right), while scale variations result in translation 
along the y-axis (not shown). 
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7. Conclusions 

We have implemented a neural-inspired object-recognition algorithm based on a rank-order 
coding scheme developed by Gautrais and Thorpe [1998].  One version, ROCIT was 
implemented in MATLAB®  to enable rapid exploration of algorithm extensions.  A second, 
SpikeWave, has been implemented in C++ for faster execution.  Both use interchangeable 
XML  input files and are under strict version control. 

Benchmarking against the FERET fafc benchmarking showed better than average 
performance relative to peers of the same time period (late 1990’s).  The FERET fafc dataset 
was developed for biometric discrimination.  While ROCIT is intended to serve as a research 
tool for general object recognition in cluttered, uncontrolled scenes, this benchmark has 
allowed us to measure how well a rank-order coding scheme handles variable lighting, 
moderate pose changes, and object morphology plasticity (facial expression changes).  These 
are the first formal benchmark results for such a model.   

While these early results are encouraging, the baseline algorithm cannot handle rotation and 
scale changes beyond a few percent.  Scale and rotation are fundamental axes of the problem 
space of general object recognition, so this issue must be addressed.  Several options for 
modifying the algorithm to accomplish scale and rotation invariance were presented, and 
others may exist.  Given the promising results from the benchmark studies presented here, 
the baseline algorithm may represent a viable jumping off point for future research into 
general object recognition in uncontrolled environments. 
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Appendix A:  Algorithmic Complexity Analysis 

In this derivation the following assumptions are made: 

• The times required to perform any individual operation are assumed to be the same 
(addition, subtraction, multiplication, division, comparison, assignment, etc.). 

• Pairs of kernels are stored for each layer to eliminate the need to multiply by a bias 
value during voltage, sensitivity, and target kernel updates. 

Notation is as follows: 

N  Number of pixels in an input image 

G  Number of groups of input and orientation layers (recall that each 
set of on/off layers is paired with a group of eight orientation 
layers) 

T Number of target layers (i.e., number of targets sought)  
in

iW  Number of weights in the kernel of the  ith group of input (in) 
layers 

or
iW  Number of weights in the kernel of the ith group of orientation (or) 

layers 
t
jW  Number of weights in the kernel of  target layer j 

in
if  Fraction of spikes propagated from ith input layer group, 

10 ≤< in
if  

or
if  Fraction of spikes propagated from ith orientation layer group, 

10 ≤< or
if  

A Time required to perform a single mathematical operation (i.e., 
addition, subtraction, multiplication, division, comparison, etc.) 

The algorithmic complexity of the ROCIT baseline algorithm can be computed by examining 
the computational work associated with each layer and by considering how the algorithm 
changes between training and recognition modes. 

Algorithmic Complexity of the On/Off Layer Preprocess 
Each on/off layer undergoes a convolution followed by sorting as a way of ranking spikes 
(See Section 3.2.1).  The convolution consists of moving the kernel across the image and 
performing a point by point multiplication, summing the values, and assigning them to a 
new, intermediate matrix.  This is a conservative estimate since, for symmetric convolution 
kernels, this can be reduced.  This resultant matrix is then sorted, which can be performed 
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( )NNO log  time (e.g., merge sort or heap sort).  Therefore, work required to process G  
pairs of on/off layers is 

[ ]∑
=

+=
G

i

in
i

in NBNNAWC
1

log22  (A1) 

Here, the first 2 accounts for the on/off pairs and the second 2 accounts for the 
multiplications and additions associated with the convolution.  The second term in brackets is 
the time complexity of the sorting algorithm ( NN log ) and B is its constant. 

Algorithmic Complexity of the Orientation Layer Updates 
For each spike that fires in an on/off layer group, a local update is performed in all eight 
layers of its associated orientation-layer group.  First the voltage is updated, then the 
sensitivity is updated, and finally, the voltage threshold is checked for new spikes (See 
Equation (6), (12).  The updates are all local and involve an area the size of the orientation 
layer kernel centered around the afferent spike location.  Voltage and sensitivity updates 
require a multiply and addition per kernel weight, and thresholding requires one comparison 
per kernel weight and an assignment for every threshold excursion.   A conservative 
assumption is that every spike causes every voltage in the affected area to exceed the 
threshold, then the work required to update the orientation layers is thus:  

∑
= 













++=

G

i Threshold

or
i

Sensivity

or
i

Voltage

or
i

in
i

or AWAWAWNfC
1

2228 321321321  (A2) 

where Nf in
i  is the total number of neurons firing from the ith input-layer group. 

Algorithmic Complexity of the Custom Target Kernel Updates 
Target kernel updates are based on Equation (8).  They involve multiplications and additions 
over an area the size of the afferent layer kernel.  Global desensitization is used during 
training and no voltage threshold checking takes place, so the target kernel updates represent 
the vast majority of work for the target layers during training.  This gives a time complexity 
of: 

∑
=

=
G

i Kernel

or
i

or
i

k AWNfC
1

2 321  (A3) 

where Nf or
i  is the total number of neurons firing from the ith orientation-layer group. 

Algorithmic Complexity of the Target Layer Updates 
Target layer updates involve the same operations as orientation layers, but with afferent 
spikes coming from orientation layers and the custom target kernel of the respective target 
layer used for updates (See Equation ).  Therefore, the work associated with target layer 
updates is: 
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∑∑
= = 






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




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T
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G

i
Threshold

t
j

Sensivity

t
j

Voltage

t
j

or
i

t AWAWAWNfC
1 1

2228
321321321

 (A4) 

where or
if  is the total number of neurons firing from the ith orientation-layer group. 

Algorithmic Complexity of Training 
The algorithmic complexity of training amounts to: 

korintr CCCC ++=  (A5) 

or, 

[ ] ∑∑∑
===

+++=
G

i

or
i

or
i

G

i

or
i

in
i

G

i

in
i

tr NAWfNAWfNBNNAWC
111

248log22  (A6) 

after substitution of Equations (A1), (A2), and (A3) and rearranging.  If we assume that the 
size of the input layer and orientation layer kernels are small, relative to the size of the target 
image, then we can ignore the differences in their individual sizes such that: 

NWWW inin
i

in
i <<=≈ +1  (A7) 

NWWW oror
i

or
i <<=≈ +1 . (A8) 

If we further ignore the differences in sizes between the input layer kernels and the 
orientation layer kernels, then we can approximate the number of weights as 

WWW orin ~=≈   (A9) 

If we further assume that each group of layers of a given type (input or orientation) 
propagates a similar fraction of spikes, then we can write 

inin
i

in
i fff

~
1 =≈ +  (A10) 

oror
i

or
i fff

~
1 =≈ + . (A11) 

Given these assumptions, Equation (A6) reduces to 

( )[ ]NCNNffWGAC orintr log2
~~

24~2 +++≈  (A12) 

where WABC ~= . 

This expression indicates that training is ( )NNO log  as long as 
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( ) NffWGA orin <<++ 2
~~

24~2 . (A13) 

Therefore, if the number of groups, G, is large, the size of the kernels is large, or if a high 
fraction of spikes is required to propagate for the development of a useful target kernel, then 
the algorithm can approach ( )2NO . 

Algorithmic Complexity of Recognition 
The algorithm complexity of recognition is given by: 

torinrec CCCC ++=  (A14) 

or, 

[ ] ∑∑∑∑
= ===

+++=
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j

G

i

t
j

or
i

G

i

or
i

in
i

G

i

in
i

rec AWNfNAWfNBNNAWC
1 111

4848log22  (A15) 

Making the same assumptions as before regarding the relative sizes of the input and 
orientation layer kernels and fractions of spikes propagating from input and orientation layers 
(Equations A7-A11), and further assuming that the targets are similar in size, i.e., 

tt
j

t
j WWW

~
1 =≈ +   (A16) 

then Equation (A15) may be rewritten as   
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Thus, recognition is also of ( )NNO log  as long as 

N
W
W

TfffWGA
t

ororin <<
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
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


++ ~
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24

~~
24

~
2 . (A18) 

This constraint may be violated as the number of groups increases, the size of the input and 
orientation layers increase, or the size of the target kernels approach the size of the image 
being processed, i.e., whenever NW t ≈~

.  This will be the case when, for example, “mug 
shots” are being processed in which case all images may be approximately the same number 
of pixels.  In this case, the algorithm becomes ( )2NO . 

If the targets are hidden in a much larger image, then NWW t <<≈ ~~
.  Likewise, the fraction 

of spikes propagating from the on/off layers may approach one since the target may be low in 
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contrast relative to other features in the image.  If we assume that the fraction of neurons that 
fire in orientation layers is 0.514, then the work required for recognition becomes 

( )[ ]NCNNTWGAC rec log22449~ ++≈ , (A19) 

which is still ( )NNO log  while 

( ) NTWGA <<+ 2449~ . (A20) 

Consider a single target that measures 100x100 pixels, hidden in a five megapixel image and 
a network that consists of a single group of input and orientation layers.  In this case, 
Equation (A19) becomes 

( ) ( ) ( )000,000,500000268.00146.0 =⋅+⋅≈ NNNBNNAC rec  (A21) 

whose first term is marginally less than ( )2NO .  It is clear to see, that as the network grows 
in complexity, or if the target images are any larger with respect to the input image, then 
Equation (A19) quickly approaches ( )2NO  despite the fact that the input and orientation 
layer calculations are amortized across a set of target layers. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 

14 This is a conservative assumption.  Experience has indicated that the ratio of input layer spikes to orientation 
layer spikes is typically less than one fifth. 
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Appendix B:  XML Input File Element Tags 

ROOT Root XML Level 

Network Architecture Parameters 
 NUMLAYERS Number of Layers 
 CONNECTIONS Layer Connection Matrix 
 

Initial Parameter Settings 
 TH_INIT Initial Voltage Thresholds of Layers 
 V_INIT Initial Voltages of Layers 
 S_INIT Initial Sensitivities of Layers 
 IMAGE_SCALE Relative Layer Scale (1 = Original Scale of Image) 
 BIAS Layer Bias Values 
 GROUP Layer Group Affiliations 
 GROUP_NAME Group Names 
 TH_INIT_TARGET Initial Target Layer Voltage Threshold - Recognition Mode 
 V_INIT_TARGET Initial Target Layer Voltage           - Recognition Mode 
 S_INIT_TARGET Initial Target Layer Sensitivity       - Recognition Mode 
 TH_INIT_TARGET_LEARN Initial Target Layer Voltage Threshold – Training Mode 
 V_INIT_TARGET_LEARN Initial Target Layer Voltage           – Training Mode 
 S_INIT_TARGET_LEARN Initial Target Layer Sensitivity       – Training Mode 
 SENSITIVITY_FLAG_LEARN Flag: 
    1 = Global Sensitivity Update    - Training Mode 
    2 = Local  Sensitivity Update    - Training Mode 
 SENSITIVITY_FLAG_RECOG Flag: 
    1 = Global Sensitivity Update    - Recognition Mode 
    2 = Local  Sensitivity Update    - Recognition Mode 
 IMAGE_SCALE_TARGET Currently Unused 
 BIAS_TARGET Currently Unused 
 NORMALIZE Flag:  Kernel Normalization 
    1 = Normalize Kernels to a Fixed Amplitude  
    2 = Normalized Kernels to Achieve Max Voltage = 1. 
 READ_KERNELS Flag: (LoG and Gabor Kernels Only) 
    1 = Read From File 
    0 = Compute From Parameter List 
 MAXTIME Maximum Time Step 

Kernel Specifications 
 KERNEL Kernel Parameter Specifications 
  FILENAME Name of File if READ_KERNELS=1 
  LAYER Layer Assignment 
  KWIDTH Kernel Width 
  KHEIGHT Kernel Height 
  NAME Kernel Name 
  TYPE Kernel Type (Gabor or LoG) 
  FREQUENCY Spatial Frequency (Gabor Only) 
  ALIGNMENT Kernel Orientation (Gabor Only) 
  SIGMA Gaussian Smoothing Parameter 
  PHASE Phase of Planar Wave (Gabor Only) 
  MEAN Mean Kernel Value 
  AMPLITUDE Maximum Kernel Amplitude for Normalization 
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Custom Target Specifications 
 TARGET Custom Target Kernel Tag 
  MAX_VOLTAGE Maximum Voltage for Achieved During Training 
  TARGET_PATTERN_W Voltage Pattern Width 
  TARGET_PATTERN_H Voltage Pattern Height 
  PATTERN_CONV_MAX Maximum Cross-Correlation Value for Voltage Pattern 
  TARGET_PATTERN Voltage Pattern Matrix 
  NAME Target Name 
  WIDTH Kernel Matrix Width 
  HEIGHT Kernel Matrix Height 
  CURRENT_TIME Training Steps Used 
  CUSTOM Target Kernel Matrix 
  IMAGE Raw Image of Target 
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Appendix C:  Example Network Specifications File 
<?xml version="1.0" encoding="ISO-8859-1"?> 
<ROOT> 
<NUMLAYERS>10</NUMLAYERS> 
<NAME>Default Network</NAME> 
<CONNECTIONS> 
0 0 1 1 1 1 1 1 1 1  
0 0 1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
</CONNECTIONS> 
 
<TH_INIT> 
0.15 0.15 2.500000e+000 2.500000e+000 2.500000e+000 2.500000e+000 2.500000e+000 

2.500000e+000 2.500000e+000 2.500000e+000 
</TH_INIT> 
 
<V_INIT> 
0 0 0 0 0 0 0 0 0 0 0  
</V_INIT> 
 
<S_INIT> 
1 1 1 1 1 1 1 1 1 1 
</S_INIT> 
 
<IMAGE_SCALE> 
1 1 1 1 1 1 1 1 1 1 1  
</IMAGE_SCALE> 
 
<BIAS> 
1 -1 1 1 1 1 -1 -1 -1 -1 1 
</BIAS> 
 
<GROUP> 
1 1 2 2 2 2 2 2 2 2 3 
</GROUP> 
 
<GROUP_NAME> 
On/Off 
Edges 
Target 
</GROUP_NAME> 
 
<TH_INIT_TARGET> 50000000 </TH_INIT_TARGET> 
 
<V_INIT_TARGET> 0  </V_INIT_TARGET> 
 
<S_INIT_TARGET> 0.9999 </S_INIT_TARGET> 
 
<TH_INIT_TARGET_LEARN> 50000000 </TH_INIT_TARGET_LEARN> 
 
<V_INIT_TARGET_LEARN> 0 </V_INIT_TARGET_LEARN> 
 
<S_INIT_TARGET_LEARN> 0.9999 </S_INIT_TARGET_LEARN> 
 
<IMAGE_SCALE_TARGET> 1 </IMAGE_SCALE_TARGET> 
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<CONNECTION_TO_TARGET> 
0 0 1 1 1 1 1 1 1 1 
</CONNECTION_TO_TARGET> 
 
<CONNECTION_FROM_IMAGE> 
1 1 0 0 0 0 0 0 0 0 
</CONNECTION_FROM_IMAGE> 
 
<SENSITIVITY_FLAG_LEARN> 1 </SENSITIVITY_FLAG_LEARN>  
<SENSITIVITY_FLAG_RECOG> 1 </SENSITIVITY_FLAG_RECOG> 
 
<BIAS_TARGET> 1 </BIAS_TARGET> 
 
<NORMALIZE> 2 </NORMALIZE> 
 
<READ_KERNELS> 1 </READ_KERNELS> 
 
<MAXTIME> 500 </MAXTIME> 
 
 
<KERNEL> 
  <FILENAME> \\Soma\1\Dev\SpikeWave\bdfarka_030504\spikewave\resources\ 
   on_kernel_5_x_5.txt </FILENAME> 
  <LAYER>1</LAYER> 
  <KWIDTH>5</KWIDTH> 
  <KHEIGHT>5</KHEIGHT> 
  <NAME>On</NAME> 
  <TYPE>log</TYPE> 
  <PHASE>-1</PHASE> 
  <SIGMA>5.000000e-001</SIGMA> 
  <DIM>5</DIM> 
</KERNEL> 
 
<KERNEL> 
  <FILENAME> \\Soma\1\Dev\SpikeWave\bdfarka_030504\spikewave\resources\ 
  off_kernel_5_x_5.txt </FILENAME> 
  <LAYER> 2 </LAYER> 
  <KWIDTH> 5 </KWIDTH> 
  <KHEIGHT> 5 </KHEIGHT> 
  <PHASE> 1 </PHASE> 
  <NAME> Off </NAME> 
  <TYPE> log </TYPE> 
  <SIGMA> 5.000000e-001 </SIGMA> 
  <DIM> 5 </DIM> 
</KERNEL> 
 
<KERNEL> 
  <FILENAME> \\Soma\1\Dev\SpikeWave\bdfarka_030504\spikewave\resources\ 
  orient_000_15_x_15.txt</FILENAME> 
  <LAYER> 3 </LAYER> 
  <KWIDTH> 15 </KWIDTH> 
  <KHEIGHT> 15 </KHEIGHT> 
  <NAME> 0 Degrees </NAME> 
  <TYPE> gabor </TYPE> 
  <FREQUENCY> 15 </FREQUENCY> 
  <ALIGNMENT> 0 </ALIGNMENT> 
  <SIGMA> 2.500000e+000 </SIGMA> 
  <PHASE> 90 </PHASE> 
  <MEAN> 0 </MEAN> 
  <AMPLITUDE>1 </AMPLITUDE> 
</KERNEL> 
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<KERNEL> 
  <FILENAME> \\Soma\1\Dev\SpikeWave\bdfarka_030504\spikewave\resources\ 
  orient_045_15_x_15.txt </FILENAME> 
  <LAYER> 4 </LAYER> 
  <KWIDTH> 15 </KWIDTH> 
  <KHEIGHT> 15 </KHEIGHT> 
  <NAME> 45 Degrees </NAME> 
  <TYPE> gabor </TYPE> 
  <FREQUENCY> 15 </FREQUENCY> 
  <ALIGNMENT> 45 </ALIGNMENT> 
  <SIGMA> 2.500000e+000 </SIGMA> 
  <PHASE> 90 </PHASE> 
  <MEAN> 0 </MEAN> 
  <AMPLITUDE>1</AMPLITUDE> 
</KERNEL> 
 
<KERNEL> 
  <FILENAME> \\Soma\1\Dev\SpikeWave\bdfarka_030504\spikewave\resources\ 
  orient_090_15_x _15.txt </FILENAME> 
  <LAYER> 5 </LAYER> 
  <KWIDTH> 15 </KWIDTH> 
  <KHEIGHT> 15 </KHEIGHT> 
  <NAME> 90 Degrees </NAME> 
  <TYPE> gabor </TYPE> 
  <FREQUENCY> 15 </FREQUENCY> 
  <ALIGNMENT> 90 </ALIGNMENT> 
  <SIGMA> 2.500000e+000 </SIGMA> 
  <PHASE> 90 </PHASE> 
  <MEAN> 0 </MEAN> 
  <AMPLITUDE> 1 </AMPLITUDE> 
</KERNEL> 
 
<KERNEL> 
  <FILENAME> \\Soma\1\Dev\SpikeWave\bdfarka_030504\spikewave\resources\ 
  orient_135_15_x _15.txt </FILENAME> 
  <LAYER> 6 </LAYER> 
  <KWIDTH> 15 </KWIDTH> 
  <KHEIGHT> 15 </KHEIGHT> 
  <NAME> 135 Degrees </NAME> 
  <TYPE> gabor </TYPE> 
  <FREQUENCY> 15 </FREQUENCY> 
  <ALIGNMENT> 135 </ALIGNMENT> 
  <SIGMA> 2.500000e+000 </SIGMA> 
  <PHASE> 90 </PHASE> 
  <MEAN> 0 </MEAN> 
  <AMPLITUDE>1 </AMPLITUDE> 
</KERNEL> 
 
<KERNEL> 
  <FILENAME> \\Soma\1\Dev\SpikeWave\bdfarka_030504\spikewave\resources\ 
  orient_180_15_x_15.txt </FILENAME> 
  <LAYER> 7 </LAYER> 
  <KWIDTH> 15 </KWIDTH> 
  <KHEIGHT> 15 </KHEIGHT> 
  <NAME> 180 Degrees </NAME> 
  <TYPE> gabor </TYPE> 
  <FREQUENCY> 15 </FREQUENCY> 
  <ALIGNMENT> 180 </ALIGNMENT> 
  <SIGMA> 2.500000e+000 </SIGMA> 
  <PHASE> 90 </PHASE> 
  <MEAN> 0 </MEAN> 
  <AMPLITUDE> 1 </AMPLITUDE> 
</KERNEL> 
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<KERNEL> 
  <FILENAME> \\Soma\1\Dev\SpikeWave\bdfarka_030504\spikewave\resources\ 
  orient_225_15_x _15.txt </FILENAME> 
  <LAYER> 8 </LAYER> 
  <KWIDTH> 15 </KWIDTH> 
  <KHEIGHT> 15 </KHEIGHT> 
  <NAME> 225 Degrees </NAME> 
  <TYPE> gabor </TYPE> 
  <FREQUENCY> 15 </FREQUENCY> 
  <ALIGNMENT> 225 </ALIGNMENT> 
  <SIGMA> 2.500000e+000 </SIGMA> 
  <PHASE> 90 </PHASE> 
  <MEAN> 0 </MEAN> 
  <AMPLITUDE> 1 </AMPLITUDE> 
</KERNEL> 
 
<KERNEL> 
  <FILENAME> \\Soma\1\Dev\SpikeWave\bdfarka_030504\spikewave\resources\ 
  orient_270_15_x _15.txt </FILENAME> 
  <LAYER> 9 </LAYER> 
  <KWIDTH> 15 </KWIDTH> 
  <KHEIGHT> 15 </KHEIGHT> 
  <NAME> 270 Degrees </NAME> 
  <TYPE> gabor </TYPE> 
  <FREQUENCY> 15 </FREQUENCY> 
  <ALIGNMENT> 270 </ALIGNMENT> 
  <SIGMA> 2.500000e+000 </SIGMA> 
  <PHASE> 90 </PHASE> 
  <MEAN> 0 </MEAN> 
  <AMPLITUDE> 1 </AMPLITUDE> 
</KERNEL> 
 
<KERNEL> 
  <FILENAME> \\Soma\1\Dev\SpikeWave\bdfarka_030504\spikewave\resources\ 
  orient_315_15_x _15.txt </FILENAME> 
  <LAYER> 10 </LAYER> 
  <KWIDTH> 15 </KWIDTH> 
  <KHEIGHT> 15 </KHEIGHT> 
  <NAME> 315 Degrees </NAME> 
  <TYPE> gabor </TYPE> 
  <FREQUENCY> 15 </FREQUENCY> 
  <ALIGNMENT> 315 </ALIGNMENT> 
  <SIGMA> 2.500000e+000 </SIGMA> 
  <PHASE> 90 </PHASE> 
  <MEAN> 0 </MEAN> 
  <AMPLITUDE> 1 </AMPLITUDE> 
</KERNEL> 
 
</ROOT>  
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Appendix D:  Example Custom Target File 

<?xml version="1.0" encoding="ISO-8859-1"?> 
 
<!DOCTYPE note SYSTEM "target.dtd"> 
 
<ROOT> 
 
<TARGET> 
 
<MAX_VOLTAGE> 2.6832 </MAX_VOLTAGE> 
 
<TARGET_PATTERN_W> 17 </TARGET_PATTERN_W> 
 
<TARGET_PATTERN_H> 25 </TARGET_PATTERN_H> 
 
<PATTERN_CONV_MAX> -1.439488e+001 </PATTERN_CONV_MAX>  
 
<TARGET_PATTERN> 
  0.068106  0.087443  0.093242  0.082958  0.070195  0.074170  0.094851  0.106470   
  0.087558  0.053072  0.039847  0.060335  0.088045  0.093923  0.080546  0.069747   
  0.070331  0.073302  0.071227  0.065995  0.058997  0.046771  0.029195  0.013548   
  0.008241  0.052662  0.066490  0.076616  0.076203  0.073069  0.083255  0.106560   

DATA OMITTED  

</TARGET_PATTERN> 
 
<NAME> 00001fa010_930831 </NAME> 
 
<WIDTH> 92 </WIDTH> 
 
<HEIGHT> 138 </HEIGHT> 
 
<NUMLAYERS> 10 </NUMLAYERS> 
 
<CONNECTIONS> 
0 0 1 1 1 1 1 1 1 1 0  
0 0 1 1 1 1 1 1 1 1 0  
0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0  
</CONNECTIONS> 
 
<TH_INIT> 
   1.500000e-001 1.500000e-001 2.500000e+000 2.500000e+000 2.500000e+000  
   2.500000e+000 2.500000e+000 2.500000e+000 2.500000e+000 2.500000e+000 50000000  
</TH_INIT> 
 
<V_INIT> 
0 0 0 0 0 0 0 0 0 0 0  
</V_INIT> 
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<S_INIT> 
1 1 1 1 1 1 1 1 1 1 9.999000e-001  
</S_INIT> 
 
<BIAS> 
1 -1 1 1 1 1 -1 -1 -1 -1 1  
</BIAS> 
 
<GROUP> 
1 1 2 2 2 2 2 2 2 2 4  
</GROUP> 
 
<IMAGE_SCALE> 
1 1 1 1 1 1 1 1 1 1 1  
</IMAGE_SCALE> 
 
<TH_INIT_TARGET> 50000000 </TH_INIT_TARGET> 
 
<V_INIT_TARGET> 0 </V_INIT_TARGET> 
 
<S_INIT_TARGET> 9.999000e-001 </S_INIT_TARGET> 
 
<IMAGE_SCALE_TARGET> 1 </IMAGE_SCALE_TARGET> 
 
<BIAS_TARGET> 1 </BIAS_TARGET> 
 
<NORMALIZE> 2 </NORMALIZE> 
 
<MAXTIME> 500 </MAXTIME> 
 
<CURRENTTIME> 50 </CURRENTTIME> 
 
<CUSTOM> 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0  
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1.315334e-007 -1.747882e-007 -2.481516e-007 -1.828085e-007 -3.219407e-007 -
3.992974e-007 -4.289843e-007 -3.992974e-007 -3.219407e-007 -1.828085e-007 -
7.336332e-008 0 0 0 0 0 0 0 1.537752e-007 1.537752e-007 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -9.282684e-008 
-5.842954e-007 -1.456526e-006 -2.217973e-006 -2.382698e-006 -2.145165e-006 -
2.069002e-006 -2.251694e-006 -2.660539e-006 -2.922818e-006 -2.720865e-006 -
1.948404e-006 -1.312803e-006 -1.214137e-006 -6.726788e-007 -1.771531e-007 
2.322991e-007 4.147149e-007 4.962998e-007 7.716004e-007 1.037972e-006 
1.451884e-006 1.764388e-006 1.415971e-006 7.480560e-007 1.330702e-007 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

 
DATA OMITTED  

</CUSTOM> 
 
<IMAGE> 
111 106 103 97 93 93 90 89 87 84 82 80 79 79 77 76 76 77 77 75 77 77 77 78 80 79 80 

80 81 80 80 81 82 81 81 82 81 82 82 81 82 80 81 80 79 80 79 78 78 77 76 77 77 
79 80 80 81 82 82 81 80 79 78 76 77 78 82 83 85 85 86 86 86 85 85 86 85 85 85 
84 85 84 85 89 91 94 96 97 100 102 106 113  

108 106 100 96 93 92 88 86 85 85 83 81 79 78 77 76 77 76 76 77 77 77 77 78 79 80 80 
79 81 80 80 80 81 82 81 80 81 81 82 81 81 80 81 80 80 79 78 77 76 76 77 77 77 
78 78 78 80 79 80 79 79 78 77 76 77 79 81 83 85 86 87 86 85 83 84 84 84 84 85 
84 85 86 87 89 91 93 97 99 100 101 106 113  

 
DATA OMITTED  

</IMAGE> 
 
<KERNEL> 
  <NAME> On </NAME> 
  <LAYER> 1 </LAYER> 
  <KWIDTH> 5 </KWIDTH> 
  <KHEIGHT> 5 </KHEIGHT> 
  <TYPE> log </TYPE> 
  <DIM> 5 </DIM> 
  <SIGMA> 5.000000e-001 </SIGMA> 
  <PHASE> -1 </PHASE> 
</KERNEL> 
 
<KERNEL> 
  <NAME> Off </NAME> 
  <LAYER> 2 </LAYER> 
  <KWIDTH> 5 </KWIDTH> 
  <KHEIGHT> 5 </KHEIGHT> 
  <TYPE> log </TYPE> 
  <DIM> 5 </DIM> 
  <SIGMA> 5.000000e-001 </SIGMA> 
  <PHASE> 1 </PHASE> 
</KERNEL> 
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<KERNEL> 
  <NAME> 0 Degrees </NAME> 
  <LAYER> 3 </LAYER> 
  <KWIDTH> 15 </KWIDTH> 
  <KHEIGHT> 15 </KHEIGHT> 
  <TYPE> gabor </TYPE> 
  <DIM> 15 </DIM> 
  <FREQUENCY> 15 </FREQUENCY> 
  <ALIGNMENT> 0 </ALIGNMENT> 
  <SIGMA> 2.500000e+000 </SIGMA> 
  <PHASE> 90 </PHASE> 
  <MEAN> 0 </MEAN> 
  <AMPLITUDE> 1 </AMPLITUDE> 
</KERNEL> 
 
<KERNEL> 
  <NAME> 45 Degrees </NAME> 
  <LAYER> 4 </LAYER> 
  <KWIDTH> 15 </KWIDTH> 
  <KHEIGHT> 15 </KHEIGHT> 
  <TYPE> gabor </TYPE> 
  <DIM> 15 </DIM> 
  <FREQUENCY> 15 </FREQUENCY> 
  <ALIGNMENT> 45 </ALIGNMENT> 
  <SIGMA> 2.500000e+000 </SIGMA> 
  <PHASE> 90 </PHASE> 
  <MEAN> 0 </MEAN> 
  <AMPLITUDE> 1 </AMPLITUDE> 
</KERNEL> 
 
<KERNEL> 
  <NAME> 90 Degrees </NAME> 
  <LAYER> 5 </LAYER> 
  <KWIDTH> 15 </KWIDTH> 
  <KHEIGHT> 15 </KHEIGHT> 
  <TYPE> gabor </TYPE> 
  <DIM> 15 </DIM> 
  <FREQUENCY> 15 </FREQUENCY> 
  <ALIGNMENT> 90 </ALIGNMENT> 
  <SIGMA> 2.500000e+000 </SIGMA> 
  <PHASE> 90 </PHASE> 
  <MEAN> 0 </MEAN> 
  <AMPLITUDE> 1 </AMPLITUDE> 
</KERNEL> 
 
<KERNEL> 
  <NAME> 135 Degrees </NAME> 
  <LAYER> 6 </LAYER> 
  <KWIDTH> 15 </KWIDTH> 
  <KHEIGHT> 15 </KHEIGHT> 
  <TYPE> gabor </TYPE> 
  <DIM> 15 </DIM> 
  <FREQUENCY> 15 </FREQUENCY> 
  <ALIGNMENT> 135 </ALIGNMENT> 
  <SIGMA> 2.500000e+000 </SIGMA> 
  <PHASE> 90 </PHASE> 
  <MEAN> 0 </MEAN> 
  <AMPLITUDE> 1 </AMPLITUDE> 
</KERNEL> 
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<KERNEL> 
  <NAME> 180 Degrees </NAME> 
  <LAYER> 7 </LAYER> 
  <KWIDTH> 15 </KWIDTH> 
  <KHEIGHT> 15 </KHEIGHT> 
  <TYPE> gabor </TYPE> 
  <DIM> 15 </DIM> 
  <FREQUENCY> 15 </FREQUENCY> 
  <ALIGNMENT> 180 </ALIGNMENT> 
  <SIGMA> 2.500000e+000 </SIGMA> 
  <PHASE> 90 </PHASE> 
  <MEAN> 0 </MEAN> 
  <AMPLITUDE> 1 </AMPLITUDE> 
</KERNEL> 
 
<KERNEL> 
  <NAME> 225 Degrees </NAME> 
  <LAYER> 8 </LAYER> 
  <KWIDTH> 15 </KWIDTH> 
  <KHEIGHT> 15 </KHEIGHT> 
  <TYPE> gabor </TYPE> 
  <DIM> 15 </DIM> 
  <FREQUENCY> 15 </FREQUENCY> 
  <ALIGNMENT> 225 </ALIGNMENT> 
  <SIGMA> 2.500000e+000 </SIGMA> 
  <PHASE> 90 </PHASE> 
  <MEAN> 0 </MEAN> 
  <AMPLITUDE> 1 </AMPLITUDE> 
</KERNEL> 
 
<KERNEL> 
  <NAME> 270 Degrees </NAME> 
  <LAYER> 9 </LAYER> 
  <KWIDTH> 15 </KWIDTH> 
  <KHEIGHT> 15 </KHEIGHT> 
  <TYPE> gabor </TYPE> 
  <DIM> 15 </DIM> 
  <FREQUENCY> 15 </FREQUENCY> 
  <ALIGNMENT> 270 </ALIGNMENT> 
  <SIGMA> 2.500000e+000 </SIGMA> 
  <PHASE> 90 </PHASE> 
  <MEAN> 0 </MEAN> 
  <AMPLITUDE> 1 </AMPLITUDE> 
</KERNEL> 
 
<KERNEL> 
  <NAME> 315 Degrees </NAME> 
  <LAYER> 10 </LAYER> 
  <KWIDTH> 15 </KWIDTH> 
  <KHEIGHT> 15 </KHEIGHT> 
  <TYPE> gabor </TYPE> 
  <DIM> 15 </DIM> 
  <FREQUENCY> 15 </FREQUENCY> 
  <ALIGNMENT> 315 </ALIGNMENT> 
  <SIGMA> 2.500000e+000 </SIGMA> 
  <PHASE> 90 </PHASE> 
  <MEAN> 0 </MEAN> 
  <AMPLITUDE> 1 </AMPLITUDE> 
</KERNEL> 
 
</TARGET> 
 
</ROOT> 
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