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Abstract

This document describes ROCIT, a neura-inspired object recognition
algorithm based on a rank-order coding scheme that uses a light-weight
neuron model. ROCIT coarsely ssimulates a subset of the human ventral
visual stream from the retina through the inferior temporal cortex. It was
designed to provide an extensible baseline from which to improve the fidelity
of the ventral stream model and explore the engineering potential of rank-
order coding with respect to object recognition. This report describes the
baseline algorithm, the model’s neural network architecture, the theoretical
basis for the approach, and reviews the history of similar implementations.
[llustrative results are used to clarify algorithm details. A formal benchmark
to the 1998 FERET fafc test shows above average performance, which is
encouraging. The report concludes with a brief review of potentia
algorithmic extensions for obtaining scale and rotational invariance.
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1. Introduction

Object recognition in cluttered, uncontrolled environments is a fundamental need across
myriad problem domains, from the mundane to critical national security applications.
Competent computational assistance with this task would be welcome, especially in light of
expanding acquisition of imaging data. Consequently, object recognition is an outstanding
problem in computer science and an active area of research in the computer vision, digital
Image processing, pattern recognition, and computational neuroscience disciplines.

Biomimetic approaches to engineering and computation have proven effective for some
problems, for example, biomimetic engineered materials, genetic/evolutionary optimization
algorithms, and neural networks for pattern recognition and classification. They are
appealing because there is usually a natural existence proof for justification, and if the natural
analogue can be understood, then it can be exploited as atechnical road map. The
remarkable vision system common to humans and primates is an example of how object
recognition can be accomplished in nature, and critical understanding of this system has
reached athreshold level suitable for devel oping computational models. The work presented
here takes inspiration from this foundational knowledge for the purposes of developing
computational object recognition system.

This SAND report documents ROCIT, aMATLAB® implementation of a neural-inspired
object recognition algorithm. ROCIT uses the Rank-Order neural Coding scheme of
Gautrais and Thorpe [1998], a new and novel neuroscience hypothesis, to simulate the
ventral pathway of the human vision system that extends from the retinae to the Inferior
Temporal cortex (IT). Thiscoding scheme usesthe latency of thefirst spike in aneuron’s
spiketrain as away of encoding visual information. Thisisin contrast to temporal or
frequency coding schemes, and attempts to explain the rapid activation times (80-120ms)
reported for cellsin the inferior temporal cortex where cells implicated in object recognition
are found (See, for example, Logothetis and Sheinberg [1996]; Tanaka [1996]; Thorpe et al.
[1996]).

ROCIT isa prototype application designed to enable rapid algorithm exploration and
development. A faster C++ implementation, SpikeWave, has also been developed for the
purpose of running computationally-intensive benchmarks. Both implementations share a
common baseline algorithm as described in this report.
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2. Background

Humans and primates share a similar neuroanatomy for visual processing. Intensive study
over the past several decades has led to a general consensus as to the basic function of this
system [Hubel and Weisel, 1977]*, although fundamental questions remain. In general, the
visual system consists of a hierarchical arrangement of neuron groups having increasingly
complex preferred stimuli and receptive field sizes” as the synaptic distance from the eyes
increases.

2.1 Visual Streams

Visual information enters through the pupils and is transformed into neural impulses by the
neuronal layers that comprise the retinae, the complex sheets of neural cells forming the
posterior wall of the posterior chamber of the eye. The transformation begins with light
sensitive rod and cone cells. Cones are sensitive to color but are restricted primarily to the
region of the fovea, asmall area of very high cell density at the centers of the retinae. Rods,
on the other hand, are found throughout the retinae. They are color insensitive and have a
much larger dynamic range than cone cells with respect to illumination. Rods and cones
form synaptic connections with several cell typesin the retinae, the output of which are
approximately 1,000,000 retinal ganglion cells per eye whose axons form the optic nerve.

The spatial resolution (i.e., receptive field) of retinal ganglion cells at the foveais about 0.03°
and decreases to nearly 3° at the periphery. Of the neurons that make up the retinae, only
retinal ganglion cells produce action potentials (a.k.a., “ spikes’ in membrane voltage), whose
temporal spike pattern presumably encodes visual information. The optic nerves project to
the brain stem where they synapse onto various projections, primarily the lateral geniculate
nucleus (LGN) (See Figure 2-1.). Within the LGN, connections originating from retinal rod
and cone cells are segregated into distinct layers. These are referred to as the magnocellular
and parvocellular pathways, respectively. Since rods and cones respond to different stimuli
(black and white vs. color) and illumination contrast, as well as having differing degrees of
spatial resolution and response times, this segregation resultsin an early stage of information
routing that is used for specialized processing in later stages.

From the LGN the optic radiations project to the occipital cortex in the posterior of the brain,
an areatermed the primary visual cortex or V1. Itisathin (~2 mm thick) cortical area
consisting of six distinct layers and having about 200,000,000 neurons. Thisisthe first of
several functionally-defined brain regions referred to as visual areas. Visua areas are
defined by their retinotopic® cell arrangement and neuronal stimulus preferences. There are

! 1n 1981, David H. Hubel and Torsten N. Wiesel were awarded the Nobel Prize in Physiology or Medicine for
their work on the neuroscience of vision.

2 A neuron'’ s receptive field is the portion of the visual field that a neuron will respond to. The level of
response, as defined by spike rate or latency, depends on the similarity between a cell’ s preferred stimulus
and the presented stimulus.

% Retinotopic refers to a neuron arrangement where adjacent neurons respond to adjacent regions of the visual
field. Thevisua areas are, in part, defined by possessing retinotopically-arranged neuron layers.
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severa distinct cell typesin V1. Simple cells respond to oriented edges, line segments, and
end-stopped lines. Complex cellsin V1 respond to moving lines and edges, while “blob”
cells respond to color patches. Simple and complex cells receive input from the
magnocellular pathway while blob cells receive input from the parvocellular pathway,
although the cell types have extensive interconnections. Raizada and Grossberg [2003] and
Grossberg [2003] provide and excellent reviews of synaptic connectionsin the cortex
together with an interpretation of their functional roles.

Beyond V1, two functionally-distinct pathways of visual processing have been identified:
the dorsal stream and the ventral stream (See, for example, Ungerleider and Haxby [1994].).
The dorsal stream, also referred to as the “where” stream, is responsible for sensing types of
motion relative to the viewer. The dorsal stream receives the majority of its input from the
magnocellular pathway via afeed forward circuit through the visual areasV1, V2, V3, and
the Middle Temporal Area(ak.a., MT or V5) before terminating in the posterior parietal
cortex. The ventral stream, also known as the “what” stream, is responsible for object
recognition and terminates in the inferotemporal cortex (a.k.a., the inferior temporal cortex
or IT). It receives most of itsinput from the parvocellular pathway in afeed forward circuit
through V1, V2, and V4 terminating in the I T.

Figure 2-1 shows a simplified version of these processing pathways. While the dorsal and
ventral streams are usually described in terms of their forward connections, the actual
synaptic connections of the visual areas are far more complex. There are extensive feedback
and lateral connections, some of which are shown. The roles played by the various
connections are not fully understood. Lamme and Roelfsema [2000] provide an excellent
review of current scientific thoughts on this topic, while Raizada and Grossberg [2003]
review ideas on the detailed connections between and within the LGN, V1, and V2.*

2.2 Object Recognition in the IT

The T isnot avisual area, by definition, sinceit no longer contains retinotopically—arranged
neurons. Within it are spatially-distinct areas of neurons that are selective to specific types of
objects or object primitives. Direct neural recording and functional magnetic resonance
imaging (FMRI) in primates® and humans have been used to delineate these regions based on
their preferred stimuli. In humans there are groups of cells selective to physical places
(parahippocampal place area), human faces (fusiform face area), body parts (extrastriate

* It is also worth noting that there are many other visual areas whose roles and involvement with the ventral and
dorsal streams are not yet clear. See Felleman and Van Essen [1991], and/or “Functional Brain Areasin
the Human” at:
http://defiant.ssc.uwo.ca/Jody web/fMRI4ADummies/functional_brain_areas.htm#retinotopi c%20and%20visual %20areas
(Accessed April, 2004).

® The posterior and anterior IT in humans correspond roughly to the anterior inferotemporal cortical area (TE)
and the temporal-occipital area (TEO) of the primate brain, respectively.
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Dorsal Stream

Ventral Stream

Figure 2-1. Primary visual pathways in the human vision system. The optic nerves project
from the eyes to the lateral geniculate nucleus. From the LGN the optic radiation
proceeds to the primary visual cortex (V1). Beyond V1 the dorsal stream leads to the
parietal cortex whereas the ventral stream terminates in the inferotemporal cortex.

body area), and text (visual word form area), among others. Another area, the lateral
occipital complex, seems to respond to lower-level object features (primitives) and may be
used as a population code from which to build representations of novel objects. Excellent
reviews of thiswork, together with foundational insights can be found in Grill-Spector et al.
[1999; 2001], and Grill-Spector [2003]. Neurons of the IT that respond to complete objects

are selective to specific views and illumination conditions of an object, but have invariant
responses with respect to object position, scale, and representation (e.g., aline drawing or
silhouette vs. a color photograph). These results bolster the theoretical perspective that
object recognition is assembled from a set of 2D views (e.g., Poggio and Edelman [1990],
Edelman [1999]), rather than from 3D object-centered representations (e.g., Biederman
1987)).

13



Thisinterpretation is strengthened by neuronal recordings from primates. Tanaka et al.
[1991] found that cellsin the TEd (dorsal TE) are sensitive to orientation® with responses
dropping by more than 50% with rotations of +/- 90°. Ito et al. [1991] found variability in
responses to objects of different sizes, but with considerable ranges of scale invariance.
Some cells had stable responses with four octaves of scale change, while others showed
response drop-off after two octaves of scale. Tanaka [1996] provides and excellent review of
the state of knowledge of the primate IT at thetime. N.K. Logothetis and co-workers
[Logothetis et al., 1994; Logothetis and Pauls, 1995; Logothetis et al., 1995] measured
sensitivity to object viewpoints and found that cells were tuned to a specific viewpoint with
invariance for out of plane rotations to about +- 40°. They found that macaques could learn
to recognize an object at any rotation given as few as three training views spaced at 120°
rotation.

Our brains provide a seamless percept of objects that isinvariant to changes in trandation
(position in the visual field), scale, rotation, and representation even when the object is
embedded in a cluttered scene, when lighting conditions vary, or when the object is wholly
novel. The fundamental challenge isto understand how a set of view-specific object/feature-
tuned cells can be coupled to accomplish this miraculous feat.

2.3 Modeling Approaches to Object Recognition

Thisfoundational understanding has led researchersto develop variety of computational
models of the visual system. These include the Neocognitron [Fukishima, 1980; Fukushima
and Miyake, 1982], the adaptive resonance theory based networks of Stephen Grossberg
[Carpenter and Grossberg 1987a, 1987b; Bradski and Grossberg, 1995], VisNet/VisNet2
[Wallis and Rolls, 1997; Rolls and Milward, 2000], HMAX [Riesenhuber and Poggio, 1999],
and SpikeNET [Delorme et al., 1999], among others.

The primary focus has been on object recognition rather than motion, and the dominant
motivation has been to validate our theoretical understanding through modeling. All use a
neural network composed of hierarchical neuron layers representing the visual areas along
the ventral stream of the human/primate vision system with differing degrees of fidelity, and
none can be considered a compl ete representation. With the exception of SpikeNET, all use
afreguency code to model neural spiketrains. SpikeNET uses the Rank-Order Coding
(ROC) scheme developed by Gautrais and Thorpe [1998] and represents a recent break from
this modeling tradition.

Figure 2-2 depicts a generic spike train and istypical of those measured in retinal ganglion
cells and pyramidal cells of the visual cortex. As can be seen, thereisadelay (ak.a
“latency”) between the presentation of the stimulus and the first neuron spike. This latency
increases to approximately 120-150 milliseconds at the IT where recognition is believed to
take place. A frequency code perspective interprets the spike frequency as an encoding of
information. A time window is required over which afrequency can be computed since
spike frequency exists only for multiple action potentials, but thisimpliesthat adelay is

® Orientation is the rotation of an object within the viewing plane.
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Figure 2-2. Notional schematic of a typical spike train of action potentials from a retinal
ganglion cell. The dark bar indicates the presentation of visual stimulus and time
progresses to the right. Vertical and horizontal scales are not defined.

required before the computation could be complete. It is difficult to reconcile frequency
coding with the short activation latencies measured in humans and primates along the ventral
stream (e.g., Oram and Perrett [1992]; Logothetis and Sheinberg [1996]; Tanaka [1996];
Thorpe et al. [1996]; Li et al. [2002]. See also Wyeth [1999] and Thorpe et al. [2001] for
reviews.).

Rank-order coding [Gautrais and Thorpe, 1998] operates on the latency of thefirst spikeina
spiketrain. This helps explain the short latencies observed in the primate/human visual
streams. It also provides a mechanism of expediting the most “salient” information in a
scene [Van Rullen and Thorpe, 2001] where saliency is defined as the optimal stimulus of a
neuron group at any stage of the ventral stream [Van Rullen, 2003]. ROC does not explain
the function of the remainder of the spike train and there are severe problemsin defining
“first” in real systemswhere time is continuous, but ROC is attractive from an engineering
perspective for systems deriving their input from static images.

We are aware of two previous ROC scheme implementations for visual object recognition.
The first implementation was by Simon Thorpe et a. who implemented a model they named
SpikeNET [Delorme et al., 1999]. SpikeNET uses a three-layer architecture and an event
driven algorithm for propagating spikes through the system. Thefirst layer can be
interpreted as the output of the rod cell portion of the retinal circuit. The second layer
consists of orientation selective cells that correspond to the simple cells of V1. These feed
object selective cells that conceivably correspond to some areainthe IT. Raul Muresan has
implemented a very similar model, RetinotopicNET, with minor extensions [Muresan,
2002a; Muresan, 2003]. The key extension is the implementation of competition between
layers of different scalesin order to achieve a degree of scale independence [Muresan,
20020b].

15
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3. Algorithm Description

ROCIT sagorithm is similar to that of SpikeNET (See Delorme et al. [1999]; Delorme and
Thorpe, [2001a, 2001b]; Thorpe et al. [2001] for algorithm details.), but with afew
exceptions that are noted below. It uses a simple network of retinotopically-arranged,
rectangular neuron layers. The neuron model is so lightweight as to have no explicit
governing equation. Likewise, only thefirst spike of a neuron is propagated to efferent
neurons so that the remainder of the spike train is not explicitly modeled and isignored.
There are two distinct modes of operation: training and recognition. These algorithmic
details are described more fully in the following sections.

3.1 Network Architecture

ROCIT uses the same layered architecture as SpikeNET [Delorme and Thorpe, 20014]. It
consists three sets of neuron layers. aset of input layers loosely representing the retina
(ak.a on/off layers), a set of orientation layers with neurons selective to oriented edges or
lines similar to simple cells of V1, and a set of recognition layers, one for each target’
(Figure 3-1). Becausetarget layers have aretinotopic neuron arrangement and are only two
synapses from the input, they cannot be seen as representing cells in the inferior temporal
cortex. However, they are the locus of recognition in this modeling scheme. Input layers
occur in pairs (an “on” and an “off”) while orientation layers occur in sets of eight. During
training there is asingle target layer, while in recognition mode there may be any number of
targets each with a corresponding target layer.

Within ROCIT each layer shares the same dimensions as the input image, i.e., thereisa
neuron for each pixel intheimage. Thisisadifferent implementation than SpikeNET, which
halves the number of neuronsin orientation layers and again in the target layers so that target
layers have one fourth the number of neurons as the input image has pixels. Thereisno
explicit neurological basis for the coarsening used in SpikeNET, and it causes aloss of detall
in target recognition. For these reasons, ROCIT does not follow SpikeNET’ s example for
this algorithmic detail.

Each layer has an associated kernel that defines its preferred stimulus. A kernel isa
rectangular array of floating point values, also referred to as aweight matrix or selectivity
matrix. Every neuron in agiven layer shares the kernel matrix with al other neuronsin the
layer. The kernels serve as synaptic weights and define the pattern of connections between
afferent (upstream) and efferent (downstream) layersrelative to afiring neuron. Figure 3-2
shows how the selectivity kernel defines synaptic connections between an afferent and
efferent layer. By sharing kernels and using them to define arelative pattern of synapses,
memory usage is minimized and computational efficiencies are achieved. The kernels are

"Delorme et al. [1999] describe assembling atarget layer from intermediate features. For example, they have
eye, nose, and mouth recognition layers that are used as input to a fourth layer that recognizes faces.
ROCIT could easily be reconfigured to use a more complex recognition scheme that takes advantage of
smaller-scale intermediate features.

17
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Figure 3-1. Layered architecture used by ROCIT. An image is presented to the on/off
layers of the network. On/off layers occur in pairs of two (one pair for each kernel
size/scale) and any number of on/off layer .sets may be used. On/off layers feed forward
to sets of orientation layers. On/off layer sets of a given scale are coupled with
orientation layer sets that always occur in groups of 8 orientations at 45° increments.
Orientation layers feed forward to target layers. During training there is a single target
layer, while in recognition mode there may be any number of targets.
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(a) Region of an afferent layer that can affect an efferent neuron relative to its selectivity
kernel. This can be interpreted as the receptive field of an efferent layer.

\

\

\

\

(b) Region of the efferent layer that can be affected by a particular neuron in an afferent
layer relative to the efferent layer’s selectivity kernel.

Figure 3-2. Relationship between an efferent layer’s selectivity kernel and the synaptic
pattern between afferent and efferent layers. The synaptic pattern is shared by all
neurons in the layers, as is the associated weight matrix. The gray neuron aligns across

the layers and kernel.
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Figure 3-3. Examples of discrete Laplacian of Gaussian kernels for on/off layers: (a) On
Layer, 5x5, s=0.5, (b) Off Layer15x15, s=0.5, (c) On Layer, 15x15, s=2.5, (d) Off Layer,
15x15, s=2.5.

used during training and recognition to update voltage and sensitivity valuesin efferent
layers.

3.1.1 On/Off Layer Kernels

On and off layers have Laplacian of Gaussian (LoG) kernels. These are defined by

1 é +y?0 @ x*+y’0
ex = 1
TS »

Ko (X, Y)z(' ) ps

where s is a parameter that defines the scale of Gaussian smoothing applied, and where

ni {1,2}. The LoG operator approximates the second spatial derivative of an image and the
sum of values of adiscrete version is zero. Therefore, it is sensitive to edges in an image,
while providing a zero response where image intensity is constant or changing linearly.
On/off layers are used in pairs having a common scale parameter (s). ROCIT may have any
number of on/off pairs, while SpikeNET typically uses three scales[Delorme et al., 1999].
Aswell, SpikeNET uses difference of Gaussian (doG) kernels[Delorme et al., 1999], which
are an approximation to LoG kernels. On layers are defined by n =2, giving them a positive
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circular center with anegative surround. Off layers use n =1, making them the inverse of on
layers. Thisfunction iscommonly referred to asa“Mexican hat” function because of its
shape. Convolving the input image with a LoG kernel accentuates regions of bright values
with dim surrounds and vice versa. This mimics the selectivity of retinal ganglion cells.

Examples of discrete on/off layer kernels are shown in Figure 3-3. The kernels are seen to be
radially symmetric, to possess a surround region having the opposite sign of the center, and
to decay to zero beyond the surround.

3.1.2 Orientation Layer Kernels

Orientation layers are designed to be selective to oriented line segments or edges mimicking
simple cellsin the visual cortex. Thisisaccomplished via Gabor kernels. A Gabor kernel is
defined by

é 2 2 U
expé laex—+y—‘El’J><:os(2pu x+f) )
A 2 2 2 =7 0
s s, 8 Sy Sy

kGabor (X' y) =

where s, and s, are Gaussian envelopesin the x and y directions, u, isthe frequency of a

sinusoidal plane wave along the x-axis, and f isaphase offset. This represents an oriented

planar wave having an exponential decay with distance from the origin. A set of Gabor
filters at other rotations and scales can be obtained through the generating function

fr (6 Y) =K Mg (K ™XEK ™yd, k31 3)

wherem and n areintegerssuchthat m=01,...,M - 1and n=01,...,N - 1, respectively,
and where M and N are the total number of scales and rotations, respectively. The
parameters k and m are used for scaling, while atransformation is applied to the coordinate
axes to rotate the kernel:

x(=xcosg + ysing 4)
y(=-Xxsing + ycosq (5)
with g =2pn/N..

ROCIT uses orientation layersin sets of eight at 45° rotations, a symmetric Gaussian
envelope (s =S y), and all layers share common parameters with the exception of their

rotation angles.

An edge selective kernel arises from a phase angle (f ) of 90°, while a phase angle of 0°

yields line detection cells. Figure 3-4 shows examples of several discrete orientation layer
kernels. Note that all kernels have been normalized to have a maximum amplitude of one.
Thisis done to smplify the target recognition process, as discussed below.
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Figure 3-4. Examples of Gabor kernels associated with orientation layers. (a) Edge
Selective Kernel, spatial frequency = 15 cycles per 100 pixels, 90° phase, s=1.5, (b)
Edge Selective Kernel, spatial frequency = 15 cycles per 100 pixels, 90° phase, s=1.5,
(c) Bright Line Selective Kernel, spatial frequency = 20 cycles per 100 pixels, 0° phase,
s=4.0, (d) Dark Line Selective Kernel spatial frequency = 20 cycles per 100 pixels, 0°
phase, s=4.0. The kernel size is given above the respective figure.

3.1.3 Layer/Kernel Bias

The algorithm used by ROCIT isloosely based on the constructive hierarchical model of
Hubel and Wiesel [1977]. In this paradigm, sets of adjacent retinal ganglion cells oriented
along a particular trgjectory project to asimple cell of layer 4 in the visual cortex, causing it
to be selective to oriented edges®, and higher level features are constructed from lower ones
as information is transmitted along the ventral stream. Figure 3-5 shows how three spatially
adjacent on- or off-kernels can be summed to produce a kernel that would be selective for a

8 For an alternative and modern interpretation of this simplistic formulation, see Martin [2002]. He reviewsthe
important role played by inhibitory interneurons in producing the selectivity of simple and complex céllsin
layers 3 and 4, respectively. Aswell, he emphasizes the need to understand the processing role of lateral
and feedback connections as opposed to a purely feed forward model.
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(&) On Layer, 15x15 (b) Off Layer, 15x15

(d) Zimple Edge Cell
(2] Simple Line Cell - On (g) Simple Line Cell - Off
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Figure 3-5. Construction of simple cells through a linear combination of on and off kernels.
A linear arrangement of on kernels (a) can produce a kernel that will be selective to bright
line segments (c), while a linear arrangement of off kernels (b) produces a kernel
selective to dark line segments (e). These may be combined to produce an edge
selective kernel (d).

Layer Selectivity Bias Layer Selectivity Bias

On +1 -

Off -1 -
0°Line +1 0° Edge +1
45° Line +1 45° Edge +1
90°Line +1 90° Edge -1
135° Line +1 135° Edge -1
180°Line -1 180° Edge -1
225° Line -1 225° Edge -1
270°Line -1 270° Edge +1
315°Line -1 315° Edge +1

Table 2-1. Bias values for on/off layers and for line- and edge-selective orientation layers.
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horizontal line segment (Figure 3-5 (¢), (€)). A combination of these can produce an edge
selective cell (Figure 3-5 (d)).

The challenge is to develop a synaptic weight pattern that can take ranked spikes coming
from on/off layers and use them as * evidence” matching the selectivity of a given orientation
layer. ROCIT adopts the method of SpikeNET, which uses the synaptic weights of the
efferent layer. Thisis counterintuitive and requires the introduction of a*“bias’ in the
synaptic connection so that the nature of the afferent layer (on vs. off) can be taken into
account. Spikes from the on layer are evidence of a bright line segment whereas those from
off layers are evidence of adark one. Since on and off layers use kernels that differ by a
factor of —1, a“bias’ value of —1 isintroduced for the off layer. With thisformulation, the
spike from an off layer neuron causes a linear inhibition in an orientation layer selective to
bright line segments while a on layer spike causes excitation, and vice versa.

The same reasoning leads to the use of a bias associated with orientation layers. Line
selective orientation layers sharing the same orientation but opposite amplitudes have
opposite biases. Edge selective orientation layers with 180° different orientations also have
opposite biases (e.g., Figure 3-4 (a) and (b)). A summary of the bias values used by ROCIT
aregivenin Table 2-1. Thereisno mention of biasin the SpikeNET publications [Delorme
et al., 1999; Delorme and Thorpe, 2001a & 2001b; Thorpe et al., 2001], however, in a GNU
public license release of an early version SpikeNET?® there are kernels of opposite sign used
for synaptic connections between the on/off layers and any single orientation layer. This
indicates that the bias has been built into the selectivity kernel. In ROCIT the biasvalueis
used in two critical algorithm components. updating target kernels and voltage updates.
Thisisdiscussed in more detail in subsequent sections.

3.2 Algorithm Components

The rank order coding algorithm is straightforward and consists of afew simple components
shown in Figure 3-6. The four primary components are (1) converting the image into ranked
spikesin the on/off layers, (2) updating the target kernel (Training Mode only), (3) updating
voltage values, and (4) updating sensitivity values. The following sections document the
details of these portions of the algorithm.

3.2.1 On/Off Layer Preprocess

The image is converted into ranked spikes by convolving it with a given on/off kernel,
sorting the resulting values, and assigning them to bins of equivalent rank. Figure 3-7 shows
an example of the convolution process. As can be seen, edges are enhanced as are small
areas of brightness contrast such as eye reflections (Figure 3-7 (b)), and nostrils (Figure 3-7

(©)).

The values of the convolved images are sorted and then divided into a fixed number of bins.
The number of binsisreferred to as the “Maximum Time Steps’, although timeis only

° Thereis a GNU general public license, version 2 release of SpikeNET available at Arnoud Delorme’s web
page at: http://scen.ucsd.edu/~arno/spikenet/index.html, Accessed April, 2004.
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(a) Training Mode Algorithm

Convert the Image into Ranked Spikes in the On/Of Layers
while (Spi kes Occur || Stopping Criteria is Reached)

{
Gat her Spi ke Lists from Afferent Layers
Process Spikes in Efferent Layers:
if Efferent Layer == Target Layer
Updat e Tar get Ker nel
Update Sensitivities
el se
Updat e Vol t ages
Check Vol tage Threshol ds for New Spi kes
Update Sensitivities
end
}

(b) Recognition Mode Algorithm

Convert the Image into Ranked Spikes in the On/Of Layers
whil e (Spikes Cccur || Stopping Criteria is Reached)

{
Gat her Spike Lists from Afferent Layers
Process Spikes in Efferent Layers:
Updat e Vol t ages
Check Vol tage Threshol ds for New Spi kes
Update Sensitivities
}

Figure 3-6. Essential components of the rank order coding algorithm. (a) Training Mode,
(b) Recognition Mode.
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(a) Haw Image b} On Kernel Convolution (c) Off Kernel Canvolution

m

50 100 150 200 -200 a 200 -200 a 200

Figure 3-7. Example convolutions used to generate ranked spikes for the on/off layers. (a)
Raw Image, (b) On Layer Convolution, and (c) Off Layer Convolution. Note: The on/off
kernels used were those of Figure 3-3 (a) and (b), respectively.

relative in the algorithm. Thisvalueistypicaly set to 500. If, however, pixels have the
same value, then they are forced to share the same bin. Thisisthe same algorithm as used by
SpikeNET [Delorme et al., 1999] with the exception of the bin sharing. Failure to put similar
values into the same bin would result in the spikes having different impacts on their efferent
layers. Thisisbecause an efferent neuron may have undergone desensitization between the
arrival of the two spikes. Another differenceisthat SpikeNET only allows either the on or
off neuron at a given layer location to fire [Delorme and Thorpe, 2001a]. This constraint

was omitted from ROCIT because there was no physiological basisfor it. It should also be
noted that neurons along a border of the same width as the on/off kernel are excluded from
the spike ranking process since the convolution values there suffer from edge effects. These
edge effects can be seen in Figure 3-7 (b) and (c).

3.2.2 Voltage Updates

A neuron’s voltage is modified if a spike occursin any afferent layer that the neuron has a
synaptic connection to. Figure 3-8 depicts the geometry associated with voltage updates.
The voltage change at the efferent neuron DV, (i v ) , isproportional to the selectivity kernel

of the efferent layer and is given by:
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Figure 3-8. Synaptic geometry associated with voltage updates. The afferent layer has a
spiking neuron at the location with cross-hatching. Note that h is the half width of the
kernel minus one, assuming an odd sized, square kernel.

afferent
layers m=i+hn=j+h

DV (i’ J) = é é a deliff (m'n)xbaliff ><keff (m' i+h+Lln- j+ h+1)xseff (i' J) (6)
I=1 m=i-hn=j-h
Indices (i, j) indicate a position within aneuron layer while (m,n) indicate a position within
the efferent layer selectivity kernel. d.; (m,n) isa Dirac deltafunction defined over the
relevant neurons of afferent layer | such that

| il if aspikeoccursat neuron(m, n) of afferent layer |
A (min)=1 . ™
0 otherwise
b, isthe biasof the afferent layer, k. isthe selectivity kernel of the efferent layer, and
Sy (m, n) isthe sengitivity of the efferent neuron at the location of the afferent spike. Note

that this formulation assumes that the kernel has an odd dimension and is and square,
although these assumptions are relaxed in ROCIT for the target layers.

While this formulation appears complex, the results are straightforward. Figure 3-9 shows
examples of how afferent spikes coming from on and off layers affect the voltage of an
orientation layer selective to avertical edge. Because of the “symmetric” synaptic
connections used by ROCIT (see Figure 3-2), an afferent spike causes voltage changesin a
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(a) Input Image - Detail (b} On Layer (d) Orientation Layer

(c) Off Layer ie) Efferent - Kernel

Figure 3-9. Details of how spike propagation from on/off layers affect voltage values in an
orientation layer. (a) Detail of an input image, locations of afferent spikes from the on (a)
and off (b) layers, (d) corresponding voltage changes in the orientation layer, and (e) the
selectivity kernel of the orientation layer.

kernel shaped areain each of its efferent layers. The voltage update appears as a selectivity
kernel that has been flipped up and down as well aseft to right.

Bias values act to reverse the resulting pattern. As seenin 3-9 (d), spikes from different
afferent layers produce reversed voltage updates since they have opposite bias values (+1 for
the on layer and —1 for the off layer). Adjacent spikes act to reinforce each other one
another’ s voltage effects. In this example, the two spikes from the on layer are aligned
vertically, so the voltage updates overlap, causing reinforcement in both the positive and
negative regions.

Voltage values are compared to a threshold. Those neurons whose voltage exceeds the
threshold fire a spike and are reset to zero. The spike is placed in the next rank bin for
propagation to its layer efferent layers.

Figure 3-10 shows an orientation layer after 40 of 500 rank bins have fired from the on/off
layers. The orientation layer is sensitive to horizontal edges with dark shading above light
(Figure 3-10 (d)). As can be seen in the voltage pattern, the on/off spikes have originated
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(a) Input Image (b) “Woltage (c) Fired Spikes

(d) Selectivity Kernel

Figure 3-10. Voltage development in a horizontal orientation layer. (a) Input image, (b)
voltage after 40 of 500 rank bins have been propagated from the on/off layers, (c)
neurons firing in the orientation layer, and (d) selectivity kernel of the orientation layer.

from the dominant facial features (eyes, nose, ears, etc.), the hair, and the chin. The mouth
and nostrils are seen to have dark-above-light horizontal edges, which has caused the
corresponding orientation layer neuronsto fire. Other, less distinct areas of horizontal edges
are seen near the eyes and in the hair.

3.2.3 Target Kernel Development (Training Mode Only)

A training agorithm, distinct from the recognition algorithm, is used to develop a custom
kernel for a specified target, and only asingle target can be trained at atime. During training
asingletarget layer is added to the network. This layer isinitialized with akernel matrix of
zero values. Only sensitivity ismodeled for the target layer since the training algorithm is
dedicated toward constructing the target kernel rather than developing a voltage pattern for
target detection. Figure 3-11 depicts the geometry associated with custom kernel updates.

The kernel is modified according to

afferent
layers mzi +hn=j+h

Dk(mn)= & & adyli i)kl (m-i+h+in- j+h+1)x5(mn) ®

I=1 m=i-hn=j-h
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Figure 3-11. Synaptic geometry associated with custom target kernel training. The afferent
layer has a spiking neuron at the location of the shaded square. This results in target
kernel modifications in an area corresponding to the afferent layer’s selectivity kernel.
Note that h is the half width of the kernel minus one, assuming an odd sized, square
kernel.

where Dk, (m,n) isthe changein the target kernel at position(m,n), d., (i, j) isaDirac delta
function over the afferent layer | as defined by

. . 11 if aspikeoccursat neuron(i, j)of the afferent layer |
daff ( ! J) = i .
10 otherwise

9)

k isthe selectivity kernel of the efferent layer, and S (m,n) isthe sensitivity of the target

neuron at the location of the kernel update. Note that this formulation assumes that the
kernel is odd and square. ROCIT uses odd, square kernelsin the orientation layers and these
layers are typically the only afferent layers for atarget layer.

Thisformulation has the effect of adding aweighted afferent kernel to the target kernel at a
point centered at the locus of the afferent spike. The weight consists of the product of the
afferent layer bias and the sub-matrix of sensitivity values of the target layer that aligns with
the afferent layer’ s selectivity kernel. Figure 3-12 shows the development of a custom target
kernel at a series of time steps. Each step corresponds to propagating al spikesin a
particular rank bin. The earliest spikes arrive from the area around the eyes. These spikes
result in the highest weights in the custom kernel. Later spikes highlight the left ear, neck,
and mouth.
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Input Image 5 Steps 10 Steps 15 Steps

20 Steps 25 Steps 30 Steps 35 Steps

Figure 3-12. Custom target kernel development. The target kernel resembles its target
image, but areas lacking lines or edges are de-emphasized. Areas having the earliest
spike arrivals have the highest weight development.

When this kernel is used for recognition, spikes arriving from locations of high weight values
will cause the greatest voltage increases. This behavior is enhanced by the use of
desensitization produced by mechanism that mimics shunting inhibition.

3.2.4 Sensitivity Updates

Shunting inhibition is the key mechanism invoked by Gautrais and Thorpe [1998] both to
encode and decode spike sequences. Conceptually, shunting inhibition is the desensitizing of
neurons after they receive an excitatory stimulus. If spikes do not arrive in order from
highest to lowest synaptic weight, then the voltage increase at the efferent neuron will not be
maximal because of the impact of shunting inhibition. Figure 3-13 shows how this can occur
viaalateral inhibitory connection.
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Figure 3-13. Synaptic circuit implicated in shunting inhibition. Shunting inhibition causes a
neuron to be desensitized after it receives an excitatory stimulus.

ROCIT’ s agorithm applies desensitization following the voltage updates and threshold
checking. There are two distinct modes of desensitization: global and local. Global
desensitization is when an entire layer of neurons is desensitized whenever any neuron in the
layer receives an afferent spike. Local desensitization is when only those neurons whose
voltages were modified undergo desensitization.

Global desensitization is used to develop new target kernels and was used in the simulation
shown in Figure 3-12. Thisform uses a homogeneous scalar value of sensitivity for an entire
target layer that decreases with spike rank:

S(i,j)o s =a™ (10)

subjectto O<a £1. Herea istheinitia sensitivity and rank is the rank of a given spike
rank bin. Figure 3-14 shows how the sensitivity decays with rank as afunction of the initial
sensitivity, a . Global desensitization will bias the custom target kernel by spike rank, thus
encoding spike order as per Equation (8).

Local desensitization is only used during recognition mode, and only if the targets existin a
cluttered scene. If global desensitization were used, and if the spikes associated with atarget
were located late in the ranked bins, then the target layer would be desensitized by the time
its spikes arrived and the target would be missed. Local desensitization overcomes this
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Figure 3-14. Global desensitization as a function of rank and initial sensitivity, a.
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Figure 3-15. An example local desensitization kernel and its corresponding target kernel.

33



Afferent Layer, | Target Layer
Target Layer

\ Desensitization Kernel \

m

n \

Spike Array Sensitivity Array

Figure 3-16. Synaptic geometry associated with sensitivity updates. The afferent layer has
a spiking neuron at the location with cross-hatching. Note that his the half height of the
kernel minus one, and w is the half width of the kernel minus one, assuming an odd
sized.

problem. It uses a*“desensitization kernel” that is developed from the custom target kernel
by:

)= 80 k) @

again, where theinitial sensitivity is 0<a £1. Thisformulation assignsavalue of a to the
peaks (max or min) of the target kernel and decreases to a background value of one as the
absolute value of the target kernel decreases. Figure 3-15 shows atypical desensitization
kernel.

The sensitivity update for local desensitization is similar to voltage updates. Figure 3-16
depicts the geometry associated with sensitivity updates. The sensitivity change at the target
layer neuron is proportional to its desensitization kernel. It isgiven by:

afferent
layers m=j+wn=j+h

si.j)=a a aduMmn)k=(m-i+w+in- j+h+1pS( j) (12)

I=1 m=i-wn=j-h

Indices (i, j) indicate a position within aneuron layer while (m,n) indicate a position within
the efferent layer selectivity kernel. Asbefore, d; (m,n) isaDirac deltafunction defined
over the relevant neurons of afferent layer | such that
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Figure 3-17. Target layer desensitization development under local sensitivity updates.
Desensitization becomes proportional to the weight associated with a voltage update.
This focuses desensitization to the neuron corresponding to the center of the target.

d. ( )_‘!1 if a spikeoccursat neuron(m,n)of afferent layer |
aff d

= 13
%O otherwise (13)

and k™™ isthe desensitization kernel for the target layer. Note that this formulation assumes
that the kernel is odd and rectangular, although these assumptions may be easily relaxed.

Figure 3-17 shows the development of neuronal desensitization in atarget layer using local
desensitization. As can be seen, the region of desensitization is localized to the center of the
target. One can also see that ROCIT does not update the sensitivity (or voltage) of atarget
layer in aborder region equal to one quarter of the target width and height. Thisis solely for
the purpose of speed, and risks missing targets near the edge of an image.

ROCIT allowstheinitial sensitivity of al layersto be set independently. This enablesthe
user to choose which layers should undergo desensitization. It is not presently clear how
desensitization of orientation layers impacts recognition, so this flexibility was added to
enable future studies.
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Figure 3-18. Examples of training images, their kernels, and the voltage pattern they
produce when run through recognition mode. Note the pairing of a positive peak and
negative trough at the center of the target.

3.2.5 Kernel Normalization and Voltage Thresholds

Different targets have different sizes and shapes, resulting in different target kernels. Each
target kernel creates a unique voltage pattern when the training image is run through
recognition mode. The voltage pattern contains a peak at the center of the voltage layer with
atrough just below. Figure 3-18 shows two examples of this voltage pattern.

The paired peak-trough results from the asymmetry of the bias values used for the edge-
selective orientation layers as shown in Figure 3-19. Thereis no way of eliminating this
asymmetry with eight layers at 45° increments, so the bias values have been chosen to create
avoltage pattern that is nearly symmetric about the vertical for objects having lateral
symmetry.

Ideally, a single voltage threshold should be applied to all target layers, otherwise, the
neurons in the target layers are not homogeneous. To accomplish this, ROCIT first performs
recognition of atraining image using its raw target kernel. Then, the kernel is normalized by
the maximum voltage that develops when it is used in recognition mode. In thisway, target
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Figure 3-19. Bias values associated with edge-selective orientation kernels. Note the
asymmetry of the bias pattern. This is responsible for the paired peak-trough patterns
that develop in target layer voltages. This asymmetry is unavoidable with eight orientation
layers at 45° increments.

kernels can be counted on to produce a maximum voltage of 1.0 when their respective
training image is presented. Lower voltage values should develop whenever the imageis
degraded with noise or occlusion.

As noted previously, on/off kernels are normalized to have a maximum absol ute peak of +1
as are orientation layer kernels. Voltage increases in the orientation layers depend on the
constructive interference of their respective kernels. ROCIT typically uses a voltage
threshold of 2.5 for orientation layers implying at least three spatially-coherent on/off
afferent spikesto activate a given orientation layer neuron.

3.2.6 Recognition Algorithm

The recognition algorithm isidentical to the training agorithm for the on/off and orientation
layers. However, atarget layer isinstantiated for each target to be sought. During
recognition, the voltage, voltage threshold, and sensitivity of each target layer isfully
modeled. There are severa ways of detecting atarget: when a voltage exceeds a prescribed
threshold, when a voltage pattern matches the one known to be caused by the target, or
associating local voltage maximawith target detections. ROCIT allows the user to choose
between these three algorithms.

Using voltage maximais straight-forward, but risks mislocating the target by a pixel or two
since the true target center lies between the peak and trough of the voltage pattern. This can
be seen in the upper right image in Figure 3-18 and stems from the bias val ues associated
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Figure 3-20. Voltage development, sensitivity development, and target detections for a
diagnostic image containing multiple, partially occluded, shaded targets (a) Raw target
used for training, (b) Target kernel, (c) Input image, (d) Voltage development, and (e)
Sensitivity development. White squares indicate where the target was detected and
located by the recognition algorithm.
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with the orientation layers. As discussed in Section 3.1.3, there are bias values,
biasi {- 1,+1}, associated with orientation layer kernels that are used during target layer

voltage updates. The asymmetry of these values (See Figure 3-18) causes the peak/trough
pair and the way the biases are arranged determines whether the pair with be vertical,
horizontal, or some other orientation.

This pattern can be leveraged to improve recognition. In this case the known target patternis
first cross-correlated with the target layer voltage. The resultant values may then be
thresholded. The result will place atarget center between the peak/trough pair.

With either method, ROCIT iteratively finds the maximum peak, masks out an area of one
fourth the target kernel size centered on the peak, and searches for the next. This continues
until either afixed number of targetsis found or until a minimum peak magnitudeis
encountered. Figure 3-20 shows atypica example including voltage development,
sensitivity development, and target locations in a cluttered scene of shaded circles and
squares. The white squares mark the outlines of where the target was found in the input
image. At thispoint all six targets are correctly detected and located. Distinct voltage peaks
indicate the center of the targets (Figure 3-20(d)). Desensitization has also been focused on
these locations (Figure 3-20(e)).
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4. Implementation Overview

ROCIT isimplemented in MATLAB® 6.5. Thereis an accompanying graphical user
interface (GUI), also in MATLAB® (See Figure 3-21). MATLAB® isan excellent algorithm
prototyping framework, and has enabled us to easily explore modifications to and extensions
of the rank order coding algorithm. A faster C++ implementation (SpikeWave) with aJAVA
GUI is aso under devel opment.

Both ROCIT and SpikeWave use three types of input files: anetwork specification file, an
image file, and a custom target file. All arewrittenin XML to provide easy parsing, clear
parameter |abels, and extensibility while providing a common format for both
implementations. An example network specification fileis given in Appendix C. Imagefiles
formats include JPEG, GIF, TIFF, PGM, BMP, or text data embedded in aROCIT XML file.
When custom targets are trained, their kernels are saved in atarget file that includes all the
network specifications used in its development. The training image and expected voltage
pattern are included in the custom target file. By including network metadata in the target
files, the current network settings may be compared to the target’ s to ensure that they are
consistent. An exampletarget fileislisted in Appendix D.
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Figure 4-1. Screenshot of the ROCIT GUI implemented in MATLAB.
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5. Initial Benchmarking

To date, the performance of ROC schemes with respect to object recognition have been
anecdotal (e.g., Delorme and Thorpe [20014a], Van Rullen et al. [1998], Muresan [2002a],
Muresan [2003]). We explored the issue of recognition performance using a benchmark
problem devel oped for the object recognition domain of biometrics. We are not interested in
biometrics, per se, but the benchmark chosen explores recognition capabilities across a wide
set of similar objects (faces) with variable lighting and moderate plasticity (facial
expressions), which is a subset of the general problem of object recognition in cluttered,
uncontrolled environments. SpikeéWave, the C++ implementation of the baseline ROCIT
algorithm was used for the benchmark calculations.

5.1 FERET Database

The Face Recognition Technology'® (FERET) program was initiated to develop automatic
systems that could be used to assist law enforcement, security, and intelligence personnel
perform face recognition and verification tasks [Phillips et al., 1996]. The program ran from
1993 through 1997 with sponsorship from the U.S. Department of Defense Counter Drug
Technology Development Program. During thisfive year span, alarge database of facial
images and a number of testing protocols were devel oped to gauge the performance of face
recognition algorithms. The tests have been administered on various face recognition
algorithms from laboratories and universities across the United States, and the results for
each algorithm are well published.

5.2 FERET Verification Testing Protocol

The FERET Verification Testing Protocol [Rizvi et al., 1998] was one of the tests developed
and administered by the FERET program. A verification system confirms the claimed
identity of aface presented to it. The FERET test uses a database of images to test
recognition performance with a number of different constraints. Inthe FERET Verification
Testing Protocol, the image of the person claiming an identity istermed a probe image. The
set of known individuals the system searches through to confirm the identity of the probeis
known asthe gallery image set. Variousimage sets exist within the FERET database, and
each tests algorithm performance under different circumstances.

We chose the fafc subset of the image dataset to benchmark because it tests algorithm
performance with variable lighting conditions and moderate pose and expression variations.
Example images from this benchmark may be seen in Figure 5-1. The images are eight bit
grayscale stored in Portable Network Graphics (PNG) format, and are 384 pixels high by 256
pixelswide. Thefafc test uses 1196 gallery images from the fa subset of the FERET
database, and 194 probe images from the fc subset. The fc probe images were taken on the
same day as the fa images, however the fc images were taken with a different camera under
different lighting conditions. In the test, the system isfirst trained to recognize al 1196

19 The Facial Recognition Technology (FERET) Database, NIST,
http://wwwv.itl.nist.gov/iad/humanid/feret/feret master.html, Accessed April, 2004.




Figure 5-1. Example images of individuals taken from the FERET fafc benchmark. The
images on top are used for training and the bottom images are presented to the system
for identification.

galery images. Then, each probe is compared against each image in the known set of gallery
Images. Each comparison produces a match score. |If this match score is above athreshold,
then recognition system returns true, otherwise the match isfalse. This output can be
classified in one of four categories based on the actual identity of the individual. These
categories are shown in Table 5-1.

The results from the FERET Verification Test can be compared by areceiver operating
characteristic (roc) curve (not to be confused with Rank Order Coding). The y-axisof aroc
curve represents the verification probability, denoted by Py as defined by Equation (14). The
x-axis represents the false alarm rate, denoted by Pr as defined by Equation (15):

System Output Actual ldentity Output Classification

p(i) = go(i) pi)=g()) True Postive  (TP)
p(i)* gi) p(i)=g(i) False Negative  (FN)
p(i) = (i) p(i)* ofi) Fase Postive  (FP)
p(i)* gofi) p(i)* o) True Negative (TN)

Table 5-1. The four different possible outcomes as a function of the output classifications
and the actual identity, and actual system output. p(i) refers to the identity of a probe
image while g(i) refers to the identity of the gallery image with the highest recognition
score.
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A roc curveis generated by computing Py and Pr across arange of parameter variables or
algorithm variations, each adding a point to the curve. We used two different methods. The
first used the ratio of the maximum target layer voltage to the maximum voltage devel oped
during training for that gallery image as our roc curve variable:

VD) - input = p(k)

threshold _
roc H VO - input = g(i)

(16)

Because of this, the custom target kernels of the gallery set were not normalized as per the
method described in Section 3.2.5.

A second curve, ROCIT with DOT, was used by creating a threshold that used information
across the entire gallery population. Thisthreshold is a measure of how many standard
deviations away agiven gallery image’ s maximum voltage is from the mean of the

popul ation:

V3O sinput = p(k)]- m,

Vmax

thresholdroc yin_por M (17)

where m,  isthe mean of the maximum voltages achieved by all the gallery images for a
given probeand s, isthe standard deviation of the maximum voltages.

If agallery image’' s maximum voltage threshold exceeds this value, then the probe is
assumed to match the gallery image. Because population statistics are used in the analysis,
this method is termed domain optimized. In general, this knowledge is not known unless an
comparison of a probe against the entire gallery is performed

The parameters used for the algorithm are given in Appendix C and Appendix D, which list
the network specification input file and an example custom target kernel file, respectively.
Another notable detail was that we scaled down the images to 138 pixels high by 92 pixels
wide using bicubic interpolation. Thisislessthan 35% of the original image size. This
reduction causes aloss of information, but was necessary to run the benchmark problem in a
reasonable amount of time. ROCIT version vl 5 was used for training in the benchmark
calculations and SpikeWave version 1.5 was used for recognition..
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Figure 5-2. Receiver operating characteristic (roc) curve for the baseline ROCIT algorithm.
Numbers along the curve represent the voltage ratio thresholds.

5.3 Baseline Algorithm Benchmark Results

Figure 5-2 shows the roc curves for the baseline ROCIT algorithm. Note that the y-axis
begins at 0.5. Numbers along the lower curve represent voltage ratio thresholds. A 45°roc
curve would indicate random chance, and the more area under the curve, the better the
algorithm’ s performance. The baseline ROCIT algorithm achieves approximately 92% true
positives and 10% false darms near a threshold of 0.24. The domain optimized thresholding
method (ROCIT with DOT) performs slightly better for false alarm rates below 0.3, but the
difference is not dramatic. Figure 5-3 compares ROCIT with results of a number of
recognition algorithms from universities and laboratories across the nation'*. Note that the
ARL Correlation curve represents straight-forward cross-correlation, which is outperformed
by all other methods for false alarm rates below 0.5.

ROCIT performed quite well against the other algorithms and only the USC algorithm
appears to consistently outperform it (except at the smallest false alarm rates). Given that

! Performance results for the FERET fafc test have been compiled at:
http://www.itl.nist.gov/iad/humanid/feret/perf/score roc/fafc/, Accessed April, 2004.
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Figure 5-3. Roc curves for various recognition algorithms. ROCIT is the baseline version of
the ROCIT algorithm. ROCIT with DOT refers to ROCIT with domain optimized
thresholding. Note: The x-axis has been plotted on a log scale.

Recognition Algorithm | Equal Error Rate
USC - March 97 0.051
ROCIT with DOT 0.082
ROCIT 0.093
UMD - March 97 0.100
Excalibur Corp. 0.145
ARL Eigenface 0.176
MIT - Sept 96 0.180
MIT - March 95 0.193
ARL Correlation 0.248

Table5-2. Equal error rates of the various algorithmsin order from highest to lowest.
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Mistaken
Probe Image Training Image Gallery Image

Probe 1039 0.22

Probe 1019 0.18 0.36

Figure 5-4. Examples of mistaken identity from the FERET fafc benchmark using the
baseline ROCIT algorithm. The left column is the probe image to be validated. The
center column is the training image from the gallery for the same individual as the probe.
The right column is the gallery image with the highest score. Note: Numbers indicate
scores (ratio of the maximum voltage to the maximum voltage for the training image).

eye coordinates were used by UMD, Excalibur Corp., and both ARL algorithms and that
ROCIT used downscaled images, thisis encouraging..

It isdifficult to rank the algorithms based solely on roc curves because they often overlap at
multiple points along the curve. For this reason, roc curves are often compared through a
derived quantity known as the equal error rate. The equal error rate is defined as the point at
which the false negative rate equal s the false positive rate. The lower the equal error rate, the
better the algorithm. ROCIT with DOT and ROCIT placed second and third overall with



Mistaken Mistaken Mistaken
Probe Training Gallery Gallery Gallery

Probe 1036 0.40

Probe 1033 0.28 0.39 0.39 0.39

Figure 5-5. A second set of examples of mistaken identity. Both probes are mistaken for
several individuals (multiple false positives).

equal error rates of 0.082 and 0.093, respectively. Thisdatais shown in Table 5-2*2. These
results are consistent with the roc curve performance rankings.

It should be emphasized that facial recognition technology has advanced considerably since
the FERET benchmarks were developed. However, newer tests no longer provide raw
images, just feature vectors, so they are unsuitable for the ROC algorithm approach. Still,
the baseline ROCIT agorithm is derived from publications from the late 1990s and so is
contemporaneous with the other results. In thislight, we can be encouraged with these
comparisons and anticipate that modification could continue to improve ROCIT’s
recognition performance.

12 Equal error rate results for the FERET fafc test have been compiled at:
http://www.itl .nist.gov/iad/humanid/feret/perf/score roc/score roc.html, Accessed April, 2004
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We have attempted to explore when and why ROCIT failed on some probe images of this
benchmark test, but strong conclusions remain elusive. Figure 5-4 shows two examples
where ROCIT failed to properly identify a probe image. The top example is puzzling since
the training image appears to be very similar in pose, scale, and head orientation. The only
differences seem to be lighting and overall contrast. Still, this short haired man was
mistakenly identified with awoman who bears amost no resemblance other than her nose. It
is easier to explain why the lower example failed to recognize the individual since the
training image was at a different scale, but the person who was mistakenly taken to be the
probe isvery different. Again, thisishard to explain.

Another set of problematic resultsinvolving multiple false-positives is shown in Figure 5-5.
The upper probe probably fails because of head rotation, and the lower probe is at a different
scale and head orientation than the individual’ straining image. Both probe individuals have
distinctive silhouettes as do most of the gallery images that they are mistaken for. These
images were run through the ROCIT GUI and the voltage development was followed on a
spike by spike basis, and it in no case was it clear exactly which facial or silhouette features
of the probe image were aligning with the features of the gallery image target kernels.

An attempt was made to discover fundamental differences between the histogram statistics of

probe image and associated fal se-positive images and those who had been properly
identified. These studies were also inconclusive.
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6. Potential Algorithm Extensions

The baseline ROCIT agorithm described here has obvious performance weaknesses
stemming from its low fidelity representation of the ventral stream. It has only alimited
number of neuron types all derived from local brightness contrast. Because of this, itis
overly sensitive to brightness contrast in the form of edges or lines. A more detailed model
would take advantage of color, gradient, and other textural information in an image.

In line with these issues is the observation that all afferent spike information is“lumped” into
asingle target kernel. If, during recognition mode, a spike arrives from an afferent position
corresponding to a high kernel weight, then alarge voltage increase will result, regardiess of
the selectivity of the afferent layer. A more robust algorithm should result if the target kernel
is split into the number of afferent layers. In that way, only spikes arriving with the proper
“flavor” will cause a significant voltage change in atarget layer. This modification will be
essential if color, gradient, or other texture cells are added to the algorithm.

Another limitation of the baseline ROCIT algorithm, as seen in the benchmark results, isits
brittleness to changes in in-plane rotation and scale.  This probably accounts for a significant
portion of the benchmark failures. Scale and rotation invariance could be achieved in one of
three ways:

Multiple Target Kernels— Multiple custom target kernels could be devel oped for the
training image at a series of scales and rotations. This method has been implemented in
the COTS version of SpikeNET*3. However, this approach is computationally expensive
and would limit arecognition system to a small set of known objects unless significant
speed-up could be achieved through a hardware implementation.

Simple Cell / Complex Cell Hierarchy — Several models of object recognition use a
hierarchy of “simple” and “complex” cell layers. This approach was pioneered by
Fukishima and Miyake [1982] in their Neocognitron model that was developed for
recognizing handwriting. In this approach, “simple cells’ recognize a similar feature, but
at with variations (e.g., multiple scales, multiple orientations, etc.). “Complex” cells
downstream take input from a set of simple cells and produces a single response that is
has a degree of invariance to the simple cell variations. How thisis accomplished varies
between models. Wallis and Rolls[1996] emphasize neurologically-inspired competition
between neuron groups as do Grossberg and coworkers [Carpenter et al., 1989; Bradski
and Grossberg, 1995]. Most recently, Reisenhuber and Poggio [1999] adopted a“max”
operator to define response of complex cell layers with moderate success [ Schneider and
Riesenhuber, 2002]. Recent experimental work may bolster this mechanism [Gawne and
Martin, 2002] (See also Rousselet et al. [2003] for a broader discussion these results.).
Reisenhuber and Poggio [2000] provide a more detailed review of approachesto
achieving invariance. Muresan’s[Muresan, 2002b] hierarchical approach using arank-
order coding framework emulates, to some degree, amax operation. It isessentialy a

3 SNVision, ©2003-2004 SpikeNET Technology, http://www.spikenet-technol ogy.com/, Accessed April, 2004.
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race condition between ssimple cell sets. It ispossible that this approach could be
extended further.

Foveation With Invariant Transform — A third approach is to sequentialy “foveate” on
asmall regions of animage. At each point of focus, an invariant transformation would be
performed upon theimage. Optionsinclude alog-polar transform as used by Bradski and
Grossberg [1995] or a combination Fourier-Mellin transform [Derrode and Ghorbel,
2001], both of which were successful in recognizing isolated objects against asimple
backdrop. Gonzales[2003] has confirmed that ROCIT can discriminate faces after they
have been log-polar transformed while providing scale and rotational (in-plane)
invariance. An example of how log-polar transforms affect imagesis shown in Figure
6-1. Inlog-polar space rotation results in tranglation along the x-axis (center and right),
while scale variations produce trandlations along the vertical (not shown). Since ROCIT
is aready invariant with respect trandlation, it could recognize scaled and rotated targets
anywhere in an image using alog-polar transforms given a center coordinate. Thisis
currently a stumbling block to the approach since it implies that you must know where to
look for atarget before recognizing it.

The primary challenge to this approach, whether using log-polar transforms or a
combination Fourier-Mellin transform is the choice of where to foveate. Each point that
is chosen involves a transformation followed by a complete spike propagation
computation for the image subset. Thisis computationally expensive. Random choices
could lead to the entire image being sampled. An alternative isto try and use some sort
of saliency calculation (e.g., Koch and Ullman [1985], Itti [1998]) at sequentially explore
“salient” regions of theimage. In general, such calculations are expensive and often
require some sort of top-down mechanism.

Li [2002] proposes asaliency map in V1 based on firing rates of feature selective cells. It
uses no top-down mechanisms, but appears to be a compelling explanation of
fundamental psychoophysics observations including pop-out and segmentation. If a
method could be developed to implement this saliency map within a ROC framework,
then this could provide a foveation mechanism suitable for ROCIT.

If any of these approaches could be developed and implemented for a rank-order coding
framework, then there seems to be a strong chance that ROCI T’ s recognition performance
could improve. Multiple sets of on/off and orientation layers have already been built into the
code, so implementing layers having different spatial scales of sensitivity is complete.

Preliminary benchmarking results are encouraging, especialy in light of the relative
computational simplicity of the method. Future efforts will confront these issues and attempt
to explore more complex portions of the problem space of generalized object recognition.
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Figure 6-1. Examples of how log-polar transforms affect an image. The top row is the raw
image while the bottom is the corresponding transformed image. Rotation results in
translation along the x-axis (center and right), while scale variations result in translation
along the y-axis (not shown).
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7. Conclusions

We have implemented a neural-inspired object-recognition algorithm based on a rank-order
coding scheme developed by Gautrais and Thorpe [1998]. One version, ROCIT was
implemented in MATLAB® to enable rapid exploration of algorithm extensions. A second,
SpikeWave, has been implemented in C++ for faster execution. Both use interchangeable
XML input files and are under strict version control.

Benchmarking against the FERET fafc benchmarking showed better than average
performance relative to peers of the same time period (late 1990’s). The FERET fafc dataset
was developed for biometric discrimination. While ROCIT isintended to serve as aresearch
tool for general object recognition in cluttered, uncontrolled scenes, this benchmark has
allowed us to measure how well arank-order coding scheme handles variable lighting,
moderate pose changes, and object morphology plasticity (facial expression changes). These
are the first formal benchmark results for such a model.

While these early results are encouraging, the baseline algorithm cannot handle rotation and
scale changes beyond a few percent. Scale and rotation are fundamental axes of the problem
space of general object recognition, so thisissue must be addressed. Several options for
modifying the algorithm to accomplish scale and rotation invariance were presented, and
others may exist. Given the promising results from the benchmark studies presented here,
the baseline algorithm may represent a viable jumping off point for future research into
general object recognition in uncontrolled environments.

55



This page intentionally left blank.

56



8. References

Biederman, 1. (1987). Recognition-by-components: atheory of human image understanding.
Psychological Review, 94, 115-147.

Bradski, G., and S. Grossberg (1995). Fast-learning VIEWNET architectures for recognizing
three-dimensional objects from multiple two-dimensional views. Neural Networks,
8(7/8), 1053-1080.

Carpenter, G.A., and S. Grossberg (1987a). Invariant pattern recognition and recall by an
attentive self-organizing ART architecture in a nonstationary world. In M. Caudill and C.
Butler (Eds.), Proceedings of the IEEE International Conference on Neural Networks, 11
(pp. 737-745), New York: |EEE.

Carpenter, G.A., and S. Grossberg (1987b). ART 2: Self-organization of stable category
recognition codes for analog input patterns. Applied Optics, 26, 4919-4930.

Carpenter, G.A., S. Grossberg, and C. Mehanian (1989). Invariant recognition of cluttered
scenes by a self-organizing ART architecture: CORT-X boundary segmentation, Neural
Networks, 2, 169-181.

Delorme, A., J. Gautrais, R. Van Rullen, and S. Thorpe (1999). SpikeNET: A simulator for
modeling large networks of integrate and fire neurons. Neurocomputing, 26-27, 989-996.

Delorme, A., Thorpe, S. (2001a). Face processing using one spike per neuron: resistance to
image degradation. Neural Networks, 14(6-7), 795-804.

Delorme, A., and S. Thorpe (2001b). Event-driven simulation of large networks of spiking
neurons. Unpublished Manuscript, September 15, 2001, 20 pp..

Derrode, S.,and F. Ghorbel (2001). Robust and efficient Fourier-Mellin transform
approximations for gray-level image reconstruction and complete invariant description.
Computer Vision and Image Under standing, 83, 57-78.

Edelman, S. (1999) Representation and Recognition in Vision. The MIT Press. Cambridge,
M assachusetts, 335 pp..

Felleman, D.J., and D.C. Van Essen (1991). Distributed hierarchical processing in the
primate cerebral cortex. Cerebral Cortex, 1(1), 1-47.

Fukishima, K. (2003). Neocognitron for handwritten digit recognition. Neurocomputing, 51,
161-180.

Fukishima, K. (1980). Neocognitron: a self-organizing neural network for a mechanism of
pattern recognition unaffected by shift in position. Biological Cybernetics, 36, 193-202.

57



Fukushima, K., and S. Miyake (1982). Neocognitron: anew agorithm for pattern
recognition tolerant of deformations and shiftsin position. Pattern Recognition, 15(6),
455-4609.

Gautrais, J., and S. Thorpe (1998). Rate coding versus temporal order coding: atheoretical
approach. Biosystems, 48, 57-65.

Gawne, T.J., and J.M. Martin (2002). Responses of primate visual cortical V4 neuronsto
simultaneously presented stimuli. Journal of Neurophysiology, 88, 1128-1135.

Gonzales, A.l. (2003) Log-Polar Transforms: Rotation and Scale Invariance for ROCIT?
Presentation to Sandia National L aboratories, October 16, 2003.

Grill-Spector, K. (2003). The neural basis of object perception. Current Opinion in
Neurobiology, 13, 1-8.

Grill-Spector, K., T. Kushnir, S. Edelman, G. Avidan, Y. Itzchak, and R. Malach (1999).
Differential processing of objects under various viewing conditions in the human lateral
occipital complex. Neuron, 24, 187-203.

Grill-Spector, K., Z. Kourtzi, and N. Kanwisher (2001). The lateral occipital complex and its
role in object recognition. Vision Research, 41, 1409-1422.

Grossberg, S. (2003). Laminar cortical dynamics of visual form perception. Neural
Networks, 16, 925-931.

Grossberg, S., and G. Bradski (1995) VIEWNET architectures for invariant 3-D object
learning and recognition from multiple 2-D views. In B. Bouchon-Meunier, R. Y ager and
L. Azdeh (eds.), Fuzzy L ogic and Soft Computing. Singapore: World Scientific
Publishing.

Hubel, D.H., and T.N. Wiesel (1977). Functional architecture of macague monkey visual
cortex. Proceedings of the Royal Society of London, Series B, 198, 1-59.

Itti, L., C. Koch, and E. Niebur, (1998). A model of saliency-based visual attention for rapid
scene analysis. |EEE Transactionsin Pattern Analysis and Machine Intelligence, 20(11),
1254-1259.

Koch, C., and S. Ullman (1985). Shiftsn selective visual attention: towards the underlying
neural circuitry. Human Neurobiology, 4, 219-227.

Lamme, VAF, and P.R. Roelfsema (2000). The distinct modes of vision offered by
feedforward and recurrent processing. Trends in Neurosciences, 23(11), 571-579.

Li, F.F., R. Van Rullen, C. Koch, and P. Perona (2002). Rapid natural scene categorization
in the near absence of attention. Proc. Natl. Acad. Sci., 99, 9596-9601.

58



Li, Z. (2002). A saliency map in primary visual cortex. Trendsin Cognitive Science, 6(1), 9-
16.

Logothetis, N.K., J. Paulsand T. Poggio (1995). Shape representation in the inferior
temporal cortex of monkeys. Current Biology, 5, 552-563.

Logothetis, N.K., J. Pauls, H.H. Bulthoff, and T. Poggio (1995). View-dependent object
recognition by monkeys. Current Biology, 4(5), 401-414.

Logothetis, N.K. and J. Pauls (1995). Psychophysical and physiological evidence for viewer-
centered object representations in the primate. Cerebral Cortex, 3, 270-288.

Logothetis, N., and D. Sheinberg (1996). Visua object recognition, Annual Review of
Neuroscience, 19, 577-621.

Martin, K.A.C. (2002). Microcircuitsin visual cortex, Current Opinion in Neurobiology,
12(4), 418-425.

Muresan, R.C. (2003). RetinotopicNET: An Efficient Simulator for Retinotopic Visual
Architectures. Proceedings of the European Symposium on Artificial Neural Networks,
Bruges, Belgium, pp 247-254.

Muresan, R.C. (2002a). Complex Object Recognition Using a Biologically Plausible Neural
Modd. In: Advancesin Simulation, Systems Theory and Systems Engineering, WSEAS
Press: Athens, pp. 163-168.

Muresan, R.C. (2002b). Visual Scale Independence in a Network of Spiking Neurons. In:
Proceedings of the 9th International Conference on Neural Information Processing,
Singapore 18-22 Nov. 2002, IEEE, Vol. 4, pp 1739-1743.

Oram., M.W., and D.I. Perret (1992). Time course of neural responses discriminating
different views of the face and head. Journal of Neurophysiology, 68(1), 70-84.

Phillips, P.J., P.J. Rauss, and S.Z Der (1996) FERET (Face Recognition Technology)
Recognition Algorithm Development and Test Results, Army Research Laboratory
Technical Report, ARL-TR-995, 73 pp.

Poggio, T., and S. Edelman (1990). A network that |earns to recognize three-dimensional
objects. Nature, 343, 263-266.

Raizada, R.D.S., and S. Grossberg (2003). Towards atheory of the laminar architecture of
cerebral cortex: computational clues from the visual system. Cerebral Cortex, 13, 100-
113.

Regan, D. (2000). Human Perception of Objects. Early Visual Processing of Spatial Form
Defined by Luminance, Color Texture, Motion, and Binocular Disparity. Sinauer
Associates, Inc., Publishers: Sunderland, Massachusetts, 577 pp.

59



Riesenhuber, M., and T. Poggio (2000). Computational Models of Object Recognitionin
Cortex: A Review. Massachusetts Institute of Technology, Al Memo 1695, CBCL Paper
No. 190, 10 pp..

Riesenhuber, M., and T. Poggio (1999). Hierarchical models of object recognition in cortex.
Nature Neuroscience, 2(11), 1019-1025.

Rizvi, D.S,, P. J. Phillipsand H. Moon. (1998), The FERET Verification Testing Protocol
for Face Recognition Algorithms. National Institute of Standards and Technol ogy
Internal Report, NISTIR 6281, 16 pp.

Rolls, E.T., and G. Deco (2002). Computational Neuroscience of Vision. Oxford University
Press, 569 pp.

Rolls, E.T., and T. Milward (2000). A model of invariant object recognition in the visual
system: learning rules, activation functions, lateral inhibition, and information-based
performance measures. Neural Computation, 12, 2547-2572.

Rousselet, G.A., S.J. Thorpe, and M. Fabre-Thorpe (2003). Taking the MAX from neuronal
responses. Trends in Cognitive Sciences, 7(3), 99-102.

Schneider, R., and M. Reisnenhuber (2002). A Detailed Look at Scale and Translation
Invariance in a Hierarchical Neural Model of Visual Object Recognition. Massachusetts
Institute of Technology, Al Memo 2002-011, CBCL Memo 218, 13 pp..

Tanaka, K. (1996). Inferotemporal cortex and object vision. Annual Reviews of
Neuroscience, 19, 109-139.

Tanaka, Y., H. Saito, Y. Fukada, and M. Moriya (1991). Coding visual images of objectsin
the inferotemporal cortex of the macague monkey. Journal of Neurophysiology, 66, 170-
189.

Thorpe, S., A. Delorme, and R. Van Rullen (2001). Spike-based strategies for rapid
processing. Neural Networks (14), 715-725.

Thorpe, S., and J. Gautrais (1998). Rank Order Coding. In Computational Neuroscience:
Trendsin Research 1998, J. Bower Editor, Plenum Press. New Y ork, pp. 113-118.

Thorpe, S., A. Delorme, and R. Van Rullen (2001). Spike-based strategies for rapid
processing. Neural Networks, 14, 715-725.

Thorpe, S, D. Fize, and C. Marlot (1996). Speed of processing in the human visual system.
Nature, 381, 520-522.

Ungerleider, L.G., and J.V. Haxby (1994). ‘What’ and ‘where’ in the human brain. Current
Opinion in Neurobiology, 4, 157-165.

60



Van Rullen, R., (2003). Visual saliency and spike timing in the ventral visual pathway.
Journal of Physiology - Paris, 97(2-3), 365-377.

Van Rullen, R., J. Gautrais, A. Delorme, and S. Thorpe (1998). Face processing using one
spike per neurone, Biosystems, 48, 229-239.

Wallis, G., and E.T. Rolls (1997). A model of invariant object recognition in the visual
system. Progressin Neurobiology, 51, 167-194.

Wyeth, B. (1999). Spike timing in the mammalian visual system. Current Opinion in
Neurobiology, 9, 447-453.

61



This page intentionally left blank.

62



Appendix A: Algorithmic Complexity Analysis
In this derivation the following assumptions are made:

The times required to perform any individual operation are assumed to be the same
(addition, subtraction, multiplication, division, comparison, assignment, etc.).

Pairs of kernels are stored for each layer to eliminate the need to multiply by abias
value during voltage, sensitivity, and target kernel updates.

Notation is as follows:

N Number of pixelsin aninput image

G Number of groups of input and orientation layers (recall that each
set of on/off layersis paired with a group of eight orientation

layers)

T Number of target layers (i.e., number of targets sought)

W™ Number of weightsin the kernel of the ith group of input (in)
layers

W Number of weightsin the kernel of the ith group of orientation (or)
layers

W'  Number of weightsin the kernel of target layer j

f"  Fraction of spikes propagated from ith input layer group,
0<f"£1

f”  Fraction of spikes propagated from ith orientation layer group,
0<f”"£1

A Time required to perform a single mathematical operation (i.e.,
addition, subtraction, multiplication, division, comparison, etc.)

The algorithmic complexity of the ROCIT baseline algorithm can be computed by examining
the computational work associated with each layer and by considering how the algorithm
changes between training and recognition modes.

Algorithmic Complexity of the On/Off Layer Preprocess

Each on/off layer undergoes a convolution followed by sorting as away of ranking spikes
(See Section 3.2.1). The convolution consists of moving the kernel across the image and
performing a point by point multiplication, summing the values, and assigning them to a
new, intermediate matrix. Thisis aconservative estimate since, for symmetric convolution
kernels, this can be reduced. Thisresultant matrix is then sorted, which can be performed
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O(N log N) time (e.g., merge sort or heap sort). Therefore, work required to process G
pairs of on/off layersis

G
c" =& 22AW"N +BNlogN| (A1)

i=1

Here, the first 2 accounts for the on/off pairs and the second 2 accounts for the
multiplications and additions associated with the convolution. The second term in bracketsis
the time complexity of the sorting algorithm ( N log N ) and B is its constant.

Algorithmic Complexity of the Orientation Layer Updates

For each spike that firesin an on/off layer group, alocal update is performed in all eight
layers of its associated orientation-layer group. First the voltage is updated, then the
sensitivity is updated, and finally, the voltage threshold is checked for new spikes (See
Equation (6), (12). The updates are all local and involve an areathe size of the orientation
layer kernel centered around the afferent spike location. Voltage and sensitivity updates
require a multiply and addition per kernel weight, and thresholding requires one comparison
per kernel weight and an assignment for every threshold excursion. A conservative
assumption isthat every spike causes every voltage in the affected area to exceed the
threshold, then the work required to update the orientation layersis thus:

s € u
C” =3 f,"N8QAW +2AW" + 2AW U (A2)

i=1 ;\/__J — u
@ Voltage Sensivity Threshold

where f/"N isthe total number of neurons firing from the ith input-layer group.

Algorithmic Complexity of the Custom Target Kernel Updates

Target kernel updates are based on Equation (8). They involve multiplications and additions
over an areathe size of the afferent layer kernel. Global desensitization is used during
training and no voltage threshold checking takes place, so the target kernel updates represent
the vast majority of work for the target layers during training. This gives a time complexity
of:

G
Ck=§ f"N2AW" (A3)

=1 Kernel

where f.* N isthetotal number of neurons firing from the ith orientation-layer group.

Algorithmic Complexity of the Target Layer Updates

Target layer updates involve the same operations as orientation layers, but with afferent
spikes coming from orientation layers and the custom target kernel of the respective target
layer used for updates (See Equation ). Therefore, the work associated with target layer
updatesis:
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~

é u

T G < >
C'=8 & 1" N8RAW] +2AW, +2AW} U (A4)
j=1 i=1 e — —

@ Voltage Sensivity  Threshold (j
where % isthetotal number of neurons firing from the ith orientation-layer group.

Algorithmic Complexity of Training
The algorithmic complexity of training amounts to:

Ctr :Cin +Cor +Ck (A5)
or,
S » S . S
C" = 8 22AW"N +BNlogN|+ 8 f"48AW N + & . 2AW" N (A6)
i=1 i=1 i=1

after substitution of Equations (A1), (A2), and (A3) and rearranging. If we assume that the
size of theinput layer and orientation layer kernels are small, relative to the size of the target
image, then we can ignore the differencesin their individual sizes such that:
W™ » W =W" << N (A7)
W » W% =W* << N . (A8)

If we further ignore the differences in sizes between the input layer kernels and the
orientation layer kernels, then we can approximate the number of weights as

WM » W :W (A9

If we further assume that each group of layers of a given type (input or orientation)
propagates asimilar fraction of spikes, then we can write

fin > fin = fi (A10)

£ » £ = fo, (A11)
Given these assumptions, Equation (A6) reduces to

C" » 2GAW|(247" + T + 2JN + CNlog N| (A12)
where C = B/ AW ..

This expression indicates that training is O(N log N) aslong as
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2GAW(247™ + T +2)<<N. (A13)

Therefore, if the number of groups, G, islarge, the size of the kernelsislarge, or if ahigh
fraction of spikesisrequired to propagate for the development of a useful target kernel, then

the algorithm can approach O(N 2).

Algorithmic Complexity of Recognition
The algorithm complexity of recognition is given by:

C'*=C"+C” +C' (A14)

or,

G _ G T G
c™ =4 22AW"N +BNIogN]+ § "48AW N+ § & f"N4SAW!  (Al5)

i
i=1 =1 i=

-
-

Making the same assumptions as before regarding the relative sizes of the input and
orientation layer kernels and fractions of spikes propagating from input and orientation layers
(Equations A7-A11), and further assuming that the targets are similar in size, i.e.,

Wi » Wi, =W (A16)

then Equation (A15) may be rewritten as

~6e ~ o~ ~ Nt O u
C"™ » ZGAWgZM M £ +24F°T V%iN +CNlog Ng. (A17)
g 8]

Thus, recognition isalso of O(NlogN) aslong as

g~ - ~ W'
ZGAW§24f o 2af oW 2ee N (A18)

W o

This constraint may be violated as the number of groups increases, the size of the input and
orientation layersincrease, or the size of the target kernels approach the size of the image

being processed, i.e., whenever W! » N . Thiswill be the case when, for example, “mug
shots” are being processed in which case all images may be approximately the same number

of pixels. Inthis case, the algorithm becomes O(NZ).

If the targets are hidden in a much larger image, then W »W' << N. Likewise, the fraction
of spikes propagating from the on/off layers may approach one since the target may be low in
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contrast relative to other featuresin theimage. If we assume that the fraction of neurons that
firein orientation layersis 0.5*, then the work required for recognition becomes

C' » GAW[(49 + 24T )N + 2CN log N], (A19)
whichisstill O(NlogN) while

GAW(49 +24T) << N.. (A20)
Consider asingle target that measures 100x100 pixels, hidden in a five megapixel image and
anetwork that consists of a single group of input and orientation layers. In this case,

Equation (A19) becomes

C™ » (AX0.0146 N)N + (B 0.00000268 N)N (N =5,000,000) (A21)

whose first term is marginally less than O(Nz). It isclear to see, that as the network grows
in complexity, or if the target images are any larger with respect to the input image, then
Equation (A19) quickly approaches O(N 2) despite the fact that the input and orientation
layer calculations are amortized across a set of target layers.

Y Thisis a conservative assumption. Experience has indicated that the ratio of input layer spikes to orientation
layer spikesistypically less than one fifth.

67



This page intentionally left blank.

68



Appendix B: XML Input File Element Tags

ROOT Root XM. Level

Network Architecture Parameters

NUMLAYERS Nurmber of Layers
CONNECTI ONS Layer Connection Matrix

Initial Parameter Settings

THINT Initial Voltage Threshol ds of Layers
VINT Initial Voltages of Layers
SINT Initial Sensitivities of Layers
| MAGE_SCALE Rel ative Layer Scale (1 = Original Scale of Inmge)
Bl AS Layer Bias Val ues
GROUP Layer Group Affiliations
CROUP_NAME G oup Nanes
TH_I NI T_TARGET Initial Target Layer Voltage Threshold - Recognition Mde
V_I NI T_TARGET Initial Target Layer Voltage - Recognition Mde
S I NI T_TARGET Initial Target Layer Sensitivity - Recogni tion Mde
TH_ I NI T_TARGET_LEARN Initial Target Layer Voltage Threshold — Traini ng Mdde
V_I NI T_TARCGET_LEARN Initial Target Layer Voltage — Traini ng Mbde
S I NI T_TARGET_LEARN Initial Target Layer Sensitivity — Traini ng Mbde
SENSI Tl VI TY_FLAG_LEARN Fl ag:
1 = Gobal Sensitivity Update - Trai ni ng Mde
2 = Local Sensitivity Update - Trai ni ng Mode
SENSI Tl VI TY_FLAG_RECOG Fl ag:
1 = @obal Sensitivity Update - Recogni tion Mde
2 = Local Sensitivity Update - Recognition Mde
| MAGE_SCALE_TARGET Currently Unused
Bl AS_TARGET Currently Unused
NORMALI ZE Fl ag: Kernel Normalization

1 = Normalize Kernels to a Fixed Anplitude

2 = Normalized Kernels to Achi eve Max Vol tage = 1.
READ_KERNELS Fl ag: (LoG and Gabor Kernels Only)

1 = Read FromFile

0 = Conpute From Paranmeter List
MAXTI ME Maxi mum Ti me Step

Kernel Specifications

KERNEL Kernel Paraneter Specifications
FI LENAME Name of File if READ _KERNELS=1
LAYER Layer Assignment
KW DTH Kernel Wdth
KHEI GHT Ker nel Hei ght
NAME Ker nel Name
TYPE Kernel Type (Gabor or LoQ
FREQUENCY Spatial Frequency (Gabor Only)
ALl GNVENT Kernel Orientation (Gabor Only)
SI GVA Gaussi an Snoot hi ng Par anet er
PHASE Phase of Pl anar Wave (Gabor Only)
MEAN Mean Kernel Val ue
AVPLI TUDE Maxi mum Ker nel Anplitude for Nornalization
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Custom Target Specifications

TARGET Cust om Target Kernel Tag
MAX_VOLTAGE Maxi mum Vol t age for Achi eved During Training
TARCGET_PATTERN W Vol tage Pattern Wdth
TARGET_PATTERN_H Vol t age Pattern Hei ght
PATTERN_CONV_MAX Maxi mum Cross-Correl ati on Val ue for Voltage Pattern
TARCGET_PATTERN Vol tage Pattern Matrix
NAMVE Tar get Nane
W DTH Kernel Matrix Wdth
HEI GHT Kernel Matrix Hei ght
CURRENT_TI ME Trai ning Steps Used
CUSTOM Target Kernel Matrix
| MAGE Raw | mage of Target
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Appendix C: Example Network Specifications File

<?xm version="1.0" encodi ng="1S0O 8859-1"?>
<ROOT>

<NUMLAYERS>10</ NUMLAYERS>

<NAME>Def aul t Net wor k</ NAME>

<CONNECTI ONS>

0011111111

011111111
00000O0OO0OOOO
00000OO0OO0O0OO0DO
00000OO0OO0OOO0O
00000OO0OO0O0OOO
00000O0OO0OOOO
00000OO0OO0O0OOO
00000OO0OO0OOO0O
00000OO0OO0O0OOO

</ CONNECTI ONS>

<TH INIT>

0.15 0.15 2.500000e+000 2.500000e+000 2. 500000e+000 2.500000e+000 2.500000e+000
2.500000€+000 2. 500000e+000 2. 500000e+000

</TH INT>

<V_I NI T>

000O0O0OO0OOO0OOOO0DO

</V_INT>

<S INT>

1111111111

</S INT>

<| MAGE_SCALE>

11111111111

</ | MAGE_SCALE>

<BI AS>

1-11111-1-1-1-11

</ Bl AS>

<GROUP>

11222222223

</ GROUP>

<GROUP_NAME>

On/ O f

Edges

Tar get

</ GROUP_NAME>

<TH_I NI T_TARGET> 50000000 </ TH_ I NI T_TARCET>
<V_INIT_TARGET> 0 </V_I N T_TARCET>

<S_INI T_TARGET> 0.9999 </S_| NI T_TARGET>

<TH_I NI T_TARGET_LEARN> 50000000 </ TH_ | NI T_TARGET_LEARN>
<V_I NI T_TARGET_LEARN> 0 </V_I NI T_TARGET_LEARN>
<S_I NI T_TARGET_LEARN> 0.9999 </ S_I NIl T_TARGET_LEARN>

<| MAGE_SCALE_TARGET> 1 </ | MAGE_SCALE_TARGET>
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<CONNECTI ON_TO_TARGET>
0011111111
</ CONNECTI ON_TO_TARGET>

<CONNECTI ON_FROM | MAGE>
1100000000
</ CONNECTI ON_FROM | MAGE>

<SENSI TI VI TY_FLAG LEARN> 1 </ SENSI Tl VI TY_FLAG_LEARN>
<SENSI TI VI TY_FLAG RECOG> 1 </ SENSI TI VI TY_FLAG _RECOG>

<BI AS_TARGET> 1 </ Bl AS_TARCET>
<NORMALI ZE> 2 </ NORMALI ZE>
<READ_KERNELS> 1 </ READ_KERNELS>

<MAXTI ME> 500 </ MAXTI ME>

<KERNEL >
<FI LENAME> \\ Soma\ 1\ Dev\ Spi keWave\ bdf ar ka_030504\ spi kewave\ r esour ces\
on_kernel _5 x_5.txt </FI LENAVE>
<LAYER>1</ LAYER>
<KW DTH>5</ KW DTH>
<KHEI GHT>5</ KHEI GHT>
<NAME>On</ NAVE>
<TYPE>| og</ TYPE>
<PHASE>- 1</ PHASE>
<SI GvA>5. 000000e- 001</ SI GvA>
<Dl M>5</ DI M>
</ KERNEL>

<KERNEL>
<FI LENAME> \\ Soma\ 1\ Dev\ Spi keWave\ bdf ar ka_030504\ spi kewave\ r esour ces\
of f_kernel 5 x_5.txt </FILENAME>
<LAYER> 2 </ LAYER>
<KW DTH> 5 </ KW DTH>
<KHEIl GHT> 5 </ KHEI GHT>
<PHASE> 1 </ PHASE>
<NAME> OFf </ NAVE>
<TYPE> | 0og </ TYPE>
<S| GVA> 5. 000000e- 001 </ SI GvA>
<DIM> 5 </ Dl M>
</ KERNEL>

<KERNEL>
<FI LENAME> \\ Soma\ 1\ Dev\ Spi keWave\ bdf ar ka_030504\ spi kewave\ r esour ces\
orient_000_15 x_15. t xt </ FI LENAME>
<LAYER> 3 </ LAYER>
<KW DTH> 15 </ KW DTH>
<KHEl GHT> 15 </ KHEl GHT>
<NAME> 0 Degrees </ NAME>
<TYPE> gabor </ TYPE>
<FREQUENCY> 15 </ FREQUENCY>
<ALI GNVENT> 0 </ ALI GNVENT>
<S| GVA> 2. 500000e+000 </ SI GvA>
<PHASE> 90 </ PHASE>
<MEAN> 0 </ MEAN>
<AMPLI TUDE>1 </ AMPLI TUDE>
</ KERNEL>
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<KERNEL >
<FI LENAME> \\ Soma\ 1\ Dev\ Spi keWave\ bdf ar ka_030504\ spi kewave\ r esour ces\
orient_045_15_x_15.txt </ FI LENAME>
<LAYER> 4 </ LAYER>
<KW DTH> 15 </ KW DTH>
<KHEI GHT> 15 </ KHElI GHT>
<NAME> 45 Degrees </ NAME>
<TYPE> gabor </ TYPE>
<FREQUENCY> 15 </ FREQUENCY>
<ALI GNVENT> 45 </ ALl GNMVENT>
<SI GvA> 2.500000e+000 </ SI GvA>
<PHASE> 90 </ PHASE>
<MEAN> 0 </ NEAN>
<AMPLI TUDE>1</ AMPLI TUDE>
</ KERNEL>

<KERNEL>
<FI LENAME> \\ Soma\ 1\ Dev\ Spi keWave\ bdf ar ka_030504\ spi kewave\ r esour ces\
orient_090 15 x _15.txt </FI LENAME>
<LAYER> 5 </ LAYER>
<KW DTH> 15 </ KW DTH>
<KHEl GHT> 15 </ KHEl GHT>
<NAME> 90 Degrees </ NAME>
<TYPE> gabor </ TYPE>
<FREQUENCY> 15 </ FREQUENCY>
<AL| GNMENT> 90 </ ALl GNVENT>
<S| GVA> 2. 500000e+000 </ SI GvA>
<PHASE> 90 </ PHASE>
<MEAN> 0 </ MEAN>
<AMPLI TUDE> 1 </ AWPLI TUDE>
</ KERNEL>

<KERNEL>
<FI LENAME> \\ Soma\ 1\ Dev\ Spi keWave\ bdf ar ka_030504\ spi kewave\ r esour ces\
orient_135_15 x _15.txt </FlI LENAVE>
<LAYER> 6 </ LAYER>
<KW DTH> 15 </ KW DTH>
<KHEl GHT> 15 </ KHEl GHT>
<NAME> 135 Degrees </ NAME>
<TYPE> gabor </ TYPE>
<FREQUENCY> 15 </ FREQUENCY>
<AL| GNMENT> 135 </ ALl GNVENT>
<SI GvA> 2.500000e+000 </ SI GvA>
<PHASE> 90 </ PHASE>
<MEAN> 0 </ MEAN>
<AWPLI TUDE>1 </ AMPLI TUDE>
</ KERNEL>

<KERNEL >
<FI LENAME> \\ Soma\ 1\ Dev\ Spi keWave\ bdf ar ka_030504\ spi kewave\ r esour ces\
orient_180_15_x_15.txt </ FI LENAME>
<LAYER> 7 </ LAYER>
<KW DTH> 15 </ KW DTH>
<KHEI GHT> 15 </ KHElI GHT>
<NAME> 180 Degrees </ NAME>
<TYPE> gabor </ TYPE>
<FREQUENCY> 15 </ FREQUENCY>
<ALI GNVENT> 180 </ ALl GNMVENT>
<SI GvA> 2.500000e+000 </ SI GvA>
<PHASE> 90 </ PHASE>
<MEAN> 0 </ NEAN>
<AMPLI TUDE> 1 </ AWPLI TUDE>
</ KERNEL >
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<KERNEL >
<FI LENAME> \\ Sora\ 1\ Dev\ Spi keWave\ bdf ar ka_030504\ spi kewave\ r esour ces\
orient_225_15_x _15.txt </ FI LENAME>
<LAYER> 8 </ LAYER>
<KW DTH> 15 </ KW DTH>
<KHEI GHT> 15 </ KHElI GHT>
<NAME> 225 Degrees </ NAMVE>
<TYPE> gabor </ TYPE>
<FREQUENCY> 15 </ FREQUENCY>
<ALI GNVENT> 225 </ ALl GNMVENT>
<SI GvA> 2.500000e+000 </ SI GvA>
<PHASE> 90 </ PHASE>
<MEAN> 0 </ NEAN>
<AMPLI TUDE> 1 </ AMPLI TUDE>
</ KERNEL>

<KERNEL>
<FI LENAME> \\ Soma\ 1\ Dev\ Spi keWave\ bdf ar ka_030504\ spi kewave\ r esour ces\
orient_270_15_x _15.txt </FlI LENAVE>
<LAYER> 9 </ LAYER>
<KW DTH> 15 </ KW DTH>
<KHEl GHT> 15 </ KHEl GHT>
<NAME> 270 Degrees </ NAME>
<TYPE> gabor </ TYPE>
<FREQUENCY> 15 </ FREQUENCY>
<ALI GNVENT> 270 </ ALl GNMENT>
<S| GVA> 2. 500000e+000 </ SI GvA>
<PHASE> 90 </ PHASE>
<MEAN> 0 </ MEAN>
<AMPLI TUDE> 1 </ AWPLI TUDE>
</ KERNEL>

<KERNEL>
<FI LENAME> \\ Soma\ 1\ Dev\ Spi keWave\ bdf ar ka_030504\ spi kewave\ r esour ces\
orient_315_15 x _15.txt </FlI LENAVE>
<LAYER> 10 </ LAYER>
<KW DTH> 15 </ KW DTH>
<KHEl GHT> 15 </ KHEl GHT>
<NAME> 315 Degrees </ NAME>
<TYPE> gabor </ TYPE>
<FREQUENCY> 15 </ FREQUENCY>
<AL| GNMENT> 315 </ ALl GNVENT>
<SI GvA> 2.500000e+000 </ SI GvA>
<PHASE> 90 </ PHASE>
<MEAN> 0 </ MEAN>
<AWPL| TUDE> 1 </ AVPL| TUDE>
</ KERNEL>

</ ROOT>



Appendix D: Example Custom Target File

<?xm version="1.0" encodi ng="1 SO 8859-1"?>
<I DOCTYPE note SYSTEM "target.dtd">
<ROOT>
<TARCGET>
<MAX_VOLTAGE> 2. 6832 </ MAX_VOLTAGE>
<TARGET_PATTERN W+ 17 </ TARGET PATTERN W
<TARGET_PATTERN H> 25 </ TARGET PATTERN H>
<PATTERN_CONV_NAX> - 1.439488e+001 </ PATTERN_CONV_NMAX>
<TARGET_PATTERN>
0.068106 0.087443 0.093242 0.082958 0.070195
0. 087558 0.053072 0.039847 0.060335 0.088045

0.070331 0.073302 0.071227 0.065995 0.058997
0. 008241 0.052662 0.066490 0.076616 0.076203

DATA OMITTED

.074170 0.094851 0.106470
. 093923 0.080546 0.069747
. 046771 0.029195 0.013548
.073069 0.083255 0.106560

[eNeoNeoNe)

</ TARGET_PATTERN>

<NAME> 00001fa010_930831 </ NAME>
<W DTH> 92 </ W DTH>

<HElI GHT> 138 </ HElI CHT>
<NUMLAYERS> 10 </ NUMLAYERS>

<CONNECTI ONS>
01

eNoloNoooNoNoNoNoNe)
[eNolooNoNoNoNoNoNe]

[eNoloNoNoNoNeoNoNoN ]

eNoloNooNoNoNoNal i
eNoloNoloNoNoNoNal i
eNoloNoloNoNoNoNal i
eNoloNololoNoNoNal i
eNoloNooNoNoNoNol J
eNoloNoloNoNoNoNal Ji
eNoloNooNoNoNoNal i
OrRrRFRPFRPFRPFRPFRPFRPPFPLOO

</ CONNECT| ONS>

<TH INIT>
1. 500000e- 001 1.500000e- 001 2. 500000e+000 2.500000e+000 2. 500000e+000
2.500000e+000 2.500000e+000 2.500000e+000 2.500000e+000 2.500000e+000 50000000
</THINT>

<V_I NI T>

00000000000O
</V_INT>
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<S INIT>
11111111119 999000e-001

</S INT>

<Bl AS>

1-11111-1-1-1-11

</ Bl AS>

<GROUP>

11222222224

</ GROUP>

<| MAGE_SCALE>

11111111111

</ | MAGE_SCALE>

<TH_ I NI T_TARGET> 50000000 </ TH | NI T_TARGET>
<V_INIT_TARGET> 0 </V_I NI T_TARGET>

<S I NI T_TARGET> 9. 999000e- 001 </ S | NI T_TARGET>
<| MAGE_SCALE_TARGET> 1 </ | MAGE_SCALE_TARGET>
<BI AS_TARGET> 1 </ Bl AS_TARCET>

<NORMALI ZE> 2 </ NORMALI ZE>

<MAXTI ME> 500 </ MAXTI ME>

<CURRENTTI ME> 50 </ CURRENTTI ME>

<CUSTOW>

000000O0O0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOODO

o o
o o
o o
o o
o o
o o
o o
o o

00000000O0O0O0O0ODODODODODODODODODODODODODODODODOODODOOO
00

0000000000D0OD0OD0OD0OD0ODODODODODODODODODODODODODODODODODODODODODODODODODOODO

o o
o o
o o
o o
o o
o o
o o
o o
o o
o o

000000O0O0OO0OOOOOOOOOOOOOOOOOOOOOO

0000000000D0OD0OD0OD0ODODODODODODODODODODODODODODODODODODODODODODODODODODOODO

o o
o o
o o
o o
o o
o o
o o
o o
o o
o o

000000O0O0OO0OOOOOOOOOOOOOOOOOOOOOO

000000O0O0OO0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOODO

o o
o o
o o
o o
o o
o o
o o
o o
o o
o o

000000000O0O0OD0OD0ODODODODODODODODODODODODODODODODOODO

0000000000D0OD0OD0OD0ODODODODODODODODODODODODODODODODODODODODODODODODODODOOO

o o
o o
o o
o o
o o
o o
o o
o o
o o
o o

000000O0O0OOOOOOOOOOOOOOOOOOOOOOO

0000000O0O0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOODOODO

o o
o o
o o
o o
o o
o o
o o
o o
o o
o o

000000000O00OD0OD0ODODODODODODODODODODODODODODODOOODO

0000000000D0OD0OD0OD0ODODODODODODODODODODODODODODODODODODODODODODODODODODOODO

o o
o o
o o
o o
o o
o o
o o
o o
o o
o o

000000O0O0OO0OOOOOOOOOOOOOOOOOOOOOO

000000O0O0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOODOODO

o o
o o
o o
o o
o o
o o
o o
o o
o o
o o

000000000O0O0OD0OD0ODODODODODODODODODODODODODODODODOODO

0000000000D0OD0OD0OD0OD0ODODODODODODODODODODODODODODODODODODODODODODODODODOODO

o o
o o
o o
o o
o o
o o
o o
o o
o o
o o

000000O0O0OOOOOOOOOOOOOOOOOOOOOOO

000000O0O0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOODOODO

o o
o o
o o
o o
o o
o o
o o
o o

000000000O0O0O0ODODODODODODODODODODODODOODODODODODODOODO
00
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000O00O0O0OO0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO O -
1. 315334e-007 -1.747882e-007 -2.481516e-007 -1.828085e-007 -3.219407e-007 -
3.992974e-007 -4.289843e-007 -3.992974e-007 -3.219407e-007 -1.828085e-007 -
7.336332e-008 0 0 0 0 0 0 O 1.537752e-007 1.537752e-007 0 0 00O 000000O00O
00000O0O0OOOO0OOOOOOOOOOOOOOO
000000000O0O000O00O0OO0O0O0D0ODO0OO0D0ODOOD0O0D0ODOODODODOOODOOO OO -9.282684e-008
-5.842954e- 007 -1.456526e-006 -2.217973e-006 -2. 382698e-006 -2.145165e-006 -
2.069002e- 006 -2.251694e-006 -2.660539e-006 -2.922818e-006 -2.720865e-006 -
1. 948404e-006 -1.312803e-006 -1.214137e-006 -6.726788e-007 -1.771531e-007
2.322991e- 007 4.147149e-007 4.962998e- 007 7.716004e-007 1.037972e-006

1. 451884e-006 1. 764388e-006 1.415971e-006 7.480560e-007 1.330702e-007 0 0 0 0 O
00000OO0O00OOO0OOOOOOOOOOOOOOOOOO

DATA OMITTED
</ CUSTOW>

<| VAGE>

111 106 103 97 93 93 90 89 87 84 82 80 79 79 77 76 76 77 77 75 77 77 77 78 80 79 80
80 81 80 80 81 82 81 81 82 81 82 82 81 82 80 81 80 79 80 79 78 78 77 76 77 77
79 80 80 81 82 82 81 80 79 78 76 77 78 82 83 85 85 86 86 86 85 85 86 85 85 85
84 85 84 85 89 91 94 96 97 100 102 106 113

108 106 100 96 93 92 88 86 85 85 83 81 79 78 77 76 77 76 76 77 77 77 77 78 79 80 80
79 81 80 80 80 81 82 81 80 81 81 82 81 81 80 81 80 80 79 78 77 76 76 77 77 77

78 78 78 80 79 80 79 79 78 77 76 77 79 81 83 85 86 87 86 85 83 84 84 84 84 85
84 85 86 87 89 91 93 97 99 100 101 106 113

DATA OMITTED
</ | MAGE>

<KERNEL>
<NAME> On </ NAME>
<LAYER> 1 </ LAYER>
<KW DTH> 5 </ KW DTH>
<KHElI GHT> 5 </ KHEl GHT>
<TYPE> | 0og </ TYPE>
<DIM> 5 </ Dl W
<S|I GVA> 5. 000000e- 001 </ SI GvA>
<PHASE> -1 </ PHASE>
</ KERNEL>

<KERNEL >
<NAME> OFf </ NAVE>
<LAYER> 2 </ LAYER>
<KW DTH> 5 </ KW DTH>
<KHEI GHT> 5 </ KHEI GHT>
<TYPE> | 0og </ TYPE>
<DIM> 5 </ DI M
<S| GVA> 5. 000000e- 001 </ SI GvA>
<PHASE> 1 </ PHASE>
</ KERNEL>

7



<KERNEL>
<NAME> 0 Degrees </ NAME>
<LAYER> 3 </ LAYER>
<KW DTH> 15 </ KW DTH>
<KHEIl GHT> 15 </ KHEIl GHT>
<TYPE> gabor </ TYPE>
<Dl M 15 </ DI W
<FREQUENCY> 15 </ FREQUENCY>
<ALI GNMENT> 0 </ ALl GNIVENT>
<S| GVA> 2. 500000e+000 </ SI GvA>
<PHASE> 90 </ PHASE>
<MEAN> 0 </ MEAN>
<AMPL| TUDE> 1 </ AMPLI TUDE>
</ KERNEL>

<KERNEL>
<NAME> 45 Degrees </ NAME>
<LAYER> 4 </ LAYER>
<KW DTH> 15 </ KW DTH>
<KHEI GHT> 15 </ KHEIl GHT>
<TYPE> gabor </ TYPE>
<Dl M 15 </ DI W
<FREQUENCY> 15 </ FREQUENCY>
<ALI GNMENT> 45 </ ALI GNVENT>
<S| GVA> 2. 500000e+000 </ SI GvA>
<PHASE> 90 </ PHASE>
<MEAN> 0 </ MEAN>
<AMPL| TUDE> 1 </ AMPLI TUDE>
</ KERNEL >

<KERNEL>
<NAME> 90 Degrees </ NAME>
<LAYER> 5 </ LAYER>
<KW DTH> 15 </ KW DTH>
<KHEl GHT> 15 </ KHEl GHT>
<TYPE> gabor </ TYPE>
<Dl M 15 </ DI M
<FREQUENCY> 15 </ FREQUENCY>
<ALI GNVENT> 90 </ ALI GNVENT>
<S| GVA> 2. 500000e+000 </ SI GvA>
<PHASE> 90 </ PHASE>
<MEAN> 0 </ MEAN>
<AMPLI TUDE> 1 </ AWPLI TUDE>
</ KERNEL>

<KERNEL>
<NAME> 135 Degrees </ NAMVE>
<LAYER> 6 </ LAYER>
<KW DTH> 15 </ KW DTH>
<KHEl GHT> 15 </ KHEl GHT>
<TYPE> gabor </ TYPE>
<Dl M 15 </ DI M
<FREQUENCY> 15 </ FREQUENCY>
<AL| GNMENT> 135 </ ALl GNVENT>
<SI GVA> 2. 500000e+000 </ Sl GvA>
<PHASE> 90 </ PHASE>
<MEAN> 0 </ MEAN>
<AWPLI TUDE> 1 </ AVPLI TUDE>
</ KERNEL>



<KERNEL>
<NAME> 180 Degrees </ NAME>
<LAYER> 7 </ LAYER>
<KW DTH> 15 </ KW DTH>
<KHEIl GHT> 15 </ KHEIl GHT>
<TYPE> gabor </ TYPE>
<Dl M 15 </ DI W
<FREQUENCY> 15 </ FREQUENCY>
<AL|I GNVENT> 180 </ ALI GNMENT>
<S| GVA> 2. 500000e+000 </ SI GvA>
<PHASE> 90 </ PHASE>
<MEAN> 0 </ MEAN>
<AMPL| TUDE> 1 </ AMPLI TUDE>
</ KERNEL>

<KERNEL>
<NAME> 225 Degrees </ NAME>
<LAYER> 8 </ LAYER>
<KW DTH> 15 </ KW DTH>
<KHEIl GHT> 15 </ KHEI GHT>
<TYPE> gabor </ TYPE>
<Dl M 15 </ DI W
<FREQUENCY> 15 </ FREQUENCY>
<ALI GNVENT> 225 </ ALl GNMENT>
<S| GVA> 2. 500000e+000 </ Sl GvA>
<PHASE> 90 </ PHASE>
<MEAN> 0 </ MEAN>
<AMPL| TUDE> 1 </ AMPLI TUDE>
</ KERNEL >

<KERNEL>
<NAME> 270 Degrees </ NAME>
<LAYER> 9 </ LAYER>
<KW DTH> 15 </ KW DTH>
<KHEl GHT> 15 </ KHEl GHT>
<TYPE> gabor </ TYPE>
<Dl M 15 </ Dl M
<FREQUENCY> 15 </ FREQUENCY>
<ALI GNMENT> 270 </ ALl GNVENT>
<S| GVA> 2. 500000e+000 </ SI GvA>
<PHASE> 90 </ PHASE>
<MEAN> 0 </ MEAN>
<AMPLI TUDE> 1 </ AWPLI TUDE>
</ KERNEL>

<KERNEL>
<NAME> 315 Degrees </ NAMVE>
<LAYER> 10 </ LAYER>
<KW DTH> 15 </ KW DTH>
<KHEl GHT> 15 </ KHEl GHT>
<TYPE> gabor </ TYPE>
<Dl M 15 </ Dl M
<FREQUENCY> 15 </ FREQUENCY>
<AL| GNMENT> 315 </ ALl GNVENT>
<SI GVA> 2. 500000e+000 </ SI GvA>
<PHASE> 90 </ PHASE>
<MEAN> 0 </ MEAN>
<AWPLI TUDE> 1 </ AVPLI TUDE>
</ KERNEL>

</ TARGET>

</ ROOT>
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