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Abstract 

This  paper  develops  and  investigates  iterative  tensor  methods for  solving 
large-scale  systems of nonlinear  equations.  Direct  tensor  methods for  nonlin- 
ear  equations  have  performed  especially well on  small,  dense  problems  where 
the  Jacobian  matrix at the solution  is  singular  or  ill-conditioned,  which  may 
occur  when  approaching  turning  points, for example.  This  research  extends di- 
rect  tensor  methods  to  large-scale  problems by developing  three  tensor-Krylov 
methods  that  base  each  iteration  upon a linear  model  augmented  with a lim- 
ited  second-order  term,  which  provides  information  lacking  in a (nearly)  singu- 
lar  Jacobian.  The  advantage of the new tensor-Krylov  methods over existing 
large-scale  tensor  methods  is  their  ability  to  solve  the  local  tensor  model  to a 
specified  accuracy,  which  produces a more  accurate  tensor  step.  The  perfor- 
mance of these  methods  in  comparison  to  Newton-GMRES  and  tensor-GMRES 
is  explored  on  three  Navier-Stokes  fluid flow problems. The  numerical  results 
provide  evidence that tensor-Krylov  methods  are  generally  more  robust  and 
more efficient than  Newton-GMRES  on  some  important  and  difficult  problems. 
In  addition,  the  results  show  that  the new tensor-Krylov  methods  and  tensor- 
GMRES  each  perform  better  in  certain  situations. 
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Tensor-Krylov Met hods for 
Solving  Large-Scale Systems of 

Nonlinear  Equations 

1 Introduction 

This  paper describes a new  class of methods for  solving the nonlinear equations 
problem 

given F : R” + R”, find x* E Rn such that F(z,) = 0, (1) 

where it is assumed that F(z )  is at least once continuously differentiable. Large- 
scale systems of nonlinear equations defined  by (1) arise in many practical  situations, 
including systems produced by  finite-difference  or finite-element discretizations of 
boundary value problems for ordinary  and  partial differential equations. 

Standard direct methods, such as Newton’s method,  are  impractical on large-scale 
problems because of their high linear algebra costs and large memory requirements. 
Thus, most current  practical approaches for solving large problems involves approx- 
imately solving a local linear model and  then using these “inexact” steps to locate 
the next point. 

Two inexact versions of tensor methods already exist for  solving large problems. 
Bouaricha [5] describes an implementation of a tensor method using Krylov subspace 
methods for linear equations, which  involves constructing  an inexact tensor step from 
the approximate solutions of two linear systems (with the same Jacobian  matrix). In 
addition, Feng and Pulliam [16]  have  developed a “tensor-GMRES” method, which 
first finds the Newton-GMRES step  and  then solves  for an approximate tensor step. 

We propose three  variants of a new approach for  solving the large-scale nonlinear 
equations problem (1). These new methods  are an extension of the class of standard 
tensor methods 1261, which  base  each iteration on a simplified quadratic model of 
F ( z )  such that  the  quadratic  term is a low-rank secant approximation that augments 
the  standard linear model. Specifically, the new algorithms are  an  amalgamation 
of various techniques, including tensor methods for nonlinear equations [26], Krylov 
subspace techniques [8], and  an inexact solver  framework  [13], that make them well- 
suited for large-scale problems. Given the parallels to Newton-Krylov methods [8], 
the new algorithms may be called “tensor-Krylov” methods. In a  manner similar to 
Newton-GMRES, the tensor-Krylov methods  calculate an inexact tensor step from 
a specially chosen  Krylov subspace that facilitates the solution of a minimization 
subproblem at each step. 

The key feature of these new methods is that  the  step satisfies the local tensor 
model to within a specified tolerance, making it possible to control the quality of the 
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step.  In  addition, the new tensor-Krylov methods are aptly  suited to target problems 
where the Jacobian at the root is singular or, at least, very ill-conditioned. Newton- 
based methods  do not handle singular problems well because they converge linearly 
to  the solution and, in some cases, with poor accuracy [lo, 11, 12, 191. On the  other 
hand, tensor methods  are superlinearly convergent  on singular problems under mild 
conditions [ 151. 

Because the tensor-Krylov methods borrow elements from both direct tensor meth- 
ods  and linear Krylov subspace methods,  these topics are reviewed  before introducing 
the tensor-Krylov formulations. Section 2 reviews direct  tensor  methods for  solv- 
ing small-scale systems of nonlinear equations  and includes background on perti- 
nent large-scale methods, namely linear Krylov subspace methods, Newton-GMRES, 
and existing large-scale tensor methods.  Then section 3 describes three different ap- 
proaches  for  solving the local tensor model  using a Krylov-based method  and wraps 
these local  Krylov  solvers into a large-scale method  with  options for various global 
strategies.  With the complete tensor-Krylov nonlinear solver  fully discussed, section 4 
describes several fluid flow benchmark problems that serve as ambitious test prob- 
lems. Finally, section 5 makes  some concluding remarks and discusses directions for 
future research. 

Throughout  this  paper,  a subscript k refers to  the current iterate of a nonlinear 
solver. We denote the Jacobian F’(z) by J ( z )  and  abbreviate J ( Q )  as J k .  Similarly, 
F ( z k )  is abbreviated often as F k .  When the context is clear, we may drop  the  subscript 
k on J k ,  F k ,  a k ,  and s k  while still referring to  the current values at  an iteration. 

2 Background and review 

In  this section, we introduce standard methods for  solving systems of nonlinear equa- 
tions. We provide a brief  review of standard methods in section 2.1 and  a  short in- 
troduction to tensor methods in section 2.2. We extend these methods to large-scale 
problems in sections 2.3 and 2.4  by  reviewing Newton-Krylov methods  and existing 
large-scale tensor methods, respectively. General references  for topics in nonlinear 
solvers include [14], [18], and [23]. 

2.1 Standard  methods 

In  this  paper, we  will refer to a class of methods, which we will call standard methods, 
for  solving (1) that are based on a linear local model. Most notable among these 
methods is  Newton’s method, which bases each iteration  upon  a linear local model 
MN(z,+ + d )  of the function F(z )  around the current iterate z k  E Etn: 
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where d E R" is the  step and J ( x k )  E RnX" is either the current  Jacobian  matrix or 
an  approximation to  it. A root of this local model  provides the Newton step 

which is used to reach the next trial point. Thus, Newton's method is  defined when 
J k  is nonsingular and consists of updating  the  current point with the Newton step, 

Due to  to large arithmetic  and  storage costs, implementations of Newton's method 
using direct factorizations of J ( Z k )  are  not  practical for large-scale problems. 

2.2 Tensor methods 

Tensor methods solve (1) by including more information in the local model than 
Newton's method. By solving this augmented local model, tensor methods  tend to 
generate  steps of better quality than  standard methods, thus reaching the solution 
faster. The local tensor model has the generic  form 

where T k  E RnXnx" is a  tensor, which includes second-order information and is  where 
these methods get their name. This  term is selected so that  the model interpolates 
p 5 fi previous function values in the recent history of iterates, which  makes T k  a 
rank p tensor. Most often p is 1 or 2, but computational evidence in [26] suggests that 
p > 1 actually  adds  little to  the computational performance of the direct  method. 

For this  paper, we focus  on the case of p = 1 because the tensor-Krylov methods 
only use  one secant update. In this case, the tensor model about x k  reduces to 

where 

After forming the model, we use it  to determine the  step  to  the next trial point. 
Because (5) may not have a  root, one solves the minimization subproblem 
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and  a  root or  minimizer of the model  is the tensor  step. Due to  the special form of 
( 5 ) ,  the solution of (8) in the nonsingular case reduces to solving a quadratic  equation 
followed  by  solving a system of n - 1 linear equations in as many unknowns. 

A practical approach for  solving (8)) which relates to  the presentation of tensor- 
Krylov methods in section 3, uses  two orthogonal  transformations to reduce the prob- 
lem to two subproblems that are more  easily  solved.  Briefly, the first transformation 
finds an orthogonal Q1 E RnX", such that s/ llsll is the last column and  permits  a 
change in variables 

d = Q1i. 

The second transformation finds an orthogonal Q2 E RnX", such that Q2JkQ1 is upper 
triangular.  Thus, applying the two transformations to ( 5 )  and  setting  it equal to zero, 
yields the following triangular system of n equations in n unknowns 

where in E R is the  quadratic variable. 

Then, breaking (9) into two smaller problems, the solution to (8) continues by 
first solving  for d, by minimizing the  quadratic equation  appearing in the last row of 
(9) and choosing the smaller magnitude minimizer if there  are two. Using the value 
of in in (9), a triangular linear system of size (n  - 1) x (n - 1) is revealed. Finally, the 
complete solution to (8) is found by  solving this  resultant system for the remaining 
components of 2 and  then reversing the variable space transformation from the first 
step, d = Qld. 

2.3 Newton-Krylov methods 

Up to  this  point,  this review has discussed direct  methods for the solution of small, 
dense problems, such that  the local model is  solved using direct factorizations of the 
Jacobian  matrix. Large, sparse systems are often successfully  solved using a class of 
"inexact" Newton methods: 

where the local model typically is  solved  only approximately at each step using a less 
expensive approach. Successively better approximations at each iteration preserve 
the rapid convergence behavior of Newton's method when nearing the solution. The 
computational savings reflected  in this less  expensive inner iteration is usually par- 
tially offset with more outer  iterations,  but  the overall savings still is quite significant 
on large-scale problems. 

The most common methods for approximately solving the local Newton  model are 
Krylov-based methods. A linear Krylov subspace method is a projection method that 
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. 

seeks an  approximate solution x ,  to  the linear system A x  = b from an rn-dimensional 
affine subspace x0 + IC,. Here, IC, is the Krylov subspace 

IC,(A, r0) = span{r-0, ATO, A2r0, . . . , Am-’r0}, 

where T O  = b - Ax0 is the residual at  an initial guess xo. A  popular Krylov subspace 
method is the Generalized Minimum Residual method  (GMRES) [24], which  com- 
putes  a solution x ,  E x0 + IC, such that  the residual norm over all vectors in x0 + IC, 
is minimized. That is, at  the  mth  step, GMRES finds xm such that Ilb - Azm112 is 
minimized  for all x ,  E x0 + IC,. 

Newton-GMRES is one specific method in the class of Newton-Krylov methods, 
where the linear system J k d  = - F k  is solved via GMRES according to  the tolerance 
q in (10). Krylov methods have the appeal of requiring almost no matrix  storage 
due to  their exclusive  use of Jacobian-vector products, which  may be calculated by a 
finite-difference directional derivative. For this reason and  others, Newton-GMRES 
is a  popular algorithm for  solving  large-scale problems, and  it will be the  standard 
algorithm for comparisons in our numerical experiments. 

2.4 Previous large-scale, sparse  tensor  methods 

The large-scale tensor  methods described in this  paper  are  not the first tensor  methods 
aimed at large-scale problems. Two other  methods have been proposed, and we 
discuss them now. 

Bouaricha [5] describes a large-scale implementation of a  tensor  method using 
Krylov subspace methods for linear equations (GMRES and  FOM), which  involves 
constructing  an inexact tensor step from the approximate solutions of J-lFk and 
J-lFk-1. The approach involves  finding the values sTJ-lFk and sTJP1uk, which are 
used to calculate  an  approximate value of STdT ,  which multiplies J-lak in the final 
computation of the step. More  precise details regarding an efficient implementation 
may be found in [l] or [5]. 

Despite some  favorable results in [5], we have found Bouaricha’s method to be 
not  as competitive on  more practical problems. The two main disadvantages of this 
method  stem from the fact that two linear systems must be solved  for each outer 
iteration  and  that  an accurate value of ,O is not calculated, which may lead to spurious 
steps. Due to these theoretical disadvantages and based upon our own numerical 
experience with the algorithm in [l], we will not consider any numerical comparisons 
with Bouaricha’s algorithm. 

Feng and  Pulliam [16] describe another large-scale tensor  method, which they 
call “tensor-GMRES.” It uses  Krylov subspace projection techniques for  solving 
the Newton equations; and, in particular, it uses GMRES to find the approximate 
Newton step d N  = do+V,y,. The Arnoldi process in GMRES generates a Hessenberg 
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matrix H, and  an orthonormal basis for the Krylov subspace IC, in the columns of 
V,. Given these key matrices,  their algorithm proceeds to solve a projected version 
of the tensor model (5) along a subspace that spans the Newton step direction (i.e., 
the approximate tensor step is  in the span of the Krylov subspace IC; and do, or 
equivalently the span of the  matrix [Vm, do]).  Thus,  their algorithm solves the least- 
squares problem 

where P is the projection matrix P = Y(YTY)-'YT and Y = Jk[V,, do]. 

The algorithm has some  difficult algebra (details may be found in [16]), but  the 
design  is actually  rather  straightforward. The algorithm may be viewed as  an exten- 
sion of Newton-GMRES, where the inexact Newton step is calculated via GMRES 
in the  standard way. The tensor step is calculated subsequently using the Krylov 
subspace information generated for the Newton step. In this way, the method is  also 
consistent with preconditioning techniques and a matrix-free implementation, which 
makes it appealing for general use. 

The  extra work and storage beyond the GMRES method is actually  quite small, 
and  the analysis in [16]  shows that  the same superlinear convergence properties for the 
unprojected tensor model considered in [15]  also  hold  for the projected tensor model 
in (11). These properties are evident in the numerical results of [16], which  show 
the superlinear convergence behavior of tensor-GMRES on the singular and nearly 
singular problems, where the Newton-GMRES method exhibits linear convergence 
due  to a lack of sufficient first-order information. The margin of improvement (in 
terms of reduction of nonlinear iterations over Newton's method)  spanned 20-55%  on 
the simpler problems and 32-60% on the more  difficult Euler problem. 

However, there  are  a few potential disadvantages related to  the Feng and Pulliam 
method. The variable space restriction on d in the minimization problem (11) illus- 
trates a possible disadvantage, particularly when  using preconditioners or restarted 
GMRES. The norm of the projected tensor model is only minimized to  the extent 
that  the Krylov subspace for the Newton-GMRES step is large enough to  capture 
important directions in the tensor  step. For example, consider using an exact pre- 
conditioner, Le., J k  itself. One iteration of GMRES solves the Newton equations 
exactly, and  the Newton step direction is along w1, the first basis vector in V,. Then, 
according to  the Feng-Pulliam method,  the approximate  tensor step  that solves (11) 
could only be  a scalar multiple of the direction 211 (assuming that do = 0). A sim- 
ilar example may be developed  when using restarted GMRES in the Feng-Pulliam 
method-if GMRES converges soon after a restart,  then  the orthonormal basis V, is 
smaller than before the  restart. A smaller basis may lead to a tensor step  that solves 
(11) with more error  due to fewer  degrees of freedom. 

Despite these  hypothetical examples, it is unclear whether solving (11) in a smaller 
variable space will adversely affect the practical performance of this  method when 
using preconditioners or restarted GMRES. Because the Newton step tends to un- 
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dershoot (or overshoot) when first-order information is lacking in the local model, 
the solution to  the tensor model is often nearly along the Newton direction, so the 
subspace restriction on d might not  be a problem. The fact remains, however, that 
the Feng-Pulliam method solves the projected tensor model (ll), which  loses  some 
information in the projection. In addition,  the relative stopping tolerance q k  in the 
Newton-GMRES step  has no direct relationship with the error in the tensor model. 

3 Tensor-Krylov methods 

The new tensor-Krylov methods differ  from previous large-scale tensor  methods in 
their ability to solve the local tensor model to a specified tolerance. Using either the 
methods of Bouaricha or  Feng and  Pulliam, the residual error 1 1  M T ( z ~  + d )  1 1  must be 
computed explicitly, making it difficult to assess the quality of the approximate  tensor 
step  that they compute. In  addition, the new methods avoid the costly solution of two 
linear systems (as in Bouaricha’s method)  and compute the solution to  the full tensor 
model, as opposed to a projected tensor model (as in the Feng-Pulliam method). 

In the same manner that GMRES is an  algorithm for  solving linear systems and 
Newton-GMRES is the nonlinear solver, we make a  distinction between the solver  for 
the local tensor model and the nonlinear solver. In this section, we describe three 
procedures for iteratively solving the local tensor model that use the concepts from 
linear Krylov subspace methods. We restrict ourselves to  the rank-one tensor model 
in (5)-(7), which  only interpolates the function value at  the previous iterate. Because 
(5) may  or may not have a  root, we seek a solution to  the minimization problem 

where IC, is a specially chosen  Krylov subspace that facilitates the solution of the 
quadratic model. The  three tensor-Krylov methods differ in their choice of IC,, which 
becomes their  signature difference and  dictates  the algorithm. We differentiate the 
three  variants by the size of their  initial block subspace, identifying them as block-2, 
block-2+, and block-3. The reason for considering three  variants is related to their 
complexity and usefulness as a block algorithm. The block-3 method is the most 
straightforward  and most  likely the best block implementation, while the block-2 
methods  are more  complex but may  work better in scalar implementations. 

In sections 3.1-3.3,  we start with a description of the  three Krylov-based tech- 
niques for  solving the local tensor model.  Due to space considerations, we describe 
only the block-2 method in detail  and refer to [l] for  more detailed information on the 
other two methods. Section 3.1 covers all aspects of the block-2 method that  are im- 
portant  to a nonlinear equations solver, including block-Krylov subspace issues, resid- 
ual  calculation, stopping conditions, preconditioning and scaling techniques, compu- 
tation of the Newton step, and cost. Section 3.4 wraps the local solver into  a complete 
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tensor-Krylov algorithm for  solving large-scale systems of nonlinear equations,  and 
section 3.5  discusses the global strategies for the tensor-Krylov algorithm. 

3.1 Block-2 method $ 

The block-2 algorithm proceeds in a block-Krylov-like fashion, operating on a ma- 
trix of initial vectors V instead of the single residual vector of a linear system. In 
particular,  this  method uses a block-Krylov subspace composed of two initial vectors. 

We begin by rearranging the local tensor model and  noting that  it looks  like a 
linear system involving a linear combination of two right-hand sides: 

Jd = - F k  - :up2, (13) 

where p = sTd. The  right-hand side spans only the directions F k  and a;  the vector s 
appears in the inner product p = sTd, which  is a scalar multiple for a that is unknown. 
Thus,  the premise of the block-2 method is that we start with the initial block  Krylov 
subspace IC0 = span{a, F k }  and build IC, = span{a, F k ,  Ja,  JFk,  J2a,  J2Fk,. . . } to 
solve (12). Specifically, we consider the block of initial vectors 

&I = [ ( J d o  + F k ) ,  a], (14) 

where do E R" is  some initial guess  for the  step. Because the  starting  matrix Ro uses 
the residual F k  + Jdo, which depends on do, the block-2 method may  be restarted 
with successively better initial guesses in a manner similar to restarted GMRES. 

The first step of the algorithm computes the QR-factorization of Ro, 

Ro = V R  = [VI ,  v2]R, (15) 

where V E I t W n x 2  = [v1,v2] is unitary  and R E is upper  triangular.  A block- 
Arnoldi process then  creates  additional columns of an orthonormal basis V, that 
spans the block-Krylov subspace 

span(V,  JV,  J2V,  J3V,.  . . ). (16) 

There  are several block-Arnoldi versions available for implementation,  and the partic- 
ular variant is not critical to  the implementation of the tensor-Krylov method. The 
standard procedure works on a whole  block V E I tnx t  and  adds t vectors-t = 2 in 
this  case-to  the subspace at a  time.  This procedure may  work  well  when considering * 

cache memory performance and may be considered in future research. However, we 
decided to implement the single-vector version of block-Arnoldi to more  closely  cor- 
respond with the scalar implementation of GMRES. The version in Algorithm 3.1 is 
very similar to  the  standard Arnoldi algorithm, which operates on a single vector at 
a  time  and is due to Ruhe [20]  (see  also [23]) for the symmetric case  (block Lanczos). 
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Algorithm 3.1: BLOCK  ARNOLDI PROCESS-RUHE'S VARIANT 

1. Choose t initial  orthonormal vectors {vi}i=l,...,t . 
2. Choose a number of Arnoldi iterations  to perform and set to rn. 

3. F o r k = l ,  . . . ,  r n :  

(a) Set j := k + t - 1 
(b) Compute w := J V k  

(c) For i = 1,2 , .  . . , j  

i. h i k  := ( W ,  Vi) 

ii. w := w - h i k V i  

(d) hj+l,k := IIw112 

(e) If h j+l , k  # 0, then set vj+l := w / h j + l , k ;  

Else if t = 1, then  Stop; 
Else set t := t - 1 and continue. 

The first step of the algorithm is to multiply a single vector, V I ,  by the Jacobian 
matrix J and orthonormalize the resulting vector w against all j vectors 211,. . . , vj 
( j  = t at  the first iteration) in the orthonormal basis, building the subspace one vector 
at a time.  Thus,  a vector from the initial block {~i} i=l , . . , ,~  is multiplied by J every 
t steps. The last step 3e avoids a division by  zero and is commonly referred to as 
the breakdown condition. In the scalar case (t = 1)) a breakdown condition indicates 
that  the solution is in the subspace spanned by the k basis vectors computed thus far. 
Here  in the block case, we modify the usual condition to reduce the block dimension 
by one until it eventually reduces to  the scalar case. 

After rn steps on the initial  matrix V E litWnx2 defined in (15))  the block-Arnoldi 
process produces an orthogonal matrix Vm+2 E Rnx(m+2) and  a  matrix H, E R(m+2)xm 
whose nonzero entries are the elements h i k  computed in the process. It is important to 
note that H, is banded upper Hessenberg with two subdiagonals. The orthonormal 
basis Vm+2 and the  matrix H, have an  important relationship, 

JVm = Vm+2Hm. (17) 

Continuing with the solution to  (12)) let the approximate solution at  the  mth 
iteration  be 

d = do + Vmy,  (18) 
where V, E litnxm is an  orthonormal basis for the Krylov subspace generated in (16) 
and y E R" is unknown. Substituting (18) into the tensor model yields 
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where T O  = F k  + Jdo, which is also the residual for the Newton model when using the 
initial guess do. Having TO permits the calculation of the approximate Newton step 
later in the algorithm. 

Let Q1 E R"'" be an orthogonal matrix  that has Vzs/ IlVzsll in the last column, 
and let the vector i j  E R" be defined  by the following transformation 

Y = Q1Y. (20) 

Then, using Q1 and 6, the simplification of (19) continues 

M T ( % k  + d )  = TO + Jvmy + $ a ( S T &  + sTVmy)2 
= TO + JVmQ1G + $a(sTdo + (Vms) 
= TO + JV"Q1ij + ;a(sTdo + ( IIV~SII i jm)2,  (21) 

where ijm is the  mth element of i j  and  limits the  quadratic  part to a single  unknown. 
After the next step, we  will discuss a good  choice  for  efficiently constructing the 
orthogonal matrix Q1 that retains a desirable structure for  solving this problem. 

T T  

From (14) and (1 5 ) ,  let Fl E and 7i E denote the first and second 
columns of R, respectively, padded with rn zeros to a length  m + 2. These definitions 
along with (17) permit  a change in the function space of (21), 

M T ( z ~  + d )  = TO + JV"Q1ij + $a(sTdo + (IIV~SII i jm)2 

= To + Vm+214,Qlij + $a(sTdo + ( ~ ~ v z s ~ ~  ijm>2 

= vm+2 (71 + BmQIC + iG(sTdo + (IIv,Ts/I jjm)2) . (22) 

Because the column-vectors of Vm+2 are  orthonormal, the original least-squares 
problem of (12) may be simplified: 

At this  point, we want to preserve some structure of the problem by requiring 
that  the product H,Q1 does not need expensive updates  to transform  it to upper 
triangular form. In other words, we want the banded Hessenberg structure of H, 
to be  retained  after  multiplication  with Q1, adding at most another subdiagonal. 
That restriction may be accomplished with an orthonormal Q1 that is  itself a Hessen- 
berg matrix. Efficiently constructing such an orthogonal  matrix Q1 in this algorithm 
involves  some careful algebra, which we  now discuss. 

Let the orthonormal  matrix Q1 be represented by an orthogonal matrix  times  a 
diagonal scaling matrix: 

Q1 = 610. 
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The diagonal scaling matrix  has diagonal entries D.. - - so that  the columns 

in Q1  have unit length. The last column in Q1 is the m-dimensional vector VLs, and 
constructing an orthogonal Hessenberg matrix using this  last column involves only 
two updates on the  mth  iteration:  the (m,  m) and (m, m - 1) elements. We define 
$1 recursively: 

22 - 1181[:,iIll 

where the initial Ql[l ;  11 = wys. The  matrix Q1 may be represented by three vectors: 
the  mth column of Q 1  holding V z s ,  the subdiagonal of 01, and the entries in the 
diagonal scaling matrix. In addition, because only the two elements in the last row are 
new on the  mth  iteration,  the product  HmQ1  has only  two  newly updated columns, 
which can  be computed in 2(m + 1) + 2 multiplications. Using a simple example with 
m = 4, we may represent this graphically 

x x x *  x x (x+*)  (x+*) 
x x x *   x x x x  

BmQl= : ~ 1 : i) = [ x x x x ('I*) (x+*)  (x+*) (x:*j, (x+*)  (x+*) 

where a * represents a new number on the  mth  iteration  and  an x represents a nonzero 
from a previous iteration. 

x (x+*)  (x+*) 

Given that  the  matrix H m  has two subdiagonals and that  the  matrix product 
BmQ1 has  three subdiagonals, the  structure of (24) is 

* * * * e . .  * *  
* * *  * *  
* * *  * *  
* * *  * *  

v:+2wxk + d )  = (sTdo + IIv,TsJI Gm)2. $ +  * *  * * + 
* ... * *  

. . .  . .  . . .  

1 * *  

Eliminating the subdiagonals of HmQ1 may be accomplished with  a series of 
Givens rotations or  Householder reflections. Let Q2 E R(m+2)X(m+2) be the prod- 
uct of all Givens rotations or  Householder reflections applied to  the system,  and let 
the variables F1, ti, and Hm denote the following transformed vectors 
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Using (26)-(28), we may premultiply (24) by Q2 as  a  step toward the least-squares 
solution: 

Q~V:+&T(Z~ + d )  = ?I+ fimc + ;Zi(sTdo + IIV:SII (29) 

which has the following structure: 
\ * 

* 
* 

* 
* 

I 

+ 

\ * * * * 
* *  * 

* . . .  * 
. .  

* 

I 

This system has m+2 equations in m unknowns, and the last  three rows are  quadratic 
equations in the variable em. 

By the orthonormality of Q2 and Vm+2, minimizing (IQ2V:+2M~(xk + d)ll is the 
same as  minimizing 1 1  MT(zk + d)  1 1 .  Thus,  the solution to (12) involves  minimizing 
the last  three rows of (29), which requires finding the optimum value  for em: 

Problem (30), which has a closed-form solution, involves minimizing a quartic 
equation in a single unknown. The minimizers correspond to  the critical points of 
the  quartic equation in the objective function of (30) are thus among the real roots 
of a cubic equation found by differentiating the  quartic equation  with respect to fjm. 

Thus, (30) can have  one  or  two minimizers, in which  case we choose the minimizer 
that makes p = (sTdo + llsll em) have smaller magnitude.  This choice  is not neces- 
sarily the global minimizer of (30). Justification for  choosing the smaller magnitude 
minimizer  comes both from the  step itself and from considering the sequence of it- 
erates. Choosing the smaller magnitude minimizer is consistent with the approach 
used in direct tensor methods  and  results in the inexact tensor step being closer to 
the inexact Newton step. Also, if  we consider the sequence of values { p j }  for the 
first j iterations,  then  this sequence converges to a single number when  choosing the 
smaller magnitude minimizer. If  we were to choose the global minimizer, then  the 
sequence { p j }  could oscillate between two numbers, and  thus  the residual error would 
not necessarily be monotonically decreasing (p  enters  into the residual calculation via 
l ap2) .  2 Hence, the smaller magnitude minimizer has more theoretical  appeal  and is 
used here. 

As a simpler alternative for determining em, we mention an approach that would 
approximately minimize llQ2V,T+2MT(~k + d)  1 1 .  Instead of solving a quartic  equation, 
we solve the single quadratic  equation in the  mth row of (29), choosing the root such 
that p = (sTdo + IIVzslI em) has smaller magnitude. If the equation does not have 
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a  root,  then we choose the value of ijm that minimizes the  quadratic equation. The 
difference between ym found in this  manner  and $m found by minimizing (30) is usually 
negligible  once the relative residual decreases by about two orders of magnitude. 

Once the minimizer ym is determined, the remaining elements of may be found 
by computing a single right-hand side using the value ijm and solving the resultant 
(m - 1) x (m - 1) linear system found by neglecting the last  3 rows of (29). 

At this  stage,  the vector ij contains the coefficients  for the linear combination of 
basis vectors {vi}. Thus, the approximate tensor step  that solves (12) is 

dT = do + VmQ16. 

The decision  for stopping the Arnoldi process so that  the approximate step solves 
the tensor model to a specified tolerance appears before the computation of the ex- 
plicit step, which  is at  an inconvenient location. GMRES has  a similar dilemma 
but uses an efficient approach in its least-squares solution. With GMRES, the least- 
squares error Ilb - Ax/[, is equal to  the  last element of &el llbll, where Q is the product 
of all Givens rotations to transform the Hessenberg matrix to upper  triangular form 
and el is the unit vector (1,0,0, . . . )'. Similarly, the last  3 rows of (29) pertain  to  the 
least-squares error of the local tensor model and may be used in stopping conditions. 

There  are two  possible implementations for computing  a  stopping condition in 
these Krylov-based methods,  and  they  are  fundamentally similar. Both may be 
checked without explicitly computing the approximate step dm after each step in 
the Arnoldi process. 

The practical stopping condition that is  used in our numerical tests is similar to 
GMRES in that it involves computing the norm of the remaining rows  below the  tri- 
angular part of Hm. That is, we neglect the contribution from the  quadratic equation 
in row m of (29) and only calculate the norm of the last two  rows  when computing 
the least-squares error.  This  computation does not include any contribution from Hm 

because its last two  rows contain only  zeroes. Thus,  the  practical  stopping condition 
may be simplified to 

where q is the relative stopping tolerance and the norm covers only the last two  rows 
of the vectors 73 and 5. We point out  that (31) requires the computation of pm at 
each iteration m. Calculating Dm is an O( 1) calculation using the first-order condition 
for a minimizer of q(p) . I - I  

Another stopping condition, which  is  briefly mentioned here but covered in more 
detail in [l], considers how  close the residual norm at  the approximate step dm comes 
to  the minimum residual norm at  the exact step dT.  In other words, the comparison 
is 

I I M T ( ~ ~  + dm)ll - I I M T ( ~ ~  + d ~ ) l l  5 7 l lF(xk) l l .  (32) 
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A  practical implementation of (32) is straightforward. The residual error IIMT(z, + dm)  1 1  
equals the minimum value calculated in (30),  and  the current  estimate of l I M ~ ( z k  + d T )  1 1  
at  the  mth  iteration equals the value of the  quadratic equation on the  mth row. 

Of the two conditions, (31) is a more demanding test  than  (32),  and  an imple- 
mentation using (31) may require more iterations before satisfying the same relative 
tolerance. 

Algorithm 3.2 describes the whole process for computing the approximate tensor 
step dT.  The algorithm is a basic implementation that progressively updates H, to 
Hm after each step in the Arnoldi process. 

Algorithm 3.2:  BLOCK-^ ITERATIVE TENSOR METHOD 

1. Choose a relative residual tolerance q E [0, 1) and maximum subspace dimension 

2. Given the local tensor model M ~ ( z k  + d )  = F, + J d  + ; a ( ~ ~ d ) ~ ,  previous 
function value FkPl, and  initial guess do, form the block of initial vectors Ro = 

[ ( J d o  + F , ) ,  a], where a = 

m m a x  - 

2 ( F k - l - F k - J ~ )  and s = zk-1-  x,. 
3. Perform a partial QR-factorization on Ro, such that Ro = [VI, v 2 ] R  = VR.  
4. For m = 1,2 ,  . . . , mmaz do: 

(a) Let the two columns of R, appended  with  m zeroes to a  length  m + 2, be 
labeled Fl and f 2 ,  respectively. 

(b) Form the vector Jv, and orthogonalize it against the previous v1, . . . , vm+1 
vectors via the Block Arnoldi Process, Algorithm 3.1: 

w := Jv,  
hi,, := (w,v i ) ,  i = 1,2, .  . . , m + 1 

m+l 

(c) Define H, to  be  the (m + 2) x m upper banded Hessenberg matrix whose 
nonzero entries are the coefficients hij, 1 5 i 5 m + 3 , l  5 j 5 m, and 
define V, = [ V I ,  v 2 ,  . . . , vm]. 

(d) Let Q1 E Etmxm be an orthogonal Hessenberg matrix  that has Vzs /  IIVzsII 
in the last column and  be  computed via (25),  and let the vector jj E R" 
be defined  by the following transformation y = Q1G. 

(e) Let h,-l and h, denote the two newly updated columns of the matrix- 
matrix  product B,Q1. 
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Using  Householder reflections, transform the  (m + 2) x m system Tl + 
which  involves applying all previous reflections to h,-l and h,, followed 
by  two  new reflections to zero three elements in h,-l and two elements in 
h,. Apply these reflections to  the vectors Yl and 6. 

Find the minimizer ij, of (30) such that p = ( sTdo + 1 1  V z s  I I 6,) has smaller 
magnitude  and minimizes the least-squares error in (30). 
Let p, represent the error estimate of solving the local tensor model. Ei- 
ther set pm equal to  the norm of the last 2 rows of (29), or set pm equal 
to  the norm of the last 3 rows of (29) minus the absolute value of the  mth 
row. 

If p, 5 q IlFkl l ,  then proceed to  step 5 to calculate the approximate  step. 

RmQ1ij + $Zi(sTdo + I/V,TSII ijm)2 into Y1 + Hmij + ;ii(sTdo + ~V,TSII ijm)2, 

5. Form the approximate solution: 

(a) Find the remaining m- 1 elements of the vector i j  by solving the first m- 1 
rows of the linear system 

H m c  = -71 - L m ~ m  - $6(sTdo + I I v : s I I  ~ m ) ~ ,  

where L, is the  mth column of HmQl. 
(b) Form the approximate step dT = do + VmQ1ij. 

Just as  with the Newton-GMRES algorithm, Algorithm 3.2  may be implemented 
matrix-free. Jacobian-vector products may be  approximated by 

J ( z ) v  M 
F ( z  + av) - F ( z )  

0 

In addition, we may apply preconditioning to accelerate convergence of the iterative 
methods. Consider a  matrix M that approximates the current  Jacobian J in some 
manner  and is simple enough to permit inexpensive solutions to linear systems of the 
form Mx = b. Then, given M ,  the following left-preconditioned tensor model can  be 
formed and solved: 

min IIM-lF, + M - l J d  + $M-1u(sTd)211 . (33) 

The iterative tensor algorithms outlined above requires only minor modifications to 
incorporate left  preconditioning-replace the call to Jv with M-lJv  in the Arnoldi 
process and premultiply all occurrences of F,, and u by M-l.  A separate  subroutine 
that computes the action of M-l times a vector is all that is needed. 

dEKm 

Right preconditioning transforms the variable space. Given a preconditioner M ,  
the following right-preconditioned tensor model can  be formed and solved: 

min l l ~ k  + J M - ~ U  + k p ( ~ ~ ~ - l u ) ~ / 1 ,  (34) 
UEKm 
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where the approximate step d is found from the solution of M d  = u. Once again, 
the iterative  tensor algorithm requires only minor modifications-replace the call to 
Jw with J M - b  in the Arnoldi process and replace the  starting vector s in Ro with 
MPTs.  If the  matrix M-l is not explicitly stored,  then M-Ts may be difficult to 
compute. The algorithm may be modified to avoid this  step, however. 

Of the two forms, right preconditioning is  mildly preferred over  left preconditioning 
because the norm of the error IIMT(zk + d)II,  which enters directly into the stopping 
conditions, is unaffected with right preconditioning. In addition, right preconditioning 
guarantees that  the inexact Newton step is a descent direction on the function, which 
is of paramount  importance to a linesearch global strategy. With left preconditioning 
(with either GMRES or the Krylov-based tensor methods),  the Newton step dN E K: 
is  no  longer guaranteed to be a descent direction on F(z ) ,  which has  dire consequences 
in linesearch global strategies because backtracking along a step presupposes that  the 
direction is a descent direction for eventual step acceptance. 

Scaling  is of particular  importance when  solving systems of nonlinear equations, 
as noted in [14], and is a subject that is closely related to preconditioning. We only 
mention here that variable and function scaling is  possible in the Krylov-based tensor 
method  and may  be implemented in a manner similar to preconditioning. 

An important remark about Algorithm 3.2 is that  the Newton  model  is carried 
through the procedure, so the Newton step is calculated readily at the end of the 
algorithm and  permits  greater flexibility with the global strategy. In a manner similar 
to GMRES, we solve the linear least-squares problem 

which  involves a back substitution  with  the  upper  triangular  matrix Hm and right- 
hand side -PI. Then  the approximate Newton step is  given  by 

Calculating the Newton step in addition to  the tensor step  adds  a minimal cost. It 
involves a back substitution ( fm2 multiplications), matrix-vector product (m2 multi- 
plications),  and a linear combination of basis vectors (nm multiplications), which  is 
the dominant cost. 

The cost of Algorithm 3.2 is  very similar to  the cost of GMRES. The  extra work 
beyond GMRES involves the following: 

1. Computation of one extra Jacobian-vector product to get a,  

2. Partial QR-factorization of the n x 2 matrix of initial vectors Ro (4n multipli- 
cations to get the second column of both Q and R),  

3. Orthogonalization against one extra vector in the Gram-Schmidt process ( 2 n m  
multiplications), 
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4. Formation of an orthogonal Q1 (nm multiplications for V,’s), 

5. Computation of the new columns in the  matrix-matrix  product HmQ1 (m2 
multiplications), 

6. Orthogonal transformations involving Q2 to form Hm (8m2 multiplications, if 
using Householder reflections), 

7. Matrix-vector multiplication Qlij (m2 multiplications). 

Thus, when considering only the leading terms,  the  total cost beyond GMRES is 
4n + 3nm + 6m2 multiplications plus one Jacobian-vector product.  The bulk of the 
cost of GMRES is due  to Gram-Schmidt orthogonalization in the Arnoldi process, 
O(nm2), so the  extra cost of the iterative Krylov-based tensor method is minor. This 
method compares favorably with the tensor-GMRES of Feng and  Pulliam, which 
costs 5n + 4nm + 2m2 multiplications plus one extra Jacobian-vector product beyond 
GMRES. 

3.2  Block-2+ method 

It is conceivable that  the block-2 method above could generate a Krylov subspace for 
a step  that minimizes (12) but does not include any information in the direction s, 
thereby neglecting any contribution from the second-order term $ ~ ( s ~ d ) ~ .  The aim 
of the  the block-2+ method is to explicitly include the direction s in the subspace so 
that  the inner product sTd is  fully captured in the Krylov subspace while still working 
with a block of dimension two.  Here we only mention the discriminating feature of 
this  method  and refer to [l] or  [2]  for the algorithmic details. 

The problem that we are solving changes to finding the  step d that solves the 
minimization problem 

The procedure is basically the same as the block-2 method in section 3.1 but with 
some extra algebra and a special technique for augmenting the  standard block-Krylov 
subspace with the new direction s at each Arnoldi iteration.  This approach contrasts 
with the usual implementation of augmented Krylov subspace methods[9] and is dis- 
cussed  in [l]. 

3.3  Block-3 method 

The block-3 algorithm for  solving (12) proceeds in a block-Krylov-like fashion, oper- 
ating on a  matrix of three  initial vectors instead of the single residual T O  of a linear 
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system. By choosing three vectors, we may include information on the  three known 
vectors in the local tensor model ( s ,  a, and F k )  and allow a  transformation of the 
variable space and function space in a  manner similar to  the method of orthogonal 
transformations of section 2.2. To that  end, we consider the block of initial vectors 

Ro = [s,  ( J d o  + L l ) ,  ( J d o  + &)I. (36) 

The rationale for  choosing these specific vectors is as follows. The vector s is listed 
first in order to isolate the inner product sTd (via llsll wFd) and  later  create  a single 
quadratic  equation in a single unknown. The second vector is the residual involving 
the previous function value F k - l  and is  needed  for computing the tensor term a, 
(6).  The  third vector is the residual of the Newton equations,  and it may be placed 
as the second  or third column in Ro. Collectively, these three vectors are chosen 
specifically to compute the tensor  term a later in the algorithm in addition to fully 
characterizing the local tensor model (i.e., the  three known vectors Fk, a, s )  with  this 
initial subspace. 

The block-3 algorithm is procedurally different  from the block-2 algorithm because 
it uses orthogonal transformations  and  permutation matrices to switch rows and 
columns to isolate a  quadratic  equation in the  mth row. After the block-Arnoldi 
process adds a basis vector and  an  extra column to H m ,  we perform a series of plane 
rotations to put  the  matrix H, in upper triangular form. In its current ordering, the 
quadratic  equation would not be isolated to a single variable in the first row and should 
be switched to  the  mth row. So we permute the first row and column with the  mth row 
and column to facilitate an easier solution. After all of the orthogonal transformations 
and row/column permutations,  the  structure of the simplified problem is 

\ * 
* 
* 

* 
* 
* 
* 

+ 

* * * a * .  *\ 
* *  * 

* e . .  * 
. .  . .  

* 

I 

G +  

1 * 
* 
* 

* 
* 
* 
* 

Otherwise, the block-3 algorithm is similar to  the block-2 algorithm above. 

3.4 Tensor-Krylov methods 

With  the introduction of the Krylov-based iterative  methods for  solving the local 
tensor model in sections 3.1-3.3,  we return  to solving the general nonlinear equations 
problem (1). The following algorithm outlines the tensor-Krylov algorithm, which at 
every outer  iteration calls a Krylov-based iterative  method for  solving the local tensor 
model. 
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Algorithm 3.3: TENSOR-KRYLOV  METHOD 

1. Given the nonlinear equations problem F ( z ) ,  choose a starting point x0 and set 
the maximum iteration counter kmax. 

2. For k = 0, 1 ,2 ,  . . . , kmax, do: 

(a) Choose a forcing term tolerance q k  E [0, 1). 

(b) If k = 0, then calculate the Newton-GMRES step dN according to  the 
relative tolerance q k  and proceed to  step 2e. 

(c) Form the local tensor model M T ( x k + d )  = F k +  J d +   i a ( s T d ) 2 ,  where F k  = 

(sTs)2 * 

(d) Compute the inexact tensor step dT according to  the relative tolerance q k  

by approximately solving the local tensor model according to  the methods 
of sections 3.1, 3.2, or  3.3. 

F(zk ) ,  Fk-1  = F(zk-l) ,  J = F’(zk), s = zk-1- zk, and a = 2 ( F k - l - F k - J ~ )  

(e) Set zk+l = xk + Ad,  where d and X are chosen according to a linesearch 
strategy  that uses the directions dT and/or dN.  

(f)  If zk+l is an acceptable approximation to a root of F ( z ) ,  then  stop  and 
signal a success. 

When referring to Algorithm 3.3  that uses a specific  Krylov-based local solver  in 
step 2d as defined in sections 3.1, 3.2, or 3.3 (i.e.,  the block-2, block-2+, or  block-3 
methods), we  will abbreviate the method  as TK2, TK2+, and TK3, respectively. 

3.5 Global strategy  and  step selection 

Algorithm 3.3 needs a  robust  strategy for global convergence if neither the full tensor 
step nor  Newton step is satisfactory in step 2e. While step 2e uses a linesearch 
strategy, a trust region strategy is still viable, albeit less straightforward. Here we 
discuss details regarding a linesearch implementation in the tensor-Krylov method. 

The  standard tensor linesearch of [26] and the TENSOLVE linesearch of [5, 61 are 
straightforward applications of backtracking along the tensor step, if it is a descent 
direction, or otherwise along the Newton direction. The curvilinear linesearch imple- 
mentation of [3] requires a  little  adaptation. Because the curvilinear linesearch for 
tensor methods has posted encouraging results  and has a nice theoretical basis, we 
will  focus primarily on this linesearch implementation in the tensor-Krylov algorithm. 

The curvilinear step d T ( X )  is the solution of the modified tensor model XF + J d  + 
i a ( s T d ) 2 ,  where X is the linesearch parameter.  Thus, in the tensor-Krylov algorithm, 
the local tensor model  is  likewise changed and  recomputed.  Fortunately, the scalar 
X is carried through  the process in a  straightforward  manner, irrespective of method, 
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as will  now be discussed. For this discussion, we focus  on the block-2 method in 
Algorithm 3.2, but  the procedure applies to  the block-2+ and block-3 methods in the 
obvious way. The only trick to this implementation involves the scaling of the initial 
guess do; all other  aspects  are  intuitive. 

The derivation involves changing the block of initial vectors in (14) to include X 
in the Newton residual, 

Ro = [ W d o  + F k ) ,  4 .  (37) 

The scalar X follows through  the steps of Algorithm 3.2 and changes (29) to 

which  only  differs by X multiplying F l .  Up to this point in the algorithm, the presence 
of X does not require any new computations. To be more precise, the basis vectors 
in V and  the  matrix Hm are unchanged. The presence of X in (38) does change the 
calculation of the vector ym,  and the corresponding change in (30) is 

The remaining elements of G are found by  solving the triangular system with  a right- 
hand side modified  by X and  the newly computed Gm. Finally, the change  in (37) 
corresponds to scaling both F k  and do by X, so the curvilinear step changes to 

where 6 is also a function of X, as noted above. 

We reiterate  that  the scalar X may multiply PI after all orthogonal transforma- 
tions, so the initial work in generating a Krylov basis and performing the subsequent 
orthogonal  transformations to calculate dT is not  repeated for computing &(X). That 
is, the  matrix of basis vectors Vm used in (39) contains the same vectors from the 
original computation of dT;  only the vector 6 depends on X. 

The additional cost of the curvilinear linesearch per trial is an  extra backsolve per 
X-value (an  extra +m2 multiplications) plus a linear combination of basis vectors (nm 
multiplications), which  is the dominant cost. However, if using right preconditioning, 
one application of the preconditioner must be used, which increases the cost further. 
While these costs are more than in the other linesearches, they  are probably still less 
than  the cost of evaluating F ( z )  and  certainly less than  the cost of evaluating J ( x )  
or the  total cost of generating the Krylov subspace for the original computation of 
dT.  Alternative implementations that use other simplifications or approximations are 
discussed in [l]. 

It should be noted that  other large-scale tensor methods, such as the tensor- 
GMRES method of Feng and  Pulliam [16], could employ the curvilinear linesearch 
even though  these  other  methods have subtle differences in calculating an inexact 
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tensor step.  This is because the curvilinear step is calculated from a simple scalar 
multiplication of the function value in the local tensor model and may be carried 
through the algebra of the  step calculation to arrive at a  parametric form of the 
curvilinear step. 

4 Computational  results  and discussion 

This section describes implementations of the  three tensor-Krylov methods  and presents 
some numerical results  and comparisons on several challenging problems. We set up 
the numerical experiments to closely correspond to those in [28], and  the  tests are 
aimed at comparing the tensor-Krylov methods  with both Newton-GMRES and the 
tensor-GMRES method of Feng and  Pulliam. More comprehensive numerical tests 
may be found in 1113, and  results on several ill-conditioned problems are included in 
~41. 

We implemented the algorithms in a software package called NOX [17], which 
is a C++ object-oriented nonlinear solver  package being developed at Sandia Na- 
tional Laboratories. For objective comparisons, we implemented all of the methods, 
including Newton-GMRES and tensor-GMRES, and used the same Arnoldi process 
(modified Gram-Schmidt) as in our tensor-Krylov methods. That choice granted us 
more control over the algorithm and assured us of a controlled experiment. Thus, 
the results in this section do not reflect the most efficient implementations that  are 
available. 

We solved the problems using the conditions and  parameters in [28] as  a guide. 
For a successful termination, we required l l F ( z k ) l l  5 EF IIF(zo)lI, where EF = lov2. In 
addition, we also required the more stringent weighted step length  stopping condition, 

where n is the  total number of unknowns, d k  is the full  Newton  or tensor step,  and 
W is a diagonal scaling matrix  with  entries 

in which xki is the  ith element of the current solution z k ,  E, is a relative tolerance 
and E, is an  absolute tolerance (lo-’). The  step length criterion is  necessary 

to resolve  finer details of the fluid flow and transport by requiring that each ith 
element of the Newton  or tensor step be small relative to  its current value x k i .  Also, 
if the  test problem required more than 200 nonlinear (outer)  iterations or  if there was 
a linesearch failure (i.e., f(xC + Ad)  5 f(zc) + a X V f ( ~ , ) ~ d ,  where f(z) IIF(z)ll, 
and a = lop4, could not be satisfied with X > in at most 40 backtracks),  then 
we declared a failure for the  run. 
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We allowed the local solver (i.e., GMRES or its tensor-Krylov equivalent) to  iterate 
a total of  250 times to satisfy a relative tolerance of 7 = If the local  solver did 
not satisfy the desired tolerance or  finish in the allotted  count, we used the  step 
computed so far and  tested for step acceptance with our global strategies. In nearly 
all of our numerical experiments, the local method successfully computed a step  that 
satisfied the relative tolerance, so restarting was not  an issue. 

We used an explicit Jacobian, which our PDE code computed efficiently  by a 
combination of analytic evaluation and numerical differentiation, and enabled the 
option for maximum accuracy in the Jacobian. We employed right preconditioning in 
all cases using an ILUT preconditioner [22], and we performed no variable or function 
scaling in the problems. The initial approximation was the zero vector for all cases. 

There  are multiple choices  for the global strategy,  and we used the  standard ten- 
sor linesearch for all tensor  methods to facilitate  an unbiased comparison of nonlinear 
algorithms. Due to  the promising results of the curvilinear linesearch on  small-scale 
problems in [3], we also  used the curvilinear linesearch with the TK2 and TK3 meth- 
ods to  study  the benefit of this linesearch on  large-scale implementations. We used 
the X-halving procedure (dividing X by  two at each inner iteration) for selecting the 
linesearch parameter at each trial step.  Quadratic backtracking was an  option but 
generally required more iterations  and function evaluations than X-halving  in  prelim- 
inary  tests on these problems, so it was not used. 

All tests were performed on a dual processor desktop computer  (Intel 686 architec- 
ture)  at Sandia National Laboratories. The computer had 1GB of RAM, which  was 
more than sufficient  for our problems, which  used  no  more than 17% of the memory. 
However, the computer was not  dedicated to these tests, so the timing  statistics we 
provide are very approximate  and could be off by 10% or more relative to each other. 

All of the tables in this section have standard column labels, which we  now de- 
scribe. The Reynolds number or  Rayleigh number is listed in the first column with 
the  appropriate label. The second column lists the nonlinear method according to  the 
abbreviations discussed above (in  addition to abbreviating the Feng-Pulliam tensor- 
GMRES method  as TG and the Newton-GMRES method  as  NG). The  third column 
indicates the particular linesearch procedure used. The tables include comparisons 
with both  the  standard tensor linesearch and  the curvilinear linesearch. The column 
entitled “Fail” indicates any failures, i.e., if there was a linesearch failure (LSF) or if 
the maximum iteration count was reached (MAX). The  “Itn”  and “Feval” columns 
record the number of nonlinear (outer)  iterations  and function evaluations, respec- 
tively. The next two columns list the number of calls to  the linesearch procedure 
and  the  total number of backtrack steps that were performed. The “Arnoldi” column 
records the  total number of Arnoldi (inner)  iterations, e.g., GMRES steps. Because 
an  iteration of the Arnoldi process includes a Jacobian-vector product,  this is the 
time-limiting step  and closely correlates with  time. The last column lists an approxi- 
mate time to solution, but as mentioned above, these times have error of 10%  or  more. 
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The columns of greatest  interest in this  study  are  the nonlinear iterations total,  the 
number of Arnoldi iterations,  and  the  approximate  time. 

4.1 Test results  on fluid flow benchmark  problems 

The  test problems are  three  CFD benchmark problems described in  [28] that are used 
for  verification of fluid  flow codes and solution algorithms: the  thermal convection 
problem, the lid driven cavity problem, and the backward-facing step problem. 

The problems are set up using a  particular  spatial discretization of the governing 
steady-state  transport  equations for momentum and  heat  transfer in  flowing  fluids. 
These governing PDEs  are given  below. The unknown quantities in these equations 
are the fluid  velocity vector (u), the hydrodynamic pressure ( P ) ,  and the  temperature 
(T) * 

Conservation of mass: V - u = 0 (40) 
Momentum transport: p u V u  - V - T - pg = 0 (41) 

Energy transport: pCpu - VT + V q = 0 (42) 

In these  equations, g is the gravity vector, and p and Cp are  the density and specific 
heat at constant pressure of the bulk fluid, respectively. The constitutive  equations 
for the stress  tensor T and  heat flux q are 

T = -P1+p(Vu+VuT) ,  
q = -KVT, 

where p is the dynamic viscosity and K is the  thermal conductivity of the fluid. 

The particular  spatial discretization of (40)-(42) that we use is from a finite 
element reacting flow code called MPSalsa [25] developed at Sandia National Labo- 
ratories. MPSalsa generates an algebraic system of equations by a pressure-stabilized 
Petrov-Galerkin finite element formulation of the low  Mach number Navier-Stokes 
equations  with  heat transport.  This scheme  uses equal-order interpolation of velocity 
and pressure, and we enabled the option for streamline upwinding to limit oscilla- 
tions  due to high grid Reynolds numbers. Since the publication of [28], the pressure- 
stabilized streamline upwinding Petrov-Galerkin formulation in MPSalsa has been 
changed to a Galerkin least squares-type method [27]. This  stabilization  method is 
slightly less dissipative, and  the nonlinear convergence behavior for  difficult prob- 
lems (e.g., the lid driven cavity problem) is less robust at higher Reynolds numbers. 
Consequently, this change precludes direct comparisons with  results in [28]. 

To complete a problem’s specification, boundary conditions are imposed on the 
governing PDEs, which we discuss in the subsections that follow. The  three problems 
differ only in their  boundary conditions and in whether they use (40)-(42) or  only 
(40)-(41). The next three subsections describe the  test problems and  test results. 
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4.1.1 Thermal  convection  problem 

This problem consists of the  thermal convection (or buoyancy driven) flow  of a fluid 
in a differentially heated  square cavity in the presence of gravity. It requires the 
solution of (40)-(42) on the  unit  square  with  the following Dirichlet and Neumann 
boundary conditions: 

T = T c o l d ,  u = 0 at x = 0, 
T = That, u = 0 at x = 1, 
d T  
-- 
dY 

-O ,u=O at y = O , l .  

Once the governing equations  and  boundary conditions are nondimensionalized, two 
parameters  appear: the  Prandtl number (Pr) and  the Rayleigh number (Ra). In our 
experiments, we fixed Pr = 1 and increased the Rayleigh number up to lo7, which 
increases the nonlinear effects of the convection terms  and makes the solution more 
difficult to obtain.  The range in [28] is Ra = lo3 to lo6, but we shifted the range to 
include lo7 to explore the effectiveness of tensor  methods on  more  difficult problems. 
We used a 100 x 100 equally spaced mesh, which has 40,804 unknowns. On  this 
size mesh, it is unclear whether the choice of Ra = lo7 admits  a physically accurate 
and/or  stable solution. However, we are  interested only in the relative performance 
of the numerical methods on this problem, which remain valid comparisons. 

The  results of the  thermal convection problem in Table 1 provide the most con- 
vincing evidence  for the benefit of tensor-Krylov methods. It is  also the only test 
problem of the  three  that includes heat transport in its formulation, which  may  or 
may not  be a factor. The results show that Newton-GMRES performs a little  bet- 
ter  than  the  other methods on the two easiest problem difficulties,  which has been 
typical. Yet as the problem grows  more difficult, the tensor methods outperform 
Newton-GMRES. In  other  tests  that we have performed on this problem, the  trend 
is even  more evident, showing a clear degradation in performance by  Newton-GMRES 
over the  transition from easy to difficult problems. The tensor-Krylov methods  are 
much  less  affected  by the  transition, especially when  using the curvilinear linesearch. 

Tensor-GMRES also does well on this problem at  the mid-range difficulties and 
is more  efficient than  the tensor-Krylov methods using the same standard linesearch, 
especially in terms of function evaluations. However, tensor-GMRES and Newton- 
GMRES are unable to solve the most difficult problem at Ra = lo7. All tensor- 
Krylov methods except TK3 with the  standard linesearch are able to solve the hardest 
problem. Among the tensor-Krylov methods, TK2 is slightly more  efficient than 
TK2+,  and  both  are more efficient than  TK3, which requires more Arnoldi iterations 
at all difficulties. 

The tensor-Krylov methods  with the curvilinear linesearch are able to solve  more 
difficult problems than Newton-GMRES or tensor-GMRES. Moreover, there is a clear 
difference between the  standard linesearch and  the curvilinear linesearch among the 
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Ra 
lef04 
le+05 
le+06 
le+07 
le+04 
le+05 
le+06 
le+07 
le+04 
le+05 
le+06 
le+07 
le+04 
le+05 
le+06 
le+07 
le+04 
le+05 
le+06 
le+07 
leS04 
le+05 
l e t06  
le+07 
le+04 
le+05 
le+06 
l e t07  

Table 1. Results of the thermal  convection  problem over 
a range of Rayleigh  numbers. All methods  use a constant 
forcing  term of 71, = and  right  preconditioning. 

Method 
NG 
NG 
NG 
NG 
TG 
TG 
TG 
TG 
TK2 
TK2 
TK2 
TK2 
TK2+ 
TK2+ 
TK2+ 
TK2+ 
TK3 
TK3 
TK3 
TK3 
TK2 
TK2 
TK2 
TK2 
TK3 
TK3 
TK3 
TK3 

Linesearch 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Curvilinear 
Curvilinear 
Curvilinear 
Curvilinear 
Curvilinear 
Curvilinear 
Curvilinear 
Curvilinear 

- 
Itn 
6 
10 
34 
200 
7 
11 
36 
200 
8 
15 
37 
138 
8 
15 
37 
159 
8 
19 
42 
200 
8 
11 
21 
55 
8 
12 
22 
57 

- 

- 

- 

- 

- 

- 

- 

- 

Feval 
8 
32 
215 

2065 
9 
34 
218 
1793 
10 
60 
294 
1606 
10 
60 
293 
1866 
11 
81 
355 
2683 
10 
35 
118 
439 
11 
36 
120 
465 

- 
LS’S 

1 
6 
30 
200 
1 
7 

32 
200 
1 
9 
33 
134 
1 
9 
32 
155 
2 
13 
37 
200 

- 

- 

- 

- 

- 

1 
6 
17 
51 
2 
6 
18 
53 

- 

- 

Btrk 

3825  180 
1031 21 
577 1 

Arnoldi 

1864 23955 
1 677 

22 1169 
181 4039 
1592 23852 

1 990 
44  2088 
256  5838 
1467  23202 

1 992 
44 2078 
255  5818 
1706  26869 

2 1034 
61 2857 
312  7631 
2482  40963 

1 990 
23  1537 
96 3195 
383  9160 
2 1020 
23  1749 
97  3878 
407  11385 

. 
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tensor-Krylov methods. As the Rayleigh number increases and the problem becomes 
more  difficult to solve, the performance margin increasingly favors the curvilinear 
linesearch. For instance, on the hardest problem, TK2 with the  standard tensor line- 
search finishes in about 2.6 times the time of the corresponding curvilinear linesearch 
implementation. TK3 with the  standard tensor linesearch could not solve the problem 
in 200 nonlinear iterations. 

4.1.2 Backward-facing step problem 

This problem consists of a  rectangular channel with a 1 x 30 aspect ratio in which 
a  reentrant backward-facing step (i.e.,  a  sudden expansion in the channel width) is 
simulated by injecting fluid with a fully  developed parabolic velocity  profile  in the 
upper half of the inlet boundary  and imposing a zero  velocity on the lower half. The 
channel geometry and flowing  fluid produce recirculation zones beneath  the entering 
flow  on the lower  wall and, for  sufficiently  high Re, farther downstream on the upper 
wall. This problem requires the solution of (40)-(41) on the unit  square  with the 
following Dirichlet boundary conditions: 

u = 24y(i - y)U@ at x = 0, 0 5 y 5 i, 
U = O  at Z = O  1 --1< 2 - Y a  

u = o  at y = - L ‘  
2 ’  2 ,  

T,. = T,, = 0 at x = 30, 

where 2 is the unit vector in the x-direction. Once the governing equations and 
boundary conditions are nondimensionalized, the Reynolds number (Re)  appears, 
which  is a measure of inertial forces to viscous  forces. In our experiments, we in- 
creased the Reynolds number up  to 800, which increases the nonlinear inertial  terms 
in the momentum equation  and makes the solution more  difficult to  obtain. Beyond 
Re = 800, it is not clear that  the problem is stable  and  admits  a physical solution. 
All solutions for this problem were computed on a 20 x 400 unequally spaced mesh, 
which has 25,263 unknowns. 

The plots in Figure 1 show that all of the methods require about 10-12 iterations, 
on average, to solve, with Newton-GMRES requiring considerably more iterations in 
some  cases. These results  are somewhat typical: the Newton-based method required 
gradually more work to solve the problems as  they increased in  difficulty, whereas the 
tensor methods  are less affected. Here,  however, Newton’s method is  more erratic, 
having slight difficulty at Re = 300 and 400, improvements at Re = 500 and 600, 
and  then more  difficulty  on the  three  hardest problems. On the  other  hand, all of the 
tensor-Krylov methods  share almost the exact same level of performance in terms of 
nonlinear iterations. Tensor-GMRES requires slightly more nonlinear iterations than 
the tensor-Krylov methods, but  its local solve with with GMRES is  more  efficient. 
Thus, for this problem, tensor-GMRES is  more  efficient than  the tensor-Krylov meth- 
ods by a small margin,  and TK2 and TK2+ are more  efficient than  TK3 by about  the 
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Figure 1. BFS problem  results for the following  methods: 
TK3 (A, solid line), TK2 (x ,  solid line), TK2+ (+, solid 
line), TG (0, dashed line), and NG (0, dotted line). 

same amount. Incidentally, there  appears  to  be no distinct difference between TK2 
and TK2+. 

4.1.3 Lid driven  cavity  problem 

The lid driven cavity problem consists of the confined flow  of a fluid in a square cavity 
driven by a moving upper boundary. It requires the solution of (40)-(41) on the  unit 
square with the following Dirichlet boundary conditions: 

u=O at z=O,l ,  
u=O at y = O ,  

u = Uoii at y = 1. 

The Reynolds number (Re)  appears in the nondimensionalized problem and is a 
measure of inertial forces to viscous  forces. In our experiments, we increased the 
Reynolds number, which increases the nonlinear inertial  terms in the momentum 
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Re 
500 
1000 
1500 
2000 
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1000 
1500 
2000 
500 
1000 
1500 
2000 
500 
1000 
1500 
2000 
500 
1000 
1500 
2000 
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1000 
1500 
2000 
500 
1000 
1500 
2000 

- 

- 

- 

- 

- 

- 

- 

- 

Table 2. Results of the lid  driven  cavity  problem over a 
range of Reynolds numbers. All methods use a constant forc- 
ing term of r]k = and  right  preconditioning. 

Method 
NG 
NG 
NG 
NG 
TG 
TG 
TG 
TG 
TK2 
TK2 
TK2 
TK2 
TK2+ 
TK2+ 
TK2+ 
TK2+ 
TK3 
TK3 
TK3 
TK3 
TK2 
TK2 
TK2 
TK2 
TK3 
TK3 
TK3 
TK3 

Linesearch 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Curvilinear 
Curvilinear 
Curvilinear 
Curvilinear 
Curvilinear 
Curvilinear 
Curvilinear 
Curvilinear 

- 
Fail 

LSF 

Max 
Max 

Max 

- 
Itn 
9 
11 
29 
21 
10 
15 
200 
200 
11 
20 
200 
200 
11 
25 
120 
200 
12 
15 
46 
200 
11 
14 
200 
200 
11 
15 
19 

200 

- 

- 

- 

- 

- 

- 

- 

- 

Feval 
10 
14 

525 
59 
12 
24 

2723 
2162 

15 
64 

2462 
2561 

15 
97 

1019 
2644 

15 
35 
233 
2152 
15 
19 

2213 
2485 
13 
28 
41 

2226 

- 
LS’S 

0 
2 
26 
14 
1 
7 

198 
200 
3 
14 
199 
200 
3 
19 
114 
200 
1 
6 
39 

200 
3 
3 

199 
200 

- 

- 

- 

- 

- 

- 

1 
6 
12 

200 - 

Btrk 
0 
2 

495 
37 
1 
8 

2522 
1961 

3 
43 

2261 
2360 

3 
71 
898 
2443 

2 
19 
186 

1951 
3 
4 

2012 
2284 

1 
12 
21 

2025 

Arnoldi 
635 
838 
2887 
1770 
709 
1207 

22248 
23662 
1092 
2181 
24756 
30244 
1082 
2778 
15556 
31687 
1302 
1716 
5685 
30006 
1098 
1409 
26243 
34339 
1183 
1768 
2227 
28720 

Time 
2.0eS02 
2.8e+02 
1.6e+03 
6.2e+02 
2.7e+02 
4.le+02 
l.lef04 
l.le+04 
3.9e+02 
8.7e+02 
1.2eS04 
1.5e+04 
3.8e+02 
1.2eS03 
7.le+03 
1.5ef04 
5.leS02 
7.8e+02 
2.4e+03 
1.4e+04 
4.0e+02 
5.lef02 
1.3e+04 
1.9e+04 
4.6e+02 
7.0e+02 
8.9e+02 
1.5e+04 

equation  and makes the solution more  difficult to  obtain. We used a 100 x 100 
equally spaced mesh, which has 30,603 unknowns. 

The  results of the lid driven cavity in Table 2 paint a different picture. For 
Reynolds numbers greater than 2 x lo3, the problem was too difficult to solve  for all 
methods under these  testing conditions. Newton-GMRES is the most efficient  on the 
three problems that it does solve, having one  linesearch failure at Re = 1500. The 
tensor  methods require more nonlinear iterations than Newton-GMRES. We have 
encountered this phenomenon before  on various formulations of the lid driven cavity 
problem, which suggests that  the Newton step is typically a better direction than  the 
tensor direction, possibly because the secant approximation in the tensor method is 
a poor approximation to any local second-order information. 

On the two problems that tensor-GMRES solves, it is  also faster than  the tensor- 
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Krylov methods.  This analysis is in line with the previous observation about  ten- 
sor methods. Because tensor-GMRES may be viewed as  a hybrid method between 
Newton-GMRES and  the tensor-Krylov methods, one could expect its performance 
in terms of nonlinear iterations to fall somewhere in the range between the two. In 
terms of robustness, however, tensor-GMRES could not solve the two tougher prob- 
lems, whereas TK3 and  TK2+ could solve the case Re = 1500. 

Among the tensor-Krylov methods, TK3 is the most  efficient and most robust. 
On  this  test problem, there is a significant difference between TK2 and TK2+. At 
Re = 1000, TK2 is faster than TK2+, but TK2+ was able to solve the problem at 
Re = 1500. 

The benefit of the curvilinear linesearch is also evident on the lid driven cavity 
problem. Comparing TK2 and  TK3, one can see that  the curvilinear linesearch 
requires less  work than  the corresponding run  with the  standard tensor linesearch. 

4.2 Summary of results considering restarts 

This section summarizes some of the conclusions from more extensive testing per- 
formed  in [l]. Numerical tests using restarts clearly indicate that  the tensor-Krylov 
methods needed a larger subspace over  which to solve the local tensor model. TK2 
and TK2+ appeared to  be  better  at  restarting  than TK3. We believe this is  be- 
cause in a single restart cycle the block-2 methods have a polynomial expansion of 
the block-Krylov subspace that contains higher orders of the Jacobian  matrix. That 
is,  after m iterations,  the block-2 methods have terms in the Krylov subspace up to 
J F - ' ,  whereas the block-3 method  has  terms up  to J 7 - l .  For comparison, GMRES 
includes terms  up  to J"-'. 

In addition, the tensor-Krylov methods  tend to stall more frequently than  GMRES(m). 
That is, restarting  the  method does not always appreciably improve the  step after 
another m iterations  and so more restarts are needed to refine the  step.  This behav- 
ior may be attributed  to  the block-Krylov style of the Arnoldi process, which retains 
a  constant vector in & at each restart (Le., s and/or a,  depending upon the algo- 
rithm), keeping part of the subspace unchanged. Restarts rely  on a new and different 
subspace to make progress. 

One alternative for addressing these issues  is incomplete orthogonalization [7, 211, 
which  would require modifications to  the algorithms but may be a better  strategy 
for coping with difficult problems. We may investigate this idea further in future 
research. 

Tests in [I] also  provide  some evidence that tensor-GMRES loses  effectiveness 
when restarting because of the smaller subspace. A smaller subspace provides  less 
information in the projection of the tensor  term  (i.e., P ~ ( s ~ d ) ~ )  as well as including 
a smaller basis for  solving the minimization problem in (ll), where P ~ ( s ~ d ) ~  acts 
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as  another  right-hand side but  the Krylov subspace generated by GMRES starts 
with F k  + J&. Overall, tensor-GMRES and the tensor-Krylov methods  are fairly 
similar-sometimes tensor-GMRES is better  due  to  its efficient  use of GMRES(m) 
and sometimes tensor-Krylov methods  are better due to a more accurate tensor step. 

5 Summary and conclusions 

The main objective of this research was to combine approaches based on direct tensor 
methods  and Krylov subspace methods  into  an effective  large-scale nonlinear equa- 
tions solver. We developed three Krylov-based methods for iteratively solving the 
local tensor model, and we incorporated these three local solvers into  an inexact 
nonlinear solver  framework  for  different  versions of a “tensor-Krylov” method, which 
we denoted TK2, TK2+, and  TK3.  The new tensor-Krylov methods  are especially 
effective at solving  large-scale problems that possess Jacobians at  the solution that 
are highly ill-conditioned or singular. Algorithms based on  Newton’s method exhibit 
very  slow  convergence  on such problems. 

The new methods proposed in this paper solve the local tensor model in a novel 
fashion. Their costs per iteration  are similar to GMRES, requiring only one Jacobian- 
vector product at each iteration  and O(nm) additional  arithmetic  operations beyond 
GMRES per solve. Relative to previous iterative tensor methods,  they  are the only 
methods that produce an approximate tensor step  that solves the local tensor model 
to within a specified accuracy. In addition, these methods  can compute an exact 
solution to  the tensor model in at most n iterations  (in exact arithmetic).  The new 
tensor-Krylov methods  can also utilize much of the technology developed for  Newton- 
Krylov methods, including preconditioning and  restarting. 

Our numerical results suggest that  the new tensor-Krylov methods, as well as the 
tensor-GMRES method, clearly  have  some  big advantages over Newton-GMRES in 
many cases, especially as the problem becomes  more  difficult  or  more ill-conditioned. 
In  addition,  the tensor-Krylov methods have  some potential advantages over tensor- 
GMRES that make them likely to be beneficial  on  some important problems. 

We see many different research questions at this point that we would  like to ex- 
plore. We mention two future extensions here. First,  the  current tensor-Krylov and 
tensor-GMRES implementations need to manipulate data  structures  that are inac- 
cessible in many linear solver  packages, so we would  like to simplify these methods 
and investigate better ways to incorporate  stand-alone linear algebra packages.  Sec- 
ond, changing the current scalar implementation of the block-Arnoldi method to a 
true block implementation (i.e., simultaneously multiplying a block of vectors by the 
Jacobian) may  improve memory efficiency and make the tensor-Krylov methods even 
more  economical and  attractive. These two changes would  make the methods more 
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accessible and possibly  more  efficient,  respectively, than their current implementa- 
tions. 
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