
 

 
SANDIA REPORT 
 

SAND2004-1485 
Unlimited Release 
Printed May 2004 
 
 
Using a Dynamic Point-Source 
Percolation Model to Simulate Bubble 
Growth 

D. Zeigler, J. Zimmerman, D. Cowgill 
 

 
Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico  87185 and Livermore, California  94550 
 
Sandia is a multiprogram laboratory operated by Sandia Corporation, 
a Lockheed Martin Company, for the United States Department of Energy’s 
National Nuclear Security Administration under Contract DE-AC04-94AL85000. 
 
 
 
Approved for public release; further dissemination unlimited. 
 
 
 

 
 



 

 
 

Issued by Sandia National Laboratories, operated for the United States Department of Energy by 
Sandia Corporation. 

NOTICE:  This report was prepared as an account of work sponsored by an agency of the United 
States Government.  Neither the United States Government, nor any agency thereof, nor any of 
their employees, nor any of their contractors, subcontractors, or their employees, make any 
warranty, express or implied, or assume any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represent that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government, any agency thereof, or any of their contractors or subcontractors.  The 
views and opinions expressed herein do not necessarily state or reflect those of the United States 
Government, any agency thereof, or any of their contractors. 
 
Printed in the United States of America. This report has been reproduced directly from the best 
available copy. 
 
Available to DOE and DOE contractors from 

U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN  37831 
 
Telephone: (865)576-8401 
Facsimile: (865)576-5728 
E-Mail: reports@adonis.osti.gov 
Online ordering:  http://www.osti.gov/bridge  
 

 
 
Available to the public from 

U.S. Department of Commerce 
National Technical Information Service 
5285 Port Royal Rd 
Springfield, VA  22161 
 
Telephone: (800)553-6847 
Facsimile: (703)605-6900 
E-Mail: orders@ntis.fedworld.gov 
Online order:  http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online  

 
 

 
 
 
 
 
 
 
 
 
 
 

 
2 



SAND2004-1485
Unlimited Release
Printed May 2004

Using a Dynamic Point-Source Percolation
Model to Simulate Bubble Growth

David A. Zeigler
Jonathan A. Zimmerman

Science-Based Materials Modeling Department

Donald F. Cowgill
Engineered Materials Department

Sandia National Laboratories
P.O. Box 969

Livermore, CA 94551

Abstract

Accurate modeling of nucleation, growth and clustering of helium bubbles within metal tri-
tide alloys is of high scientific and technological importance. Of interest is the ability to
predict both the distribution of these bubbles and the manner in which these bubbles inter-
act at a critical concentration of helium-to-metal atoms to produce an accelerated release
of helium gas. One technique that has been used in the past to model these materials, and
again revisited in this research, is percolation theory. Previous efforts have used classical
percolation theory to qualitatively and quantitatively model the behavior of interstitial he-
lium atoms in a metal tritide lattice; however, higher fidelity models are needed to predict
the distribution of helium bubbles and include features that capture the underlying physical
mechanisms present in these materials.

In this work, we enhance classical percolation theory by developing the dynamic point-source
percolation model. This model alters the traditionally binary character of site occupation
probabilities by enabling them to vary depending on proximity to existing occupied sites, i.e.
nucleated bubbles. This revised model produces characteristics for one and two dimensional
systems that are extremely comparable with measurements from three dimensional physical
samples. Future directions for continued development of the dynamic model are also outlined.

Keywords: percolation theory; helium; bubbles; nucleation; growth; accelerated release.
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2 Introduction

The nucleation, growth and interaction of helium (He) bubbles in metal hydride materials
is of high scientific and technological importance. Helium is present in these systems due
to the use and decay of tritium. Since He is insoluble in metals, the He atoms accumu-
late in the material and cluster, leading to the formation of nano-scale bubbles that grow
as the concentration of He within the metal increases. Such bubbles have been observed
experimentally within palladium [1, 2] and vanadium [3] tritide alloys. A key phenomenon
intricately tied to the presence of these bubbles is the observation of helium gas released
from the alloy at an accelerated rate once a critical concentration of helium-to-metal atoms
(He/M) is reached. For example, examination of aged palladium tritide samples has revealed
that when the ratio He/M reaches values between 0.5 to 0.55 [4, 5], a large amount of 3He
is released. This critical ratio depends upon a number of factors, including microstructure,
system temperature, and whether or not tritium replenishment occurs.

Engineering needs require the development of numerical models capable of predicting the
characteristics of metal hydride systems when accelerated release of He gas begins. This
sudden release of the He through the material is a trait of percolation models. Percolation
theory was originally developed to describe how small branching molecules form larger and
larger macromolecules if more and more chemical bonds are formed between the original
molecules [6]. The first formal study of percolation theory was conducted by Broadbent and
Hammersley [7] who introduced lattice models for the flow of a fluid through a static random
medium. Furthermore, they showed rigorously that no fluid will flow if the concentration of
active medium is smaller than some nonzero threshold value [8]. Another feature introduced
was the notion of a percolation probability, the likelihood that any given region of the medium
is sufficiently well connected to the rest to be available for conductance.

Percolation models have been formulated and used to provide understanding of the inter-
action of the helium within metal hydride lattices. Weaver and Camp [9] used percolation
theory along with observations made with NMR, nuclear magnetic resonance, to hypothe-
size on mechanisms leading to detrapping of interstitial He within titanium tritides. Camp
later extended this work [10] to show that the critical concentration for accelerated release
of He for a host of CaF2-structure ditritrides is independent of metal atom species. Spulak
eventually used these early efforts to provide quantitative predictions of the critical release
concentration, and compared these estimates with data gathered from observation of metal
tritide thin films [11]. Ronchi [12] applied a bond percolation model to study the interlink-
ing of bubble clusters. Massih [13] utilized a Monte Carlo simulation to obtain the fraction
of interlinked bubbles as a function of the bubble concentration in the material. Although
these efforts have been crucial in modeling the onset of accelerated release of He gas, more
detailed numerical models are needed to predict the distribution and interaction of He bub-
bles at accelerated release, and characteristics related to the underlying physical processes
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2 INTRODUCTION

active when bubble linkage occurs (assuming that such a linkage is a precursor to accelerated
release). In addition, recent advances in computer technology allow for percolation models
to be used in a more powerful manner than in past efforts.

The goal of this work is to understand and model the evolution of the spacing distribution
between He bubbles. This is accomplished by constructing a model based on percolation
theory that possesses enhancements to closely simulate the nucleation, growth and clustering
behavior of He bubbles. Section 2 provides a brief description of the classical percolation
theory. Section 3 details the construction of the dynamic point-source percolation model
specifically constructed to provide a model for bubble nucleation and growth within the
classical percolation theory framework. The section closes with the application of the dy-
namic model to a one-dimensional and two-dimensional medium and the comparison with
experimental data. Section 4 describes a modern treatment of percolation methods based on
the use of fractals. Finally, section 5 provides a summary of the research presented in this re-
port, and outlines future possibilities for continued development of the dynamic point-source
percolation model.
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3 Classical Percolation Theory

Percolation theory describes the behavior and properties of particles spreading through and
interacting with a random medium. To clarify the terminology used for percolation theory,
we define a medium as an infinite set of sites and the diffusing particles are the fluid. The
fluid travels through the medium along paths or bonds connecting the sites. If a site is
occupied by a fluid particle, then the site is said to be wet. The random process of fluid
particles traversing the medium to occupy sites can be approached either as a “classical”
diffusion problem or a percolation problem. In the diffusion problem, it is assumed that
the fluid elements exhibit random motion in a constraint-free medium. As such, a diffusing
particle may reach any position in the medium. Percolation problems are distinguished from
diffusion problems by two crucial properties:

• the stochastic behavior is determined by the medium. Unlike the diffusion problem
where the stochastic behavior is associated with the fluid particle, the medium dictates
which pathways are available to the particles. This condition implies a topography to
the medium. In essence, by restricting the flow of individual particles, flow channels
and wells are created.

• the presence of a percolation threshold. By the property of the medium provided above,
the possibility exists that the motion of every particle is constrained to a region of size
smaller than the entire domain. That is, the fluid is not allowed to flow through the
medium in an unconstrained fashion. Associated with each configuration is a scalar
value called the percolation threshold, or critical probability as it is often referred to,
which determines if the fluid is restricted to a finite region. The value of the percolation
threshold represents the fractional number of sites that must be occupied in order for
the fluid to wet sites over the entire span of the medium. Below this value, only finite
regions of occupied sites exist and fluid cannot flow through the whole medium.

Percolation processes are similar to the diffusion process but represent fundamentally differ-
ent physical mechanisms. A typical situation in which the diffusion process is valid is the
motion of one molecule in a gas as it is scattered by other molecules. When the gas is suffi-
ciently dilute, the ‘memory’ of previous collisions can be neglected in treating each scattering
event as a random process, with a fixed distribution of results. When the scattering medium
exhibits no memory, it is possible to think of the random scattering as a property of the one
molecule studied. However, in the percolation process there is a distinction between the fluid
and the medium. While the medium may vary in a random way spatially, it’s randomness
does not vary in time. Thus, memory effects cannot be neglected and the randomness is
considered a property of the medium.

13



3 CLASSICAL PERCOLATION THEORY

A simple example of the differences between percolation and diffusion theory is the Polya
walk in one dimension [14]. Assume a medium which can be described by a set of points
placed at unit intervals along a straight line. The particles of the fluid move in steps of unit
length in either direction with equal probability. The process is diffusive when the direction
of the step is chosen at random, with the medium playing a completely passive role (the left
image in figure 1.) In the corresponding percolation process the fluid is the same as before,
but this time the points defining the medium are labeled with arrows pointing either to the
left or to the right with equal probability and a particle is required to move from a given
point only in the direction of the arrow at that point (the right image in figure 1.) The
motion of the particle is thus governed by the medium. In this percolation process a particle
can get trapped and be forced to oscillate between two points whose arrows point towards
each other, while the possibility of trapping does not exist in the diffusion picture. This

Figure 1: One-dimensional Polya walk. The left figure corresponds to a diffusive model
where the medium is neutral and the particle has equal probability of moving left or right.
The right figure is the percolation model. The medium dictates the particle displacement
with equal probability of motion to the left or right. Notice that this configuration forms a
well which traps the particle.

possibility of trapping, as well as the notion of blocking, defined as the inability for a fluid
particle to move in the direction of particular sites, is what distinguishes percolation from
diffusion.

Two distinct philosophies exist regarding how a percolation problem is conceived. These
are the bond percolation model and site percolation model. These models are differentiated
by associating the medium’s properties with either the bonds or the sites, respectively. For
example, consider the blocking of fluid particle motion through the medium. The bond
percolation model would consider the bonds, the paths between sites, to be blocked. In
contrast, the site percolation model considers the sites themselves to be blocked but the
paths between sites to be unblocked. In this work, we use a site percolation model.

Each site has a probability p of being occupied. It is assumed that fluid is allowed to flow
freely between any two adjacent wet (occupied) sites. The expression PN(p) is defined as
the probability that a single arbitrary site is not only occupied, but is part of a cluster of
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N sites that are connected and also occupied. The term “connected” here means that all
the sites belonging to such a cluster are nearest neighbors with at least one other site also
belonging to that same cluster. The probability of a site belonging to an infinite cluster is
P (p) = limN→∞ PN(p). Theoretically, for a lattice of infinite extent an infinite cluster spans
the entire lattice. This does not imply that all sites are occupied, but rather at least one
pathway exists between occupied sites that extends to anywhere within the lattice. For a
finite system with boundaries, the infinite cluster refers to a pathway that connects multiple
boundaries of the system, e.g. top and bottom or left and right. P (p) is called the percolation
probability, but is also known as the gel fraction when dealing with liquid/solid problems.
The critical probability for the lattice is defined as pc = sup {p|P (p) = 0}. That is, pc is the
least upper bound on the set of all p such that P (p) = 0. When p < pc, all clusters are of
finite size. Hence, no infinite cluster exists and P (p) = 0. When p > pc, a cluster of infinite
size is formed and a percolation channel exists, i.e. P (p) 6= 0. This corresponds to a change
of state for the medium. Figure 2 shows the change from a medium which has finite clusters
of fluid, thus creating a barrier for the fluid, to one that allows the fluid to pass through.

Figure 2: The left image shows a lattice with an occupation probability of ∼0.1259. Notice
that fluid does not flow through the medium as all clusters are of finite size. The right image
is an identical lattice with occupation probability of ∼0.2727. A cluster has formed which
links the top and bottom borders indicating that fluid percolates through the medium.

The value of the critical probability, pc, is dependent upon the geometry and the dimension
of the lattice. It can be determined analytically, approximated by series expansion, or

15



3 CLASSICAL PERCOLATION THEORY

calculated using a Monte Carlo simulation. Analytic techniques have been utilized primarily
in two dimensional lattices. In fact, the critical probability values are known for triangular,
square [15], honeycomb and Kagome [16] lattices. For generalized lattices, Sykes and Essam
[17] employed a geometric argument to construct complementary lattice pairs, L and Lc.
Denoting pc and pc

c as the critical probabilities of L and Lc, respectively, the matching
property dictates that pc + pc

c = 1. D’Iribarne et. al. [18] utilized graph theory, through
the minimal spanning tree, to determine site percolation thresholds for regular 2D lattices.
Recently, an approach using preferred directions has been conjectured by Rosowsky [19].
This method begins with the existence of a fixed, “pivotal” site for which a change in status
of the site from occupied to unoccupied would separate an infinite cluster into two finite and
disconnected clusters. A set is constructed of all possible configurations of the infinite cluster.
Then, a probability function R(p) is computed to characterize this set. The approximate
value of pc corresponds to the maximum of R(p) for the interval ]0, 1[.

Determining pc by series expansion relies upon estimating the mean cluster size, S(p). At
p = pc, there is a finite probability for an infinite cluster to be formed. Therefore, as p
approaches pc from values less than pc, S(p) must become infinite. Assuming that S(p)
can be expressed as the series summation S(p) =

∑
n anp

n, the series diverges as p → pc.
The radius of convergence for the power series gives a lower bound for pc. Because of the
complexity of these series, numerical evaluation is often used.

The Monte Carlo approach is based upon the method of the same name used to simulate
thermal systems [20], although it is much simpler due to the random nature of the perco-
lating medium. For a particular lattice and set occupation probability, p, a lattice profile is
constructed by evaluating the occupied status at each site. This is accomplished by selecting
a random value, r, over the unit interval, [0, 1] at each site. If r ≥ p then the site is occupied;
otherwise the site remains empty. Note that this dictates that the maximum occupation den-
sity of the lattice will be p. Once each site has been evaluated, one may analyze the lattice
to check whether a channel is formed. Repeating this several times provides an estimate
for P (p) to be the ratio of the number of configurations which yielded channel formation
over the total number of evaluated configurations. By definition, pc is the largest value of
p such that P (p) is zero. The most computationally intensive portion of this method is the
determination of channel formation, and special algorithms must be used to perform this
task. Several algorithms [21, 22] have been developed to efficiently count the clusters and
determine the percolation status. The Hoshen-Kopelman (HK) algorithm [23] is a simple
algorithm that utilizes labeling clusters. Unfortunately, the HK algorithm examines lattice
sites with regard to channel formation in a preferred direction and only evaluates the lattice
for a static value of p. Moreover, for large lattices, the memory required to analyze the
lattice could exceed that available by the computer.

A more efficient algorithm which does not have the limitations of the HK algorithm is the
Newman-Ziff (NZ) algorithm [24, 25]. The NZ model is more versatile than previous models
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in that it allows one to change p on the fly and utilizes a “union-find” algorithm (also
known as the “weighted union-find with path compression” [26]) to generate cluster trees
that decreases the memory requirements of the simulation. Each cluster is represented as
a tree with a pointer to a root site. When an occupied site is encountered, the clusters to
which the site belongs are identified by traversing the respective trees until the root sites
are found and then, if necessary, amalgamating the trees. This amalgamation takes place
by making the smaller tree a subtree of the larger, called “weighting”, and by changing the
pointers of all sites along the tree path traversed to reach the root site to point directly to
the root, called “path compression”. The Newman-Ziff model boasts the powerful advantage
of being an O(N) algorithm, meaning that calculation time for determining system property
values for the entire range of occupation probabilities, 0 ≤ p ≤ 1, is proportional to N , the
number of lattice sites that comprise the system.
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4 Dynamic Point-Source Percolation Theory

While classical percolation theory has enjoyed much success, it possesses many characteristics
that make it inadequate to accurately model He bubble growth. For example, the classical
model assumes that the system is in a static state of equilibrium. Also, the occupation
probability, p, is assumed to be constant and uniform over the entire lattice. Moreover, the
percolation mechanism is purely stochastic and does not capture the underlying physics of
the system. This random approach restricts the manner in which occupied sites are selected
to a single methodology.

To address these issues, a new approach to the percolation model must be considered. The
main focus of any alterations to the classical theory is to gain the ability to reproduce
observed physical behavior in simulated systems. The growth pattern of the He clusters
to form channels using bubble growth is substantially different than a collection of random
sites. The bubble growth mechanism may lead to lower critical probability values than those
determined using classical theory. Another issue is the placement of the occupied sites. As
bubbles form in the medium they are more likely to nucleate with maximal spacing from
other occupied sites. Thus, the random process of determining occupation sites is weighted
towards vacant sites. To surmount these issues, the dynamic point-source percolation model
(DPSP) is introduced as a new approach to percolation theory that features a dynamically
changing occupation probability field associated with the lattice and a two-step percolation
mechanism reflecting distinct cluster behavior.

4.1 Methodology

Suppose that the medium can be described using a lattice, L = {lijk|i ∈ I, j ∈ J, k ∈ K},
embedded in R3 where I, J and K are finite subsets of Z, the set of all integers. Thus, each
site in the medium is associated with a lattice point, lijk and vice-versa. Since L ⊂ R, lijk
can be expressed using the ordered triple (xi, yj, zk) for every i, j, k. Let us denote M to be
the smallest convex subset of R3 containing L and define the piecewise analytic function,
p : M → [0, 1]. p(lijk) represents an occupation probability associated with site lijk. At the
start of the percolation process, all sites are available to become occupied; hence, p = 0 for all
sites. If site lijk becomes occupied, then p(lijk) = 1 and it is assumed a bubble has nucleated
at that site. Once a site is occupied, the occupation probability of all neighboring sites
within a specified distance, referred to as the site’s sphere of influence (SOI), are modified
by a potential function. This function alters the value of p for all neighboring sites to lie
within the interior of the interval ]0, 1[. The dependency of p as a function of distance from
a fully occupied site is determined by the process being modeled. Either way, for a pair
of sites separated by a large distance, the action of one lattice point being occupied will

19



4 DYNAMIC POINT-SOURCE PERCOLATION THEORY

have little influence on the occupation probability of the other, a characteristic consistent
with physical behavior. The value for p is dynamic in that as a site becomes occupied, the
occupation probability field reflects the change. Figure 3 depicts the 3-dimensional surface
and 2-dimensional contour plots of the occupation probability over a two dimensional lattice
with 3 occupied sites. In a sense, the variable p has now taken on a special meaning. Not
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x

Figure 3: 3-dimensional surface (left) and 2-dimensional contour (right) plots of the occu-
pation probability, p, over a two dimensional lattice of 8 square units with three randomly
selected nucleation sites. The occupied sites are located at (2,5), (4,6) and (6,2). Each site
has a SOI value of 1.5.

only does it represent the probability that a site is occupied, but its inverse q ≡ 1− p can be
considered the probability associated with the possibility of future occupation. Hence, once
a site is filled, p = 1 and q = 0, not only can it not be filled again, but neighboring sites
have a low probability of becoming occupied.

As mentioned above, cluster growth is modeled using a two-step process. The first step,
nucleation, uses the occupation probability field to select nucleation sites for the He bubbles
in the medium. As nucleation sites are chosen (site occupation), the occupation probability
field changes dynamically, affecting subsequent nucleation. This stage concludes when a
prescribed occupation density is attained (∼10 ppm.) Upon the conclusion of the nucleation
stage, the growth stage begins which is characterized by the growth of each nucleated site.
The simulation concludes when a channel of connected bubbles is formed through the lattice.
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4.1 Methodology

4.1.1 Nucleation

The nucleation stage is characterized by the clustering of He within the metal lattice, lead-
ing to the formulation of nano-scale bubbles. This clustering is caused by the mechanism
of self-trapping of He atoms [27]. At moderate concentrations of He, on the order of 1 ppm
or greater, mobile He atoms encounter one another with enough regularity that they form
small clusters of 2 to 5 atoms that are energetically favorable to remaining separated. At
this point, self-interstitial defects of the metal form and remain in close proximity to, but
non-uniformly distributed around, the He cluster. As some or all of the He atoms ”fall into”
the conjugate vacancies created by the metallic self-interstitial, their mobility is decreased
and it can be considered that a bubble has formed. The strain field produced by the combi-
nation of the existing He cluster and the metallic self-interstitial defects, along with binding
energetics of the trapped He, promote further trapping of He atoms to the bubble. This
mechanism of self-trapping provides the physical reasoning for use of the SOI; a lowering of
the mobile or diffusing He concentration occurs in the vicinity of existing He bubbles, and
the probability for the nucleation of a new bubble (q) is proportional to the square of this
decreased concentration.

As the distribution of locations where this self-trapping and subsequent bubble nucleation
occurs is initially random, the fundamental mechanism in the numerical simulation is largely
stochastic but favors regions of the lattice that possess a lower density of occupied sites. The
first step in the process is to randomly select a potential nucleation site from the candidate
list of unoccupied sites. Influencing the choice of candidate sites is the occupation probability
field, p. At the inception of the nucleation stage, the lattice is empty in that none of the sites
are occupied. This corresponds to a uniform occupation value of zero, p(lijk) = 0 ∀ lijk ∈ L.
That is, each site of the lattice is equally likely to be settled by an individual He atom. Once
a random site is filled in, the magnitude of p rises to 1 at the site. Lattice points within the
occupied site’s SOI are also modified by a prescribed potential function.

Because of the presence of a filled site, the selection of subsequent candidate sites is not
as simple as randomly selecting a lattice point. Once a candidate site is chosen, there is
a chance that the lattice point is an undesirable location for nucleation. For example, a
candidate site near an already occupied site is less likely to be a nucleation site than one
remotely located from filled lattice points. The value for p determines whether a candidate
site is “accepted” as a nucleation site. Once a candidate site is found, a randomly selected
value, referred to as the acceptance probability, is compared against p. The site is then a
nucleation site if the acceptance probability is greater than p at that site. Hence, for the
initial step where the lattice is empty, since p = 0 then any candidate site is automatically
a nucleation site. As the simulation progresses, it becomes more difficult to form nucleation
sites due to the saturation of occupied sites in the medium. In fact, the nucleation stage
concludes once a prescribed density of nucleation sites is attained, approximately 10 ppm.
This value is determined by matching the bubble density of the simulated system to physical
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4 DYNAMIC POINT-SOURCE PERCOLATION THEORY

measurements of bubble densities made with transmission electron microscopy (TEM).

4.1.2 Growth

Once the nucleated He bubbles have settled in the metal, as the concentration of He increases
the He bubbles grow. This continues until a critical concentration of He-to-metal atoms is
reached and gas is released from the material at an accelerated rate. The growth stage
is marked by a distinct change in the methodology with which sites are occupied. Each
nucleation site is a He bubble and additional He will act to enlarge the bubble rather than
form new nucleation sites. Hence, each nucleation site can be considered as a root element
of a cluster containing at least one element. To simulate bubble growth, at each time step,
each cluster is allowed to absorb neighboring unoccupied sites in a distinct growth pattern.
As distinct bubbles (clusters) merge, they form larger clusters which eventually grow to form
a channel.

For example, assume every nucleation site has a growth pattern described by unit rate
spherical growth. That is, for time step t, the elements of each cluster are the lattice sites
located within t units of the root site. At each nucleation site, after the first time step the
cluster will contain all sites within a distance of 1 unit from the root element; after the
second step the cluster will then contain all sites within a distance of 2 units from the root
element; etc. Eventually, this process will continue until the bubbles grow together to form
a channel. In the simulation, we would also want to scale the growth rate of each root site
according to the lattice source volume it encompasses, with larger spacings between root
sites leading to more rapid growth.

4.2 Numerical Code

At the time of this writing, our numerical code has only been developed sufficiently to
simulate the nucleation stage for lattices with a regular rectangular geometry. Note that by
taking a sufficiently small nodal spacing, generalized lattice geometries can be approximated
by embedding them into a regular lattice.

4.2.1 One-dimensional Model

The one dimensional model was first studied by Cowgill [28]. Assume a line with lattice
points separated by a unit distance. An initial distribution of bubble spacing is specified by
a function f(x) where the random variable, x, represents the bubble spacing, i.e. the SOI is
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4.2 Numerical Code

x/2 units. The SOI is consistently maintained to be half the distance between occupied sites.
For each bubble, the occupation probability within the SOI is determined by the ratio of
available nucleation sites with total nucleation sites. Since this is a one dimensional model,
for spacing x the nucleation probability within the SOI is p = [(x− 1)/x]2. Suppose that
a new bubble nucleates y units from a bubble with SOI x. Then a new bubble forms of
SOI y1 = y/2 units while the SOI of the adjacent bubbles shrink to y2 = (x + y)/2 and
y3 = x− y/2. The bubble spacing distribution is then adjusted by adding the probability of
the spacing values, yi, i = 1, 2, 3, created from the original spacing x by the formulation,

f(y1) = f(y1) + pf(x)

f(y2) = f(y2) + pf(x)

f(y3) = f(y3) + pf(x)

f(x) = f(x)(1− 2p).

A schematic of this process is shown in figure 4. In effect, this algorithm takes bubbles of

x

p

y

p

12 3

Figure 4: The one dimensional bubble nucleation model. (Top) Initially, bubbles are uni-
formly spaced at a separation distance, x, and have an associated nucleation probability field,
p. (Bottom) When a new bubble is nucleated at a distance y from an existing bubble, the
probability field changes accordingly and the spacing distribution function is recalculated.

larger radii and replaces them with multiple bubbles of smaller size. It is assumed that if
bubbles are sufficiently close together they would merge to form a larger bubble. Hence, a
minimal bubble spacing distance is enforced. This one dimensional model is slightly different
from the theory described in the previous section in that the occupation probability field
p associated with each occupied site is changed through modification of the dimension of
the SOI when a new bubble is nucleated. This is somewhat different from superposing
the occupation probability fields of many bubbles in close proximity to one another, the
conceptual model to be used in multiple dimensions and to be discussed in the next section,
but has a similar end result.

This model was applied to a 100 unit length lattice. It was assumed that the lattice was
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4 DYNAMIC POINT-SOURCE PERCOLATION THEORY

initially empty, represented by setting f to be unity at 100 and 0 elsewhere. The appearance
of the spacing distribution is shown in figure 5 after nucleating 500 bubbles.
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Figure 5: Bubble spacing distribution after nucleating 500 bubbles in a 1D lattice of 100
unit length. The minimal bubble spacing is approximately 5 units

4.2.2 Two-dimensional Model

It is the goal of this study to be able to study percolation via bubble growth using generalized
lattice geometries. Early attempts at creating the simulation for generalized geometry were
faced with slow performance due to substantial I/O calls to the hard drive to store and
recall lattice geometry information during runtime. While smaller lattices (≤2000 sites)
performed adequately by storing all geometry information in dynamic arrays, these were too
small to be informative. Regardless of lattice size, dynamically updating all nodal data once
a bubble had nucleated slowed performance time. Consequently, it was decided that a regular
lattice with unit spacing would provide a solid foundation since all geometry information is
known by analytic argument, thereby requiring minimal memory during the execution of the
simulation. Storing occupied sites requires only recording the index associated with each site
and the Euclidean coordinates can be explicitly determined. Furthermore, the lattice size is
only restricted by the range of integer values allowed by the processor.

The sites of the lattice are labeled by a sequential subset of the natural numbers, N ⊂ N.
Starting in the lower left corner of the lattice, label the first site “1”, the site adjacent to the
right as “2”, etc. until the end of the row is reached. Indexing is resumed at the left-most
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4.2 Numerical Code

site of the row immediately above. All geometric data is known for each site simply by the
index value. Furthermore, since the size of the lattice is already known, explicit information
concerning individual site locations in 2-space and neighbors is not needed. Subsets of the
lattice are also indexed by N . For example the collection of occupied sites is a dynamically
allocated array of indices which resides in memory. The occupation probability function, p,
can then be generated on the fly using the indices of nucleated bubbles. After each nucleation
step, the array of nucleated sites can be recorded to the hard drive. By assuming the SOI
radius is uniform throughout the lattice, each file generated only needs to store the list
of indices corresponding to nucleated sites. For a lattice of, say, 109 lattice points, at the
conclusion of nucleation when the density is approximately 10 ppm, all that is required is to
store an array of 104 integer values. It should also be noted that this approach can be easily
adapted to accommodate lattices in higher order spaces.

Suppose that the medium can be described using a regular rectangular lattice of M rows
and N columns. Each site is represented as (i, j) where i = 1, . . . ,M and j = 1, . . . , N .
Consider the case where M = N = 10, 000. For a final occupation density of 10 ppm the
profile at the conclusion of the nucleation stage is seen in figure 6. For this simulation, the

2000 4000 6000 8000 10000

2000

4000

6000

8000

10000

Figure 6: The profile for a 10,000 x 10,000 site lattice with a final occupation density of 10
ppm at the conclusion of the nucleation stage. Using serial code on a single processor this
calculation required ∼480 seconds.

probability function used was

p = 1−
n∏

i=1

q̂ (ri), (1)
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4 DYNAMIC POINT-SOURCE PERCOLATION THEORY

where

q̂ (ri) ≡


0 if ri < 1,

(1− 1
r3
i
)2 if 1 ≤ ri ≤ S,

1 if ri > S.

(2)

and ri represents the distance between the chosen site being evaluated and one of the re-
maining neighbor sites, i = 1, 2, . . . , n, within the chosen site’s SOI that are occupied. In
the expression for q̂ (ri), S is the size of the SOI. The function given in equations (1) and (2)
has the property that for a given site, if one or more nearest neighboring sites are already
occupied, it will possess a very high occupational probability and is unlikely to be filled
in the future. For example, if the site is a nearest neighbor to a single occupied site, it’s
value for p equals 0.9999. If the site is second nearest neighbors to the occupied site, with a
distance ri equal to

√
2, the value of p is approximately 0.5775. The value chosen for S was

5, effectively truncating any site with a value of p less than 0.0158 down to a value of zero.

The corresponding spacing distribution between occupied sites as determined by the DPSP
model and experimental data is shown in figure 7. The experimental data was taken from
NMR data on a 3D lattice. The expressions for q̂ in equation (2) is modified by a factor of
1

150
to ensure that integration of the probability field over the entire domain at the desired

density is normalized. Despite the difference in the dimensionality, i.e. a 2D computation
compared with measurements of a 3D system, it is a validation of this approach that the
qualitative and quantitative values for the distribution are similar in the experimental and
2D DPSP simulation.
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Figure 7: Spacing distribution corresponding to the 10,000 x 10,000 site lattice. The left
image is the distribution over the range of spacing values; the right image is a close up of
the same distribution. The experimental data is for a 3D lattice and is represented by the
solid line and the dashed line represents the DPSP model result.
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An alternate expression for q̂ has also been examined:

q̂ (ri) ≡


0 if ri < 1,

1− exp
[
− (ri−1)2

2

]
if 1 ≤ ri ≤ S,

1 if ri > S.

(3)

This exponential function results in larger values of p for neighboring sites to an occupied
site. While the physical significance of this expression in unclear, it may become useful if
specific mechanisms can be connected to the nucleation process. Future simulations will be
performed to compare the traits of this function with the earlier one given.

Although the growth model has not been implemented, the basic framework has been es-
tablished. At the conclusion of the nucleation stage, a file is stored recording the nucleation
sites. At present, it is assumed that the bubbles grow in a uniform radial pattern. For
example, if the bubbles grow at the rate of r units per time step, after n growth steps, the
bubble contains all sites within radius n of a nucleation site. After each step an analysis of
the lattice is conducted in which the spacing distribution, cluster sizes and whether chan-
nel formation has occurred is recorded. Since the bubble growth rate is uniform across the
lattice, the number of growth steps required for bubbles emanating from the root sites can
be found using the index values for each nucleation site. Using the same example as above,
denote 3 sites, {pi}, i = 1, 2, 3 and dij to be the distances between pi and pj. Then, the
bubbles formed by pi and pj merge after dr(dij−1)/2e steps where dxe represent the smallest
integer ≥ x. The order in which bubbles merge is recorded during the simulation, as is the
time at which channel formation across the lattice is achieved. As stated earlier, the fidelity
of this growth process can be improved by including scaling of the growth rate according to
the spacing between a given root and its neighbors, which we associate with source volume
for the root bubble.
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5 Fractal Model of Percolation

A modern treatment of percolation theory has emerged from the study of fractals. A detailed
description of the fractal model can be found in [29] and [30]. For the purposes of this paper,
attention is focused on the two dimensional case. Earlier, we defined a percolation cluster
as a cluster that forms a channel that connects the boundaries of the medium. The symbol
M(L) denotes the number of sites that belong to the largest cluster on the LxL sublattice.
It is desirable to know how M(L) varies as a function of L. For p > pc M(L) increases
almost linearly with the area of the frame, L2. Hence, M(L) ∼ PN(p)L2. For the limit of
L → ∞, this tends to P∞(p)L2 where P∞(p) is simply the density of sites belonging to the
percolating cluster. For p < pc we expect M(L)/L2 → 0 as L →∞. At p = pc, one expects
M(L) to increase almost as L2. Thus, from numerical experiments,

M(L) ∼L→∞


log L, p < pc

LD, p = pc

LE, p > pc.

Thus, at p = pc M(L) grows as a power law, LD, where D is the fractal dimension, while
M(L) grows as LE, where E is the Euclidean dimension of the lattice, for p > pc. This shows
that the percolation cluster is fractal with fractal dimension D at the threshold. Current
numerical evidence suggests that D = 91/48 ∼ 1.89583 for all 2-dimensional lattice site
percolation problems. Thus, we may conclude that the mass of the cluster increases on the
average with L as

M(L) ∼ ALD, (4)

where D = 91/48 and A is the effective amplitude estimated over finite size samples. Note
that this estimate is valid only for asymptotically large L. For “realistic” L values, the
estimate can be modified using correction terms derived by transfer matrix methods [31]. It
is interesting to note that the Mandelbrot-Given curve has fractal dimension D = 1.892....

A characteristic of the fractal model is self-similarity. That is, if one picks a random location
on the profile of the fractal, then the macroscopic geometry is replicated at smaller scales as
one approaches the point. As seen in [29], the percolation cluster is statistically self-similar.
This assertion can be made quantitative by a technique called real space renormalization.
This concept is best shown by considering a 2-dimensional triangular lattice as shown in
figure 8. Previous results have shown that pc = 0.5 and D = 91/48. Regroup the sites as
follows: basic cells of b2 = 3 sites are replaced by single new sites which are considered to
be occupied if a majority of the sites in the cell are occupied. This changes the scale of the
lattice by a factor of b =

√
3. The new lattice has new concentration p′ of occupied sites

where

p′ = p3︸︷︷︸
probability of finding 3 occupied sites

+ 3p2(1− p)︸ ︷︷ ︸
probability of finding 2 occupied sites

. (5)
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5 FRACTAL MODEL OF PERCOLATION

Figure 8: Example of real space renormalization with respect to a single triangle lattice
element. If the majority of nodes is occupied, the entire cell is considered to be an occupied
node in the renormalized lattice. If the majority are empty, the cell is taken to be vacant.

Note that p = pc solves the iteration equation 5. In fact, pc is a fixed point of the renor-
malization transformation (of course, p = 0, 1 are also fixed points.) At the percolation
threshold, the scaling law (4) applies for the cluster obtained after scaling by a factor b. But
the linear size of the scaled lattice is only L/b. Therefore, M (L/b) ∼ A (L/b)D. Hence,
M(L) = bDM (L/b). This implies that M(L) must have power law structure. Thus, the
percolation cluster has self similarity and fractal geometry. Note that this argument is valid
asymptotically for large L and L/b but valid for all b.

At percolation, there exists a wide distribution of cluster sizes. As p is decreased below pc,
the cluster sizes decrease. Above pc, there are clusters of various sizes in the holes of the
percolating cluster. Denote s to be the number of sites in a cluster 1 and let Rg(s) be the
radius of gyration of a cluster having s sites. This is defined as the root mean square radius
of the cluster measured from its center of gravity. When a finite cluster (at pc) is analyzed
inside a box with side L ≤ 2Rg(s), then it appears to be a part of the incipient percolation
cluster spanning the box. One finds Ms(L) ∼ LD (as usual.) However, when the box size is
increased beyond 2Rg, the cluster edges come into view. For sufficiently large L the entire
cluster fits inside Ls. As L increases, M(L) does not increase. The mass, Ms(L), inside the
box of size L on a cluster consisting of s sites is given by

Ms(L) = LDf

(
L

Rg

)
→

{
A (L/Rg)

D , L << Rg(s)
s, L >> Rg(s).

(6)

1Note that this is different from M(L). Recall that M(L) is the number of sites in the largest cluster.
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Notice that f(x) → A as x = L/Rg(s) → 0. However, Ms(L) must be independent of L for
x >> 1. So, f(x) ∼ x−D (Why? So LD is cancelled in (6)). Hence,

s = Ms (L >> Rg) ∼ LD (L/Rg)
−D ∼ RD

g . (7)

The preceding analysis is independent of whether the classical or dynamic percolation method
is used. As such, it is expected that the DPSP model will also yield a fractal percolation
cluster. How the dynamic qualities will affect the fractal dimension is one of the many
aspects still to be investigated.

It is interesting to note that elements of this fractal approach related to dimensional in-
variants have already been applied to the bubble nucleation problem. Classical percolation
theory predicts that infinite percolation occurs at a critical volume fraction of 0.15 for a
three dimensional lattice [11]. This value can be used with the relation in (7) and a fractal
dimension of D = 2.5 to evaluate how cluster radius and particle (system) size effect the
helium-to-metal ratio at the point of accelerated release of He gas.
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6 Conclusion

A dynamic point-source percolation (DPSP) model was presented. This model is based on
classical percolation theory, but allows for an evolving probability field for the selection of
unoccupied sites to be filled and has the capability to include distinct mechanisms for site
selection that are representative of physical processes. Generalized crystal geometries were
considered by mapping to a geometrically simple lattice. Doing so allowed all geometrical
data to be found analytically, resulting in a process to recall geometric data that is more
efficient than calculation or accessing memory.

Using the physical model of He bubble growth as a basis, the DPSP model created two
distinct site occupation algorithms to correspond to the bubble nucleation and growth stages.
Testing of the model was accomplished by simulating the nucleation phase of bubbles within
a two dimensional lattice. Comparison of the spacing distribution at the conclusion of the
nucleation stage with experimental results obtained with NMR is good and validates the
DPSP approach, despite the mismatch in dimensionality of the computational and physical
domains. A methodology for simulating the growth of nucleated He bubbles was developed
and presented, although implementation of this method has yet to be accomplished.

This report presented not only a thorough background on both classical percolation theory
and a detailed explanation of how the DPSP model deviates from the classical theory, but also
provided information on a more modern treatment of percolation using the study of fractals.
Use of this technique within the framework of the existing DPSP model is delegated for
future development, but is worthwhile in assessing the impact of the various length scales
present in material systems, e.g. lattice spacing, grain size, powder particle size, etc., on the
ability of the DPSP model to predict the accelerated release of He gas.

Another avenue for future development of the DPSP model is the direct replacement of
stochastic features with physically-based processes. For example, the inclusion of anisotropic
characteristics of the percolating medium, and it’s effect on bubble growth needs to be
included. Also, implementation of conditions leading to the termination of bubble nucleation
within the DPSP algorithm is required. As indicated above, while the two dimensional model
provided acceptable results, a full 3D simulation will be necessary for accurate representation
of physical systems. Finally, the nucleation stage of the DPSP model is performed in a
random fashion, in accordance with the mechanism of self-trapping of He atoms. It would
also be desirable to model the nucleation and growth of bubbles formed along defects, such as
dislocations, that already exist within the system prior to tritium decay or He implantation.
These defects may not be distributed randomly and methods for altering the nucleation
probability field to account for their presence need to be developed and implemented.
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