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Abstract 
 

This report presents the result of an effort to re-implement the Parallel Virtual File System (PVFS) 
using Portals as the transport.  This report provides short overviews of PVFS and Portals, and 
describes the design and implementation of PVFS over Portals.  Finally, the results of performance 
testing of both stock PVFS and PVFS over Portals are presented.
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The Parallel Virtual File System for Portals 
 

1 Introduction 
The Parallel Virtual File System* (PVFS)(Ligon and Ross, 2001) allows a group of cooperating 
processes running a parallel application on a cluster of computers to transparently share access to a 
file or files distributed across a set of I/O servers in the cluster.  PVFS is designed to be scalable on 
both the client and server sides.  In other words, file system bandwidth increases with the number of 
clients until the servers are saturated, and maximum bandwidth also increases as servers are added.  
PVFS is available in source code form under the GNU General Public License (GPL), and is 
primarily supported for Linux and Unix platforms.  PVFS clients and servers use the Unix sockets 
API to communicate via TCP/IP. 

At the time of this writing, there are two major versions of PVFS available, version 1.x and version 2.  
All discussion of PVFS in this report references version 1.x, since there are some significant design 
and implementation differences between PVFS 1.x and PVFS 2. 

The Portals API is a message-passing interface designed by researchers from Sandia National 
Laboratories and the University of New Mexico (Brightwell et.al.1999).  The Portals interface is 
designed to facilitate scalable, high-performance implementations for massively parallel processors 
(MPPs).  As such, Portals forms the basis for much of the parallel computing platform research at 
Sandia.  In addition, the ASCI Red Storm supercomputer (Tomkins and Camp, 2003) currently being 
built for Sandia is designed specifically to support a high-performance implementation of Portals.  

The Portals API has undergone multiple major revisions.  The current major version is version 3, and 
any reference to Portals in this document refers to that major version.  The Brightwell et.al. (1999) 
document describes version 3.0 of the API, while the Red Storm implementation is based on version 
3.3 of the API.  A document describing Portals 3.3 was in preparation at the time of this writing. 

When the work reported here was begun, Sandia did not have a parallel file system that used the 
Portals API.  The goal of this work was to produce a PVFS implementation that used the Portals API 
natively, so that it could be used on Sandia MPPs that provide only a Portals transport on compute 
nodes.  The alternative, writing an interface adapter that converted sockets calls to Portals calls, could 
not have taken advantage of the bypass mode of operation that Portals allows. 

Since the Portals and sockets APIs are significantly different, using the Portals API natively in PVFS 
entailed rewriting the PVFS client library and daemons.  The hope was that such a rewrite would 
allow the full performance potential of Portals to be realized.  In addition, the rewrite allowed a major 
security issue in PVFS to be addressed. 

This report reviews the major architectural features of PVFS, and discusses some differences between 
the PVFS and PVFS over Portals (PVFSP) designs and implementations.  Next, a performance 
comparison is reported.  Finally, a short discussion of the work remaining to complete the PVFSP 
implementation is presented. 
                                                           
* PVFS is available from http://www.parl.clemson.edu/pvfs/index.html. 
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2 Overview of PVFS 
PVFS was designed for use as a high-speed scratch file system, with an emphasis on high-speed data 
movement rather than metadata operations.  The components that comprise PVFS are shown in 
Figure 1.  On the server side is the metadata manager daemon, mgr, and one or more I/O daemons, 
iod.  The mgr daemon is responsible for namespace and other metadata operations, while the iod 
daemons are responsible for data movement.  On the client side is the PVFS application I/O library, 
as well as a Linux kernel module and accompanying daemon, pvfsd, which together provide PVFS 
file access through the Linux kernel virtual file system switch (VFS).  This latter data path is 
particularly important to users as it allows all the standard Unix utilities, such as ls, rm, and mv, to be 
used to manipulate PVFS files. 

Figure 1   Components and data paths in the PVFS file system. 

The PVFS daemons and client library communicate using TCP/IP via the standard sockets API.  The 
pvfsd daemon communicates with the PVFS kernel module through standard Unix I/O system calls on 
a device file, /dev/pvfsd.  The mgr and iod daemons use standard Unix system calls to manipulate the 
data that is stored on disk. 
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The PVFS design is based on the idea of striping the data from a single file across multiple file 
servers.  For example, with a 64 KiB* stripe sector size, the first 64 KiB of data in the file is served by 
the first iod, the second 64 KiB by the second iod, etc, as shown in Figure 2.  PVFS allows multiple 
clients to simultaneously read/write to a single file, as well as allowing multiple clients to each 
read/write its own file, again simultaneously.  PVFS does not implement any locking primitives, so 
parallel applications that write to a single file must protect themselves against simultaneous write or 
read/write operations to the same file offset. 

Figure 2   Global and stripe file offsets in PVFS. 

For most requests, such as open, close, unlink, and fstat, PVFS clients contact the single metadata 
manager daemon, mgr.  Most of these requests require that the mgr daemon in turn contact the iod 
daemons to complete the request.  However, the mgr is not involved in read/write operations, which 
mitigates its potential to serialize access to data stored in PVFS files.  For these operations, clients 
contact the iod daemons directly. 

The iod and mgr daemons are implemented as single-threaded processes that loop continuously, 
accepting new requests and responding to existing requests.  They use select() to discover sockets that 
are ready to send or receive data, and use non-blocking send()/recv() calls for network traffic.  The 
iod daemons use mmap() to read data from disk, and madvise() to minimize delays waiting for data to 
be paged in from disk.  Data is written to disk using write(). 

As alluded to in the introduction, prior to version 1.6.1 PVFS was susceptible to a simple attack that 
would circumvent file permission restrictions.  As with any network-based file system, PVFS 
requests specify the user and group identity of the process making the request.  However, there was 
no authentication mechanism preventing an attacker from using a copy of the PVFS I/O library that 

                                                           
* The prefixes for binary multiples are Ki = 210, Mi = 220, and Gi = 230, developed by International 
Electrotechnical Commission (IEC) Technical Committee 25.  These compare with the SI prefixes, k = 103, 
M = 106, and G = 109.  Thus 64 KiB = 64 x 210 bytes, or 65,536 bytes, while 64 kB = 64 x 103, or 64,000 bytes.  
See http://physics.nist.gov/cuu/Units/binary.html for more information. 
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was modified to specify user/group ids of a user other than the attacker.  For example, an attacker 
could specify a privileged user id in all requests, and gain access to any file stored on a PVFS file 
system. 

This author submitted a patch, accepted into PVFS 1.6.1, that added an optional trusted-host level of 
authentication.  Unix systems typically have a range of ports from which only privileged users can 
initiate connections.  Starting with version 1.6.1, the mgr and iod daemons could be configured to 
accept only connections originating from privileged ports on a limited range of hosts.  The practical 
effect of this option is that the mgr and iod daemons would accept only requests from hosts where site 
administrators had confidence that pvfsd was the only privileged process making PVFS requests.  The 
benefit is that user and group identities in requests can be trusted, and file permissions have meaning.  
The drawback is that only a privileged user (i.e., root) can directly employ the PVFS client I/O 
library. 

3 Overview of PVFS over Portals 

3.1 Portals Basics 
A familiarity with the basic features of the Portals API will make the discussion of PVFS over Portals 
that follows more accessible.  Readers wishing further details should consult Brightwell et.al.(1999). 

The Portals specification describes a message passing API whose primary goal is to facilitate 
implementations that scale to tens of thousands of nodes.  The Portals API facilitates implementations 
that are both OS-bypass, where the operating system does not participate in making progress on 
messages, and application-bypass, where the application does not participate in message progress.  
Scalability is facilitated because the data movement specified by Portals is connectionless, allowing 
an implementation to keep minimum state information.  Data movement in Portals is also 
asynchronous, where an application is notified of request completion through an event mechanism. 

Application memory used for messaging is identified to Portals using a construct known as a memory 
descriptor.  A memory descriptor contains a starting memory address and extent, as well as other data 
specifying the disposition of the descriptor under various conditions.  Memory descriptors may be 
inserted into match lists, where the descriptors will respond to remote operations under the control of 
various matching parameters.  These matching parameters include type of operation, remote node and 
Portals process identifiers, and match bits. 

Match bits are 64 bits of data associated with each request and match entry.  In addition, each match 
entry has 64 ignore bits, which specify a mask to be applied to the entry match bits when determining 
matches.  Thus, match bits can be used to specify both unique matches and class matches.  In the 
unique case, the match entry ignore bits are all zero, and the request match bits must be identical to 
the match entry match bits.  For class matching, some of the ignore bits are set, and only a subset of 
match bits are considered when determining matches. 

Memory descriptors are also used to make send (put) and receive (get) requests.  When a request is 
made, the request match bits are compared on the target with the match bits of each match list entry in 
turn.  The memory descriptor for the first entry that matches is used to service the request.  If there 
are no suitable match entries, the request is dropped by the target. 
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Applications are notified of request completion via events and event queues.  An application can 
instruct Portals to create one or more event queues, and can specify the event queue to be used for 
notification when creating a memory descriptor.  Thereafter, events are delivered to the event queue 
whenever Portals takes some action on the memory descriptor.  Note that event delivery is strictly a 
local operation.  The application polls its event queues to dequeue new events. 

In Portals 3.0, there are five event types:  

PTL_EVENT_GET 
PTL_EVENT_PUT 
PTL_EVENT_ACK 
PTL_EVENT_SENT 
PTL_EVENT_REPLY 

The put and get event types are delivered after a remote put or get operation has succeeded on a local 
memory descriptor associated with a match entry.  The ack, sent, and reply event types are delivered 
in response to a local put or get operation.  If requested, an ack event is delivered for a put operation 
after the local process receives an acknowledgement from the remote process that the data 
successfully arrived.  A sent event is delivered for a put operation after the data has successfully left 
the local process, and for a get operation after the request has successfully left the local process.  A 
reply event is delivered for a get operation after the requested data has successfully arrived in the 
local process. 

Notice that the Portals 3.0 specification does not admit the possibility of a transport malfunction, as 
there is no way for the application to be notified of an error condition.  Later versions of the Portals 
specification, still being finalized at the time of writing, address this deficiency. 

3.2 PVFS over Portals Implementation 
The PVFS over Portals (PVFSP) implementation is centered on the lifecycle of a request.  Since 
Portals is asynchronous, request processing for both clients and servers is inherently asynchronous. 

3.2.1  PVFSP Daemon Request Processing 

TCP/IP-based daemons have two mechanisms to throttle the rate of incoming requests, which is 
necessary to avoid overloading the daemon with too much work.  One mechanism is the rate at which 
the daemons accept new connections.  The second is the rate at which daemons read data from an 
established connection, since a client cannot push additional data into a connection once its TCP 
window is closed. 

Accepting new requests poses several challenges for the Portals-based daemon subjected to a high 
influx of requests.  If the daemon has not allocated sufficient memory, and prepared sufficient 
memory descriptors linked into the match list, incoming requests will simply be dropped.  In addition, 
if the event queue associated with memory descriptors allocated for incoming requests is too small, it 
can be overrun, producing the same effect as one or more dropped requests.  A dropped request 
requires a timeout mechanism to detect, which is tricky to implement correctly when a single client 
request may spawn multiple secondary requests between mgr and iod daemons. 

Another challenge is mitigating the effect of a denial-of-service attack, where the attacker attempts to 
flood the daemon with bogus requests. 
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These issues are addressed in PVFSP daemons by using fixed-size requests, and allocating memory in 
slabs large enough to hold many requests.  An event queue is allocated for each slab, and is large 
enough to handle all events delivered as requests are received into that slab.  Slabs for which all 
requests have completed are reused.  If the number of available request slots falls below some 
threshold, the daemon can allocate additional slabs and event queues.  Request timeout/resend and 
duplicate request detection are implemented, but they are a recovery mechanism of last resort and not 
well tested. 

A new request is subject to several simple checks for validity.  Is the request the right length?  Does it 
have a known request type?  Is it properly authenticated?  If any of these tests fail, the request is 
logged and dropped. 

After an incoming request is validated, it is associated with additional data that records the processing 
state of each request, and added to the tail of the pending request queue.  The daemons maintain 
queues of active and pending requests, and pending requests are moved to the active queue in FIFO 
order.  By controlling the number of requests it is actively servicing, a daemon can minimize the 
possibility that its rate of request completion will decrease as the outstanding request count increases. 

Each type of request has an associated request handler function that implements a simple state engine, 
which attempts to advance the state of any request for which it is called.  A daemon iterates through 
its active request queue, calling the appropriate handler for each request in turn.  As with PVFS, 
PVFSP daemons are single-threaded, so it is important that request handlers do not make system calls 
that block, or request processing will stall. 

Some operations take variable length data to specify, for example, operations on one or more file 
paths.  For such operations, the request contains unique match bits for a memory descriptor 
identifying the memory holding the variable-length data.  In these cases, the first step in request 
processing is to retrieve the variable length data.  Once the variable length data is retrieved and the 
operation is completely specified, it is attempted.  Note that some operations performed by the mgr 
daemon require secondary requests made to the iod daemons to complete.  If so, the operation is not 
complete until the secondary requests have completed.   

Once the operation has completed, a reply containing any requested data, and the operation status, is 
constructed and sent to the request originator, again using unique match bits specified in the original 
request.  When the daemon receives the Portals sent event for the reply, the request is considered 
complete, the request is deleted from the active queue, and its resources are freed. 

An additional Portals event queue is required to receive notification for the Portals operations used to 
advance the state of a request.  In the PVFSP implementation, these operations are known as data 
operations, and the associated event queue is known as the data event queue.  If the data event queue 
is overrun, processing for any requests depending on the lost events will stall.   

This situation is difficult to recover, and is to be avoided at all costs.  PVFSP daemons use two 
Portals events queues for this, known as the add queue and the poll queue.  Memory descriptors for 
new data operations reference the add event queue, and the poll event queue is checked first for new 
events.  A count of outstanding operations is kept for each queue.  When the operation count for the 
add event queue exceeds a limit based on the size of the event queue, action must be taken.  If the 
operation count for the poll queue is zero it is reallocated larger than the add queue.  Regardless of 
whether the poll queue is reallocated, the roles of the poll and add queues are exchanged.  This 
method allows the available data event queue space to grow, although it cannot cope with a sudden 
large increase in need for data event queue space. 
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Polling of the request slab and data event queues is interleaved with request processing, so that no 
subset of the work performed by a daemon is starved by another subset.   

3.2.2  PVFSP Authentication 

When this work was begun, one of the main goals was to incorporate a framework to address the 
authentication shortcomings of PVFS.  This framework should provide authentication that scales to 
tens of thousands of clients, minimizes the resources used for authentication, and leverages any 
unique features of parallel computing systems where PVFS over Portals may be installed. 

Of the many potential attacks against an authentication system, one class that was not considered was 
the class of attacks that begin with the assumption that the attacker has gained privileged access to a 
host that is authorized by site administrators to participate in a PVFSP file system.  The reason is that 
any client authentication method that scales to tens of thousands of clients will require a key or 
authentication token resident on the client host.  An attacker with privileged access on that host has 
access to any such keys, and can use them to impersonate authorized users.  However, it should be 
noted that in the event a client host is compromised, authentication systems are most secure if they 
restrict attackers to impersonating users whose keys were actually resident on that system. 

File system deployments can be cleaved into two classes: those where file system network traffic can 
be sniffed by potential attackers, and those where it cannot.  In the former case authenticators must be 
based on strong encryption, while in the latter they should be difficult to guess but need not employ 
encryption.  The PVFSP authentication framework admits either case, or both cases simultaneously. 

The authentication framework implemented in PVFS over Portals is based on a shared authentication 
context, which in PVFSP is named a session.  When a user wishes to access PVFSP files, that user 
presents identity credentials to the mgr daemon, and receives a session authenticator that uniquely 
identifies the user to the mgr daemon.  The mgr daemon also forwards the authenticator to the iod 
daemons, but not the user identity associated with it, as they do not need the actual user identity.   

Every PVFSP request includes the session authenticator.  If the user submits a parallel job, the session 
authenticator is distributed along with the executable so that it is available to each client in the job.  
The daemons search for the request authenticator in their list of valid authenticators, and if it is not 
present discard and log the request.  The mgr daemon can determine the user identity associated with 
the authenticator for use in file permissions checking. 

When an application opens a file, the mgr daemon generates a file access authenticator once it 
determines that the user is authorized to access the file.  The access authenticator is returned to the 
client, and is also sent to the iod daemons, along with the access permissions it authorizes.  A client 
read or write request contains the access authenticator, so that the iod daemons can refuse the request 
if the file was not opened with the appropriate access. 

PVFSP daemons must also authenticate to each other, so that requests made between daemons can be 
authenticated.  The framework implementation in PVFSP assumes that this will be done using 
authenticators that are stored on the hosts running the daemons. 

If PVFSP were to be deployed in a mixed environment, where the daemons were serving some clients 
over a network that could not be sniffed, and others over a network that could be sniffed, the 
implementation would need to be able to detect this.  When the mgr daemon granted a session 
authenticator, it would be a cryptographic-based authenticator unless the mgr could determine that all 
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the clients and daemons participating in the session were reachable over the network that was secure 
from sniffing.  The framework supports making this decision on a session-by-session basis. 

At the time of this writing, PVFSP is implemented for systems where it is assumed that file system 
network traffic cannot be sniffed, so that encryption-based authenticators are unnecessary.  The 
session authenticator is implemented as a 64-bit random number, and the access authenticator is a 32-
bit random number, both generated by the mgr daemon.  The current implementation lacks a finite 
lifetime for the authenticators, and also lacks a lockout mechanism to deny access when multiple 
requests with invalid authenticators are detected.  The lockout mechanism would prevent a guessing 
attack on the random numbers used as authenticators, and legitimate users that were locked out would 
alert system administrators to possible attacks in progress, or other problems. 

The implementation also has a compile-time option to replace session-based authentication with a 
user id in each request.  This is subject to the same authentication issues as the PVFS implementation, 
and its use should be viewed as a convenience while the implementation is under development. 

3.2.3  PVFS and PVFSP Implementation Differences  

This section documents some specific implementation differences between PVFS and PVFS over 
Portals.  Some of these changes are a direct consequence of the Portals implementation, some are an 
effort to increase performance, and some address perceived shortcomings in the PVFS 
implementation. 

Asynchronous client I/O requests 

As previously mentioned, Portals is inherently asynchronous, and so is the PVFSP implementation.  
Thus, it was trivial to implement asynchronous client read and write calls, along with a client function 
to poll for completion.  In fact, the synchronous versions of read and write merely bundle the 
asynchronous calls with a completion polling loop.  PVFS does not implement such calls, although it 
would not be difficult to do so. 

Stripe sector size 

In the PVFS client library, the open function includes extra arguments that allow the caller to specify 
file striping parameters at file creation.  The file striping parameters are the stripe sector size, the 
number of stripes, and the iod assigned to the first stripe sector in the file.  While some benefit may 
be gained by using a smaller stripe sector size in an application that uses smaller I/O buffer sizes, 
there is really nothing to be gained by allowing application control of the other stripe parameters. 

The downside to allowing such control is that if it is widely used, the disk capacity serving the 
individual iod daemons is very likely to be consumed unevenly, causing the file system to 
prematurely appear full.  In addition, aggregate system throughput may be reduced if some iod 
daemons are busier than others. 

For these reasons, the PVFSP implementation does not allow file striping parameters to be specified 
at file creation time.  Instead, stripe sector size and number of stripes is set when a PVFSP file system 
is created, and the iod assigned to the first stripe is determined randomly at file creation. 

Note that if a PVFS application does not specify striping parameters at file creation, default values are 
used, and the default number of stripes is the maximum number of iod daemons available.  In 



 15

addition, the PVFS mgr daemon has a run-time option specifying that the iod assigned to the first 
stripe is to be determined randomly at file creation. 

Multiple file systems 

PVFS daemons can each serve only one file system.  PVFSP daemons can each serve multiple file 
systems.  One application of this is to statically partition the PVFSP namespace into multiple sub-
trees, each served by its own mgr daemon, but with all mgr daemons served by one set of iod 
daemons. 

On-disk format 

PVFS metadata files contain the file striping parameters mentioned above, as well as file inode 
number, owner, group, file size, modification time, access time, change time, mode, and file system 
root directory inode number.  The metadata file is continuously updated. 

PVFSP metadata files contain only the file inode number and the file striping parameters. 

PVFS and PVFSP iod daemons use a different directory structure and naming scheme to store the 
data files. 

File permissions checking 

PVFS uses the user and group ids stored in a metadata file to do its own file permissions checking. 

For the PVFSP implementation, this author did not believe that it was useful to duplicate the file 
permissions checking already implemented in the kernel, with the attendant possibility of introducing 
bugs.  Instead, permissions checking is implemented by having the mgr daemon set its effective group 
and user ids to that of the user making the request, and attempting to perform the requested operation.  
The status of the operation is recorded for later return to the client, and the daemon resets its effective 
group and user ids back its real (privileged) values to continue processing.  In this way the kernel 
hosting the mgr daemon has complete responsibility for permissions checking. 

Opening files 

In the PVFS implementation, for each client open request the mgr daemon opens the metadata file, 
does permissions checking, closes the metadata file, and sends open requests for the associated data 
files to the iod daemons.  This implementation causes the iod daemons to open the data file once for 
each client open request for a given file, and complicates correct handling of unlink after open since 
the metadata file is not held open. 

In the PVFSP implementation, the mgr daemon opens the metadata file, and sends open requests to 
the iod daemons for the associated data files, on the first successful client open request for a file.  
Subsequent open requests for the same file are counted, but no further action is taken unless the iod 
daemons need to be updated with a new access authorization, or an open request specifies the 
O_TRUNC option.  Note that because of the permissions checking implementation described above, 
the mgr opens and closes the metadata file once per open request using the effective user and group 
ids specified in the request.  However, the metadata file is always held open while any client has the 
file open. 
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As a file is closed by clients, the open file count is decremented.  When the last client holding a file 
open closes the file, the mgr daemon sends requests to the iod daemons to close the associated data 
files, and then closes the metadata file.  Note that unlink after open is trivially correct with this 
implementation. 

Memory-mapped regions in iod 

Both PVFS and PVFSP use the mmap() system call in iod daemons to implement the read function.  
However, they differ in the way mapped regions are managed. 

The PVFS iod implementation maintains one mapped region per open data file instance.  The extent 
of each mapped region is either 512 KiB (default), or the size of the read request aligned to system 
page boundaries, whichever is larger.  The first read request to a file causes the region to be mapped, 
but the region is not remapped until a subsequent read request falls outside of the current mapped 
region.  After a region is mapped, the madvise() system call is made for the region, and processing of 
the request list is continued without attempting to read the mapped region until the next pass through 
the request list.  The madvise() system call causes disk requests for the entire region to be queued, 
which on some systems results in bringing the requested data into memory faster than if it were paged 
in as the region was accessed. 

The PVFSP iod implementation maintains a list of mapped regions that are managed in least-recently-
used (LRU) fashion.  Each mapped region is the same size, which can be specified as a multiple of 
the stripe sector size when an iod is started.  The amount of address space an iod can use for file 
mappings can also be specified at runtime.  When a new read request arrives at an iod, it first attempts 
to attach each stripe sector needed to satisfy the request to an existing mapping.  If any stripe sectors 
cannot be attached, new mappings are created as needed.  If the address space allotted to mappings 
has been exhausted, the oldest mapping not currently in use is remapped suitably for the read request. 

When a new mapping is created, madvise() is called for the mapped region.  Reading the region is not 
allowed until the mincore() system call indicates that all pages of the mapped region are in memory.  
This prevents read() system calls from blocking while data is paged into memory. 

This method of managing mapped memory prevents duplicated and overlapping mapped regions.  It 
also prevents resources devoted to file mapping from growing without bound as the number of files 
being read increases.  Finally, it may minimize thrashing of mapped regions if a file is read in some 
order other than sequential. 

4 Performance Testing 
This section describes a series of tests that compare the performance of PVFS 1.6.2 and the PVFS 
over Portals implementation.  The testing is limited to I/O performance, and does not address 
metadata operation performance. 

At the time this testing was performed, there was no Portals 3 implementation available to the author 
that provided both OS bypass and application bypass, and supported user-space applications.  This 
testing was performed using the Cplant Portals library, which is based on the Portals 3.0 specification.  
The Cplant Portals library is implemented using the concept of a Network Abstraction Layer (NAL) 
to provide data transport.  This author implemented a TCP/IP-based NAL that operated completely in 
user space, and used that NAL for the testing reported in this section. 
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Thus, when assessing the performance comparisons between PVFS and PVFSP presented here, the 
reader should keep in mind that the full performance potential of a Portals-based implementation 
could not be realized. 

4.1 Baseline 
The test program used to measure I/O throughput was Lee Ward’s parallel I/O benchmark program, 
piob, slightly modified so that it could be compiled and linked against either the PVFS or the PVFSP 
client library.  This program sequentially writes and then reads files from multiple clients in parallel.  
Each client can write and read its own file, or all clients can write and read the same file, with each 
client responsible for a different subset of data in the file.  This program also has an option that causes 
each client to read a file different from the one it wrote, or in the case of all clients using the same 
file, a subset of the file different from what it wrote.  This option eliminates any benefit from client 
data caching.  Although neither the PVFS nor the PVFSP client libraries implement data caching, this 
option was used for the sake of consistency with the testing of other file systems in use at Sandia. 

PVFS was configured using default settings.  Both PVFS and PVFSP used eight iod daemons, with 
mgr and iod daemons each running on its own host.  The testing was conducted with both sets of 
daemons running simultaneously on the same set of hosts, but only one test at a time was performed, 
against either a PVFS or a PVFSP file system.  Both PVFS and PVFSP were configured to use a 
64 KiB stripe sector size and a 64 KiB socket buffer size. 

PVFS iod daemons used the default 512 KiB minimum file mapping extent.  PVFSP iod daemons 
used a 512 KiB file mapping extent, with mappings limited to 32 MiB of address space.  Note that 
this is the same amount of address space consumed by a PVFS iod serving a file to 64 clients, if each 
mapping was using the default minimum extent of 512 KiB. 

Testing was performed on the Vplant cluster, comprising 224 nodes in addition to the nine nodes used 
to run the mgr and iod daemons.  These 224 nodes are partitioned into a 128-node group intended for 
visualization applications, and a 96-node group used for simulation applications.  Only the 
visualization nodes were used to host clients for this testing, as the simulation nodes generally have a 
much higher utilization.  Compute nodes were shared with other users during the testing, but the I/O 
nodes were dedicated to this testing. 

Characteristics of the client and server nodes are presented in Table 1.  The cluster used a 
Myrinet 2000 interconnect with Lanai 9 interface cards, running Myrinet GM 1.6.5.  The iod nodes 
were each equipped with a Qlogic QLA2312 fibre channel adapter, and connected to two Data Direct 
Networks (DDN) S2A 8000 fibre channel controllers using 2 Gb/s optical links.  Version 4.06.10 of 
the qla2xxx device driver from Qlogic was used, with the tagged queuing depth set to 255.  All the 
daemons in this testing read from and wrote to Linux ext3 file systems, which were mounted with the 
default “data=ordered” option. 

Extensive previous experience with PVFS has shown that write performance can be greatly affected 
by kernel dirty block write-out tuning.  The parameters in the file /proc/sys/vm/bdflush control this 
tuning.  These parameters can be read with the command cat /proc/sys/vm/bdflush, and on a stock 
kernel.org 2.4.24 kernel the values reported are “30 500 0 0 500 3000 60 20 0”.  The first value is the 
percent of available blocks that must be dirty before write-out begins. 
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Table 1   Test Cluster Node Configurations. 

 Compute Nodes Server Nodes 

Processor 2-way SMP 
 2.0 GHz Pentium 4 Xeon 

256 KiB L2 cache 

2-way SMP 
2.4 GHz Pentium 4 Xeon 

512 KiB L2 cache 

Memory 1.0 GiB 2.0 GiB 

Operating 
System 

Red Hat Linux 7.3 Red Hat Linux 7.3 

Kernel Red Hat 2.4.20-28.7 kernel.org 2.4.24 

   

Apparently, Linux 2.4 kernels put processes to sleep if they dirty “too many” blocks “too fast.”  The 
criteria for deciding when to put a heavy writer to sleep are not clear to this author, but with the 
default bdflush parameters, PVFS and PVFSP iod daemons are often identified as heavy writers and 
put to sleep.  Even though the sleeping iod is quickly woken again, it is often asleep long enough for 
all clients to fill their TCP buffers sending to that iod, and stall.  The result is that under a heavy write 
load, often only one iod at a time is accepting data, which kills performance. 

If dirty block write-out is started immediately when blocks are dirtied, iod daemons are rarely put to 
sleep, and write-out proceeds smoothly and simultaneously from all daemons.  This is the desired 
operating state, and gives the highest aggregate write performance. 

Thus, on the nodes hosting iod daemons, the block write-out tuning was modified using the command 
echo “0 500 0 0 500 3000 60 20 0” > /proc/sys/vm/bdflush, and these values were used for all testing. 

Read performance is affected by the tuning parameters /proc/sys/vm/min-readahead and 
/proc/sys/vm/max-readahead.  Although they don’t affect the performance of madvise(), they 
certainly affect the result of the baseline read bandwidth test described below.  The value of min-
readahead was left at its default value of three, while the value of max-readahead was modified using 
the command “echo 255 > /proc/sys/vm/max-readahead.” 

In order to gauge the implementation efficiencies of the file systems under test, it is desirable to have 
a measure of maximum throughput for the disk subsystem.  The baseline write and read bandwidth 
were measured using the parallel distributed shell (pdsh) to run dd commands on the nodes attached 
to the DDN controllers, with all ports driven.  The baseline write and read performance was measured 
using these two commands: 

pdsh ’time { date; dd if=/dev/zero of=/fc/zero.dat bs=16k count=1024k; sync; date; }’ 
pdsh ’time { date; dd if=/fc/zero.dat of=/dev/null bs=16k count=1024k; date; }’ 

The first command causes each of the iod nodes to write a 16 GiB file using a 16 KiB write request, 
and times both the write command and a sync, to make sure that data isn’t written out after the timing 
has stopped.  The second command reads the file back.  The commands are bracketed with date 
commands to allow verification that the I/O happened reasonably simultaneously on all hosts.  The 
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size of the file was chosen to be 16 GiB since that is eight times the memory on the iod nodes, which 
makes it reasonably unlikely that any data was read from the system page cache, rather than disk. 

These tests showed that the DDN controllers and disks were capable of 864 MB/s aggregate write 
performance, or 108 MB/s per I/O node.  Aggregate read performance was 832 MB/s, or 104 MB/s 
per I/O node. 

4.2 Test Matrix 
The set of tests performed for this report were chosen to explore the performance boundaries of the 
PVFS and PVFSP design and implementations.  Of the many variables that might impact file system 
performance, due to time constraints this author chose to investigate the effects of three: file size, 
number of clients, and client request size.  Each of these variables was investigated both for one file 
per client, which is how most scientific/engineering application codes at Sandia run today, and all 
clients working on a single file, which is how many Sandia users want their codes to run in the future. 

The effect of file size is interesting because it can reveal caching effects, since piob writes and then 
reads back the files its uses.  Neither PVFS nor PVFSP client libraries implement caching, but the iod 
daemons will be impacted by virtual memory and caching algorithms implemented in the host kernel. 

The effect of the number of clients and client request size are important because they reveal 
algorithmic and implementation deficiencies.  Although each of the 128 client nodes in the test cluster 
is SMP, only one client process per node was run for all of the tests.  This eliminates the risk of 
mistaking contention for the single network adapter per host with other issues during the client 
scaling tests. 

Three trials of each test were run, in order to provide some idea of the amount of variability in 
performance.  Test results are presented graphically in the next sections, and in tabular form in the 
Appendix.  Standard deviations are found only in the tabular results. 

Each of the three series of tests presented below includes the case with 64 clients and 1 MiB client 
request size.  Instances of this test case were run for each test series it appeared in, so the results for it 
may not agree exactly between test series.  Any discrepancies for this case in the results that follow 
are a further indication of performance variability, and do not indicate an error in data collection or 
presentation.  Furthermore, dedicated time on the cluster was not available for this testing, so it is 
impossible to estimate the impact of other users on the results presented here. 

4.2.1 File Size 

For this series of tests, 64 client processes were used to write and read files ranging from 2 GiB to 
64 GiB total size.  This compares to the 16 GiB of total memory in the eight nodes running the iod 
daemons.  When testing with one file per client, the file size per client varied from 32 MiB to 1 GiB.  
The client data transfer size, i.e., the size of each write and read request, was 1 MiB.  Aggregate 
throughput in MB/s is shown in Figure 3. 

This series of tests exposes several aspects of PVFS and PVFSP performance, and how it is affected 
by Linux kernel implementation choices.  The most striking is the large decrease in performance 
when the file size increases from 8 GiB to 16 GiB.  Since the total memory on the eight iod nodes is 
16 GiB, and some memory must be consumed by the operating system and executables, a file of 



 20

exactly 16 GiB is just too large to fit completely in the memory available for page caching.  Linux 
uses a least-recently-used (LRU) page replacement algorithm, and piob writes files sequentially, so 
the data for the beginning of the file gets pushed out of the page cache as the end of the file is written.  
Then, when the file is read, the beginning of the file must be read from disk, and the pages used to 
hold it are the oldest, which just happen to contain the data that is about to be read next.  The result is 
that the entire file must be read from disk, even though most of it is actually in the page cache. 

Figure 3   Aggregate throughput for various file sizes.  

For a file smaller than 16 GiB, the whole file can fit in the Linux page cache if it has just been 
written, so no disk accesses are required to read it.  Thus, aggregate read bandwidth for files smaller 
than the total memory available on the iod nodes is a measure of the efficiency of the daemon 
implementation.  Since the aggregate read bandwidth for PVFS is ~300 MB/s higher than that for 
PVFSP, the latter’s implementation is less efficient for one or more reasons. 

One possibility is the Portals NAL implementation used by PVFSP for this testing.  Since this NAL is 
implemented using the sockets API to TCP/IP, it represents an extra layer of code, not present in 
PVFS, which must be traversed for every message that is sent or received.  Moreover, constraints 
imposed by the Portals API may have the result that even the most efficient and effective TCP/IP-
based NAL cannot use the sockets API as effectively as an application that uses the sockets API 
natively. 

Another possibility for the PVFSP implementation’s lower read performance when files are cached 
on the iod nodes may be its use of the mincore() system call to avoid the possibility that read() might 
block while data is paged into memory.  In this case, since the data is always in memory already, the 
mincore() call is overhead that is not present in PVFS. 
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A second aspect of performance revealed by these tests is that the aggregate write performance for 
PVFS is consistently ~100 MB/s higher than that for PVFSP.  In addition to the overhead added by 
the TCP/IP Portals NAL, as discussed above, there is a difference in the interaction between client 
and server on write requests.  For PVFS, after sending the write request on a socket, the client can 
immediately start sending the data to be written, i.e., PVFS uses a client-push data model.  For 
PVFSP, the client sends the request, and after receiving it the server performs a Portals get operation 
to retrieve the data, i.e., PVFSP uses a server-pull data model.  This adds a minimum of one round-
trip time to the latency for each write message. 

Another aspect of performance exhibited by both PVFS and PVFSP is their inability to drive the disk 
subsystem at full bandwidth.  Recall from the discussion of the testing baseline that the disk 
subsystem is capable of 864 MB/s write and 832 MB/s read throughput.  Read performance for 
daemon-cached files shows that both daemon implementations are capable of sourcing data to the 
network at 1100 MB/s or greater.  Although there is no direct evidence that the daemons would be 
able to sink data from the network at that rate, there isn’t an obvious reason why they should not be 
able to do so.  The question remains, why are the daemons unable to drive the disk subsystem at its 
maximum throughput?  A plausible explanation is that neither implementation is fully overlapping 
disk I/O with request processing. 

Finally, for files larger than the total iod node memory, there is no clear explanation why both PVFS 
and PVFSP read performance falls off as file size increases.  This is most apparent for the single-file 
case. 

4.2.2 Client Scaling 

For this series of tests, the number of clients was varied from 1 to 128.  For each number of clients, 
files of both 2 GiB and 32 GiB total size were created and read.  The client transfer size was again 
1 MiB.  Throughput in MB/s is shown in Figures 4 and 5. 

In these tests, PVFS and PVFSP show the same write performance behavior, with performance levels 
that are roughly equivalent*.  Throughput starts to fall off with more than four clients, and by sixteen 
clients the iod daemons are essentially saturated.  Either a much larger cluster, or much more capable 
I/O nodes, would be required in order for a clear trend for write performance scaling with the number 
of clients to be apparent. 

As the number of clients increases, PVFS demonstrates better read performance than PVFSP when 
the data to be read is completely cached on the I/O servers.  Moreover, the drop in PVFSP 
performance from 64 to 128 clients indicates contention for some resource in the iod read 
implementation. 

The variation of read performance with the number of clients when data must be read from disk on 
the I/O servers is confusing for both PVFS and PVFSP.  For the single-file case PVFS and PVFSP 
show essentially identical performance for eight clients or more, with no indication that the iod 
daemons are saturated even for 128 clients.  However, PVFSP saturates at eight clients for the one-
file-per-client case, while PVFS saturates at 32 clients in this case. 

                                                           
* Note that there is a discrepancy of ~150 MB/s between the results presented here and in both the previous and 
next sections for the PVFS write performance with a single 32 GiB file written by 64 clients.  Again, this is not 
a mistake, but a measure of the performance variability inherent in the implementation and hardware 
configuration. 
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Figure 4   Aggregate throughput for various numbers of clients, using a 2 GiB file. 

Figure 5   Aggregate throughput for various numbers of clients, using a 32 GiB file. 
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The two things most apparent from the results of this section are: 1) a cluster of 128 compute and 8 
I/O nodes is not large enough for useful I/O scaling testing; and 2) the efficiency of both PVFS and 
PVFSP iod daemons is not good enough.  Extrapolating from the results presented here, a cluster with 
1024 compute nodes and 64 I/O nodes is the smallest cluster that can present useful scaling results. 

4.2.3 Client Request Size 

For this series of tests, the client transfer size was varied from 4 KiB to 4 MiB.  For each buffer size, 
files of both 2 GIB and 32 GiB total size were created and read, using 64 client processes in all cases.  
Throughput in MB/s is shown in Figures 6 and 7. 

These tests show the clear superiority of the PVFSP read implementation over that of PVFS.  What is 
puzzling about the PVFS results is the extremely poor performance for small client request sizes, 
even when the data should be completely cached in memory on the I/O nodes.  Whatever mechanism 
is responsible for this poor performance is likely to also be the cause of poor PVFS read performance 
with small requests when data must be read from disk by the iod daemons. 

The interaction of client request size and file system stripe sector size is clearly displayed by the 
PVFSP read results for the 2 GiB total file size case, where the data is completely cached in memory 
on the I/O nodes.  For request sizes up to 64 KiB, which is the stripe sector size, the data for a single 
read request always fits into a single reply message from a single iod daemon.  Thus, there is a fixed 
amount of overhead per request, and read bandwidth grows nearly linearly with increasing request 
size. 

 

Figure 6   Aggregate throughput for various client request sizes, using a 2 GiB file. 
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For request sizes between 64 KiB and 512 KiB, the read request is decomposed into a message for 
one or more iod daemons, and each results in a single reply from each daemon.  Since these messages 
are sent to the daemons asynchronously, they can be processed in parallel, and read bandwidth stays 
constant with increasing request size. 

For request sizes larger than 512 KiB, the read request is decomposed into a message for every iod 
daemon, but since the reply data may span multiple stripe sectors on each daemon, there may be 
multiple replies from each daemon.  At this stage, the inefficiencies mentioned previously come into 
play, and throughput decreases as client request size increases. 

 

Figure 7   Aggregate throughput for various client request sizes, using a 32 GiB file. 
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In retrospect, it would have been useful to test with the bypass option, to see if there was any 
performance impact.  This path was not explored because early performance testing of the NAL, 
which was limited to two nodes, indicated that the non-bypass version had better throughput and 
latency numbers. 

Thus, the true performance potential of a Portals-based implementation of PVFS may not have been 
demonstrated by the testing reported here. 

5.1 Future Work 
Much work remains to advance the PVFS over Portals implementation from a research vehicle into a 
production-quality distribution.  This section documents some of the required tasks. 

Kernel module 

The current PVFSP implementation includes only the client library and server daemons.  Thus, only 
those applications that make explicit PVFSP calls can access files stored on a PVFSP file system.  For 
the file system to be useful to users, they must be able to manipulate their files with standard Unix 
tools such as ls, mv, and rm.  This requires a kernel module to integrate PVFSP into the kernel’s 
virtual file system switch (VFS). 

As can be seen from Figure 1, integrating PVFS into the Linux kernel VFS was accomplished with 
two components, a kernel module and a user-space client daemon.  The module integrates into kernel 
data structures and procedures, the client daemon integrates into PVFS network messaging, and they 
communicate with each other using a third API based on a device file, /dev/pvfsd.  Since PVFSP 
shares its philosophy with PVFS, the PVFS kernel module should work almost, if not completely, 
unchanged in PVFSP, and only the client daemon would need to be rewritten to employ the PVFSP 
network messaging.  In addition, the client daemon would need added functionality to acquire session 
authenticators on behalf of the users it is servicing. 

Multiple manager daemons 

A potentially serious drawback of PVFSP is its single metadata daemon.  Data throughput is not 
affected since, in general, neither a client nor a data daemon need contact the metadata daemon to 
complete a read or write request*.  However, for large clusters or applications that make many 
metadata requests, the inability to service metadata requests in parallel may be a drawback. 

It would be relatively straightforward to enhance PVFSP to support multiple, cooperating metadata 
daemons.  The approach would be to assign responsibility for a file or directory to one of several mgr 
daemons based on a hash of the last component in its pathname.  When a directory is created or 
unlinked, the responsible mgr would inform all the other mgr daemons of the fact.  Thus, each mgr 
would maintain the full directory tree so each could do path lookup without communication. 

Directory creation or unlinking would be synchronous with respect to updating the other mgr 
daemons, so that when such a call completed the application would know any further metadata 
operation referencing the affected directory would complete as expected.  This is consistent with the 
                                                           
* A read response that returns fewer than the number of bytes requested requires that the implementation of 
read() may need to make an internal fstat() call to disambiguate end of file from reading into a hole in the file, 
when the hole occurs at the end of a stripe file.  This is also true of PVFS. 
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semantics offered by the lack of locking provided by PVFSP — the application is responsible for 
avoiding races. 

Unlinking a directory, or listing the contents of a directory, would require that the mgr responsible for 
the directory in question contact all the mgr daemons for their contributions to the contents of the 
directory.  This follows directly from the rule that the last component in a path determines the 
responsible mgr.  When creating a new directory or file, the mgr responsible for the new entry would 
contact the mgr responsible for the parent directory, and update its size and mtime.  This eliminates 
the need for all mgr instances to be contacted when responding to a stat() of a directory. 

The result of this design is that clients know exactly which mgr daemon to contact for any given 
metadata request.  The most common metadata operation, path traversal, does not require 
communication between metadata daemons.  Finally, only a small number of less common operations 
require that all mgr daemons participate. 

Fault tolerance 

As noted in the Portals overview, this implementation was based on the Portals 3.0 specification, 
which does not admit the possibility of a transport malfunction.  While a draft Portals 3.3 does allow 
operations to complete in error, this author does not have access to a Portals library based on the 
newer specification that is accessible from user space.  Were such a library available, some additional 
work would need to be done to the PVFSP implementation to take advantage of error notification.  
For example, undoing or limiting the effect of a partially completed request needs significant work.  
Detecting failed server hosts or block devices, and switching over to backup hosts or redundant 
capability, is completely unaddressed in the current implementation. 

Security enhancements 

As noted in Section 3.2.2, the current PVFSP implementation assumes deployment on a network that 
cannot be sniffed, so that authenticators not based on strong encryption can be used.  However, the 
implementation needs to be enhanced to add a finite lifetime to the authenticators, and to add lockout 
functionality that disables access from a client if it has submitted multiple requests with an invalid 
authenticator.  

In the event PVFSP were to be deployed over a network that was not secure from sniffing, an 
implementation of authentication based on strong encryption would need to be added. 

Performance enhancements 

The testing performed for this report provides some clues about how performance might be enhanced, 
for both PVFS and PVFSP.  The biggest clue is provided by the difference between the aggregate 
read performance when the data is cached in memory on the iod hosts, and that when the data must be 
read from disk.  The fact that the former is higher by a factor of two or more suggests that the 
messaging subsystem is not the performance bottleneck.  Furthermore, the fact that the performance 
level when the iod daemons are saturated is so much lower than either the demonstrated messaging 
performance, or the demonstrated disk subsystem performance, suggests that the PVFSP 
implementation, and to a lesser extent the PVFS implementation, is not doing a good job of 
overlapping disk access with request processing and network messaging. 
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For writes, this is not too surprising, as data is copied from user to kernel space, and a non-trivial 
amount of bookkeeping is done in the kernel to keep track of dirtied blocks, before the write() system 
call returns.  For reads it is a little more surprising, since the mmap() call eliminates a data copy from 
kernel to user space, and great care is taken through the use of madvise() and mincore() to prevent 
accesses of the data being read from blocking while the data is paged into memory. 

However, it may be possible that more disk I/O can be overlapped with request processing and 
messaging if the POSIX asynchronous I/O interface was used in the iod daemons to move data on and 
off disk.  In addition, the Linux 2.6 kernel may provide significantly better disk performance.  Finally, 
a true bypass implementation of Portals might also increase performance by offloading network data 
movement out of the kernel. 

Execution profiling of the iod daemons has not proved fruitful for enhancing performance.  However, 
the current PVFSP implementation can log requests and still run at nearly full speed, so it might 
prove enlightening to timestamp the request logs with microsecond resolution.  For example, some 
aspect of the implementation may be causing request processing to become synchronized over time, 
so that periods of intense activity are interleaved with periods of little activity.  Some such 
mechanism may be responsible for the decrease in read throughput as file size is increased. 

Finally, it might be useful to actually deploy PVFSP with request logging enabled, so that the logs 
could be mined to extract the most common request types and sizes under actual use conditions.  It 
has been this author’s observation that real data about the distribution of requests from Sandia’s large-
scale applications is sorely lacking.  Knowing how applications actually behave might be a useful 
guide to the most important aspects of file system implementation. 
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Appendix 
This appendix gives in tabular form the results presented in Section 4.  The standard deviation is 
calculated from the results for three runs of each test. 

File Size 

 

Table A1   Aggregate throughput for various file sizes, using a single file, 64 clients, and 1 MiB 
request size. 

Aggregate Throughput (MB/s) 
Write  Read 

PVFS PVFSP  PVFS PVFSP 
Total File 

Size 
(GiB) mean sd mean sd mean sd mean sd 

2 606.2 12.4 501.4 23.9 1416.6 3.9 1113.8 7.2 
4 637.0 12.2 502.8 9.0 1428.5 2.0 1124.9 16.8 
8 627.3 18.6 514.7 13.7 1435.2 4.4 1132.2 5.7 

16 649.2 12.8 518.2 14.5 537.2 8.5 522.9 22.7 
32 629.6 7.1 457.7 7.6 476.8 7.9 387.7 4.4 
64 606.6 3.8 449.7 22.8 308.7 27.9 324.4 7.2 

     
 

Table A2   Aggregate throughput for various file sizes, using one file per client, 64 clients, and 
1 MiB request size 

Aggregate Throughput (MB/s) 
Write  Read 

PVFS PVFSP  PVFS PVFSP 
Total File 

Size 
(GiB) mean sd mean sd mean sd mean sd 

2 541.2 39.9 490.9 22.6 1413.1 2.7 1115.3 9.7 
4 583.9 15.8 502.9 13.0 1421.9 5.4 1123.0 6.1 
8 588.9 3.7 509.7 7.8 1427.0 1.8 1125.5 5.9 

16 600.0 30.2 533.3 11.7 453.6 4.1 396.3 4.2 
32 595.4 28.2 516.5 12.7 412.1 0.2 379.3 4.3 
64 603.8 14.7 524.3 7.1 398.1 5.7 370.8 2.5 
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Client Scaling 

Note that for this series of tests, the single-file case and the one-file-per-client case are the same when 
there is only one client.  The one-client case was run only as part of the single-file series, and the 
results reused as part of the one-file-per-client presentation. 

Table A3   Aggregate throughput for various numbers of clients, using a single file, 2 GiB total 
file size, and 1 MiB request size. 

Aggregate Throughput (MB/s) 
Write  Read 

PVFS PVFSP  PVFS PVFSP 
Number 

of 
Clients mean sd mean sd mean sd mean sd

1 127.6 0.2 118.4 0.3 134.3 3.0 130.8 0.4
2 236.5 2.1 214.3 6.9 264.8 5.9 205.9 3.4
4 413.6 16.8 348.2 21.4 390.9 2.0 374.0 4.4
8 516.2 9.7 385.9 12.9 575.2 2.9 608.4 18.8

16 541.7 21.4 491.7 18.7 1069.9 10.2 944.4 3.4
32 573.4 4.6 522.3 4.6 1341.9 16.8 1093.9 16.5
64 590.7 18.9 468.6 10.5 1415.4 7.7 1124.0 8.8

128 513.6 12.3 485.2 9.2 1456.8 1.2 1023.5 3.5
    

 

Table A4   Aggregate throughput for various numbers of clients, using one file per client, 
2 GiB total file size, and 1 MiB request size. 

Aggregate Throughput (MB/s) 
Write  Read 

PVFS PVFSP  PVFS PVFSP 
Number 

of 
Clients mean sd mean sd mean sd mean sd

1 127.6 0.2 118.4 0.3 134.3 3.0 130.8 0.4
2 242.2 0.8 224.9 2.0 264.8 5.2 207.1 1.5
4 426.7 0.8 368.9 5.2 386.2 1.5 390.3 4.3
8 495.4 1.3 460.6 4.9 547.3 31.6 726.2 3.5

16 521.7 10.2 521.8 5.7 1063.0 27.6 966.0 21.4
32 553.3 25.5 532.5 12.1 1345.8 5.3 1075.3 15.2
64 555.3 18.2 484.9 17.6 1411.5 7.1 1089.9 7.3

128 446.1 9.4 435.6 29.1 1446.7 4.1 905.6 9.5
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Table A5   Aggregate throughput for various numbers of clients, using a single file, 32 GiB 
total file size, and 1 MiB request size. 

Aggregate Throughput (MB/s) 
Write  Read 

PVFS PVFSP  PVFS PVFSP 
Number 

of 
Clients mean sd mean sd mean sd mean sd 

1 128.3 0.2 118.6 0.1 121.7 0.4 104.3 0.3 
2 237.4 0.8 225.5 1.1 216.4 1.3 146.4 6.2 
4 401.4 2.6 371.2 0.7 313.2 5.5 175.5 2.3 
8 446.4 3.8 435.2 20.7 241.5 10.0 201.5 3.3 

16 487.7 5.0 488.2 47.9 310.2 8.4 288.1 6.3 
32 523.1 35.6 469.5 58.6 368.5 56.0 360.7 26.8 
64 473.9 33.2 490.2 14.8 428.8 56.8 410.3 11.9 

128 498.3 6.6 538.8 8.5 500.6 4.8 506.8 84.0 
     

 

Table A6   Aggregate throughput for various numbers of clients, using one file per client, 32 
GiB total file size, and 1 MiB request size. 

Aggregate Throughput (MB/s) 
Write  Read 

PVFS PVFSP  PVFS PVFSP 
Number 

of 
Clients mean sd mean sd mean sd mean sd 

1 128.3 0.2 118.6 0.1 121.7 0.4 104.3 0.3 
2 230.9 0.9 223.9 0.8 215.4 0.5 172.2 1.5 
4 410.7 1.5 369.1 1.8 285.6 0.9 294.1 4.0 
8 449.3 4.3 475.9 2.2 252.4 11.0 406.5 5.8 

16 464.8 2.7 531.1 2.2 306.2 13.9 386.2 4.0 
32 484.9 3.1 547.9 1.7 402.4 14.1 364.1 2.6 
64 486.9 11.1 532.0 12.4 413.6 3.9 380.3 1.9 

128 497.9 2.6 492.7 30.7 408.2 6.1 368.2 4.1 
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Client Buffer Size 

 

Table A7   Aggregate throughput for various client request sizes, using a single file, 64 clients, 
and 2 GiB total file size. 

Aggregate Throughput (MB/s) 
Write  Read 

PVFS PVFSP  PVFS PVFSP 

Client 
Request 

Size 
(KiB) mean sd mean sd mean sd mean sd

4 201.2 5 181.9 21.9 3.8 0 342.3 0.3
8 310.9 17.1 297.4 21.8 6.6 0 582.1 18.1

16 405.7 9.7 379.5 11.1 13.2 0.1 920.2 23.0
32 477.4 16.7 458.5 7.9 26.1 0.1 1163.9 9.9
64 506.1 5.0 531.1 2.8 50.0 0.5 1329.9 10.9

128 506.5 11.4 499.1 18.8 90.6 1.0 1279.3 70.2
256 491.9 8.6 426.5 68.7 135.6 0.8 1291.4 5.3
512 504.6 9.3 432.1 75.2 1170 15.5 1288.1 19.7

1024 500.2 7.2 532.2 11.7 1372.3 49.0 1121.9 7.2
2048 529.5 9.0 571.6 21.8 1436.3 3.5 1052.4 187
4096 533.2 2.2 639.1 9.5 1435.6 14.2 979.5 160

    
 

Table A8   Aggregate throughput for various client request sizes, using one file per client, 
64 clients, and 2 GiB total file size. 

Aggregate Throughput (MB/s) 
Write  Read 

PVFS PVFSP  PVFS PVFSP 

Client 
Request 

Size 
(KiB) mean sd mean sd mean sd mean sd

4 143.8 15.4 120.0 7.1 3.8 0.0 231.1 1.1
8 223.8 4.8 197.9 5.3 7.5 0.0 440.4 2.8

16 299.9 6.3 290.0 5.1 14.9 0.1 745.5 5.9
32 348.9 10.2 376.9 4.2 29.4 0.4 1086.7 15.0
64 399.8 12.5 447.4 1.4 57.5 0.1 1295.4 22.4

128 407.4 10.5 458.4 3.2 122.8 1.3 1310.9 8.9
256 419.6 13.6 472.2 0.9 233.3 2.0 1275.6 21.3
512 450.8 6.3 496.9 0.9 1247.8 8.5 1310.8 14.9

1024 470.3 20.6 491.8 19.8 1356.6 18.2 1116.9 2.7
2048 479.3 20.1 541.1 4.5 1406.9 32.6 1151.9 14.8
4096 482.8 4.8 595.7 4.3 1449.0 33.1 1083.9 15.3
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Table A9   Aggregate throughput for various client request sizes, using a single file, 64 clients, 
and 32 GiB total file size. 

Aggregate Throughput (MB/s) 
Write  Read 

PVFS PVFSP  PVFS PVFSP 

Client 
Request 

Size 
(KiB) mean sd mean sd mean sd mean sd 

4 302.2 6.7 200.4 2.4 3.0 0.2 99.5 1.5
8 395.7 31.3 318.8 17.7 6.0 0.2 230.8 7.0

16 559.7 12.8 428.3 8.4 12.3 0.1 247.0 22.7
32 649.9 13.2 514.7 9.2 21.5 0.9 195.1 22.0
64 696.6 9.0 573.8 9.8 31.7 1.0 197.8 8.0

128 667.6 5.9 568.1 4.8 53.8 1.4 243.7 9.2
256 633.9 19.6 511.8 34.7 74.8 3.2 261.0 45.1
512 602.8 7.9 483.2 9.4 339.3 9.7 354.6 42.0

1024 643.5 4.1 511.9 13.0 463.3 13.2 444.6 21.6
2048 693.2 18.7 554.8 19.2 486.8 11.9 441.4 14.7
4096 732.8 11.0 667.6 7.2 574.9 17.5 522.3 6.7

 

Table A10   Aggregate throughput for various client request sizes, using one file per client, 
64 clients, and 32 GiB total file size. 

Aggregate Throughput (MB/s) 
Write  Read 

PVFS PVFSP  PVFS PVFSP 

Client 
Request 

Size 
(KiB) mean sd mean sd mean sd mean sd 

4 186.4 3.0 119.8 1.6 3.7 0.0 138.0 7.7
8 263.3 4.2 193.3 1.7 7.0 0.0 244.1 12.0

16 357.8 4.8 277.7 5.1 13.0 0.0 235.8 20.1
32 432.4 4.3 365.6 5.7 22.8 0.1 297.0 2.8
64 518.5 10.9 433.7 2.8 36.1 0.2 340.1 4.7

128 541.6 4.6 446.4 2.7 78.5 1.7 357.7 9.6
256 573.7 11.5 459.9 2.2 170.8 0.2 372.0 4.3
512 595.8 1.1 478.2 6.0 408.3 5.2 376.9 5.3

1024 608.7 2.8 506.1 6.0 413.1 1.6 379.8 8.8
2048 657.4 6.3 540.7 1.1 416.4 1.7 384.1 7.5
4096 680.1 2.0 607.0 0.9 418.3 1.8 385.0 9.5
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