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Abstract 

 
The ASCI supercomputing program is broadly defined as running physics 
simulations on progressively more powerful digital computers. What happens if 
we extrapolate the computer technology to its end? 
 
We have developed a model for key ASCI computations running on a 
hypothetical computer whose technology is parameterized in ways that account 
for advancing technology. This model includes technology information such as 
Moore’s Law for transistor scaling and developments in cooling technology. The 
model also includes limits imposed by laws of physics, such as thermodynamic 
limits on power dissipation, limits on cooling, and the limitation of signal 
propagation velocity to the speed of light. 
 
We apply this model and show that ASCI computations will advance smoothly for 
another 10-20 years to an  “end game” defined by thermodynamic limits and the 
speed of light. Performance levels at the end game will vary greatly by specific 
problem, but will be in the Exaflops to Zetaflops range for currently anticipated 
problems. 
 
We have also found an architecture that would be within a constant factor of 
giving optimal performance at the end game. This architecture is an evolutionary 
derivative of the mesh-connected microprocessor (such as ASCI Red Storm or 
IBM Blue Gene/L). We provide designs for the necessary enhancement to 
microprocessor functionality and the power-efficiency of both the processor and 
memory system. 
 
The technology we develop in the foregoing provides a “perfect” computer model 
with which we can rate the quality of realizable computer designs, both in this 
writing and as a way of designing future computers. 
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We found the end game based on certain assumptions about computers and the 
way we use them. This report focuses on classical computers based on 
irreversible digital logic, and more specifically on algorithms that simulate space 
over time with floating point.  There are many opportunities in quantum 
computing, irreversible logic, analog computers, and other ways to address 
stockpile stewardship that are outside the scope of this report. 
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Introduction 
 
Conventional complexity theory counts floating point operations (FLOPs) 
required to execute an algorithm as a function of the problem’s size, implying that 
we should minimize FLOPs to reduce complexity and get the best algorithm. 
However, the laws of physics limit the operation in a computer in a somewhat 
different way – predominately by limiting the speed of signal propagation to the 
speed of light and requiring the removal of some amount of heat for each logical 
operation. Our first objective is to seek a new measure of algorithmic 
“complexity” more directly related to how good the algorithm is when run on a 
real computer. This measure will correspond to the amount of computer 
hardware, time, and energy that must be consumed by an algorithm according to 
physical law. The algorithm that has the lowest complexity according to this new 
measure will run the best on any computer we can build in the physical universe. 
 
The second objective in this report is to find a way of building computers that are 
within a constant factor of the highest possible speed, lowest possible power 
consumption, and lowest possible cost as permitted by the paragraph above. Of 
course, there may be multiple solutions given different algorithms and technology 
available to implement the computer. In this report, we consider primarily 
algorithms for physical simulation over time running on computers that are built of 
integrated circuits containing “irreversible logic” transistors. Within these 
constraints, we have found a universal design for the contents of a chip and a 
way of packaging this one chip into a large 3D mesh that meets the second 
objective. 
 
Physical Simulations 
 
Many of the key problems in science, engineering, and the ASCI program involve 
simulating a region of space over a period of time [Feynman 82]. The region 
could be an automobile, atomic bomb, or residential living room. The region 
could undergo a crash, explosion, or fire during the simulated period. As shown 
in figure 1, these simulations involve distributing the region across the processors 
of a parallel computer and simulating the time evolution of the region sequentially 
on the computer. 
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As shown in figure 2, these simulations consist of a series of activities we define 
as singly coupled calculations. Each such calculation involves a series of 
arithmetic operations that are either completely independent or share information 
locally in the sense of the geometry of the region simulated, followed by a single 
calculation that involves the sharing of information across the entire problem. 

Time Line  

Node 0 

Node 1 

Node n-1 

Compute Phase Communicate 

… 

Singly Coupled Calculation 

Figure 2: Singly Coupled Calculation 

Figure 1: Spatial Simulation Over Time 

T=0 

T=1 

T=2 

Simulation 
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K=16 Cells In 
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Typically, such an algorithm consists of a repetition of the two steps: 
 

1. A compute phase where the state of the simulated space is updated to 
reflect the passage of time ∆t based on current trajectories, temperatures, 
etc. This phase’s calculations only use information representing nearby 
points in space and as a result involves no long distance communications 
among nodes. 

 
2. A global communications phase where the accuracy of the previous step 

is evaluated based on calculations across the entire simulation. Based on 
the computed accuracy, time interval ∆t is reevaluated. This step is often 
called an “allreduce” or global synchronization. 

 
Performance Estimation 
 
We can estimate the performance of algorithms on hypothetical computers. With 
considerable effort, we can project the performance of transistors, gates, and 
cooling systems years into the future. We can develop algebraic expressions to 
estimate all the necessary attributes of a computer developed with today’s or a 
future technology, such as: 

K × FcellTStep = floprate + TGlobal,

 
where TStep is the time for a singly coupled calculation, K is the memory size in 
number of cells per node, Fcell is the number of floating point operations required 
to update one cell, floprate is the effective floating point performance rate of a 
node, and TGlobal is the time for the global communications phase. TStep, Fcell, 
floprate, and TGlobal will be further developed later in this report. 
Limits on Computer Performance 
 
There are two opposing limits for physical simulations running on the type of 
computers covered by this report: 
 

• Relativistic. The time to do the information sharing part of a singly coupled 
calculation is bounded from below by the diameter of the computer divided 
by the speed of light. To mitigate the effect of this limit, the computer 
should be made as small as possible. Even though a sphere has the best 
geometry for a computer by the criteria of this report, we will assume a 
computer is a cube with edge length LEdge.  

2√3 × LEdgeTGlobal≥ c 
 

• Power and cooling. Thermodynamics requires that a minimum amount of 
heat be generated for each “irreversible” logical operation. While a 
computer can be allowed to heat up for awhile, at some point it must be 
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cooled. For every cooling method, the amount of heat that can be 
removed from an object is proportional to its surface area. This applies to 
radiative cooling where photons are emitted from the surface to a fluid 
cooled system where pipes move coolant perpendicular to the surface. To 
mitigate the effect of this limit, the computer needs to be as large as 
possible and have as much of its surface available for cooling as possible. 
For a cubical computer: 

 
6 × LEdge

2 × Cx ≤ Power, 
 
where Cx is the performance of the cooling system in watts that can be removed 
per unit surface area of the computer. 
 
When both these effects are taken into account, the computer’s size will be 
exactly at the threshold of what can be cooled with the available technology. 
 
Scalability 
 
The new complexity measure theory has somewhat different variables that we 
are used to. Conventional complexity theory generally looks for the asymptotic 
dependence of FLOPs (or operations) and memory size on the size of the 
problem. In our new complexity measure theory we have run time, power 
consumption, and physical size of the computer all as a function of the problem 
size. 
 
We find that for a singly coupled calculation of size n: 
 

• Running time ∝ n⅓ 
• Power ∝ n⅔ 
• Physical size ∝ n⅓ in linear dimension; ∝ n volume   

 
These are different results than are popularly understood to apply to parallel 
computers: a traditional parallel computer can execute a singly coupled 
calculation in log n time whereas our computer requires n⅓. The discrepancy is 
that a traditional parallel computer achieves its theoretical performance 
advantage through a design principle that slightly violates the laws of physics and 
would describe unbuildable machines if extended to large enough sizes. 
 
Architecture 
 
While the discussion above only established an upper bound on the performance 
of a computer doing a physical simulation, we have found a computer 
architecture that comes within a constant factor of meeting this bound. This 
architecture is comprised of the following parts: 
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• Integrated circuits of the prevailing technology, per projections of the 
Semiconductor Industry Association’s (SIA’s) International Technology 
Roadmap for Semiconductors [ITRS 02]. 

 
• A chip layout per figure 3. The chip will contain several processors of 

differing architectures that can be switched on and off by a power control 
system to limit power consumption to that which can be efficiently cooled. 
We recommend that the processors include a conventional 
microprocessor for compatibility with existing code plus new processor 
designs as described later in this report. The chip will also contain a new 
type of power efficient streaming memory as described later (although 
conventional DRAM would do almost as well) and an interconnect 
described in [DeBenedictis 03]. 

 

• An Interconnect network capable of implementing a 3D mesh with signal 
propagation speed within a constant factor of the speed of light, such as 
shown in figure 4 [DeBenedictis 03]. 

Figure 3: Universal Computing Element 

Architecture 1

Architecture 2

Architecture n

Interconnect

…
Vdd 

Power Control System: 
α1P1 + α2P2 … αnPn + Pinterconnect + Pmemory ≤ Pchip, 
given duty cycle αn for architecture unit n 

M
ux

 

Memory 

B
ra

nc
h 

M
er

ge
 



 14

X Dimension 
Wiring 

Z Dimension 
Wiring 

Y Dimension 
Wiring 

Figure 4: Mapping of 3D Mesh to Physical Structure 
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• Packaging of the 3D mesh in a way that can be cooled efficiently. Figure 5 

[DeBenedictis 03] illustrates an air-cooled structure that is efficient enough 
at heat removal while preserving locality in the 3D interconnect. 

 

A Review of the Expected Progress in Semiconductors 

Minimum Device Size 
 
According to the International Technology Roadmap for Semiconductors [ITRS 02], 
the smallest CMOS transistor will have a half pitch of 22 nm in 2016 (see figure 6 
for a definition of terms). Projections also suggest that a DRAM cell could be 
constructed in a 2D area 44 nm on a side.  
 

Room is nominally airtight. A 
pressure differential of about 2” 
of water will supply sufficient 
airflow to cool the machine. 

Figure 5: Air-Cooled Configuration 
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The ITRS projects the way Moore’s Law will drive the evolution of several 
hundred semiconductor parameters up to about a dozen years into the future. 
Table I is an extraction of the parameters from the ITRS used later in this report. 
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Figure 6: Definitions of Semiconductor Dimensions 
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The ITRS is often called a self-fulfilling prophecy: Moore’s Law has been 
generally accurate for over a decade but has no basis in physical law. However, 
much of the hi-tech economy is economically dependent on the continuation of 
Moore’s Law and has an economic incentive to assure its continuation. The 
starting point for the ITRS report is a simple exponential projection into the future. 
The ITRS then assigns teams of experts to check projections against 
manufacturable technologies, research results, etc. The report then color-codes 
its projections based on the need for additional research and development to 
make Moore’s Law continue as expected. Given the tremendous vested interest 
in assuring the continuation of Moore’s Law, considerable money resources are 
available to close technology gaps. 
 
The ITRS color code is shown below. All but one of the parameters on which this 
report is based are colored red. This means the report is based on a technology 
that a distinguished panel of experts considers to be a valid goal but for which a 
manufacturable solution is not known at this time.  
 

White – Manufacturable solutions exist and are being optimized  
Yellow – Manufacturable solutions are known  
Red – Manufacturable solutions are not known _____

 

Year of Production 2010 2013 2016 Ref. 
DRAM ½ Pitch (nm) 45 32 22  
MPU/ASIC ½ Pitch (nm) 50 35 25  
Physical gate length high-performance (HP) 
(nm) 

18 13 9  

Power-delay product for (W/Lgate=3) 
device [Cgate * (3*Lgate) *Vdd

2] (fJ/device) 
0.015 0.007 0.002 35b (HP) 

Static power dissipation per (W/Lgate = 3) 
device (Watts/device) 

9.70E-8 1.40E-7 1.10E-7 35b (HP) 

High-performance NMOS device τ 
(Cgate *Vdd / Idd-NMOS) (ps) 

0.39 0.22 0.15 35b (HP) 

Power-delay product for (W/Lgate=3) 
device [Cgate * (3*Lgate) *Vdd

2] (fJ/device) 
0.032 0.016 0.006 36b (LOP) 

Static power dissipation per (W/Lgate = 3) 
device (Watts/device) 

5.30E-11 1.00E-10 2.00E-10 36b (LOP) 

LOP NMOS device τ 
(Cgate *Vdd / Idd-NMOS) (ps) 

0.85 0.56 0.35 36b (LOP) 

Power-delay product for (W/Lgate=3) 
device [Cgate * (3*Lgate) *Vdd

2] (fJ/device) 
0.071 0.034 0.025 36d (LSTP) 

Static power dissipation per (W/Lgate = 3) 
device (Watts/device) 

2.53E-13 3.78E-13 4.32E-13 36d (LSTP) 

LSTP NMOS device τ 
(Cgate *Vdd / Idd-NMOS) (ps) 

1.69 1.05 0.82 36d (LSTP) 

Table I: Projections of Selected Semiconductor Properties 
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A Review of the Limits of Computer Technology 

Thermodynamic Heat Production from Logic Gates 
 
In a now-famous paper, Landauer [Landauer 61] identified that thermodynamics sets 
a lower limit on the power dissipation of an “irreversible” logic gate at kBTloge2 
per switching event (kB=1.38 × 10-23 watts/°K is Boltzman’s constant and T is the 
temperature in Kelvins). 
 
While Landauer justifies the kBTloge2 through several arguments, we will repeat 
just one here for the reader’s benefit: Consider a flip flop and its surrounding 
semiconductor material to be a statistical mechanical system. Statistical 
mechanics defines the entropy S of a mechanical system as S = kB loge W, where 
W represents the number of quantum states in the system. Let us define the 
number of states in the system to be W’ if we ignore the information in the flip 
flop. If the flip flop is in an unknown state, the entropy of the system will be S1 = 
kB loge (2 W’), corresponding to W’ states with the flip flop in a “0” state and 
another W’ states with the flip flop in a “1” state. If the flip flop is forcibly set to a 
known state (“0” or “1”), the entropy will be just S2= kB loge (W’). The change in 
entropy due to destroying information in the flip flop will be S1-S2 = kB loge2. The 
total entropy of the system cannot change, so the entropy must appear 
elsewhere as a heating effect, supplying kB T loge2 heat to the surrounding 
semiconductor material. 
 
A gate (such as a 2 input AND, OR, NAND, or NOR) destroys information when 
differing inputs (as in a “1” and a “0” or a “0” and a “1”) produce a single bit of 
output from which it is impossible to determine the input combination. Landauer 
explains more fully in his paper how the destruction of information in a gate is 
similar to the setting of a flip flop. 
 
We believe that Landauer’s lower bound is about a factor of 100 too low given 
the way we use digital computers. Landauer would acknowledge that gates 
approaching the minimum energy of kB T loge2 energy would become 
increasingly susceptible to glitches due to thermal noise. However, we expect 
computer logic to be immune from glitches. Furthermore, the consequence we 
impose for a glitch is that we replace the computer (this is a higher standard than 
is applied to memory devices where we would add an ECC circuit or a heart-lung 
machine where we would not build the machine in the first place if it were subject 
to glitches). Since computers have a finite life expectancy, this suggests that the 
probability of a glitch be less than one in the total number of logic operations the 
computer will perform in its lifetime. For a future supercomputer running in the 
Exaflops range, this would be less than one glitch in 1030-1040 operations (a 100 
Exaflops supercomputer expected to run ten years without error and which uses 
with 20,000 gate operations per FLOP would require a reliability of about 1 in 
7×1032 operations). 
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The experience we will have with semiconductor reliability over the next dozen 
years is similar in many ways to driving out of town in a car while listening to FM 
radio: as we drive further away from the radio station, the initially clear signal 
acquires a “hiss” which grows over time until it obscures the signal and we turn 
the radio off. 
 
This noise comes from the first amplifier stage in the FM radio: this transistor is 
exposed to both the radio signal from the antenna and the thermally induced 
noise signal from electrons in its own structure vibrating. The noise signal is 
constant throughout the drive out of town, but increases relative to the weakening 
radio signal. 
 
The transistors in a logic gate are similarly exposed to the signal from the 
preceding gate and thermal noise from their own electrons. While the magnitude 
of noise in logic gates is exactly the same as the noise in FM radios (its 
magnitude is kBT, dependent only on temperature), Moore’s Law is causing the 
signal energy to decline exponentially with time (through subsequent generations 
of electronic technology). 
 
Logic gates are constantly comparing their input voltages against a threshold to 
determine whether they are receiving a “0” or “1.” The effect of noise is nil unless 
the noise signal makes an excursion in the opposite direction of the logic signal 
sufficient to exceed the threshold. The probability of this occurring grows 
exponentially with the power of the noise signal. We should expect the following: 
 

• In today’s integrated circuits, the signal has about 100,000 times as much 
energy as the thermal noise (corresponding to a 50 db signal-to-noise 
ratio). As seen in Table II, the probability of a glitch at this signal to noise 
ratio is about 10-43,000, which is too small to worry about. 

 
• The ITRS projects .002 fJ (femto Joules, or units of 10-15 Joules) switching 

energy for 22 nm transistors in 2016. This is about 1000 times the thermal 
noise, or 30 db. The probability of a glitch is about 10-437, which is too 
small to worry about. 

 
• Cutting the switching energy by another factor of 10 brings us to the limit. 

With a signal 100 times more powerful than noise (20 db), the probability 
of error is 10-45, which is very close to the tolerable error limit for logic 
meeting our reliability requirements as described above. 

 
It should be noted that the analysis above also represents a “best case.” There 
are many practical effects that can cut the signal to noise ratio at an input 
transistor: signal loss in long lines, manufacturing tolerances in transistor size or 
thresholds, noise from other sources, transistors running hot, etc. Therefore, it 
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appears that the semiconductor roadmap takes us into the safety margin at the 
end of the road. 
 

SNR (db) Power ratio Perror 
10 10 3.9E-6 
12 16 9.0E-9 
14 25 6.8E-13 
16 40 2.3E-19 
18 63 1.4E-29 
20 100 1.0E-45 – Digital Limit 
22 160 3.3E-71 
24 250 1.4E-111 
26 400 1.8E-175 
28 630 1.1E-276 
30 1000 – 2016 CMOS 4.5E-437 
32 1600 3.5E-691 
34 2500 7.1E-1094 
36 4000 4.9E-1732 
38 6300 2.2E-2743 
40 10000 3.2E-4346 
42 16000 1.8E-6886 
44 25000 1.8E-10912 
46 40000 3.8E-17293 
48 63000 8.3E-27406 
50 100000 – Current CMOS 3.2E-43433 

Table II: Error Probability as a Function of Signal Power 
 
Digital Computing with Floating Point 
 
Our tradition of using floating point for calculations further defines the minimum 
power of a computer. 
 
We will stipulate that a 64 bit floating point unit has 100,000 gates based on the 
following: A 64-bit floating-point multiplier includes a 53×53 multiplier array, each 
unit of which is about a dozen gates. This results in about 25,000 gates just for 
the multiplier array. While addition is O(N) instead of O(N2), where N is the 
number of bits, floating adders have complex shifters and are of similar 
complexity to a multiplier in practice. This takes us to 50,000 gates. 
 
However, IEEE compliant floating point has with “Not a Numbers” (NaNs) and 
denormals. These last features often double the gate count without improving 
numerical performance. It is unclear whether IEEE compliance belongs in a 
discussion of theoretical limits of computing. Given these sources of imprecision, 
we offer 100,000 gates as a plausible FPU complexity. 
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Furthermore, let us assume a multiplier/adder can accomplish its task in 
200τ and with energy corresponding to 20,000 gates switching (for both add and 
multiply).  
 
These considerations suggest a minimum energy per FLOP of 2×106 kBT per 
FLOP (20,000 gates × 100kBT energy per gate operation). 
 
Other Ways to Compute 
 
While the authors feel comfortable presenting 2×106 kBT as the minimum energy 
per FLOP, the overall approach is not beyond challenge. 
 
The arguments in the previous several pages provide a basis for comparing 
digital and analog computers. For an analog computer to do an add or multiply 
will require an expenditure of energy of kBT logeW, where W is the number of 
distinguishable states. While a floating-point number has two parts (mantissa and 
exponent) compared to just one part for an analog voltage, a double precision 
floating-point number has 264 distinguishable states. This suggests that if an 
analog circuit could do an add or multiply with 264 bits of precision, the required 
energy would be kBT loge(264 ) = 64 kBT loge 2. This is 1/30,000 the power of a 
digital floating-point operation and suggests considerable upside potential for 
analog computers. 
 
However, it would be remarkably difficult to build an analog circuit where the 
signals were stable to one part in 264. The Heisenberg Uncertainty Principle 
provides some insight: one version of this principle states that the uncertainty in 
time multiplied by the uncertainty in energy must be greater than h/2π (∆T ∆E > 
h/2π, where h = 6.63×10-34). This implies the time required for a hypothetical 
analog gate to measure a signal with total energy of about 64 kBT loge 2  to a 
precision of one part in 264 will be T > h/(2π × 2-64 × 64 kBT loge 2), or about 3 
hours. Thus, the analog gate would be impossibly slow. 
 
Reversible logic may provide a solution, but has difficulties as well. Some 
researchers [Kim 01] made a half step toward a reversible logic computer by 
constructing a reversible 8×8 multiplier. In some domains, floating-point 
operations comprise a big part of the activity in scientific computation and 
consequently a big part of the “unavoidable” power dissipation. Cutting the power 
dissipation of just the floating-point unit through reversible logic would make a big 
difference. The idea is to construct a network of reversible logic gates that can 
perform a floating-point operation and subsequently operate in reverse to recover 
the energy so it doesn’t have to be dissipated as heat. The desired energy flow 
would be this: A reversible logic network takes two 64 bit floating point numbers 
as input and operates on them to produce a 64 bit result. This operation will 
involve 20,000 units of energy equal to the gate switching energy, but it will just 
move the energy around and not convert it to heat. The 64-bit result will then be 
saved with irreversible logic, using 64 gate switching units of energy that will 
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eventually be dissipated as heat. The reversible gates will then be run backwards 
to restore the 20,000 units of energy to a state where they can perform another 
floating-point operation. In theory, this will accomplish a floating-point operation 
with just 64 gate-switching units of energy. 
 
The 8×8 multiplier demonstrates the concept, but shows a “friction” that makes 
the concept substantially less interesting: this 8×8 multiplier was only about 75% 
efficient at recovering energy. Thus, if 20,000 units of energy were put in, only 
15,000 could be recovered and 5,000 went to heat. Extrapolating these results 
from an 8×8 multiplier to a full floating point unit, a floating point operation would 
be 5064 gate-switching units of energy – considerably above the 64 units 
expected from theory. 
 
Other researchers [Vieri 99] have taken a full step towards reversible logic by 
constructing a complete microprocessor using reversible logic. 
 
The analysis in this section does not take errors due to Cosmic Rays into 
account. Cosmic Rays will cause glitches in logic that are indistinguishable from 
those caused by thermal noise. If we are to be consistent in our expectation that 
a computer does not produce logic glitches, we must find a solution for Cosmic 
Ray-induced logic glitches as well. 
 
The idea that one would build a computer from devices that glitch occasionally 
has been explored intermittently from the early days of computing. Von Neumann 
[von Neumann 56] considered this topic extensively in the 1950s due to the 
inherent unreliability of vacuum tubes and the interest in biological, neural 
computing systems of that day. Von Neumann proposed and analyzed the idea 
of replacing wires and gates with bundles of wires and arrays of gates. Failure of 
one or a few gates or wires would not change the ultimate output of the computer 
due to the action of the redundant copies. This line of reasoning seems to have 
had a period of inactivity from the 60s to 90s due to the ascendancy of 
transistorized microelectronics, but has been resurrected recently in the context 
of nanotechnology. Von Neumann’s ideas seem to apply acceptably to 
unreliability caused by thermal noise and Cosmic Rays even through they were 
developed for other effects. However, recent researchers [Han 02] have found 
better solutions. 
 
However, it does not appear that the work derived from von Neumann changes 
the conclusions of this report. This report finds power consumption to be the 
principal limiting factor in the performance of a computer. While emergence of a 
lower-power computing technology would change the result of this report, von 
Neumann’s work seems all headed towards higher power dissipation. 
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Static Power Dissipation 
 
Figure 7 is a simplified view of some of the issues involved in the leakage current 
that causes undesirably high static power dissipation. Current semiconductor 
processes permit the designers to create transistors by drawing shapes on 
masks that correspond to the source, gate, and drain of transistors. If the 
designer varies the proportions of the shapes, they get transistors with varying 
properties. Depending on how they vary the proportions, they can optimize the 
transistors for efficient logic or low standby power: 
 

1. If one ignores the effects of quantum tunneling, the designer would like to 
have the narrowest possible gate. The narrower the gate, the less its area. 
Since the gate capacitance is proportional to the gate area, this means 
less gate capacitance. Overall switching power is ½CV2, so lower gate 
capacitance reduces the switching energy. Furthermore, the region under 
the gate is resistive when the gate is “on.” The narrower a gate, the lower 
its “on” resistance. This means the gate will charge its load faster. 
Narrower gates are therefore more “desirable” for performing logic by two 
“linear” factors combined.   

 
2. However, quantum tunneling increases exponentially as the gate region 

becomes narrower. As the gate becomes very narrow, there becomes a 
significant probability that an electron will jump over the energy barrier 
created by a gate in the “off” condition. The sum of all the spurious 
electrons jumping over an entire chip corresponds to a leakage current 

Source Drain 
Gate 

Source Drain
Gate 

Efficiency: Smaller capacitor (     vs.          ) 
consumes less ½CV2 energy 
to charge and makes logic 
more energy efficient. 
 
Speed: Narrower gate produces lower 
resistance and speeds switching. 
 
Static Power: Reduced source-drain 
distance (                 vs.                      ) 
causes greater quantum tunneling. 
 
Other Effects: Changes in materials and 
manufacturing processes can 
simultaneously reduce both dynamic and 
static power. These are not easy changes.

Figure 7: Leakage Current and Mitigations 
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and corresponding power dissipation. Notably, this leakage occurs 
whether the gates are actively performing logic or just waiting. Quantum 
tunneling therefore makes narrow gates “undesirable” by an exponential 
factor. 

 
The two opposing effects above give the designer the opportunity to optimize 
each transistor for its particular purpose. As summarized in Table III, A “logic” 
transistor that switches frequently and where speed is needed for overall system 
performance can be constructed with a narrow gate and the quantum leakage 
can be accepted as a cost of business. On the other hand, a transistor that 
switches infrequently (such as many in the memory subsystem) can get a fat 
gate to reduce static power dissipation. As illustrated in table I, the ITRS 
describes three classes of transistors (HP, LOP, and LSTP), although the 
classes are not determined by any authority and the engineer is free to develop 
others. 
 
The discussion above was intended to illustrate just one way in which leakage 
current can be managed in conjunction with system architecture. There are other 
ways: Altering the power supply voltage or the design of transistors (threshold 
voltage) can vary the size of the energy barrier discussed above. These 
mitigations could be implemented on a chip-wide basis or by having multiple 
power supply voltages or transistor types on the same chip. 
 
Duty 
Cycle 

Critical 
Path 

Mitigation 

High Yes Use a High Performance (HP) transistor and don’t worry 
about leakage current. 

Low No Use a Low Standby Power (LSTP) transistor that will 
minimize leakage current. 

Low Yes Attempt to minimize the use of these transistors. If they occur 
in large groups, it may be possible to “power down” parts of 
the chip to mitigate their leakage current. 

Table III: Leakage Current Mitigations 
 
Dimensionality of Space 
 
The fact that the universe has three spatial dimensions sets limits for both signal 
propagation and cooling. The maximum speed of signal propagation is limited to 
the speed of light applied to the distance between points in three-dimensional 
space. Furthermore, cooling is limited by the amount of two-dimensional surface 
area on a three-dimensional structure. 
 
It is broadly understood that it is best to exploit the full-three dimensional 
structure of space through a three-dimensional computer packaging [Vitanyi 88]. 
 
Signal Propagation Velocity 
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It should be possible to move information at the speed of light, yet most real 
technologies move signals at between .1c and .95c. For example: 
 

• Free space optics transmits signals at 95% of the speed of light or higher. 
 

• Optical fibers and electrical transmission lines transmit signals at about 
70% of the speed of light. 

 
• Transmission in with wiring layers of an integrated circuit is via a diffusive 

process. A fixed electrical driver driving a wire with parasitic capacitance 
to ground will have quadratic delay as a function of length due to the time 
to charge the parasitic capacitance. Maximum propagation speed occurs 
when the signal is regenerated periodically with repeaters (inverters). 
These repeaters should be spaced approximately at intervals where the 
added delay due to wire equals the propagation delay τ of the inverter. For 
22 nm technology in 2016, the this wire length will be 9-19 µm (ITRS table 
62b) depending on which interconnect layer is used. For the same 
technology, τ is .15 ps (ITRS table 35b). These correspond to propagation 
velocities of .1c - .2c. 

 
Thus, a real implementation may fall short of peak propagation velocity by up to a 
factor of 10 less than c. 
 
Cooling 
 
As illustrated in figure 8, cooling involves moving a coolant past a heat-producing 
device, absorbing heat, and removing it with the coolant. Since it makes no 
sense to consider a coolant pipe bigger than the object being cooled (the coolant 
would miss the object), the cooling capacity will depend on the area A of the 
coolant pipe and the matching area A of the device being cooled. Unless the 
coolant undergoes a phase transition, the heat removed by the cooling system 
will be A × velocity × ∆T × C, where C is the heat capacity of material. In the case 
of a phase transition ∆T × C is replaced by the energy of the phase transition. 
Practical and theoretical cooling systems differ only in these factors. 



 26

For our purposes, the cooling problem has two parts: 
 

1. Getting the heat from the device into the coolant. This task is controlled by 
a heat exchanger near the device. These heat exchangers will have some 
efficiency and performance, but their operation will be independent of the 
other parts of the computer. 

 
2. Getting the coolant out of the computer. As the computer gets bigger, the 

amount of coolant that can go through the heat exchangers in item 1 
grows with the volume of the computer but the surface area with which to 
run the coolant pipes grows only with its surface area. For some computer 
size, the ability to route the plumbing to the computer will become the 
limiting factor. 

 
Table IV illustrates the known and proposed solutions for removing heat from an 
integrated circuit. 

Figure 8: Geometries of High Performance Cooling Systems 
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Method Performance 
Heat Sink 100 Watts/cm2 
Evaporative Spray Cooling 100 Watts/cm2 (unverified figure) 
LLNL Microchannel Cooling [LLNL 99] 100 Watts/cm2 
Drexler’s fractal plumbing [Drexler 92] 100,000 Watts/cm2 

Table IV: Heat Removal from Chips 
 
Fractal plumbing is illustrated in figure 9. Fractal plumbing refers to a coolant 
distribution and collection system where the coolant is routed through a series of 
stages each with more but smaller pathways. Figure 9 illustrates a three-stage 
distribution system, each stage splitting the pipe of diameter d into two pipes of 
diameter d/√2. The circulatory system of an animal is an example of fractal 
plumbing. The challenge in fractal plumbing is to find a design where the coolant 
can be pumped pretty fast without causing the small pipes to break. Drexler 
[Drexler 92] reports on an analysis of fractal plumbing that concludes that 10 KW 
could be removed from a 1 cm cube. 

 
Removing heat from the overall computer involves efficiently using the surface 
area of the computer for routing plumbing for cooling. We propose to use the 
cubical structure in figure 10 for this purpose (again ignoring the fact that a 
spherical computer would be better by a small factor). The ideal cooling system 
would implement fractal plumbing in the pyramids. 

Figure 9: Fractal Plumbing 

Coolant In  
Coolant Out  

 device being cooled 
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Table V summarizes the performance of key cooling technologies as they will be 
used in the remainder of this report. 

Figure 10: Peak Cooling for a Cube 
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 V – 

Velocity 
of 

coolant 

∆T – 
temperature 
change of 

coolant 

C – Heat 
capacity 

of 
coolant 

ρ – 
density

Perform-
ance 

Cx 

Units m/s Degrees K J/g/degree 
K 

g/m3 kW/m2 

Air 3 15 1.004 1000 45 
Water 1 15 4.18 106 62,700 

Boiling 
water 

3 
(steam) 

5000 (heat of 
evaporation, times 2 

because steam flows out 
both directions) 

1000 
(steam)

15,000 

 
The theoretical limits of cooling are way above what is currently achievable.  
Table VI [Frank 97] illustrates the theoretical limits of various cooling. 
 
Cooling Technology Max entropy flux F Watts/cm2 
Digital optic fiber 2.63E-08 
Current passive emission 9.21E+01 
Drexler’s fractal plumbing 1.00E+05 
Slow atomic ballistic 2.63E+05 
Fast atomic ballistic 2.63E+12 
Quantum theoretic maximum 1.32E+20 

Table VI: Theoretical Limits of Cooling 
 
Since we don’t have good theoretical limits on cooling performance, the 
remainder of this report will leave the cooling system unspecified but 
parameterized. In some places we will presume a future computer will be built 
with an unspecified cooling technology characterized by the following: 
 

• Designating the volume of a transistor to include a pro-rated share of the 
heat exchanger that would be needed to transfer its heat to the coolant. 

 
• Limiting the power consumption of a computer to that which can be cooled 

through its surface area. If a computer would exceed this limit, it will be 
“inflated” by moving its parts away from each other uniformly until its 
surface area is sufficient to cool its contents. 

 
We will also develop specific examples of (1) air cooling, (2) water cooling, (3) 
fractal plumbing, and (4) ignoring cooling – which is equivalent to a infinite 
performance coolant or machine operation in a pulsed mode. 
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The Successive Over Relaxation (SOR) Method as an Exemplary Problem 
 
The SOR method is the simplest computational kernel that uses repetition of the 
singly coupled calculation. SOR is an enhancement to a simple finite difference 
approximation for a Partial Differential Equation (PDE). We give a brief tutorial 
below. While SOR is so simple that it is no longer in use, the methods generalize. 
 
A straightforward PDE might be the solution of Laplace’s equation in a 3D region 
with a uniform mesh. To illustrate the problem domain: the temperature in a 3D 
metal region would obey Laplace’s equation. Since temperatures vary smoothly, 
the temperature at any point in the interior would be approximately the “average” 
of the surrounding areas. This might be approximated by a uniform mesh of 
points X(i, j, k), each value representing the temperature at a point. The most 
straightforward numerical solution method is to repeatedly update the value of 
each point with the average of neighboring points: 
 
X(i, j, k)’ = 1/6 × [X(i-1, j, k) + X(i+1, j, k) +     (1) 

X(i, j-1, k) + X(i, j+1, k) + 
X(i, j, k-1) + X(i, j, k+1)] 

 
As this assignment is repeatedly evaluated during iteration, the value of X at a 
given point is nudged slowly from some initial value to the correct answer. 
Mathematicians have devised an improved algorithm called SOR that essentially 
“nudges harder.” To be slightly more precise, the improved algorithm figures out 
how much each value of X will change per equation 1. It then increases the 
amount of change by an over relaxation factor. A typical over relaxation factor 
might be 20, but is problem dependent. Equation 1 can be written as more 
loosely as 
 

X’ = f(other points),       (2) 
 
with f defined in equation 1. SOR rewrites this as 
 

X’ = X + cSOR × [f(other points)-X],     (3)  
 
nudging harder by a factor of cSOR. The precise equation used in this example is: 
 
X(i, j, k)’ = (1-cSOR) × X(i, j, k) + cSOR/6 × [     (4) 

X(i-1, j, k) + X(i+1, j, k) + 
X(i, j-1, k) + X(i, j+1, k) + 
X(i, j, k-1) + X(i, j, k+1)]. 

 
To test for convergence and to control the over relaxation factor, the program will 
want to know the maximum amount of change in any X value during an iteration. 
 
Y = max ∀ i, j, k  |x(i, j, k) – x(i, j, k)’|      (5) 



 31

 
The over relaxation factor must be adjusted to assure that Y decreases smoothly. 
When Y drops below a threshold, the algorithm terminates. 
 

Implementing the Calculation 
 
Time-Space Tradeoff 
 
To solve the problem as we intend requires addressing a time-space tradeoff. As 
illustrated in figure 11, this problem can be solved quickly with a lot of hardware 
or more slowly with less hardware. A computer will contain some amount of 
storage for input, output, and intermediate results as well as logic to transform 
input to output. The amount of storage is determined by the algorithm and data 
set. Storage consumes little if any power and makes no contribution to the 
computational power of the system. However, the amount of logic can almost 
always be ramped up and down to control the power consumption and/or 
computational power of the computer. 
 

We introduce a “power-savings knob” K, representing the degree of multiplexing 
in the use of the logic. K=1 represents an algorithm running on the computer in 
figure 1 containing the same number of storage cells as logic cells. This is 
illustrated on the left side of figure 11. As long as the system is regular, it will be 
possible to group the storage into groups of K words (i. e. memories of depth K) 
where the logic acts sequentially on the contents of the memories through K 
steps. This is illustrated on the right side of figure 11 for K=6. 
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Figure 11: Power Control for a Problem with 6 Variables 
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It should be noted that K=1 corresponds to a Systolic Array[Kung 82]. Somewhat 
larger values correspond to Processor-In-Memory (PIM) systems[Sunaga 96]. As a 
broad generalization, typical ASCI clusters and MPPs have K values in the range 
of 125,000,000 (one microprocessor acting on 1 Gigabyte of memory – or 
125,000,000 64 bit floats). 
 
Magic Wiring and the Aerogel Computer Model 
 
A stated objective for this report is to find an architecture approaching an optimal 
implementation for a particular class of computer. To meet this objective we will 
first develop an algorithm for a hypothetical “perfect” computer of the desired 
class (i. e. classical irreversible logic). If we can then develop a real computer 
that comes within a constant factor of the perfect computer, we can claim that the 
real computer is within a constant factor of being ideal. 
 
Figure 12 illustrates the “perfect” computer. It has an idealized interconnect 
where information may flow between any two points at the speed of light. Each 
cell can be imagined to have a directional laser and a photo detector in a 
telescope that can be aimed at any other cell in the system. We further stipulate 
that all cells can “see” each other without the line of sight being blocked by other 
cells and that the telescopes will be pointed in the proper direction at all times. 
We call this “magic wiring.” 
 

 
The physical structure of the “perfect” computer contains cells. The cells are 
modeled as packing at pitch Λ (“big Lambda”) in 3D, thereby each occupying 

Cell

Cell Cell

Cell

Cell Cell

Cell Cell

Figure 12: Aerogel Model With Magic Wiring

Λ
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volume Λ3. Cells may either hold one bit (storage cells) or may contain a logic 
gate (AND, OR, NOT). All cells are initially undifferentiated, with the programmer 
specifying the type for each cell as part of the development of the program. 
 
Non-memory cells perform elementary logical computations. Each such cell 
receives input information from other cells, performs the designated operation, 
and sends output information to other cells. This process requires time τ (a 
propagation delay added to the communications time for the inputs and outputs) 
and consumes energy E. 
 
Λ is a parameter that can be used to model the active devices, cooling, or both. 
 

• Λ can be used to model minimum device size by setting it to the edge 
dimension of a basic electronic device. For example, the projected 
semiconductor technology for 2016 has a basic transistor size of about 
106 atoms occupying a volume 30-40 nm2. With Λ set to such a value, one 
would be modeling an algorithm on a packed 3D array of transistors. This 
may be a useful model for exploring the limits of computation and may 
even be practical for a computer operated intermittently (as in a µs at a 
time). However, a real device constructed at such a density would quickly 
overheat. 

 
• We can use Λ to account for heat production and cooling through our 

aerogel computer model. In this model, we use the structure of figure 12 
but “inflate” the computer’s structure to account for space in which to run a 
coolant and provide sufficient surface area for pipes to carry the coolant to 
an external refrigeration system. This hypothetical model would have a 
composition similar to an aerogel: the cells of figure 12 would be 
transistors as shown but there would be a lot of space between cells and 
the entire structure would be mostly empty space. We do not suggest 
anybody construct such a computer, but merely that it is a convenient 
approximation to an ideal computer (of the classical irreversible logic 
variety). 

 
Logic 
 
Assignment statements 4 & 5 above contain 9 floating-point operators and a 
maximum function. To avoid complicating this report, let us stipulate the mesh 
point calculation is done with 9 sequential operations of one Floating-Point Unit 
(FPU). 
 
Figure 13 illustrates the logic of a single node. The cell has three parts, an FPU, 
a maximum unit, and a memory for holding K 64 bit numbers. The FPU will 
evaluate equation 4 in 9 steps, using values from the memories of its neighbors. 
If K>1, the node will evaluate equation 4 K times. 
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Calculating the Maximum 
 
The maximum unit in figure 13 works with corresponding units on other such 
nodes as illustrated in figure 14 to calculate the over relaxation parameter cSOR 
and control application termination. Calculation of the maximum function in 
equation 5 is done in two phases: Calculation of the maximum over the K steps 
associated with each FPU and combination of these local maxima into a single 
global maximum. 
 
We suggest that the maximum unit in figure 13 can be implemented so simply 
that it need not be further considered. In the right floating point format, it is 
possible to compare floating point numbers by doing an integer comparison on 
the same bits. We assume this will be done (noting that this works just fine for 
numbers but not NaNs). Integer comparison can also be done bit serially, most 
significant bit first. With this representation, the maximum unit can be 
implemented as a bit serial shift register an a one-bit serial integer comparison 
unit. Such a circuit is of negligible complexity compared to a FPU 
 
At the end of an iteration, the nodes compute Y from equation 5 through a global 
maximum function by passing the values to one corner of the entire machine. An 
external “host” processor uses Y to calculate a new cSOR, which is broadcast by 
the reverse path. 

Figure 13: Layout for SOR Application 
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Energy Efficient Streaming Memory 
Since this particular problem accesses the memory in figure 13 in a very specific 
way, we can simplify the memory enormously over a conventional memory 
hierarchy: 
 
First, the access pattern is completely deterministic. Thus, it is possible to create 
an address generator unit in a thousand gates or so that generates the entire 
read-write address pattern for the memory. By running the address generator 
ahead of the addresses that the FPU needs, the memory system can be 
pipelined and made almost completely independent of read latency. 
 
Second, the write-through latency doesn’t matter. The mathematics of this finite 
difference problem has been formulated where written values are used 
immediately and where they are they are delayed substantially. The mathematics 
works both ways. 
 
To meet the objectives of this report, the authors merely need to describe a logic 
design that comes close to the performance possible with the system in figure 13 
(say within a factor of 2). In other words, we are better off referencing a non-
optimal design that has been published than inventing an optimal one and writing 
a treatise on it. 
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To this end, we have found technology in [Coates 00] that meets our criteria if 
applied properly. 
 
Figure 15 illustrates the overall strategy. Address generator logic will generate all 
addresses, but with “write” addresses delayed by perhaps a few dozen positions. 

The memory will be organized as a tree. The “input” for each access (address 
and write data, if the access is a write) will be sent down a tree branching 
according to the addressing bits. To keep power consumption low, there will be 
no activity in the unused branches. The downward path is illustrated in green. 
 
The leaves of the tree are comprised of small memories (say 1024 words of 64 
bits), which perform the operation. The read data (or a data-free 
acknowledgement of write completion) are sent up the tree along the read path. 
 
Figure 16 illustrates some additional technology for implementing the memory. 
The Sun FLEETZero[Coates 00] project has disclosed an asynchronous logic design 
for implementing the trees in figure 15 that preserves the order of access as the 
data emerges from the tree. The key to Sun’s approach is a branch-merge circuit 
that produces a third “order” stream reporting the branch direction. The sequence 
of order bits is stored in a 1 bit queue and fed to the merge unit. The merge unit 
accepts data only from the direction specified by the order bit. 
 
Asynchronous logic is a further advantage of the Sun design: The system 
specified in [Coates 00] generates all the necessary clocking signals, with the 
property that unused branches of the tree have zero activity and hence no 
dynamic power dissipation. 
 

Figure 15: Hierarchical Memory 
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The additional power consumption due to this design can be estimated as 
follows: The branch-merge tree will require approximately 2log2K-10 levels. The 
logic at each switch point will be dominated by a 64 bit demultiplexer-multiplexer. 
If each bit requires 5 gates, this would create (2log2K-10) × 5 × 64 × E additional 
switching power per FPU cycle. 
 
The circuit in figure 16 will require effective assignment of “high performance” 
versus “low standby power” transistors. From figure 16, we have proposed a 
memory system where the data path is “fanned out” as a binary tree originating 
at the FPU and going to the memory. As a consequence of the binary tree, the 
“duty cycle” of the demultiplexer units will decline exponentially as units are 
positioned further from the FPU. In accordance with Table III, the transistors 
should be switched from HP to LSTP types. Figure 17 proposes making this 
transition after 4 stages. 
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An Architecture Approaching The Physical Limits 
 
While the progress of Moore’s Law is normally seen to offer substantial but 
incremental improvements in computer performance, very large quantitative 
changes sometimes cause qualitative changes. In this case, transistor count is 
giving way to power dissipation as the limiting factor in chip performance. 
 
Figure 18 illustrates the essential concept. We are seeking an architecture that 
approaches the physical limits, so let us stipulate we seek an architecture that 
reaches 75% of the physical limits. 
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The top of figure 18 illustrates a 75% efficient memory chip: Since memory will 
remain limited by transistor count, the chip’s surface area is 75% covered by 
transistors devoted to memory. 
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The middle of figure 18 illustrates a 75% efficient logic chip: In the 2016 time 
frame, a chip covered entirely by logic will have power densities that are well 
above the ability to cool the chip. While we may not know the details of a 2016 
logic chip, we can say with some certainty that only a fraction of its surface will 
be covered by logic with power “on” at any given time. 
 
Memory and logic stress different limits and are therefore compatible, as shown 
in the lower part of figure 18. A chip could simultaneously contain 75% of the 
maximum amount of memory while simultaneously containing logic to consume 
75% of the maximum amount of power. Furthermore, by switching the power 
supply on and off, a chip could contain multiple logic blocks – as long as they 
were not all turned on at once. 
 
Figure 19 illustrates an architecture that can meet the physical limits within a 
constant factor while being practical as well. The block labeled “architecture 1” 
would contain the logic in figure 13 and the memory would be as illustrated in 
figures 15-17. With the power to “architecture 1” turned on, the chip would 
perform the calculation described in this report with which we will later show has 
an efficiency approaching the physical limits. With some other architecture block 
turned on, the chip would be free to perform some other function. 

 
The Universal Computing Element would need a power control circuit that would 
assure that the logic blocks would be switched on and off in such a way that the 
chip would not overheat. 
 
We recommend that the block labeled “interconnect” in figure 19 be a wormhole-
router based logic unit designed in accordance with other work by the author 

Figure 19: Universal Computing Element 

Architecture 1
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[DeBenedictis 03] and integrated into a 3D mesh as illustrated in figures 4, 5, and 
in other work by the author [DeBenedictis 03]. The interconnect block would carry 
out the maximum function as illustrated in figure 14. 
 
We would further recommend that the architecture blocks in figure 19 include a: 
 

• Microprocessor. Most codes today are quite large, but with the 
computational activity concentrated on just a small percentage of the lines. 
We anticipate the microprocessor would be given the primary 
responsibility for executing codes, but would offload the main 
computational activity to other units (and then power itself down). The 
microprocessor will be useful for its flexibility and as such need be neither 
fast nor power efficient. 

 
• Vector floating point. The main activity in many scientific codes can be 

formulated as vector operations on floating point numbers. The advantage 
being that a vector floating-point unit can be much more power efficient 
than a microprocessor. To be specific: a well-designed microprocessor 
can perform vector operations in much the same way as a vector unit. 
However, the microprocessor performs other (typically scalar) functions 
that consume power as well. These other functions include speculative 
instruction execution, storing values in a cache in the event they will be 
reused, etc. 

 
• Reconfigurable processor. The academic community has considerable 

interest in processors whose internal components can be rearranged after 
manufacture to suit specific purposes. Once the components have been 
rearranged, the processor can be much faster and of lower power 
consumption than a microprocessor. 

 
• Other special function units. Many applications communities have a small 

number of computations that form the main activity of many applications. 
These computations are typically compute-intensive but generic functions 
that can be transformed with modest compute power to specific tasks. For 
example: dense and sparse matrix operations in physics, searching in 
bioinformatics, etc. The advantage of special function units is that their 
performance and power efficiency can be much greater than any of the 
other options. Given the chip sizes projected to be available, it should be 
possible to include a handful of special function units where the benefit to 
even small constituencies is nonetheless greater than the incremental cost 
of adding the unit. 
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Performance Estimation 
We will now estimate the performance of both the perfect computer constructed 
with magic wiring and our most realistic assessment of what is possible. A 
comparison of the results will not only show whether can approach the theoretical 
bound, but will also give an assessment of future computing capabilities and 
costs. 
 
While the preceding parts of this report outlined many of the equations that would 
be necessary, table VII includes additional data on the packaging model used for 
realistic computers. The C++ source code for evaluating the model is attached as 
an appendix to this report. 
 
 
 Aerogel Realistic 
First level packaging N/a: only one level of 

packaging. 
First level of packaging is 
the chip. A chip has a 
maximum transistor 
count, a maximum power 
dissipation, and a 
maximum bandwidth to 
other chips. 

Nodes N/a: only one level of 
packaging. 

Each node is a FPU plus 
K words of memory. 
Each chip is deemed to 
hold an integer number of 
nodes. 

Second level packaging Machine is deemed to be 
cubical of a size 
determined by the basic 
devices packed into 3D 
but inflates to avoid 
exceeding coolant 
capacity limit. 

Each chip has a 
designated minimum 
volume for the chip plus 
cooling apparatus. The 
cubical machine may 
inflate over the volume of 
the chips to avoid 
exceeding coolant 
capacity limit. 

Table VII: Computer Packaging 
 
 
Figure 20 is a composite graph showing key performance parameters as a 
function of K, the memory size on each node. The graph is divided into three 
regions, each with a different behavior. 
 
The lines on the graph are in pairs with a thin line corresponding to an aerogel 
computer and a thick line for our most realistic estimate of computer 
performance. 
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• Power consumption is not a problem in the rightmost region . In this 
region, the computer is a cube about .1 m on a side. The cube is 
comprised of about 10 Exabytes of memory and a “few” processors (1 on 
the right margin to a billion at the left of the region). Given the large 
amount of memory and the small number of processors, the size of the 
cube doesn’t change over the region. However, the speed of solution 
(TStep graph) and the power consumption vary in inverse proportion. The 
region is characterized by low enough power generation that it can be 
cooled through the faces of the cube using air or water cooling. 

 
• Cooling is the predominate issue in the center region . In this region, the 

power generated is too much to be cooled through the faces of the original 
.1 m cube using the designated cooling method. The remedy is to inflate 
the machine to increase its surface area. The inflation may be substantial: 
the original .1×.1×.1 m cube expands to 300×300×300 m in the case of air 
cooling! While speed of light delays increase as the computer expands, 
the speed of light effect does not dominate until the next region. 

Legend: 
Air 
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• The speed of light is a controlling factor in the left region . This region 

begins when the time to compute an ”iteration” approximately equals the 
speed of light delay in computing the SOR coefficient. As the graph 
continues leftward, the amount of ALU hardware increases dramatically, 
yet overall speed doesn’t increase because it is controlled by the speed of 
light. Overall power consumption doesn’t increase either because the ALU 
hardware becomes largely idle waiting for the global communications. 
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Figure 21 plots the timestep TStep as a function of the number of cells n along 
each side of the solution region. Note that the problem size is n3. 
 

Consider the thinner group of lines first. These represent the behavior of aerogel 
computers implemented with various cooling systems. 
 

• In region , all the aerogel graphs coincide. In this region, the problem 
being solved is small and the limiting factor is the speed of the floating-
point unit. 

 
• In region , the time steps increase and the aerogel graphs diverge. This 

region is characterized by power dissipation reaching the limit for the 
cooling technology and requiring “inflation.” 

 
• In region , the aerogel lines become straight as they head to infinity. In 

this region, the computer is inflated to provide enough surface area to be 
cooled, which determines the synchronization time in accordance with 
speed of light delays. 

Legend: 
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The thicker lines correspond to realistic computers. 
 

• Region  shows a big “bump” in the time step compared to the 
theoretically perfect “aerogel” computer. This is caused by the two-step 
packaging system: transistors on chips and chips in a system. 
Calculations take place predominately in one chip on the left of the region, 
which is quite efficient. Toward the right of the region, signals must 
propagate between chips. 

 
• In region , the real systems take on the scaling properties of the overall 

system. One will note that the thin and thick lines have the same slope on 
the right, indicating that the performance of the real systems lags the 
“aerogel” computers by a constant factor. 

 
One notes that the better cooling technology has a significant effect on 
performance. On the right of the graph, air cooling, water cooling, fractal 
plumbing, and infinite cooling spread themselves out of 2 ½ orders of magnitude 
in performance. 
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Figure 22 shows that there is a lot of performance upside available by plotting 
peak FLOP rates as a function of problem size. It is widely believed that larger 
problems have more parallelism available for exploitation than do smaller ones. 
This effect controls the overall upward slope of the graph. 
 

When the ASCI program was originally conceived, it was believed that a 
stockpile simulation could be accomplished with a 10003 grid. For all real 
computers, this problem is on the graph at 10 PFLOPS. This is 100 times larger 
than was originally proposed by the ASCI program. 
 
The fact that the performance lines go off the graph at 1 YFLOP on the upper 
right shows that scaled speedup continues to work. However, the power 
consumption of a computer at the YFLOPS level would be prohibitive. Since the 
graph covers computers at or close to the thermodynamic limit for classical 
irreversible logic, the only way to avoid this limit would be to exploit a computing 
technology based on a different type of physics. 

Legend: 
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Figure 22 elaborates on figure 20. In this figure, we have set the problem size to 
500,000×500,000×500,000 mesh points vary the degree of parallelism in the 
computer through variable K. 
 

• The speed of light is the predominate effect in region . This region 
begins when the time to compute an “iteration” approximately equals the 
speed of light delay in computing the SOR coefficient. As the graph 
continues leftward, the amount of FPU hardware increases dramatically, 
yet overall speed doesn’t increase because it is controlled by the speed of 
light. 

 
• Power consumption is not a problem in the region on the right . In this 

region, the computer is a cube about .1 m on a side. The cube is 
comprised of about 10 Exabytes of memory and a “few” processors (1 on 
the right margin to a billion at the left of the region). Given the large 
amount of memory and the small number of processors, the size of the 
cube doesn’t change over the region. However, the speed of solution 
varies in proportion to the number of FPUs.  

Legend: 
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Figure 24 diagrams the physical size of the computer of figure 23. The computer 
is defined to be a cube with edge dimension LEdge. 

 
The interesting region is . In this region, the computer is producing so much 
power that it cannot be cooled just by having heat escape from its surface. To 
provide enough surface area, the computer is “inflated.” While the computer is 
expanding in this region, the expansion is not so much as to reduce its 
performance though speed of light effects. The inflation concept applies to 
several of the lines, which slope downwards at 30° or so. However, the thick lines 
corresponding to “real” computers are horizontal in some parts of this region. 
This is caused by static power dissipation creating a lower bound on power 
consumption and thereby computer size. 
 
In region , the computer has reached the “speed limit.” In this region, the 
calculation cannot be sped up by adding hardware because the added heat the 
hardware would produce increases the size of the computer and associated 
speed of light delays.  
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Figure 24: LEdge vs. Memory Depth, K 
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In region , the computer is a big memory. The thick lines representing the real 
computers cease to exist beyond K=8G because one chip is not big enough to 
hold a node. 
 
Figure 25 represents the overall cost effectiveness of the computers shown in 
figures 23 and 24. The range in figure 25 is a comprehensive estimate of the 
quality of an financial investment in a specified computer. The range is given in 
TFLOPS of computer performance for each dollar spent per year, where the 
expenses include a pro-rated portion of the purchase price of the computer, 
electric power, and real estate rental cost. 

One notes that all the graphs have a peak in the range of 5-8 TFLOPS/$. For all 
real computers, this peak is reached for 100<K<50,000. These values 
correspond to present-day Processor-In-Memory designs. 
 
It is also notable that the cooling technology makes little difference in this graph. 
It appears that high performance cooling lets one get closer to the ultimate limits, 
yet machines near the ultimate performance limit may not be practical. 
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Runtime of a Singly Coupled Calculation 
 
The singly coupled calculation that we have defined is a natural basis for the 
computing model we have introduced with this report. More specifically, we have 
analyzed a coupling between then fully-parallelizeable (embarrassingly parallel) 
parts of a calculation and global synchronization. The singly coupled calculation 
is an “eigenvector” of this system, combining FLOPs and synchronization in a 
proportion that will scale without changing the proportion. The rate of this scaling 
will help project the performance of a broad range of problems. For example, 
each pivot in a matrix inversion is a singly coupled calculation. 
 
At the physical limit (for a computer that can be cooled), the time to execute a 
singly-coupled calculation will be the sum of two parts: 
 

• The time to share the information – controlled by the speed of light delay 
for a signal to propagate across the diameter of the machine twice. 

 
• The time to do the computation – controlled by the compute speed – 

which is controlled by the ability to cool the machine – which is controlled 
by the surface area of the machine and the performance of the coolant. 

 
These two terms will be equal at the “knee in the curve,” at which point the 
following relation holds: 
 

2√3LEdge 9n3 
c = 

6x2×{ performance of coolant in PetaFLOPS/cm2} 
, 

where LEdge is the edge dimension of the cubical machine. 
 
Algebraic rearrangement leads to: 
 

9cn3 LEdge
3= 2√3×6 LEdge

 2×{ performance of coolant in PetaFLOPS/cm2} 
 
Which implies LEdge ∝ n. Thus, we should expect the edge size of a 
supercomputer optimized for singly-coupled calculations to increase in proportion 
to the number of cells along each edge in the decomposition. The time per 
iteration will vary similarly, as in t ∝ n. 
 
Let us generalize this result for a supercomputer optimized for running a singly-
coupled calculation comprised of f floating point operations (in the previous 
discussion, f = 9n3): 
 

• LEdge ∝ 3√f, or the linear dimension of a supercomputer optimized for 
singly-coupled calculations comprising f floating point operations will vary 
as the cube root of f. 



 52

 
• t ∝ 3√f, or the time to compute a singly-coupled calculation will scale with 

the cube root of the size of the calculation. 
 

• FLOPS ∝ f⅔, or the FLOPS rate of a supercomputer as powerful as 
physical limits will permit (given that the supercomputer can be cooled 
continuously) will grow sublinearly with problem size (⅔ power). 

 
ASCI Plan 

 
The ASCI program has a semi-formal succession plan for projecting the advance 
of machines and applications from one generation to the next [Tomkins 01]. 
Based on the material in this report, we believe this plan must change. 
 
The plan assumes ASCI needs to solve the same simulation problem at all times, 
but that increasing computer speed is used to increase the resolution of the 
simulation. As summarized in the first three columns of Table VIII, each 
“generation” drives a halving in the mesh size in each of three dimensions and in 
the time step. This results in an 8× increase in memory size and a 16× increase 
in processor speed requirements. It is assumed that the overall time to solution 
stays constant due to speedup driven by Moore’s Law. 
 
However, this report shows a different result: For supercomputers at the physical 
limit, each generation will result in a 4× slowdown of simulation on a machine of 
volume 8× and consuming 4× as much power. 
 
 Old ASCI 

Rule 
Generation 
n 

Old ASCI 
Rule 
Generation 
n+1 

New ASCI 
Rule 
Generation 
n 

New ASCI 
Rule 
Generation 
n+1 

Mesh n×n×n 2n×2n×2n n×n×n 2n×2n×2n 
Time step T T/2 T T/2 
Compute capacity 1 16 1 4 
Linear dimension   1 2 
Memory capacity 1 8 N/a N/a 
Time to solution 1 1 1 4 
Volume of 
Computer 

1 1 1 8 

Table VIII: Scaling of Resolution in Simulations 
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Conclusions 
In this report, we devised and demonstrated a process for understanding the 
quality of a parallel computer in absolute terms. This process involves applying 
an algorithm to a hypothetical computer model (called “aerogel”) that represents 
the best computer that can be constructed given the laws of physics. In 
conjunction, the same algorithm is applied to an actual computer that we may be 
designing. The amount by which the actual computer falls short of the “aerogel” 
model in performance, cost, or some other factor, tells us how good a design job 
we did. This process can be used to analyze existing designs or as part of a 
design iteration to create new designs. 
 
In the process of describing the aerogel computer model, we identified the key 
limitations placed on ASCI-like computers by the laws of physics. These limits 
include fundamental heat generation in floating point and logic and the speed of 
light limit to signal propagation velocity. 
 
To guide our analysis, we used a very computational algorithm called the 
Successive Over Relaxation (SOR) method. This algorithm is simple enough to 
analyze in a report yet incorporates the basic combination of spatially distributed 
computations and global synchronization common to many ASCI applications. 
 
We found no bottleneck to prevent ASCI supercomputers from growing in 
performance to the Exaflops level and above. Assuming that problems continue 
to scale up in size (the principle of scaled speedup), the ultimate limit on ASCI 
supercomputer performance is likely be the minimum thermodynamic energy 
required for computation and our ability to pay the power bill. 
 
By including the effects of heating and the speed of light on signal propagation, 
we may have defined a new model of computation. This model is similar to the 
parallel computer model of which we are familiar, but cuts the asymptotic 
performance somewhat to keep a computer from overheating. We presented a 
way to predict scalability on this type of computer by decomposing an algorithm 
into “singly coupled calculations,” each of which scales predictably. 
 
We believe this approach is useful for the current class of digital computers, but it 
is not universal. To be precise, we believe this approach is valid for computers 
based on classical, irreversible logic and specifically for logic used as the basis of 
floating point calculations. However, this approach would not apply to analog 
computers such as neural networks and biological computers or to computers 
using quantum entanglement. 
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Appendix: Performance Estimation Function

 
void C

om
pute() { 

 
 

// P
hysical C

onstants  
 

 
double kB

 = 1.3806503e-23; 
 

// B
oltzm

ann's constant J/K
 

 
 

double T = 300; 
 

 
 

 
// room

 tem
perature K

 
 

 
double c = 299792458; 

 
 

// speed of light m
/s 

 
 

double M
etersP

erFoot = 2.54*12/100; 
  

 
// P

aram
eters that could be static 

 
 

double H
S

S
G

B
its = 40e9;  

 
// H

S
S

 speed (bits/s) 
 

 
double C

hipA
rea = .02 * .02; 

// N
om

inal area of a chip = 2 cm
 x 2 cm

 = 400m
m

^2 (m
^2) 

 
 

//double C
hipA

rea = 140e-6; 
 

// M
P

U
 H

igh V
olum

e per ITR
S

 1h 2002 (m
^2) 

 
 

//double C
hipA

rea = 572e-6; 
 

// A
S

IC
 m

axim
um

 chip size at production per ITR
S

 1j 2002 (m
^2)

 
 

double FloatB
its = 64; 

 
 

// num
ber of bits per floating point num

ber (bits) 
 

 
double G

rindFLO
P

S
 = 9; 

 
 

// num
ber of flops per S

O
R

 update (floating ops) 
 

 
double R

entalC
ostS

quareFootP
erY

ear = 12; 
// rental cost of real estate ($ per square foot per year) 

 
 

double C
ostP

erC
hip = 1000; 

 
// purchase price per chip in a system

 ($) 
 

 
double K

W
H

C
ost = .15; 

 
 

// price per kilow
att-hour of electricity ($/K

W
H

) 
 

 
double D

epreciationFactor = .3; 
// fraction of H

W
 cost to am

ortize per year 
 

 
double FracS

peedO
fLight = .1; 

// signal propagation velocity as fraction of c 
 

 
double W

ordsP
erM

em
ory = 1000; // num

ber of w
ords in prim

itive m
em

ory 
  

 
// Form

ulas 
 

 
double TotalN

odes = n*n*n/K
; 

 
 

double S
ystem

M
em

oryB
its = FloatB

its*n*n*n; 
 

 
double S

ystem
C

P
U

G
ates = FloatC

ells*TotalN
odes; 

 
 

double TotalC
ells = S

ystem
M

em
oryB

its + S
ystem

C
P

U
G

ates; 
 

 
double M

eshU
pdateTim

e = G
rindFLO

P
S

*K
*FloatTau*LogicP

rocess.Tau; 
 

 
double P

ropagationV
elocity = M

agic ? c : FracS
peedO

fLight*c; 
// speed of signal propagation  

  
 

// FLE
E

TZero branchm
erge 

 
 

// properties for the branch-m
erge circuit dow

n to W
ordsP

erM
em

ory w
ord m

em
ories 

 
 

double B
ranchM

ergeP
erN

ode = ceil(K
/W

ordsP
erM

em
ory)-1; 

 
 

double FastB
ranchM

ergeP
erN

ode = m
in(B

ranchM
ergeP

erN
ode, 31); 

 
 

double S
ystem

FastB
ranchM

ergeG
ates = TotalN

odes * 30*FastB
ranchM

ergeP
erN

ode*FloatB
its; 

// 30 
gates per bit * 64 bits 
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do
ub

le
 S

lo
w

B
ra

nc
hM

er
ge

P
er

N
od

e 
= 

B
ra

nc
hM

er
ge

P
er

N
od

e 
- F

as
tB

ra
nc

hM
er

ge
P

er
N

od
e;

 
 

 
do

ub
le

 S
ys

te
m

S
lo

w
B

ra
nc

hM
er

ge
G

at
es

 =
 T

ot
al

N
od

es
 *

 3
0*

S
lo

w
B

ra
nc

hM
er

ge
P

er
N

od
e*

Fl
oa

tB
its

; 
// 

30
 

ga
te

s 
pe

r b
it 

* 
64

 b
its

 
 

 
do

ub
le

 D
ec

od
er

Le
ve

ls
 =

 c
ei

l(l
og

(K
/W

or
ds

P
er

M
em

or
y)

/lo
g(

2)
); 

 
// 

le
ve

ls
 o

f d
ec

od
er

s 
 

 
do

ub
le

 B
ra

nc
hM

er
ge

E
ne

rg
yP

er
A

cc
es

s 
= 

5*
Fl

oa
tB

its
*(

m
ax

(D
ec

od
er

Le
ve

ls
, 5

)*
Lo

gi
cP

ro
ce

ss
.E

 +
 

// 
5 

ga
te

s 
sw

itc
h 

pe
r b

it 
fo

r e
ac

h 
le

ve
l 

 
 

 
 

m
in

(D
ec

od
er

Le
ve

ls
-5

, 0
)*

M
em

or
yP

ro
ce

ss
.E

); 
  

 
do

ub
le

 S
ys

te
m

S
ta

tic
P

ow
er

; 
 

 
if 

(M
ag

ic
) 

 
 

 
S

ys
te

m
S

ta
tic

P
ow

er
 =

 0
; 

 
 

el
se

 { 
 

 
 

do
ub

le
 F

as
tP

ow
er

 =
 (T

ot
al

N
od

es
*F

lo
at

C
el

ls
 +

 S
ys

te
m

Fa
st

B
ra

nc
hM

er
ge

G
at

es
) *

 
Lo

gi
cP

ro
ce

ss
.S

P
w

r; 
 

 
 

do
ub

le
 S

lo
w

P
ow

er
 =

 T
ot

al
N

od
es

*S
ys

te
m

S
lo

w
B

ra
nc

hM
er

ge
G
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es

 *
 M

em
or

yP
ro

ce
ss

.S
P

w
r; 

 
 

 
S

ys
te

m
S

ta
tic

P
ow

er
 =

 F
as

tP
ow

er
 +

 S
lo

w
P

ow
er

; 
 

 
} 

 
 

 
 

 
// 

tra
ns

is
to

r c
ou

nt
 p

er
 n

od
e 

 
 

do
ub

le
 R

am
B

its
P

er
N

od
e 

= 
Fl

oa
tB

its
*K

; 
 

 
do

ub
le

 F
P

U
G

at
es

P
er

N
od

e 
= 

Fl
oa

tC
el

ls
; 

 
 

do
ub

le
 M

em
or

yG
at

es
P

er
N

od
e 

= 
30

*m
in

(K
/W

or
ds

P
er

M
em

or
y,

 3
2)

*F
lo

at
B

its
; 

 
 

do
ub

le
 T

ra
ns

is
to

rs
P

er
N

od
e 

= 
R

am
B

its
P

er
N

od
e 

+ 
FP

U
G

at
es

P
er

N
od

e 
+ 

M
em

or
yG

at
es

P
er

N
od

e;
 

  
 

do
ub

le
 M

ax
Tr

an
si

st
or

sP
er

C
hi

p 
= 

C
hi

pA
re

a/
(L

og
ic

P
ro

ce
ss

.L
am

bd
a*

Lo
gi

cP
ro

ce
ss

.L
am

bd
a)

; 
 

 
do

ub
le

 E
dg

e3
D

 =
 p

ow
(T

ot
al

C
el

ls
, (

1.
/3

.))
*L

og
ic

P
ro

ce
ss

.L
am

bd
a;

 
// 

E
dg

e 
as

su
m

in
g 

3D
 p

ac
ka

gi
ng

 
  

 
do

ub
le

 S
ys

te
m

Fl
oa

tE
ne

rg
y 

= 
n*

n*
n*

G
rin

dF
LO

P
S

*F
lo

at
P

ow
er

*L
og

ic
P

ro
ce

ss
.E

; 
 

 
do

ub
le

 S
ys

te
m

M
em

E
ne

rg
y 

= 
M

ag
ic

 ?
 0

 : 
n*

n*
n*

B
ra

nc
hM

er
ge

E
ne

rg
yP

er
A

cc
es

s;
 

 
 

do
ub

le
 S

ys
te

m
E

ne
rg

y 
= 

S
ys

te
m

Fl
oa

tE
ne

rg
y 

+ 
S

ys
te

m
M

em
E

ne
rg

y;
 

  
 

Q
ua

lit
y 

= 
-1

; 
 

 
C

om
pu

te
rIn

st
an

ce
 T

es
t =

 *
th

is
; 
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// E
laborate loop: 

 
 

// S
tep through the range tN

odesP
erC

hip = 1..TotalN
odes in tandem

 w
ith 

 
 

// Test.C
hips = TotalN

odes..1 such that 
 

 
// TotalN

odes = Test.C
hips * tN

odesP
erC

hip 
 

 
// H

ow
ever, have both tN

odesP
erC

hip and Test.C
hips cover sm

all ascending integers 
 

 
for (double x = 1, ex = sqrt(TotalN

odes); x < ex; x += (x < 10 ? 1 : x/10)) for (int y = 0; y < 2; y++) { 
  

 
 

double tN
odesP

erC
hip; 

 
 

 
if (y) { 

 
 

 
 

tN
odesP

erC
hip = x; 

 
 

 
 

Test.C
hips = TotalN

odes/x; 
 

 
 

} 
 

 
 

else { 
 

 
 

 
Test.C

hips = x; 
 

 
 

 
tN

odesP
erC

hip = TotalN
odes/x; 

 
 

 
} 

 
 

 
double tC

ubeR
ootC

hips = pow
(Test.C

hips,(1./3.)); 
 

 
 

double tTransistorsP
erC

hip = TransistorsP
erN

ode * tN
odesP

erC
hip; 

  
 

 
// com

m
unications 

 
 

 
double tC

ellsP
erE

dge = n/tC
ubeR

ootC
hips; 

 
 

 
double tC

om
m

C
ells = 6.*tC

ellsP
erE

dge*tC
ellsP

erE
dge; 

 
 

 
double tC

om
m

B
its = FloatB

its*tC
om

m
C

ells; 
 

 
 

Test.C
om

m
unicationsTim

e = M
agic ? 0 : tC

om
m

B
its/H

S
S

G
B

its/P
ins; 

  
 

 
// exceeds capacity of chip -- not viable 

 
 

 
if (!M

agic &
&

 tTransistorsP
erC

hip > M
axTransistorsP

erC
hip) 

 
 

 
 

continue; 
  

 
 

// C
om

pute edge size from
 3D

 volum
e or cooling calculations, w

hichever is larger 
 

 
 

double tE
ffectiveE

dge = m
ax(Edge3D

, tC
ubeR

ootC
hips*C

ooledP
kgE

dge); 
  

 
 

// Fraction of chip area occupied, rest w
ill be left em

pty 
 

 
 

Test.FractionC
hipO

ccupancy = tTransistorsP
erC

hip/M
axTransistorsP

erC
hip; 
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do

ub
le

 c
1 

= 
tE

ffe
ct

iv
eE

dg
e,

 c
2 

= 
2*

sq
rt(

3.
)/P

ro
pa

ga
tio

nV
el

oc
ity

, c
3 

= 
M

es
hU

pd
at

eT
im

e,
 c

4 
= 

Te
st

.C
om

m
un

ic
at

io
ns

Ti
m

e,
 c

5 
= 

S
ys

te
m

E
ne

rg
y,

 c
6 

= 
S

ys
te

m
S

ta
tic

P
ow

er
, k

 =
 C

oo
la

nt
P

ow
er

; 
  

 
 

do
ub

le
 tI

nf
la

te
Lo

w
 =

 1
, t

In
fla

te
H

ig
h 

= 
1e

9;
 

 
 

 
fo

r (
in

t j
 =

 0
; j

 <
 2

0;
 j+

+)
 { 

  
 

 
 

// 
B

in
ar

y 
se

ar
ch

 fo
r t

he
 b

es
t i

nf
la

tio
n 

fa
ct

or
 b

y 
ge

om
et

ric
 in

te
rp

ol
at

io
n 

 
 

 
 

Te
st

.In
fla

te
 =

 s
qr

t(t
In

fla
te

Lo
w

 *
 tI

nf
la

te
H

ig
h)

; 
 

 
 

 
do

ub
le

 i 
= 

sq
rt(

tIn
fla

te
Lo

w
 *

 tI
nf

la
te

H
ig

h)
; 

  
 

 
 

Te
st

.L
E

dg
e 

= 
tE

ffe
ct

iv
eE

dg
e*

Te
st

.In
fla

te
; 

  
 

 
 

c1
 =

 tE
ffe

ct
iv

eE
dg

e;
 

 
 

 
 

do
ub

le
 y

1 
= 

c1
*i;

 
  

 
 

 
do

ub
le

 it
S

yn
ch

ro
ni

ze
Ti

m
e 

= 
2*

sq
rt(

3.
)*

Te
st

.L
E

dg
e/

P
ro

pa
ga

tio
nV

el
oc

ity
; 

 
 

 
 

Te
st

.T
im

eS
te

p 
= 

m
ax

(M
es

hU
pd

at
eT

im
e 

+ 
itS

yn
ch

ro
ni

ze
Ti

m
e,

 T
es

t.C
om

m
un

ic
at

io
ns

Ti
m

e)
; 

  
 

 
 

c2
 =

 2
*s

qr
t(3

.)/
P

ro
pa

ga
tio

nV
el

oc
ity

; 
 

 
 

 
c3

 =
 M

es
hU

pd
at

eT
im

e;
 

 
 

 
 

c4
 =

 T
es

t.C
om

m
un

ic
at

io
ns

Ti
m

e;
 

 
 

 
 

do
ub

le
 y

2 
= 

c2
*y

1;
 

 
 

 
 

do
ub

le
 y

3 
= 

m
ax

(c
3+

y2
, c

4)
; 

  
 

 
 

do
ub

le
 it

S
ys

te
m

D
yn

am
ic

P
ow

er
 =

 S
ys

te
m

E
ne

rg
y/

Te
st

.T
im

eS
te

p;
 

  
 

 
 

c5
 =

 S
ys

te
m

E
ne

rg
y;

 
 

 
 

 
do

ub
le

 y
4 

= 
c5

/y
3;

 
  

 
 

 
Te

st
.S

ys
te

m
P

ow
er

 =
 it

S
ys

te
m

D
yn

am
ic

P
ow

er
 +

 S
ys

te
m

S
ta

tic
P

ow
er

; 
  

 
 

 
c6

 =
 S

ys
te

m
S

ta
tic

P
ow

er
; 

 
 

 
 

do
ub

le
 y

5 
= 

c6
 +

 y
4;

 
  

 
 

 
Te

st
.F

ac
eP

ow
er

D
en

si
ty

 =
 T

es
t.S

ys
te

m
P

ow
er

/6
/T

es
t.L

E
dg

e/
Te

st
.L

E
dg

e;
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double y6 = y5/y1/y1/6; 
  

 
 

 
 

 
 

 
 

FP
A

S
S

E
R

T((c6 + c5/m
ax(c3+(c2*c1*i), c4))/(c1*c1*i*i*6), Test.FaceP

ow
erD

ensity); 
  

 
 

 
if (Test.FaceP

ow
erD

ensity < C
oolantP

ow
er) 

 
 

 
 

 
tInflateH

igh = Test.Inflate; 
 

 
 

 
else 

 
 

 
 

 
tInflateLow

 = Test.Inflate; 
 

 
 

} 
  

 
 

if (Test.Inflate > 1.01) { 
  

 
 

 
double i = Test.Inflate; 

 
 

 
 

double test = (c6 + c5/m
ax(c3+(c2*c1*i), c4))/(c1*c1*i*i*6); 

 
 

 
 

FP
A

S
S

E
R

T((c6 + c5/m
ax(c3+(c2*c1*i), c4))/(c1*c1*i*i*6), C

oolantP
ow

er); 
 

 
 

} 
  

 
 

// overheats chip -- not viable 
 

 
 

if (!M
agic &

&
 Test.S

ystem
P

ow
er/Test.C

hips > C
ooledM

axP
ow

er) 
// param

eter: m
ax pow

er per 
chip 
 

 
 

 
continue; 

 
 

 
 

 
 

 
// yearly electricity cost at 15 cents/K

W
H

 
 

 
 

double Y
earlyP

ow
erC

ost = Test.S
ystem

P
ow

er/W
ordsP

erM
em

ory*24*365*K
W

H
C

ost; 
  

 
 

// cost of hardw
are at $1000/chip 

 
 

 
double H

ardw
areC

ost = Test.C
hips*C

ostP
erC

hip; 
  

 
 

// square feet of building required assum
ing 8' high w

ith 50%
 aisle 

 
 

 
double LE

dgeFeet = LE
dge/M

etersP
erFoot; 

 
 

 
double S

ystem
V

olum
eC

ubicFeet = LE
dgeFeet*LE

dgeFeet*LE
dgeFeet; 

 
 

 
double S

quareFeetFloor = S
ystem

V
olum

eC
ubicFeet/8*2; 
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// 

ye
ar

ly
 re

nt
al

 c
os

t @
$1

2/
sq

 ft
/y

ea
r 

 
 

 
do

ub
le

 Y
ea

rly
R

en
ta

l =
 S

qu
ar

eF
ee

tF
lo

or
*R

en
ta

lC
os

tS
qu

ar
eF

oo
tP

er
Y

ea
r; 

  
 

 
// 

ye
ar

ly
 c

os
t -

- a
ss

um
es

 3
0%

 o
f h

ar
dw

ar
e 

co
st

 p
er

 y
ea

r -
- l

ik
e 

a 
5 

ye
ar

 li
fe

sp
an

 w
ith

 in
te

re
st

 
 

 
 

Te
st

.Y
ea

rly
C

os
t =

 Y
ea

rly
P

ow
er

C
os

t +
 H

ar
dw

ar
eC

os
t*

D
ep

re
ci

at
io

nF
ac

to
r +

 Y
ea

rly
R

en
ta

l; 
  

 
 

Te
st

.F
LO

P
S

 =
 n

*n
*n

/T
es

t.T
im

eS
te

p*
G

rin
dF

LO
P

S
; 

 
 

 
Te

st
.Q

ua
lit

y 
= 

Te
st

.F
LO

P
S

/T
es

t.Y
ea

rly
C

os
t/1

e1
5*

10
00

; 
 

 
 

 
 

// 
sa

ve
 b

es
t d

es
ig

n 
 

 
 

if 
(Q

ua
lit

y 
< 

Te
st

.Q
ua

lit
y)

 
 

 
 

 
*t

hi
s 

= 
Te

st
; 

 
 

} 
 

} 
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