

SAND REPORT

SAND2004-0959
Unlimited Release
Printed March 2004

Taking ASCI Supercomputing to the End
Game

Erik P. DeBenedictis

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

 3

SAND2004-0959
Unlimited Release

March 2004

Taking ASCI Supercomputing to the End Game

Erik P. DeBenedictis
Scalable Computing Systems
Sandia National Laboratories

P.O. Box 5800
Albuquerque, New Mexico 87185-1110

Abstract

The ASCI supercomputing program is broadly defined as running physics
simulations on progressively more powerful digital computers. What happens if
we extrapolate the computer technology to its end?

We have developed a model for key ASCI computations running on a
hypothetical computer whose technology is parameterized in ways that account
for advancing technology. This model includes technology information such as
Moore’s Law for transistor scaling and developments in cooling technology. The
model also includes limits imposed by laws of physics, such as thermodynamic
limits on power dissipation, limits on cooling, and the limitation of signal
propagation velocity to the speed of light.

We apply this model and show that ASCI computations will advance smoothly for
another 10-20 years to an “end game” defined by thermodynamic limits and the
speed of light. Performance levels at the end game will vary greatly by specific
problem, but will be in the Exaflops to Zetaflops range for currently anticipated
problems.

We have also found an architecture that would be within a constant factor of
giving optimal performance at the end game. This architecture is an evolutionary
derivative of the mesh-connected microprocessor (such as ASCI Red Storm or
IBM Blue Gene/L). We provide designs for the necessary enhancement to
microprocessor functionality and the power-efficiency of both the processor and
memory system.

The technology we develop in the foregoing provides a “perfect” computer model
with which we can rate the quality of realizable computer designs, both in this
writing and as a way of designing future computers.

 4

We found the end game based on certain assumptions about computers and the
way we use them. This report focuses on classical computers based on
irreversible digital logic, and more specifically on algorithms that simulate space
over time with floating point. There are many opportunities in quantum
computing, irreversible logic, analog computers, and other ways to address
stockpile stewardship that are outside the scope of this report.

 5

Contents

Introduction………. ...9
Physical Simulations ...9
Performance Estimation..11
Limits on Computer Performance ...11
Scalability..12
Architecture...12
Minimum Device Size ...15
A Review of the Limits of Computer Technology ..18
Thermodynamic Heat Production from Logic Gates ...18
Digital Computing with Floating Point ...20
Other Ways to Compute ...21
Static Power Dissipation ...23
Dimensionality of Space ...24
Signal Propagation Velocity ..24
Cooling..25
The Successive Over Relaxation (SOR) Method as an Exemplary Problem30
Implementing the Calculation..31
Time-Space Tradeoff ..31
Magic Wiring and the Aerogel Computer Model ...32
Logic…..33
Calculating the Maximum..34
Energy Efficient Streaming Memory..35
An Architecture Approaching The Physical Limits ..38
Performance Estimation..42
Runtime of a Singly Coupled Calculation..51
ASCI Plan ...52
Conclusions ..53
Appendix: Performance Estimation Function ..54
References ...60
Distribution..62

 6

Figures

Figure 1 Spatial Simulation Over Time………...…………………………………... 10
Figure 2 Singly Coupled Calculation..………………………………………..…….. 10
Figure 3 Universal Computing Element………………….…………………..…….. 13
Figure 4 Mapping of 3D Mesh to Physical Structure...…….………...……..…….. 14
Figure 5 Air-Cooled Configuration…………………………………...……….…….. 15
Figure 6 Definitions of Semiconductor Dimensions…………………..…….…….. 16
Figure 7 Leakage Current and Mitigations…………………….…………….…….. 23
Figure 8 Geometries of High Performance Cooling Systems…………..……….. 26
Figure 9 Fractal Plumbing……………………………………….…………….…….. 27
Figure 10 Peak Cooling for a Cube…………….……………………………….….. 28
Figure 11 Power Control for a Problem with 6 Variables…..……………….……. 31
Figure 12 Aerogel Model with Magic Wiring…………….………...……...….…….. 32
Figure 13 Layout for SOR Application…………….………………….…………….. 34
Figure 14 Global Synchronization………………………..……..…………….…….. 35
Figure 15 Hierarchical Memory…………….…….……….…………………………. 35
Figure 16 Sun FLEETZero………………………………...…….…….……….……..37
Figure 17 Assignment of Transistor Types…………………….…….……….……..37
Figure 18 Future Limiting Factors for Chip Design………….…….……..….…….. 39
Figure 19 Universal Computing Element…………….…….…………..…….…….. 40
Figure 20 TStep and LEdge vs. Problem Size …..…………….…….……………..…….. 43
Figure 21 TStep vs. Problem Size …………….…….……………………...…….……..45
Figure 22 FLOPS vs. Problem Size …………………………………………….…….. 47
Figure 23 TStep vs. K …………….……………………………………...……….…….. 48
Figure 24 LEdge vs. Memory Depth, K …………….…….……….…………………….. 49
Figure 25 Quality vs. Memory Depth, K ……………….………....…………………... 50

Tables

Table I. Projections of Selected Semiconductor Properties…..……………...….. 17
Table II. Error Probability as a Function of Signal Power…...………………….. 20
Table III. Leakage Current Mitigations…………………………………………..... 24
Table IV. Heat Removal from Chips……………………………………..………….. 27
Table V. Performance of Various Cooling Technologies……………………….. 29
Table VI. Theoretical Limits of Cooling………………………………………….….. 29
Table VII. Computer Packaging…………………………………………..……….. 42

 7

Table VII. Scaling of Resolution in Simulations………………..……….…...……. 52

Nomenclature

3D..…..Three Dimensional
ASCI..…...Advanced Simulation and Computing
CMOS..….. Complementary Metal-Oxide Semiconductor
db..….. ..Decibel
DRAM..…...Dynamic Random Access Memory
ExaFLOPS..….. .. 1018 FLoating Operations Per Second
fJ……… .. femto Joule, or units of 10-15 Joules
FLOP…... FLoating point OPeration
FLOPS….. ..FLoating Operations Per Second
FPU..….. ..Floating Point Unit
IC..…..Integrated Circuit
ITRS..….. International Technology Roadmap for Semiconductors
MPI..…...Message Passing Interface
MPP..….. .. Massively Parallel Processor
NaN..….. .. Not a Number
nm..….. .. Nanometer, or units of 10-9 meter
PDE..…... Partial Differential Equation
PIM..…... Processor-In-Memory
SIA..….. .. Semiconductor Industries Association
SOR..….. ... Successive Over Relaxation
YottaFLOPS..….. .. 1024 FLoating Operations Per Second
ZetaFLOPS..….. ... 1021 FLoating Operations Per Second

 8

Intentionally Left Blank

 9

Introduction

Conventional complexity theory counts floating point operations (FLOPs)
required to execute an algorithm as a function of the problem’s size, implying that
we should minimize FLOPs to reduce complexity and get the best algorithm.
However, the laws of physics limit the operation in a computer in a somewhat
different way – predominately by limiting the speed of signal propagation to the
speed of light and requiring the removal of some amount of heat for each logical
operation. Our first objective is to seek a new measure of algorithmic
“complexity” more directly related to how good the algorithm is when run on a
real computer. This measure will correspond to the amount of computer
hardware, time, and energy that must be consumed by an algorithm according to
physical law. The algorithm that has the lowest complexity according to this new
measure will run the best on any computer we can build in the physical universe.

The second objective in this report is to find a way of building computers that are
within a constant factor of the highest possible speed, lowest possible power
consumption, and lowest possible cost as permitted by the paragraph above. Of
course, there may be multiple solutions given different algorithms and technology
available to implement the computer. In this report, we consider primarily
algorithms for physical simulation over time running on computers that are built of
integrated circuits containing “irreversible logic” transistors. Within these
constraints, we have found a universal design for the contents of a chip and a
way of packaging this one chip into a large 3D mesh that meets the second
objective.

Physical Simulations

Many of the key problems in science, engineering, and the ASCI program involve
simulating a region of space over a period of time [Feynman 82]. The region
could be an automobile, atomic bomb, or residential living room. The region
could undergo a crash, explosion, or fire during the simulated period. As shown
in figure 1, these simulations involve distributing the region across the processors
of a parallel computer and simulating the time evolution of the region sequentially
on the computer.

 10

As shown in figure 2, these simulations consist of a series of activities we define
as singly coupled calculations. Each such calculation involves a series of
arithmetic operations that are either completely independent or share information
locally in the sense of the geometry of the region simulated, followed by a single
calculation that involves the sharing of information across the entire problem.

Time Line

Node 0

Node 1

Node n-1

Compute Phase Communicate

…

Singly Coupled Calculation

Figure 2: Singly Coupled Calculation

Figure 1: Spatial Simulation Over Time

T=0

T=1

T=2

Simulation
Cells

K=16 Cells In
Each Node

 11

Typically, such an algorithm consists of a repetition of the two steps:

1. A compute phase where the state of the simulated space is updated to
reflect the passage of time ∆t based on current trajectories, temperatures,
etc. This phase’s calculations only use information representing nearby
points in space and as a result involves no long distance communications
among nodes.

2. A global communications phase where the accuracy of the previous step

is evaluated based on calculations across the entire simulation. Based on
the computed accuracy, time interval ∆t is reevaluated. This step is often
called an “allreduce” or global synchronization.

Performance Estimation

We can estimate the performance of algorithms on hypothetical computers. With
considerable effort, we can project the performance of transistors, gates, and
cooling systems years into the future. We can develop algebraic expressions to
estimate all the necessary attributes of a computer developed with today’s or a
future technology, such as:

K × FcellTStep = floprate + TGlobal,

where TStep is the time for a singly coupled calculation, K is the memory size in
number of cells per node, Fcell is the number of floating point operations required
to update one cell, floprate is the effective floating point performance rate of a
node, and TGlobal is the time for the global communications phase. TStep, Fcell,
floprate, and TGlobal will be further developed later in this report.
Limits on Computer Performance

There are two opposing limits for physical simulations running on the type of
computers covered by this report:

• Relativistic. The time to do the information sharing part of a singly coupled
calculation is bounded from below by the diameter of the computer divided
by the speed of light. To mitigate the effect of this limit, the computer
should be made as small as possible. Even though a sphere has the best
geometry for a computer by the criteria of this report, we will assume a
computer is a cube with edge length LEdge.

2√3 × LEdgeTGlobal≥ c

• Power and cooling. Thermodynamics requires that a minimum amount of
heat be generated for each “irreversible” logical operation. While a
computer can be allowed to heat up for awhile, at some point it must be

 12

cooled. For every cooling method, the amount of heat that can be
removed from an object is proportional to its surface area. This applies to
radiative cooling where photons are emitted from the surface to a fluid
cooled system where pipes move coolant perpendicular to the surface. To
mitigate the effect of this limit, the computer needs to be as large as
possible and have as much of its surface available for cooling as possible.
For a cubical computer:

6 × LEdge

2 × Cx ≤ Power,

where Cx is the performance of the cooling system in watts that can be removed
per unit surface area of the computer.

When both these effects are taken into account, the computer’s size will be
exactly at the threshold of what can be cooled with the available technology.

Scalability

The new complexity measure theory has somewhat different variables that we
are used to. Conventional complexity theory generally looks for the asymptotic
dependence of FLOPs (or operations) and memory size on the size of the
problem. In our new complexity measure theory we have run time, power
consumption, and physical size of the computer all as a function of the problem
size.

We find that for a singly coupled calculation of size n:

• Running time ∝ n⅓
• Power ∝ n⅔
• Physical size ∝ n⅓ in linear dimension; ∝ n volume

These are different results than are popularly understood to apply to parallel
computers: a traditional parallel computer can execute a singly coupled
calculation in log n time whereas our computer requires n⅓. The discrepancy is
that a traditional parallel computer achieves its theoretical performance
advantage through a design principle that slightly violates the laws of physics and
would describe unbuildable machines if extended to large enough sizes.

Architecture

While the discussion above only established an upper bound on the performance
of a computer doing a physical simulation, we have found a computer
architecture that comes within a constant factor of meeting this bound. This
architecture is comprised of the following parts:

 13

• Integrated circuits of the prevailing technology, per projections of the
Semiconductor Industry Association’s (SIA’s) International Technology
Roadmap for Semiconductors [ITRS 02].

• A chip layout per figure 3. The chip will contain several processors of

differing architectures that can be switched on and off by a power control
system to limit power consumption to that which can be efficiently cooled.
We recommend that the processors include a conventional
microprocessor for compatibility with existing code plus new processor
designs as described later in this report. The chip will also contain a new
type of power efficient streaming memory as described later (although
conventional DRAM would do almost as well) and an interconnect
described in [DeBenedictis 03].

• An Interconnect network capable of implementing a 3D mesh with signal
propagation speed within a constant factor of the speed of light, such as
shown in figure 4 [DeBenedictis 03].

Figure 3: Universal Computing Element

Architecture 1

Architecture 2

Architecture n

Interconnect

…
Vdd

Power Control System:
α1P1 + α2P2 … αnPn + Pinterconnect + Pmemory ≤ Pchip,
given duty cycle αn for architecture unit n

M
ux

Memory

B
ra

nc
h

M
er

ge

 14

X Dimension
Wiring

Z Dimension
Wiring

Y Dimension
Wiring

Figure 4: Mapping of 3D Mesh to Physical Structure

 15

• Packaging of the 3D mesh in a way that can be cooled efficiently. Figure 5

[DeBenedictis 03] illustrates an air-cooled structure that is efficient enough
at heat removal while preserving locality in the 3D interconnect.

A Review of the Expected Progress in Semiconductors

Minimum Device Size

According to the International Technology Roadmap for Semiconductors [ITRS 02],
the smallest CMOS transistor will have a half pitch of 22 nm in 2016 (see figure 6
for a definition of terms). Projections also suggest that a DRAM cell could be
constructed in a 2D area 44 nm on a side.

Room is nominally airtight. A
pressure differential of about 2”
of water will supply sufficient
airflow to cool the machine.

Figure 5: Air-Cooled Configuration

 16

The ITRS projects the way Moore’s Law will drive the evolution of several
hundred semiconductor parameters up to about a dozen years into the future.
Table I is an extraction of the parameters from the ITRS used later in this report.

Top View:

Side View:

Diffusion

Po
ly

si
lic

on

Gate OxideGate

Drain Source Channel

Po
ly

si
lic

on

Diffusion

Po
ly

si
lic

on

Pitch
Half
Pitch

Pitch

Figure 6: Definitions of Semiconductor Dimensions

 17

The ITRS is often called a self-fulfilling prophecy: Moore’s Law has been
generally accurate for over a decade but has no basis in physical law. However,
much of the hi-tech economy is economically dependent on the continuation of
Moore’s Law and has an economic incentive to assure its continuation. The
starting point for the ITRS report is a simple exponential projection into the future.
The ITRS then assigns teams of experts to check projections against
manufacturable technologies, research results, etc. The report then color-codes
its projections based on the need for additional research and development to
make Moore’s Law continue as expected. Given the tremendous vested interest
in assuring the continuation of Moore’s Law, considerable money resources are
available to close technology gaps.

The ITRS color code is shown below. All but one of the parameters on which this
report is based are colored red. This means the report is based on a technology
that a distinguished panel of experts considers to be a valid goal but for which a
manufacturable solution is not known at this time.

White – Manufacturable solutions exist and are being optimized
Yellow – Manufacturable solutions are known
Red – Manufacturable solutions are not known _____

Year of Production 2010 2013 2016 Ref.
DRAM ½ Pitch (nm) 45 32 22
MPU/ASIC ½ Pitch (nm) 50 35 25
Physical gate length high-performance (HP)
(nm)

18 13 9

Power-delay product for (W/Lgate=3)
device [Cgate * (3*Lgate) *Vdd

2] (fJ/device)
0.015 0.007 0.002 35b (HP)

Static power dissipation per (W/Lgate = 3)
device (Watts/device)

9.70E-8 1.40E-7 1.10E-7 35b (HP)

High-performance NMOS device τ
(Cgate *Vdd / Idd-NMOS) (ps)

0.39 0.22 0.15 35b (HP)

Power-delay product for (W/Lgate=3)
device [Cgate * (3*Lgate) *Vdd

2] (fJ/device)
0.032 0.016 0.006 36b (LOP)

Static power dissipation per (W/Lgate = 3)
device (Watts/device)

5.30E-11 1.00E-10 2.00E-10 36b (LOP)

LOP NMOS device τ
(Cgate *Vdd / Idd-NMOS) (ps)

0.85 0.56 0.35 36b (LOP)

Power-delay product for (W/Lgate=3)
device [Cgate * (3*Lgate) *Vdd

2] (fJ/device)
0.071 0.034 0.025 36d (LSTP)

Static power dissipation per (W/Lgate = 3)
device (Watts/device)

2.53E-13 3.78E-13 4.32E-13 36d (LSTP)

LSTP NMOS device τ
(Cgate *Vdd / Idd-NMOS) (ps)

1.69 1.05 0.82 36d (LSTP)

Table I: Projections of Selected Semiconductor Properties

 18

A Review of the Limits of Computer Technology

Thermodynamic Heat Production from Logic Gates

In a now-famous paper, Landauer [Landauer 61] identified that thermodynamics sets
a lower limit on the power dissipation of an “irreversible” logic gate at kBTloge2
per switching event (kB=1.38 × 10-23 watts/°K is Boltzman’s constant and T is the
temperature in Kelvins).

While Landauer justifies the kBTloge2 through several arguments, we will repeat
just one here for the reader’s benefit: Consider a flip flop and its surrounding
semiconductor material to be a statistical mechanical system. Statistical
mechanics defines the entropy S of a mechanical system as S = kB loge W, where
W represents the number of quantum states in the system. Let us define the
number of states in the system to be W’ if we ignore the information in the flip
flop. If the flip flop is in an unknown state, the entropy of the system will be S1 =
kB loge (2 W’), corresponding to W’ states with the flip flop in a “0” state and
another W’ states with the flip flop in a “1” state. If the flip flop is forcibly set to a
known state (“0” or “1”), the entropy will be just S2= kB loge (W’). The change in
entropy due to destroying information in the flip flop will be S1-S2 = kB loge2. The
total entropy of the system cannot change, so the entropy must appear
elsewhere as a heating effect, supplying kB T loge2 heat to the surrounding
semiconductor material.

A gate (such as a 2 input AND, OR, NAND, or NOR) destroys information when
differing inputs (as in a “1” and a “0” or a “0” and a “1”) produce a single bit of
output from which it is impossible to determine the input combination. Landauer
explains more fully in his paper how the destruction of information in a gate is
similar to the setting of a flip flop.

We believe that Landauer’s lower bound is about a factor of 100 too low given
the way we use digital computers. Landauer would acknowledge that gates
approaching the minimum energy of kB T loge2 energy would become
increasingly susceptible to glitches due to thermal noise. However, we expect
computer logic to be immune from glitches. Furthermore, the consequence we
impose for a glitch is that we replace the computer (this is a higher standard than
is applied to memory devices where we would add an ECC circuit or a heart-lung
machine where we would not build the machine in the first place if it were subject
to glitches). Since computers have a finite life expectancy, this suggests that the
probability of a glitch be less than one in the total number of logic operations the
computer will perform in its lifetime. For a future supercomputer running in the
Exaflops range, this would be less than one glitch in 1030-1040 operations (a 100
Exaflops supercomputer expected to run ten years without error and which uses
with 20,000 gate operations per FLOP would require a reliability of about 1 in
7×1032 operations).

 19

The experience we will have with semiconductor reliability over the next dozen
years is similar in many ways to driving out of town in a car while listening to FM
radio: as we drive further away from the radio station, the initially clear signal
acquires a “hiss” which grows over time until it obscures the signal and we turn
the radio off.

This noise comes from the first amplifier stage in the FM radio: this transistor is
exposed to both the radio signal from the antenna and the thermally induced
noise signal from electrons in its own structure vibrating. The noise signal is
constant throughout the drive out of town, but increases relative to the weakening
radio signal.

The transistors in a logic gate are similarly exposed to the signal from the
preceding gate and thermal noise from their own electrons. While the magnitude
of noise in logic gates is exactly the same as the noise in FM radios (its
magnitude is kBT, dependent only on temperature), Moore’s Law is causing the
signal energy to decline exponentially with time (through subsequent generations
of electronic technology).

Logic gates are constantly comparing their input voltages against a threshold to
determine whether they are receiving a “0” or “1.” The effect of noise is nil unless
the noise signal makes an excursion in the opposite direction of the logic signal
sufficient to exceed the threshold. The probability of this occurring grows
exponentially with the power of the noise signal. We should expect the following:

• In today’s integrated circuits, the signal has about 100,000 times as much
energy as the thermal noise (corresponding to a 50 db signal-to-noise
ratio). As seen in Table II, the probability of a glitch at this signal to noise
ratio is about 10-43,000, which is too small to worry about.

• The ITRS projects .002 fJ (femto Joules, or units of 10-15 Joules) switching

energy for 22 nm transistors in 2016. This is about 1000 times the thermal
noise, or 30 db. The probability of a glitch is about 10-437, which is too
small to worry about.

• Cutting the switching energy by another factor of 10 brings us to the limit.

With a signal 100 times more powerful than noise (20 db), the probability
of error is 10-45, which is very close to the tolerable error limit for logic
meeting our reliability requirements as described above.

It should be noted that the analysis above also represents a “best case.” There
are many practical effects that can cut the signal to noise ratio at an input
transistor: signal loss in long lines, manufacturing tolerances in transistor size or
thresholds, noise from other sources, transistors running hot, etc. Therefore, it

 20

appears that the semiconductor roadmap takes us into the safety margin at the
end of the road.

SNR (db) Power ratio Perror
10 10 3.9E-6
12 16 9.0E-9
14 25 6.8E-13
16 40 2.3E-19
18 63 1.4E-29
20 100 1.0E-45 – Digital Limit
22 160 3.3E-71
24 250 1.4E-111
26 400 1.8E-175
28 630 1.1E-276
30 1000 – 2016 CMOS 4.5E-437
32 1600 3.5E-691
34 2500 7.1E-1094
36 4000 4.9E-1732
38 6300 2.2E-2743
40 10000 3.2E-4346
42 16000 1.8E-6886
44 25000 1.8E-10912
46 40000 3.8E-17293
48 63000 8.3E-27406
50 100000 – Current CMOS 3.2E-43433

Table II: Error Probability as a Function of Signal Power

Digital Computing with Floating Point

Our tradition of using floating point for calculations further defines the minimum
power of a computer.

We will stipulate that a 64 bit floating point unit has 100,000 gates based on the
following: A 64-bit floating-point multiplier includes a 53×53 multiplier array, each
unit of which is about a dozen gates. This results in about 25,000 gates just for
the multiplier array. While addition is O(N) instead of O(N2), where N is the
number of bits, floating adders have complex shifters and are of similar
complexity to a multiplier in practice. This takes us to 50,000 gates.

However, IEEE compliant floating point has with “Not a Numbers” (NaNs) and
denormals. These last features often double the gate count without improving
numerical performance. It is unclear whether IEEE compliance belongs in a
discussion of theoretical limits of computing. Given these sources of imprecision,
we offer 100,000 gates as a plausible FPU complexity.

 21

Furthermore, let us assume a multiplier/adder can accomplish its task in
200τ and with energy corresponding to 20,000 gates switching (for both add and
multiply).

These considerations suggest a minimum energy per FLOP of 2×106 kBT per
FLOP (20,000 gates × 100kBT energy per gate operation).

Other Ways to Compute

While the authors feel comfortable presenting 2×106 kBT as the minimum energy
per FLOP, the overall approach is not beyond challenge.

The arguments in the previous several pages provide a basis for comparing
digital and analog computers. For an analog computer to do an add or multiply
will require an expenditure of energy of kBT logeW, where W is the number of
distinguishable states. While a floating-point number has two parts (mantissa and
exponent) compared to just one part for an analog voltage, a double precision
floating-point number has 264 distinguishable states. This suggests that if an
analog circuit could do an add or multiply with 264 bits of precision, the required
energy would be kBT loge(264) = 64 kBT loge 2. This is 1/30,000 the power of a
digital floating-point operation and suggests considerable upside potential for
analog computers.

However, it would be remarkably difficult to build an analog circuit where the
signals were stable to one part in 264. The Heisenberg Uncertainty Principle
provides some insight: one version of this principle states that the uncertainty in
time multiplied by the uncertainty in energy must be greater than h/2π (∆T ∆E >
h/2π, where h = 6.63×10-34). This implies the time required for a hypothetical
analog gate to measure a signal with total energy of about 64 kBT loge 2 to a
precision of one part in 264 will be T > h/(2π × 2-64 × 64 kBT loge 2), or about 3
hours. Thus, the analog gate would be impossibly slow.

Reversible logic may provide a solution, but has difficulties as well. Some
researchers [Kim 01] made a half step toward a reversible logic computer by
constructing a reversible 8×8 multiplier. In some domains, floating-point
operations comprise a big part of the activity in scientific computation and
consequently a big part of the “unavoidable” power dissipation. Cutting the power
dissipation of just the floating-point unit through reversible logic would make a big
difference. The idea is to construct a network of reversible logic gates that can
perform a floating-point operation and subsequently operate in reverse to recover
the energy so it doesn’t have to be dissipated as heat. The desired energy flow
would be this: A reversible logic network takes two 64 bit floating point numbers
as input and operates on them to produce a 64 bit result. This operation will
involve 20,000 units of energy equal to the gate switching energy, but it will just
move the energy around and not convert it to heat. The 64-bit result will then be
saved with irreversible logic, using 64 gate switching units of energy that will

 22

eventually be dissipated as heat. The reversible gates will then be run backwards
to restore the 20,000 units of energy to a state where they can perform another
floating-point operation. In theory, this will accomplish a floating-point operation
with just 64 gate-switching units of energy.

The 8×8 multiplier demonstrates the concept, but shows a “friction” that makes
the concept substantially less interesting: this 8×8 multiplier was only about 75%
efficient at recovering energy. Thus, if 20,000 units of energy were put in, only
15,000 could be recovered and 5,000 went to heat. Extrapolating these results
from an 8×8 multiplier to a full floating point unit, a floating point operation would
be 5064 gate-switching units of energy – considerably above the 64 units
expected from theory.

Other researchers [Vieri 99] have taken a full step towards reversible logic by
constructing a complete microprocessor using reversible logic.

The analysis in this section does not take errors due to Cosmic Rays into
account. Cosmic Rays will cause glitches in logic that are indistinguishable from
those caused by thermal noise. If we are to be consistent in our expectation that
a computer does not produce logic glitches, we must find a solution for Cosmic
Ray-induced logic glitches as well.

The idea that one would build a computer from devices that glitch occasionally
has been explored intermittently from the early days of computing. Von Neumann
[von Neumann 56] considered this topic extensively in the 1950s due to the
inherent unreliability of vacuum tubes and the interest in biological, neural
computing systems of that day. Von Neumann proposed and analyzed the idea
of replacing wires and gates with bundles of wires and arrays of gates. Failure of
one or a few gates or wires would not change the ultimate output of the computer
due to the action of the redundant copies. This line of reasoning seems to have
had a period of inactivity from the 60s to 90s due to the ascendancy of
transistorized microelectronics, but has been resurrected recently in the context
of nanotechnology. Von Neumann’s ideas seem to apply acceptably to
unreliability caused by thermal noise and Cosmic Rays even through they were
developed for other effects. However, recent researchers [Han 02] have found
better solutions.

However, it does not appear that the work derived from von Neumann changes
the conclusions of this report. This report finds power consumption to be the
principal limiting factor in the performance of a computer. While emergence of a
lower-power computing technology would change the result of this report, von
Neumann’s work seems all headed towards higher power dissipation.

 23

Static Power Dissipation

Figure 7 is a simplified view of some of the issues involved in the leakage current
that causes undesirably high static power dissipation. Current semiconductor
processes permit the designers to create transistors by drawing shapes on
masks that correspond to the source, gate, and drain of transistors. If the
designer varies the proportions of the shapes, they get transistors with varying
properties. Depending on how they vary the proportions, they can optimize the
transistors for efficient logic or low standby power:

1. If one ignores the effects of quantum tunneling, the designer would like to
have the narrowest possible gate. The narrower the gate, the less its area.
Since the gate capacitance is proportional to the gate area, this means
less gate capacitance. Overall switching power is ½CV2, so lower gate
capacitance reduces the switching energy. Furthermore, the region under
the gate is resistive when the gate is “on.” The narrower a gate, the lower
its “on” resistance. This means the gate will charge its load faster.
Narrower gates are therefore more “desirable” for performing logic by two
“linear” factors combined.

2. However, quantum tunneling increases exponentially as the gate region

becomes narrower. As the gate becomes very narrow, there becomes a
significant probability that an electron will jump over the energy barrier
created by a gate in the “off” condition. The sum of all the spurious
electrons jumping over an entire chip corresponds to a leakage current

Source Drain
Gate

Source Drain
Gate

Efficiency: Smaller capacitor (vs.)
consumes less ½CV2 energy
to charge and makes logic
more energy efficient.

Speed: Narrower gate produces lower
resistance and speeds switching.

Static Power: Reduced source-drain
distance (vs.)
causes greater quantum tunneling.

Other Effects: Changes in materials and
manufacturing processes can
simultaneously reduce both dynamic and
static power. These are not easy changes.

Figure 7: Leakage Current and Mitigations

 24

and corresponding power dissipation. Notably, this leakage occurs
whether the gates are actively performing logic or just waiting. Quantum
tunneling therefore makes narrow gates “undesirable” by an exponential
factor.

The two opposing effects above give the designer the opportunity to optimize
each transistor for its particular purpose. As summarized in Table III, A “logic”
transistor that switches frequently and where speed is needed for overall system
performance can be constructed with a narrow gate and the quantum leakage
can be accepted as a cost of business. On the other hand, a transistor that
switches infrequently (such as many in the memory subsystem) can get a fat
gate to reduce static power dissipation. As illustrated in table I, the ITRS
describes three classes of transistors (HP, LOP, and LSTP), although the
classes are not determined by any authority and the engineer is free to develop
others.

The discussion above was intended to illustrate just one way in which leakage
current can be managed in conjunction with system architecture. There are other
ways: Altering the power supply voltage or the design of transistors (threshold
voltage) can vary the size of the energy barrier discussed above. These
mitigations could be implemented on a chip-wide basis or by having multiple
power supply voltages or transistor types on the same chip.

Duty
Cycle

Critical
Path

Mitigation

High Yes Use a High Performance (HP) transistor and don’t worry
about leakage current.

Low No Use a Low Standby Power (LSTP) transistor that will
minimize leakage current.

Low Yes Attempt to minimize the use of these transistors. If they occur
in large groups, it may be possible to “power down” parts of
the chip to mitigate their leakage current.

Table III: Leakage Current Mitigations

Dimensionality of Space

The fact that the universe has three spatial dimensions sets limits for both signal
propagation and cooling. The maximum speed of signal propagation is limited to
the speed of light applied to the distance between points in three-dimensional
space. Furthermore, cooling is limited by the amount of two-dimensional surface
area on a three-dimensional structure.

It is broadly understood that it is best to exploit the full-three dimensional
structure of space through a three-dimensional computer packaging [Vitanyi 88].

Signal Propagation Velocity

 25

It should be possible to move information at the speed of light, yet most real
technologies move signals at between .1c and .95c. For example:

• Free space optics transmits signals at 95% of the speed of light or higher.

• Optical fibers and electrical transmission lines transmit signals at about
70% of the speed of light.

• Transmission in with wiring layers of an integrated circuit is via a diffusive

process. A fixed electrical driver driving a wire with parasitic capacitance
to ground will have quadratic delay as a function of length due to the time
to charge the parasitic capacitance. Maximum propagation speed occurs
when the signal is regenerated periodically with repeaters (inverters).
These repeaters should be spaced approximately at intervals where the
added delay due to wire equals the propagation delay τ of the inverter. For
22 nm technology in 2016, the this wire length will be 9-19 µm (ITRS table
62b) depending on which interconnect layer is used. For the same
technology, τ is .15 ps (ITRS table 35b). These correspond to propagation
velocities of .1c - .2c.

Thus, a real implementation may fall short of peak propagation velocity by up to a
factor of 10 less than c.

Cooling

As illustrated in figure 8, cooling involves moving a coolant past a heat-producing
device, absorbing heat, and removing it with the coolant. Since it makes no
sense to consider a coolant pipe bigger than the object being cooled (the coolant
would miss the object), the cooling capacity will depend on the area A of the
coolant pipe and the matching area A of the device being cooled. Unless the
coolant undergoes a phase transition, the heat removed by the cooling system
will be A × velocity × ∆T × C, where C is the heat capacity of material. In the case
of a phase transition ∆T × C is replaced by the energy of the phase transition.
Practical and theoretical cooling systems differ only in these factors.

 26

For our purposes, the cooling problem has two parts:

1. Getting the heat from the device into the coolant. This task is controlled by
a heat exchanger near the device. These heat exchangers will have some
efficiency and performance, but their operation will be independent of the
other parts of the computer.

2. Getting the coolant out of the computer. As the computer gets bigger, the

amount of coolant that can go through the heat exchangers in item 1
grows with the volume of the computer but the surface area with which to
run the coolant pipes grows only with its surface area. For some computer
size, the ability to route the plumbing to the computer will become the
limiting factor.

Table IV illustrates the known and proposed solutions for removing heat from an
integrated circuit.

Figure 8: Geometries of High Performance Cooling Systems

Velocity V

Coolant
In

Coolant
Out

Heat producing device with
channels for coolant flow,

∆T temperature rise

Velocity V

Gas Out Gas Out
Velocity V

Liquid
In

Heat producing device boils
cooling liquid, absorbing

heat of vaporization

Heat Coolant:
Ain = Aout = πr2 (or LEdge

2)

Phase Change:
Ain = negligible
Aout = 2πr2 (or 2LEdge

2)

 27

Method Performance
Heat Sink 100 Watts/cm2
Evaporative Spray Cooling 100 Watts/cm2 (unverified figure)
LLNL Microchannel Cooling [LLNL 99] 100 Watts/cm2
Drexler’s fractal plumbing [Drexler 92] 100,000 Watts/cm2

Table IV: Heat Removal from Chips

Fractal plumbing is illustrated in figure 9. Fractal plumbing refers to a coolant
distribution and collection system where the coolant is routed through a series of
stages each with more but smaller pathways. Figure 9 illustrates a three-stage
distribution system, each stage splitting the pipe of diameter d into two pipes of
diameter d/√2. The circulatory system of an animal is an example of fractal
plumbing. The challenge in fractal plumbing is to find a design where the coolant
can be pumped pretty fast without causing the small pipes to break. Drexler
[Drexler 92] reports on an analysis of fractal plumbing that concludes that 10 KW
could be removed from a 1 cm cube.

Removing heat from the overall computer involves efficiently using the surface
area of the computer for routing plumbing for cooling. We propose to use the
cubical structure in figure 10 for this purpose (again ignoring the fact that a
spherical computer would be better by a small factor). The ideal cooling system
would implement fractal plumbing in the pyramids.

Figure 9: Fractal Plumbing

Coolant In
Coolant Out

 device being cooled

 28

Table V summarizes the performance of key cooling technologies as they will be
used in the remainder of this report.

Figure 10: Peak Cooling for a Cube

In
le

t

O
ut

le
t

Pyramid Structure:
Ain + Aout = 6 LEdge

2 Cubic
computer

cooled from
all six faces

 29

 V –

Velocity
of

coolant

∆T –
temperature
change of

coolant

C – Heat
capacity

of
coolant

ρ –
density

Perform-
ance

Cx

Units m/s Degrees K J/g/degree
K

g/m3 kW/m2

Air 3 15 1.004 1000 45
Water 1 15 4.18 106 62,700

Boiling
water

3
(steam)

5000 (heat of
evaporation, times 2

because steam flows out
both directions)

1000
(steam)

15,000

The theoretical limits of cooling are way above what is currently achievable.
Table VI [Frank 97] illustrates the theoretical limits of various cooling.

Cooling Technology Max entropy flux F Watts/cm2
Digital optic fiber 2.63E-08
Current passive emission 9.21E+01
Drexler’s fractal plumbing 1.00E+05
Slow atomic ballistic 2.63E+05
Fast atomic ballistic 2.63E+12
Quantum theoretic maximum 1.32E+20

Table VI: Theoretical Limits of Cooling

Since we don’t have good theoretical limits on cooling performance, the
remainder of this report will leave the cooling system unspecified but
parameterized. In some places we will presume a future computer will be built
with an unspecified cooling technology characterized by the following:

• Designating the volume of a transistor to include a pro-rated share of the
heat exchanger that would be needed to transfer its heat to the coolant.

• Limiting the power consumption of a computer to that which can be cooled

through its surface area. If a computer would exceed this limit, it will be
“inflated” by moving its parts away from each other uniformly until its
surface area is sufficient to cool its contents.

We will also develop specific examples of (1) air cooling, (2) water cooling, (3)
fractal plumbing, and (4) ignoring cooling – which is equivalent to a infinite
performance coolant or machine operation in a pulsed mode.

 30

The Successive Over Relaxation (SOR) Method as an Exemplary Problem

The SOR method is the simplest computational kernel that uses repetition of the
singly coupled calculation. SOR is an enhancement to a simple finite difference
approximation for a Partial Differential Equation (PDE). We give a brief tutorial
below. While SOR is so simple that it is no longer in use, the methods generalize.

A straightforward PDE might be the solution of Laplace’s equation in a 3D region
with a uniform mesh. To illustrate the problem domain: the temperature in a 3D
metal region would obey Laplace’s equation. Since temperatures vary smoothly,
the temperature at any point in the interior would be approximately the “average”
of the surrounding areas. This might be approximated by a uniform mesh of
points X(i, j, k), each value representing the temperature at a point. The most
straightforward numerical solution method is to repeatedly update the value of
each point with the average of neighboring points:

X(i, j, k)’ = 1/6 × [X(i-1, j, k) + X(i+1, j, k) + (1)

X(i, j-1, k) + X(i, j+1, k) +
X(i, j, k-1) + X(i, j, k+1)]

As this assignment is repeatedly evaluated during iteration, the value of X at a
given point is nudged slowly from some initial value to the correct answer.
Mathematicians have devised an improved algorithm called SOR that essentially
“nudges harder.” To be slightly more precise, the improved algorithm figures out
how much each value of X will change per equation 1. It then increases the
amount of change by an over relaxation factor. A typical over relaxation factor
might be 20, but is problem dependent. Equation 1 can be written as more
loosely as

X’ = f(other points), (2)

with f defined in equation 1. SOR rewrites this as

X’ = X + cSOR × [f(other points)-X], (3)

nudging harder by a factor of cSOR. The precise equation used in this example is:

X(i, j, k)’ = (1-cSOR) × X(i, j, k) + cSOR/6 × [(4)

X(i-1, j, k) + X(i+1, j, k) +
X(i, j-1, k) + X(i, j+1, k) +
X(i, j, k-1) + X(i, j, k+1)].

To test for convergence and to control the over relaxation factor, the program will
want to know the maximum amount of change in any X value during an iteration.

Y = max ∀ i, j, k |x(i, j, k) – x(i, j, k)’| (5)

 31

The over relaxation factor must be adjusted to assure that Y decreases smoothly.
When Y drops below a threshold, the algorithm terminates.

Implementing the Calculation

Time-Space Tradeoff

To solve the problem as we intend requires addressing a time-space tradeoff. As
illustrated in figure 11, this problem can be solved quickly with a lot of hardware
or more slowly with less hardware. A computer will contain some amount of
storage for input, output, and intermediate results as well as logic to transform
input to output. The amount of storage is determined by the algorithm and data
set. Storage consumes little if any power and makes no contribution to the
computational power of the system. However, the amount of logic can almost
always be ramped up and down to control the power consumption and/or
computational power of the computer.

We introduce a “power-savings knob” K, representing the degree of multiplexing
in the use of the logic. K=1 represents an algorithm running on the computer in
figure 1 containing the same number of storage cells as logic cells. This is
illustrated on the left side of figure 11. As long as the system is regular, it will be
possible to group the storage into groups of K words (i. e. memories of depth K)
where the logic acts sequentially on the contents of the memories through K
steps. This is illustrated on the right side of figure 11 for K=6.

High Speed
High Power
Systolic Array
K=1

Lower Speed
Lower Power
Processor + Storage
K=6

Figure 11: Power Control for a Problem with 6 Variables

Storage

Logic
1 Step

Logic
1 Step

Logic
1 Step

Logic
1 Step

Logic
1 Step

Logic
1 Step

Logic
6 Steps

 32

It should be noted that K=1 corresponds to a Systolic Array[Kung 82]. Somewhat
larger values correspond to Processor-In-Memory (PIM) systems[Sunaga 96]. As a
broad generalization, typical ASCI clusters and MPPs have K values in the range
of 125,000,000 (one microprocessor acting on 1 Gigabyte of memory – or
125,000,000 64 bit floats).

Magic Wiring and the Aerogel Computer Model

A stated objective for this report is to find an architecture approaching an optimal
implementation for a particular class of computer. To meet this objective we will
first develop an algorithm for a hypothetical “perfect” computer of the desired
class (i. e. classical irreversible logic). If we can then develop a real computer
that comes within a constant factor of the perfect computer, we can claim that the
real computer is within a constant factor of being ideal.

Figure 12 illustrates the “perfect” computer. It has an idealized interconnect
where information may flow between any two points at the speed of light. Each
cell can be imagined to have a directional laser and a photo detector in a
telescope that can be aimed at any other cell in the system. We further stipulate
that all cells can “see” each other without the line of sight being blocked by other
cells and that the telescopes will be pointed in the proper direction at all times.
We call this “magic wiring.”

The physical structure of the “perfect” computer contains cells. The cells are
modeled as packing at pitch Λ (“big Lambda”) in 3D, thereby each occupying

Cell

Cell Cell

Cell

Cell Cell

Cell Cell

Figure 12: Aerogel Model With Magic Wiring

Λ

 33

volume Λ3. Cells may either hold one bit (storage cells) or may contain a logic
gate (AND, OR, NOT). All cells are initially undifferentiated, with the programmer
specifying the type for each cell as part of the development of the program.

Non-memory cells perform elementary logical computations. Each such cell
receives input information from other cells, performs the designated operation,
and sends output information to other cells. This process requires time τ (a
propagation delay added to the communications time for the inputs and outputs)
and consumes energy E.

Λ is a parameter that can be used to model the active devices, cooling, or both.

• Λ can be used to model minimum device size by setting it to the edge
dimension of a basic electronic device. For example, the projected
semiconductor technology for 2016 has a basic transistor size of about
106 atoms occupying a volume 30-40 nm2. With Λ set to such a value, one
would be modeling an algorithm on a packed 3D array of transistors. This
may be a useful model for exploring the limits of computation and may
even be practical for a computer operated intermittently (as in a µs at a
time). However, a real device constructed at such a density would quickly
overheat.

• We can use Λ to account for heat production and cooling through our

aerogel computer model. In this model, we use the structure of figure 12
but “inflate” the computer’s structure to account for space in which to run a
coolant and provide sufficient surface area for pipes to carry the coolant to
an external refrigeration system. This hypothetical model would have a
composition similar to an aerogel: the cells of figure 12 would be
transistors as shown but there would be a lot of space between cells and
the entire structure would be mostly empty space. We do not suggest
anybody construct such a computer, but merely that it is a convenient
approximation to an ideal computer (of the classical irreversible logic
variety).

Logic

Assignment statements 4 & 5 above contain 9 floating-point operators and a
maximum function. To avoid complicating this report, let us stipulate the mesh
point calculation is done with 9 sequential operations of one Floating-Point Unit
(FPU).

Figure 13 illustrates the logic of a single node. The cell has three parts, an FPU,
a maximum unit, and a memory for holding K 64 bit numbers. The FPU will
evaluate equation 4 in 9 steps, using values from the memories of its neighbors.
If K>1, the node will evaluate equation 4 K times.

 34

Calculating the Maximum

The maximum unit in figure 13 works with corresponding units on other such
nodes as illustrated in figure 14 to calculate the over relaxation parameter cSOR
and control application termination. Calculation of the maximum function in
equation 5 is done in two phases: Calculation of the maximum over the K steps
associated with each FPU and combination of these local maxima into a single
global maximum.

We suggest that the maximum unit in figure 13 can be implemented so simply
that it need not be further considered. In the right floating point format, it is
possible to compare floating point numbers by doing an integer comparison on
the same bits. We assume this will be done (noting that this works just fine for
numbers but not NaNs). Integer comparison can also be done bit serially, most
significant bit first. With this representation, the maximum unit can be
implemented as a bit serial shift register an a one-bit serial integer comparison
unit. Such a circuit is of negligible complexity compared to a FPU

At the end of an iteration, the nodes compute Y from equation 5 through a global
maximum function by passing the values to one corner of the entire machine. An
external “host” processor uses Y to calculate a new cSOR, which is broadcast by
the reverse path.

Figure 13: Layout for SOR Application

K 64 bit words representing
X(i, j, k)

Floating
Point Add/
Multiply –
9 Steps

Inputs and
outputs to
other cells

(repeats for
6 directions)

Maximum
Unit

 35

Energy Efficient Streaming Memory
Since this particular problem accesses the memory in figure 13 in a very specific
way, we can simplify the memory enormously over a conventional memory
hierarchy:

First, the access pattern is completely deterministic. Thus, it is possible to create
an address generator unit in a thousand gates or so that generates the entire
read-write address pattern for the memory. By running the address generator
ahead of the addresses that the FPU needs, the memory system can be
pipelined and made almost completely independent of read latency.

Second, the write-through latency doesn’t matter. The mathematics of this finite
difference problem has been formulated where written values are used
immediately and where they are they are delayed substantially. The mathematics
works both ways.

To meet the objectives of this report, the authors merely need to describe a logic
design that comes close to the performance possible with the system in figure 13
(say within a factor of 2). In other words, we are better off referencing a non-
optimal design that has been published than inventing an optimal one and writing
a treatise on it.

Termination
Decision &

SOR Control
(HOST)

Gather Dimension 1

Gather
Dimension
2

Gather

3
Dimension

Figure 14: Global Synchronization

 36

To this end, we have found technology in [Coates 00] that meets our criteria if
applied properly.

Figure 15 illustrates the overall strategy. Address generator logic will generate all
addresses, but with “write” addresses delayed by perhaps a few dozen positions.

The memory will be organized as a tree. The “input” for each access (address
and write data, if the access is a write) will be sent down a tree branching
according to the addressing bits. To keep power consumption low, there will be
no activity in the unused branches. The downward path is illustrated in green.

The leaves of the tree are comprised of small memories (say 1024 words of 64
bits), which perform the operation. The read data (or a data-free
acknowledgement of write completion) are sent up the tree along the read path.

Figure 16 illustrates some additional technology for implementing the memory.
The Sun FLEETZero[Coates 00] project has disclosed an asynchronous logic design
for implementing the trees in figure 15 that preserves the order of access as the
data emerges from the tree. The key to Sun’s approach is a branch-merge circuit
that produces a third “order” stream reporting the branch direction. The sequence
of order bits is stored in a 1 bit queue and fed to the merge unit. The merge unit
accepts data only from the direction specified by the order bit.

Asynchronous logic is a further advantage of the Sun design: The system
specified in [Coates 00] generates all the necessary clocking signals, with the
property that unused branches of the tree have zero activity and hence no
dynamic power dissipation.

Figure 15: Hierarchical Memory

Storage
64x1K

Storage
64x1K

Read
Data

Write
Data

Address
Generator

 37

The additional power consumption due to this design can be estimated as
follows: The branch-merge tree will require approximately 2log2K-10 levels. The
logic at each switch point will be dominated by a 64 bit demultiplexer-multiplexer.
If each bit requires 5 gates, this would create (2log2K-10) × 5 × 64 × E additional
switching power per FPU cycle.

The circuit in figure 16 will require effective assignment of “high performance”
versus “low standby power” transistors. From figure 16, we have proposed a
memory system where the data path is “fanned out” as a binary tree originating
at the FPU and going to the memory. As a consequence of the binary tree, the
“duty cycle” of the demultiplexer units will decline exponentially as units are
positioned further from the FPU. In accordance with Table III, the transistors
should be switched from HP to LSTP types. Figure 17 proposes making this
transition after 4 stages.

ALU

Deterministic
Address

Generator

Fan
Out to

16
Ways

Fan
In to
16

Ways M
em

or
y

In
pu

t Fan
In to
16

Ways M
em

or
y

O
ut

pu
t

Low switching
energy logic;
high static
power

Low standby power logic; high switching energy

Figure 17: Assignment of Transistor Types

Figure 16: Sun FLEETZero

Storage
64x1K

Storage
64x1K

Storage

Storage

1

12 A +
64 D

11 A +
64 D

10 A +
64D

Q

Q

Q

 38

An Architecture Approaching The Physical Limits

While the progress of Moore’s Law is normally seen to offer substantial but
incremental improvements in computer performance, very large quantitative
changes sometimes cause qualitative changes. In this case, transistor count is
giving way to power dissipation as the limiting factor in chip performance.

Figure 18 illustrates the essential concept. We are seeking an architecture that
approaches the physical limits, so let us stipulate we seek an architecture that
reaches 75% of the physical limits.

 39

The top of figure 18 illustrates a 75% efficient memory chip: Since memory will
remain limited by transistor count, the chip’s surface area is 75% covered by
transistors devoted to memory.

Unused

Memory

75% Utilized Memory Chip
[75% of area filled with transistors]

75% Utilized Logic Chip
[75% of package power limit]

Chip Supporting Any Three Functions +
Memory

Logic block [since a logic
block of size about 1% total
chip area would meet the
maximum power dissipation
limit, the figure shown is ¾
of a square whose full area
would be 1% of the chip’s
area by the scale shown].

Unused

Memory

Vdd

Memory consumes 75% of
chip area, but insignificant
power. Each logic block
consumes 75% of chip’s
power budget when turned
on (only one on at a time)
but insignificant area.

Figure 18: Future Limiting Factors for Chip Design

 40

The middle of figure 18 illustrates a 75% efficient logic chip: In the 2016 time
frame, a chip covered entirely by logic will have power densities that are well
above the ability to cool the chip. While we may not know the details of a 2016
logic chip, we can say with some certainty that only a fraction of its surface will
be covered by logic with power “on” at any given time.

Memory and logic stress different limits and are therefore compatible, as shown
in the lower part of figure 18. A chip could simultaneously contain 75% of the
maximum amount of memory while simultaneously containing logic to consume
75% of the maximum amount of power. Furthermore, by switching the power
supply on and off, a chip could contain multiple logic blocks – as long as they
were not all turned on at once.

Figure 19 illustrates an architecture that can meet the physical limits within a
constant factor while being practical as well. The block labeled “architecture 1”
would contain the logic in figure 13 and the memory would be as illustrated in
figures 15-17. With the power to “architecture 1” turned on, the chip would
perform the calculation described in this report with which we will later show has
an efficiency approaching the physical limits. With some other architecture block
turned on, the chip would be free to perform some other function.

The Universal Computing Element would need a power control circuit that would
assure that the logic blocks would be switched on and off in such a way that the
chip would not overheat.

We recommend that the block labeled “interconnect” in figure 19 be a wormhole-
router based logic unit designed in accordance with other work by the author

Figure 19: Universal Computing Element

Architecture 1

Architecture 2

Architecture n

Interconnect

…
Vdd

Power Control System:
α1P1 + α2P2 … αnPn + Pinterconnect + Pmemory ≤ Pchip,
given duty cycle αn for architecture unit n

M
ux

Memory

B
ra

nc
h

M
er

ge

 41

[DeBenedictis 03] and integrated into a 3D mesh as illustrated in figures 4, 5, and
in other work by the author [DeBenedictis 03]. The interconnect block would carry
out the maximum function as illustrated in figure 14.

We would further recommend that the architecture blocks in figure 19 include a:

• Microprocessor. Most codes today are quite large, but with the
computational activity concentrated on just a small percentage of the lines.
We anticipate the microprocessor would be given the primary
responsibility for executing codes, but would offload the main
computational activity to other units (and then power itself down). The
microprocessor will be useful for its flexibility and as such need be neither
fast nor power efficient.

• Vector floating point. The main activity in many scientific codes can be

formulated as vector operations on floating point numbers. The advantage
being that a vector floating-point unit can be much more power efficient
than a microprocessor. To be specific: a well-designed microprocessor
can perform vector operations in much the same way as a vector unit.
However, the microprocessor performs other (typically scalar) functions
that consume power as well. These other functions include speculative
instruction execution, storing values in a cache in the event they will be
reused, etc.

• Reconfigurable processor. The academic community has considerable

interest in processors whose internal components can be rearranged after
manufacture to suit specific purposes. Once the components have been
rearranged, the processor can be much faster and of lower power
consumption than a microprocessor.

• Other special function units. Many applications communities have a small

number of computations that form the main activity of many applications.
These computations are typically compute-intensive but generic functions
that can be transformed with modest compute power to specific tasks. For
example: dense and sparse matrix operations in physics, searching in
bioinformatics, etc. The advantage of special function units is that their
performance and power efficiency can be much greater than any of the
other options. Given the chip sizes projected to be available, it should be
possible to include a handful of special function units where the benefit to
even small constituencies is nonetheless greater than the incremental cost
of adding the unit.

 42

Performance Estimation
We will now estimate the performance of both the perfect computer constructed
with magic wiring and our most realistic assessment of what is possible. A
comparison of the results will not only show whether can approach the theoretical
bound, but will also give an assessment of future computing capabilities and
costs.

While the preceding parts of this report outlined many of the equations that would
be necessary, table VII includes additional data on the packaging model used for
realistic computers. The C++ source code for evaluating the model is attached as
an appendix to this report.

 Aerogel Realistic
First level packaging N/a: only one level of

packaging.
First level of packaging is
the chip. A chip has a
maximum transistor
count, a maximum power
dissipation, and a
maximum bandwidth to
other chips.

Nodes N/a: only one level of
packaging.

Each node is a FPU plus
K words of memory.
Each chip is deemed to
hold an integer number of
nodes.

Second level packaging Machine is deemed to be
cubical of a size
determined by the basic
devices packed into 3D
but inflates to avoid
exceeding coolant
capacity limit.

Each chip has a
designated minimum
volume for the chip plus
cooling apparatus. The
cubical machine may
inflate over the volume of
the chips to avoid
exceeding coolant
capacity limit.

Table VII: Computer Packaging

Figure 20 is a composite graph showing key performance parameters as a
function of K, the memory size on each node. The graph is divided into three
regions, each with a different behavior.

The lines on the graph are in pairs with a thin line corresponding to an aerogel
computer and a thick line for our most realistic estimate of computer
performance.

 43

• Power consumption is not a problem in the rightmost region . In this
region, the computer is a cube about .1 m on a side. The cube is
comprised of about 10 Exabytes of memory and a “few” processors (1 on
the right margin to a billion at the left of the region). Given the large
amount of memory and the small number of processors, the size of the
cube doesn’t change over the region. However, the speed of solution
(TStep graph) and the power consumption vary in inverse proportion. The
region is characterized by low enough power generation that it can be
cooled through the faces of the cube using air or water cooling.

• Cooling is the predominate issue in the center region . In this region, the

power generated is too much to be cooled through the faces of the original
.1 m cube using the designated cooling method. The remedy is to inflate
the machine to increase its surface area. The inflation may be substantial:
the original .1×.1×.1 m cube expands to 300×300×300 m in the case of air
cooling! While speed of light delays increase as the computer expands,
the speed of light effect does not dominate until the next region.

Legend:
Air
Water
Pulse
Thick=Real
Thin=Aerogel

Memory Depth, K

T S
te

p
&

 L
E

dg
e

Figure 20: TStep and LEdge vs. Problem Size

 “Speed
limit”

 Region of
Inflation

 System is a
Big Memory

LEdge (m)

TStep (s)

 44

• The speed of light is a controlling factor in the left region . This region

begins when the time to compute an ”iteration” approximately equals the
speed of light delay in computing the SOR coefficient. As the graph
continues leftward, the amount of ALU hardware increases dramatically,
yet overall speed doesn’t increase because it is controlled by the speed of
light. Overall power consumption doesn’t increase either because the ALU
hardware becomes largely idle waiting for the global communications.

 45

Figure 21 plots the timestep TStep as a function of the number of cells n along
each side of the solution region. Note that the problem size is n3.

Consider the thinner group of lines first. These represent the behavior of aerogel
computers implemented with various cooling systems.

• In region , all the aerogel graphs coincide. In this region, the problem
being solved is small and the limiting factor is the speed of the floating-
point unit.

• In region , the time steps increase and the aerogel graphs diverge. This

region is characterized by power dissipation reaching the limit for the
cooling technology and requiring “inflation.”

• In region , the aerogel lines become straight as they head to infinity. In

this region, the computer is inflated to provide enough surface area to be
cooled, which determines the synchronization time in accordance with
speed of light delays.

Legend:
Air
Water
Fractal Plumbing
Pulse

Cells per Edge, n
(problem is n×n×n)

T S
te

p

Figure 21: TStep vs. Problem Size

 Aerogel
Computer

 Real
Computer

 Operating
on one chip at
“speed limit”

 Packaging
anachronisms

 Asymptotic
scaling of full

system

 46

The thicker lines correspond to realistic computers.

• Region shows a big “bump” in the time step compared to the
theoretically perfect “aerogel” computer. This is caused by the two-step
packaging system: transistors on chips and chips in a system.
Calculations take place predominately in one chip on the left of the region,
which is quite efficient. Toward the right of the region, signals must
propagate between chips.

• In region , the real systems take on the scaling properties of the overall

system. One will note that the thin and thick lines have the same slope on
the right, indicating that the performance of the real systems lags the
“aerogel” computers by a constant factor.

One notes that the better cooling technology has a significant effect on
performance. On the right of the graph, air cooling, water cooling, fractal
plumbing, and infinite cooling spread themselves out of 2 ½ orders of magnitude
in performance.

 47

Figure 22 shows that there is a lot of performance upside available by plotting
peak FLOP rates as a function of problem size. It is widely believed that larger
problems have more parallelism available for exploitation than do smaller ones.
This effect controls the overall upward slope of the graph.

When the ASCI program was originally conceived, it was believed that a
stockpile simulation could be accomplished with a 10003 grid. For all real
computers, this problem is on the graph at 10 PFLOPS. This is 100 times larger
than was originally proposed by the ASCI program.

The fact that the performance lines go off the graph at 1 YFLOP on the upper
right shows that scaled speedup continues to work. However, the power
consumption of a computer at the YFLOPS level would be prohibitive. Since the
graph covers computers at or close to the thermodynamic limit for classical
irreversible logic, the only way to avoid this limit would be to exploit a computing
technology based on a different type of physics.

Legend:
Air
Water
Fractal Plumbing
Pulse

Cells per Edge, n
(problem is n×n×n)

FL
O

P
S

Figure 22: FLOPS vs. Problem Size

 Aerogel
Computer

 Aerogel
Computer

 Operating
on one chip at
“speed limit”

 Packaging
anachronisms

 Asymptotic
scaling of full

system

 48

Figure 22 elaborates on figure 20. In this figure, we have set the problem size to
500,000×500,000×500,000 mesh points vary the degree of parallelism in the
computer through variable K.

• The speed of light is the predominate effect in region . This region
begins when the time to compute an “iteration” approximately equals the
speed of light delay in computing the SOR coefficient. As the graph
continues leftward, the amount of FPU hardware increases dramatically,
yet overall speed doesn’t increase because it is controlled by the speed of
light.

• Power consumption is not a problem in the region on the right . In this

region, the computer is a cube about .1 m on a side. The cube is
comprised of about 10 Exabytes of memory and a “few” processors (1 on
the right margin to a billion at the left of the region). Given the large
amount of memory and the small number of processors, the size of the
cube doesn’t change over the region. However, the speed of solution
varies in proportion to the number of FPUs.

Legend:
Air
Water
Fractal Plumbing
Pulse

Memory Depth, K

T S
te

p

Figure 23: TStep vs. K

Aerogel
Computer

 Real
Computer

 Ultimate
Speed Limit
per Physics

 Asymptotic
scaling of full

system

 49

Figure 24 diagrams the physical size of the computer of figure 23. The computer
is defined to be a cube with edge dimension LEdge.

The interesting region is . In this region, the computer is producing so much
power that it cannot be cooled just by having heat escape from its surface. To
provide enough surface area, the computer is “inflated.” While the computer is
expanding in this region, the expansion is not so much as to reduce its
performance though speed of light effects. The inflation concept applies to
several of the lines, which slope downwards at 30° or so. However, the thick lines
corresponding to “real” computers are horizontal in some parts of this region.
This is caused by static power dissipation creating a lower bound on power
consumption and thereby computer size.

In region , the computer has reached the “speed limit.” In this region, the
calculation cannot be sped up by adding hardware because the added heat the
hardware would produce increases the size of the computer and associated
speed of light delays.

Legend:
Air
Water
Fractal Plumbing
Pulse

Memory Depth, K

L E
dg

e

Figure 24: LEdge vs. Memory Depth, K

 Aerogel
Computer

 Real
Computer “Speed

limit” Region

 Region of
Inflation

 Exceeds
Static Power

Dissipation on
one Node

 50

In region , the computer is a big memory. The thick lines representing the real
computers cease to exist beyond K=8G because one chip is not big enough to
hold a node.

Figure 25 represents the overall cost effectiveness of the computers shown in
figures 23 and 24. The range in figure 25 is a comprehensive estimate of the
quality of an financial investment in a specified computer. The range is given in
TFLOPS of computer performance for each dollar spent per year, where the
expenses include a pro-rated portion of the purchase price of the computer,
electric power, and real estate rental cost.

One notes that all the graphs have a peak in the range of 5-8 TFLOPS/$. For all
real computers, this peak is reached for 100<K<50,000. These values
correspond to present-day Processor-In-Memory designs.

It is also notable that the cooling technology makes little difference in this graph.
It appears that high performance cooling lets one get closer to the ultimate limits,
yet machines near the ultimate performance limit may not be practical.

Legend:
Air
Water
Fractal Plumbing
Pulse

Cells per Edge, n
(problem is n×n×n)

Tf
lo

ps
/$

/y
ea

r

Figure 25: Quality vs. Memory Depth, K

Aerogel
Computer

 Real
Computer

 Operating
on one chip at
“speed limit”

 Region of
Efficiency

 Giant
Memories
Mostly Idle

 51

Runtime of a Singly Coupled Calculation

The singly coupled calculation that we have defined is a natural basis for the
computing model we have introduced with this report. More specifically, we have
analyzed a coupling between then fully-parallelizeable (embarrassingly parallel)
parts of a calculation and global synchronization. The singly coupled calculation
is an “eigenvector” of this system, combining FLOPs and synchronization in a
proportion that will scale without changing the proportion. The rate of this scaling
will help project the performance of a broad range of problems. For example,
each pivot in a matrix inversion is a singly coupled calculation.

At the physical limit (for a computer that can be cooled), the time to execute a
singly-coupled calculation will be the sum of two parts:

• The time to share the information – controlled by the speed of light delay
for a signal to propagate across the diameter of the machine twice.

• The time to do the computation – controlled by the compute speed –

which is controlled by the ability to cool the machine – which is controlled
by the surface area of the machine and the performance of the coolant.

These two terms will be equal at the “knee in the curve,” at which point the
following relation holds:

2√3LEdge 9n3
c =

6x2×{ performance of coolant in PetaFLOPS/cm2}
,

where LEdge is the edge dimension of the cubical machine.

Algebraic rearrangement leads to:

9cn3 LEdge
3= 2√3×6 LEdge

 2×{ performance of coolant in PetaFLOPS/cm2}

Which implies LEdge ∝ n. Thus, we should expect the edge size of a
supercomputer optimized for singly-coupled calculations to increase in proportion
to the number of cells along each edge in the decomposition. The time per
iteration will vary similarly, as in t ∝ n.

Let us generalize this result for a supercomputer optimized for running a singly-
coupled calculation comprised of f floating point operations (in the previous
discussion, f = 9n3):

• LEdge ∝ 3√f, or the linear dimension of a supercomputer optimized for
singly-coupled calculations comprising f floating point operations will vary
as the cube root of f.

 52

• t ∝ 3√f, or the time to compute a singly-coupled calculation will scale with

the cube root of the size of the calculation.

• FLOPS ∝ f⅔, or the FLOPS rate of a supercomputer as powerful as
physical limits will permit (given that the supercomputer can be cooled
continuously) will grow sublinearly with problem size (⅔ power).

ASCI Plan

The ASCI program has a semi-formal succession plan for projecting the advance
of machines and applications from one generation to the next [Tomkins 01].
Based on the material in this report, we believe this plan must change.

The plan assumes ASCI needs to solve the same simulation problem at all times,
but that increasing computer speed is used to increase the resolution of the
simulation. As summarized in the first three columns of Table VIII, each
“generation” drives a halving in the mesh size in each of three dimensions and in
the time step. This results in an 8× increase in memory size and a 16× increase
in processor speed requirements. It is assumed that the overall time to solution
stays constant due to speedup driven by Moore’s Law.

However, this report shows a different result: For supercomputers at the physical
limit, each generation will result in a 4× slowdown of simulation on a machine of
volume 8× and consuming 4× as much power.

 Old ASCI

Rule
Generation
n

Old ASCI
Rule
Generation
n+1

New ASCI
Rule
Generation
n

New ASCI
Rule
Generation
n+1

Mesh n×n×n 2n×2n×2n n×n×n 2n×2n×2n
Time step T T/2 T T/2
Compute capacity 1 16 1 4
Linear dimension 1 2
Memory capacity 1 8 N/a N/a
Time to solution 1 1 1 4
Volume of
Computer

1 1 1 8

Table VIII: Scaling of Resolution in Simulations

 53

Conclusions
In this report, we devised and demonstrated a process for understanding the
quality of a parallel computer in absolute terms. This process involves applying
an algorithm to a hypothetical computer model (called “aerogel”) that represents
the best computer that can be constructed given the laws of physics. In
conjunction, the same algorithm is applied to an actual computer that we may be
designing. The amount by which the actual computer falls short of the “aerogel”
model in performance, cost, or some other factor, tells us how good a design job
we did. This process can be used to analyze existing designs or as part of a
design iteration to create new designs.

In the process of describing the aerogel computer model, we identified the key
limitations placed on ASCI-like computers by the laws of physics. These limits
include fundamental heat generation in floating point and logic and the speed of
light limit to signal propagation velocity.

To guide our analysis, we used a very computational algorithm called the
Successive Over Relaxation (SOR) method. This algorithm is simple enough to
analyze in a report yet incorporates the basic combination of spatially distributed
computations and global synchronization common to many ASCI applications.

We found no bottleneck to prevent ASCI supercomputers from growing in
performance to the Exaflops level and above. Assuming that problems continue
to scale up in size (the principle of scaled speedup), the ultimate limit on ASCI
supercomputer performance is likely be the minimum thermodynamic energy
required for computation and our ability to pay the power bill.

By including the effects of heating and the speed of light on signal propagation,
we may have defined a new model of computation. This model is similar to the
parallel computer model of which we are familiar, but cuts the asymptotic
performance somewhat to keep a computer from overheating. We presented a
way to predict scalability on this type of computer by decomposing an algorithm
into “singly coupled calculations,” each of which scales predictably.

We believe this approach is useful for the current class of digital computers, but it
is not universal. To be precise, we believe this approach is valid for computers
based on classical, irreversible logic and specifically for logic used as the basis of
floating point calculations. However, this approach would not apply to analog
computers such as neural networks and biological computers or to computers
using quantum entanglement.

 54

Appendix: Performance Estimation Function

void C

om
pute() {

// P
hysical C

onstants

double kB

 = 1.3806503e-23;

// B
oltzm

ann's constant J/K

double T = 300;

// room

 tem
perature K

double c = 299792458;

// speed of light m
/s

double M
etersP

erFoot = 2.54*12/100;

// P

aram
eters that could be static

double H
S

S
G

B
its = 40e9;

// H

S
S

 speed (bits/s)

double C

hipA
rea = .02 * .02;

// N
om

inal area of a chip = 2 cm
 x 2 cm

 = 400m
m

^2 (m
^2)

//double C
hipA

rea = 140e-6;

// M
P

U
 H

igh V
olum

e per ITR
S

 1h 2002 (m
^2)

//double C
hipA

rea = 572e-6;

// A
S

IC
 m

axim
um

 chip size at production per ITR
S

 1j 2002 (m
^2)

double FloatB
its = 64;

// num
ber of bits per floating point num

ber (bits)

double G

rindFLO
P

S
 = 9;

// num
ber of flops per S

O
R

 update (floating ops)

double R

entalC
ostS

quareFootP
erY

ear = 12;
// rental cost of real estate ($ per square foot per year)

double C
ostP

erC
hip = 1000;

// purchase price per chip in a system

 ($)

double K

W
H

C
ost = .15;

// price per kilow
att-hour of electricity ($/K

W
H

)

double D

epreciationFactor = .3;
// fraction of H

W
 cost to am

ortize per year

double FracS

peedO
fLight = .1;

// signal propagation velocity as fraction of c

double W

ordsP
erM

em
ory = 1000; // num

ber of w
ords in prim

itive m
em

ory

// Form

ulas

double TotalN

odes = n*n*n/K
;

double S
ystem

M
em

oryB
its = FloatB

its*n*n*n;

double S

ystem
C

P
U

G
ates = FloatC

ells*TotalN
odes;

double TotalC
ells = S

ystem
M

em
oryB

its + S
ystem

C
P

U
G

ates;

double M

eshU
pdateTim

e = G
rindFLO

P
S

*K
*FloatTau*LogicP

rocess.Tau;

double P

ropagationV
elocity = M

agic ? c : FracS
peedO

fLight*c;
// speed of signal propagation

// FLE
E

TZero branchm
erge

// properties for the branch-m
erge circuit dow

n to W
ordsP

erM
em

ory w
ord m

em
ories

double B
ranchM

ergeP
erN

ode = ceil(K
/W

ordsP
erM

em
ory)-1;

double FastB
ranchM

ergeP
erN

ode = m
in(B

ranchM
ergeP

erN
ode, 31);

double S
ystem

FastB
ranchM

ergeG
ates = TotalN

odes * 30*FastB
ranchM

ergeP
erN

ode*FloatB
its;

// 30
gates per bit * 64 bits

 55

do
ub

le
 S

lo
w

B
ra

nc
hM

er
ge

P
er

N
od

e
=

B
ra

nc
hM

er
ge

P
er

N
od

e
- F

as
tB

ra
nc

hM
er

ge
P

er
N

od
e;

do

ub
le

 S
ys

te
m

S
lo

w
B

ra
nc

hM
er

ge
G

at
es

 =
 T

ot
al

N
od

es
 *

 3
0*

S
lo

w
B

ra
nc

hM
er

ge
P

er
N

od
e*

Fl
oa

tB
its

;
//

30

ga
te

s
pe

r b
it

*
64

 b
its

do

ub
le

 D
ec

od
er

Le
ve

ls
 =

 c
ei

l(l
og

(K
/W

or
ds

P
er

M
em

or
y)

/lo
g(

2)
);

//

le
ve

ls
 o

f d
ec

od
er

s

do

ub
le

 B
ra

nc
hM

er
ge

E
ne

rg
yP

er
A

cc
es

s
=

5*
Fl

oa
tB

its
*(

m
ax

(D
ec

od
er

Le
ve

ls
, 5

)*
Lo

gi
cP

ro
ce

ss
.E

 +

//
5

ga
te

s
sw

itc
h

pe
r b

it
fo

r e
ac

h
le

ve
l

m
in

(D
ec

od
er

Le
ve

ls
-5

, 0
)*

M
em

or
yP

ro
ce

ss
.E

);

do

ub
le

 S
ys

te
m

S
ta

tic
P

ow
er

;

if

(M
ag

ic
)

S

ys
te

m
S

ta
tic

P
ow

er
 =

 0
;

el
se

 {

do
ub

le
 F

as
tP

ow
er

 =
 (T

ot
al

N
od

es
*F

lo
at

C
el

ls
 +

 S
ys

te
m

Fa
st

B
ra

nc
hM

er
ge

G
at

es
) *

Lo

gi
cP

ro
ce

ss
.S

P
w

r;

do
ub

le
 S

lo
w

P
ow

er
 =

 T
ot

al
N

od
es

*S
ys

te
m

S
lo

w
B

ra
nc

hM
er

ge
G

at
es

 *
 M

em
or

yP
ro

ce
ss

.S
P

w
r;

S

ys
te

m
S

ta
tic

P
ow

er
 =

 F
as

tP
ow

er
 +

 S
lo

w
P

ow
er

;

}

//

tra
ns

is
to

r c
ou

nt
 p

er
 n

od
e

do
ub

le
 R

am
B

its
P

er
N

od
e

=
Fl

oa
tB

its
*K

;

do

ub
le

 F
P

U
G

at
es

P
er

N
od

e
=

Fl
oa

tC
el

ls
;

do
ub

le
 M

em
or

yG
at

es
P

er
N

od
e

=
30

*m
in

(K
/W

or
ds

P
er

M
em

or
y,

 3
2)

*F
lo

at
B

its
;

do
ub

le
 T

ra
ns

is
to

rs
P

er
N

od
e

=
R

am
B

its
P

er
N

od
e

+
FP

U
G

at
es

P
er

N
od

e
+

M
em

or
yG

at
es

P
er

N
od

e;

do
ub

le
 M

ax
Tr

an
si

st
or

sP
er

C
hi

p
=

C
hi

pA
re

a/
(L

og
ic

P
ro

ce
ss

.L
am

bd
a*

Lo
gi

cP
ro

ce
ss

.L
am

bd
a)

;

do

ub
le

 E
dg

e3
D

 =
 p

ow
(T

ot
al

C
el

ls
, (

1.
/3

.))
*L

og
ic

P
ro

ce
ss

.L
am

bd
a;

//

E
dg

e
as

su
m

in
g

3D
 p

ac
ka

gi
ng

do

ub
le

 S
ys

te
m

Fl
oa

tE
ne

rg
y

=
n*

n*
n*

G
rin

dF
LO

P
S

*F
lo

at
P

ow
er

*L
og

ic
P

ro
ce

ss
.E

;

do

ub
le

 S
ys

te
m

M
em

E
ne

rg
y

=
M

ag
ic

 ?
 0

 :
n*

n*
n*

B
ra

nc
hM

er
ge

E
ne

rg
yP

er
A

cc
es

s;

do
ub

le
 S

ys
te

m
E

ne
rg

y
=

S
ys

te
m

Fl
oa

tE
ne

rg
y

+
S

ys
te

m
M

em
E

ne
rg

y;

Q
ua

lit
y

=
-1

;

C

om
pu

te
rIn

st
an

ce
 T

es
t =

 *
th

is
;

 56

// E
laborate loop:

// S
tep through the range tN

odesP
erC

hip = 1..TotalN
odes in tandem

 w
ith

// Test.C
hips = TotalN

odes..1 such that

// TotalN

odes = Test.C
hips * tN

odesP
erC

hip

// H

ow
ever, have both tN

odesP
erC

hip and Test.C
hips cover sm

all ascending integers

for (double x = 1, ex = sqrt(TotalN

odes); x < ex; x += (x < 10 ? 1 : x/10)) for (int y = 0; y < 2; y++) {

double tN
odesP

erC
hip;

if (y) {

tN
odesP

erC
hip = x;

Test.C
hips = TotalN

odes/x;

}

else {

Test.C

hips = x;

tN

odesP
erC

hip = TotalN
odes/x;

}

double tC

ubeR
ootC

hips = pow
(Test.C

hips,(1./3.));

double tTransistorsP
erC

hip = TransistorsP
erN

ode * tN
odesP

erC
hip;

// com

m
unications

double tC

ellsP
erE

dge = n/tC
ubeR

ootC
hips;

double tC

om
m

C
ells = 6.*tC

ellsP
erE

dge*tC
ellsP

erE
dge;

double tC

om
m

B
its = FloatB

its*tC
om

m
C

ells;

Test.C
om

m
unicationsTim

e = M
agic ? 0 : tC

om
m

B
its/H

S
S

G
B

its/P
ins;

// exceeds capacity of chip -- not viable

if (!M

agic &
&

 tTransistorsP
erC

hip > M
axTransistorsP

erC
hip)

continue;

// C
om

pute edge size from
 3D

 volum
e or cooling calculations, w

hichever is larger

double tE
ffectiveE

dge = m
ax(Edge3D

, tC
ubeR

ootC
hips*C

ooledP
kgE

dge);

// Fraction of chip area occupied, rest w
ill be left em

pty

Test.FractionC
hipO

ccupancy = tTransistorsP
erC

hip/M
axTransistorsP

erC
hip;

 57

do

ub
le

 c
1

=
tE

ffe
ct

iv
eE

dg
e,

 c
2

=
2*

sq
rt(

3.
)/P

ro
pa

ga
tio

nV
el

oc
ity

, c
3

=
M

es
hU

pd
at

eT
im

e,
 c

4
=

Te
st

.C
om

m
un

ic
at

io
ns

Ti
m

e,
 c

5
=

S
ys

te
m

E
ne

rg
y,

 c
6

=
S

ys
te

m
S

ta
tic

P
ow

er
, k

 =
 C

oo
la

nt
P

ow
er

;

do
ub

le
 tI

nf
la

te
Lo

w
 =

 1
, t

In
fla

te
H

ig
h

=
1e

9;

fo

r (
in

t j
 =

 0
; j

 <
 2

0;
 j+

+)
 {

//
B

in
ar

y
se

ar
ch

 fo
r t

he
 b

es
t i

nf
la

tio
n

fa
ct

or
 b

y
ge

om
et

ric
 in

te
rp

ol
at

io
n

Te
st

.In
fla

te
 =

 s
qr

t(t
In

fla
te

Lo
w

 *
 tI

nf
la

te
H

ig
h)

;

do

ub
le

 i
=

sq
rt(

tIn
fla

te
Lo

w
 *

 tI
nf

la
te

H
ig

h)
;

Te
st

.L
E

dg
e

=
tE

ffe
ct

iv
eE

dg
e*

Te
st

.In
fla

te
;

c1
 =

 tE
ffe

ct
iv

eE
dg

e;

do
ub

le
 y

1
=

c1
*i;

do

ub
le

 it
S

yn
ch

ro
ni

ze
Ti

m
e

=
2*

sq
rt(

3.
)*

Te
st

.L
E

dg
e/

P
ro

pa
ga

tio
nV

el
oc

ity
;

Te
st

.T
im

eS
te

p
=

m
ax

(M
es

hU
pd

at
eT

im
e

+
itS

yn
ch

ro
ni

ze
Ti

m
e,

 T
es

t.C
om

m
un

ic
at

io
ns

Ti
m

e)
;

c2
 =

 2
*s

qr
t(3

.)/
P

ro
pa

ga
tio

nV
el

oc
ity

;

c3

 =
 M

es
hU

pd
at

eT
im

e;

c4
 =

 T
es

t.C
om

m
un

ic
at

io
ns

Ti
m

e;

do
ub

le
 y

2
=

c2
*y

1;

do
ub

le
 y

3
=

m
ax

(c
3+

y2
, c

4)
;

do
ub

le
 it

S
ys

te
m

D
yn

am
ic

P
ow

er
 =

 S
ys

te
m

E
ne

rg
y/

Te
st

.T
im

eS
te

p;

c5
 =

 S
ys

te
m

E
ne

rg
y;

do

ub
le

 y
4

=
c5

/y
3;

Te

st
.S

ys
te

m
P

ow
er

 =
 it

S
ys

te
m

D
yn

am
ic

P
ow

er
 +

 S
ys

te
m

S
ta

tic
P

ow
er

;

c6

 =
 S

ys
te

m
S

ta
tic

P
ow

er
;

do
ub

le
 y

5
=

c6
 +

 y
4;

Te

st
.F

ac
eP

ow
er

D
en

si
ty

 =
 T

es
t.S

ys
te

m
P

ow
er

/6
/T

es
t.L

E
dg

e/
Te

st
.L

E
dg

e;

 58

double y6 = y5/y1/y1/6;

FP
A

S
S

E
R

T((c6 + c5/m
ax(c3+(c2*c1*i), c4))/(c1*c1*i*i*6), Test.FaceP

ow
erD

ensity);

if (Test.FaceP

ow
erD

ensity < C
oolantP

ow
er)

tInflateH

igh = Test.Inflate;

else

tInflateLow

 = Test.Inflate;

}

if (Test.Inflate > 1.01) {

double i = Test.Inflate;

double test = (c6 + c5/m
ax(c3+(c2*c1*i), c4))/(c1*c1*i*i*6);

FP
A

S
S

E
R

T((c6 + c5/m
ax(c3+(c2*c1*i), c4))/(c1*c1*i*i*6), C

oolantP
ow

er);

}

// overheats chip -- not viable

if (!M
agic &

&
 Test.S

ystem
P

ow
er/Test.C

hips > C
ooledM

axP
ow

er)
// param

eter: m
ax pow

er per
chip

continue;

// yearly electricity cost at 15 cents/K

W
H

double Y
earlyP

ow
erC

ost = Test.S
ystem

P
ow

er/W
ordsP

erM
em

ory*24*365*K
W

H
C

ost;

// cost of hardw
are at $1000/chip

double H

ardw
areC

ost = Test.C
hips*C

ostP
erC

hip;

// square feet of building required assum
ing 8' high w

ith 50%
 aisle

double LE

dgeFeet = LE
dge/M

etersP
erFoot;

double S

ystem
V

olum
eC

ubicFeet = LE
dgeFeet*LE

dgeFeet*LE
dgeFeet;

double S

quareFeetFloor = S
ystem

V
olum

eC
ubicFeet/8*2;

 59

//

ye
ar

ly
 re

nt
al

 c
os

t @
$1

2/
sq

 ft
/y

ea
r

do

ub
le

 Y
ea

rly
R

en
ta

l =
 S

qu
ar

eF
ee

tF
lo

or
*R

en
ta

lC
os

tS
qu

ar
eF

oo
tP

er
Y

ea
r;

//

ye
ar

ly
 c

os
t -

- a
ss

um
es

 3
0%

 o
f h

ar
dw

ar
e

co
st

 p
er

 y
ea

r -
- l

ik
e

a
5

ye
ar

 li
fe

sp
an

 w
ith

 in
te

re
st

Te
st

.Y
ea

rly
C

os
t =

 Y
ea

rly
P

ow
er

C
os

t +
 H

ar
dw

ar
eC

os
t*

D
ep

re
ci

at
io

nF
ac

to
r +

 Y
ea

rly
R

en
ta

l;

Te
st

.F
LO

P
S

 =
 n

*n
*n

/T
es

t.T
im

eS
te

p*
G

rin
dF

LO
P

S
;

Te

st
.Q

ua
lit

y
=

Te
st

.F
LO

P
S

/T
es

t.Y
ea

rly
C

os
t/1

e1
5*

10
00

;

//
sa

ve
 b

es
t d

es
ig

n

if
(Q

ua
lit

y
<

Te
st

.Q
ua

lit
y)

*t

hi
s

=
Te

st
;

}

}

 60

References
• [Coates 00] W. S. Coates, J. K. Lexau, I. W. Jones, S. M. Fairbanks, I. E.

Sutherland, “FLEETZero : An Asynchronous Switch Fabric Chip
Experiment,” Proceedings of the Seventh International Symposium on
Advanced Research in Asynchronous Circuits and Systems (ASYNC
2001), 11-14 March 2001, Salt Lake City, UT, USA, pp. 173-182.

• [DeBenedictis 03] Erik P. DeBenedictis, “A Network Architecture for

Petaflops Supercomputers,” Sandia National Laboratories SAND report
SAND2003-2954, August 2003

• [Drexler 92] Drexler, K. Eric., “Nanosystems: Molecular Machinery,

Manufacturing, and Computation,” John Wiley & Sons, Inc., 1992.

• [Feynman 82] Richard P. Feynman, “Simulating Physics with Computers,”
International Journal of Theoretical Physics, Vol. 21. Nos. 6/7, 1982.

• [Frank 97] Michael P. Frank, “Ultimate theoretical models of

Nanocomputers,” Nanotechnology 9 (1998) 162-176.

• [Han 02] Jie Hand and Pieter Jonker, “A System Architecture Solution for
Unreliable Nanoelectronic Devices,” IEEE Transactions on
Nanotechnology Vol. 1, No. 4 (2002) 201-208.

• [ITRS 02] International Technology Roadmap for Semiconductors,

http://public.itrs.net. All figures used in this report refer to the ITRS 2002
update.

• [Kim 01] Kim, S., Zeisler, C., Papaefthymiou, M., "A True Single-Phase 8-

bit Adiabatic Multiplier," in proceedings of the 2001 Design Automation
Conference, pp. 758-763.

• [Kung 82] Kung, H. T. "Why Systolic Architectures?," Computer, vol. 15,

no. 1, pp. 37-46, 1982.

• [Laundauer 61] Landauer, R., “Irreversibility and heat generation in the
computing process,” IBM J. Res. Dev. 5, 183-191, 1961.

• [LLNL 99] Lawrence Livermore National Laboratory, “MICROCHANNEL

COOLING,”
http://www.llnl.gov/IPandC/technology/profile/lasers/MicrochannelCooling/i
ndex.php.

 61

• [Sunaga 96] Sunaga, T., Peter M. Kogge, et al, "A Processor In Memory
Chip for Massively Parallel Embedded Applicatiions," IEEE J. of Solid
State Circuits, Oct. 1996, pp. 1556-1559.

• [Tomkins 01] James Tomkins, private communications, 2001.

• [Vieri 99] Vieri, Carlin, “Reversible Computer Engineering and

Architecture,” Ph. D. Thesis, Massachusetts Institute of Technology 1999.

• [Vitanyi 88] Vitanyi, P. M. B., “Locality, communications, and interconnect
length in multicomputers,” SIAM J. on Computing, 17, 4 (1988), 659-672.

• [von Neumann 56] von Neumann, J., “Probabilistic Logics and the

Synthesis of Reliable Organisms from Unreliable Components,” in C. E.
Shannon and J. McCarthy, Eds. Automata Studies. Princeton: Princeton
University Press, pp. 43-98, 1956.

 62

Distribution:
1 MS 9037 J. C. Berry, 8945 1 MS 0818 P. Yarrington, 9230
1 9019 S. C. Carpenter, 8945 1 0819 R. M. Summers, 9231
1 9012 J. A. Friesen, 8963 1 0820 P. F. Chavez, 9232
1 9012 S. C. Gray, 8949 1 0316 S. S. Dosanjh, 9233
1 9011 B. V. Hess, 8941 1 0316 J. B. Aidun, 9235
1 9915 M. L. Koszykowski, 8961 1 0813 R. M. Cahoon, 9311
1 9019 B. A. Maxwell, 8945 1 0801 F. W. Mason, 9320
1 9012 P. E. Nielan, 8964 1 0806 C. Jones, 9322
1 9217 S. W. Thomas, 8962 1 0822 C. Pavlakos, 9326
1 0824 A. C. Ratzel, 9110 1 0807 J. P. Noe, 9328
1 0847 H. S. Morgan, 9120 1 0805 W.D. Swartz, 9329
1 0824 J. L. Moya, 9130 1 0812 M. R. Sjulin, 9330
1 0835 J. M. McGlaun, 9140 1 0813 A. Maese, 9333
1 0833 B. J. Hunter, 9103 1 0812 M. J. Benson, 9334
1 0834 M. R. Prarie, 9112 1 0809 G. E. Connor, 9335
1 0555 M. S. Garrett, 9122 1 0806 L. Stans, 9336
1 0821 L. A. Gritzo, 9132 1 1110 R. B. Brightwell, 9224
1 0835 E. A. Boucheron, 9141 1 1110 R. E. Riesen, 9223
1 0826 S. N. Kempka, 9113 1 1110 K. D. Underwood, 9223
1 0893 J. Pott, 9123 10 1110 E. P. DeBenedictis, 9223
 1 0321 W. Camp, 9200
1 0835 K. F. Alvin, 9142 1 0841 T. Bickel, 9100
1 0834 J. E. Johannes, 9114 1 9003 K. Washington, 8900
1 0847 J. M. Redmond, 9124 1 0801 A. Hale, 9300
1 1135 S. R. Heffelfinger, 9134 1 0139 M. Vahle, 9900
1 0826 J. D. Zepper, 9143
1 0825 B. Hassan, 9115
1 0557 T. J. Baca, 9125 1 9018 Central Technical Files,
1 0836 E. S. Hertel, Jr., 9116 8945-1
1 0847 R. A. May, 9126
1 0836 R. O. Griffith, 9117 2 0899 Technical Library, 9616
1 0847 J. Jung, 9127
1 0321 P. R. Graham, 9208
1 0318 J. E. Nelson, 9209
1 0847 S. A. Mitchell, 9211
1 0310 M. D. Rintoul, 9212
1 1110 D. E. Womble, 9214
1 1111 B. A. Hendrickson, 9215
1 0310 R. W. Leland, 9220
1 1110 N. D. Pundit, 9223
1 1110 D. W. Doerfler, 9224
1 0847 T. D. Blacker, 9226
1 0822 P. Heermann, 9227

	Abstract
	Contents
	Figures
	Tables
	Nomenclature
	Introduction
	Physical Simulations
	Performance Estimation
	Limits on Computer Performance
	Scalability
	Architecture
	Minimum Device Size
	A Review of the Limits of Computer Technology
	Thermodynamic Heat Production from Logic Gates
	Digital Computing with Floating Point
	Other Ways to Compute
	Static Power Dissipation
	Dimensionality of Space
	Cooling
	The Successive Over Relaxation (SOR) Method as an Exemplary Problem
	Implementing the Calculation
	Time-Space Tradeoff
	Magic Wiring and the Aerogel Computer Model
	Logic
	Calculating the Maximum
	Energy Efficient Streaming Memory
	An Architecture Approaching The Physical Limits
	Performance Estimation
	Runtime of a Singly Coupled Calculation
	ASCI Plan
	Conclusions
	Appendix: Performance Estimation Function
	References
	Distribution:

