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Abstract

Program transformation is a restricted form of software construction that can be amenable to
formal verification. When successful, the nature of the evidence provided by such a verification is
considered strong and can constitute a major component of an argument that a high-consequence or
safety-critical system meets its dependability requirements.

This article explores the application of novel higher-order strategic programming techniques to
the development of a portion of a class loader for a restricted implementation of the Java Virtual
Machine (JVM). The implementation is called the SSP and is intended for use in high-consequence
safety-critical embedded systems. Verification of the strategic program using ACL2 is also discussed.
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1 Introduction

The manipulation of software artifacts such as specifications and program source code through rewriting
is an active area of research [3][5][7][13][14][23][27][24][30]. Driving this research is the idea that the
repeated application of a set of simple rewrite rules can effect a major change in a software artifact.
Within the scope of this article we will use the term program transformation (or transformation) in
a general sense to refer to software manipulation processes that are restricted to the fully automatic
application of rewrite rules. We will also predominantly refer to the objects that are the subject of
transformation as terms rather than specifications, programs, code fragments, or other artifacts.

1.1 Impact of Transformation on Dependable Software Construction

Theoretically speaking, the use of transformation for the maipulation of software artifacts can span the
entire software life cycle from the derivation of implementations from formal specifications to software
maintenance and reverse engineering. From a practical perspective, the automatic application of rewrite
rules to alter programs provides the foundation for scaling transformation-based software development
methods to large systems. From the perspective of dependability, the explicit nature of transformation
exposes the software development process to various forms of analysis that would otherwise not be
possible. In contrast to the “programmer at the terminal” software development paradigm where the
thinking process of the programmer is not explicit, the development of software through transformation
is a repeatable process in the sense that a third party can replay the transformation sequence used
to develop the software. The notion that the rewrite rules used within a transformation should be
“simple” also provides hope that formal verification efforts could succeed in proving that the rules that
are applied during the course of a transformation preserve correctness. When successful, the nature
of the evidence provided by such a formal verification is considered strong and can constitute a major
component of an argument that a high-consequence or safety-critical system meets its dependability
requirements.

1.2 Contribution

This paper explores the novel use of higher-order strategic programming techniques available in the
strategic programming language TL [29] to the development of a portion of a class loader for a hardware
implementation of the Java Virtual Machine(JVM). The implementation under consideration is the
Sandia Secure Processor(SSP) developed at Sandia National Laboratories for use in high-consequence
safety-critical systems. In this article, we will take an in-depth look at how TL’s novel higher-order
strategies, traversals, and transient combinator can be used to construct the method tables required by
the SSP. We also provide a sketch of how such strategies might be verified using ACL2. We believe that
the abstractions provided by TL’s higher-order strategies positively impact the ability of an automated
verification system such as ACL2 to successfully prove the correctness of a variety of strategic programs,
thereby contributing to the development of dependable software systems.

The remainder of the paper is as follows: Section 2 provides background on program transformation.
Section 3 gives an overview of the higher-order strategic programming language TL. Section 4 briefly
describes the SSP and gives a detailed discussion of how method tables for the SSP can be constructed
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in TL. Section ?? briefly describes a transformation system we are developing that supports a restricted
dialect of TL. All problems mentioned and presented in this article have been implemented in TL.
Section 5 describes our research in verification. Section 6 describes related work in the areas of strategic
programming and transformation verification, and Section 7 concludes.

2 Background

This section provides the background on program transformation. We briefly discuss why transformation
is considered promising in the context of dependable software development as well as some fundamental
problems one faces when using this paradigm.

2.1 Equational Reasoning: The Foundation of Transformation

Equational reasoning lies at the heart of transformation-based software development. An equational
theory is a set of equations that contain the knowledge necessary to realize a desired transformational
objective. The knowledge embodied in an equational theory can capture a wide variety of properties
about software artifacts and application domains including (1) relationships between domain-specific
data types and implementation-specific data types, (2) general relationships between specification-level
and implementation-level constructs, and (3) source-to-source equivalences such as optimizations.

Figure 1 is an example of a simple equational theory consisting of equalities derived from the formal
semantics of a typical imperative programming language. The equalities of this equational theory can
be used to perform the transformation (denoted by the symbol ⇒) shown in Figure 2.

while (false) do block = skip
skip ; statement = statement
id < id = false

Figure 1: A Simple Equational Theory

Original Code Fragment
...
s1;
while (x < x) do { ... };
s2;
...

⇒

Transformed Code Fragment
...
s1;

s2;
...

Figure 2: A source-to-source optimization

When using equational theories as the basis of transformation, a problem that must be solved is that
of controlling the application of equations in order to realize a given objective. We refer to this problem
as the control problem. Ideally, one would like the control problem to be solved automatically (e.g., by
the searching capabilities of the computer). In such an approach, the computer would continue to apply
equational reasoning steps until the given transformational objective has been reached. Unfortunately,
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such an approach is in general undecidable. Rewriting systems address this problem by providing
restrictions on the application of equational reasoning steps that, under the right conditions, result in a
set of rules for which the control problem is decidable [1]. The basic idea behind rewriting is to orient
equalities so that (1) equational reasoning steps (i.e., the substitution of equals for equals) can only be
applied in one direction and (2) the resulting rule set is confluent, that is, the order of application of
the equations does not affect the final result. This restriction on the direction of equational reasoning is
expressed by replacing the symmetric equality relation = with the anti-symmetric rewrite relation →.
For example, the equation s = t states that the terms s and t may be freely substituted in place of one
another. In contrast, the rewrite rule s → t states that s may be replaced by t, but it does not specify
that t may be replaced by s.

In a rewriting framework, the difficulties associated with the control problem are shifted to the
problem of properly orienting equalities within an equational theory and producing rule sets that are
confluent. Another desirable property of a rule set is that it is terminating, meaning that the rewriting
process is guaranteed to stop. If a rule set can be shown to be both confluent and terminating, then the
exhaustive application of rules in any order will always yield the same result, also known as a normal
form. Under these conditions, the solution to the control problem becomes trivial.

2.2 Strategic Programming

Unfortunately, the manipulation of software artifacts generally gives rise to rule sets that are not and
cannot be made terminating or confluent. One approach for dealing with such rule sets is to introduce
additional function symbols into the term language for the explicit purpose of controlling the application
of rewrite rules. This approach yields sets of rewrite rules that are not very reusable and is met with
considerable resistance when dealing with the scale and complexity found in real-world languages [5].
In an alternate approach called strategic programming [14], the control problem is solved by making
explicit a number of combinators capable of specifying both which rewrite rules should be applied to
a given term as well as to which sub-terms a rewrite rule should be applied. These combinators can
be used together with rewrite rules to form expressions called strategies. In this context, rewrite rules
themselves are also referred to as strategies.

The most common combinators controlling which rules should be applied to a given term are those
that enable the sequential or conditional composition of rewrite rules to be expressed. Let (s)t be the
term resulting from the application of strategy s to term t. A semi-colon is used to denote the sequential
composition combinator, and the symbol <+ is used to denote the left-biased choice combinator. For
example, the strategic expression s1; s2 denotes the sequential composition of the strategy s1 and s2.
Its evaluation will first apply s1 to t followed by the application of s2. Similarly, the strategy s1 <+ s2

denotes the left-biased composition of s1 and s2. The expression (s1 <+ s2)t will apply s1 to t, and if
this application is successful the resulting term will be returned, otherwise s2 will be applied to t and
its result returned.

Traversals are strategies that specify where rules should be applied within a term structure. Specifi-
cally, traversals define which sub-terms in a term should be visited as well as the order in which sub-terms
are visited. A generic traversal is a general purpose traversal that can be applied to an arbitrary term
structure. Though the names may vary between strategic systems, classic examples of generic traversals
include TDL, which traverses a term structure in a top-down left-to-right fashion (i.e., outside-in),
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and BUL, which traverses a structure in a bottom-up left-to-right fashion (i.e., inside-out). Generic
traversals such as TDL and BUL are parameterized on other strategies. For example, if s denotes a
strategy (e.g., a rewrite rule) developed for a particular problem domain, then the expression TDL(s)t
will traverse t in a top-down left-to-right fashion and attempt to apply s to every term encountered.

2.3 The Distributed Data Problem

Rewrite rules and strategies are highly effective at manipulating a software artifact when the information
necessary for the manipulation can be captured via standard matching or unification. Unfortunately,
transformational objectives often require the manipulation of non-local information. For example, the
type of a declared variable might need to be distributed to all the places where that variable occurs
within a program. Similarly, in order to rename a variable, a unique id is generated and this id must
then replace all occurrences of the original variable in the program. In Winter [29], this kind of non-
localized data exchange between terms has been characterized and is referred to as the distributed data
problem.

Most strategic systems in use today are first-order: rewrite rules may only be applied to terms,
and the successful application of a rewrite rule to a term yields another term. In these systems the
application of a rewrite rule to a term may not yield another rewrite rule. In a first-order setting, a
combination of data accumulation and parameter passing is the standard approach taken to solve the
distributed data problem. This typically involves the creation of auxiliary structures such as lists to
store data that is to be distributed as well as accompanying lookup functions to extract data from such
lists. Strategy parameterization is used as the mechanism by which these lists are distributed to the
appropriate parts of a term.

In this paper we describe a novel solution to the distributed data problem that is based on higher-
order strategies. The idea is to accumulate data in the form of a strategy rather than an auxiliary
structure such as a list. This conceptual shift is motivated by the observation that strategy application is
a primitive operation in a strategic framework, as are the combinators used to construct such strategies.
The use of lists, lookups,and parameterization can be subsumed by dynamic strategy creation and
application. As a result, such higher-order strategies provide an elegant technique for solving instances
of the distributed data problem.

We have developed and implemented a higher-order strategic language called TL [29], which we
are using to explore the implications of higher-order strategies on software development. We have
also developed an IDE for strategic programming called HATS that is based on TL. HATS [10] is
platform independent and freely available. All examples presented and mentioned in this paper have
been implemented in HATS.

3 An Overview of TL

TL is an identity-based higher-order strategic language for rewriting parse trees. When a rule or strategy
fails to apply to a term, the term is returned unchanged. In contrast, most strategic systems are failure-
based because they will return a special value fail when a strategy fails to apply to a term. In TL, a
domain (i.e., a term language) is defined using an Extended-BNF notation. Terms, or parse trees, are
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classfile ::= “{” class super methods “}”
class ::= id
super ::= id
id ::= identifier

Figure 3: Grammar fragment for a simplified Java class file

described using a special abbreviated notation and are called parse expressions. This section gives an
overview of TL.

3.1 Terms and Trees

While most strategic languages define term structures using abstract syntax, we use parsing technology
to define term structures. Thus, when we say “structure” or “term” what we really mean is a parse
tree. For a given grammar, we will write B[[α′]] to denote a parse tree corresponding to the derivation
B

+⇒ α where any nonterminals occurring in α have been subscripted yielding α′. In general, we will
use the term parse expression to refer to expressions of the form B[[α′]].

When viewed from the perspective of parse trees the derivation B
+⇒ α denotes a tree whose root is

B and whose leaves are α. Nonterminals when they occur in leaf positions (i.e., in α) are subscripted
so they may be distinguished from one another. A subscripted nonterminal is called a schema variable
or simply a variable. Parse expressions containing no schema variables are referred to as being ground.

Consider the BNF grammar fragment shown in Figure 3 defining the structure of a simplified Java
class file consisting of a class name, a super class name, and a methods section. A term describing such
a class structure could be written as follows:

classfile[[ {class1 super1 methods1} ]]

Note that this term structure has a derivation length of one, since the nonterminal classfile directly
derives {class super methods}. We would like to point out that terms may also correspond to derivation
sequences whose length are greater than one. For example, we could also write:

classfile[[ {id1 id2 methods1} ]]

The parse trees for both of the terms discussed are shown in Figure 4.

3.2 Match Equations and Match Expressions

Matching is a fundamental operation in our framework. We will use the symbol ¿ adapted from the
ρ-calculus [7] to denote first-order matching modulo an empty equational theory. Let t2 denote a ground
parse expression, and let t1 denote a parse expression that may contain one or more schema variables.
The equation t1 ¿ t2 is a match equation. (Equivalently we may also write t2 À t1.) A match equation
is a boolean valued operation that produces a substitution σ as a by-product. A substitution σ binding
schema variables to ground parse expressions is a solution to t1 ¿ t2 if σ(t1) = t2 with = denoting
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classfile

class super{ }1 1

classfile

class1 super{ }1

   id1    id2

methods1

methods1

Figure 4: The parse trees corresponding to classfile[[ {class1 super1 methods1}]] and
classfile[[ {id1 id2 methods1} ]]

σ(e1 ∧ e2)
def
= σ(e1) ∧ σ(e2)

σ(e1 ∨ e2)
def
= σ(e1) ∨ σ(e2)

σ(¬e1)
def
= ¬(σ(e1))

σ(t1 ¿ t2)
def
= σ(t1) = t2

σ(t1 À t2)
def
= t1 = σ(t2)

Figure 5: The semantics of sigma distribution

a boolean valued test for syntactic equality. When a match equation has a solution, the value of the
match equation is the boolean value true.

A match expression is a boolean expression involving one or more match equations and forms the
conditional portion of a rewrite rule (see Section 3.3). Match expressions may be constructed using the
standard boolean operators: ∧,∨,¬. A substitution σ is a solution to a match expression m iff σ(m)
evaluates to true using the standard semantics for boolean operators in conjunction with the semantics
defined in Figure 5.

3.3 Rewriting in TL

A basic first-order rewrite rule has the form:

r : lhs → rhs if condition

where lhs and rhs denote terms as defined in the previous section, lhs → rhs denotes a body, r denotes
an optional rule label, and condition denotes an optional match expression that a rule must satisfy
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before it can be successfully applied.
The application of a rule to a term has the same syntax as the application of a function to an

argument. For example, the expression r(t) denotes the application of the strategy r to the term t.
We will only consider the application of rules to ground terms (i.e., terms exclusively having terminal
symbols in leaf positions). Given this restriction, the application of the rule r to the term t can be
accomplished by discovering a substitution σ such that lhs ¿ t is true while simultaneously satisfying
the condition associated with the r. If this can be accomplished, then the rule application is said to
succeed and the term σ(rhs) replaces t. On the other hand, if lhs cannot be matched with t or if the
condition associated with the rule cannot be satisfied, then the rule application is said to fail. In TL,
when a rule application r(t) fails, the term t is returned unchanged.

When expressing strategy application, we adopt a curried notation in the functional style of ML
where strategy application is left-associative and parenthesis can be used to override precedence or may
be optionally included to enhance readability. For example, r t denotes the application of r to t and
has the same meaning as r(t).

The body of a basic second-order rewrite rule has the form:

lhs2 → lhs1 → rhs1

where the → symbol is right-associative. The application of the second order strategy lhs2 → lhs1 →
rhs1 to a term t will yield a first-order strategy of the form σ(lhs1) → σ(rhs1) where σ is a substitution
that matches lhs2 and t. On the other hand, if the application fails, then the strategy skip is returned
as the result of the application. The skip strategy never succeeds. Its use is described in Section 3.6.
The strategy skip has the following properties:

skip; s ≡ s
s; skip ≡ s
skip <+ s ≡ s
s <+ skip ≡ s
skip +> s ≡ s
s +> skip ≡ s

3.4 The Basics of TL

Figure 6 lists most of the primitives of TL. Figure 7 gives a few of the first-order generic traversals that
are commonly used when constructing TL strategies.

The traversal TDL BR is a broadcasting traversal. Broadcasting traversals are unique to TL and
enable transient strategies to be controlled in interesting ways (see Section 3.6). The evaluation of the
strategic expression TDL BR(s)t will first apply the strategy s to the term t. In the most general case,
the result of such an application will alter both s as well as t (see Section 3.6). Let s′ denote the strategy
resulting from the application of s to t. Since TDL BR is a broadcasting traversal, a distinct copy of
s′ will be applied to each of the sub-terms of t. Figures 8 and 9 respectively show the behavior of a
tdl broadcast and tdl traversal.
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skip A strategy constant that never applies.
lhs → rhs if condition A conditional first-order strategy.
lhs → sn if condition A conditional strategy of order n + 1.
sn
1 ; sn

2 Sequential composition: first apply s1 and then apply s2.
sn
1 <+ sn

2 Left-biased choice: first try to apply s1 and if that fails
then try to apply s2.

sn
1 +> sn

2 Right-biased choice: first try to apply s2 and if that fails
then try to apply s1.

transient(sn) A unary combinator restricting the application of sn.
(See discussion in Section 3.6).

Figure 6: The primitive constructs, combinators and constants of TL

TDL A top-down left-to-right traversal. That is, parents are visited
before children, and children are visited from left to right.

TDR A top-down right-to-left traversal.
BUL A bottom-up left-to-right traversal.
BUR A bottom-up right-to-left traversal.
TDL BR A top-down left-to-right traversal where the strategy is

broadcast (see discussion).

Figure 7: Some basic first-order traversals of TL

3.5 Higher-Order Strategies in TL

In TL a second-order strategy s2 can be applied to a term t yielding a first-order strategy s1. More
generally, the application of a strategy of order n to a term t will result in a strategy of order n − 1.
The purpose of a second-order strategy is to create a first-order strategy containing data that is specific
to a particular term. Typically this means that one or more schema variables will be bound to specific
terms. For example, suppose that in the context of identifier renaming the identifier x is to be renamed
to y. In this case, it would be convenient if a rule of the form ident[[x]] → ident[[y]] could be generated
and applied to the appropriate terms. TL lifts and extends this idea to a higher-order framework.

For example, consider the abstract grammar shown in Figure 10.
Given this grammar, let us consider the second-order rewrite rule s2 shown below:

s2 : g[[i1 data1]] → (g[[i2 i1]] → g[[i2 data1]])

Informally speaking, the rule s2 can be seen as a template for relating information between the
terms data1 and i1 in a specific context. The application s2(g[[1 b]]) yields the first-order strategy g[[i2
1]] → g[[i2 b]], and the application (g[[i2 1]] → g[[i2 b]])(g[[2 1]]) yields g[[2 b]]. In this instance, s2

provides a vehicle for distributing data from g[[1 b]] to g[[2 1]].
In general, a higher-order traversal traverses a term and applies a higher-order strategy sn to every

term encountered. Because the strategy being applied is of order n, the result of an application will
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s

s' s' s'

Figure 8: Diagram of a tdl-broadcast traversal from the perspective of strategy application

s

s1

0

s2

s3

s4
s5

s6

s7

Figure 9: Diagram of a tdl traversal from the perspective of strategy application

be a strategy of order n − 1. If a traversal visits m terms, then m strategies of order n − 1 will be
produced. Let sn−1

1 , sn−1
2 , ... , sn−1

m denote the strategies resulting from such a traversal. Let ⊕
denote a binary combinator such as sequential composition, left-biased choice, or right-biased choice. In
TL, binary strategic combinators can be used to combine strategic results into a single strategy. That
is, higher-order traversals will combine a sequence of resultant strategies sn−1

1 , sn−1
2 , ... , sn−1

m into a
strategy of the form:

sn−1
1 ⊕ sn−1

2 ⊕ ...⊕ sn−1
m

TL supports a number of higher order traversal including one called seq tdl that traverses a term in
a TDL fashion and composes the resulting strategies using the sequential composition operator. This
higher order traversal is used in the method table construction example discussed in Section 4.3.
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g ::= i data
data ::= i | char
i ::= integer

Figure 10: A small abstract grammar

3.6 TL’s transient Combinator

The transient combinator is a special combinator in TL. This combinator restricts a strategy so that
it may be applied at most once. This restriction motivates the introduction of strategic constant skip
into the framework of TL.

Operationally, we define a strategy of the form transient(s) as a strategy that reduces to the
strategy skip if the application of the strategy s has been observed. Thus, transients open the door
to self-modifying strategies. When using a traversal to apply a self-modifying strategy to a term, a
different strategy may be applied to every term encountered during a traversal.

We now consider an example demonstrating the behavior of transients. Figure 11 shows a simple
grammar defining a list of items, where an item may be either an identifier or a integer. Figure 12
shows a left-biased composition of three transient strategies. Each transient strategy will rewrite the
identifier b to a different integer value. Let s denote the strategy in Figure 12 and let t denote the term
item list [[b b b]] shown in Figure 13. The evaluation of the strategic expression TDL(s)t will yield the
term item list [[1 2 3]].

It is worth noting that the strategy s can only be successfully applied to terms of the form item[[b]],
and there are three such terms in t. The strategy will fail to apply to any other term. During the course
of a TDL traversal of t, the left-most occurrence of the identifier b is the first item encountered. The first
transient in s will successfully apply to this item. This application will cause the transient to be reduced
to skip while simultaneously rewriting b to the integer 1. As a result of the left-biased composition,
no other strategies will be applied to this term. The next item that the traversal encounters is the
second b. This time, the second transient (in the original strategy) will be applied to b. As a result of
this rewrite, this transient will also be reduced to skip, and the second b will be rewritten to 2. The
remaining occurrence of b is processed in a similar fashion.

In contrast, the evaluation of the strategic expression TDL BR(s)t will yield the result item list [[1
1 1]]. The root of the parse tree is the nonterminal item list. Its left child is the item corresponding to
the first occurrence of b. Its second child is another item list. The application of s to the root will fail.
A copy of s will be given to both children of the root. This will cause the first child (an item) to be
rewritten to 1 and the corresponding transient to reduce to skip. However, this strategy reduction will
not effect the copy of s which is passed to the second child. This second child is again an item list to
which s is being applied. Since this second child is an item list the same analysis holds. So again, the
first child of this node is an item that will be rewritten to 1, and so on.
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item list ::= item item list | ε
item ::= id | int
id ::= identifier
int ::= integer

Figure 11: A small grammar

transient(item[[b]] → item[[1]]) <+
transient(item[[b]] → item[[3]])

Figure 12: A left-biased composition of three transient strategies

4 A Class Loader for Java

At Sandia National Laboratories, a subset of the Java Virtual Machine (JVM) has been developed in
hardware for use in high-consequence embedded applications. The implementation is called the Sandia
Secure Processor (SSP) [16]. An application program for the SSP is called a ROM image and consists
of a collection of class file-like structures stored on a read-only memory. The SSP is a closed system
in the sense that all the structures used during execution must be present in the ROM image prior to
execution. The closed nature of the SSP’s execution environment enables the class loading activities of
the JVM to be performed statically, prior to execution. Under these conditions, the functionality of the
class loader is well-suited to a strategic implementation.

In the discussion that follows, we assume that an application consists of one or more Java class files
and that Java class files have the structure defined in Lindholm and Yellin [15]. For the purposes of
this discussion it is important to know that class files contain:

1. a class entry denoting the name of the class;

2. a super entry denoting the name of the superclass; and

3. a methods section containing all of the methods declared within the class.

4.1 Method Table Requirements for the SSP

When implementing a Java Virtual Machine (JVM), method tables are often used as a mechanism
for indirectly providing access to the methods associated with an object [25]. Each class file has one
method table whose entries contain information about particular methods such as the address of the
first byte code of a method and the address of the constant pool corresponding to a method. The SSP
has been designed in such a way that in order to provide correct information at runtime, it is sufficient
for method tables within a class hierarchy to satisfy the properties given below.

Let sm denote the signature of method m. Let (C, sm) denote a method table entry corresponding
to a method having a signature sm that is defined in class C. Let TC denote the method table for the
class C, and let ≺ denote a reflexive, transitive sub-type relationship between classes as defined by the
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Figure 13: The structure of the term item list [[b b b]]

Java extends directive. For example, given two classes B and C, if C ≺ B then either C = B or C is a
descendent of B within the inheritance hierarchy.

1. For every inherited method m that is not redefined in C there must be a corresponding entry of
the form (B, sm) ∈ TC where the class B denotes most recent ancestor of C where m is defined.

2. For every method m (re)defined in a class C there must be a corresponding entry (C, sm) ∈ TC .

3. The method table for the class C may only contain entries corresponding to inherited methods or
methods that have been defined in C.

4. ∀D1,D2, sm∃B, C, i, j : TD1 [i] = (B, sm) ∧ TD2 [j] = (C, sm) ∧D1 ≺ D2 → i = j. That is, within
an inheritance hierarchy table entries corresponding to the signature sm must reside at the same
location (index) in all tables containing such an entry. For example, if information for the most
recent definition of the method foo (e.g., C.foo) resides at the second entry of the method table for
D2, then all descendant classes of D2 (e.g., D1) must have the information for their most recent
definition of foo (e.g., B.foo) as the second entry in their method tables.

The properties above permit method tables to be constructed in a concatenated fashion provided
that entries associated with redefined methods destructively overwrite the corresponding inherited
method table entries (e.g., the method table entry for the new definition of foo overwrites the method
table entry for the old definition foo).

4.2 An Example of Method Table Construction

Figure 14 gives an abstraction of a Java application consisting of the classes A, B, C, and D. In the
abstraction only the information relevant to method table construction is shown. Specifically, class A
has Object as its super class and declares the methods f1, f2, and f3. Class B has class A as its
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Class Super Methods
A Object f1()

f2()
f3()

B A f1()
f4()

C A f2()
f4()

D C f1()
f4()

Figure 14: A simple application

super class and redeclares method f1 and declares method f4. The remaining classes C and D can be
similarly described.

The method tables shown in Figure 15 satisfy the SSP’s method table requirements given in Section
4.1.

Class Method Table
A info for A.f1()

info for A.f2()
info for A.f3()

B info for B.f1()
info for A.f2()
info for A.f3()
info for B.f4()

C info for A.f1()
info for C.f2()
info for A.f3()
info for C.f4()

D info for D.f1()
info for C.f2()
info for A.f3()
info for D.f4()

Figure 15: Abstract method table entries for the classes A, B, C, and D
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4.3 Constructing SSP Method Tables in TL

The BNF grammar shown in Figure 16 is a greatly simplified description of the structure of a Java
application. The grammar defines a Java application as consisting of an unordered list of Java class
files. The class file structure has been simplified by abstracting away all structural elements that are
irrelevant to the problem of method table construction. The grammar shown defines a children element
as part of a class file. This element is not part of the class file structure as defined by the specification
of the JVM [15] and has been added to facilitate strategic objectives.

app ::= app cf | ε
cf ::= “{” class super “[” methods “]” children “}”
class ::= id
super ::= id
methods ::= mt “,” method list
mt ::= mt entry mt | ε
mt entry ::= key
method list ::= m entry method list | ε
m entry ::= key “(” “)”
children ::= children cf | ε
key ::= id “.” id
index ::= integer
id ::= ident

Figure 16: A simplified grammar for class files

This discussion of method table construction begins at the point where the indexes within class files
have been resolved to symbolic references by an earlier transformation phase. For example, the class
and super elements for a class C are no longer constant pool indexes but are identifiers respectively
corresponding to the symbolic references for name of C and the name of C’s super class. We assume
that method table entries consist of symbolic references containing the following information: (1) the
class where the method is defined, (2) the name of the method, and (3) the method’s descriptor.

Our strategic approach to solving the method table construction is as follows: First, class files are
arranged into a tree structure reflecting their inheritance relationships. For example, if class B extends
class A then class B will become a child of class A. The strategies for creating this inheritance tree
are shown in Figure 17. Second, the resulting inheritance tree structure is processed in a top down
fashion, inserting methods into method tables as we go. In particular, all the locally declared methods
are destructively inserted into the method table of the current class as well as the method tables of every
class that inherits from the current class. The strategies for accomplishing this are shown in Figure 21.

The execution of the create hierarchy strategy shown in Figure 17 is described here. The evaluation
of the expression (seq tdl subtype app0) traverses the application app0 in a top-down left-to-right fashion
and applies the higher-order strategy subtype to every term encountered. The results from this appli-
cation are then sequentially composed into a strategy that is then applied by the first-order traversal
TDL to the term app[[{obj obj[, ]}]]. The term app[[{obj obj[, ]}]] denotes the Object class, which in this
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example is assumed to contain no method declarations. In practice, the contents of the Object class is
fixed so the create hierarchy can be easily changed to describe its proper contents.

Let app0 denote the application discussed in Section 4.2, and let cfA, cfB, cfC , and cfD denote the
terms corresponding to the classes A, B, C, and D respectively. Under these conditions the evaluation
of (seq tdl subtype app0) will create the sequentially composed transient strategies shown in Figure 18.

When applied to the term app[[{obj obj[, ]}]], the first transient in the this strategy inserts the term
denoted by cfA into the (empty) children list of obj. Then the transient combinator causes this strategy
to be reduced to skip. Thus cfA will not be inserted anywhere else in the hierarchy. The strategy that
is returned from this application is shown in Figure 19. Similarly, when applied to the term cfA the
application of the strategy shown in Figure 19 causes the terms denoted by cfB and cfC to be inserted
into the children list of cfA at which time both corresponding transient strategies are reduced to skip.
The strategy that is returned from this application is shown in Figure 20.

Finally, when applied to the term cfC , the application of the strategy shown in Figure 20 causes the
term denoted by cfD to be inserted into the children list of cfC at which time it also will be reduced to
skip. At this point, the construction of the inheritance hierarchy is complete.

The strategy construct table shown in Figure 21 is responsible for constructing method tables within
a term structure corresponding to a class hierarchy constructed by the create hierarchy strategy. The
evaluation of the strategic expression TDL(distribute entries)app0 causes the distribute entries strat-
egy to be applied to parent classes before children classes. In particular, the strategy application will
be consistent with the subtype ordering of the inheritance hierarchy. Taking a closer look at the dis-
tribute entries strategy, the evaluation of the strategic expression (seq tdl merge methods method list1)
traverses the method list of the class cf 0 to which the strategy is being applied. For each method
encountered it will produce a strategy of the form:

transient(mt[[id3 . id2 mt2]] → mt[[id1 . id2 mt2 ]] <+ mt[[ ]] → mt[[id1 . id2]])

This strategy is capable of destructively overwriting a method table entry containing a prior defini-
tion of the same method or of appending a method to the end of a method table. The application must
still ensure that within an inheritance hierarchy, the method table entries corresponding to parent class
method definitions are inserted into the method tables of all descendants before insertions of descendant
classes are performed. This is accomplished by a TDL BR traversal.

Returning to the simple application discussed in Section 4.2, we assume that the class files for obj,
A, B, C, and D have been formed into an inheritance hierarchy. In the strategy construct tables, the
evaluation of the strategic expression TDL(distribute entries)app0 visits the classes in the following
order: obj, A, B, C, and D. To each of these classes, the strategy distribute entries is applied.

Since obj has no methods and inherits no methods, its method table is empty. So without loss of
generality our discussion begins with the term corresponding to the class A. Let method list1 denote
the method list for A. The evaluation of the strategic expression ( seq tdl merge methods method list1

) generates the strategy shown below for the methods declared in A.

transient(mt[[id2 . f1() mt2]] → mt[[A . f1() mt2 ]] <+ mt[[ ]] → mt[[A . f1()]])
transient(mt[[id2 . f2() mt2]] → mt[[A . f2() mt2 ]] <+ mt[[ ]] → mt[[A . f2()]])
transient(mt[[id2 . f3() mt2]] → mt[[A . f3() mt2 ]] <+ mt[[ ]] → mt[[A . f3()]])
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create hierarchy : app0 → TDL(seq tdl subtype app0) app[[{obj obj[, ]}]]

subtype : cf 0 → transient(add subtype(id2,cf 0))
if cf 0 À cf [[{ id1 id2 methods1 children1}]]

add subtype(id2, cf0) : cf [[{id2 id3 methods2 children2}]] → cf [[{id2 id3 method2 children2 cf0}]]
Figure 17: Strategies for creating a class hierarchy

transient(cf [[{obj id3 methods2 children2}]] → cf [[{obj id3 method2 children2 cfA}]]) ;
transient(cf [[{A id3 methods2 children2}]] → cf [[{obj id3 method2 children2 cfB}]]) ;
transient(cf [[{A id3 methods2 children2}]] → cf [[{obj id3 method2 children2 cfC}]]) ;
transient(cf [[{C id3 methods2 children2}]] → cf [[{obj id3 method2 children2 cfD}]]) ;

Figure 18: The sequential composition of transient strategies

skip ;
transient(cf [[{A id3 methods2 children2}]] → cf [[{obj id3 method2 children2 cfB}]]) ;
transient(cf [[{A id3 methods2 children2}]] → cf [[{obj id3 method2 children2 cfC}]]) ;
transient(cf [[{C id3 methods2 children2}]] → cf [[{obj id3 method2 children2 cfD}]]) ;

Figure 19: The strategy remaining after inserting cfA into the children list of obj.

skip ;
skip ;
skip ;
transient(cf [[{C id3 methods2 children2}]] → cf [[{obj id3 method2 children2 cfD}]]) ;

Figure 20: The strategy remaining after inserting cfB and cfC into the children list of cfA.

construct tables : app0 → TDL(distribute entries)app0

distribute entries : cf 0 → TDL BR ( seq tdl merge methods method list1 ) cf 0

if cf 0 ¿ cf [[ {class1 super1 [mt1,method list1] children1} ]]

merge methods : m entry [[id1 . id2 () ]] → transient(merge(id1,id2))

merge(id0,id1) : mt[[id3 . id2 mt2]] → mt[[id1 . id2 mt2 ]] <+ mt[[ ]] → mt[[id1 . id2 ]]

Figure 21: Strategies for inserting methods into method tables
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This strategy is applied using the broadcasting traversal TDL BR, which accomplishes the following:
(1) the method table for A is populated, and (2) the method table for every descendant of A is populated
with entries corresponding to A.f1(), A.f2(), and A.f3(). At this point, the method table for A is
complete, and the method tables for all the descendants of A are not yet complete. They are identical
to the method table of A. The class B is the next class to which the distribute entries strategy is
applied. The strategy resulting from this application is shown below:

transient(mt[[id2 . f1() mt2]] → mt[[B . f1() mt2 ]] <+ mt[[ ]] → mt[[B . f1()]])
transient(mt[[id2 . f4() mt2]] → mt[[B . f4() mt2 ]] <+ mt[[ ]] → mt[[B . f4()]])

The TDL BR traversal causes this strategy to be applied to the method table of B as well as the
descendants of B (of which there are none). The application overwrites the entry for A.f1() to B.f1()
and adds an entry for B.f4() to the end of B’s method table. At this point the method table for B is
complete.

The next class to which the distribute entries strategy will be applied is C. The strategy resulting
from this application is shown below:

transient(mt[[id2 . f2() mt2]] → mt[[C . f2() mt2 ]] <+ mt[[ ]] → mt[[C . f2()]])
transient(mt[[id2 . f4() mt2]] → mt[[C . f4() mt2 ]] <+ mt[[ ]] → mt[[C . f4()]])

The TDL BR traversal causes this strategy to be applied to the method table of C as well as the
descendants of C, namely the class D. The application overwrites the entry for A.f1() to C.f1() and
adds an entry for C.f4() to the end of the method tables for both C and D. At this point the method
table for C is complete and the traversal proceeds on to D, which is processed in a similar fashion.

5 Assurance

Sandia requires the development of the SSP to produce strong evidence of the correctness of the system.
The class loader is a weak link in the assurance chain of the SSP. Commercial compilers take Java source
code and produce class files. The assurance provided by a commercial compiler stems from several
sources including the fact that the Java community at large performs an extensive stress test of the
compiler. Over time, such a testing environment causes a software product to mature. While bugs may
still exist in the compiler, the likelihood of encountering a bug in the class loader is significantly greater.
Thus, considerable effort is being devoted towards providing assurance in the translation performed by
the SSP class loader. In particular we are interested in applying formal reasoning techniques to verify
general properties of the class loader.

The assurance provided by formal reasoning comes in the form of a mathematical proof and typically
involves a model of the system under analysis (rather than the actual system itself). General properties
are stated in terms of theorems involving the model. The proof of theorems provides strong assurance
that the model behaves as required. Assurance of the correctness of the system under analysis relies on
(1) confidence that the proofs themselves are sound and (2) confidence that the model faithfully describes
the system: theorems that hold for the model hold for the system. While it is theoretically possible to
automate the construction of proofs, in practice it is extremely difficult and requires sophisticated tools
and approaches.
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We are using the modeling and verification framework provided by ACL2 [11][12] to formally prove
theorems about the class loader. ACL2 is a programming language based on the applicative subset of
Common Lisp. In this language, users can build executable models of software systems. ACL2 is also
a tool that assists users in proving theorems about their ACL2 programs.

The class loader is modeled as a system that consists of states and state transisitons. The state
is modeled by the class files of the Java application, and the state transitions are defined by the
transformations on this application. The JVM and the SSP provide the basis for formally understanding
equivalence between states.

A model of HATS is constructed by defining an abstract machine that controls the application of
transformation rules. Each transformation rule modifies the state of the system. The abstract machine
operates according to the following sequence: fetch the next transformation rule and node from the
current state, apply the transformation, and return a new machine state.

Though we are exploring the verification of a number of properties of the class loader, our ultimate
goal is to verify that the transformation rules preserve the meaning of the term to which they are applied
(i.e., the class loader is correct). In the context of the SSP, the initial term is a set of class files, C0,
generated by a Java compiler. The semantics of this term is defined by the JVM specification. We
can think of the JVM as defining a mapping from (classfiles × inputs) to outputs. Let EvalJV M :
classfiles ∗ inputs → outputs denote this mapping function. EvalJV M defines the behavior of the
program encoded in the class files. The final term is a ROM image, which we denote CROM . The
semantics of this term is defined by the SSP hardware, EvalSSP . HATS accomplishes the conversion of
C0 to CROM , as indicated by the notation CROM = T ∗(C0). In this notational framework, what must
be shown for inputs I is:

∀(C0, I)EvalJV M (C0, I) = EvalSSP (T ∗(C0), I)

The problem above can be decomposed by defining a sequence of normal forms, C0, C1, C2, ... in the
transformation of C0 to CROM . Properties about these normal forms are formally specified and become
theorems within our verification framework. Constant pool normalization and field distribution are two
examples of transformations leading to normal forms. In constant pool normalization all indirection is
removed from the constant pool entries of the class files in C0. Let T 1 denote the transformation that
accomplishes this task. Similarly, let T 2 denote the normal form resulting from field distribution. At
present, a sequence of five intermediate normal forms have been defined. For each normal form, there is
an evaluation function, Evaln. Thus, the original correctness conjecture can be restated as a sequence
of conjectures:

∀(C0, I)EvalJV M (C0, I) = Eval1(T 1(C0), I)
= Eval2(T 2(T 1(C0)), I)

. . .
= EvalSSP (T ∗(C0), I)
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where T ∗ is the composition of the individual transformations. This allows the proof to be constructed
incrementally, and therefore, reduces the complexity of the proof.

6 Related Work

ASF+SDF [5], ELAN [3], Stratego [27] and Maude [8] are operational systems that can be used for
program transformation. The ρ-calculus [7] and the S′γ-calculus [13] are theoretical frameworks in which
program transformation can be considered. With the exception of the ρ-calculus, none of these systems
directly support higher-order rewrite rules or strategies. Furthermore, none of these systems support
the dynamic (i.e., at runtime) construction of strategies or the transient combinator.

However, Stratego does support the ability to dynamically add and remove rules to an existing rule
base [26]. This capability can be understood as a restriction of the dynamic strategy creation possible
in TL. Stratego also supports the ability to construct rules having contextual matches [28]. Contextual
matching enables non-local information to be brought together within a match expression. It turns
out that the behavior of a contextual match can be directly implemented using the match and build
primitives of Stratego within the context of a nested traversal. Contextual matches can also be readily
simulated using the higher-order capabilities of TL.

ELAN [3] is a first-order failure-based rewrite system in which an AC matching algorithm [9] can
be used as the mechanism for the syntactic comparison of terms. ELAN is a strategic system whose
semantic foundation rests upon the ρ-calculus. Rewrite rules can be labeled and one or more rules
may share the same label. Thus labels are bound to rule bases. The consequence of AC matching
and labeled rule bases is that the application of a rule (base) to a specific term may yield multiple
results. This form of non-determinism surrounding rule base application is central to ELAN and gives
the system a deductive/declarative flavor. ELAN provides a variety of choice combinators together with
a backtracking capability as mechanisms for dealing with the non-determinism.

ASF+SDF [2] is a first-order identity-based rewriting framework in which an extended form of
matching provides the mechanism for the syntactic comparison of terms. The extension to matching
permits associative matching on lists structures. In [5] ASD+SDF is further developed so that one
can combine parameterized rewrite rules with a fixed set of generic traversals. The result of such a
combination is a traversal function – which is essentially a rewrite rule annotated with an appropriated
predefined traversal. One of the goals in [5] is to provide primitives so that the resulting traversal
functions can be used in a type-safe manner.

ACL2 has been used to prove the correctness of hardware implementations of microprocessors and
floating point algorithms as well as parts of implementations of the JVM. Our approach to modeling
the class loader is based on a heavily-researched model in which a system is described in terms of states
and state transitions.

Boyer and Yu used Nqthm, the predecessor of ACL2, to formalize a substantial subset of a com-
mercial microprocessor, the Motorola MC68020[4]. Based on this model, they were able to verify many
binary machine code programs produced by commercial compilers from source code in such high-level
languages as Ada, Lisp, and C.

Moore[17][21] also used the same approach to model Piton, an assembly programming language
that is implemented on a microprocessor, the FM8502, via a compiler, an assembler, and a linker. A
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piton interpreter was coded in the ACL2 logic in which given an initial state p0 you obtain state pn by
running piton forward n steps. However, the alternative approach is to map p0 to down to a FM8502
state (or core image), run the FM8502, and map the resulting state back up. The compiler, assembler
and linker were also defined as functions in the ACL2 logic. The implementation of was mechanically
proved correct.

More recently, this type of model has been used to reason about the behavior of computations
described in terms of Java byte codes[18][19][20][22].

The general approach was to model a significant subset of the JVM operationally using ACL2. This
model was used to execute certain Java programs by compiling them into bytecode. The model consists
of a state of the JVM and state transition function for each JVM bytecode instruction in the subset.
Basically, the state is a triple containing a thread table, a heap, and a class table. The transition function
takes an instruction, a thread, and a state, and returns a new state that is the result of executing the
given instruction on the given thread in the given state. The new state is a modification of the previous
state.

7 Conclusion

In this article we have argued that higher-order rewrite rules and strategies enhance the ability of
rewriting techniques to concisely realize complex transformational objectives, specifically objectives
surrounding the manipulation of non-localized data. The implications for software development are
that (1) the techniques of higher-order rewriting may enable more complex transformational objectives
to be realized in a practical setting, and (2) the conciseness offered by higher-order rules and strategies
could positively impact the ability of automated reasoning systems like ACL2 to verify the correctness
of transformations.

TL is a higher-order strategic programming system with several unique features including: (1) the
ability to dynamically construct strategies, (2) the ability to control strategy application through a
special combinator called a transient thereby opening the door to self-modifying strategies, and (3) the
ability to broadcast a copy of a strategy to every child of a term. When combined, these capabilities have
a synergistic effect enabling a variety of transformational objectives to be solved in an elegant fashion.
The effectiveness of this paradigm is shown by demonstrating how method tables can be constructed
for abstract Java class files.

The implementation of the JVM being targeted by this demonstration is the Sandia Secure Processor
(SSP). The SSP is a hardware implementation of a subset of the JVM for use in high-consequence safety-
critical embedded systems. Within the SSP, method tables are used as a mechanism for indirectly
providing access to the methods associated with an object. The strategic programming concepts shown
have been successfully scaled to the real world, realizing the entire class loader for the SSP. This
implementation was accomplished in HATS, a restricted dialect of TL that is freely available [10].

The Sandia Secure Processor project places a high priority on the provision of strong evidence that
the system behaves correctly. Currently, a weak link in the chain of evidence is in the software that
performs class loading. In order to provide strong evidence of correctness in the strategic programming
solution to the class loader problem, we are developing a framework for proving correctness. This
framework, based on the ACL2 theorem proving system, is intended to show that the transformation of
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terms preserves the initial semantics. A difficulty encountered in such a verification is how to formally
state the notion of functional equivalence between the different incarnations of class files that arise
during the course of transformation. This problem is solved by a series of Evali functions, with each
function being capable of processing class files at a particular levels of abstraction (e.g., prior to symbolic
resolution). When completed, the nature of the evidence provided by such a formal verification of the
class loader can constitute a major component of an argument that the class loader for the SSP meets
its dependability requirements.
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